
International Journal of Computer Science and Informatics International Journal of Computer Science and Informatics

Volume 1 Issue 2 Article 3

October 2011

Software Reusable Components With Repository System Software Reusable Components With Repository System

Chintakindi Srinivas
Department of CSE Kakatiya Institute of Technology and Sciences Warangal, India,
chintakindisrinivas77@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcsi

 Part of the Computer Engineering Commons, Information Security Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
Srinivas, Chintakindi (2011) "Software Reusable Components With Repository System," International
Journal of Computer Science and Informatics: Vol. 1 : Iss. 2 , Article 3.
DOI: 10.47893/IJCSI.2011.1016
Available at: https://www.interscience.in/ijcsi/vol1/iss2/3

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer Science and Informatics by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcsi
https://www.interscience.in/ijcsi/vol1
https://www.interscience.in/ijcsi/vol1/iss2
https://www.interscience.in/ijcsi/vol1/iss2/3
https://www.interscience.in/ijcsi?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcsi/vol1/iss2/3?utm_source=www.interscience.in%2Fijcsi%2Fvol1%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Software Reusable Components With Repository System

Software Reusable Components With Repository System

 Chintakindi Srinivas
 Associate Professor, Department of CSE

 Kakatiya Institute of Technology and Sciences
 Warangal, India
 E-mail: chintakindisrinivas77@gmail.com

 Dr.C.V.Guru rao
 Principal and Professor of CSE

 Kakatiya Institute of Technology and Sciences
 Warangal, India

Abstract

Software reuse is the process of creating software systems from existing
software rather than building them from scratch. The goal is the use of
reusable components as building blocks in new systems with
modifications occurring in a controlled way. The reuse of software
components is the key to improve productivity and quality levels in
software engineering. One of the most promising approaches to reduce
costs and improve reliability is component-based development, which
aims to allow new applications to be assembled from prefabricated parts
rather than coded from scratch. Software reuse involves building
software that is reusable by design and building with reusable software.
Software reuse includes reusing both the products of previous software
projects and the processes deployed to produce them, leading to a wide
spectrum of reuse approaches, from the building blocks (reusing
products) approach, on one hand to the generative or reusable processor
(reusing processes), on the other.
Keywords- Software Reuse, Component Based Software Engineering.

1. Introduction
A Software reuse enables developers to leverage past

accomplishments and facilitates significant improvements in
software productivity and quality. There are several
motivations for desiring software reuse, including gains in
productivity by avoiding redevelopment and gains in quality
by incorporating components whose reliability has already
been established. Reuse-based software development
emphasizes strategies, techniques, and principles that enable
developers to create new systems effectively using
previously developed architectures and components.

Software reuse offers a great deal of potential in terms of
software productivity and software quality by dealing with
software products at the component level. Also by focusing
on abstract descriptions of software components, it
addresses the question of scale; on the other hand, by
dealing with software design at the architectural level, rather
than the coding level, it addresses the question of emphasis.

Developing with reusable assets raises issues related to
providing methodological and computer support for

• Locating reusable assets
• Assessing their relevance to the current needs
• Adapting them to those needs.

The main goal of component-based software engineering
is to decrease development time and development costs of
software systems, by reusing prefabricated building blocks.

Component-based software engineering (CBSE) aims at
accelerating software development and decreasing
development costs, by building software systems from
prefabricated building blocks (components). Components
are binary, independently deployable building blocks that
can be composed by third parties. At the heart of CBSE lies
software reuse, i.e., the use of existing artifacts for the
construction of software.

It is widely accepted that software reuse is a major
component of many software productivity improvement
efforts, because it can result// in higher quality software at a
lower cost and delivered within a shorter time period.
Component is unit software that has business logics and
interfaces, the component communicate with other
components through its interfaces. Component- Based
Development (CBD) approach develops software systems
by assembling preexisting components under well-defined
architecture or framework. The CBD approach brings high
component reusability and easy maintainability, and reduces
time-to-market. Therefore it improves productivity of
software systems and lower development cost.

To implement a range of services in component based
software, firstly a set of compatible components are
identified from reusable component like a unit component.
To reuse existing components, there are functional
requirements that are summarized as following:

• Storing and Browsing of components,
• Easy access,
• Additional supports needed in reuse process.

To be collectively managed, the previously purchased and
generated components should be stored and the components
can be shown to let component re-users know the list of
reusable components.
Each component should be available to identify uniquely
and access conveniently at all times of access requests. The
identification of reusable component should be known to
determine which parts are to be partially or fully modified.
Corresponding to the expected modification degree, the
reusable components can be divided into the component to
be newly generated and to be modified.

Since the internal interface of a component is
communication method for interconnecting other
component, the structural and functional information is

International Journal of Computer Science & Informatics, Volume-1, Issue-2
86

Software Reusable Components With Repository System

provided to check interface match degree and estimate
reusable parts of a component.

To develop component-based software, requires various
tasks such as search, selection, analysis, adaptation,
deployment, test, assembly, purchase, development, and
store components.

The CBD tasks are divided into two activities, one of
which is the activity for component reuse and the other is
the activity with component reuse. The for-component-reuse
activity is composed of component purchase, development,
and store tasks. To build component-based software,
component-based software developers firstly search existing
off-the-shelf components, and then collect reusable
components. If they can’t find reusable, components are
purchased and newly generated. The newly generated
components are required to be stored in the repository and
be managed together. In the for component-reuse activity,
are generated, which need to test the modified functionality
to check correctness of the changes. In developing
component-based software, the activities such as component
identification, component modification, and component test
make consequence for component reuse.

2. Purpose and Origin

Component-based software development (CBSD) focuses
on building large software systems by integrating
previously-existing software components. By enhancing the
flexibility and maintainability of systems, this approach can
potentially be used to reduce software development costs,
assemble systems rapidly, and reduce the spiraling
maintenance burden associated with the support and
upgrade of large systems.

At the foundation of this approach is the assumption that
certain parts of large software systems reappear with
sufficient regularity that common parts should be written
once, rather than many times, and that common systems
should be assembled through reuse rather than rewritten
over and over. CBSD embodies the “buy, don’t build”
philosophy espoused by Fred Brooks. CBSD is also
referred to as component-based software engineering
(CBSE).

Component-based systems encompass both commercial-off-
the-shelf (COTS) products and components acquired
through other means, such as non developmental items
(NDIs). Developing component-based systems is becoming
feasible due to the following:

1. the increase in the quality and variety of COTS
products.

2. economic pressures to reduce system development
and maintenance costs

3. the emergence of component integration
technology

4. the increasing amount of existing software in
organizations that can be reused in new systems.

CBSD shifts the development emphasis from programming
software to composing software systems.

I.

3. TECHNICAL DETAILS
In CBSD, the notion of building a system by writing code
has been replaced with building a system by assembling and
integrating existing software components. In contrast to
traditional development, where system integration is often
the tail end of an implementation effort, component
integration is the centerpiece of the approach; thus,
implementation has given way to integration as the focus of
system construction. Because of this, integrability is a key
consideration in the decision whether to acquire, reuse, or
build the components. Each activity is discussed in more detail
in the following paragraphs

As shown in figure, four major activities characterize the
component-based development approach:

1. Component Qualification
2. Component Adaptation
3. Assembling Components into Systems
4. System Evolution

Figure 1: Activities of the Component-Based Development
Approach

3.1 Component Qualification

Component qualification is a process of determining

“fitness for use” of previously-developed components that
are being applied in a new system context. Component
qualification is also a process for selection components
when a marketplace of competing products exists.

International Journal of Computer Science & Informatics, Volume-1, Issue-2
87

Software Reusable Components With Repository System

Qualification of a component can also extend to include
qualification of the development process used to create and
maintain it (for example, ensuring algorithms have been
validated, and that rigorous code inspection have take
place).This is most obvious in safety-critical applications,
but can also reduce some of the attraction of using
preexisting components.

There are two phases of component qualification:
Discovery and Evaluation. In the discovery phase, the
properties of a component are identified. Such priorities
include component functionality (what services are
provided) and other aspects of a component’s interface
(such as the use of standards). These properties also include
quality aspects that are more difficult to isolate, such as
component reliability, predictability, and usability. In some
circumstances, it is also reasonable to discover “non-
technical” component properties, such as the vendor’s
market share, past business performance, and process
maturity of the component developer’s organization.

Discovery is a difficult and ill-defined process, with
much of the needed information being difficult to quantify
and, in some cases, difficult to obtain. There are some
relatively mature evaluation techniques for selecting from
among a group of peer products. For example, the
International Standards Organization (ISO) describes
general criteria for product evaluation [ISO 91] while others
describe techniques that take into account the needs of
particular application domains [IEEE 93]. These evaluation
approaches typically involve a combination of paper-based
studies of the components, discussion with other users of
those components, and hands-on benchmarking and
prototyping.

One recent trend is toward a “product line” approach
that is based on a reusable set of components that appear in
a range of software products. This approach assumes that
similar systems (e.g., most radar systems) have similar
software architecture and that a majority of the required
functionality is the same from one product to the next. The
common functionality can therefore be provided by the
same set of components thus simplifying the development
and maintenance life cycle. Results of implementing this
approach can be seen in two different efforts.

3.2 Component Adaptation

Because individual components are written to meet different
requirements, and are based on differing assumptions about
their context, components often must be adapted when used
in a new system. Components must be adapted based on
rules that ensure conflicts among components are
minimized. The degree to which a component’s internal
structure is accessible suggests different approaches to
adaptation:

1. White box, where access to source code allows a

component to be significantly rewritten to operate
with other components

2. Grey box, where source code of a component is not
modified but the component provides its own
extension language or application programming
interface (API)

3. Black box, where only a binary executable form of
the component is available and there is no
extension language or API

Each of these adaptation approaches has its own positives
and negatives; however, white box approaches, because they
modify source code, can result in serious maintenance and
evolution concerns in the long term. Wrapping, bridging,
and mediating are specific programming techniques used to
adapt grey-and black-box components.

3.3 Assembling Components into Systems

Components must be integrated through some well-

defined infrastructure. This infrastructure provides the
binding that forms a system from the disparate components.
For example, in developing systems from COTS
components, several architectural styles are possible:

1. Database, in which centralized control of

all operational data is the key to all information
sharing among components in the system.

2. Blackboard, in which data sharing among
components is opportunistic, involving reduced
levels of system overhead

3. Message bus, in which components have
separate data stores coordinated through messages
announcing changes among components

4. Object Request Broker (ORB) mediated,
in which the ORB technology provides
mechanisms for language-independent interface
definition and object location and activation

Each style has its own particular strengths and weaknesses.
Currently, most active research and product development is
taking place in object request brokers (ORBs) conforming to
the Common Object Request Broker Architecture (CORBA).

3.4 System Evolution

At first glance, component-based systems may seem
relatively easy to evolve and upgrade since components are
the unit of change. To repair an error, an updated component
is swapped for its defective equivalent, treating components
as plug-replaceable units. Similarly, when additional
functionality is required, it is embodied in a new component
that is added to the system. However, this is a highly
simplistic (and optimistic) view of system evolution.

International Journal of Computer Science & Informatics, Volume-1, Issue-2
88

Software Reusable Components With Repository System

Replacement of one component with another is often a
time-consuming and arduous task since the new component
will never be identical to its predecessor and must be
thoroughly tested, both in isolation and in combination with
the rest of the system. Wrappers must typically be rewritten,
and side-effects from changes must be found and assessed.
One possible approach to remedying this problem is Simplex

4. Usage Considerations

Several items need to be considered when implementing
component-based systems:

4.1 Short-term considerations

1. Development Process: An organization’s software
development process and philosophy may need to change.
System integration can no longer be at the end of the
implementation phase, but must be planned early and be
continually managed throughout the development process. It
is also recommended that as tradeoffs are being made
among components during the development process, the
rationale used in making the tradeoff decisions should be
recorded and then evaluated in the final product.

2. Planning: Many of the problems encountered when
integrating COTS components cannot be determined before
integration begins. Thus, estimating development schedules
and resource requirements is extremely difficult.

3. Requirements: When using a preexisting component, the
component has been written to a preexisting, and possible
unknown, set of requirements. In the best case, these
requirements will be very general, and the system to be built
will have requirements that either conform or can be made
to conform to the preexisting general requirements. In the
worst case, the component will have been written to
requirements that conflict in some critical manner with
those of the new system, and the system designer must
choose whether using the existing component is viable at
all.

4. Architecture: The selection of standards and components
needs to have a sound architectural foundation, as this
becomes the foundation for system evolution. This is
especially important when migrating from a legacy system
to a component-based system.

5. Standards: If an organization chooses to use the
component-based system development approach and it also
has the goal of making a system open, then interface
standards need to come into play as criteria for component
qualification. The degree to which a software component

meets certain standards can greatly influence the
interoperability and portability of a system.

6. Reuse of existing components: Component-based
system development spotlights reusable components.
However, even though organizations have increasing
amounts of existing software that can be reused, most often
some amount of reengineering must be accomplished on
those components before they can be adapted to new
systems.

7. Component Qualification: While there are several
efforts focusing on component qualification, there is little
agreement on which quality attributes or measures of a
component are critical to its use in a component-based
system. Useful work that begins to address this issue is:

1. “SAAM: A Method for Analyzing the Properties of
Software Architecture”.

2. Another technique addresses the complexity of
component selection and provides a decision
framework that supports multi-variable component
selection analysis. Other approaches, such as:

3. The qualification process defined by the US Air
Force PRISM program, emphasize “fitness for use”
within specific application domains, as well as the
primacy of integrability of components.

4. Another effort is Product Line Asset Support.

4.2 Long-term considerations

1. 1. External dependencies/vendor-driven upgrade
problem. An organization loses a certain amount of
autonomy and acquires additional dependencies when
integrating COTS components. COTS component
producers frequently upgrade their components based on
error reports, perceived market needs and competition, and
product aesthetics DoD (Dept. Of Defense) systems
typically change at a much slower rate and have very long
lifetimes. An organization must manage its new
functionality requirements to accommodate the direction in
which a COTS product may be going. New component
releases require a decision from the component-based
system developer/integrator on whether to include the new
component in the system. To answer “yes” implies facing
an undetermined amount of rewriting of wrapper code and
system testing. To answer “no” implies relying on older
versions of components that may be behind the current
state-of-the-art and may not be adequately supported by the
COTS supplier. This is why the component-based system
approach is sometimes considered a risk transfer and not a
risk reduction approach.

2. System evolution/technology insertion: System
evolution is not a simple plug-and-play approach. Replacing

International Journal of Computer Science & Informatics, Volume-1, Issue-2
89

Software Reusable Components With Repository System

one component often has rippling affects throughout the
system, especially when many of the components in the
system are black box components: the system’s integrator
does not know the details of how a component is built or
will react in an interdependent environment. Further
complicating the situation is that new versions of a
component often require enhanced versions of other
components or in some cases may be incompatible with
existing components.

Over the long-term life of a system additional challenges
arise, including inserting COTS components that correspond
to new functionality (for example, changing to a completely
new communications approach) and “consolidation
engineering” wherein several components may be replaced
by one “integrated” component. In such situations,
maintaining external interface compatibility is very
important, but internal data flows that previously existed
must also be analyzed to determine if they are still needed.

5. Conclusion

It is widely assumed that the component-based software

development approach, particularly in the sense of using
COTS components, will be significantly less costly (i.e.,
shorter development cycles and lower development costs)
than the traditional method of building systems “from
scratch.” In the case of using such components as databases
and operating systems, this is almost certainly true.
However, there is little data available concerning the
relative costs of using the component-based approach and,
as indicated in Usage Considerations, there are a number of
new issues that must be considered. In addition, if
integrating COTS components, an additional system
development and maintenance cost will be negotiate,
manage, and track licenses to ensure uninterrupted operation
of the system. For example, a license expiring in the middle
of a mission might have disastrous consequences.

References

[1] Jihyum Lee, Jinsam Kim, and Gyu-Sang Shin, “Facilitating

Reuse of Software Components using Repository
Technology”, Proceedings of the Tenth Asia-Pacific
Software Engineering Conference (APSEC’03), IEEE, 2003.

[2] Oliver Hummel and Colin Atkinson, “Extreme Harvesting:
 Test Driven Discovery and Reuse of Software Components”,
 IEEE, 2004.

[3] www.sei.cmu.edu/str/descriptions/template

[4] Youwen Ouyang, Doris L. Carver, “Creation of Reusable
 Components Based on Formal Methods”,

[5] Feather, M.S., Menzies, T., Connelly, J.R.,” Relating
 Practitioner needs to research activities” in: RE 2003.

 International Conference on Requirements Engineering,
 IEEE Computer Society Press (2003) 352-361

International Journal of Computer Science & Informatics, Volume-1, Issue-2
90

	Software Reusable Components With Repository System
	Recommended Citation

	Software Reusable Components With Repository System

