# International Journal of Advanced Technology in Civil Engineering

Volume 2 | Issue 1

Article 8

January 2013

# WATER QUALITY PREDICTION IN DISTRIBUTION SYSTEM USING CASCADE FEED FORWARD NEURAL NETWORK

VINAYAK K PATKI National Institute of Technology Karnataka (NITK), Surathkal, India, Patki.vnyk@rediffmail.com

S. SHRIHARI NITK, Surathkal, Mangalore,Karnataka, India, S.SHRIHARI@GMAIL.COM

B. MANU National Institute of Technology Karnataka (NITK), Surathkal, India, b.manu@nitk.ac.in

Follow this and additional works at: https://www.interscience.in/ijatce

## **Recommended Citation**

PATKI, VINAYAK K; SHRIHARI, S.; and MANU, B. (2013) "WATER QUALITY PREDICTION IN DISTRIBUTION SYSTEM USING CASCADE FEED FORWARD NEURAL NETWORK," *International Journal of Advanced Technology in Civil Engineering*: Vol. 2 : Iss. 1 , Article 8. Available at: https://www.interscience.in/ijatce/vol2/iss1/8

This Article is brought to you for free and open access by Interscience Research Network. It has been accepted for inclusion in International Journal of Advanced Technology in Civil Engineering by an authorized editor of Interscience Research Network. For more information, please contact sritampatnaik@gmail.com.

## WATER QUALITY PREDICTION IN DISTRIBUTION SYSTEM USING CASCADE FEED FORWARD NEURAL NETWORK

## VINAYAK K PATKI<sup>1</sup>, S. SHRIHARI<sup>2</sup>, B. MANU<sup>3</sup>

<sup>1</sup>Research scholar, National Institute of Technology Karnataka (NITK), Surathkal, India
<sup>2</sup>Professor, Department of civil Engineering, National Institute of Technology Karnataka (NITK), Surathkal, India
<sup>3</sup>Assistant Professor, Department of civil Engineering, National Institute of Technology Karnataka (NITK), Surathkal, India
E-mail: Patki.vnyk@rediffmail.com, s.shrihari@gmail.com, b.manu@nitk.ac.in

**Abstract**— Cascade feed forward ANN models have been developed by using pH, Alkalinity, Hardness, TS and MPN as the input variables to forecast water quality index (WQI) in the various zones of municipal distribution system. Different ANN models were developed using training data set and tested in order to determine optimum number of neurons in the hidden layer and best fitting transfer function. The study reveals that the predictions by logsigmoidal and pure linear transfer function are in good correlation with observed WQI as compared to tansigmoidal transfer function. It is also observed that the model performance changes considerably with change in hidden layer neurons. Hidden layer structure with seven neurons performs better, followed by hidden layer structure with four neurons and one neuron respectively.

Keywords-component; Cascade ANN Network, Water quality index, transfer function, number of neurons

## I. INTRODUCTION (HEADING 1)

The artificial neural network (ANN), as its name implies, is a technique for the human brains problem solving process. Just as human apply knowledge gained from experience to know problems or situations; the structure of a neural network can be applied to powerful computations of complex non linear relationships [1]. The ANN method is regarded as a potentially useful tool for modeling complex non-linear system, whereas fuzzy logic (FL) and adaptive neuro-fuzzy interference system (ANFIS) are useful in cases wherein uncertainties and imprecision is involved [2]. However, a large number of factors affecting the quality have a complicated nonlinear relation with the linguistic variables; traditional data processing methods are no longer good enough for solving the problem [3]. Water distribution system plays a vital role in presenting a desirable life quality to the public. The welfare level of country is measured with the amount of water consumption for each person and the quality of the provided water [4]. The water quality varies temporally and spatially at source, treatment plant and in the distribution network. The water quality in the distribution system deteriorates due to pipe age, corrosion of pipe material, intrusion of contaminants through leakage and cross connections, leaching of pipe material, formation of biofilm in the pipes etc, and hence many uncertainties are involved till the water reaches to the users tap.

Main objective of present study is to develop best fitting ANN model for prediction of WQI in the municipal distribution system. In this study the Cascade Forward Back Propagation (CFBP) is used to forecast the variation in WQI with variation in water quality parameters, for the various zones in Solapur city. ANN models were developed by using pH, Alkalinity, Hardness, total solids (TS) and MPN as the input variables and WQI as the output variable. The ANN models are developed by using two years data set for training the model and one year data is used for testing the model performance. Different ANN models were developed using training data set and tested in order to determine optimum number of neurons in the hidden layer, best fitting transfer function.

## **II. METERIALS AND METHODS**

## A. Study Area and Water Quality Data

The municipal water distribution system of Solapur, India is taken as a case study for prediction and analysis of water quality in the distribution system. Fig. 1 shows the location sketch of three sources of water. The water quality at these three sources varies spatially and temporally. The water is distributed to Solapur city by dividing it into twenty nine zones. The water quality in the distribution system deteriorates due to pipe age, corrosion of pipe material, intrusion of contaminants through leakage and cross connections, leaching of pipe material, formation of biofilm in the pipes etc. The zone wise water quality data for years 2008, 2009 and 2010 is collected from Solapur Municipal Corporation, Solapur. Physico-chemical properties of water such as pH (0.09), dissolved oxygen (0.12), total alkalinity (0.01), total solids (0.13), total hardness (0.05) and most probable number (0.6) were used to get the WQI for various zones. Weight factors are given in parentheses.

B. Artificial Neural Network Models for Prediction Neural networks have seen an explosion of interest over the last few years and are being successfully applied across an extraordinary range of problem domains, in areas as diverse as finance, medicine, engineering, geology, physics and biology. The excitement stems from the fact that these networks are attempts to model the capabilities of the human brain. From a statistical perspective neural networks are interesting because of their potential use in prediction and classification problems. Artificial neural networks (ANNs) are non-linear data driven self-adaptive approach as opposed to the traditional model based methods. They are powerful tools for modeling, especially when the underlying data relationship is unknown. ANNs can identify and learn correlated patterns between input data sets and corresponding target values. After training, ANNs can be used to predict the outcome of new independent input data. ANNs imitate the learning process of the human brain and can process problems involving non-linear and complex data even if the data is imprecise and noisy. Thus they are ideally suited for the modeling of agricultural data which is known to be complex and often non-linear.

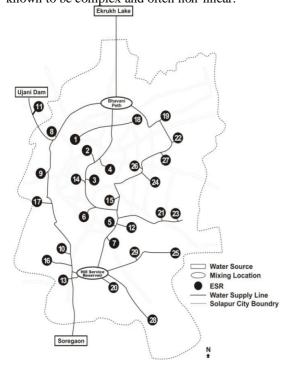



Fig.1 Location Sketch of Water Sources

#### 1. Characteristics of Neural Network

• The NNs exhibit mapping capabilities, that is, they can map input patterns to their associated output patterns.

• The NNs learn by examples. Thus, NN architectures can be trained with known examples of a problem before they are tested for their "inference" capability on unknown instances of the problem. They can, therefore, identify new objects previously untrained. • The NNs possess the capability to generalize. Thus, they can predict new outcomes from past trends.

• The NNs are robust systems and are fault tolerant. They can, therefore, recall frill patterns from incomplete, partial or noisy patterns.

• The NNs can process information in parallel, at high speed, and in a distributed manner.

## 2. Basics of Artificial Neural Networks

The terminology of artificial neural networks has developed from a biological model of the brain. A neural network consists of a set of connected cells. The neurons receive impulses from either input cells or other neurons and perform some kind of transformation of the input and transmit the outcome to other neurons or to output cells. The neural networks are built from layers of neurons connected so that one layer receives input from the preceding layer of neurons and passes the output on to the subsequent layer.

A neuron is a real function of the input vector (yj.....yk). The output is obtained as

$$f(x) = fa_i + \left[\sum_{n}^{\infty} W_{ij} \times Y_j\right]$$
(1)

Where f is a function, typically the sigmoid (logistic or tangent hyperbolic) function. A graphical presentation of neuron is shown in the Fig.2. Mathematically a Multi-Layer Preceptor network is a function consisting of compositions of weighted sums of the functions corresponding to the neurons. Feedforward networks are especially useful in function approximation when a set of inputs and outputs is all that is known of the system, which is the situation in this study. Feed-forward networks have their neurons arranged in layers.

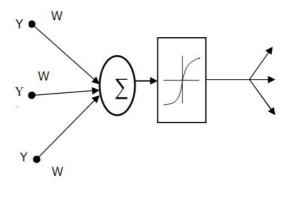



Fig.2 Structure of Neuron

#### 3. Cascade Forward Back Propagation Algorithm

The cascade back-propagation (CFBP) algorithm is the basis of a conceptual design for accelerating learning in artificial neural networks developed by Scott Fahlman at Carnegie Mellon in 1990. It is so named because it combines features of the backpropagation and cascade-correlation algorithms. Like

International Journal of Advanced Technology in Civil Engineering, ISSN: 2231-5721, Volume-2, Issue-1

other algorithms for learning in artificial neural networks, the CFBP algorithm (Fig.3) specifies an iterative process for adjusting the weights of synaptic connections by descent along the gradient of an error measure in the vector space of synaptic-connection weights. The error measure is usually a quadratic function of the differences between the actual and the correct outputs.CF models are similar to feed-forward networks, but include a weight connection from the input to each layer and from each layer to the successive layers.

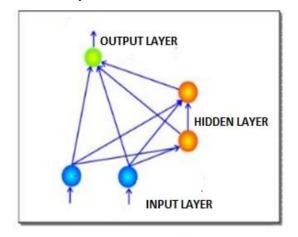



Fig.3 Cascade Forward Back Propagation Algorithm

There are two common criteria to stop training a network: (1) training cycles (epochs); and (2) desired errors. C.W. Dawson and R.L. Wilby (2001), suggested to typically applying 20,000 to 100,000 training cycles (epochs) to train the network when steepest descent method is used. The other criterion is to limit the difference between desired output and output calculated by the network .The training process may be brought to halt using either the worst error difference after complete presentation of all input output patterns, or the root mean square error summed over all patterns.

In practice, it is sometimes necessary to apply or compare both approaches to ensure the capability of the trained network in generalizing on the tested samples and application. The errors of tested samples is generally higher than the error of training sample as the network is trained to reduce the latter, not the former. However, the over-trained network would occasionally result in over fitting. Over fitting means the network can converge and yield a minimum or desired error in training samples but it cannot generalize well when validated with testing sample .The weights that produce the lowest error on the test sample would be used for the model.

## C. Modelling Performance Criterion

In order to evaluate the prediction accuracy of ANN and multiple regression models four criterions were used for comparative evaluation of the performance of the model. The criterions employed are Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error and Coefficient of Correlation (Cc).

#### Mean Absolute Error (MAE)

MAE is a quantity used to measure how close forecasts or predictions are to the eventual outcomes. Expressed in words, the MAE is the average over the verification sample of the absolute values of the differences between forecast and the corresponding observation. The mean absolute error is given by

$$MAE = 1/n \sum_{i=1}^{n} [observed - predicted]$$
(2)

#### Mean Square Error (MSE)

The mean squared error of an estimator is one of many ways to quantify the difference between values implied by an estimator and the true values of the quantity being estimated. It is the residual or error sum of squares divided by the number of degrees of freedom of the sum. This gives an estimate of the error or residual variance.

$$MSE = 1/n \sum_{1}^{n} (observed - predicted)^{2} \quad (3)$$

## Coefficient of Correlation (Cc)

It is a measure of the strength of the linear relationship between two variables. It is defined in terms of the (sample) covariance of the variables divided by their (sample) standard deviations

$$Cc = \frac{\sum (x - x')(y - y')}{\sqrt{(x - x')(y - y')}}$$
(4)

Where, n= the number of data patterns in the dependent data set, x= the observed values, y= the predicted values , x'= mean of the observed values and y'= mean of the predicted values

#### **III. RESULTS AND DISCUSSIONS**

The ANN Architecture for WQI prediction is composed of one input layer with six input variables, one hidden layer in which number of neurons varied from one to ten and one output layer with one output variable. Tansigmoidal, Purelinear and Logsigmoidal transfer functions were used to construct the ANN model for various zones in the city. The observed WQI for twenty nine zones reveals that, for zone twenty two (90.64) and twenty eight (92.39) water quality is excellent, for zone four (55.37), twenty three (66.69) and twenty nine (62.14) water quality is medium, for zone two (35.85) water quality is bad and for remaining twenty three zones water quality is good (70 to 90).The average WQI is given in parentheses

The typical error analysis during training and testing for zone with bad, medium, good and excellent water quality is mentioned in the Tables 1 to 4. From Tables 1 to 4 it is observed that model performance varies considerably with change in transfer function and number of neurons in the hidden layer structure. The best fitting ANN model for each zone based on performance indices and transfer function is mentioned in Table 5. It can be observed from Table 5 that, out of twenty nine zones in the study area, for thirteen zones Logsigmoidal, for ten zones Purelinear and for remaining six zones Tansigmoidal transfer function performs better. Logsigmoidal transfer function performed better due to strong nonlinearity between input variables and output variable.

| Table 1: Err | or Analysis | for Zone 7 | wo (Avg.WQI-35.85) with Bad Water Quality Using CFBP Algorithm (60% Training Dataset) |  |
|--------------|-------------|------------|---------------------------------------------------------------------------------------|--|
|              | _           |            |                                                                                       |  |

| Transfer   | Data                  | Error        |               |                   |                  | No. of N          | leurons |               | -          |                                                       |            |                                                                                                                                                                                                                                                                                                           |
|------------|-----------------------|--------------|---------------|-------------------|------------------|-------------------|---------|---------------|------------|-------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function   |                       | Analysi<br>s | 1             | 2                 | 3                | 4                 | 5       | 6             | 7          | 8                                                     | 9          | 10                                                                                                                                                                                                                                                                                                        |
| T unction  |                       |              | 849.84        | 34.172            | 121.34           | 45.980            |         | 4.0798        | 85.65      | 5.754                                                 | -          | 10                                                                                                                                                                                                                                                                                                        |
|            |                       | MSE          | 2             | 6                 | 9                | 1                 | 173.29  | 6             | 5          | 1                                                     | 20.54      | 65.842                                                                                                                                                                                                                                                                                                    |
|            |                       | MAE          | 17.905<br>3   | 4.0967<br>5       | 4.0398<br>3      | 3.0820<br>9       | 6.6067  | 1.2636<br>9   | 4.782<br>9 |                                                       | 3.949<br>2 | 4.3462                                                                                                                                                                                                                                                                                                    |
|            | Trainin               | MAL          | 29.152        | 5.8457            | 11.015           | 6.7808            | 0.0007  | 2.0198        | ,          | 2.398                                                 | 4.532      | 8.1143                                                                                                                                                                                                                                                                                                    |
|            | g                     | RMSE         | 1             | 3                 | 9                | 6                 | 13.164  | 7             | 9.255      | 8                                                     | 1          | 1                                                                                                                                                                                                                                                                                                         |
|            |                       | aa           | -             | 0.9337            | 0.8079           | 0.9287            | 0 (100  | 0.0007        | 0.906      |                                                       | 0.963      | 0.9550                                                                                                                                                                                                                                                                                                    |
| Tansigmoid |                       | CC           | 0.1302 42.101 | 7<br>10.964       | 7<br>11.510      | 7<br>9.3269       | 0.6133  | 0.9927 3.5169 | 7 12.51    |                                                       | 8<br>10.79 | 8.8055                                                                                                                                                                                                                                                                                                    |
| al         |                       | MRE          | 42.101        | 5                 | 8                | 4                 | 13.365  | 3.510         | 8          | 5.520                                                 | 6          | 6                                                                                                                                                                                                                                                                                                         |
|            |                       |              | 17.861        | 13.959            | 3.2798           |                   |         | 21.108        |            | 20.36                                                 | 10.20      | 18.531                                                                                                                                                                                                                                                                                                    |
|            |                       | MSE          | 8             | 3                 | 6                | 16.118            | 21.108  | 5             | 13.82      | 7                                                     | 7          | 3                                                                                                                                                                                                                                                                                                         |
|            |                       | MAE          | 3.8723<br>5   | 3.3820<br>9       | 1.5350<br>6      | 2.9802<br>6       | 3.6527  | 3.6527<br>1   | 2.454<br>2 |                                                       | 2.830<br>6 | 3.0125<br>7                                                                                                                                                                                                                                                                                               |
|            |                       |              | 4.2263        | 3.7362            | 1.8110           | 4.0147            | 5.0527  | 1             | 3.717      | ,                                                     | 3.194      | ,                                                                                                                                                                                                                                                                                                         |
|            | Testing               | RMSE         | 2             | 2                 | 4                | 3                 | 4.5944  | 4.5944        | 5          | 4.513                                                 | 8          | 4.3048                                                                                                                                                                                                                                                                                                    |
|            |                       | 00           | 0.2003        | 0.2068            | 0.6900           | 0.0429            | -       | -             | 0.036      |                                                       | 0.395      | -                                                                                                                                                                                                                                                                                                         |
|            |                       | CC           | 2<br>12.018   | 3<br>10.663       | 2<br>4.9332      | 4<br>9.4161       | 0.0515  | 0.0515        | 9<br>7.999 |                                                       | 1<br>8.863 |                                                                                                                                                                                                                                                                                                           |
|            |                       | MRE          | 4             | 7                 | 8                | 5                 | 11.64   | 1             | 6          | 9                                                     | 0.003<br>9 | 3                                                                                                                                                                                                                                                                                                         |
|            |                       |              | 95.516        | 241.73            | 303.83           |                   |         | 263.01        | 129.0      | 94.64                                                 | 121.3      | 163.75                                                                                                                                                                                                                                                                                                    |
|            |                       | MSE          | 8             | 9                 | 3                | 97.89             | 144.13  | 6             | 9          |                                                       | 2          |                                                                                                                                                                                                                                                                                                           |
|            |                       | MAE          | 7.6768<br>5   | 8.5336<br>9       | 10.555<br>7      | 7.023             | 9.2436  | 12.175<br>9   | 9.331<br>2 |                                                       | 7.499<br>8 |                                                                                                                                                                                                                                                                                                           |
|            | Trainin               |              | 9.7732        | 15.547            | 17.430           | 9.8939            | 7.2.00  | 16.217        | 11.36      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 11.01      | 12.796                                                                                                                                                                                                                                                                                                    |
|            | g                     | RMSE         | 7             | 9                 | 8                | 4                 | 12.005  | 8             | 2          |                                                       | 4          | 6                                                                                                                                                                                                                                                                                                         |
|            |                       | СС           | 0.8120<br>3   | 0.3462            | 0.4361<br>5      | 0.8096<br>6       | 0.7941  | 0.5787        | 0.748      |                                                       | 0.758<br>6 |                                                                                                                                                                                                                                                                                                           |
|            |                       |              | 20.461        | 18.687            | 27.707           | 0                 | 0.7941  | 34.917        | 25.60      |                                                       | 0          |                                                                                                                                                                                                                                                                                                           |
|            |                       | MRE          | 1             | 9                 | 8                | 17.127            | 26.722  | 5             | 6          |                                                       | 18.26      | 8                                                                                                                                                                                                                                                                                                         |
|            |                       |              | 80.356        | 160.73            | 472.98           | 61.478            |         | 45.215        | 169.1      |                                                       | 1008.      | 3103.2                                                                                                                                                                                                                                                                                                    |
| Purelinear |                       | MSE          | 9<br>5.5164   | 5<br>11.969       | 4<br>20.772      | 5<br>6.8760       | 1778.1  | 4.6277        | 8<br>11.19 |                                                       | 6          |                                                                                                                                                                                                                                                                                                           |
|            |                       | MAE          | 5.5104        | 9                 | 20.772           | 0.8700            | 41.599  | 4.0277        | 4          |                                                       | 30.91      |                                                                                                                                                                                                                                                                                                           |
|            |                       |              |               | 12.678            | 21.748           | 7.8408            |         | 6.7242        | 13.00      |                                                       | 31.75      | 55.706                                                                                                                                                                                                                                                                                                    |
|            | Testing               | RMSE         | 8.9642        | 1                 | 2                | 2                 | 42.167  | 4             | 7          | 1                                                     | 9          | 9                                                                                                                                                                                                                                                                                                         |
|            |                       | СС           | - 0.1906      | 0.0836            | 0.0362           | 0.0074            | 0.5387  | -<br>0.0876   | - 0.011    | - 0 135                                               | 0.322<br>6 | - 0.3514                                                                                                                                                                                                                                                                                                  |
|            |                       |              | 18.161        | 38.551            | 66.379           | 21.508            | 0.5507  | 14.380        | 36.04      |                                                       | 0          | 176.66                                                                                                                                                                                                                                                                                                    |
|            |                       | MRE          | 7             | 9                 | 9                | 1                 | 131.51  | 5             | 3          | 7                                                     | 97.9       | 6                                                                                                                                                                                                                                                                                                         |
|            |                       | MOD          | 826.94        | 742 70            | 743.05           | 694.47<br>2       | 604 47  | 831.09        | 874.9      |                                                       | 675.1      |                                                                                                                                                                                                                                                                                                           |
|            |                       | MSE          | 7<br>26.754   | 742.78<br>26.754  | 5<br>26.776      | 3<br>25.272       | 694.47  | 6<br>26.754   | 3<br>28.95 |                                                       | 8<br>24.33 |                                                                                                                                                                                                                                                                                                           |
|            |                       | MAE          | 5             | 5                 | 20.770           | 23.272            | 25.273  | 20.754<br>5   | 3          |                                                       | 24.55      | 20.550                                                                                                                                                                                                                                                                                                    |
|            | Trainin               |              | 28.756        | 07.074            | 07.070           | 26.352            |         | 28.828        | 29.57      |                                                       | 25.98      | 27.07.1                                                                                                                                                                                                                                                                                                   |
|            | g                     | RMSE         | 7             | 27.254            | 27.259<br>0.2144 | 9<br>0.7344       | 26.353  | 7             | 9<br>0.947 | -                                                     | 4          |                                                                                                                                                                                                                                                                                                           |
|            |                       | СС           | 0.4689        | -3E-16            | 0.2144           | 0.7344            | 0.4552  | 0.0489        | 0.947      |                                                       | -0.13      | 9                                                                                                                                                                                                                                                                                                         |
|            |                       |              | 80.804        | 77.767            | 77.807           | 76.173            |         | 81.016        | 84.66      | 77.76                                                 | 75.01      | 77.677                                                                                                                                                                                                                                                                                                    |
| · · · · ·  |                       | MRE          | 6             | 3                 | 828.00           | 9                 | 76.174  | 5             | 9          | 7                                                     | 8          | $\begin{array}{c} 163.75\\ 2\\ 9.7501\\ 6\\ 12.796\\ 6\\ 0.7145\\ 4\\ 27.565\\ 8\\ 3103.2\\ 5\\ 55.413\\ 6\\ 55.706\\ 9\\ 9\\ \hline \\ 0.3514\\ 176.66\\ 6\\ 733.00\\ 2\\ 26.550\\ 2\\ 2\\ 27.074\\ 0.6086\\ 9\\ 9\\ 77.677\\ 5\\ 828.09\\ 7\\ 28.685\\ 7\\ 28.776\\ 7\\ 28.776\\ 7\\ 4.4E- \end{array}$ |
|            |                       | MSE          | 1042.9<br>4   | 828.09<br>7       | 828.09<br>7      | 828.09<br>7       | 828.1   | 888.57<br>7   | 828.1      | 828.1                                                 | 828.1      | 828.09<br>7                                                                                                                                                                                                                                                                                               |
|            |                       |              |               | 28.685            | 28.685           | 28.685            | 020.1   | 29.703        | 28.68      |                                                       | 28.68      | 28.685                                                                                                                                                                                                                                                                                                    |
|            |                       | MAE          | 31.008        | 7                 | 7                | 7                 | 28.686  | 1             | 6          | 6                                                     | 6          | 7                                                                                                                                                                                                                                                                                                         |
|            | Tosting               | DMCE         | 32.294        | 28.776            | 28.776           | 28.776            | 70 777  | 20 000        | 28.77      |                                                       | 28.77      |                                                                                                                                                                                                                                                                                                           |
|            | resung                | RMSE         | - 6           | 7<br>4.4E-        | 7<br>4.4E-       | 7<br>4.4E-        | 28.777  | 29.809        | 7          | /                                                     | 7          |                                                                                                                                                                                                                                                                                                           |
|            |                       | СС           | 0.1594        | 4.4L <sup>2</sup> | 4.4L-<br>15      | 4.4L <sup>2</sup> | 4E-15   | 0.4474        | 4E-15      | 4E-15                                                 | 4E-15      | 15                                                                                                                                                                                                                                                                                                        |
|            |                       |              | 99.192        | 91.553            | 91.553           | 91.553            |         | 94.829        | 91.55      |                                                       | 91.55      | 91.553                                                                                                                                                                                                                                                                                                    |
|            | Purelinear<br>Testing | MRE          | 9             | 7                 | 7                | 7                 | 91.554  | 2             | 4          | 4                                                     | 4          | 7                                                                                                                                                                                                                                                                                                         |

International Journal of Advanced Technology in Civil Engineering, ISSN: 2231-5721, Volume-2, Issue-1

| Transfer     | Data     | Error    |          |          |          | No. of N | Veurons  |          |          |          |          | I        |
|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Function     |          | Analysis | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       |
|              |          | MSE      | 994.6084 | 872.3003 | 29.27042 | 40.1146  | 1215.91  | 308.1757 | 51.81491 | 120.6352 | 1735.943 | 30.71938 |
|              |          | MAE      | 20.17101 | 18.59667 | 3.272194 | 5.045894 | 23.76786 | 8.324909 | 4.689144 | 7.0542   | 36.59087 | 3.656897 |
|              | Training | RMSE     | 31.53741 | 29.53473 | 5.410215 | 6.333608 | 34.86991 | 17.55493 | 7.198257 | 10.98341 | 41.66465 | 5.542507 |
|              |          | СС       | 0.471989 | 0.620964 | 0.981866 | 0.973476 | 0.395643 | 0.840764 | 0.967444 | 0.953548 | -0.35559 | 0.981992 |
| Tansigmoidal |          | MRE      | 28.52564 | 50.19113 | 7.581011 | 11.1636  | 62.98813 | 20.84619 | 10.47233 | 13.72618 | 88.10848 | 8.245503 |
|              |          | MSE      | 1418.587 | 12.17333 | 1.377845 | 13.91369 | 1418.587 | 3.900719 | 6.788159 | 12.17333 | 24.70979 | 311.9096 |
|              |          | MAE      | 24.13333 | 3.266667 | 0.958967 | 3.296933 | 24.13333 | 1.742267 | 2.2842   | 3.266667 | 4.3936   | 11.15683 |
|              | Testing  | RMSE     | 37.66413 | 3.48903  | 1.173816 | 3.730107 | 37.66413 | 1.975024 | 2.60541  | 3.48903  | 4.970895 | 17.66096 |
|              |          | CC       | 0.5      | 0.999121 | 0.999972 | 0.996638 | 0.5      | 0.998912 | 0.998911 | 0.99621  | 0.999997 | 0.846817 |
|              |          | MRE      | 75.74717 | 7.106816 | 3.120291 | 7.927514 | 75.74717 | 5.420533 | 4.703062 | 7.106816 | 13.64744 | 36.17416 |
|              |          | MSE      | 114.0306 | 112.6279 | 107.4229 | 122.963  | 134.1102 | 111.4636 | 188.7271 | 125.0295 | 117.4051 | 104.3797 |
|              |          | MAE      | 9.546228 | 9.237231 | 8.8729   | 9.690634 | 9.608294 | 8.663369 | 11.86805 | 9.181756 | 8.770484 | 8.793878 |
|              | Training | RMSE     | 10.67851 | 10.61263 | 10.3645  | 11.08887 | 11.5806  | 10.55763 | 13.7378  | 11.18166 | 10.83536 | 10.21664 |
|              |          | СС       | 0.925152 | 0.926239 | 0.928855 | 0.918418 | 0.914447 | 0.925989 | 0.907491 | 0.919347 | 0.934136 | 0.933079 |
| Purelinear   |          | MRE      | 22.10361 | 23.3201  | 21.64163 | 24.12945 | 26.03193 | 21.51433 | 25.48923 | 25.16756 | 23.91276 | 21.72485 |
|              | Testing  | MSE      | 230.7542 | 203.3599 | 228.8891 | 119.8796 | 120.2479 | 207.558  | 234.5248 | 163.6484 | 194.7959 | 88.96345 |
|              |          | MAE      | 11.53677 | 8.5609   | 11.78873 | 8.9283   | 8.365533 | 10.3766  | 12.24357 | 11.39863 | 12.32213 | 7.052833 |
|              |          | RMSE     | 15.19059 | 14.26043 | 15.12908 | 10.94895 | 10.96576 | 14.40687 | 15.3142  | 12.79251 | 13.95693 | 9.432044 |
|              |          | СС       | 0.937381 | 0.911811 | 0.942927 | 0.940004 | 0.958684 | 0.933248 | 0.955403 | 0.913152 | 0.985679 | 0.950601 |
|              |          | MRE      | 33.83521 | 27.78868 | 34.49244 | 27.30468 | 24.65046 | 29.23777 | 30.11304 | 27.35003 | 26.17726 | 22.98695 |
|              |          | MSE      | 898.3425 | 755.4466 | 469.4076 | 907.3072 | 503.2506 | 473.6395 | 744.9153 | 894.7361 | 477.8978 | 685.6246 |
|              |          | MAE      | 25.3651  | 24.44688 | 16.77849 | 26.55313 | 18.7704  | 17.06122 | 25.94063 | 27.45109 | 17.60296 | 22.97604 |
|              | Training | RMSE     | 29.97236 | 27.48539 | 21.66582 | 30.12154 | 22.43325 | 21.76326 | 27.29314 | 29.91214 | 21.86087 | 26.18443 |
|              |          | СС       | 0.328249 | 0.461831 | 0.959889 | 0.286002 | 0.965681 | 0.963535 | 0.326509 | 0.104425 | 0.960554 | 0.535475 |
|              |          | MRE      | 66.2139  | 61.47497 | 50.6218  | 67.08371 | 53.16182 | 51.01971 | 61.01866 | 66.21864 | 51.65929 | 59.45903 |
| Logsigmoidal |          | MSE      | 661.46   | 927.69   | 661.4327 | 927.69   | 661.46   | 661.1159 | 927.69   | 928.9049 | 659.1214 | 661.3355 |
|              |          | MAE      | 22.53333 | 30.43333 | 22.5306  | 30.43333 | 22.53333 | 22.48153 | 30.43333 | 30.45187 | 22.27877 | 22.52083 |
|              | Testing  | RMSE     | 25.71886 | 30.458   | 25.71833 | 30.458   | 25.71886 | 25.71217 | 30.458   | 30.47794 | 25.67336 | 25.71644 |
|              |          | СС       | 0.435421 | 8.37E-17 | 0.435421 | 8.37E-17 | 0.435421 | 0.478321 | 8.37E-17 | -0.17015 | 0.432131 | 0.432314 |
|              |          | MRE      | 70.48401 | 79.22295 | 70.48099 | 79.22295 | 70.48401 | 70.43355 | 79.22295 | 79.30574 | 70.20292 | 70.47018 |

## Table 2: Error Analysis for Zone Four (Avg.WQI-55.37) with medium Water Quality Using CFBP Algorithm (90% Training Dataset)

| Water quality meadiation in    | distailantion arratan | wain Casaada faad     | forming manufactured    |
|--------------------------------|-----------------------|-----------------------|-------------------------|
| Water quality prediction in    | distribution system   | i fisinge ascade reed | TOFWARD DEHITAL DELWORK |
| in aller quality prediction in | and an out of ston    | abingeaseade reed     | for mara neural network |

| Transfer     | Data     | Error    | r No. of Neurons |        |        |         |        |         |        |          |          |                         |  |
|--------------|----------|----------|------------------|--------|--------|---------|--------|---------|--------|----------|----------|-------------------------|--|
| Function     |          | Analysis | 1                | 2      | 3      | 4       | 5      | 6       | 7      | 8        | 9        | 10                      |  |
|              |          | MSE      | 477.57           | 25.078 | 22.865 | 127.947 | 2.6776 | 591.46  | 3.2597 | 6.482789 | 6.473908 | 8.56534                 |  |
|              |          | MAE      | 11.855           | 1.8868 | 3.1477 | 4.49137 | 1.0914 | 13.6515 | 1.1818 | 1.136228 | 1.218181 | 1.767669                |  |
|              | Training | RMSE     | 21.853           | 5.0078 | 4.7818 | 11.3114 | 1.6363 | 24.3199 | 1.8055 | 2.546132 | 2.544388 | 2.92660                 |  |
|              |          | СС       | 0.715            | 0.978  | 0.983  | 0.928   | 0.997  | 0.581   | 0.997  | 0.994    | 0.994    | 0.991                   |  |
| Tansigmoidal |          | MRE      | 14.833           | 2.8636 | 4.4888 | 6.97004 | 1.4358 | 36.3388 | 1.6837 | 1.915486 | 1.948948 | 2.6475                  |  |
| Tansigmoidal |          | MSE      | 33.209           | 2.5129 | 2.0332 | 2.568   | 4.7418 | 3.61863 | 2.0821 | 60.43425 | 53.72868 | 60.72692                |  |
|              |          | MAE      | 1102.9           | 6.3146 | 4.1341 | 6.59461 | 22.485 | 13.0944 | 4.335  | 3652.298 | 2886.771 | 3687.75                 |  |
|              | Testing  | RMSE     | 20.373           | 2.0497 | 1.3916 | 2.41807 | 3.7335 | 3.14837 | 1.8771 | 60.34017 | 50.62937 | 60.6956                 |  |
|              |          | CC       | 0.773            | 0.705  | 0.958  | 0.987   | 0.45   | -0.12   | 0.998  | 0.81     | 0.775    | 0.99                    |  |
|              |          | MRE      | 23.163           | 2.2993 | 1.569  | 2.68541 | 4.1744 | 3.49501 | 2.0915 | 193.9762 | 161.5995 | 194.938:                |  |
|              |          | MSE      | 214.94           | 212.39 | 741.78 | 205.861 | 207.4  | 206.208 | 204.97 | 205.5121 | 410.2931 | 205.404                 |  |
|              |          | MAE      | 8.3436           | 8.2416 | 16.324 | 7.58103 | 7.8877 | 7.5399  | 7.0773 | 7.294128 | 15.74056 | 7.333844                |  |
|              | Training | RMSE     | 14.661           | 14.574 | 27.236 | 14.3479 | 14.401 | 14.3599 | 14.317 | 14.33569 | 20.25569 | 14.3319                 |  |
|              |          | СС       | 0.919            | 0.958  | 0.505  | 0.964   | 0.944  | 0.971   | 0.963  | 0.967    | 0.559    | 0.96                    |  |
|              |          | MRE      | 22.748           | 22.625 | 42.84  | 21.7859 | 22.183 | 21.7525 | 21.212 | 21.46269 | 30.92674 | 21.4934                 |  |
| Purelinear   |          | MSE      | 3.5391           | 7.5528 | 25.514 | 3.52525 | 6.5902 | 1.29007 | 1.2092 | 3390.748 | 4122.92  | 3798.38                 |  |
|              |          | MAE      | 1.6417           | 2.6365 | 4.9044 | 1.61673 | 2.429  | 1.00107 | 0.8321 | 58.0924  | 64.2     | 61.5098                 |  |
|              | Testing  | RMSE     | 1.8812           | 2.7482 | 5.0511 | 1.87757 | 2.5671 | 1.13581 | 1.0996 | 58.23013 | 64.20997 | 61.6310                 |  |
|              |          | CC       | 0.974            | 0.981  | -0.931 | 0.999   | 0.929  | 0.958   | 0.966  | 0.978    | 0        | 0.40                    |  |
|              |          | MRE      | 1.8085           | 2.9075 | 5.4204 | 1.8015  | 2.6825 | 1.11908 | 0.933  | 186.5492 | 206.1617 | 197.832                 |  |
|              |          | MSE      | 214.94           | 212.39 | 741.78 | 205.861 | 207.4  | 206.208 | 717.46 | 205.5121 | 410.2931 | 205.404                 |  |
|              |          | MAE      | 8.3436           | 8.2416 | 16.324 | 7.58103 | 7.8877 | 7.5399  | 18.063 | 7.294128 | 15.74056 | 7.333844                |  |
|              | Training | RMSE     | 14.661           | 14.574 | 27.236 | 14.3479 | 14.401 | 14.3599 | 26.785 | 14.33569 | 20.25569 | 14.3319:                |  |
|              |          | CC       | 0.919            | 0.958  | 0.505  | 0.964   | 0.944  | 0.971   | 0.963  | 0.967    | 0.559    | 0.96                    |  |
| Logsigmoidal |          | MRE      | 22.748           | 22.625 | 42.84  | 21.7859 | 22.183 | 21.7525 | 40.808 | 21.46269 | 30.92674 | 21.49342                |  |
|              |          | MSE      | 3.5391           | 7.5528 | 25.514 | 3.52525 | 6.5902 | 1.29007 | 1.2092 | 3390.748 | 4122.92  | 3798.38                 |  |
|              |          | MAE      | 1.6417           | 2.6365 | 4.9044 | 1.61673 | 2.429  | 1.00107 | 0.8321 | 58.0924  | 64.2     | 61.5098                 |  |
|              | Testing  | RMSE     | 1.8812           | 2.7482 | 5.0511 | 1.87757 | 2.5671 | 1.13581 | 1.0996 | 58.23013 | 64.20997 | 61.6310                 |  |
|              |          | CC       | 0.974            | 0.981  | -0.931 | 0.929   | 0.999  | 0.958   | 0.966  | 0.978    | 0        | 0.40                    |  |
|              |          | MRE      | 1.8085           | 2.9075 | 5.4204 | 1.8015  | 2.6825 | 1.11908 | 0.933  | 186.5492 | 206.1617 | 197.8 <mark>3</mark> 2. |  |

## Table 3: Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using CFBP Algorithm (90% Training Dataset)

| Transfer     | Data     | Error    | No. of Neurons |         |         |         |         |         |         |         |         |       |
|--------------|----------|----------|----------------|---------|---------|---------|---------|---------|---------|---------|---------|-------|
| Function     |          | Analysis | 1              | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10    |
|              |          | MAE      | 0.8806         | 0.35005 | 0.50208 | 17.5697 | 1.92135 | 0.91121 | 0.51517 | 0.53285 | 6.91292 | 0.290 |
|              | Training | MSE      | 1.66807        | 0.60734 | 0.80508 | 925.24  | 31.4811 | 14.9225 | 0.7967  | 0.70615 | 229.294 | 0.530 |
|              |          | RMSE     | 1.29154        | 0.77932 | 0.89726 | 30.4178 | 5.6108  | 3.86297 | 0.89258 | 0.84033 | 15.1424 | 0.728 |
|              |          | MRE      | 0.96244        | 0.38171 | 0.54159 | 19.2645 | 2.40701 | 0.99165 | 0.59274 | 0.60996 | 7.91931 | 0.310 |
| Tansigmoidal |          | СС       | 0.98           | 0.99    | 0.99    | 0.12    | 0.89    | 0.94    | 0.53    | 0.99    | 0.52    | 0.99  |
|              |          | MAE      | 2.20083        | 0.86823 | 2.5221  | 40.8667 | 3.2193  | 1.68483 | 0.89523 | 1.58273 | 4.2     | 7.241 |
|              |          | MSE      | 4.94899        | 0.93099 | 8.76505 | 2402.25 | 10.7441 | 2.95029 | 0.836   | 3.25126 | 18.92   | 81.5  |
|              | Testing  | RMSE     | 2.22463        | 0.96488 | 2.96058 | 49.0128 | 3.27782 | 1.71764 | 0.91433 | 1.80312 | 4.34971 | 9.031 |
|              |          | MRE      | 2.34864        | 0.92879 | 2.7067  | 43.9192 | 3.43547 | 1.80044 | 0.9564  | 1.69206 | 4.49269 | 7.652 |
|              |          | CC       | -0.95          | 0.78    | -0.31   | 0.832   | -0.95   | 0.98    | 0.67    | -0.29   | .62     | -0.9  |
|              |          | MAE      | 0.68082        | 0.51114 | 0.68625 | 0.61189 | 0.66017 | 0.67812 | 0.67446 | 0.70925 | 0.5452  | 0.588 |
|              |          | MSE      | 1.13416        | 0.57159 | 1.56621 | 1.07923 | 1.11635 | 0.92352 | 0.95383 | 1.20089 | 0.88102 | 0.782 |
|              | Training | RMSE     | 1.06497        | 0.75604 | 1.25148 | 1.03886 | 1.05657 | 0.961   | 0.97664 | 1.09585 | 0.93863 | 0.884 |
|              |          | MRE      | 0.77403        | 0.55396 | 0.80689 | 0.70821 | 0.75751 | 0.74712 | 0.74505 | 0.78094 | 0.63538 | 0.65  |
|              |          | СС       | 0.99           | 0.99    | 0.99    | 0.99    | 0.99    | 0.99    | 0.99    | 0.94    | 0.99    | 0.9   |
| Purelinear   | Testing  | MAE      | 1.9316         | 1.07913 | 2.31603 | 2.20003 | 3.61483 | 1.24373 | 1.5503  | 3.14913 | 0.83913 | 1.286 |
|              |          | MSE      | 4.6028         | 1.88848 | 6.28239 | 5.39471 | 13.5566 | 1.55104 | 3.19714 | 10.2289 | 0.89281 | 2.129 |
|              |          | RMSE     | 2.14541        | 1.37422 | 2.50647 | 2.32265 | 3.68192 | 1.24541 | 1.78806 | 3.19826 | 0.94488 | 1.459 |
|              |          | MRE      | 2.07139        | 1.13978 | 2.48106 | 2.35434 | 3.86258 | 1.32551 | 1.66427 | 3.36352 | 0.89003 | 1.380 |
|              |          | CC       | 0.87           | -0.98   | 0.59    | 0.81    | 0.87    | -0.8    | 0.99    | 0.89    | 0.68    | 0.6   |
|              |          | MAE      | 4.07879        | 0.59285 | 0.39521 | 0.57364 | 4.07878 | 0.55465 | 0.9446  | 0.58327 | 1.29896 | 0.54  |
|              |          | MSE      | 48.3309        | 1.15377 | 0.48042 | 1.31821 | 48.3307 | 0.72111 | 3.8464  | 1.06618 | 12.8119 | 1.978 |
|              | Training | RMSE     | 6.95204        | 1.07414 | 0.69312 | 1.14813 | 6.95203 | 0.84918 | 1.96122 | 1.03256 | 3.57937 | 1.406 |
|              |          | MRE      | 4.82852        | 0.63818 | 0.42097 | 0.62549 | 4.82852 | 0.60649 | 1.02209 | 0.63857 | 1.58957 | 0.59  |
| Logsigmoidal |          | СС       | 0.62           | 0.92    | 0.92    | 0.92    | 0.37    | 0.9     | 0.75    | 0.92    | 0.39    | 0.9   |
|              |          | MAE      | 4.2            | 2.3287  | 2.11937 | 1.3601  | 4.2     | 1.73857 | 2.2027  | 2.37393 | 0.72473 | 1.496 |
|              |          | MSE      | 18.92          | 8.61367 | 5.00787 | 2.09051 | 18.92   | 3.92294 | 5.48635 | 6.32315 | 0.54475 | 2.556 |
|              | Testing  | RMSE     | 4.34971        | 2.9349  | 2.23783 | 1.44586 | 4.34971 | 1.98064 | 2.34229 | 2.51459 | 0.73807 | 1.599 |
|              |          | MRE      | 4.49269        | 2.50242 | 2.26714 | 1.45351 | 4.49269 | 1.86571 | 2.35811 | 2.5341  | 0.77259 | 1.598 |
|              |          |          |                | 2100212 | 2.23717 |         |         | 100071  | 2.00011 | 210011  | 0       |       |
|              |          | СС       | 0.62           | -0.3    | 0.79    | 0.82    | 0.62    | 0.8     | -0.92   | -0.79   | 0.99    | -0.7  |

Table 4: Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using CFBP Algorithm (90% Training Dataset)

| Zone | No of Neurons<br>in<br>Hidden Layer | Transfer<br>Function | Ce    | MSE     | MAE   |
|------|-------------------------------------|----------------------|-------|---------|-------|
| 1    | 8                                   | Logsigmoidal         | 0.966 | 33.610  | 3.560 |
| 2    | 5                                   | Purelinear           | 0.874 | 1.33    | 0.839 |
| 3    | 4                                   | Purelinear           | 0.999 | 1.212   | 0.997 |
| 4    | 10                                  | Tansigmoidal         | 0.999 | 0.660   | 0.741 |
| 5    | 1                                   | Logsigmoidal         | 0.997 | 1.095   | 0.880 |
| 6    | 2                                   | Tansigmoidal         | 0.999 | 1.200   | 0.800 |
| 7    | 8                                   | Logsigmoidal         | 0.994 | 11.080  | 2.530 |
| 8    | 4                                   | Logsigmoidal         | 0.995 | 4.774   | 1.844 |
| 9    | 7                                   | Tansigmoidal         | 0.980 | 22.935  | 3.203 |
| 10   | 3                                   | Tansigmoidal         | 0.999 | 4.867   | 1.884 |
| 11   | 8                                   | Logsigmoidal         | 0.999 | 4.420   | 1.112 |
| 12   | 2                                   | Purelinear           | 0.999 | 2.980   | 1.478 |
| 13   | 3                                   | Logsigmoidal         | 0.999 | 1.507   | 1.014 |
| 14   | 8                                   | Logsigmoidal         | 0.999 | 2.233   | 1.200 |
| 15   | 7                                   | Purelinear           | 0.998 | 5.266   | 1.985 |
| 16   | 7                                   | Purelinear           | 0.999 | 1.820   | 1.082 |
| 17   | 4                                   | Logsigmoidal         | 0.779 | 237.635 | 6.455 |
| 18   | 7                                   | Logsigmoidal         | 0.999 | 2.595   | 1.253 |
| 19   | 1                                   | Purelinear           | 0.998 | 20.570  | 2.111 |
| 20   | 4                                   | Tansigmoidal         | 0.999 | 2.847   | 1.250 |
| 21   | 7                                   | Purelinear           | 0.998 | 4.291   | 1.804 |
| 22   | 6                                   | Logsigmoidal         | 0.993 | 1.759   | 1.308 |
| 23   | 9                                   | Purelinear           | 0.999 | 15.804  | 3.513 |
| 24   | 7                                   | Purelinear           | 0.999 | 2.178   | 1.190 |
| 25   | 4                                   | Logsigmoidal         | 0.999 | 21.198  | 4.032 |
| 26   | 3                                   | Logsigmoidal         | 0.987 | 147.978 | 4.942 |
| 27   | 10                                  | Purelinear           | 0.996 | 5.668   | 2.093 |
| 28   | 9                                   | Logsigmoidal         | 0.992 | 1.394   | 1.137 |
| 29   | 3                                   | Tansigmoidal         | 0.999 | 3.521   | 1.780 |

The number of neurons in the hidden layer affects the model performance.Fig.4 shows the performance of ANN model during training and testing for the typical zone two, four, fourteen and twenty two. From Fig.4 it is observed that the model performance changes considerably with variation in number of neurons in the hidden layer. In hidden layer number of neurons are varied from 1-10. From Table 5 it is observed that hidden layer structure with seven neurons performs better, followed by hidden layer structure with four neurons and three neurons respectively. The zone wise best fitting hidden layer structure changes due to zone wise change in statistical values (mean, standard deviation, variance etc.) for various water quality parameter viz. pH, alkalinity, hardness, DO, total solids and MPN.

From Fig. 4 it can be observed that during training and testing of ANN models, ANN models with different hidden layer structures shows high coefficient of correlation (Cc) nearer to one many times, in such cases best fitting model is to be selected based on mean absolute error (MAE) and mean relative error(MRE).From Table 5 it is also observed that the ANN models shows very high degree of correlation between observed and predicted values, almost for all twenty nine zones.

### **IV. CONCLUSIONS**

The studies on prediction of water quality index (WQI) in the distribution system for Solapur city has been carried out by using ANN models. Performance of ANN models were tested by using modeling performance criterions. The study reveals that model performance changes considerably with change of transfer function and hidden layer neuron structure. Predictions by logsigmoidal and purelinear transfer function are in good correlation with observed WQI as compared to tansigmoidal transfer function. Out of twenty nine zones in the study area for thirteen zones Logsigmoidal, for ten zones Purelinear and for remaining six zones Tansigmoidal transfer function performs better. Hidden layer structure with seven neurons performed better, followed by hidden layer structure with four neurons and three neurons respectively.

#### REFERENCES

- Kuo, Y.M., Liu, C.W, Lin, K.H. (2004). "Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan". Water Research, (38), 148-158.
- [2] Yan, H., Zou, Z. and Wang, H. (2010). "Adaptive neuro fuzzy interference system classification of water quality status". Journal of Environmental science, 22(12), 1891-1896.
- [3] Singh, K., Bansant, A., Malik, A. and Jain G. (2009).
   "Artificial neural network modeling of the river water quality – A case study". Ecological Modeling, (220), 888-895.
- [4] Kumar, N.V., Mathew, S. and Swaminathan, G. (2009). "Fuzzy information processing for assessment of ground water quality". International Journal of Soft Computing 4(1), 1-9.

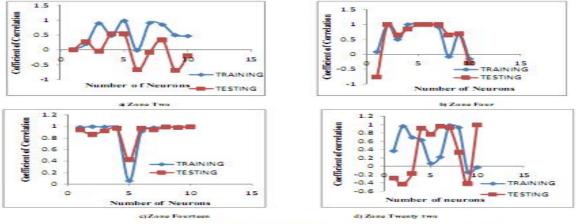



Fig.4: ANN Model Performancevs. No.of Neurons in Hidden Layer for Zone a) Two, b) Four, c) Fourteen and d)Twenty two