International Journal of Advanced Technology in Civil Engineering

Volume 2 | Issue 1 Article 8

January 2013

WATER QUALITY PREDICTION IN DISTRIBUTION SYSTEM USING
CASCADE FEED FORWARD NEURAL NETWORK

VINAYAK K PATKI
National Institute of Technology Karnataka (NITK), Surathkal, India, Patki.vnyk@rediffmail.com

S. SHRIHARI
NITK, Surathkal, Mangalore,Karnataka, India, S.SHRIHARI@GMAIL.COM

B. MANU
National Institute of Technology Karnataka (NITK), Surathkal, India, b.manu@nitk.ac.in

Follow this and additional works at: https://www.interscience.in/ijatce

Recommended Citation

PATKI, VINAYAK K; SHRIHARI, S.; and MANU, B. (2013) "WATER QUALITY PREDICTION IN DISTRIBUTION
SYSTEM USING CASCADE FEED FORWARD NEURAL NETWORK," International Journal of Advanced
Technology in Civil Engineering: Vol. 2 : Iss. 1, Article 8.

Available at: https://www.interscience.in/ijatce/vol2/iss1/8

This Article is brought to you for free and open access by Interscience Research Network. It has been accepted for
inclusion in International Journal of Advanced Technology in Civil Engineering by an authorized editor of
Interscience Research Network. For more information, please contact sritampatnaik@gmail.com.


https://www.interscience.in/ijatce
https://www.interscience.in/ijatce/vol2
https://www.interscience.in/ijatce/vol2/iss1
https://www.interscience.in/ijatce/vol2/iss1/8
https://www.interscience.in/ijatce?utm_source=www.interscience.in%2Fijatce%2Fvol2%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijatce/vol2/iss1/8?utm_source=www.interscience.in%2Fijatce%2Fvol2%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

WATER QUALITY PREDICTION IN DISTRIBUTION SYSTEM
USING CASCADE FEED FORWARD NEURAL NETWORK

VINAYAK K PATKIY, S. SHRIHARI? B. MANU®

'Research scholar, National Institute of Technology Karnataka (NITK), Surathkal, India
%professor, Department of civil Engineering, National Institute of Technology Karnataka (NITK), Surathkal, India
®Assistant Professor, Department of civil Engineering, National Institute of Technology Karnataka (NITK), Surathkal, India
E-mail: Patki.vnyk@rediffmail.com, s.shrihari@gmail.com, b.manu@nitk.ac.in

Abstract— Cascade feed forward ANN models have been developed by using pH, Alkalinity, Hardness, TS and MPN as the
input variables to forecast water quality index (WQI) in the various zones of municipal distribution system. Different ANN
models were developed using training data set and tested in order to determine optimum number of neurons in the hidden
layer and best fitting transfer function. The study reveals that the predictions by logsigmoidal and pure linear transfer
function are in good correlation with observed WQI as compared to tansigmoidal transfer function. It is also observed that
the model performance changes considerably with change in hidden layer neurons. Hidden layer structure with seven
neurons performs better, followed by hidden layer structure with four neurons and one neuron respectively.
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I. INTRODUCTION (HEADING 1)

The artificial neural network (ANN), as its name
implies, is a technique for the human brains problem
solving process. Just as human apply knowledge
gained from experience to know problems or
situations; the structure of a neural network can be
applied to powerful computations of complex non
linear relationships [1]. The ANN method is regarded
as a potentially useful tool for modeling complex
non-linear system, whereas fuzzy logic (FL) and
adaptive neuro-fuzzy interference system (ANFIS)
are useful in cases wherein uncertainties and
imprecision is involved [2]. However, a large number
of factors affecting the quality have a complicated
nonlinear relation with the linguistic variables;
traditional data processing methods are no longer
good enough for solving the problem [3]. Water
distribution system plays a vital role in presenting a
desirable life quality to the public. The welfare level
of country is measured with the amount of water
consumption for each person and the quality of the
provided water [4]. The water quality varies
temporally and spatially at source, treatment plant
and in the distribution network. The water quality in
the distribution system deteriorates due to pipe age,
corrosion of pipe material, intrusion of contaminants
through leakage and cross connections, leaching of
pipe material, formation of biofilm in the pipes etc,
and hence many uncertainties are involved till the
water reaches to the users tap.

Main objective of present study is to develop best
fitting ANN model for prediction of WQI in the
municipal distribution system. In this study the
Cascade Forward Back Propagation (CFBP) is used
to forecast the variation in WQI with variation in

water quality parameters, for the various zones in
Solapur city. ANN models were developed by using
pH, Alkalinity, Hardness, total solids (TS) and MPN
as the input variables and WQI as the output variable.
The ANN models are developed by using two years
data set for training the model and one year data is
used for testing the model performance. Different
ANN models were developed using training data set
and tested in order to determine optimum number of
neurons in the hidden layer, best fitting transfer
function.

Il. METERIALS AND METHODS

A. Study Area and Water Quality Data

The municipal water distribution system of Solapur,
India is taken as a case study for prediction and
analysis of water quality in the distribution system.
Fig. 1 shows the location sketch of three sources of
water. The water quality at these three sources varies
spatially and temporally. The water is distributed to
Solapur city by dividing it into twenty nine zones.
The water quality in the distribution system
deteriorates due to pipe age, corrosion of pipe
material, intrusion of contaminants through leakage
and cross connections, leaching of pipe material,
formation of biofilm in the pipes etc. The zone wise
water quality data for years 2008, 2009 and 2010 is
collected from Solapur Municipal Corporation,
Solapur. Physico-chemical properties of water such
as pH (0.09), dissolved oxygen (0.12), total alkalinity
(0.01), total solids (0.13), total hardness (0.05) and
most probable number (0.6) were used to get the WQI
for various zones. Weight factors are given in
parentheses.
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B. Artificial Neural Network Models for Prediction

Neural networks have seen an explosion of interest
over the last few years and are being successfully
applied across an extraordinary range of problem
domains, in areas as diverse as finance, medicine,
engineering, geology, physics and biology. The
excitement stems from the fact that these networks
are attempts to model the capabilities of the human
brain. From a statistical perspective neural networks
are interesting because of their potential use in
prediction and classification problems. Artificial
neural networks (ANNSs) are non-linear data driven
self-adaptive approach as opposed to the traditional
model based methods. They are powerful tools for
modeling, especially when the underlying data
relationship is unknown. ANNS can identify and learn
correlated patterns between input data sets and
corresponding target values. After training, ANNs
can be used to predict the outcome of new
independent input data. ANNs imitate the learning
process of the human brain and can process problems
involving non-linear and complex data even if the
data is imprecise and noisy. Thus they are ideally
suited for the modeling of agricultural data which is

known to be complex and often non-linear.

# [C—1 Water Source
<> Mixing Location
@ EsR
—— Water Supply Line
Solapur City Boundry

N
t
Fig.1 Location Sketch of Water Sources

1. Characteristics of Neural Network

» The NNs exhibit mapping capabilities, that is, they
can map input patterns to their associated output
patterns.

» The NNs learn by examples. Thus, NN architectures
can be trained with known examples of a problem
before they are tested for their “inference” capability
on unknown instances of the problem. They can,
therefore, identify new objects previously untrained.

» The NINs possess the capability to generalize. Thus,
they can predict new outcomes from past trends.

» The NNs are robust systems and are fault tolerant.
They can, therefore, recall frill patterns from
incomplete, partial or noisy patterns.

» The NNs can process information in parallel, at
high speed, and in a distributed manner.

2 .Basics of Artificial Neural Networks

The terminology of artificial neural networks has
developed from a biological model of the brain. A
neural network consists of a set of connected cells.
The neurons receive impulses from either input cells
or other neurons and perform some kind of
transformation of the input and transmit the outcome
to other neurons or to output cells. The neural
networks are built from layers of neurons connected
so that one layer receives input from the preceding
layer of neurons and passes the output on to the
subsequent layer.

A neuron is a real function of the input vector

FG) = fa+1) Wy x¥)] ()
n

Where f is a function, typically the sigmoid (logistic
or tangent hyperbolic) function. A graphical
presentation of neuron is shown in the Fig.2.
Mathematically a Multi-Layer Preceptor network is a
function consisting of compositions of weighted sums
of the functions corresponding to the neurons. Feed-
forward networks are especially useful in function
approximation when a set of inputs and outputs is all
that is known of the system, which is the situation in
this study. Feed-forward networks have their neurons
arranged in layers.

v W

V
v J

R

Fig.2 Structure of Neuron

3. Cascade Forward Back Propagation Algorithm

The cascade back-propagation (CFBP) algorithm is
the basis of a conceptual design for accelerating
learning in artificial neural networks developed by
Scott Fahlman at Carnegie Mellon in 1990.1t is so
named because it combines features of the back-
propagation and cascade-correlation algorithms. Like
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other algorithms for learning in artificial neural
networks, the CFBP algorithm (Fig.3) specifies an
iterative process for adjusting the weights of synaptic
connections by descent along the gradient of an error
measure in the vector space of synaptic-connection
weights. The error measure is usually a quadratic
function of the differences between the actual and the
correct outputs.CF models are similar to feed-forward
networks, but include a weight connection from the
input to each layer and from each layer to the
successive layers.

T ouTPUT LAYER

HIDDEN LAYER

T INPUT LAYER

Fig.3 Cascade Forward Back Propagation Algorithm

There are two common criteria to stop training a
network: (1) training cycles (epochs); and 2
desired errors. C.W. Dawson and R.L. Wilby (2001),
suggested to typically applying 20,000 to 100,000
training cycles (epochs) to train the network when
steepest descent method is used. The other criterion is
to limit the difference between desired output and
output calculated by the network .The training
process may be brought to halt using either the worst
error difference after complete presentation of all
input output patterns, or the root mean square error
summed over all patterns.

In practice, it is sometimes necessary to apply or
compare both approaches to ensure the capability of
the trained network in generalizing on the tested
samples and application. The errors of tested samples
is generally higher than the error of training sample
as the network is trained to reduce the latter, not the
former. However, the over-trained network would
occasionally result in over fitting. Over fitting means
the network can converge and yield a minimum or
desired error in training samples but it cannot
generalize well when validated with testing sample
.The weights that produce the lowest error on the test
sample would be used for the model.

C. Modelling Performance Criterion

In order to evaluate the prediction accuracy of ANN
and multiple regression models four criterions were
used for comparative evaluation of the performance
of the model. The criterions employed are Mean
Absolute Error (MAE), Mean Square Error (MSE),

Root Mean Square Error and Coefficient of

Correlation (Cc).
Mean Absolute Error (MAE)

MAE is a quantity used to measure how close
forecasts or predictions are to the eventual outcomes.
Expressed in words, the MAE is the average over the
verification sample of the absolute values of the
differences between forecast and the corresponding
observation. The mean absolute error is given by

MAE = 1/n Y-, [observed — predicted)

Mean Square Error (MSE)

The mean squared error of an estimator is one of
many ways to quantify the difference between values
implied by an estimator and the true values of the
quantity being estimated. It is the residual or error
sum of squares divided by the number of degrees of
freedom of the sum. This gives an estimate of the
error or residual variance.

(2)

n
MSE =1/n Z (observed — predicted)® (3)
1

Coefficient of Correlation (Cc)

It is a measure of the strength of the linear
relationship between two variables. It is defined in
terms of the (sample) covariance of the variables
divided by their (sample) standard deviations

_Xx-x)y-y) )
JE=x)y-y)

Where, n= the number of data patterns in the

dependent data set,x= the observed values, y= the

predicted values , x'= mean of the observed values
and y'= mean of the predicted values

I1l. RESULTS AND DISCUSSIONS

The ANN Architecture for WQI prediction is
composed of one input layer with six input variables,
one hidden layer in which number of neurons varied
from one to ten and one output layer with one output
variable. Tansigmoidal, Purelinear and Logsigmoidal
transfer functions were used to construct the ANN
model for various zones in the city. The observed
WQI for twenty nine zones reveals that, for zone
twenty two (90.64) and twenty eight (92.39) water
quality is excellent, for zone four (55.37), twenty three
(66.69) and twenty nine (62.14) water quality is
medium, for zone two (35.85) water quality is bad and
for remaining twenty three zones water quality is good
(70 to 90).The average WQI is given in parentheses
The typical error analysis during training and testing
for zone with bad, medium, good and excellent water
quality is mentioned in the Tables 1 to 4. From
Tables 1 to 4 it is observed that model performance
varies considerably with change in transfer function
and number of neurons in the
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hidden layer structure. The best fitting ANN model
for each zone based on performance indices and
transfer function is mentioned in Table 5. It can be
observed from Table 5 that, out of twenty nine zones
in the study area, for thirteen zones Logsigmoidal, for
ten zones Purelinear and for remaining six zones

Tansigmoidal transfer function performs better.
Logsigmoidal transfer function performed better due
to strong nonlinearity between input variables and

output variable.

Table 1: Error Analysis for Zone Two (Avg.WQI-35.85) with Bad Water Quality Using CFBP Algorithm (60% Training Dataset)

Transfer Data Error No. of Neurons
Analysi
Function S 1 2 3 4 5 6 7 8 9 10
849.84 | 34.172 | 121.34 | 45.980 4.0798 | 85.65 | 5.754

MSE 2 6 9 1] 173.29 6 5 1| 2054 | 65.842

17.905 | 4.0967 | 4.0398 | 3.0820 1.2636 | 4.782 | 1.340 | 3.949
MAE 3 5 3 9 | 6.6067 9 9 3 2 | 4.3462
Trainin 29.152 | 5.8457 | 11.015 | 6.7808 2.0198 2.398 | 4.532 | 8.1143
g RMSE 1 3 9 6 | 13.164 7 9.255 8 1 1
- | 0.9337 | 0.8079 | 0.9287 0.906 | 0.992 | 0.963 | 0.9550
CcC 0.1302 7 7 7 | 0.6133 | 0.9927 7 5 8 8
Tansigmoid 42.101 | 10.964 | 11.510 | 9.3269 3.5169 | 1251 | 3.328 | 10.79 | 8.8055
al MRE 4 5 8 4 | 13.365 3 8 7 6 6
17.861 | 13.959 | 3.2798 21.108 20.36 | 10.20 | 18.531
MSE 8 3 6 | 16.118 | 21.108 5| 13.82 7 7 3
3.8723 | 3.3820 | 1.5350 | 2.9802 3.6527 | 2.454 | 4.238 | 2.830 | 3.0125
MAE 5 9 6 6 | 3.6527 1 2 9 6 7

4.2263 | 3.7362 | 1.8110 | 4.0147 3.717 3.194
Testing RMSE 2 2 4 3 | 45944 | 45944 5 4513 8 4.3048
0.2003 | 0.2068 | 0.6900 | 0.0429 - - | 0.036 | 0.660 | 0.395 -
CcC 2 3 2 4 | 0.0515 | 0.0515 9 9 1| 0.0681
12.018 | 10.663 | 4.9332 | 9.4161 11.640 | 7.999 | 13.12 | 8.863 | 9.7217
MRE 4 7 8 5 11.64 1 6 9 9 3
95.516 | 241.73 | 303.83 263.01 | 129.0 | 94.64 | 121.3 | 163.75
MSE 8 9 3 97.89 | 144.13 6 9 5 2 2
7.6768 | 8.5336 | 10.555 12,175 | 9.331 | 8.401 | 7.499 | 9.7501
MAE 5 9 7 7.023 | 9.2436 9 2 1 8 6
Trainin 9.7732 | 15.547 | 17.430 | 9.8939 16.217 | 11.36 | 9.728 | 11.01 | 12.796
g RMSE 7 9 8 4 | 12.005 8 2 5 4 6
0.8120 0.4361 | 0.8096 0.818 | 0.758 | 0.7145
CcC 3 | 0.3462 5 6 | 0.7941 | 0.5787 | 0.748 1 6 4
20.461 | 18.687 | 27.707 34.917 | 25.60 | 23.85 27.565
MRE 1 9 8 | 17.127 | 26.722 5 6 4 | 18.26 8
80.356 | 160.73 | 472.98 | 61.478 45215 | 169.1 1008. | 3103.2
Purelinear MSE 9 5 4 5| 1778.1 4 8 | 133.2 6 5
5.5164 11.969 | 20.772 6.8760 4.6277 11.19 9.310 55.413
MAE 5 9 2 1| 41599 6 4 8 | 30.91 6
12.678 | 21.748 7.8408 6.7242 13.00 11.54 31.75 | 55.706
Testing RMSE 8.9642 1 2 2 | 42.167 4 7 1 9 9
- - - - - - - | 0.322 -
CC 0.1906 | 0.0836 | 0.0362 | 0.0074 | 0.5387 | 0.0876 | 0.011 | 0.135 6 | 0.3514
18.161 | 38.551 | 66.379 | 21.508 14.380 | 36.04 | 30.26 176.66
MRE 7 9 9 1| 13151 5 3 7 97.9 6
826.94 743.05 | 694.47 831.09 | 8749 | 742.7 | 675.1 | 733.00
MSE 7 | 742.78 5 3 | 694.47 6 3 8 8 2
26.754 | 26.754 | 26.776 | 25.272 26.754 | 28.95 | 26.75 | 24.33 | 26.550
MAE 5 5 6 7 | 25.273 5 3 5 6 2

Trainin 28.756 26.352 28.828 | 29.57 | 27.25 | 25.98
g RMSE 7 | 27.254 | 27.259 9 | 26.353 7 9 4 4 | 27.074
0.2144 | 0.7344 - | 0.947 -3E- 0.6086
CcC 0.4689 | -3E-16 5 7 | 0.4552 | 0.0489 5 16 -0.13 9
80.804 | 77.767 | 77.807 76.173 81.016 84.66 77.76 75.01 | 77.677
MRE 6 3 8 9 | 76.174 5 9 7 8 5
Logsigmoid 1042.9 | 828.09 | 828.09 | 828.09 888.57 828.09
al MSE 4 7 7 7 828.1 7 | 828.1 | 828.1 | 828.1 7
28.685 | 28.685 | 28.685 29.703 | 28.68 | 28.68 | 28.68 | 28.685
MAE 31.008 7 7 7 | 28.686 1 6 6 6 7
32.294 | 28.776 | 28.776 | 28.776 28.77 | 28.77 | 28.77 | 28.776
Testing RMSE 6 7 7 7 | 28.777 29.809 7 7 7 7
- 4.4E- 4.4E- 4.4E- - 4.4E-
cC 0.1594 15 15 15 4E-15 0.4474 | 4E-15 | 4E-15 | 4E-15 15
99.192 | 91.553 | 91.553 | 91.553 94.829 | 9155 | 9155 | 91.55 | 91.553
MRE 9 7 7 7 | 91.554 2 4 4 4 7
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Table 2: Error Analysis for Zone Four (Avg.WQI-55.37) with medium Water Quality Using CFBP Algorithm (90% Training Dataset)

Transfer Data Error No. of Neurons

Function Analysis 1 2 3 4 3 6 7 8 9 10

MSE | 994.6084 | 872.3003 | 29.27042 | 40.1146 | 121591 | 308.1757 | 51.81491 | 120.6352 | 1735.943 | 30.71938

MAE | 20.17101 | 18.59667 | 3.272194 | 5.045894 | 23.76786 | 8.324909 | 4.689144 | 7.0542 | 36.59087 | 3.656897

Training | RMSE | 31.53741 | 29.53473 | 5410215 | 6.333608 | 34.86991 | 17.55493 | 7.198257 | 1098341 | 41.66465 | 5.542507

CC | 0471989 | 0.620%4 | 0.9818606 | 0.973476 | 0395643 | 0.840764 | 0.967444 | 0.953548 | -0.35559 | 0.981992

Tansigmoidal MRE | 28.52564 | 50.19113 | 7.581011 | 11.1636 | 62.98813 | 20.84619 | 10.47233 | 13.72618 | 88.10843 | §.245503

MSE | [418.587 | 12.17333 | 1377845 | 13.91369 | 1418.587 | 3.900719 | 6.788159 | 12.17333 | 24.70979 | 311.9096

MAE | 24.13333 | 3.266667 | 0.958967 | 3.296933 | 24.13333 | 1.742267 | 2.2842 | 3266667 | 4.3936 | 11.15683

Testing | RMSE | 37.66415 | 3.48903 | 1.173816 | 3.730107 | 37.66413 | 1.975024 | 2.60541 | 3.48903 | 4.970895 | 17.66096

CC 0.5 ] 0999121 | 0.999972 | 0.996638 0.5 10998912 | 0.998911 | 0.99621 | 0.999997 | 0.846817

MRE | 7574717 | 7.106816 | 3.120291 | 7.927514 | 75.74717 | 5.420533 | 4703062 | 7.106816 | 13.64744 | 36.17416

MSE | 1140306 | 112.6279 | 1074229 | 122.963 | 134.1102 | 1114636 | 188.7271 | 125.0295 | 1174051 | 104.3797

MAE | 9.546228 | 9.237231 |  8.8729 | 9.690634 | 9.608294 | 8.663369 | 11.86805 | 9.181756 | 8.770484 | 8.793878

Training | RMSE | 10.67851 | 10.61263 | 103645 | 11.08887 | 11.5806 | 10.55763 | 13.7378 | 1118166 | 10.83536 | 10.21664

CC | 0925152 | 0.926239 | 0.928855 | 0.918418 | 0.914447 | 0.925989 | 0.907491 | 0.919347 | 0.934136 | 0.933079

MRE | 22.10361 | 23.3201 | 21.64163 | 24.12945 | 26.03193 | 21.51433 | 25.48023 | 25.16756 | 23.91276 | 21.72485

Purelinear MSE | 230.7542 | 203.3599 | 228.8891 | 119.8796 | 120.2479 | 207.558 | 234.5248 | 163.0484 | 194.7959 | 88.96345

MAE | 1153677 | 85609 | 1178873 | 89283 | 8365533 | 103766 | 12.24357 | 1139863 | 12.32213 | 7.052833

Testing | RMSE | 15.19059 | 1426043 | 15.12908 | 10.94895 | 10.96576 | 1440687 | 153142 | 12.79251 | 13.95693 | 9.432044

CC | 0.937381 | 0.911811 | 0.942927 | 0.940004 | 0.958684 | 0.933248 | 0.955403 | 0.913152 | 0.985679 | 0.950601

MRE | 33.83521 | 27.78868 | 34.49244 | 27.30468 | 24.65046 | 29.23777 | 30.11304 | 27.35003 | 26.17726 | 22.98695

MSE | 8983425 | 755.4466 | 469.4076 | 907.3072 | 5032506 | 473.6395 | 744.9153 | 894.7361 | 477.8978 | 685.6246

MAE 253651 | 24.44688 | 16.77849 | 26.55313 | 18.7704 | 17.06122 | 25.94063 | 27.45109 | 17.60296 | 22.97604

Training | RMSE | 29.97236 | 27.48539 | 21.66582 | 30.12154 | 2243325 | 21.76326 | 27.29314 | 2991214 | 21.86087 | 26.18443

CC 0.328249 | 0461831 | 0.959889 | 0.286002 | 0.965681 | 0.963535 | 0326509 | 0.104425 | 0.960554 | 0.535475

MRE 66.2139 | 6147497 | 50.6218 | 67.08371 | 53.16182 | SL.O1971 | 61.01866 | 6621864 | 51.63929 | 59.45903

Logsigmoidal MSE 66146 |  927.69 | 6614327 | 927.69 | 66146 | 661.1159 | 927.69 | 928.9049 | 659.1214 | 661.3355

MAE | 2253333 | 3043333 | 22.5306 | 30.43333 | 22.53333 | 22.48153 | 30.43333 | 3045187 | 22.27877 | 22.52083

Testing | RMSE | 2571886 | 30.458 | 25.71833 | 30438 | 25.71886 | 25.71217 | 30.458 | 30.47794 | 25.67336 | 25.71644

CC | 0435421 | 8.37E-17 | 0435421 | 8.37E-17 | 0435421 | 0478321 | 8.37E-17 | -0.17015 | 0432131 | 0432314

MRE | 7048401 | 79.22295 | 70.48099 | 79.22295 | 70.43401 | 70.43355 | 79.22295 | 79.30574 | 70.20292 | 70.47018
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Table 3: Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using CFBP Algorithm (90% Training Dataset)

Transfer Data Error No. of Neurons

Function Analysis 1 2 3 4 5 6 7 8 9 10

MSE 47757 ) 25.078 | 22.865 | 127.947 | 2.6776 | 59146 | 32597 | 6482789 | 6473908 | 8.565341

MAE 11.855 | 1.8868 | 3.1477 | 449137 | 1.0914 | 13.6515 | L1818 | L1.136228 | 1218181 | 1.767669

Training | RMSE | 20.853 | 50078 | 47818 | 113114 | 1.6363 | 243199 | 18055 | 2.546132 | 2544388 | 2.92660

CC 07151 0978 | 0983 0928 | 0997 0581 | 0997 0.994 0.994 0.991

Tansigmoidal MRE 14.833 | 2.8636 | 44388 | 6.97004 | 14358 | 363388 | 1.6837 | 1913486 | 1948948 | 2.64755

MSE 33209 | 25129 | 2.0332 2568 | 47418 | 3.61863 | 2.0821 | 6043425 | 53.72868 | 60.72692

MAE 1102.9 | 63146 | 4.1341 | 659461 | 22485 | 13.0944 | 4335 | 3652208 | 2886.771 | 3687.758

Testing RMSE | 20373 | 2.0497 | 13916 | 241807 | 3.7335 | 3.14837 | 18771 | 60.34017 | 50.62937 | 60.69567

CC 0773 | 0705 ] 0958 0.987 043 .12 ] 0.998 0.81 0.775 0.999

MRE 23163 | 22993 | 1569 | 2.68541 | 41744 | 349501 | 2.0915 | 193.9762 | 161.5995 | 194.9385

MSE 214941 21239 | 74178 | 205.861 | 2074 | 206208 | 20497 | 2055121 | 410.2931 | 205.4047

MAE 83436 | 8.2416 | 16324 | 758103 | 7.8877 | 75399 | 70773 | 7294128 | 1574056 | 7333844

Training | RMSE | 14.661 | 14574 | 27.236 | 143479 | 14.401 | 143599 | 14317 | 1433569 | 20.25569 | 1433195

CC 0919 | 0958 ] 0.505 0964 | 0944 0971 ] 0963 0.967 0.559 0.966

MRE 22748 | 22,625 | 4284 | 207859 | 22083 | 217525 | 21212 | 2146269 | 3092674 | 2149342

Purelinear MSE 35391 | 7.5528 | 25514 | 3.52525 | 6.5902 | 129007 | 12092 | 3390.748 | 412292 | 3798.385

MAE 1.6417 | 2.6365 | 49044 | 161673 | 2429 | 1.00107 | 0.8321 58.0924 642 | 61.50983

Testing RMSE | 18812 | 27482 | 5.0511 | 187757 | 2.5671 | L.13581 | 1.0996 | 5823013 | 6420997 | 61.63104

CC 0974 | 0981 -0.931 0999 ] 0929 0958 | 0966 0.978 0 0.402

MRE 1.8085 | 29075 | 54204 | 1.8015 | 2.6825 | L.I1908 | 0933 | 186.5492 | 206.1617 | 197.8323

MSE 21494 | 21239 | 74178 | 205.861 | 2074 206208 | 71746 | 2055121 | 410.2931 | 205.4047

MAE 83436 | 8.2416 | 16324 | 758103 | 7.8877 | 7.5399 | 18.063 | 7294128 | 15.74056 | 7333344

Training | RMSE | 14661 | 14574 | 27236 | 143479 | 144001 | 143599 | 26785 | 1433569 | 20.25569 | 1433195

cC 0919 | 0958 ] 0505 0964 | 0944 0971 0963 0.967 0.559 0.966

MRE 22748 | 22625 | 4284 | 217859 | 22.183 | 21.7525 | 40.808 | 2146269 | 3092674 | 21.49342
Logsigmoidal MSE 3.5391 | 7.5528 | 25514 | 3.52525 | 65902 | 1.29007 | 12092 | 3390.748 | 412292 | 3798.385
MAE 1.6417 | 2.6365 | 49044 | 161673 | 2429 | 1.00107 | 0.8321 | 58.0924 64.2 | 61.50983

Testing RMSE | 18812 | 27482 | S5.0511 | 187757 | 2.5671 | 1.13581 | 1.0996 | 5823013 | 6420997 | 61.63104

CC 0974 | 0981 -0.931 0929 1 0999 0958 | 0966 0.978 0 0.402

MRE 1.8085 | 29075 | 54204 | 18015 | 2.6825 | L.11908 | 0933 | 186.5492 | 206.1617 | 197.8323
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Table 4: Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using CFBP Algorithm (90% Training
Dataset)

Transfer Data Error No. of Neurons

Function Analysis 1 2 3 4 5 6 7 8 9 10

MAE 0.8806 | 0.35005 | 0.50208 | 17.5697 | 1.92135 | 0.91121 | 051517 | 0.53285 | 6.91292 | 0.29011

MSE 1.66807 | 0.60734 | 0.80508 | 92524 | 314811 | 14.9225 | 0.7967 | 0.70615 | 229.294 | 0.53046

Training | RMSE | 129154 | 0.77932 | 0.89726 | 304178 | 5.6108 | 3.86297 | 0.89238 | 0.84033 | 15.1424 | 0.72833

MRE 0.96244 | 038171 | 0.54159 | 19.2645 | 2.40701 | 0.99165 | 0.59274 | 0.60996 | 7.91931 | 0.31026

Tansigmoidal CC 0.98 0.99 0.99 0.12 0.89 0.94 0.53 0.99 0.52 0.99

MAE 220083 | 0.86823 | 2.5221 | 40.8667 | 3.2193 | 1.68483 | 0.89523 | 1.58273 42 7.24103

MSE 4.94899 | 0.93099 | 8.76505 | 2402.25 | 10.7441 | 295029 | 0836 | 3.25126 | 1892 81.565

Testing RMSE | 2.22463 | 096488 | 2.96058 | 49.0128 | 3.27782 | 1.71764 | 091433 | 1.80312 | 4.34971 | 9.03133

MRE | 234804 | 0.92879 | 2.7067 | 43.9192 | 3.43547 | 1.80044 | 0.9564 | 1.69206 | 4.49269 | 7.65208

CC .95 0.78 4031 0.832 0.93 0.98 0.67 0.29 62 0.99

MAE 0.68082 | 0.51114 | 0.68625 | 0.61189 | 0.66017 | 0.67812 | 0.67446 | 0.70925 | 0.5452 | 0.58886

MSE 1.13416 | 0.57159 | 1.56621 | 1.07923 | 1.11635 | 0.92352 | 0.95383 | 1.20089 | 0.88102 | 0.78238

Training | RMSE | 1.06497 | 0.75604 | 1.25148 | 1.03886 | 1.05657 | 0.961 0.97664 | 1.09585 | 0.93863 | 0.88452

MRE 0.77403 | 0.55396 | 0.80689 | 0.70821 | 0.75751 | 0.74712 | 0.74505 | 0.78094 | 0.63538 | 0.6574

CC 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.99 0.99

Purelinear MAE 1.9316 | 1.07913 | 231603 | 2.20003 | 3.61483 | 1.24373 | 1.5503 | 3.14913 | 0.83913 | 1.28673

MSE 4.6028 | 1.88848 | 6.28239 | 539471 | 13.5566 | 1.55104 | 3.19714 | 10.2289 | 0.89281 | 2.12996

Testing RMSE | 2.14541 | 137422 | 2.50647 | 2.32265 | 3.68192 | 124541 | 1.78806 | 3.19826 | 0.94488 | 1.45944

MRE | 2.07139 | 113978 | 248106 | 235434 | 3.86258 | 1.32551 | 1.66427 | 3.36352 | 0.89003 | 1.38054

CC 0.87 -0.98 0.59 0.81 0.87 0.8 0.99 0.89 0.68 0.67

MAE 4.07879 | 0.59285 | 0.39521 | 0.57364 | 4.07878 | 0.55465 | 0.9446 | 0.58327 | 1.29896 | 0.5459

MSE 483309 | 1.15377 | 0.48042 | 1.31821 | 483307 | 0.72111 | 3.8464 | 1.06618 | 12.8119 | 197862

Training | RMSE | 695204 | 1.07414 | 0.69312 | 1.14813 | 6.95203 | 0.84918 | 1.96122 | 1.03256 | 3.57937 | 1.400064

MRE 4.82852 | 0.63818 | 042097 | 0.62549 | 4.82852 | 0.60649 | 1.02209 | 0.63857 | 1.58957 | 0.5902

CC 0.62 0.92 0.92 0.92 0.37 0.9 0.75 0.92 0.39 091

Logsigmoidal MAE 42 23287 | 2.11937 | 13601 42 173857 | 22027 | 2.37393 | 0.72473 | 149623

MSE 1892 | 861367 | 5.00787 | 2.09051 1892 | 3.92294 | 5.48635 | 6.32315 | 0.54475 | 2.55688

Testing RMSE | 434971 | 2.9349 | 2.23783 | 1.44586 | 4.34971 | 198004 | 2.34229 | 2.51459 | 0.73807 | 1.59903

MRE 449269 | 2.50242 | 2.26714 | 1.45351 | 4.49269 | 1.86571 | 2.35811 | 2.5341 | 0.77259 | 1.59855

CcC 0.62 0.3 0.79 0.82 0.62 0.8 0.92 0.79 0.99 .71
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Table 5: Zone Wise Best Fitting ANN Models

No of Neurons
Zone in Txsnstes Ce MSE MAE
Hidden Laver

1 8 L dal 0.966 33.610 3.560
2 5 0.874 1.33 0.839
3 4 o 0.999 1.212 0.997
a 10 Tansigmoidal 0.999 0.660 0.741
s 1 Logsigmoidal 0.997 1.095 0.880
[ 2 Tansigmoidal 0.999 1.200 0.800
7 8 Logsigmoidal 0.994 11.080 2.530
8 4 Logsigmoidal 0.995 1.774 1.844
9 7 Tansigmoidal 0.980 22.935 3.203
10 3 Tansigmoidal 0.999 4.867 1.884
1 8 Logsigmoidal 0.999 4.420 1.112
12 2 Purelinear 0.999 2.980 1.478
13 3 Logsigmoidal 0.999 1.507 1014
14 8 Logsigmoidal 0.999 2.233 1.200
15 7 Purelinear 0.998 5.266 1.985
16 Fd Purelinear 0.999 1.820 1.082
17 a 0.779 | 237.635 | 6.455
1% 7 0.999 2.595 1.253
19 1 0.998 20.570 2111
20 4 0.999 2.847 1.250
21 d 0.998 4.291 1.804
3 & 0.993 1.759 1.308
23 9 Purelinear 0.999 15.804 3.513
24 7 Purelinear 0.999 2.178 1.190
2s a 0.999 21.198 4.032
26 3 0.987 147.978 | 4.942
27 10 Purelinear 0.996 5.668 2.093
8 o Logsi gmoidal 0.992 1.394 1.137
29 3 Tansigmoidal 0.999 3.521 1.780

The number of neurons in the hidden layer affects the
model performance.Fig.4 shows the performance of
ANN model during training and testing for the typical
zone two, four, fourteen and twenty two. From Fig.4
it is observed that the model performance changes
considerably with variation in number of neurons in
the hidden layer. In hidden layer number of neurons
are varied from 1-10. From Table 5 it is observed that
hidden layer structure with seven neurons performs
better, followed by hidden layer structure with four
neurons and three neurons respectively. The zone
wise best fitting hidden layer structure changes due to
zone wise change in statistical values (mean, standard
deviation, variance etc.) for various water quality
parameter viz. pH, alkalinity, hardness, DO, total
solids and MPN.

From Fig. 4 it can be observed that during training
and testing of ANN models, ANN models with
different hidden layer structures shows high
coefficient of correlation (Cc) nearer to one many
times, in such cases best fitting model is to be
selected based on mean absolute error (MAE) and
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mean relative error(MRE).From Table 5 it is also
observed that the ANN models shows very high
degree of correlation between observed and predicted
values, almost for all twenty nine zones.

IV. CONCLUSIONS

The studies on prediction of water quality index
(WQI) in the distribution system for Solapur city has
been carried out by using ANN models. Performance
of ANN models were tested by using modeling
performance criterions. The study reveals that model
performance changes considerably with change of
transfer function and hidden layer neuron structure.
Predictions by logsigmoidal and purelinear transfer
function are in good correlation with observed WQI
as compared to tansigmoidal transfer function. Out of
twenty nine zones in the study area for thirteen zones
Logsigmoidal, for ten zones Purelinear and for
remaining six zones Tansigmoidal transfer function
performs better. Hidden layer structure with seven
neurons performed better, followed by hidden layer
structure with four neurons and three neurons
respectively.

REFERENCES

[1] Kuo, Y.M,, Liu, C.W, Lin, K.H. (2004). “Evaluation of the
ability of an artificial neural network model to assess the

variation of groundwater quality in an area of blackfoot
disease in Taiwan”. Water Research, (38), 148-158.

[2] Yan, H., Zou, Z. and Wang, H. (2010). “Adaptive neuro
fuzzy interference system classification of water quality
status”. Journal of Environmental science, 22(12), 1891-

1896.

Singh, K., Bansant, A., Malik, A. and Jain G. (2009).
“Artificial neural network modeling of the river water quality
— A case study”. Ecological Modeling, (220), 888-895.

(3]

[4] Kumar, N.V., Mathew, S. and Swaminathan, G. (2009).
“Fuzzy information processing for assessment of ground

water quality”. International Journal of Soft Computing 4(1),

15
=
& =
= s
B . L J
= = 1s
|§ o, —— TR IME
= —— TESTIMG
-1
Surmlrer of SNeo rans
By P anmsin Faamor
12
= 1
= o
E oas
g aa
s a2
= L
= al
E -a=z
= Laa —— TRAIN NS
-Os

—— TESTI
Murmbeer of nearons

N T e

e _a F e S 1 i, | s oo P ) v

T vy 4w

International Journal of Advanced Technology in Civil Engineering, ISSN: 2231 5721, Volume-2, Issue-1

38



	WATER QUALITY PREDICTION IN DISTRIBUTION SYSTEM USING CASCADE FEED FORWARD NEURAL NETWORK
	Recommended Citation

	WATER QUALITY PREDICTION IN DISTRIBUTION SYSTEM USING CASCADE FEED FORWARD NEURAL NETWORK

