
The Journal of Engineering Research (TJER), Vol. 16, No. 1 (2019) 11-17

ASSESSING SOFTWARE RELIABILITY USING GENETIC ALGORITHMS

R. Jain
*,a

, and A. Sharma

Amity University Uttar Pradesh, Noida, Department of IT, Indira Gandhi Delhi Technical University for

Women (IGDTUW), India.

ABSTRACT: The role of software reliability and quality improvement is becoming more important than any

other issues related to software development. To date, we have various techniques that give a prediction of

software reliability like neural networks, fuzzy logic, and other evolutionary algorithms. A genetic algorithm

has been explored for predicting software reliability. One of the important aspects of software quality is called

software reliability, thus, software engineering is of a great place in the software industry. To increase the

software reliability, it is mandatory that we must design a model that predicts the fault and error in the software

program at early stages, rectify them and then increase the functionality of the program within a minimum time

and in a low cost. There exist numerous algorithms that predict software errors such as the Genetic Algorithm,

which has a very high ability to predict software bugs, failure and errors rather than any other algorithm. The

main purpose of this paper is to predict software errors with so precise, less time-consuming and cost-effective

methodology. The outcome of this research paper is showing that the rates of applied methods and strategies are

more than 96 percent in ideal conditions.

Keywords: Evolutionary algorithms; Genetic algorithm; Faulty /non-faulty data analysis; Software reliability

engineering.

الجينية اتالخوارزمي باستخدام البرمجيات موثوقية تقييم

 شارما أ. و أ،* جاين . ر
ب

بتطوير متعلقة أخرى مسألة أي من أهمية أكثر جودتها وتحسين البرمجيات موثوقية دور لفد أصبح :الملخص: الملخص

 الضبابي والمنطق العصبية الشبكات مثل البرمجيات بموثوقية تنبؤًا تعطي التي التقنيات من العديد لدينا فاليوم. البرمجيات

 أحد أن ,نعلم وكما. بوثوقية البرمجيات للتنبؤ جينية خوارزمية استكشاف تمقد التطورية. و الخوارزميات من وغيره

 في مهما مكانا تحتل البرمجيات هندسة فإن ، وبالتالي ، البرمجيات موثوقية يدُعى البرمجيات لجودة الهامة الجوانب

 في والخطأ بالخلل يتنبأ نموذجا بتصميم نقوم أن يلزم ، البرمجيات موثوقية زيادة أجل فمن البرمجيات . صناعة

 البرمجيات في أقل أداء بؤدي الى التحسين من بالعمل على تصحيحها وبالتالي و يقوم المبكرة المراحل في البرمجيات

 والتي ، الجينية الخوارزمية مثل البرمجيات بأخطاء تتنبأ التي الخوارزميات من العديد منخفضة. هذا ويوجد وبتكلفة وقت

أخرى. و عليه فإن خوارزمية أي من أكثر والأخطاء والقصور البرمجيات أخطاء توقع على جداً فائقة بقدرة تتمتع

للوقت , استهلاكا أقل الدقة عالية منهجية باستخدام البرمجيات بأخطاء التنبؤ هو الورقة البحثية هذه من الرئيسي الغرض

لهذا المطبقة والاستراتيجيات الوسائل معدلات أن البحثية الورقة هذه نتائج هذا وتظهر. التكلفة حيث كما انها مناسبة من

 المثالية الظروف في المائة من مثيلاتها في 69 الغرض هي أعلى من

 موثوقية هندسة الخاطئة و غير الخاطئة؛ البيانات الجينية؛ تحليل تطورية؛ الخوارزمية خوارزميات : المفتاحية الكلمات

 .البرمجيات

Corresponding author’s e-mail: jain.rac16@gmail.com

 DOI: 10.24200/tjer.vol16iss1pp11-17

mailto:Rjain1@amity.edu

The Journal of Engineering Research (TJER), Vol. 16, No. 1 (2019) 11-17

12

1. INTRODUCTION

Software quality prediction is a very vast and curtail

issue in software improvement because it helps to

find out various solutions for minimizing the cost of

product development even if the product is time

effective and needs fewer efforts to implement. There

is a very much hot discussion on the notion that

software quality characteristics (Briand. L. et.al

2000) cannot be directly measured. However, it can

be measured with the help of other software attributes

like coupling, size of the code, and of course, the

complexity of the software product. There is a

relationship between the attributes that are

measurable or those which may be

unmeasurable, though these software models are very

inflexible to simplify and recycle on very innovative

and undetected software as their accuracy failure has

been found to be significant.

 To overcome this process, this paper proposed a

new method that, together with a genetic algorithm

which acclimates such models, get to a new type of

tests data. It gives an experimental evidence that

clarifies this approach, which upbeats the decision

trees machine learning algorithms (Quinlan, J.R 1993)

like C4.5 and random presumption. To predict

software reliability, we have to use software

development models with respect to a software testing

process. The parametric models are currently being

used in software fault prediction, in which the most

commonly used model is known as the Markov

model. This model is sometimes also known as Non-

Homogeneous Poisson Process (Wang J. et.al 2014).

 Basically, Software Quality Assessment includes

evaluating architecture results attributes and

combination of these small attributes in order to

achieve the best quality control and features. For this

reason, the best way to go with software testing while

using various test designs or models with Genetic

Algorithm includes the white box testing methods

and some other methods that are also available like

Black Box testing method, robust testing, alpha and

beta testing etc. In these proposed methods, a control

structure of the software programme (that is actually

a combination of the graph, use case diagram, and

some other control flow diagram) has been prepared.

Basically, a control flow diagram or control flow

graph (Yamada S and Ohba 1983) is graphical

representation where each node represents a program

instruction and every edge represents a transfer of

control between the instructions used for the same

nodes using that particular edge. Many software

reliability prediction and growth models have been

designed and developed. We can use SPC (Statistical

Process Control) for monitoring the process of

Software Reliability and track all the actions which

had been taken during the software failure process

(Satya Prasad R. et.al 2012).

 Now the role of genetic algorithm basically

becomes more important because software testing is a

key for software quality assessment. In this work,

genetic algorithm and genetic programming are used

to optimize the test data and generate reports on

complex data analysis. For this reason, we use a

fitness function that will be considered for following

three criteria of population production as hereunder:

1. All path and traversal, that behaves as an

independent path.

2. What percentage of an independent path is

traversing?

3. The production time of the test data is not more

than the controlled time.

2. BACKGROUND

Choi Sang-Hyeon and Lee Ikjin (2018), have given a

detailed introduction about sequential optimization

and reliability assessment. This is based on RBDO

terminology, which has a higher success rate than

conventional double loop RBDO methods although it

is not more effective than the single loop approaches.

Mishra, Dubey S.K. (2016) applied fuzzy approach

for error detection and prediction. The authors used

CK metrics for fault prediction and continuously

made efforts to meet the challenge of maintaining

software reliability in object-oriented languages with

the help the fuzzy logic approach and CK metrics.

 According to Amin A, Grunske L, Colman A.

(2013) reliability is the main constraint software

quality assessment. There were various models that

have already been designed and used to estimate and

predict the reliability based on the result of software

testing methods. In this contrast the software

reliability growth models are the most commonly

used model to achieve this goal.

 Sharma, Dubey S.K. (2015), conducted a survey

on various techniques that extract from various

journals and conferences and analyze the widely used

methodologies and techniques used to predict

software reliability. Kumar R and Gupta N (2015);

in order to establish a relationship between reliability

and complexity, as used the respective influence of

the relationship between complexity and reliability.

 Bishnu P.S and Bhattacherjee V (2011) proposed

an idea about Kd-Tree methodology for predicting

the fault at the early stage of software programming

development with the help of the application of K-

Medoids with KD-tree. They applied a learning

approach for the prediction of faults in the software

module. It is also called supervised technique that is

also used for prediction effort.

 Rauf et. al. (2010) have presented a GUI testing

and analysis methodology on Genetic Algorithm. In

order to expose the event-driven characteristics of

GUI, they used event-flow graph technique together

with automated GUI testing. The genetic algorithm

uses various parameter combustions like coverage

function, fitness function, crossover and mutation

that ensure the correctness of test data.

12

R. Jain and A. Sharma

 For improving software testing efficiency,

researchers Srivastava and Tai-hoon (2009) fond out

the most critical paths after applying the genetic

algorithm technique. To find the clusters in a

program a method for optimizing software testing

efficiency was identified. To achieve this, the

researchers used WCF (weighted control flow graph)

to test data generation by using the machine learning

algorithm called genetic algorithm. There was

another approach that found out the entire path in the

underlying test called path testing that covers every

possible path in the software program. The

researchers concluded that, for improving software

testing efficiency and performing exhaustive search,

we can apply genetic algorithm easily and get

meaningful results.

 Yong C (2009) compared a test data for automatic

path coverage by using genetic algorithm for

generating new test data for path testing. He found

that while using genetic algorithm less time is

required for generating the meaningful test cased for

path testing.

 Ghiduk G (2008) introduced another method for

reducing the software testing cost. It is a concept of

relationships between the nodes of control flow graph

that overcome the cost of testing the data. This is

done with the help of a new fitness function that is

defined by using dominance relationship for

evaluation of the test data. The cost of testing is

reduced by evaluating the effective fitness function

and simultaneously comparing it to the random

testing techniques for evaluating the effectiveness of

the new fitness function as well as the methods that

are used to overcome the cost of software testing.

The proposed genetic algorithm and random

technique were used with various object-oriented

languages and programs, like structure oriented

programming languages.

 As proposed by Rajappa et. al. (2008), the use of

graph theory with genetic algorithm approach will

provide effective test cases for software testing. This

is done by using the directed graph of all states of the

program for the expected behavior, and the popula-

tion was generated with the help of all nodes of the

graphs. A combination of nodes was also selected

from the population to perform crossover function

and mutation for obtaining child nodes. This will lead

to generating test cares in the real-time system.

 Gupta, Rohil (2008) used the genetic algorithm

methodology to generate test cases for an object

oriented software program and other structured

languages with the help of tree data structure. In an

experimental step, this approach was used to generate

test cases for JAVA classes. In the field of

evolutionary algorithm set, the genetic algorithm is

one of the most powerful and multi-purpose

optimization tools which gives the right direction and

recognition to the principles of the evolution. The

genetic algorithm is very much capable of offering

ideal solutions even in the most complex research

environment De Jong et al. (1989).

 At the beginning of 1960’s, the genetic algorithm

was first proposed by John Holland and at that time it

was basically used for the issues that dealt with the

complex search space programs and structural

behavior Catal et al. (2009). The genetic algorithm

was used to simulate the progression of living things

through finding out a suitable answer related to all

the problems related to it.

 These issues necessitated the requirement of such

type of algorithm that generates the populations of

test, Goldberg D.E. et. al. (1992) analyzed a test or a

series of tests, developing test data generators that

can be structuralized as functional testing (Goldberg

1989; Dua et. al. 2002).
 Basically, a genetic algorithm typically has five
main parts as hereunder:

 Chromosome

 Pooling of Chromosomes

 Fitness Function

 Selection Function
 Mutation and Crossover Operator

 We can understand chromosome as a string of

binary data, or as a data structure. Initial Pool of

chromosome can be manually created or may be

randomly produced by some logic tricks and

evaluation process. The selection function is

responsible for deciding the initial progress stage of

the genetic algorithm provided by the mutation and

crossover operators in which chromosomes will

participate. However, the crossover and mutation

operators used to exchange the genes from two

chromosomes and create two new chromosomes for

generating population. A pseudo-code for genetic

algorithm can be defined as:

GA : Genetic Algorithm Starts

{

Initialize : Initialize the population (Children)

Evaluate : Calculate the fittest function applied

 on the population

If (Condition! = Accepted Criteria): Implemen-tation

of Loop until Termination Criteria

reached

 {

 Selection Function: Selection of

 Fitness function

 Operators : Select operators

like LRO (Linear

range operators)

Evaluation

 Process : Applied fitness

function on

operators and

evaluate results

 }

}

13

The Journal of Engineering Research (TJER), Vol. 16, No. 1 (2019) 11-17

 Basically the genetic algorithm is a used for

bounded and unbounded optimization.

3. GENERAL FAULT PREDICTION

APPROACH

The defect test cases and test data regarding

measurement that have been collected from software

development efforts are used to construct a prediction

model. In comparing the actual defectiveness and

predicted defectiveness of the software modules in

the test data, one can get the model performance.

Figure 1 shows the common defect prediction

procedure explained by Sunghun Kim et.al. (2011).

3.1 Tagging

 The data defect can be collected for preparation of

a prediction model. This is a process that used to

extract the instances of data items from different s/w

documentations.

3.2 Mining Features and Creating Training

Sets
 In this phase, there is one important thing that is

taking place which is prediction of extraction of

features and prediction of labels of illustrations both

are coming from the prediction of fault test data.

Defect prediction Sheta A (2006) has some complex

components like metrics, keywords, dependencies

and change that may be structural and nonstructural.

The training set can be produced by combining the

labels and features of instances that are used by the

machine learning algorithms.

3.3 Constructing Prediction Models
 We can use general machine learning algorithms

Goldberg, D.E. (1987) such as support vector

machines or Bayesian Network for building a training

set and prediction model. This model can use two

levels as “True” and “False” and obtain a new

instance.

 When the prediction of the model is calculated

Pham et al. (1999) it requires testing data sets not

training sets. This can be obtained by a prediction

model that evaluates and compares the real labels and

prediction. We can also separate the training sets

from the testing sets by using the 10-fold cross-

validation methods.

4. PROPOSED MODEL: A GENETIC

ALGOROTHM APPROACH FOR

FAULT PREDICTION

 While using a genetic algorithm, we must use

three components to create a prediction model that

can predict the fault.

These are as follows:

1. Creation of a model of the software

2. Generating effective test cases

3. Calculation of software test adequacy

a. Generation of Test Data for test case

generation
 In this paper genetic algorithm is used to generate

test cases that predict the software fault data set for

prediction of software reliability Oliveira E et. al.

(2005). For this reason, we assume that the

chromosome is one that contains the input values.

The proposed algorithm can evaluate the test data

Berndt D et. al (2003) by implementing the program

including the test data as inputs.

Figure 1. General fault prediction approach using machine

language Sunghun Kim et.al. (2011).

Figure 2. A genetic algorithm approch for software

prediction.Variables Used:

14

R. Jain and A. Sharma

Algorithm used: GenerateTData

Input: Part of a software program

 CDG- Control Dependencies Graph for

 test Code

 Ipol: Initial Population used for Genetic

 Algorithm

 Test_R List of test requirements

Output:

Final: Set of test cases, used for fault

prediction.

Variables Used:

 CDG_Pth: A set of all paths in CDG

 T_update: a record of satisfied test data

 CDG_Pth: A set of all paths in CDG

 T_update: a record of satisfied test data

 Old_Pop & N_Pop: set of test cases

Motive: Which test cases are to be

generated?

Max_A(): Function that returns Maximum

attempts for single target

OFT (): Function that returns true when time

limit reached and False otherwise.

Step: 1
 Initialization and setup

 Create software model

 Create Control Dependencies Graph

 Initialize initial population

Step: 2
 Generate Test Cases

While ((some, (r, unmarked) Ԑ Test_R and

not OFT ()) do

 Select unmarked target

from Test_R

While Target not marked and not

Max_attempt () do

 Compute fitness function

Sort the initial population

according to the fitness

 Select parents of new population

 Generate new Populations

Execute program for each

population

End while

End while

Step: 3
 Generate the final effective test cases

 Satisfy (Test_R)

 Return (Final, Test_R)

End

 The typical use of the Genetic Algorithm is crucial

due to this procedure. This algorithm works

according to the assigned goal and each test case has

its own goal rather than having the fitness function

unchanged during the test case generation Houck et.

al. (1995).

 The generation of test data has an input named as

“Program” where a prototype can be used for

generating the test data. Let us see the following

code as an example code of a program to generate

test cases using a genetic algorithm for software

predictability and fault prediction.

 Let us consider a programming code written in C-

Language that has three integers i.e. x1, x2 and x3.

Now generate test cases randomly and also create a

CFG for this program code. The test cases are

represented by T1, T2, T3, T4, T5, T6, T7 and T8.

1. Intiger (x1, x2, x3)

2. Read x1,x2,x3;

3. If(x1<x2)

4. If(x2<x3)

5. X1=x3;

6. Else x3=x1;

7. End if

8. End if

9. Print x1, x2, x3;

10. End

 Suppose that the algorithm we are using selects the

following test cases in order { (0, 6, 9), (0, 1, 4), (0, 1,

4), (0, 1, 4) }, then by using one point crossover

method we can get T5(1, 6, 4), T6 (0, 1, 9), T7 (0, 6,

4) & T8 (5, 1, 4), after applying genetic algorithm, the

two T5 and T7 satisfy the target and it is found that T6

and T8 are a faulty data set.

Figure 3. A control flow diagram for programming

code written in C-Language.

15

15

The Journal of Engineering Research (TJER), Vol. 16, No. 1 (2019) 11-17

 After implementation of genetic algorithm we find

following test data:

Table 1. Data set.

Test

Cases

Input (x, y, z) Statement

executed

T1 0, 1, 4 1, 2, 3, 4, 6

T2 1, 6, 9 1, 2, 3, 4, 6

T3 5, 0, 1 1, 2, 3

T4 2, 2, 3 1, 2, 6

T5 1, 6, 4 1, 2, 3, 4, 6

T6 0, 6, 9 1, 2, 6

T7 0, 6, 4 1, 2, 3, 4, 6

T8 5, 1, 4 1, 2, 3

5. PROPOSED ALGORITHM

The proposed algorithm has been applied to the test

data as per the follwing stepts written hereunder.

1. Take a program pseudo code written in any

programming language (in this paper C

Language)

2. Generate the test data of the program

3. Find all the possible conditions in the

programing code.

4. Generate the random set of test cases and apply

it,

5. Define the fitness function to calculate the path

coverage of the programing code using CFG.

6. Check for the path coverage in CFG.

7. If path coverage is satisfied, then stop.

Otherwise, go to next step.

8. Select the initial population with the rank based

selection process.

9. Apply the GA’s operations (crossover and

mutation) to generate the new population.

10. Goto step 6

6. MEASUREMENT OF SOFTWARE

RELIABILITY

Set of test-cases

 The set of test cares are derived from data

selection, which is a collection, of path traversal from

one node to another.

Mutants test cases

 To generate the mutants data, the volume of code

along with mutant’s operator are used.

 The test adequacy can be calculated by the formula

given below:

Adequacy = Coverage of test × the mutation score

 The range of calculated adequacy is in the sort of

[0, 1]; and it is useful in completing a accurate

approximation of software reliability fault prediction.

If the test model is an exact representation of the

system under test, then the reliability of the software

can be estimated by the following ratio:

casestestof.TotalNo

verifiedisthatcasestestof.No
Adequacy (1)

 The program that is under the test can be assumed

as a diagram shown (Fig. 2) containing the verified

(specified by the symbol ⇒) and non-verified

(specified by the symbol →) and arbitrarily

persuaded fault is the dart thrown at it.

Figure 4. Example of path in a given program, where the

path T2 is verified and reliable.

7. CONCLUSION

To achieve the software reliability, a code verification

tool should comprehensively investigate every piece

of code and verify its reliability against all possible

data values. The study on programs has revealed the

following results: Software reliability fault

prediction is actually based on the number of defects

that had already been present in the software before

delivery or dispatch. While dealing with safety-

critical software there was no situation found in which

one can find the warnings or even errors during

dynamic analysis. But in the present study, it was

found that the average warnings or errors observed

during the dynamic analysis decrease exponentially as

the reliability increases.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

FUNDING

No funding was received for this research.

T1

T2 T3

T2

16

R. Jain and A. Sharma

REFERENCES

Berndt D, Fisher J, Johnson L, Pinglikar J, Watkins A

(2003), Breeding software test cases with genetic

algorithms. In System Sciences, Proceedings of the

36th Annual Hawaii International Conference on.

IEEE 338–347.

Bishnu P.S, Bhattacherjee V (2011), Application of

K-medoids with kd-tree for software fault

prediction. IEEE Transactions Software Engineer-

ing 321-452.

Briand L, Daly W, Wüst J, Porter D (2000),

Exploring the relationships between design

measures and software quality. Journal of Systems

and Software 245-273.

CaoY, Hu C, Li L (2009), An approach to generate

software test data for a specific path automatically

with genetic algorithm. International Conference

on Reliability, Maintainability and Safety 888-892.

Catal C, Sevim U, Diri B (2009), Clustering and

metrics thresholds based software fault prediction

of unlabelled program modules. Sixth International

Conference on Information Technology: New

Generations 199-204.

De J, Spears W.M (1989). Using genetic algorithms

to solve NP-complete problems. In ICGA 124-132.

Dua A, Mishra G (2002), Stochastic search

technique for solving constrained optimization

problems with multiple objectives. Proc of

National Conference on Emerging Convergent

Technologies and Systems 399-404.

Goldberg D.E (1987), Genetic algorithms in search,

optimisation, and machine learning. Proc. of the

2nd Int. Conf. on Genetic Algorithms, Addison

Wesley 41 –49.

Goldberg D (1989), Genetic algorithms in search,

optimization and machine learning. Addison-

Wesley, Reading, Massachusetts 60-309.

Goldberg D.E, Deb K, Clark J.H (1992), Genetic

algorithms, noise, and the sizing of populations.

Complex Systems 333–362.

Ghiduk, Ahmed S, Girgis M.R (2010), Using genetic

algorithms and dominance concepts for generating

reduced test data, Informatica Slovenia 377-385.

Gupta N.K, Rohil M.K (2008), Using genetic

algorithm for unit testing of object oriented

software. International Conference on Emerging

Trends in Engineering and Technology 308-313.

Houck Christopher R, Joines A, Kay J.G.M (1995),

A genetic algorithm for function optimization. A

Matlab Implementation 1-10.

Kim S, Zhang H, Wu R, Gong L (2011), Dealing

with noise in defect prediction. CSE‟11, Waikiki,

Honolulu, HI, USA 481-490.

Kumar R, Gupta N (2015), Reliability measurement

of object oriented design: Complexity Perspective.

International Advanced Research Journal in

Science, Engineering and Technology 38-44.

Mishra, Dubey S.K (2016), Reliability of object

oriented software using fuzzy approach. ISO/IEC

9126 model and CK Metrics 398-401.

Nirpal, Premal B, Kale K.V (2010), Comparison of

software test data for automatic path coverage

using genetic algorithm. Internal Journal of

Computer Science and Engineering Technology

42-48.

Oliveira E, Pozo A, Vergilio S.R (2006), Using

boosting techniques to improve software reliability

models based on genetic programming. 18th IEEE

International Conference on Tools with Artificial

Intelligence 643-650.

Oliveira E, Silia C (2005), Modelling software

reliability growth with genetic programming.

Proceedings of the 16th IEE International

Symposium on Software Reliability Engineering

39-121.

Pham H, Nordmann (1999), A general imperfect -

software-debugging model with s-shaped fault-

detection rate. IEEE Trans. Reliability 169–175.

Quinlan J.R (1993), Programs for machine learning.

Morgan Kaufmann Publishers 235-240.

Rajappa V, Biradar A, Panda S (2008), Effective

software test case generation using genetic

algorithm based graph theory. First International

Conference on Emerging Trends in Engineering

and Technology 298-303.

Rauf A, Anwar S, Jaffer M.A, Shahid A.A (2010),

Automated GUI test coverage analysis using GA.

7
th

 International Conference on Information

Technology New Generations 1057-1062.

Sharma C, Dubey S.K. (2015), A perspective

approach of software reliability models and

techniques. ARPN Journal of Engineering and

Applied Sciences 7300-7308

Srivastava P.R. Kim T.H (2009), Application of

genetic algorithm in software testing.

International Journal of Software Engineering and

its Applications 87-96.

Sheta A (2006), Reliability growth modelling for

software fault detection using particle swarm

optimization. IEEE Congress on Evolutionary

Computation 10428–10435.

Yamada S, Ohba (1983), S-shaped reliability growth

modelling for software error detection. IEEE

Trans. Reliability 475–484.

17

