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ABSTRACT: In this paper, the space fractional wave equation (SFWE) is numerically studied,
where the fractional derivative is defined in the sense of Caputo. An explicit finite difference
approximation (EFDA) for SFWE is presented. The stability and the error analysis of the EFDA are
discussed. To demonstrate the effectiveness of the approximated method, some test examples are
presented.
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1. Introduction

Fractional derivatives in mathematics are natural extension of integer-order derivatives, where the order is
non integer. Fractional order differential equations have been the focus of many studies due to their frequent
appearance in various applications especially in the fields of fluid mechanics, viscoelasticity, biology, physics
and engineering (Bagley and Torvik, 1984; Mainardi, 1995; Mainardi and Paradisi, 1997; Podlubny, 1999;
2002). Consequently, considerable attention has been given to the solutions of fractional ordinary/partial
differential equations (Sweilam et al., 2011). Numerical approximations are the main tool to simulate and study
the behaviour of the solutions of such model problems (Fix and Roop, 2004; Meerschaert and Tadjeran, 2004;
Sweilam et al., 2007; Sweilam and Khader, 2010; Tenreiro Machado, 2003; Yuste, 2011; Yuste and Acedo,
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2005). Difference methods and, in particular, explicit finite difference methods, are an important class of
numerical methods for solving fractional differential equations (Morton and Mayers, 1994; West and Seshadri,
1982; Xu et al., 2001). The usefulness of the explicit method and the reason why they are widely employed is
based on their particularly attractive features (Yuste, 2011; Yuste and Acedo, 2005).

In this paper, an EFDA scheme is designed for solving a fractional order wave equation where the
fractional derivative is in the Caputo sense. Moreover, since the explicit methods may be unstable, then, it is
crucial to determine under which conditions, if any, these methods are stable. We will use here a kind of
fractional von Neumann stability analysis to derive the stability conditions. We consider in this paper the
following SFWE model:

2 a

&g’t)zd(x,t)au—(x’t), O<x<Ll, t=0, 1l<a<2, 1)
5t [04

u(x,0)=f;(x), u;(x,0)=f,(x), 0<x <L, 2)
u(0,t)=¢(t), u(L,t)=w(), (©)

where the variable coefficient d(x, t) >0. The parameter « refers to the fractional order of spatial derivatives,

and the Caputo's fractional derivative Dgu(x), is defined as follows (Podlubny, 1999).

M, a=me N s
o%u(x, 1) _ DEu(x, )= dx™ )
6Xa 1 ].((X_é)m—a—l amu(é’t)dg m—l<a<m
r(m-a) oE™ ' ’

where T'(.) is the gamma function.

2. Explicit finite difference approximation for SFWE

Let us consider h =L/K, where K is a positive integer, by using a second order difference approximation
and (4), we get for m =2 that
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Let At=7>0 be the grid step in time, t, =nz, 0<t, <T, n=0,---,N =1, N =T /z and Ax =h >0 be

the grid step in space, xj =kh, 0<x) <L, k =1,--,K -1, so that uy =u(kh,nr) and dy =d(x,O0).
Applying the forward finite difference formula to the initial conditions (2), we obtain
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ug = f (%), Uk = fL(x )7+ f2 (%)

Now the discrete form of (1) using the explicit finite difference scheme can be written as

n+1 n n-1 —a
Uy —2Uk + Uy dkh k-1 n n n . -0 .2—¢
= Up_ i1 —2Up_ i +Up_i_: +1 - )
TZ rG3-a) j§0[ k—j+1 k-] k Jl][(J ) J 1
and
k-1
up =20 —ud Tt sTug ;- 2uf +U|?+1]+5__Zlgj[Ulg—j+1—2U|?—j +ug_j4l, ®)
J:
where
_ dks T2 . 2-a  .2-a
§ = ,S=—:.,0; =(j+1 - .
rG-a) > pa' Y (i +1) J

The general form of (5) with initial conditions, can take the following form

U122U0+f2(Xk), Un+1:AUn_Un—1, (6)

.
where U " =(u1” uj, ---,uQ,l) and A is the coefficients matrix with elements a; obtained from (5).

3. Stability analysis of EFDA

It is well known that the explicit difference schemes are not always stable for integer order differential
equations. Then, for any «, there are always choices of At and Ax for which the numerical schemes may

become unstable. Therefore, it is important to determine under which conditions, if any, the explicit method
presented here is stable. To analyze the stability of the numerical scheme (6), we will use here a kind of
fractional von Neumann stability analysis.

Theorem 1 The explicit finite-difference scheme (6) for SFWE is conditionally stable if

ol (22 _23) s (g-2)
(rG-a)™

s <sy

Proof. Let us analyze the stability of (5) by substituting in a separated solution U J” =y e!U™X where q is areal

spatial wave-number. Inserting this expression we get
< [o1qAX —igAX -k
Cni1=2¢n —Chats e —-2+e 1¢haa+s _Zlgj [Chi1-j —28n—j +<n1-j ],
J:
where £'(x) means the Riemann zeta function. The stability will be determined by the behaviour of ¢,,. If we
write £, =&, and assume that & =£(q) is independent of time, then we can obtain
K : . Lo .
E-2+&-s 3 g (@) —267) e ) =5 @19 — 246719,
i=1
Inserting the extrema value & =-1 into this equation, we obtain the following stability bound on s:
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— — n -
ssinz(%) <sp =1+ 3 (DI [( +DF -2,
J:
with
5 =3 D [(jr)?e-j2e],
j=1
or, in terms of the Riemann zeta function
5, =2(1-2%%) ¢ (a-2).
Then, the method is stable when
(20 _23) ¢ (a—2)

S XSy = =)
(r(3-a))

Table 1. The exact and EFDA solutions at t =0.05 when h =0.005, = = 0.0025.

X a=2 a=18
0.0000 | 0.00000000 | 0.00000000
0.0500 | 0.43696211 | 0.49019405
0.1000 | 0.83115133 | 0.92270888
0.1500 | 114398166 | 1.25716135
02000 | 134483109 | 1.46300554
02500 | 1.41403909 | 152125246
03000 | 1.34483109 | 1.42692326
03500 | 114398166 | 1.18975019
04000 | 0.83115133 | 0.83331667
04500 | 0.46696211 | 0.39279598
05000 | 0.00000000 | -0.08846503
05500 | -0.43696211 | -0.56317267
0.6000 | -0.83115133 | -0.98470522
0.6500 | -1.14398166 | -1.31166940
0.7000 | -1.34483109 | -1.51194717
0.7500 | -1.41403909 | -1.56583600
0.8000 | -1.34483109 | -1.46797473
0.8500 | -1.14398166 | -1.22786629
0.9000 | -0.83115133 | -0.86894593
09500 | -0.43696211 | -0.43396401
1.000 | -0.00000000 | 0.00000000

Theorem 2 The truncation error of SFWE is T (, t) =O(At)* +O(Ax).

%u

Proof. Evaluating (1) at the point (xk , tn) gives [_z_d
ot

by the difference equation

o%u
GX_](Xkrtn)ZO’
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Neglecting the truncation error term T(xk , tn), we get the explicit difference scheme (5). From (1) and (7), we
get

&%u ou”
[ | -AZuR1-d[— | AUl =T 1),
(X tn) OX™ (X1 tn)
o 2 2
?U(Xk1tn):At U(Xkatn)+o(At) ’ (8)
o%u
AxUga=—— | +O(A%)?,
X (x¢ , tn)
o o o
8_: =a—; | +AX%8—; | +0(AX)?.
ox (Xk+1 .+ th) ox (X th) X (X tn)
So that
A Ul =A, uf + 0 (AX)+0 (Ax)2.
From this result and from (8), we claim that T (x, t) =0(A)? +O(AX). 0

4. Numerical results

Example 1. Consider the space fractional wave equation

2 1.8
8U(;<,t):6 u1(>8<,t), 0<x<1 0<t<l, ©
ot ox
U(X,0)=Sin(2ﬂX)v ut(X,O):Zﬂ'Sin(Zﬂ'X), U(O,t):U(l, t):0

When o =2 (instead of 1.8 in (9)), the exact solution is

u(x, t)=sin2zx(cos2zt +sin2xt) . (10)
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Figure 1. EFDA solutions when h =0.005 and = =0.0025: (left) comparison with the exact solution
for ¢ =2 at t =0.05, (right) for ¢ =1.8 at t =0.125.
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The numerical studies are given as follows: the exact solutions for « =2 (as given by (10)) and the EFDA
solution for ¢=1.8 at t =0.05 when h =0.005 and r=0.0025 are given in Table 1. In order to test the
numerical scheme, we also plot in Figure 1 the exact and approximate solutions for integer case « =2.
Moreover, the approximate solution for « =1.8 at t =0.125 when h =0.005 and = =0.0025 is also shown in
Figure 1. To study the behaviour of these solutions, Figure 2 is plotted to show the 3D-EFDA solutions for
a=2 and a=1.8 respectively. Figure 3 shows the unstable solutions behaviour when h =0.157 and ,
7 =0.001where the value of s is larger than the stability bound s, . For more details see Theorem 1.

Figure 2. 3D-EFDA solutions for: (left) a =2, (right) a =1.8.

*  exact
— approx.

05

u 1)
u t)

Figure 3. Unstable EFDA solutions when h =0.157 and 7 =0.001: (left) comparison with the exact
solution, (right) 3D-EFDA solutions.

Example 2. Consider the space fractional wave equation
azu(x, t) 81'6u(x, t)

o2 o6
u(x, 0)=sinx, u(x,0)=0, u(0,t)=0, u(5,t)=sin(5)cos(t).

, 0<x<5, 0<t<l, (11)
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When o =2 (instead of 1.6 in (11)) the exact solution is
u(x,t)=sinx cost . (12)
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Figure 4. EFDA solutions when h =0.002 and r=0.001: (left) comparison with the exact solution
for ¢ =2 at t =0.01, (right) for ¢ =1.6 at t =0.01.

u(x,t)
ux,t)

Figure 5. 3D-EFDA solutions for: (left) o =2, (right) « =1.6.

The numerical studies for Example 2 can be presented as follows: the exact solutions for ¢ =2 (as given
by (12)) and the EFDA solution for o =1.6 at t =0.01 where h =0.002 and z =0.001are given in Table 2. In
order to test the numerical scheme, we also plot in Figure 4 the exact and approximate solutions for integer case
a =2. Moreover, the approximate solution for « =1.6 at t =0.01 when h =0.002, 7 =0.001 is also shown in
Figure 4. To study the behaviour of these solutions, Figure 5 is plotted to show the 3D-EFDA solutions for
a=2 and a=1.6 respectively. Figure 6 shows the unstable solutions’ behaviour when h =0.008 and
7=0.001, where the value of s is larger than the stability bound s, . For more details see Theorem 1.
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Figure 6. Unstable EFDA solutions when h =0.008 and z =0.001: (left) comparison with the exact

solution, (right) 3D-EFDA solutions.

Table 2. The exact and EFDA solutions at t =0.01 when h=0.002, = 0.001.

uix.t)

X a=2 a=16
0.0000 | 0.00000000 | 0.00000000
02000 | 0.19866128 | 0.19866128
0.4000 | 0.38940257 | 0.38940432
0.6000 | 056461961 | 0.56462215
0.8000 | 0.71732704 | 0.71733027
1.0000 | 0.84143691 | 0.84144069
12000 | 0.93200134 | 0.93200553
1.4000 | 0.98540982 | 0.98541426
1.6000 | 0.99953312 | 0.99953762
1.8000 | 0.97380819 | 0.97381257
2.0000 | 0.90926060 | 0.90926469
22000 | 0.80846366 | 0.80846730
2.4000 | 0.67543582 | 0.67543886
2.6000 | 051548049 | 051548281
2.8000 | 0.33497458 | 0.33497609
3.0000 | 014111429 | 0.14111493
32000 | -0.05837178 | -0.05837204
34000 | -0.25553075 | -0.25553190
3.6000 | -0.44250252 | -0.44250451
3.8000 | -0.61183311 | -0.61183586
40000 | -0.75677158 | -0.75677525
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5. Conclusions

An explicit finite difference approximation for SFWE has been explored, where the fractional derivative
was in the Caputo sense. Error analysis and stability of the explicit numerical method for SFWE were discussed
by means of a fractional version of the von Neumann stability analysis. Finally, some numerical results of EFDA
were presented. These numerical results demonstrate that the EFDA is a computationally simple and efficient
method for SFWE.
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