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The current research investigates the use of solid-embedded thermocouples for 

determining accurate transient temperature measurements within a solid medium, with 

emphasis on measurements intended for use in inverse heat conduction problems.  Metal 

casting experiments have been conducted to collect internal mold temperatures to be 

used, through inverse conduction methods, to estimate the heat exchange between a 

casting and mold.  Inverse conduction methods require accurate temperature 

measurements for valid boundary estimates.  Therefore, various sources of thermocouple 

measurement uncertainty are examined and some suggestions for uncertainty reduction 

are presented.  Thermocouple installation induced bias uncertainties in experimental 

temperature data are dynamically corrected through the development and implementation 

of an embedded thermocouple correction (ETC) transfer function.  Comparisons of 

experimental data to dynamically adjusted data, as well as the inverse conduction 

estimates for heat flux from each data set, are presented and discussed.
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CHAPTER I 
 

INTRODUCTION 
 
 

Temperature measurement is one of the most common of all engineering tasks, 

but that does not mean that it is a simple one.  There are literally countless situations 

found throughout industry where a solution is realized through a temperature 

measurement, which most assuredly led to the wide variety of methods currently 

available for obtaining temperature measurements.  Among these are the use of 

thermocouples, resistance temperature devices (RTDs), thermistors, bimetallic devices, 

fluid-expansion devices, optical pyrometers, and infrared systems.  The decision of which 

method to use depends on a variety of factors such as cost, required measurement 

accuracy, measurement environment, and expected temperature range.   

Thermocouples are likely the most widely used type of temperature measurement 

device in industry, due to their relatively low cost, high accuracy, and wide range of 

measurement application.  The broad variety of industrial applications in which 

thermocouples are employed to monitor and/or collect temperature data speaks for their 

popularity in industry.  One such use for thermocouples, the focus of the current research, 

is in solid-embedded applications. 

Solid-embedded thermocouples are thermocouples that are installed within a solid 

medium to track the temperature sensor history inside the medium at the thermocouple 

location.    More specifically, embedded thermocouples are often utilized in industrial 
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applications for the sole purpose of attaining accurate temperature data for the 

implementation of inverse heat conduction (IHC) problems.  The results produced from 

these inverse problems can be used to establish estimates of the critical boundary 

information used in the mathematical modeling and simulation of various thermal 

systems in industry.   

In order to clearly understand the implication of the term “inverse” problem, the 

“forward” problem must first be explained.  In a typical “forward” heat conduction 

problem, the governing differential equations, material properties, and all boundary and 

initial conditions are known.  Assuming this information is available, it is possible to 

determine the temperature at any location within the medium of interest as a function of 

time.  However, in most real life situations, there is some piece of this required 

information that is missing or unattainable.  The missing component usually occurs in the 

form of a boundary condition, such as a heat flux or a heat transfer coefficient.  Without 

this crucial information, the heat conduction problem cannot be solved in the forward 

fashion.  This is why the inverse problem has proven to be of great utility.  In an inverse 

heat conduction problem, experimental temperature data collected from discrete locations 

within the domain is utilized to recover an approximation of the boundary conditions.  

However there are limitations of the usefulness, as the experimental data must be as 

accurate and “clean” as possible because any error, especially high frequency noise, in 

the temperature data tends to be greatly amplified in the estimates for the boundary 

conditions obtained through inverse methods.  Figure 1.1 shows a graphical comparison 

of the forward and inverse conduction problems. 
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Figure 1.1 - Forward & Inverse Conduction Problems 
 

 
 
IHC boundary estimates prove useful in modeling a wide variety of scientific and 

engineering fields, such as billet, strip, and shape casting, metal working, heat treating, 

and welding.  As illustrated in the casting industry, temperature data can be collected 

within a mold during a pour, and through inverse methods, the boundary heat fluxes and 

resulting heat transfer coefficients at the mold-metal interface can be approximated.  

Additionally, other operations involving chemical, aerospace, nuclear engineering, food 

science, medical, and other fields also employ inverse methods to obtain similar 

information. 
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Goals for the Current Research 
 

The current research investigates the use of embedded thermocouples within a 

permanent mold during a casting process to obtain internal temperature data for 

estimating metal-mold interface boundary conditions.  It has been stated in the literature 

that the interface heat transfer coefficient is one of the most dominant parameters when 

considering the mathematical modeling or computer simulation of metal casting 

processes [1-4].  The more accurately the heat transfer coefficient value is known in time, 

the better a casting simulation driven by that information can be.  Typically, heat transfer 

coefficient values must be determined using inverse conduction methods which employ 

an internal mold temperature collected by an embedded thermocouple during laboratory 

experiments.  It is widely known and shown in the literature that inverse conduction 

solutions are highly sensitive to error in the experimental temperature data [5-8].  

Therefore, it is obvious that the validity of a computational casting simulation can 

ultimately depend on the quality of the collected temperature data used to calculate the 

heat transfer coefficient utilized in the simulation.   

The motivation for investigation of embedded thermocouples comes from the 

need to acquire very accurate internal mold temperatures for inverse solution estimates of 

the boundary condition at the mold-metal interface during metal casting process, but 

other analogous applications also exist.  Accurate transient thermocouple measurements 

are needed in order produce valid inverse conduction solutions.  Therefore, it is important 

for experimenters involved in these types of data acquisition situations to understand the 



   5 

 

sources of errors for their thermocouple measurements and the challenges involved in 

minimizing the total uncertainty in the temperature data.   

This thesis work is presented as three key sections.  The first section discusses the 

many sources of uncertainty contained in an embedded thermocouple measurement 

during transient measurement periods; the familiar static components, as well as some 

dynamic components that might not be quite as familiar.  Both random and systematic 

uncertainties are considered, with particular emphasis on the systematic uncertainties due 

to installation effects of the thermocouple sensor.  The second part presents and discusses 

an inverse conduction project pertaining to the solidification of aluminum A356 in a mild 

steel permanent mold performed at Mississippi State University (MSU) through funding 

by the U. S. Department of Energy and the Cast Metals Coalition.  The purpose of the 

project was to execute a controlled experiment in which accurate temperature 

measurements would be collected within a permanent mold near the mold-metal interface 

during a casting process, and utilized through inverse methods, to estimate the heat 

transfer coefficients at the interface.  The processes and procedures will be discussed and 

the lessons learned will be presented.  The third section of the thesis presents a potential 

method for correcting for some of the installation effects caused by the intrusion of the 

sensor into the system, which can be a significant contributor to the total systematic error 

in some cases. 
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CHAPTER II 
 

EMBEDDED THERMOCOUPLE ERROR EXAMINED 
 
 

Introduction to Solid-embedded Thermocouples 
 

A thermocouple is a thermoelectric sensor used to measure temperatures.  A 

typical thermocouple consists of two dissimilar metal wires joined together to form a 

junction.  Heating and cooling of the junction produces a voltage that can be measured 

across the free ends of the thermocouple, which is known as the Seebeck effect [9].  This 

voltage can then be directly correlated to the temperature of the junction.  The four most 

common calibrations of thermocouples and their compositions are shown in Table 2.1 

[10]. 

 
Table 2.1 - Common Thermocouple Calibrations 

 
 

Composition Thermocouple 
Type Positive Lead (+) Negative Lead (-) 

K Nickel-Chromium Nickel-Aluminum 
J Iron Copper-Nickel 
T Copper Copper-Nickel 
E Nickel-Chromium Copper-Nickel 

 
 
Solid-embedded thermocouples are thermocouples that are inserted into a solid 

medium to track the temperature history within the medium at the thermocouple location.   

Embedded thermocouples are used in a wide variety of industrial and research oriented 

applications, for example gathering thermal history data of a workpiece during a welding 
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or machining operation [11, 12] or collection of thermal effects associated with stress 

waves in a solid [13].  This type of thermocouple installation is of particular interest for 

the work of this thesis. 

 
Industrial Applications 
 

Internal temperature measurements obtained by embedded thermocouples are 

frequently used in industry applications in which the temperature measurement is 

collected for use in an inverse conduction problem solution.  These inverse conduction 

problem solutions can aid engineers in understanding a variety of interfacial situations, 

including applications such as determining boundary conditions of gas turbine blades and 

gun barrels [14], thermal deformation of machine tools [15], and the heat transfer at the 

mold-metal interface during a casting solidification process [1, 3, 4, 8, 16-18].  

As previously mentioned, inverse conduction solutions are very sensitive to 

thermocouple measurement error.  A relatively small uncertainty in measured 

temperature can result in a much larger uncertainty in the inverse conduction estimates 

for boundary conditions.  Therefore, obtaining quality thermocouple data is a high 

priority when the data is intended for use in IHC problem solutions. 

 
Design of Experiments Employing Solid-embedded Thermocouples 
 

Any experimentally measured signal will inevitably include some amount of 

uncertainty.  The uncertainty can never be completely eliminated, but there are a variety 

of measures that can be taken to reduce the total amount of uncertainty in a signal [19].  

Before uncertainty can be reduced, however, it must first be recognized.  Therefore, the 
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initial step in uncertainty reduction is to gain a thorough understanding of the various 

sources that make up the total uncertainty in a signal.     

In the design of an experiment, an imperative initial action is to perform a 

preliminary uncertainty analysis in order to better understand the system under 

investigation.  This step is important in order to identify specific sources of uncertainty, 

estimate the contribution of each source component, and implement methods for the 

reduction of these uncertainty components.   

For this thesis research, the various categories of the uncertainty will be discussed 

in a manner relative to experimentation involving solid embedded thermocouples in order 

to provide some basic guidelines to consider when collecting temperature data. These 

guidelines will focus primarily on the embedding of thermocouples within permanent 

molds in the casting industry to obtain time histories of temperature at specific locations 

within the molds for use in inverse methods to estimate mold-metal interface heat flux. 

 
Types of Temperature Measurement Uncertainty 
 

The uncertainty in a measuring device can be divided into two major categories: 

systematic uncertainty and random uncertainty.  Systematic, or bias, uncertainties are the 

fixed or constant components of the total error [19].  These types of uncertainties are 

usually contributed by limitations in the manufacturing, calibration, installation, or 

perhaps modeling of the sensors.  Random, or precision, uncertainty is the portion of the 

total uncertainty that is typically associated with measurement noise and usually, but not 

always, follows some type of statistical distribution [9].  Random uncertainty, or the 

signal noise, is usually due to electrical interference, either external or within the data 
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acquisition circuitry.  The systematic and random components sum to yield the total 

uncertainty component for any measured signal. 

 
Static and Dynamic Measurements 
 

When using an embedded thermocouple to obtain temperature measurements, the 

type of measurement could either be static or dynamic, depending on the state of the 

system.  It is important to understand the type of measurement required of an experiment 

in order to design the experiment with appropriate measures to meet its purpose.  Static 

measurements are those types that are obtained after the entire system in consideration, 

both the measured material and the thermocouple sensor, has been allowed adequate time 

to “thermally settle” after any boundary condition changes.  In other words, the 

temperature to be measured is not changing with time.  However, many practical 

situations exist in which a temperature within a solid medium is to be obtained during a 

period when the boundary condition is changing with time [1, 3, 4, 8, 14-18]. 

Dynamic measurements are measurements that are intended to obtain temperature 

at a location as it changes with time.  Dynamic, or transient, measurement capabilities 

would be considered necessary to measure temperature during a time prior to a system 

reaching its steady-state response, or perhaps if the system exhibited a time varying 

steady response.  Uncertainties for dynamic measurements include all the components 

found in a static measurement, as well as some additional uncertainty components that 

are specific to dynamic measurements, such as phase errors.  For a metal casting process, 

when considering temperature collection within a permanent mold after molten aluminum 
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is poured into the mold cavity, the necessity for accurate transient temperature 

measurements is evident. 

 
Systematic Uncertainty Components – Static and Dynamic Measurements 

 
The purpose of this section of the current research is to discuss several systematic 

sources of uncertainty for dynamic measurements using embedded thermocouples.  As 

previously stated, any static measurement uncertainty component would also contribute 

in the case of a dynamic measurement; therefore components common to both will be 

discussed first, followed by additional uncertainty sources unique to dynamic 

measurements.   

 
Manufacturer’s Uncertainty and Calibration 
 

All measurement sensors come from the manufacturer with a specified systematic 

component of measurement uncertainty.  This component is commonly referred to as 

manufacturer’s uncertainty, and can either be specified as an absolute value or as a 

percentage of the measured scale.  This portion of the systematic uncertainty is due to 

limitations prescribed by the manufacturing operations to produce and assemble the 

sensor.  Thermocouples that are typically used in industry are purchased as prefabricated 

units from a supplier or as rolls of industry standard thermocouple wire.  In either case, 

the manufacturer would specify a level of accuracy to which the sensor is certified.  

Typically, the manufacturer’s uncertainty can be reduced through the process of 

calibrating the thermocouple to a well known standard, such as the boiling point of water 

[9, 19].  However, no standard itself is perfect; therefore calibration can never completely 
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eliminate the manufacturer’s uncertainty, only reduce it to the level of uncertainty of the 

calibration standard. 

 
Data Acquisition and Data Reduction Uncertainties 
 
 Data acquisition and reduction errors are another category of systematic errors 

[19].  This category concerns the biases associated with the data acquisition (DAQ) 

system that acquires, possibly conditions, and stores the output of the sensor.  

Uncertainties of this type would include those relating to round-off, truncation, or 

sampling errors when transferring thermocouple voltage outputs to the digital domain of 

data acquisition hardware and the personal computer used to control the DAQ devices.  

Once the voltage values from a thermocouple sensor are obtained, they must be 

correlated to a corresponding thermocouple junction temperature for each voltage value.  

This process is accomplished using experimentally determined correlation curves for 

temperature values.  These empirical curves also have a certain levels of uncertainty 

associated with them as well. 

 
Uncertainty from Conceptual Errors 
 

Systematic uncertainties can also arrive from conceptual errors, such as when a 

measured value is taken to be a point value for a specific location in space when it is, in 

realistically, an average temperature over a larger region.  For embedded thermocouples, 

this error might arise from the assumption that a thermocouple is measuring the 

temperature at a point location within the medium of interest.  In actuality, the 

thermocouple is likely registering an average temperature over the entire junction bead 
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[8, 10].  This type of error can be reduced most obviously by reducing the thermocouple 

junction size.   

 
Installation Uncertainty 
 

Another type of elemental systematic error source, and the one that is of key 

interest for this thesis research, is that of the installation error.  Installation errors for 

measurements include uncertainties that are due to the intrusive nature of an embedded 

thermocouple installation and the inhomogeneity subsequently caused.  Geometric 

tolerances involved in pinpointing the location of a thermocouple bead embedded within 

the solid medium, as well as effects due to heat loss through the thermocouple leads  are 

also considered as types of possible installation uncertainties [8, 15, 20-25].   

The contributions from installation uncertainties have been shown in various 

sources throughout the literature to be of sufficient magnitude to merit efforts to 

recognize and, if possible, reduce them [8, 13, 15, 20-27].  These types of errors for a 

static measurement occur as typical bias offsets in magnitude from the “true” temperature 

value.  However, when considering installation errors for a transient measurement, more 

consideration must be exercised because the presence of the embedded sensor within the 

medium completely alters the dynamic response of both the measured medium and the 

measurement sensor from what they would be independent of each other [11, 23, 26]. 
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Additional Systematic Uncertainty for Dynamic Measurements 
  

Dynamic, or transient, temperature measurements can be described as 

measurements collected while the temperature at the sensor location is still varying as a 

function of time.   Transient measurements can incorporate additional sources of error 

due to the dynamic response characteristics of the embedded thermocouple and the 

measured medium, as well as the dynamic interaction between them.  These sources can 

cause errors not only as biases in magnitude of the signal, but also as a phase shift of the 

signal in time [11, 13, 23, 26, 28].  These additional distortions in magnitude and phase 

can further increase the total uncertainty of the temperature measurements. 

During a transient period, a thermal system is dynamically responding to changes 

in the boundary conditions, such as a change in the heat flux or surface temperature, 

resulting in the temperature field varying with time.  A previously discussed example that 

is the practical interest to this research is the pouring of molten aluminum into a 

preheated steel mold.  The mold is subjected to a rapid change in heat flux at the mold-

metal interface as the molten aluminum enters the mold cavity.  It is during this period 

that boundary heat flux identification is desired, and therefore it is when transient 

temperature data is collected to assist in determining these unknown, unsteady boundary 

conditions. 

 
Distortion of the Localized Thermal Field 
 

In order to determine a temperature within a solid body, such as a metal mold, a 

hole must be machined into the solid in order to provide access to the point of interest by 

the sensor.    A major concern when collecting transient temperature data is the localized 
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distortion experienced in portions of the thermal field surrounding the installed sensor.  

The presence of a cavity within a solid body, whose contents have differing material 

properties than the surrounding medium, has been shown in the literature to induce 

distortions in the local thermal field around the cavity [15, 20-22].  Isotherms in the 

measured solid near the sensor installation can actually “bend” and distort due to several 

factors relating to the presence of the sensor in an otherwise homogeneous medium.  The 

distortion can be attributed to several factors, such as the thermocouple installation cavity 

dimensions and orientation, differences in thermal properties of the medium, 

thermocouple, and filler material in the cavity, and heat loss conducted through the 

thermocouple leads. 

Chen et. al [14, 25] performed a number of laboratory experiments several years 

ago to investigate the transient temperature errors due to the embedded installation of 

type K thermocouples parallel to an applied heat flux.  They ascertained that the degree 

of distortion depended largely on the differing properties of the parent material and the 

materials which filled the cavity (air and thermocouple) and the diameter and depth of the 

installation hole.  As is consistent with expectations, they showed that the temperature 

measurement error decreased with a decrease in the size of the installation cavity and 

embedded thermocouple. 

More recently, Attia et. al [15, 20-22] have published several comprehensive 

studies investigating the thermal distortions induced by the insertion of an embedded 

thermocouple into a solid material, as well as the effects of heat loss through the 

thermocouple leads.  Multiple in-depth studies were conducted to determine the effects of 
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varying the thermal conductivity of the parent material, the thermocouple, and the cavity 

filler material, as well as geometric placement of the thermocouple bead in the cavity 

base on thermocouple measurement error.  It was concluded that distortion within the 

local thermal field around the embedded thermocouple was highly dependant upon the 

ratio of the thermal conductivities of the cavity filler material to the parent material.  

Also, a local “hot” and “cold” zone was discovered to form at the perimeter of the 

thermocouple installation cavity due to the disturbance to the local thermal field.  The 

size and location of the zones varied depending upon the ratio of material properties 

considered.  Studies investigating the effect of positioning of the thermocouple bead 

within the cavity on thermocouple measurement error showed significant amounts of 

deviation from the expected value, as both temperature overestimation and 

underestimation, depending upon which zone at the cavity base the bead was in contact 

with.   It was also shown that reduction of the thermal gradient across the parent material 

allowed for a significant increase of heat flow into the thermocouple leads and that this 

heat loss through the leads will generally result in an overall underestimation of the 

“true” temperature.   Temperature measurement errors as much as 20 percent of the 

temperature drop over a distance equal to the cavity radius were shown to be possible.   

 Woodbury and Gupta [8] recently investigated the impact of deterministic 

thermocouple errors in sand molds on inverse heat conduction problems.  They showed 

through finite element modeling how four typical thermocouple sizes, AWG 24, 30, 36, 

and 44, with glass braid and alumina sheathing can cause distortion to the thermal field 

around the thermocouple.  They reported that for a typical 24 AWG size thermocouple 
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embedded in a sand mold, transient errors of up to 35 C were possible, which led to 

errors of up to 40 percent for the estimated boundary heat flux. 

 In conduction systems with multiple types of materials involved, it is important to 

note that the temperature drop across the interface may be significant [29].  The 

temperature drop is caused by what is known as a thermal contact resistance.  The 

thermal contact resistance usually arises when two solids are butted together and heat is 

conducted across their interface.  The contact resistance usually occurs as an additional 

resistance to heat travel due primarily to surface roughness of each surface in contact.   

For embedded thermocouple installations, a thermal contact resistance could exist 

between the thermocouple junction and the surrounding parent material due to the fact 

that they will most likely be in less than perfect contact.  There may be air, filler cement, 

etc. between the two materials which will cause additional resistance to heat flow to the 

point of interest over the same geometrical location in a solid block of parent material 

with no thermocouple installed.  Incropera and DeWitt [29] suggest that increasing 

contact pressure or reducing the surface roughness can lead to greater contact area 

therefore reducing the contact resistance.  They also mention that using filler materials to 

bond two surfaces of interest can decrease the contact resistance, assuming the filler 

material has a higher conductivity than that of air. 

 
Heat Loss through Thermocouple Leads 
 

Another thermocouple error contributor that must be recognized is the possibility 

of conduction of heat away from the point of interest via the thermocouple leads.  

Through the insertion of the measurement device, a path has been created for heat to 
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escape, leading to a bias error that could, depending upon other error sources, lead to the 

underestimation of the desired temperature value.  This source of error has also been 

investigated and discussed in the literature [15, 20-22, 27, 30].   

According to Weathers et. al. [27], the amount of heat dissipated through the 

thermocouple leads depends greatly on the orientation of the leads with respect to the 

predominant direction of the heat flux.  They conducted a three dimensional finite 

element study of the effects of installation orientation of solid embedded thermocouple 

within permanent (steel) and sand molds.  Horizontally (perpendicular) and vertically 

(parallel) positioned thermocouples, with respect to the isotherms across the temperature 

gradient, were examined.  For permanent (steel) molds, it was shown that horizontal 

installation, perpendicular to the isotherms, proved to produce more accurate transient 

temperature data and allow for more geometrical control of the thermocouple junction 

with regards to the distance from the metal-mold interface.  For sand molds, the vertical 

installation, parallel to the isotherms, was shown to be preferable due to the reduction in 

the amount of heat conducted and lost through the thermocouple leads. 

 
Embedded Thermocouple Positioning 
 

In preparation for temperature history logging for use in inverse problems, 

thermocouples are usually embedded very near to the surface where the boundary 

conditions are applied so that the thermocouple will be more sensitive to the abrupt 

changes at the mold-metal interface.  However, it is important to realize that if the sensor 

is installed too near to the interface, the previously discussed distortion due to the 

presence of the probe could extend into the interface surface, disturbing the surface 
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condition and boundary heat flux as stated by Chen et. al. in [31].  Because the 

installation of a thermocouple in a solid medium produces a local region of thermal 

distortion around the installation cavity, it is crucial to understand the relative size of this 

distorted region in relation to the cavity size.  If the “reach” of the distortion effects is 

known, the sensor can be placed at the optimal distance from the boundary of interest, 

without being so close as to disturb the thermal field at the boundary surface.  This 

critical distance from the boundary surface is suggested to depend upon the cavity 

dimensions, as well as the material properties of the parent material and cavity contents. 

Chen and Li [14] created an idealized finite element model of a type K 

thermocouple embedded in a flat circular steel disc in which a large steady heat flux was 

applied to one surface.  They presented graphical plots demonstrating the dependence of 

thermocouple measurement errors on a variety of the thermocouple installation 

geometrical parameters, such as cavity diameter, thermocouple diameter, distance from 

the interface, etc.  They suggest, for best sensitivity to boundary changes, the distance 

from the interface should be as small as possible.  In Chen and Thomson’s work [31], 

however, a reminder is given suggesting that a sensor at the surface will disturb the 

surface conditions and heat flow at the interface.  Therefore, an optimal sensor distance 

from the interface surface must exist to provide as accurate a representation of the 

dynamics of the surface conditions as possible without disturbing them.   

In [25], Chen and Danh revisited the presence of a cylindrical cavity in a flat slab 

through a well controlled laboratory experiment.  The thermocouples in their experiments 

were mounted in steel blocks parallel to the direction of the boundary heat flux 
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application.  Included in their work is a summary of the typical maximum errors observed 

for the prescribed variations of the thermocouple cavity geometry and the boundary 

condition application time.  They stated through their findings that the distortion in 

temperature response was much more sensitive to cavity diameter than depth of the 

thermocouple hole.  

Elphick et. al [24] discuss how thermocouple assemblies installed in solids can 

create changes in the heat flux distributions therefore resulting in steady-state or transient 

temperature measurements that are quite different from the expected temperature.  They 

conducted numerical simulations to assess the error involved in using several sheathed 

thermocouple configurations to obtain a temperature history within a solid.  They found 

that through the selection of a filler, or plug material, with an appropriate thermal 

conductivity to “balance” the dynamics between the parent and thermocouple material 

properties, the thermocouple error could be minimized.  Thermocouple cavity diameter, 

distance from the cavity tip to boundary interface of interest, and the magnitude of the 

surface boundary conditions were presented as some of the most important factors 

contributing to the amount of error for a thermocouple signal.   

 
Phase Errors 
 

In addition to errors in magnitude, for transient temperature measurements, errors 

can also occur as shifts in the phase of a signal, commonly observed as delays in sensor 

response in time.   Rittel [28] investigated the use of embedded thermocouples for 

transient temperature measurements in polymer discs undergoing dynamic deformation 

and straining.  He shows that through using a theoretically derived impulse response of 
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the system, the experimental data can be deconvolved to an estimated signal that occurs a 

bit earlier, faster, and with higher values of observed temperature.  Rabin and Rittel [13] 

follow the investigation of transient temperature measurement using solid-embedded 

thermocouples with a model for the time response of the thermocouple.  They discuss the 

idea of the existence of a “thermal inertia” effect that can cause undesired delay in the 

response of an embedded thermocouple.  This “thermal inertia” effect is shown to be due 

to the rate of change of temperature of the measured material, the differing 

thermophysical properties of the thermocouple and the measured material, and the 

geometry of the thermocouple installation.  They examined thermocouple response with 

respect to the ratios of the thermal diffusivity of the thermocouple material to the domain 

material.  Thermal diffusivity ratios of one or less were reported to be inadequate for 

transient measurement situations.  Also, for locations within the measured domain greater 

than three times the thermocouple radius, the presence of the thermocouple was shown to 

have no significant effects. 

In his analyses of transient measurements, W. G. Alwang [26] suggests that a 

transient measurement consists of two pieces of information: the value measured and the 

time at which it was measured.  He proceeds to state that transient measurements depend 

on all error sources which depend on the dynamic response of the measurement system, 

and therefore also the time behavior of the quantity being measured. 

 
Modeling Errors 
  

In [23], Alwang approaches the problem of uncertainty estimation and reduction 

in transient measurements through modeling of the systems under investigation and 
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deconvolution of the experimental signals.  Two extremes of the effects of time-

dependant uncertainty are presented: the case where additional uncertainty due to 

transient measurement is negligible and the case where these additional uncertainties are 

large.  He shows that through a process of time-dependant calibration of the system, a 

measured response can be corrected for many of the inherent transient measurement 

errors encountered.   

 Analytical approaches [32] and a variety of modeling efforts [11, 26] have been 

made to characterize and aid in the reduction of experimental temperature measurement 

installation errors.  However, as no model will ever exactly duplicate a real life situation, 

differences between the model and the real process it simulates will result in modeling 

uncertainties being present in the signal.  For embedded thermocouples, errors could exist 

due to inadequacies of the model to represent the dynamics of the real process or perhaps 

uncertainty as to the exact location of the thermocouple bead in the cavity once installed.  

Still, if the model sufficiently represents the real process, the total uncertainty can be 

reduced. 

 
Random Uncertainty 

 
Random uncertainty, or the signal noise, is usually due to electrical interference, 

either from external devices or within the data acquisition circuitry.  As stated previously, 

the random uncertainty components for a set of collected data typically follow a 

statistical distribution.  For a transient temperature measurement, at each instant in time 

that a temperature value is measured, a component of random, or precision, uncertainty 
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will be included within the signal.  These components should be comparable to the 

random uncertainty within a static measurement with the same physical sensor setup.  

Summary of Solid-embedded Thermocouple Error 
 
 This chapter has presented a detailed overview of several categories of 

uncertainty that can be anticipated when using embedded thermocouples for transient 

temperature measurements.   This information was offered as evidence of the presence of 

a variety of errors in measured temperature data, and to illustrate the necessity to improve 

embedded temperature measurements, especially when considering temperature data 

collected for highly sensitive inverse processes.  The key point of this chapter is to 

emphasize that, in addition to common sensor uncertainties (manufacturer’s, data 

acquisition, etc.), the installation of a temperature sensor within a solid domain changes 

the dynamic behavior of the domain in the region surrounding the sensor.  This results in 

experimental data that does not accurately reflect what the theoretical temperature within 

the domain would have been were the sensor not installed.  Therefore, with all the 

sources of error in temperature measurement presented in this chapter, opportunities for 

improvement of the measurement will always exist.
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CHAPTER III 
 

OBTAINING EXPERIMENTAL TEMPERATURE DATA 
 
 

Introduction to Experimental Setup 
 

Inverse conduction solutions are often employed in the metal casting industry in 

order to estimate unknown boundary conditions during the casting solidification process.  

Temperature measurements are recorded during the casting process using thermocouples 

that are embedded within the mold.  The temperature values observed by the 

thermocouples may then be used, through inverse processes, to recover boundary 

condition estimates over time at the metal-mold interface.  These estimates of the 

boundary conditions can then be utilized in computational casting simulations to more 

accurately represent real life casting processes.  It has been shown extensively in the 

literature concerning inverse problems, that small errors in temperature data can be 

amplified greatly in estimates for boundary conditions [5-7].  Therefore, it is critical to 

minimize error in temperature data when intended for use in inverse methods, so that the 

resulting estimated boundary conditions, and ultimately computational simulations in 

which they are used, will be as representative of real world processes as possible.   

Through funding by the U. S. Department of Energy and the Cast Metals 

Coalition, Mississippi State University was able to plan and perform an inverse 

conduction project pertaining to the solidification of aluminum A356 in a mild steel 

permanent mold.  The purpose of the project was to execute a controlled experiment in 
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which accurate temperature measurements would be collected within a permanent mold 

near the mold-metal interface during a casting process, and utilized through inverse 

methods, to estimate the heat transfer coefficients at the interface.  The two key 

objectives for this project were to develop and maintain good practices for obtaining 

accurate temperature data from the thermocouples embedded in the mold and to use the 

temperature data obtained to estimate, through inverse analysis, the mold-metal interface 

heat transfer coefficients.  The content of this thesis focuses primarily on the first 

objective, the collection of quality embedded thermocouple data.  The interface heat 

transfer coefficient estimation portion of the project was performed and reported by 

fellow graduate student, Mr. Jeff Weathers, in his written master’s thesis [33].   

 
Description of the Current Research Experiments 

 
The foundry facilities located in the basement of the Carpenter Mechanical 

Engineering building at Mississippi State University were used to conduct all of the metal 

pouring experiments.  Aluminum A356 was chosen as the casting alloy for use because it 

was readily available, suitable for the MSU facilities, and due to its wide commercial use 

in areas such as the automotive industry.  The permanent mold employed for the study 

was a three-piece low carbon steel mold with a simple, rectangular slab plate geometry.  

The mold was designed to accept one of four interchangeable center inserts having 

thicknesses of 1/8", 1/4", 1/2", and 1" respectively.  The 1/2" insert was selected to be 

used for the entirety of the project.  Photographs of the three piece steel mold in its 

disassembled and partially assembled form are shown in Figure 3.1 and Figure 3.2.  A 

dimensioned drawing of the mold is presented in Figure 3.3. 
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Figure 3.1 - Three-piece Steel Mold (disassembled) 
 

 

 
 
 

Figure 3.2 - Three-piece Steel Mold (partially assembled) 
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Figure 3.3 - Permanent Mold Dimensions 
 
 

Although not all castings are exceedingly complicated geometrically, a 

recognized benefit of metal casting is that it can be used to create complex geometries 

that would normally prove difficult or even unattainable to produce by other processes, 

such as machining.  Nonetheless, this program’s goals focus on the methodology and 

procedure of obtaining “good” temperature data for the prediction of heat transfer 

coefficients through inverse methods.  Therefore, it was considered best to begin the 

study with a very basic, understandable geometry, and leave more complex casting 

geometries to be considered in the future.  
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A particular interest is often shown in the metal casting community for the study 

of solidification control of thin section castings or portions of castings, which can be very 

difficult.  Therefore, the thin slab casting geometry chosen was to some extent 

representative of this area of interest.  Also, the simple geometry of the permanent mold 

selected allowed for the simplifying assumption that heat flow was predominant in one 

dimension only (the thickness direction of the mold).  This assumption reduced some of 

the complexity involved in modeling for this initial research effort.     

 
Thermocouple Construction and Installation 
 

The mold was instrumented with thermocouples within the interior of the mold 

halves to measure internal temperatures during the casting process.  The preparation and 

fixturing of the mold was performed with the intention of being able to reuse the same 

experimental setup for multiple experimental trials.  Consideration of the expected 

temperature range led to the selection of standard Type K wire for thermocouples in the 

experimentation.  Type K is known for its wide temperature range, -200 to 1250 C (-328 

to 2282 F), and common use in industry for similar applications.   
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Figure 3.4 - Solid-embedded Thermocouple Cavity Locations 
 
 

Three 1/8" diameter pilot holes were machined in the mold halves to the depths 

and geometric locations shown in Figure 3.4.  The holes were placed relatively close to 

the mold-metal interface in order to be as sensitive to the change in boundary conditions 

as possible.  In retrospect, some of the holes may have been machined too close to the 

interface surface when considering the attempt to keep the distortion caused by the 

thermocouple installation from “protruding” into the boundary surface and disturbing the 

boundary conditions.    
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Three thermocouples were used to collect the temperature data within the mold, 

and one additional thermocouple was centrally positioned in the mold cavity to collect 

the casting temperature.  The thermocouples were beaded junction type made in-house 

from standard Omega brand 24-gauge K-type thermocouple wire using a capacitive 

discharge through the thermocouple leads against a carbon block.  The bead sizes were 

typically slightly larger than one millimeter (0.041” – 0.049”). 

OMEGATITE 200 twin bore alumina insulators sleeves with 1/8” outside 

diameters were used to electrically insulate the portion of the thermocouple leads that 

were to be inserted into the depth of the drilled pilot holes.  The sleeves helped to prevent 

any short circuit of the thermocouple leads within the pilot hole above the bead junction 

and created a rigid assembly that could be easily inserted into the thermocouple cavity.  

The sleeves were cut to lengths matching the depths of the holes using a diamond blade 

circular saw.  They were inserted onto the thermocouple toward the beaded junction until 

only about 1/4” – 3/8” of thermocouple wire was left exposed as shown in Figure 3.5.  

  

 
 
 

Figure 3.5 - Embedded Thermocouple Sleeve Assembly 
 
 

After construction, each of the three thermocouple-sleeve assemblies was inserted 

into a pilot hole in the mold halves until the bead bottomed out.  A small portion of the 
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sleeve protruded out of the top of the thermocouple cavity.   To be certain of the contact 

between the thermocouple bead and the cavity base, a standard Fluke multi-meter was 

used to check for continuity by attaching one probe to the exterior of the mold and the 

other probe to one of the thermocouple leads.  After an initial continuity check, high 

temperature cement, OMEGABOND 400, was used to affix the protruding portion of the 

alumina sleeve to the mold.  The cement was allowed to dry for several hours and then a 

post installation continuity check was performed to ensure bead to metal contact within 

the cavity.  The leads from the three installed thermocouples were then connected to the 

three OMEGA ceramic ultra high temperature type K connectors as shown in Figure 3.6.  

The connectors were then affixed on the side of the mold carrier, as seen in Figure 3.7. 

 
 

 
 
 

Figure 3.6 - OMEGA Ceramic Connectors 
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Figure 3.7 - Mold Carrier with Mounted Ceramic Thermocouple Connectors 
 
 
Mold Preparation and Coating  
  

Many industrial casting processes utilize spray on mold coatings in an attempt to 

manage solidification at specified locations within a casting, such as gates, runners, or 

feed paths.  These coatings add a heat resistive layer on the mold cavity surface to slow 

solidification, and in some instances, improve the casting surface finish [34].  Because 

the same thin or narrow section areas in castings which receive coatings are often the 

critical areas of interest in casting simulations, mold coatings can bear an important role 

[4].  Therefore, multiple experiments were performed at Mississippi State to collect sets 

of experimental temperature data for a variety of typical industry standard mold coating 

configurations, with the intention of calculating interface heat transfer coefficients for 

each configuration.     

An industry standard base coating media and insulating media, Foseco Dycote 

39ESS (base coat) and Foseco Dycote 34 (insulating coat), were donated for use in the 
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experimentation.  Prior to each coating application, the application contact surfaces of the 

mold were sand blasted at about 80 psi with 25 -70 mesh size aluminum oxide.  These 

coatings were then applied per the coating procedure in configurations and thicknesses 

shown in Table 3.1.  An experimental run was performed and temperature data was 

collected for each configuration. 

 
Table 3.1 - Mold Coating Configurations 

 
 

ID Number of 
Replications Coating Configuration Pours/ 

Replication 

1 1 No Coating 2 – 4 

2,3 2 Base Coating @ 2 mils 2 – 4 

4,5 2 Base Coating @ 2 mils + Release Coat 
BN 2 – 4 

6,7 2 Base Coating @ 2 mils + Insulating 
Coating @ 2 mils (light) 2 – 4 

8,9 2 Base Coating @ 2 mils + Insulating 
Coating @ 4 mils (heavy) 2 – 4 

 
 

Multiple replications of each configuration were run, and several castings were 

produced per coating application.  The temperature data collected from each run was used 

to determine, through inverse methods, the heat flux at the mold-metal interface, and 

subsequently a time dependant interface heat transfer coefficient for each configuration 

which are reported and discussed in detail in [33]. 
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Procedure Employed for Applying Permanent Mold Coatings 
 
 

 
 
 

Figure 3.8 - Permanent Steel Mold with Coating Applied 
 
 

The mold coatings are applied by pressurized spraying of the coating mix on the 

contact surfaces of the heated mold.  The mold with a typical coating applied is shown in 

Figure 3.8.  The procedure employed at MSU for coating the steel mold halves and center 

insert contact surfaces are as follows: 
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Mold Preparation 
 

1. Ensure steel is clean of rust and has a rough (preferably grit blasted) surface. 
(Sand blasted at 80 psi with 25 -70 mesh size aluminum oxide before each coating 
variation application) 
 

2. Heat entire tool (mold) to approximately 500 deg F (450 – 500 F). 
 
3. Mix coatings thoroughly with appropriate ratio of added water to insure that the 

coatings are dispersed.  Mixing ratios are specified on coating containers. 
 
Coating Application 
 

4. Remove mold from oven and let it cool to approximately 400 deg F. 
 
5. Spray surface to be coated lightly with a fine mist of water.  (This promotes 

oxidation which aids the coating adhesion) 
 
6. Fill spray gun with coating, adjust air pressure to around 40 psi. 
 
7. Adjust gun so spray is dispersed and uniform.   

a. Clear nozzle on cardboard or other surface before beginning spraying 
sequence. 

 
8. Spray the coating on uniformly across the entire surface, using an Elcometer 456 

coating thickness gauge intermediately after several passes to measure the coating 
thickness. 

a. If coating bubbles, the mold is too hot. 
b. If the water suspension does not vaporize immediately, the mold is too 

cold. 
c. Ideal coating temperatures are between 350 and 400 degrees F 
 

9. Once desired thickness is achieved, dump unused coating back into container, 
rinse spray gun thoroughly with water. 

 
10. Let mold air cool or continue with next layer of coating if specified (mold may 

require an intermediate re-heating for 10 – 15 minutes for multiple coating type 
configurations if mold temperature has dropped below ideal spraying 
temperature). 
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Data Acquisition Equipment 
 
 Initial pilot experiments were conducted with departmental equipment, including 

a 12-bit PCMIA DAQ Card 6024E, to investigate data acquisition performance 

requirements for the project.  A simple DAQ card bit analysis, included in Appendix A, 

revealed that a 16-bit card could improve the machine precision to 1.5 microvolts (0.038 

C) versus about 24 microvolts (0.612 C) for a 12-bit card.  Therefore, a desktop computer 

was purchased and equipped with a 16-bit National Instruments PCI DAQ Card 6036E.  

A 16-channel National Instruments (NI) shielded connector block, SCB-68, and a two 

meter shielded cable were also purchased in order to help protect the data signal from 

external electrical noise. 

 

 
 
 

Figure 3.9 - National Instruments SCB-68 Connector Block Pinout Diagram 
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Thermocouple Circuit Construction 
 

The three embedded thermocouples and the single casting thermocouple were 

connected to the connector block and all were referenced to a common cold junction.  

The quick reference diagram for the NI SCB-68 is shown in Figure 3.9 [35]. 

The four data acquisition thermocouples and the cold junction reference 

thermocouple were arranged within the data acquisition connector block, NI SCB-68, in 

the configuration as shown in Figure 3.10.  The cold junction was constructed using a 

Styrofoam insulated container filled with ice water to construct a traditional ice bath. 

 

CJ

CH1

CH2

CH3

CH4

Positive (+)  (CHROMEGA)

Negative (-)    (ALOMEGA)

ice
bath

 
 
 

Figure 3.10 - Thermocouple Circuit 
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Labview Data Acquisition .vi Construction 
 

A Labview .vi was created specifically for the acquisition of up to eight channels 

of data.  The .vi was designed with the capability of sampling at high rates (100+ 

samples/second) if necessary.  User defined channels, sampling rates, and sampling 

duration were required prior to running the .vi to collect temperature data.  Channel 

outputs, in voltage, were displayed graphically on the PC screen and prompted for 

storage in a data file after the completion of each data acquisition session.    Figure 3.11 - 

Figure 3.13 show the front panel and block diagram for the .vi used to obtain the data. 

 
 
 
 

 
 
 

Figure 3.11 - Labview .vi Front Panel (Input Screen) 
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Figure 3.12 - Labview .vi Front Panel (Output Screen) 
 
 

 
 
 

Figure 3.13 - Labview .vi Wiring Diagram 
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A356 Aluminum Pour Experimental Summary 
 

A total of 12 separate experimental runs were conducted at Mississippi State 

University, producing three sets of temperature data for each run.  Although only one 

internal mold temperature signal is necessary to estimate the boundary conditions, data 

from all three embedded thermocouples were recorded as backup data in the case of a 

channel malfunction or extreme error.  The same basic procedure was followed for each 

experimental run and can be best described by a pre-pour and pour routine. 

 
Pre-Pour Routine 
 
 An experimental run begins by placing the coated and instrumented mold into the 

mold carrier and connecting the thermocouple leads to the ceramic connectors on the side 

of the carrier.  After checking thermocouple continuity, the mold is preheated to 315 C 

(600 F) in the resistance heated muffle furnace.  Typical preheat duration is 

approximately 4 – 5 hours, with periodic monitoring of the mold temperature using a K-

type thermocouple reader coupled to one of the three ceramic connectors on the mold 

carrier side.  After initiating the mold preheat, A356 aluminum stock was removed from 

storage supply and placed into the melting furnace set at 800 C (1472 F) .  A single 

casting required approximately 450 grams of A356, and enough metal was typically 

melted to pour 2 – 3 castings.  While waiting for the mold to reach preheat temperature 

and the aluminum to melt, the sacrificial thermocouples for measuring the temperature 

within the casting were made for insertion into the casting cavity.  The ice bath was 

prepared by filling the Styrofoam container with ice and water, the cold junction 

thermocouple was mounted in the center of the bath, and the lid was sealed.  The PC and 
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DAQ system were then set up and a check run was conducted for each of the four 

thermocouple channels using a temporary test thermocouple to ensure that the system 

was functioning properly. 

 
Pour Routine and Typical Temperature Data Set Produced 
 
 

 
 
 

Figure 3.14 - Mold Carrier Removal Process (staged) 
   
 
 Once the aluminum is melted and the mold has reached the desired preheat, 

everything is ready to continue with the pour.  The pre-heated mold is removed from the 

oven by two individuals using the welded leverage bar and placed in the metal pouring 

sand box as shown in Figure 3.14.  As quick as possible, the four thermocouples are 

connected to the data acquisition system via the K-type ceramic connectors.  All 

electrical equipment operating within the casting area, such as the oven, melting furnace, 

ventilation fan, and lights, is turned off in order to reduce the electrical noise in the data 

acquisition environment.  The Labview .vi is then employed to collect about ten seconds 
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of internal mold temperature data.  This short run provides a good idea of the preheat 

temperature and a last check to ensure proper thermocouple function.  Upon completion 

of this short data collection segment, the molten aluminum is poured in a refractory ladle 

and the melt temperature is collected using a hand held K-type digital thermocouple 

reader.  The target melt temperature for pouring is 699 – 704 C (1290 - 1300 F).  Finally, 

the Labview .vi is started, the molten aluminum is poured into the mold cavity, and data 

is collected from 5 – 7 minutes, depending on user input.  Once data collection has 

completed, the cast plate is removed from the mold, and one or two additional castings 

are poured in the same manner, replacing the sacrificial casting thermocouple with each 

run.  In the event that the mold preheat temperature is no longer sufficient, the mold can 

be reheated in the oven for a short duration to obtain an adequate preheat temperature 

before beginning the next run.  A typical data set resulting from one experimental run is 

shown as Figure 3.15. 
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Figure 3.15 - Typical Temperature Data Set (8/23/2004) 
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CHAPTER IV 
 

CORRECTING THERMOCOUPLE INSTALLATION INDUCED ERRORS  
 
 

In Chapter II, a number of uncertainty components attributed to the installation of 

an embedded thermocouple for steady-state as well as transient temperature measurement 

were discussed.   The installation of an embedded thermocouple in a solid material was 

shown to have the potential to induce significant errors in both magnitude and phase 

(time) for transient temperature measurements.  These errors tend to be of particular 

significance when very accurate transient temperature measurements are required, such 

as the type of measurement needed for accurate solution of an inverse conduction 

problem.    These installation induced errors can be managed, however, if an appropriate 

mathematical model representing the dynamic behavior of the measurement domain, as 

well as the installed sensor, is developed.  This type of method basically provides a 

process through which the model of the system can be employed to “undo” the signal 

deviation caused by the presence of the thermocouple sensor in the solid domain.  The 

accuracy of the reconstructed temperature data, therefore, depends greatly on how well 

the model used in the reconstruction process represents the dynamic behavior of the real 

life system, a solid medium surrounding an embedded thermocouple.  It is important to 

recognize that, since most models do not precisely replicate their real life counterpart, 

some amount of uncertainty will remain in the reconstructed temperature data.  The 

objective of this procedure is to perform, in a sense, a calibration of the experimental 
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temperature data, so that afterward, the original uncertainty due to the installation effects 

of the embedded thermocouple are reduced to a much smaller model uncertainty.  The 

goal of this chapter is to explain the method used in creating a heat conduction model to 

examine and adjust experimental temperature data for the measurement error associated 

with the presence of an embedded thermocouple within the solid medium. 

 
Discussion of Intended Application 
 

The application being examined for this thesis work is the permanent steel mold 

used in casting 1/2" thick aluminum plates described in detail in Chapter III.  Due to the 

relatively large width and height of the mold cavity compared to the thickness, heat 

transfer is assumed to be predominant in the thickness direction, therefore one-

dimensional heat transfer is assumed.  Figure 4.1 shows a representative picture of the 

three-piece steel permanent mold and the assumed unidirectional heat transfer.   

Due to symmetry in this heat transfer process, only one mold half, with and 

without an embedded thermocouple sensor, need be considered for modeling the system.  

Although obtaining a temperature history within a permanent mold is the application of 

motivation for the current research, other applications that behave as transient, one-

dimensional systems as described above could also be investigated using similar 

methods. 
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Figure 4.1 - Mold Showing Direction of Predominant Heat Flow 
 

The system, without the temperature sensor yet installed, is basically a solid, 

homogeneous block of material.  It can be modeled as a basic, one-dimensional transient 

heat conduction system with known initial condition.  The boundary conditions are 

specified as a time dependant heat flux on one surface and an insulated boundary (qout = 

0) on the back surface.  The time dependent heat flux boundary condition is the result of 

the semi-instantaneous pouring of molten aluminum into the mold cavity.  The exterior 

boundary condition is assumed as insulated, which is a good approximation when the 

inside surface is exposed to a large heat flux while the outside surface is in contact with 

air at rest [14].  The material properties for thermal conductivity (k), density (ρ), and 
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specific heat (c) are assumed to be temperature independent and the thermal diffusivity, 

α, is given as α = ck ⋅ρ .  Figure 4.2 shows a graphical representation of the basic 

system.  Equations (4.1) - (4.4) are the differential equation and initial/boundary 

conditions for this system. 

 

modeling

x

q(t)

insulated
(qout = 0)

3D Permanent Mold (top) 1D Model
Approximation

 
 
 

Figure 4.2 - Mold Half Model Description 
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General Explanation of Current Modeling Research 
  

The initial objective is to develop models that provide a good representation of 

the dynamic behavior of the system before and after the temperature sensor has been 

installed in the mold half.  These models are referred to as the undisturbed and disturbed 

models, with respect to the temperature measurement errors at a point of interest induced 

by the installation of an embedded thermocouple.  The first model constructed is the 

undisturbed model, where the thermocouple has not been installed.  This model is able to 

predict an undisturbed temperature, considered as the “true” or theoretical temperature, at 

the location of interest.  The second model, the disturbed model, is similar to the first 

model except that it also includes the dynamics of an embedded thermocouple installation 

at the location of interest.  It is important to remember, as was discussed in Chapter II, the 

temperature registered by the embedded thermocouple is in error from the “true” 

temperature that should have been measured at the point of interest due to measurement 

uncertainty, of which a major contributor is the presence of the thermocouple sensor in 

the system.  The reduction of the sensor installation induced uncertainty component in 

experimental temperature data, or the disturbed data, is accomplished through the use of a 

specific transfer function developed through the combination of the undisturbed and 

disturbed models, relating an estimated undisturbed temperature to an experimentally 

measured disturbed temperature.     

The undisturbed model is used to determine the relationship between the “true” 

temperature at the point of interest and the applied boundary heat flux.  The dynamics of 

a linear transient heat conduction system can be represented by its Laplace transform [5].  
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Therefore, a transfer function can be developed that captures the dynamics between the 

input heat flux and the output temperature at the point of interest.  A simple graphical 

representation is shown in Figure 4.3. 
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Figure 4.3 - Undisturbed System Transfer Function 
 
 

The disturbed model is similar to the undisturbed model, with the addition of an 

embedded thermocouple installation.  It is used, in turn, to determine the relationship 

between the temperature the thermocouple registers and the input boundary heat flux. 

The disturbed transfer function not only captures the characteristics of the domain 

medium, but also the additional response changes due to the thermocouple, thermocouple 

cavity, and any filler material.  A simple graphical representation of the disturbed system 

is shown in Figure 4.4. 
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Figure 4.4 - Disturbed System Transfer Function 
 
 

Once the undisturbed and disturbed transfer functions have been developed, a 

relationship can be derived relating a disturbed temperature to an undisturbed 

temperature for a common heat flux input.  A new transfer function can be developed to 

describe this relationship as shown in Equations (4.5) - (4.7). 

 )(
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u
u ⋅=    (4.5)

 
 ∴   )()()( sTsGsT du ⋅=  (4.6)

 

     where )(
)()( sG

sGsG
d

u=  (4.7)

 
Equation (4.6) summarizes the general concept of being able to collect 

experimental temperature data, and then filter that data through the transfer function of 

Equation (4.7) to recover predicted temperature data that has been relieved of much of 

the uncertainty due to the thermocouple installation.  This embedded thermocouple 

correction (ETC) transfer function takes into account the changes in system dynamics 
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caused by the presence of the thermocouple in the solid medium.  It accepts as an input 

experimentally measured temperature data and adjusts it to reflect predicted temperature 

values that likely would have been collected were it not for the disturbances caused by 

the sensor installation.  

 
Development of Control Volume Type Models for the Current Research 

 
To begin the process of developing the transfer function relations mentioned 

above, models for the undisturbed and disturbed cases were first developed.  Numerical 

Heat Transfer and Fluid Flow by S. V. Patankar [36] was the key reference used to 

discretize each model into a partitioned, control volume type heat transfer system.  Both 

the undisturbed and disturbed system models were divided into non-overlapping, finite 

control volumes over their entire domain.  Using the structuring in Patankar [36], a state 

variable equation was developed for each control volume describing the interaction with, 

and contribution to, the surrounding neighbor control volumes.  The result is a set of first 

order differential equations in time of the temperature state for each control volume.  The 

temperature state for a particular control volume is assumed to be constant over that 

control volume for each instant in time.  The undisturbed model is a simple model of the 

entire conducting medium of interest with no thermocouple embedded within the medium 

at the point of interest.  The disturbed model is essentially the undisturbed model linked 

to an additional senor sub-model that simulates the effects of the installation of an 

embedded thermocouple at a specified geometric location. 
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Undisturbed Model Development 
 

The embedded thermocouple application under investigation for this thesis is the 

determination of the temperature history at a specific location within a mold half after 

metal pouring.  This process was assumed to be a one-dimensional transient heat 

conduction process and Figure 4.2 visually explained the approximation of the three-

dimensional mold half as a one-dimensional model.  Therefore, the undisturbed model is 

created as a conducting medium with one-dimensional transient heat transfer capabilities.  

The differential equation describing the undisturbed system is same shown as Equation 

(4.1) with the specified boundary and initial conditions in Equations (4.2) - (4.4).  

The one-dimensional undisturbed model is converted to a discretized system of 

control volumes following Patankar [36] as a guide.  Each control volume in the 

discretized system has a node positioned at its center that is assigned a temperature state.  

The control volumes are ∆x units thick and considered to have identical, constant cross-

sectional areas normal to each of them.  The distance between adjacent temperature nodes 

is given as δx, and for the current research, a uniform grid was instated, in effect equating 

∆x to δx.  Boundary nodes are considered to be located at the geometric center of zero-

thickness control volumes, ∆x = 0, adjacent to the discretized domain.  Therefore, the 

distance between a boundary node and the adjacent temperature node becomes half the 

distance δx. 

 
Procedure for the Discretization of the Undisturbed Model 
 

In an effort to explain the method used in developing the state equations for the 

undisturbed model, a simplified example is presented with a time dependant heat flux at 
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one boundary and an insulated boundary at the other.  Figure 4.5 illustrates the example 

case where the domain is divided uniformly into four, equally spaced control volumes of 

∆x thickness. The example contains four temperature nodes located at the geometric 

centers of the control volumes and two additional boundary condition nodes located at 

the boundary surfaces.    Dotted lines represent the control volume boundaries. 
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Figure 4.5 - Sample Discretization Scheme: Undisturbed Model 
 
 

An energy balance can be performed for each control volume in the system to develop a 

set of four state equations, one for each temperature node.  To begin, the energy balance 

is executed on control volume one as follows: 

 storedoutin EEE =−  (4.8)
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Substituting Equations (4.9) - (4.11) into Equation (4.8) and simplifying yields 
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Control volumes two and three are internal and therefore have a slightly different form 

from the control volumes at the boundary.  The energy balance for control volume two is 

conducted as follows: 

 storedoutin EEE =−  (4.13)
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     and 2
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Substituting Equations (4.14) - (4.16) into Equation (4.13) and simplifying yields: 
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And similarly for control volume three, the form would be developed as: 
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Therefore, a generalized state equation for any internal control volume, n, could be 

shown as follows: 
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The fourth control volume for the example includes the second boundary 

condition.  It will have a state equation similar to that of the first, except that it is 

bounded by an insulated exterior face, meaning that the heat flux out of the control 

volume is zero, resulting in the following state equation: 
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The four resulting state equations can be combined and written in matrix form as follows: 
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     where  
x
ka
δ

=    and   xcb ∆⋅⋅= ρ (4.22)

 
Equation (4.21) can be written in the more concise form of Equation (4.23) as shown. 
 

 QBTAT ⋅+⋅=&  (4.23)
 
The system matrix developed exhibits a tri-diagonal pattern that is easily extendable to 

any number of desired control volumes.  For the current research, a simple code was 

developed within MATLAB to construct the system matrix, A, according to user defined 

material properties, number of control volumes, n, and control volume thickness ∆x. 

 
Disturbed Model Development 
 

The disturbed model is developed to simulate the heat transfer through the mold 

half as in the undisturbed model, with the addition of a simulated embedded 

thermocouple installation.  As discussed in Chapter II, the installation of a thermocouple 

into a solid material causes localized distortions in the temperature field around the 
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installation site.  For that reason, an “extended thermocouple sensor” sub-model was 

created that includes the thermocouple, thermocouple cavity, and a localized region of the 

medium of interest where the temperature field is affected by the presence of the 

thermocouple.  Because the distortion caused by the thermocouple installation only 

occurs in a localized region around the cavity, the sensor sub-model only characterizes a 

small part of the total domain.  The thermal field is undistorted for the remainder of the 

domain sufficiently distant from the installation location [15, 20-22, 28]. Thus, the 

majority of the system behaves just as it did previously in the undisturbed case, and can 

continue to be represented by the undisturbed model.  As a result, the model of the 

disturbed system is constructed through a controlled combination of the sensor sub-model 

with the undisturbed model. 

 
Sensor Sub-model Development 
 

The sensor sub-model was developed to approximate the distortion imparted on 

the system due to the thermocouple installation.  In practice, the actual thermocouple 

cavity is a cylindrical hole drilled to a depth from the top of the mold half.  Ideally the 

thermocouple bead is in contact with the base of the cavity, where it should obtain a 

temperature measurement.  In Chapter II, disturbances to the local thermal field around 

the cavity due to differing thermal properties of the thermocouple and filler material in 

the cavity, as well as heat loss through the thermocouple leads were discussed.    For the 

sensor sub-model, the errors induced by the differences in material properties were the 

focal point, and any heat lost through the leads was neglected.  Due to the radial attributes 

of a thermocouple installation, the sensor sub-model is designed to represent a circular 
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region of a specified area including the thermocouple cavity contents and the area of 

parent material where the thermal field is disturbed.  This plane on which the sensor sub-

model lies is assumed to pass through the base of the thermocouple bead and cavity.  As 

discussed by Attia et. al [15, 20-22], there are end effects associated with cylindrical 

cavities in solids.  However, for this model the distortion was assumed be two 

dimensional, and therefore end effects were not considered.   

  The sensor sub-model was constructed in two-dimensional polar coordinates to 

represent the heat conduction in the thermally disturbed region centered about the 

thermocouple installation site.  The governing differential equation for two-dimensional 

transient heat conduction in polar coordinates is shown as Equation (4.24). 
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 initialTrT =),,0( θ  (4.25)

 
 boundaryTrtT =),,( max θ   (4.26)

 
The two dimensions are seen to be r, the radial distance from the origin at the center, and 

θ, the angular distance.  This equation can be discretized in a manner similar to the 

energy balance methods used for the undisturbed model in Cartesian coordinates.   

Figure 4.6 displays a discretized polar coordinate system in r and θ, where the 

control volume around temperature node P is considered.  The control volumes are 

specified and then a temperature node is assigned at the geometric center of each control 

volume.  Neighboring nodes and control surfaces are labeled with the compass directions 
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of north, south, east, and west with respect to the node of interest, P.  Uppercase letters 

represent nodes and lowercase the control volume boundary surfaces. 
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Figure 4.6 - Discretization Scheme: Sensor Sub-model Interior Nodes 
 
 

Equation (4.27) presents the discretized form of Equation (4.24), presented by 

Patankar [36], for a control volume surrounding node P, where Tx is the temperature of 

the control volume containing node x. 

 00
PPWWEESSNNPP TaTaTaTaTaTa ++++=⋅  (4.27)

 
Tp is the control volume under consideration and the superscript of zero is a time index 

representing the previous time step (with regard to the non-superscripted temperatures). 

The other terms are geometrical and material property driven parameters for the 

neighboring nodes given by Equations (4.28) - (4.33). 
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Substituting the above equations into the Equation (4.27) and performing some minor 

manipulation results in the rate equation for the control volume around node P as shown 

as Equation (4.34). 
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Rewriting the time derivative and re-casting several variables for simpler presentation 

yields the following state equation, (4.35), for the control volume containing node P. 

 )(1
WWEESSNNPP TaTaTaTaTT ++++⋅Θ⋅

Γ
=&  (4.35)

 
     where )( WESN aaaa +++−=Θ (4.36)

 
     and Vc∆=Γ ρ1  (4.37)

 
This procedure was used to develop the state equation for each of the interior control 

volumes contained in the sensor sub-model. 
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Figure 4.7 - Discretization Scheme: Sensor Sub-model Boundary Nodes 
 
 

Development of rate equations for the boundary control volumes is only slightly 

different from that of interior control volumes.   Figure 4.7 presents a graphic displaying 

a control volume at the boundary of the sensor sub-model.  Boundary inputs are 

controlled through the assignment of a “zero-volume” control volume containing a 

boundary node B at the boundary.  The temperature at node B, TB, is a known sub-model 

input at a “northern” control volume face.  Similar boundary input nodes will occur 

radially around the sub-model for each control volume at the boundary.  The state 

equation for a control volume at temperature TP at is shown as Equation (4.38). 
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Comparing the state equation for an internal control volume to the one for a boundary 

control volume, it is seen that the parameters for a typical internal neighboring control 

volume to the “north” shown in (4.35) are simply replaced the with the parameters for the 

boundary node in (4.38).   

A system of first order differential equations is developed through the 

determination of the state equation for each control volume within the sensor sub-model.  

As was done for the undisturbed model, this set of differential equations can also be 

written in matrix form where T& is a vector of temperature rates, T is a vector of 

temperature states, BT  is a vector of input boundary temperatures, and As and Bs are the 

sensor sub-model system and input location matrices, respectively, shown as Equation 

(4.42). 

 Bss TBTAT ⋅+⋅=&  (4.42)
 

 The form of the system matrix As will depend on the numbering scheme used for 

labeling the control volumes, which determines how the equations are combined into 

matrix form.  A MathCAD worksheet, included in the Appendix B.1, was developed to 

determine a sensor sub-model system matrix, As, and input location matrix, Bs, based on 

user defined parameters for importation into MATLAB. 
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“Installing” the Sensor Sub-model to Create the Disturbed Model 
 

To create the disturbed model, the sensor sub-model is “installed” onto the 

undisturbed model.  This “installation” occurs through the linking of the sensor sub-

model boundary temperature nodes to user specified temperature nodes within the 

undisturbed model.  In this way, the boundary nodes of the sub-model assume the 

temperature of the node in the undisturbed model to which they are linked.  As a result, 

the sensor sub-model can be driven by a heat flux input applied to the undisturbed model.  

The disturbed model construction is finalized through this linking of the two models as 

described.  The input to the disturbed model is the same heat flux as to the undisturbed 

model.  The output is the temperature at the center node of the sensor sub-model, which 

through the linking, is position in the same geometric location as the undisturbed output 

temperature.  The advantage of having a separate sensor sub-model is that the 

“thermocouple installation” can be simulated at any user defined distance from the 

boundary where the heat flux is applied by simply altering the nodes where the sensor 

sub-model is linked.  Figure 4.1 shows a graphical illustration of the undisturbed and 

disturbed models lying in the plane cut through the mold half in which they simulate the 

heat diffusion process. 
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Figure 4.8 - Undisturbed and Disturbed Model Visualizations 
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Development of the Required Transfer Functions using MATLAB 
 
 
Dynamic System Modeling Capabilities of MATLAB 
 

MATLAB, a software package by The Mathworks Inc., was employed as the 

computational tool for developing and manipulating the various mathematical models 

described for the current research.  MATLAB’s Control System Toolbox was particularly 

valuable during model development because of the variety of system modeling and 

analysis functions that are readily available within it.  This toolbox is specifically 

designed for the construction of models of linear time-invariant dynamical systems in a 

variety of model representations, with the ability to painlessly translate from one model 

representation to the next.  The two model representations that were utilized for the 

current research were the state-space (SS) and transfer function (TF) representations.  

State-space models for MATLAB are presented as Equations (4.43) and (4.44). 

 

 

 uBxA
dt
dx

⋅+⋅=  (4.43)

 
 uDxCy ⋅+⋅=  (4.44)

 
 
 
 
 

A and B are system matrices of appropriate dimension, C and D are the output selection 

matrices of appropriate dimension, x is the state vector, and y and u are the output and 

input vectors, respectively.  Transfer function representations in MATLAB take a form of 
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the Laplace transform of the system, represented by Equation (4.45), where num(s) and 

den(s) are the numerator and denominator polynomials of the transfer function 

respectively. 

 )(
)()(

sden
snumsG =  (4.45)

 
The undisturbed model and sensor sub-model were both developed as control 

volume type models with systems of state equations describing each model.  The system 

matrices for each of these models are developed through expressing the defining sets of 

state equations in matrix form.  The system matrices correspond to the A and B matrices 

in Equation (4.43) above are required for creation of a MATLAB state-space system.  

The observer vector, C, for the undisturbed model is a vector that selects the user defined 

temperature node (state) of interest within the modeled domain as the output.  For the 

sensor sub-model, the Cs vector selects the center node, taken as the position of the 

thermocouple within the sub-model.  For both models, the D matrix is zero.  The 

MATLAB program created performs the various calculations necessary for the 

development of the system matrices necessary for the creation of the undisturbed and 

disturbed models.  This MATLAB program is presented in line by line form in the 

Appendix B.2. 

 
Creating the Undisturbed System using MATLAB 
 

Using the MATLAB program developed, the undisturbed model and transfer 

function can be easily developed.  Upon running the program in MATLAB with the user 
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supplied output temperature node, material properties and geometric parameters, state-

space and transfer function representations for the undisturbed system are developed.      

 
Creating the Disturbed System using MATLAB 
 

The disturbed model development is slightly less straight-forward than that of the 

undisturbed.  First, the system matrices, As and Bs, for the sensor sub-model must be 

assembled according to the user prescribed material properties and control volume size 

parameters.  The MathCad worksheet shown in the Appendix B.1 performs the assembly 

of the sensor sub-model system matrices.  After assembly in MathCad, the matrices can 

be imported into the MATLAB program.  This one program contains the code necessary 

for the construction of not only the disturbed model, but the undisturbed model as well.  

To generate the disturbed model, the undisturbed model and sensor sub-model must be 

linked.  This is accomplished through the combination of several intermediate transfer 

functions to achieve the final disturbed system transfer function. 

For the current configuration, six intermediate transfer functions are required to 

link the sensor sub-model to the undisturbed model and develop the disturbed system 

transfer function.  The first three transfer functions relate three distinct nodal 

temperatures within the undisturbed model to the input heat flux.  The three temperature 

nodes are the undisturbed temperature of interest, Tu, and two other nodes that will be 

linked to the sensor sub-model.  For convenience, the two additional nodes are labeled 

Tup and Tdwn, the “upstream” and “downstream” nodes with respect to the heat flow 

through the node of interest.    Equations (4.46) - (4.48) are the first three intermediate 
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transfer functions that are developed.  Figure 4.9 is a graphical representation presenting 

block diagrams for the first three transfer functions obtained from the undisturbed model. 

 )()()( sQsGsT uu ⋅=  (4.46)
 

 )()()( sQsGsT upqup ⋅=  (4.47)
 

 )()()( sQsGsT dwnqdwn ⋅=  (4.48)
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Figure 4.9 - Undisturbed Model Transfer Functions 
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Figure 4.10 - Sensor Sub-model Transfer Functions 
 
 

The three remaining transfer functions necessary to form the undisturbed model 

are obtained from the sensor sub-model as shown in Figure 4.10.  Although, there are 

four boundary nodes, only three are distinct temperature input nodes because both the 

nodes labeled as Tm, for “middle”, will be driven by the undisturbed temperature, Tu.  

This is because, when superimposed over the undisturbed model, both Tm nodes will lie 

within the same control volume, the one in which the undisturbed temperature node lies.  

Equations (4.49) - (4.51) show the three transfer functions developed that relate an input 

boundary temperature to a output disturbed temperature, Td, in the sensor sub-model. 

 )()()( sTsGsT dmm ⋅=  (4.49)
 

 )()()( sTsGsT dupup ⋅=  (4.50)
 

 )()()( sTsGsT ddwndwn ⋅=  (4.51)
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Figure 4.11 - Disturbed Model Transfer Function 
 
 
 Figure 4.11 displays a graphic depicting the “installation” of the sensor sub-model 

into the undisturbed model to create the disturbed model.  Equations (4.46) - (4.51) are 

combined to develop the expression for the disturbed system transfer function relating a 

disturbed temperature to an input heat flux, shown as Equation (4.52). 

 )()()( sQsGsT dd ⋅=  (4.52)
 
where the disturbed transfer function, Gd(s), in its expanded form is Equation (4.53). 
 

 )()()()()()()( sGsGsGsGsGsGsG dwndwnqmuupupqd ⋅+⋅+⋅=  (4.53)
 
The development and combination of the six intermediate transfer functions, Equations 

(4.46) - (4.51), to obtain the disturbed system transfer function, as well as the 

development of the undisturbed transfer function is performed conveniently by same 

single program created in MATLAB. 
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Developing the Embedded Thermocouple Correction (ETC) Transfer Function 
 

After the undisturbed and disturbed transfer functions are developed, one 

additional transfer function is necessary.  The embedded thermocouple data correction 

(ETC) transfer function can be found by combining Equations (4.46) and (4.52)  for the 

undisturbed and disturbed systems.  Solving for the common heat flux input and equating 

the two yields a transfer function, G(s).    The last transfer function created is shown as 

Equation (4.54). 

 )()()( sTsGsT du ⋅=  (4.54)
 

This transfer function describes the final desired system, where an input of disturbed 

temperature produces an output of undisturbed temperature.  This data correction transfer 

function can now be used in MATLAB to dynamically adjust experimentally measured 

temperature data to recover estimated temperature data in which the effects of embedded 

thermocouple installation have been removed.
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CHAPTER V 
 

ADJUSTING DATA FOR EMBEDDED THERMOCOUPLE INDUCED ERRORS: 
RESULTS AND DISCUSSION 

 
 

The MATLAB program (in Appendix B.2) creates the embedded thermocouple 

correction (ETC) transfer function, G(s), from basic user defined material properties and 

geometries through the methodology described in Chapter IV.  Once the ETC transfer 

function is obtained for a given system, embedded thermocouple data from that system 

can be adjusted to remove the portion of the error due to the difference of sensor 

installation material properties.  The motivating problem for the current research is that of 

embedded temperature measurements within a low carbon steel mold during a casting 

process, but other similar transient conduction processes could also be handled in the 

same manner.  
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Figure 5.1 - Input/Output Diagram for MATLAB ETC Program 
 
 
 

Example Cases for Embedded Thermocouple Data Correction 
 
 

Figure 5.1 shows a block diagram outlining the user inputs required in order to 

determine a ETC transfer function, G(s), for a system.  In addition to this data correction 

transfer function, the MATLAB program also creates the transfer functions that contain 

the dynamic characteristics of the undisturbed and disturbed systems as defined in 

Chapter IV.  Several examples will now be presented and discussed to demonstrate the 

usefulness of the embedded thermocouple data correction procedure.  Results will be 
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presented in graphical form and discussed.  The four example cases presented are 

described in Table 5.1.  

 
Table 5.1 - Example Cases Using ETC Process 

 
 

Case Description Purpose 

1 Comparison of undisturbed model to 
semi-infinite analytical solution Validation of Undisturbed Model 

2 
Comparison of undisturbed & disturbed 
responses when no dissimilar materials 
are used in sensor sub-model 

Validation of Disturbed Model 

a Correction of generated disturbed 
thermocouple data (noiseless) with G(s) 

Validation of ETC Transfer 
Function (low diffusivity filler) 

b Correction of generated disturbed 
thermocouple data (noiseless) with G(s) 

Validation of ETC Transfer 
Function 

c 

3 

d 

Correction of generated disturbed 
thermocouple data (noisy) with G(s) 

Validation of ETC Transfer 
Function for use with noisy data 

4 

Comparison of estimated boundary heat 
flux from generated disturbed and 
recovered temperature responses using 
SVD [7, 37] model reduction methods  

Confirmation of the necessity for 
correction of temperature data 

 
 

For all the example cases, a block of low carbon steel was considered as the 

undisturbed model (and as the parent material for the disturbed model).  The block was 

specified to have a thickness of approximately 1.5 inches, except as noted in Case 1.  

Case 3a presents a scenario in which a low diffusivity material, paraffin wax, is used as 

the filler in the thermocouple cavity.  Non-moving air was assumed to fill the 

thermocouple cavity for the simulations presented in Cases 3b – 3d and Case 4.  The 

undisturbed temperature of interest within the block for all cases was taken as node 7, 
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which is approximately 5 mm from the boundary surface where the heat flux is applied.  

A constant input heat flux of 30 W/m2 was used for Case 1 and Figure 5.2 shows the time 

dependant input heat flux that was used for Cases 2, 3, and 4.  The back boundary surface 

was insulated for all cases.  For each case where it was utilized, an outer diameter of 9 

mm and thermocouple cavity diameter of 3 mm were specified for the sensor sub-model.  

The material properties and geometrical parameters used throughout the example cases 

are shown in Table 5.2 as they apply. 
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Figure 5.2 - Heat Flux Input for Case 2, 3, and 4 
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Table 5.2 - Material Properties, Geometries, and Other Parameters Used for Cases 
 
 

Parameter Description Value Case Used 
Undisturbed Model Geometry 

n Number of control volumes (undisturbed) 51 2 - 4 
node Node of interest number  7 All 
nu Upstream node number 1 2 - 4 
nd Downstream node number 13 2 - 4 
Dx Control volume spacing 0.75 mm All 
dx Nodal spacing 0.75 mm All 

Sensor Sub-model Geometry 
ntc Number of control volumes (sensor) 17 2 - 4 
∆r Radial distance between c.v. faces 0.5 mm 2 - 4 
δr Radial distance between nodes 0.5 mm 2 - 4 
∆θ Angular distance between c.v. faces 90 deg 2 - 4 
δθ Angular distance between nodes 90 deg 2 - 4 

Material Properties 
     AISI 1010 Low Carbon Steel @ 300K - “parent material” 

k Thermal conductivity of low carbon steel 63.9 W/m-K 3a 
rho Density of low carbon steel 7832 kg/m3 3a 
cp Specific heat of low carbon steel 434 J/kg-K 3a 

     Paraffin Wax @ 300K – “thermocouple cavity filler”) 
kp Thermal conductivity of paraffin 0.24 W/m-K 3a 

rhop Density of paraffin 900 kg/m3 3a 
cpp Specific heat of paraffin 2890 J/kg-K 3a 

    AISI 1010 Low Carbon Steel @ 600K - “parent material” 
k Thermal conductivity of low carbon steel 48.8 W/m-K All (less 3a) 

rho Density of low carbon steel 7832 kg/m3 All (less 3a) 
cp Specific heat of low carbon steel 559 J/kg-K All (less 3a) 

    Air @ 600K – “thermocouple cavity filler” 
ka Thermal conductivity of air 44 W/m-K 3b – 3d, 4 

rhoa Density of air 7250 kg/m3 3b – 3d, 4 
cpa Specific heat of air 459 J/kg-K 3b – 3d, 4 

Properties obtained from Appendix A of Incropera and DeWitt [29] 
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Case 1:  Validation of the Undisturbed Model 
 
 To demonstrate the ability of the undisturbed model to produce an accurate 

temperature profile for a given input heat flux, the model is compared to the analytical, 

one-dimensional solution for a semi-infinite solid with a constant surface heat flux given 

by Equation (5.1) [38]. 
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Figure 5.3 shows how the undisturbed model response compares to the semi-infinite 

analytical solution for an increasing number of control volumes in the undisturbed model.  

Since the model is a finite thickness, however, the undisturbed model will only accurately 

approximate the semi-infinite analytical solution for an initial period of time before it 

deviates from the analytical solution.  However, by increasing the number of control 

volumes in the undisturbed model, n, it will behave ever more like a semi-infinite system.  

With each additional control volume, the period of time is extended in which the 

undisturbed model accurately approximates the analytical solution.  Because the 

undisturbed model’s temperature response compares well to the semi-infinite analytical 

solution’s response at x = 5 mm during the initial time period, it confirms the proper 

functioning of the undisturbed model and its ability to accurately replicate the 

temperature response for a finite system. 



75 

 

 

 
 
 
 
 

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

Time (sec)

Te
m

pe
ra

tu
re

 C
ha

ng
e 

[ T
 - 

Ti
 ],

 ( 
 ∆K

) 

Undisturbed Model Response vs. Semi-Infinite Analytical Solution

Semi-Infinite Solution (x = 5 mm)
Undisturbed Model (n = 20)
Undisturbed Model (n = 30)
Undisturbed Model (n = 40)
Undisturbed Model (n = 60)

Model Parameters:                                                
n = number of control volumes in model                           
Dx = 0.75 mm                                                     
node = 7 (node of interest)                                      
q = 30 kW/m2  (constant heat flux)                              
Ti = 600 K                                                       
                                                                 

 
 
 

Figure 5.3 - Undisturbed Model Results vs. Semi-Infinite Analytical Solution 
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Case 2:  Validation of the Disturbed Model 
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Figure 5.4 - Disturbed Model Validation Configuration 
 
 
 
 

Verification of the disturbed model’s accuracy can be accomplished by comparing 

the undisturbed model temperature response to a disturbed temperature response when 

the thermocouple cavity contains the parent material.  This is accomplished by setting all 

the sensor sub-model control volumes, including those volumes representing the cavity, 

to be the parent material as shown in Figure 5.4.  In this configuration, the disturbed 

model will ideally produce the same response as the undisturbed model.  Any remaining 

response differences are strictly modeling errors, due to control volume spacing or 

improper assumptions in the linking of the senor sub-model.  Figure 5.5 displays the 
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similarity between the disturbed and undisturbed responses for this case.  Figure 5.6 is a 

plot providing evidence that the difference between the two responses is negligible, at 

most about 0.08 K, which confirms the accuracy of the disturbed model. 
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Figure 5.5 - Disturbed Model Validation: Disturbed Model vs. Undisturbed Model  
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Figure 5.6 - Disturbed Model Validation: Error in Disturbed Response 
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Case 3:  Validation of the Embedded Thermocouple Correction Transfer Function, G(s) 
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Figure 5.7 - Disturbed Model Configuration:  ETC Transfer Function Validation 
 
 

With both the undisturbed and disturbed model validated, the subsequent 

objective is to verify the ability of the ETC transfer function to adjust embedded 

thermocouple data to remove the error due to the sensor installation.  Figure 5.7 is an 

illustration depicting the disturbed model setup in two configurations, with low 

diffusivity paraffin wax filling the thermocouple cavity and with non-moving air filling 

the thermocouple cavity.  Each of these disturbed model setups is used to generate a set 

of “measured” temperature data, representative of what a similar experimental setup 

would produce.  The generated data is created with somewhat of a “worst case” scenario, 
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assuming the thermocouple is not even in contact with the parent material at the cavity 

base, thus causing it to register the paraffin or air temperature at the center of the 

thermocouple cavity.  The “measured” data was generated with MATLAB as if it were 

sampled for 30 seconds at 100 Hz.  Case 3 is presented as four sub-cases, differing in the 

material filling the thermocouple cavity and the amount of noise which was added to the 

generated “measured” data.  This added noise simulates the random uncertainty typically 

present in actual experimental data.  The noise was created as random normal values with 

zero mean and user defined standard deviation.  Descriptions of the sub-cases are shown 

in Table 5.3. 

 
 
 
 

Table 5.3 - Sub-cases of Case 3 
 
 

Case Standard Deviation of Noise 
(Kelvin) 

3a - no noise added (paraffin filler) - 

3b - no noise added (air filler) - 

3c 0.1 K (air filler) 

3d 0.5 K (air filler) 
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Case 3a:  Noiseless Temperature Data - Paraffin TC Cavity Filler 
 

Figure 5.8 displays the obvious difference between the disturbed “measured” data 

for the paraffin filled cavity and the undisturbed temperature response.  Figure 5.9 is 

representative of the error contained in the “measured” data or its difference from the 

“true” undisturbed response.  The maximum error is approximately 6 K for the current 

system and boundary input. 
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Figure 5.8 - Case 3a:  Disturbed vs. Undisturbed Temperature Responses 
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Figure 5.9 - Case 3a:  Error in Disturbed Response 
 
 
 Using the MATLAB program developed, the generated “measured” data can be 

used as the input to the ETC transfer function to recover an adjusted set of temperature 

data in which the effects of the sensor installation have been removed.  Figure 5.10 shows 

the ability of the ETC transfer function to accurately filter the “measured” data to 

produce a set of recovered temperature data that closely approximates the undisturbed 

response.  Figure 5.11 displays the error in the reconstructed data with respect to the 

undisturbed response, which is seen to be minimal. 
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Figure 5.10 - Case 3a:  Recovered Temperature Response 
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Figure 5.11 - Case 3a:  Error in Recovered Temperature Response 
 
 
 
 
 
Case 3b:  Noiseless Temperature Data – Air TC Cavity Filler 
 
 In the same manner as Case 3a, Case 3b was executed for the more realistic 

situation of an air filled thermocouple cavity.  Figure 5.12 displays the difference 

between the disturbed “measured” data for the non-moving air filled cavity and the 

undisturbed temperature response.  Figure 5.13 is representative of the installation error 

contained in the “measured” data, or its difference from the “true” undisturbed response.  

The maximum error is approximately 1 K overestimation for the current system and 
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boundary input.  The error of the disturbed response is less for air when compared to the 

paraffin because the thermal diffusivity of the air is much larger than that of the paraffin 

wax.   
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Figure 5.12 - Case 3b:  Disturbed vs. Undisturbed Temperature Responses 
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Figure 5.13 - Case 3b:  Error in Disturbed Response 
 
 

As was performed for Case 3a, the ETC transfer function is employed on the 

disturbed “measured” data of Case 3b.  Figure 5.14 shows the results of the ETC transfer 

function on the “measured” data to produce a set of recovered temperature data that 

closely approximates the undisturbed response.  Figure 5.15 displays the error of the 

reconstructed data with respect to the undisturbed response, which is once again seen to 

be minimal. 
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Figure 5.14 - Case 3b:  Recovered Temperature Response 
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Figure 5.15 - Case 3b:  Error in Recovered Temperature Response 
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Case 3c:  Noisy (σ = 0.1 Kelvin) Temperature Data – Air TC Cavity Filler 
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Figure 5.16 - Case 3c:  Non-Filtered Recovered Temperature Response 
 
 
 Noise was created with a standard deviation of 0.1 Kelvin and added to the 

measured signal of Case 3b to produce noisy “measured” data.  Figure 5.16 shows the 

recovered temperature data when using the noisy data as an input to ETC transfer 

function.  Although not particularly evident, the noise is amplified (slightly in this 

configuration) through the recovery process, which makes the recovered temperature data 

unacceptable.   Therefore, a lowpass Butterworth filter was constructed in MATLAB to 

filter the noisy “measured” temperature data.  The filtered data was then used in the ETC 
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transfer function temperature response recovery process.  The resulting recovered 

temperature data from the filtered noisy data is shown in Figure 5.17.  The error 

remaining in the recovered temperature data with respect to the undisturbed temperature 

is shown in Figure 5.18 and is approximately at or less than the level of the injected 

random noise. 
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Figure 5.17 - Case 3c:  Filtered Recovered Temperature Response 
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Figure 5.18 - Case 3c:  Error in Filtered Recovered Temperature Response 
 
 
 
 
Case 3d:  Noisy (σ = 0.5 Kelvin) Temperature Data – Air TC Cavity Filler 
 
 The standard deviation for the noise was increased to 0.5 Kelvin in Case 3d.  This 

noise was then added to the generated “measured” temperature data of Case 3b, and that 

noisy data was filtered.  Figure 5.19 shows the temperature response recovered from the 

filtered noisy data.  Figure 5.20 shows the error remaining in the recovered data with 

respect to the undisturbed response, which again is slightly less than the level of 

introduced random noise. 
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Figure 5.19 - Case 3d:  Filtered Recovered Temperature Response 
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Figure 5.20 - Case 3d:  Error in Filtered Recovered Temperature Response 
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Case 4: Inverse Heat Conduction Solution for Boundary Heat Flux 
 
 Following Shenefelt in [7, 37], the MATLAB code used to perform singular value 

decomposition for model reduction, an inverse conduction method, was created.  As with 

other IHC methods, given internal temperature data input, an estimate for the applied 

boundary heat flux can be determined.  The objective of this example is to provide 

evidence demonstrating that the use of the installation error biased temperature data in an 

inverse solution can lead to an inaccurate estimate for boundary heat flux.  For this 

example, the generated “measured” data and non-filtered ETC recovered data for the 

paraffin filled (σ = 0 K) and air filled (σ = 0.1 K) thermocouple cavity systems are both 

presented.  Since the recovered data is an estimate of the undisturbed temperature 

measurement, the impulse response employed for the building the Φ matrix, as described 

by Shenefelt, is that of the simple undisturbed system, a block of low carbon steel.  The 

comparison of estimated boundary heat flux determined using the model reduction 

methods for both the generated “measured” and ETC recovered temperature responses is 

shown in Figure 5.21 for the paraffin filled thermocouple cavity and in Figure 5.22 for 

the air filled thermocouple cavity.  It is obvious in the case of the low thermal diffusivity 

paraffin filler that the use of the uncorrected “measured” data produces an estimated 

boundary heat flux that is largely damped in magnitude and delayed in time.  Conversely, 

the air filled thermocouple cavity data tends to slightly overestimate the heat flux and 

shift it forward in time.  Nevertheless, the recovered temperature response developed 

with the ETC transfer function for each case approximates the boundary heat flux very 

effectively.  Figure 5.23 and Figure 5.24 display the error of the estimated heat flux using 
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the ETC recovered data from the paraffin and air filler, respectively, as compared to the 

actual applied heat flux of Figure 5.2.  The maximum error observed is slightly larger 

than 1% of the actual heat flux for both cases. 
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Figure 5.21 - Estimated Heat Flux Comparison (Paraffin Filler, σ = 0 K) 
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Figure 5.22 - Estimated Heat Flux Comparison (Air Filler, σ = 0.1 K) 
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Figure 5.23 - Error of IHC Estimated Heat Flux (Paraffin Filler, σ = 0 K) 
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Figure 5.24 - Error of IHC Estimated Heat Flux (Air Filler, σ = 0.1 K) 
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Adjusting Experimentally Acquired Data with the ETC Transfer Function  
 
 
 As outlined in Chapter III, several experimental pourings of A356 aluminum were 

completed in a three-piece steel mold.  During each experimental run, internal mold 

temperatures at several locations (Figure 3.4 in Chapter III) were collected using 

embedded thermocouples.  The purpose for the determination of the embedded 

thermocouple correction (ETC) transfer function was to develop a means to recover an 

undisturbed temperature response, removed of the bias error due to sensor installation, 

from embedded thermocouple data.  Therefore, a case is now presented showing the 

correction of a set of experimental temperature data collected from one of the metal 

casting runs using the ETC transfer function methods. 
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Figure 5.25 - Mold Temperature: 8/26/2004 
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Figure 5.25 shows a plot of the experimental internal mold temperature data 

collected for the run completed on August 26, 2004.  Channels 1 and 2 are two separate 

embedded thermocouples within the mold, and channel 4 is the thermocouple within the 

casting.  The first ninety seconds of temperature data from channel 1 (thermocouple 

located approximately 5 mm from interface) were imported into the MATLAB program 

for use in the ETC method assuming an air filled thermocouple cavity.  Figure 5.26 

displays the results of using the ETC transfer function with ninety seconds of 

experimental data, sampled at 25 Hz, as the input. 
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Figure 5.26 - ETC Recovered Temperature (Experimental Data) 
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 Both the non-filtered and Butterworth filtered recovered responses are shown.  

The difference between the filtered recovered temperature response and the experimental 

data are shown by Figure 5.27.  A maximum temperature difference of approximately 1 

K – 1.5 K is observed.  The correction made to the experimental data, as compared to 

some of the previous example cases, is not nearly as radical.  This is most likely due to 

the more gradual effects of the boundary heat flux experienced in the experimental 

situation as compared to the sudden changes in the simulated heat flux of Figure 5.2. 
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Figure 5.27 - Difference of Filtered Recovered and Experimental Temperature Data 
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 As a closing study, the experimental data and the ETC recovered temperature 

response shown in Figure 5.28,  were used in the IHC methods presented by Shenefelt [7, 

37] to estimate unknown boundary heat flux condition experienced at the mold-metal 

interface in the casting experiment.  Figure 5.29 is a plot comparing the estimated heat 

fluxes produced for both the “raw” experimental data and the non-filtered recovered ETC 

data.  The peak value for the ETC recovered data estimated heat flux is around 377 

kW/m2, which is comparable to other values found in literature [16, 39].  As was true 

with the recovered temperature response and the experimental data, the estimated heat 

fluxes for each are not as drastically different as in the case for the generated data in 

Figure 5.21.  This is most likely due to the higher thermal diffusivity of the air filled 

thermocouple cavity and because, as mentioned before, the boundary heat flux 

experienced in the casting process does not exhibit the sudden changes of the simulated 

heat flux of Figure 5.2.  As seen in Figure 5.30, the maximum difference between the two 

estimated heat fluxes is around 12 kW/m2, which is approximately 3 % of the peak value 

observed.  
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Figure 5.28 - Comparison of Non-filtered ETC Recovered Data to Experimental Data 
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Figure 5.29 - Estimated Heat Fluxes (Experimental Data) 
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Figure 5.30 - Difference in Estimated Heat Fluxes (Experimental Data)
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CHAPTER VI 
  

SUMMARY AND CONCLUSIONS 
 
 
 Solid-embedded thermocouples are utilized for a variety of industrial applications 

where the internal temperature of a solid is desired.  Depending upon the application, the 

accuracy requirements for the temperature data collected may be very stringent.  Inverse 

conduction problems, where internal temperature measurements are used to estimate 

boundary condition, are one such application in which very accurate temperature 

measurements are essential.  The literature contains many discussions concerning the way 

in which small errors in measured temperature data can be amplified through the 

inversion process, resulting in large errors in estimated boundary conditions.  Therefore, 

when considering the design of an experiment to collect temperature data for use in 

inverse conduction calculations, it is imperative to recognize the wide variety of sources 

from which error can be introduced into a temperature signal, as well as to be able to 

minimize their contributions.   

Chapter II discussed in detail a variety of factors that can contribute error to solid-

embedded thermocouple temperature measurements.  Systematic and random errors were 

visited, with a particular focus on the inherent systematic error that is induced when a 

thermocouple is embedded within a solid, designated as installation error.  References 

were cited that provide detailed studies regarding the significant errors in signal 

magnitude and phase due to the installation of the sensor, particularly during transient 
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measurement periods, and these installation errors were established as problems that may 

be too often overlooked in industry. 

The practices employed during metal casting experiments, in which internal mold 

temperatures were collected during casting processes, were summarized in Chapter III.  

In these experiments, embedded thermocouples were used to collect temperature 

measurements for application in inverse conduction solutions to estimate the heat flux 

and heat transfer coefficient at the mold-metal interface.  Equipment and practices 

utilized to minimize the random error introduced into the temperature signals through 

electrical noise in the testing environment were presented.        

With the minimization of random errors typically managed during the 

experimental set up, the goals of additional error reduction led to the techniques 

discussed in Chapter IV for the elimination of the bias error in an embedded 

thermocouple temperature signal due to the presence of the sensor within the measured 

domain.  Modeling techniques were presented to simulate transient heat conduction 

within the measured domain, with and without the thermocouple installation in place.  

Methods for determining an embedded thermocouple correction (ETC) transfer function 

from these models, used to correct for installation error in temperature data, were 

presented and a MATLAB program was constructed to automate the assembly of this 

transfer function based on user defined system descriptive parameters.   

Chapter V provided examples demonstrating the effectiveness of the ETC transfer 

function in removing installation bias errors from simulated noisy embedded 

thermocouple data to recover estimated undistorted temperature data.  A simulation was 
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also presented showing the inaccuracy of simulated noisy embedded thermocouple data 

estimated boundary heat flux, when used for an inverse conduction solution.  However, 

the ETC transfer function recovered response, when alternatively used in same inverse 

conduction solution, was shown to accurately estimate the actual boundary heat flux.  

The ETC transfer function method was also demonstrated with a sample set of 

experimental temperature data collected during the casting experimentation described in 

Chapter III to recover an undisturbed temperature response.  The differing estimates of 

boundary heat flux produced for the recovered and “raw” temperature data, when 

employed in an inverse conduction scheme, were also compared to published values and 

discussed.  For the assumed situation of an air filled thermocouple cavity, it was observed 

that the amount of distortion in temperature signal and IHC estimated boundary heat flux 

were fairly minimal.  

The ETC transfer function can effectively be considered as a filter, or a dynamic 

calibration tool, that can adjust a temperature response in both phase and magnitude to 

remove the bias error due to the sensor installation.  This type of data adjustment can be 

very beneficial for applications in which accurate transient temperature measurement is 

vital, such as that of inverse conduction problems. 

This thesis has investigated the use of solid-embedded thermocouples as a 

specific means for determining accurate transient temperature measurements within a 

solid.  However, no cause is without its effect, and the apparent simplicity of being able 

to measure accurate transient temperatures within a solid by simply embedding a 

thermocouple does not come without cost.  By installing a sensor in the solid domain, the 
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dynamics of the heat conduction system are changed.  This can result in temperature 

measurements that can potentially turn into hindrances, if the presence of installation 

induced bias errors in the temperature signal are not recognized and managed in an 

effective and appropriate fashion.
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DAQ CARD BIT ANALYSIS 
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0.0000232831









µV=  

k 0 100..:=  
Voltagek 0.0001993k:=  

Tempk T Voltagek( ):=  ∆V
MP
V

:=  

Temp0 0.0000000:=  

∆Tk i,

T Voltagek ∆Vi+( ) T Voltagek ∆Vi−( )−

2
:=  

M augment Voltage Temp, ∆T,( ):=

Machine Precision (converted to deg C) 

T 2 ∆Vi⋅( )
2
0.612
0.038

5.84·10    -7

=  

12 bit 
16 bit 
32 bit 
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APPENDIX B 
 

        MODEL CONSTRUCTION AND SIMULATION FILES 
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B.1     SENSOR SUB-MODEL MATHCAD FILE 
 

Thermocouple "Sensor" Sub-Model System Matrix Builder: 

CV Term Generator

NN 21:=  Number of Nodes (including boundary nodes) in Sensor Sub-model 

i 0 NN 1−( )..:=  

--------------  If thermocouple cavity is to include non-parent material (use this section) -- 

Parent Material (Steel)  TC Cavity Filler (Air)  in W
m K⋅

 
Km 48.8:=  Ka 0.0469:=

------------------------------------------------------------------------------------------ 
Correcting for interface conductivities (as Patankar pg. 44 - Interface conductivity ) (air -
> steel in first c.v. "ring") 

For Kfiller << Kparent (checks!) 
Kmn

2 Km Ka⋅( )⋅

Km Ka+
:=  Kmn 0.09371=

Kmn2 2 Ka⋅:= Kmn2 0.0938=

ki Km
W

m K⋅
⋅:=  

Interface Conductivity Corrections (fills center c.v. and first "ring" with air): 

k0 Ka
W

m K⋅
:=  k1 Kmn

W
m K⋅

:=  k2 Kmn
W

m K⋅
:=  k3 Kmn

W
m K⋅

:=  k4 Kmn
W

m K⋅
:=  

------------------------------------------------------------------------------------------ 
Used to set all c.v. in sensor sub-model back to 
"parent material" conductivity ki Km

W
m K⋅

⋅  

Geometry for Control Volumes (set parameters for each of NN nodes): 

∆r 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0( )T mm⋅:=  

δr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5( )T mm⋅:=  

rb 0.001 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4.5 4.5 4.5 4.5( )T mm⋅:=  
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rn 0 .5 .5 .5 .5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 4.5 4.5 4.5 4.5( )T mm⋅:=  

rs .5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5( )T mm⋅:=  

∆θ i 90 deg⋅:=  δθi 90 deg⋅:=

aN, aS, aE, aW (aE = aW = b) for each of the control volumes: Volumes for CVs 

ani

ki ∆θ i⋅ rn i
⋅

δri
:=  asi

ki ∆θ i⋅ rs i
⋅

δri
:=  b i

ki ∆ri⋅

rb i
δθi⋅

:=  Vi
rni

rsi

r
0

∆θi

θr
⌠

⌡

d
⌠


⌡

d:=  

an

0

0.074

0.074

0.074

0.074

114.982

114.982

114.982

114.982

191.637

191.637

191.637

191.637

268.292

268.292

268.292

268.292

689.894

689.894

689.894

689.894





























































kg m

s3K
=  as

0.037

0.221

0.221

0.221

0.221

191.637

191.637

191.637

191.637

268.292

268.292

268.292

268.292

344.947

344.947

344.947

344.947

689.894

689.894

689.894

689.894





























































kg m

s3K
=  b

0

0.06

0.06

0.06

0.06

15.534

15.534

15.534

15.534

10.356

10.356

10.356

10.356

7.767

7.767

7.767

7.767

0

0

0

0





























































kg m

s3K
=  V

0.196

1.571

1.571

1.571

1.571

3.142

3.142

3.142

3.142

4.712

4.712

4.712

4.712

6.283

6.283

6.283

6.283

0

0

0

0





























































mm2
=  

V0 4 V0⋅:=  *4 for center c.v. 

--------------------  Other Material Properties   ----------------------------------------- 

ρ m 7832
kg

m3
⋅:=  cpm 559

J
kg K⋅

:=  for parent material 
k5

ρ m cpm⋅
106

⋅ 11.146
m2

s
=  



120 

 

 

ρ t 0.5804
kg

m3
:=  cpt 1051

J
kg K⋅

:=  
k0

ρ t cpt⋅
106

⋅ 76.885
m2

s
=  air in hole @ 600 K 

Parent Material 
Everywhere 

Resets 
Filler Material (center c.v.) 

Resets 
center + makes 1st ring air too 

Ci ρ m cpm⋅ Vi⋅:=  C0 ρ t cpt⋅ V0⋅
h 0 1, 4..:= Ch ρ t cpt⋅ Vh⋅:=

CV Term Generator

System Matrix Builder - Sensor 

1st row -- put in e & w (2 & 4) as N and S "a's" rather than b's b/c all are "north" of 
center CV 

D

an1
an3

+ an2
+ an4

+

an5
as0

+ b4+ b2+

an6
as0

+ b1+ b3+

an7
as0

+ b2+ b4+

an8
as0

+ b3+ b1+

an9
as1

+ b8+ b6+

an10
as2

+ b5+ b7+

an11
as3

+ b6+ b8+

an12
as4

+ b7+ b5+







































:=  

A

D0−

C0

as0

C1

as0

C2

as0

C3

as0

C4

0

0

0

0

an1

C0

D1−

C1

b1

C2

0

b1

C4

as1

C5

0

0

0

an2

C0

b2

C1

D2−

C2

b2

C3

0

0

as2

C6

0

0

an3

C0

0

b3

C2

D3−

C3

b3

C4

0

0

as3

C7

0

an4

C0

b4

C1

0

b4

C3

D4−

C4

0

0

0

as4

C8

0

an5

C1

0

0

0

D5−

C5

b5

C6

0

b5

C8

0

0

an6

C2

0

0

b6

C5

D6−

C6

b6

C7

0

0

0

0

an7

C3

0

0

b7

C6

D7−

C7

b7

C8

0

0

0

0

an8

C4

b8

C5

0

b8

C7

D8−

C8







































































:=  



121 

 

 

Pattern Realized......now to shorten the process....... 

Zero Padders for zero portions of total system matrix: 

ZR 0 0 0 0( )Hz:=  ZC 0 0 0 0( )T Hz:=  Z identity 4( ) 0⋅ Hz:=  

Ring 2 (partially completed above in symbolic workthrough): 

N2
an9

C5
identity 4( ):=  

Ring 3: 

D3
an13

as5
+ b10+ b12+





−

C9
:=  OD3

b10

C9
:=  S3

as5

C9
identity 4( )⋅:=  N3

an13

C9
identity 4( )⋅:=  

Pattern for 1 Ring (containing four control 
volumes): R3D identity 4( ) D3⋅

0

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0












OD3⋅+:=  
S3 R3D N3( ) {4,4} {4,4} {4,4}( ) Hz=

Ring 4: 

D4
an17

as9
+ b14+ b15+





−

C13
:=  OD4

b14

C13
:=  S4

as9

C13
identity 4( )⋅:=  

R4D identity 4( ) D4⋅

0

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0












OD4⋅+:=  

Combining all those pieces into a SYSTEM MATRIX  

W1 augment A augment stack ZR Z, N2,( ) stack ZR Z, Z,( ),( ),( ):=

W2 stack augment ZC Z, S3, R3D, N3,( ) augment ZC Z, Z, S4, R4D,( ),( ):= AA stack W1 W2,( ):=

B Matrix (boundary node temperature locator matrix) 
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ZbR identity 3( ) 0⋅:=BC
an17

C13
:=  

BB stack ZbR ZbR, ZbR, ZbR, ZbR, ZbR,( ):= BB13 1, 1:=  BB14 0, 1:=

BB submatrix BB 0, 16, 0, 2,( ):= BB15 1, 1:=  BB16 2, 1:=

BB BB BC⋅:=  
System Matrix Builder - Sensor 

As AA:=  Bs BB:=  

Outputs of the As and Bs matrices required for the system sub-model portion of the 
MATLAB code.  (section must be expanded to see As and Bs ) 

OUTPUT- Cut and Paste in MATLAB

Various Sub-system Matrices

Model Linking Visual Aid 

nodes 51:=  TC Region: g 0 1, 3..:=
p 0 1, nodes..:=  

dx 0.75:=  mm len nodes dx⋅:= mm CVstart 1:= OD 9:= mm Rd .5 OD⋅:=

n1 CVstart 0.5 dx⋅−( )dx:=xbp dx p⋅:=  y1p 0:=  
t n1 n1 Rd+ n1 OD+( )T:=  y2 0.1 0.1 0.1( )T:=  

0 2 4 6 8 10 12
0

0.1

0.2y1 p

y2g

1.016 4.7

xbp tg,

len 38.25=  

Model Notes (for determining linking, etc. for A356 casting experiment model setup  ) 

1.5in 38.1mm=  Mold Half Thickness? 

0.04in 1.016mm=  Close hole Linking Nodes 
 1, 7, 13 0.185in 4.699mm=  Less Close hole 

.125in 3.175mm=  Hole diameter 
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B.2     ETC.M MATLAB FILE 
 
 
% ------[ Created by August Johnson   4/1/2004  ] 
%etc.m            *****     MODEL CONSTRUCTION FILE     ***** 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    UNDISTURBED MODEL CONSTRUCTION    
%%%%%%%%% 
%%%%% (The current properties and geometries simulate  
%%%%% the heat transfer through a permanent steel mold  
%%%%% half after molten A356 has been poured in it) %%% 
clear; 
clc; 
% Quick Input of material properties & geometry for model 
k=48.8;  
rho=7832;  
cp=559;  
n=51;  
Dx=0.00075;  
dx=0.00075;  
node=7;  
nu=1;  
nd=13;  
a1 = k/dx; 
C = rho*cp*Dx; 
C1 = zeros(1,n); 
C2 = zeros(1,n); 
C3 = zeros(1,n); 
C1(1,node) = 1;  % Observer row vector for node of interest 
C2(1,nu) = 1;    % Observer row vector for upstream node  
C3(1,nd) = 1;    % Observer row vector for downstream node 
% Construct the A-matrix from material properties and geometry 
AA=0; 
for i=1:n-1; 
    AA(i,i)=-2; 
    AA(i+1,i)=1; 
    AA(i,i+1)=1; 
end; 
AA(1,1)=-1; 
AA(n,n)=-1; 
E=(a1/C); 
A=AA*(E); 
% Construct B-matrix, Heat Flux Input Location Matrix 
% Qin(t) and Qout(t)=0 (insulated back boundary) 
B=zeros(n,1); 
B(1,1)=(1/C); 
%B(n,2)=(1/C1) 
D = 0; 
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sys1 = ss(A,B,C1,D);  % Q --> Tu 
sys2 = ss(A,B,C2,D);  % Q --> Tup 
sys3 = ss(A,B,C3,D);  % Q --> Tdwn  
% Obtaining Transfer function data for the three systems above 
[num,den] = tfdata(sys1,'v'); 
G1=tf(num,den);    % Gu - undisturbed temperature TF 
[num2,den2] = tfdata(sys2,'v'); 
G2=tf(num2,den2);  % Gup 
[num3,den3] = tfdata(sys3,'v'); 
G3=tf(num3,den3);  % Gdwn 
%%%%%%%%%%%%%%%%%%%%%%%%%%    SENSOR SUB-MODEL CONSTRUCTION    
%%%%%%%%%%%% 
%%%%% Thermocouple is assumed to measure center node 
%%%%% of the sensor sub-model%%%%%% 
ntc=17;     %Number of Control Volumes for TC Model%% 
% Import the System Matrix, A,  
% for sensor sub-model from MathCAD Matrix Builder 
% (the A2 below has adjusted thermal conductivities at the dissimalar 
mat. 
% interface --- see patankar pg. 46) 
 
A2=[-614.491 153.623 153.623 153.623 153.623 0
 0 0 0 0 0 0 0 0 0 0 0 
38.443 -120162.886 62.261 0 62.261 119999.921 0
 0 0 0 0 0 0 0 0 0 0 
38.443 62.261 -120162.886 62.261 0 0 119999.921
 0 0 0 0 0 0 0 0 0 0 
38.443 0 62.261 -120162.886 62.261 0 0
 119999.921 0 0 0 0 0 0 0 0 0 
38.443 62.261 0 62.261 -120162.886 0 0 0
 119999.921 0 0 0 0 0 0 0 0 
0 0.016 0 0 0 -16.208 1.129 0 1.129 13.933
 0 0 0 0 0 0 0 
0 0 0.016 0 0 1.129 -16.208 1.129 0 0
 13.933 0 0 0 0 0 0 
0 0 0 0.016 0 0 1.129 -16.208 1.129 0 0
 13.933 0 0 0 0 0 
0 0 0 0 0.016 1.129 0 1.129 -16.208 0 0
 0 13.933 0 0 0 0 
0 0 0 0 0 9.289 0 0 0 -23.297 0.502
 0 0.502 13.004 0 0 0 
0 0 0 0 0 0 9.289 0 0 0.502 -23.297
 0.502 0 0 13.004 0 0 
0 0 0 0 0 0 0 9.289 0 0 0.502 -
23.297 0.502 0 0 13.004 0 
0 0 0 0 0 0 0 0 9.289 0.502 0 0.502
 -23.297 0 0 0 13.004 
0 0 0 0 0 0 0 0 0 9.753 0 0
 0 -35.397 0.282 0 0.282 
0 0 0 0 0 0 0 0 0 0 9.753 0
 0 0.282 -35.397 0.282 0 
0 0 0 0 0 0 0 0 0 0 0 9.753
 0 0 0.282 -35.397 0.282 
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0 0 0 0 0 0 0 0 0 0 0 0
 9.753 0.282 0 0.282 -35.397]; 
 
% Import the Temperature Input Location Matrix, B,  
% for sensor sub-model from MathCAD Matrix Builder  
B2 = [0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 25.079 0 
25.079 0 0 
0 25.079 0 
0 0 25.079]; 
 
C4 = zeros(1,ntc);   % Observer row vector for thermacouple node, Node 
1 (Gup = Gdwn) 
C4(1,1) = 1; 
C5 = zeros(1,ntc);   % Observer row vector for thermacouple node, Node 
1 (Gm) 
C5(1,1) = 1; 
sys4 = ss(A2,B2(:,1),C4,D);      % Sys4 --> Gup = Gdwn 
sys5 = ss(A2,B2(:,2),C5,D);      % Sys5 --> Gm 
[num4,den4] = tfdata(sys4,'v');  % Obtaining TF data from SS 
G4=tf(num4,den4);                % Gup & Gdwn (Gup = Gdwn) 
[num5,den5] = tfdata(sys5,'v');  % Obtaining TF data from SS 
G5=tf(num5,den5);                % Gm 
% 
%%%%%%%%%%%%%%%   Determination of TOTAL TRANSFER FUNCTION for Tu/Td   
%%%%%% 
% 
Gund=G1; %vThe UNDISTURBED system TF ---> Gu 
% 
%%%%%%%%%   Intermediate TFs to develop the DISTURBED TF 
GG1=G2*G4;  
[nnum1,dden1] = tfdata(GG1,'v'); 
GG2=G1*G5; 
[nnum2,dden2] = tfdata(GG2,'v'); 
GG3=G3*G4; 
[nnum3,dden3] = tfdata(GG3,'v'); 
a=nnum1; 
b=nnum2; 
c=nnum3; 
% Statement written to padd numerators of TFs with zeros so they can be 
added 
if length(b)>=length(a) & length(b)>=length(c) 
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    N=length(b); 
    a=[zeros(1,N-length(a)),a]; 
    c=[zeros(1,N-length(c)),c]; 
elseif (length(c)>=length(a) & length(c)>=length(b)) 
    N=length(c); 
    a=[zeros(1,N-length(a)),a]; 
    b=[zeros(1,N-length(b)),b]; 
else  
    N=length(a); 
    b=[zeros(1,N-length(b)),b]; 
    c=[zeros(1,N-length(c)),c]; 
end 
nnumT=a+b+c;  % addition of the coeffiecients of the numerator 
polynomials 
ddenT=dden1;  % Obtaining denominator -- ddenT = dden1 = dden2 = dden3 
Gdis=tf(nnumT,ddenT); % Assembling the TF represntation of the 
DISTURBED TF, Gd 
GT=(Gund/Gdis);       % Creating the Embedded TC Correction TF, GT 
 
%% Adjusting smallest zero and pole values that were 
%% causing numerical problems --->  new discrete GT 
[z,p,kk] = zpkdata(GT,'v'); 
[rz,cz]=size(z); 
[rp,cp]=size(p); 
kk=kk*z(rz)/p(rp); 
z=z(1:rz-1,1); 
p=p(1:rp-1,1); 
GT = zpk(z,p,kk); 



 
 
 
 
 
 

127 

B.3     SEMI.M MATLAB FILE 
 
 
% ------[ Created by August Johnson   4/1/2004  ] 
%semi.m     Semi-infinite Analytical Solution Maker 
alpha = k/(rho*cp);  % Material properties  
xx=0.005;   % point of interest 
Qi=30000;   % heat flux 
Tend=30; 
delt=0.01; 
Ti=0; 
%xx = input('X location: (m)  '); 
%Qi = input('Input Constant Heat Flux: (W/m^2-K)  '); 
%Tend = input('End Time: (s)  '); 
%delt = input('Delta Time: (s)  '); 
%Ti = input('Initial Cond: (K)  '); 
tt=0:delt:Tend; 
tt=tt'; 
warning off MATLAB:divideByZero; 
for i=1:length(tt); 
T1(i) = 2*(Qi/k)*(alpha*tt(i)/pi)^(1/2)*exp(-xx^2/(4*alpha*tt(i))); 
T2(i) = (-Qi*xx/k)*erfc(xx/(2*(alpha*tt(i))^(1/2))); 
Tsi(i)= Ti + T1(i) + T2(i); 
end 
plot(tt,Tsi) 
clear alpha xx Tend Ti Qi delt T1 T2; 
warning on MATLAB:divideByZero; 
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B.4     HEAT FLUX GENERATOR MATLAB FILE 
 
 
% ------[ Created by August Johnson   4/1/2004  ] 
%Heat Flux Input Maker 
%t's are time, y's are heat flux profiles 
ti=0:.01:20; 
t=[0 0.0999 0.1 0.2 0.201 20]; 
Y=[0 0 300000 300000 0 0]; 
yi = interp1(t,Y,ti); 
ti2=0:.01:30; 
t2=[0 1 3 5 30]; 
Y2=[0 0 300000 0 0]; 
yi2 = interp1(t2,Y2,ti2); 
ti3=0:.1:10; 
t3=[0 0.5 2.5 4.5 10]; 
Y3=[0 0 5000 0 0]; 
yi3 = interp1(t3,Y3,ti3); 
ti4=0:.01:30; 
t4=[0 30]; 
Y4=[30000 30000]; 
yi4 = interp1(t4,Y4,ti4); 
ti5=0:0.05:30; 
t5=[0 0.5 0.1 0.15 0.2 30]; 
Y5=[0 0 1 1 0 0]; 
yi5 = interp1(t5,Y5,ti5); 
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B.5     EXAMPLE.M MATLAB FILE 
 
 
% ------[ Created by August Johnson   4/1/2004  ] 
%% example.m %%  
etc;  %<-------------Insert Model Construction Program  Here   %%%% 
%  Heat Flux Input (yi2)  % 
Tf=30; 
deltati2=0.01; 
ti2=0:deltati2:Tf; 
t2=[0 1 3 5 Tf]; 
Y2=[0 0 300000 0 0]; 
yi2 = interp1(t2,Y2,ti2);  %%%%  Heat Flux Input Created  %%%% 
% Obtaining Various Temperature Responses from Models  % 
[yu tt]=lsim(Gund,yi2,ti2);   % Undisturbed ("True") Response 
[yd tt]=lsim(Gdis,yi2,ti2);   % Disturbed Response (no noise) 
[yr tt]=lsim(GT,yd,tt);       % Recovered Response (no noise in 
Disturbed) 
% Creation of Random Noise to inject into Disturbed Response  % 
stdev=0.1;   % Standard Deviation of Noise (degree Kelvin)  
randn('state',21);   % Set "seed" as 21 for randn for reproducible 
noise 
noise = stdev*randn(size(tt));  %Creation of zero mean noise 
ydn = yd + noise;    % Addition of noise to Disturbed Response 
[yrn tt]=lsim(GT,ydn,tt);  % Recovered Temperature (from noisy 
Disturbed) 
% Creating a Lowpass Butterworth filter  
Ny=(1/deltati2)/2;  % Half the sampling frequency 
Cf=0.5;             % Cut-off frequency desired 
Ord=3;              % Filter Order 
[b,a]=butter(Ord,Cf/Ny);  % Butterworth filter construction 
yrf = filtfilt(b,a,yrn);  % Filter noisy data 
 
 
 
 
 
 
 
 
 
 
%%%%%%%%%%%%%%%%  FIGURES     %%%%%%%%%%%%%%%%%  
figure(1), 
plot(tt,yu - yrf),xlabel('Time (sec)'),ylabel('Temperature (delta 
K)')... 
    ,title('Difference of Filtered Recovered Temperature & Undisturbed 
Temperature') 
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figure(2), 
plot(tt,yrn,'b',tt,ydn,'g',tt,yu,'r')... 
    ,xlabel('Time (sec)'),ylabel('Temperature (K)')... 
    ,title('Recovered Temperature from Generated Noisy Data')... 
    ,legend('Non-Filtered Recovered Data','Noisy* Disturbed Temperature 
Data',... 
    'Undisturbed Temperature') 
figure(3), 
plot(tt,ydn,'g',tt(1:10:end),yrf(1:10:end),'*',tt,yu,'r')... 
    ,xlabel('Time (sec)'),ylabel('Temperature (K)')... 
    ,title('Recovered Temperature from Generated Noisy Data')... 
    ,legend('Noisy* Disturbed Temperature Data','Filtered Recovered 
Data',... 
    'Undisturbed Temperature') 
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B.6     ICEXAMPLE.M MATLAB FILE 
 
 
% ------[ Created by August Johnson   4/1/2004  ] 
%icexample.m     Inverse Conduction Example w/ Generated Data 
etc;  %<-------------Insert Model Construction Program  Here   %%%% 
%  Heat Flux Input (yi2)  % 
Tf=30; 
deltati2=0.04; 
ti2=0:deltati2:Tf; 
t2=[0 1 3 5 Tf]; 
Y2=[0 0 300000 0 0]; 
yi2 = interp1(t2,Y2,ti2);  %%%%  Heat Flux Input Created  %%%% 
% Obtaining Various Temperature Responses from Models  % 
[yu tt]=lsim(Gund,yi2,ti2);   % Undisturbed ("True") Response 
[yd tt]=lsim(Gdis,yi2,ti2);   % Disturbed Response (no noise) 
[yr tt]=lsim(GT,yd,tt);       % Recovered Response (no noise in 
Disturbed) 
% Creation of Random Noise to inject into Disturbed Response  % 
stdev=0.1;   % Standard Deviation of Noise (degree Kelvin)  
randn('state',21);   % Set "seed" as 21 for randn for reproducible 
noise 
noise = stdev*randn(size(tt));  %Creation of zero mean noise 
ydn = yd + noise;    % Addition of noise to Disturbed Response 
[yrn tt]=lsim(GT,ydn,tt);  % Recovered Temperature (from noisy 
Disturbed) 
% Creating a Lowpass Butterworth filter  
Ny=(1/deltati2)/2;  % Half the sampling frequency 
Cf=0.5;             % Cut-off frequency desired 
Ord=3;              % Filter Order 
[b,a]=butter(Ord,Cf/Ny);  % Butterworth filter construction 
yrf = filtfilt(b,a,yrn);  % Filter noisy data 
 
sys1d = c2d(sys1,deltati2); 
%[ad,bd,cd,dd,Ts] = ssdata(sys1d); 
[I tt]=impulse(sys1d,ti2);  %discrete impulse response for Undisturbed 
Model 
 
NN=length(I); 
phi=zeros(NN,NN); 
for i=1:NN; 
    phi(i:NN,i)=I(1:NN-i+1); 
end; 
newphi=phi(1:NN,1:NN); 
[U,S,V]=svd(newphi); 
['There are ',num2str(NN),' singular values.'] 
svdselect;
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B.7     SVDSELECT.M MATLAB FILE 
 
 
% ------[ Created by August Johnson   4/1/2004  ] 
%svdselect.m     Inverse Conduction Example w/ Generated Data 
%%  USED TO RE-SELECT NUMBER OF SINGULAR VALUES 
%%  IN icexample.m and RE-GENERATE PLOTS 
nsv = input('Select the number of singular values to retain (integer)  
'); 
Vr=V(:,1:nsv); 
Sr=S(1:nsv,1:nsv); 
Ur=U(:,1:nsv); 
 
estTu=inv(Sr)*Ur'*yu(1:NN); 
estQu=Vr*estTu; 
 
estTd=inv(Sr)*Ur'*yd(1:NN); 
estQd=Vr*estTd; 
 
estTrf=inv(Sr)*Ur'*yrf(1:NN); 
estQrf=Vr*estTrf; 
 
estTr=inv(Sr)*Ur'*yr(1:NN); 
estQr=Vr*estTr; 
 
figure(1), 
plot(tt(1:10:end),yrf(1:10:end),'*',tt,yu,'r',tt,ydn,'g')... 
    ,xlabel('Time (sec)'),ylabel('Temperature (K)')... 
    ,title('Comparison of Recovered Temperature from Disturbed w/ 
Noise') 
figure(2), 
plot(ti2,yi2,ti2,estQr,ti2,estQd); 
,xlabel('Time (sec)'),ylabel('Heat Flux (W/m^2)')... 
,title([' Recovered Heat Flux vs. Undisturbed Heat Flux: 
(',int2str(nsv),'/',int2str(NN),' singular values used)']) 
figure(3), 
plot(ti2,yi2'-estQr,'b'); 
,xlabel('Time (sec)'),ylabel('Heat Flux Difference (delta W/m^2)')... 
,title([' Error of Recovered Heat Flux from Undisturbed Heat Flux: 
(',int2str(nsv),'/',int2str(NN),' singular values used)']) 
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B.8     EXAMPLE2.M MATLAB FILE 
 
 
% ------[ Created by August Johnson   4/1/2004  ] 
%% example2.m %% FOR USE WITH EXPERIMENTALLY OBTAINED EMBEDDED  %%% 
            %% THERMOCOUPLE DATA                              %%%  
 
             
etc;  %<-------------Insert Model Construction Program  Here   %%%% 
 
datafile;    %<-------put time and temperature data in this file 
ti2=DTA(:,1);     %<------time first column 
data=DTA(:,2);    %<------temperature second column 
sr=25;            %<---  Sampling Rate (Hz) 
 
[yrn tt]=lsim(GT,data,ti2);  % Recovered Temperature (from experimental 
data) 
 
% Creating a Lowpass Butterworth filter  
Ny=sr/2;  % Half the sampling frequency 
Cf=0.5;             % Cut-off frequency desired 
Ord=3;              % Filter Order 
[b,a]=butter(Ord,Cf/Ny);  % Butterworth filter construction 
yrf = filtfilt(b,a,yrn);  % Filter noisy data, Filtered Recovered Data 
 
%%%%%%%%%%%%%%%%  FIGURES     %%%%%%%%%%%%%%%%%  
figure(1), 
plot(tt,yrn,'b',tt,data,'g',tt,yrf,'r')... 
    ,xlabel('Time (sec)'),ylabel('Temperature (K)')... 
    ,title('Recovered Temperature from Experimental Data')... 
    ,legend('Non-Filtered Recovered Data','Experimental Temperature 
Data',... 
    'Filtered Recovered Temperature Data') 
figure(2), 
plot(tt,data-yrf,'b')... 
    ,xlabel('Time (sec)'),ylabel('Temperature (delta K)')... 
    ,title('Difference of Filtered Recovered Temperature & Experimental 
Temperature') 
figure(3), 
plot(tt,data,'g',tt,yrf,'r')... 
    ,xlabel('Time (sec)'),ylabel('Temperature (K)')... 
    ,title('Recovered Temperature from Experimental Data')... 
    ,legend('Experimental Temperature Data','Filtered Recovered 
Temperature Data') 
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B.9     ICEXAMPLE2.M MATLAB FILE 
 
 
% ------[ Created by August Johnson   4/1/2004  ] 
%icexample2.m     Inverse Conduction Example w/ Real Data 
etc;  %<-------------Insert Model Construction Program  Here   %%%% 
 
datafile;    %<-------put time and temperature data in this file 
ti2=DTA(:,1);     %<------time first column 
data=DTA(:,2);    %<------temperature second column 
sr=25;            %<---  Sampling Rate (Hz) 
 
[yr tt]=lsim(GT,data,ti2);  % Recovered Temperature (from experimental 
data) 
 
% Creating a Lowpass Butterworth filter  
Ny=sr/2;  % Half the sampling frequency 
Cf=0.5;             % Cut-off frequency desired 
Ord=3;              % Filter Order 
[b,a]=butter(Ord,Cf/Ny);  % Butterworth filter construction 
yrf = filtfilt(b,a,yr);  % Filter noisy data, Filtered Recovered Data 
 
sys1d = c2d(sys1,1/sr); 
%[ad,bd,cd,dd,Ts] = ssdata(sys1d); 
[I tt]=impulse(sys1d,ti2);  %discrete impulse response for Undisturbed 
Model 
NN=length(I); 
phi=zeros(NN,NN); 
for i=1:NN; 
    phi(i:NN,i)=I(1:NN-i+1); 
end; 
newphi=phi(1:NN,1:NN); 
[U,S,V]=svd(newphi); 
['There are ',num2str(NN),' singular values.'] 
svdselect2; 
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B.10   SVDSELECT2.M MATLAB FILE 
 
 
% ------[ Created by August Johnson   4/1/2004  ] 
%svdselect2.m     Inverse Conduction Example w/ Real Data 
%%  USED TO RE-SELECT NUMBER OF SINGULAR VALUES 
%%  IN icexample2.m and RE-GENERATE PLOTS 
nsv = input('Select the number of singular values to retain (integer)  
'); 
Vr=V(:,1:nsv); 
Sr=S(1:nsv,1:nsv); 
Ur=U(:,1:nsv); 
 
estTd=inv(Sr)*Ur'*data(1:NN); 
estQd=Vr*estTd; 
 
estTrf=inv(Sr)*Ur'*yrf(1:NN); 
estQrf=Vr*estTrf; 
 
estTr=inv(Sr)*Ur'*yr(1:NN); 
estQr=Vr*estTr; 
 
estyr=newphi*estQr; 
 
figure(1), 
plot(tt,data,'g',tt,yr,'r',tt,yrf,'b')... 
    ,xlabel('Time (sec)'),ylabel('Temperature (K)')... 
    ,title('Comparison of Recovered Temperature to Experimental Data') 
figure(2), 
plot(tt,data,'g',tt,estyr,'r')... 
    ,xlabel('Time (sec)'),ylabel('Temperature (K)')... 
    ,title('Comparison of Matrix Transform Filtered Recovered 
Temperature to Experimental Data') 
figure(3), 
plot(ti2,estQd,ti2,estQr)... 
,xlabel('Time (sec)'),ylabel('Heat Flux (W/m^2)')... 
,title(['Recovered Heat Fluxes: (',int2str(nsv),'/',int2str(NN),' 
singular values used)']) 
figure(4), 
plot(ti2,estQr-estQd,'b')... 
,xlabel('Time (sec)'),ylabel('Heat Flux Difference (delta W/m^2)')... 
,title(['Difference in Recovered Heat Fluxes: 
(',int2str(nsv),'/',int2str(NN),' singular values used)']) 
figure(5), 
plot(tt,yrf-data)... 
    ,xlabel('Time (sec)'),ylabel('Temperature (K)')... 
    ,title('Comparison of Recovered Temperature to Experimental Data') 
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