
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

5-3-2008 

A framework for automatically generating optimized digital A framework for automatically generating optimized digital 

designs from C-language loops designs from C-language loops 

Wesley James Holland 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Holland, Wesley James, "A framework for automatically generating optimized digital designs from C-
language loops" (2008). Theses and Dissertations. 130. 
https://scholarsjunction.msstate.edu/td/130 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/130?utm_source=scholarsjunction.msstate.edu%2Ftd%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


A FRAMEWORK FOR AUTOMATICALLY GENERATING OPTIMIZED

DIGITAL DESIGNS FROM C-LANGUAGE LOOPS

By

Wesley James Holland

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

May 2008



A FRAMEWORK FOR AUTOMATICALLY GENERATING OPTIMIZED

DIGITAL DESIGNS FROM C-LANGUAGE LOOPS

By

Wesley James Holland

Approved:

Yoginder Dandass
Assistant Professor of Computer Science
and Engineering
(Major Advisor and Director of Thesis)

J.W. Bruce
Associate Professor of Electrical and
Computer Engineering
(Committee Member)

Robert Reese
Associate Professor of Electrical and
Computer Engineering
(Committee Member)

Nicholas H. Younan
Professor of Electrical and Computer
Engineering
(Graduate Coordinator)

W. Glenn Steele
Dean of the Bagley College
of Engineering



Name: Wesley James Holland

Date of Degree: May 2, 2008

Institution: Mississippi State University

Major Field: Computer Engineering

Major Professor: Dr. Yoginder Dandass

Title of Study: A FRAMEWORK FOR AUTOMATICALLY GENERATING OPTI-
MIZED DIGITAL DESIGNS FROM C-LANGUAGE LOOPS

Pages in Study: 56

Candidate for Degree of Master of Science

Reconfigurable computing has the potential for providing significant performance in-

creases to a number of computing applications. However, realizing these benefits requires

digital design experience and knowledge of hardware description languages (HDLs). While

a number of tools have focused on translation of high-level languages (HLLs) to HDLs, the

tools do not always create optimized digital designs that are competitive with hand-coded

solutions. This work describes an automatic optimization in the C-to-HDL transformation

that reorganizes operations between pipeline stages in order to reduce critical path lengths.

The effects of this optimization are examined on the MD5, SHA-1, and Smith-Waterman

algorithms. Results show this technique results in performance gains of 13%-37% and that

the automatically-generated solutions perform comparably to hand-coded solutions.
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CHAPTER 1

INTRODUCTION

The current generation of multi-core processors is capableof increased performance

for properly designed parallel applications. Nonetheless, even for naturally parallel prob-

lems, adding conventional processor cores typically provides a linear speedup at best. One

approach for further increasing computational throughputis to utilize reconfigurable com-

puting hardware elements [24].

Field-programmable gate array (FPGA) devices are the most prevalent reconfigurable

computing platform. These devices can be configured to implement custom processing

units, among other things, in hardware. These so-calledsoftcomputing elements present

an alternative to equivalent functionality implemented insoftware.

The primary advantage of reconfigurable computing as compared to software is that

such systems can be tailored to exploit problem-specific concurrency through hardware

parallelism and pipelining. A secondary advantage of reconfigurable computing systems is

the lack of overhead of a general-purpose computer (e.g., operating system, memory man-

agement, etc.). Reconfigurable computing solutions have consistently been found to have

performance advantages for inherently parallel problems [3]. The availability of FPGA

devices allows affordable access to custom-designed and dedicated computing hardware.

1



Consequently, FPGA devices stand to provide significant benefits to a wide variety of

research and commercial applications.

1.1 Problem Statement and Motivation

Unfortunately, designing efficient processing elements using hardware description

languages (HDLs) requires considerable specialized digital system design knowledge. Re-

searchers without this expertise are left to implement algorithms, even those with inherent

parallelism, on a multiprocessor system of limited parallelism at best or on an unnecessar-

ily sequential software system on a general-purpose computer at worst. Examples of some

applications which could benefit from hardware parallelisminclude:

• hash functions for encryption used in communication

• proteomic mapping for homology modeling in bioinformatics

• pattern matching in digital forensics

• atomic bond modeling in chemistry

Efforts at reducing the complexity of digital system designfor reconfigurable plat-

forms have been made. Many such efforts have focused on high-level language (HLL)

compilation. These solutions allow system developers to leverage existing programming

knowledge and programming tools (e.g., compilers and debuggers) to define an algorithm

in an HLL (typically ANSI C), which is then translated to an HDL representation for im-

plementation on an FPGA platform. While solutions based on HLL-to-HDL translation

show promise, the current generation of HLL- and C-based electronic design automation

2



(EDA) tools is not always effective at fully exploiting the concurrency inherent in the

application sources, resulting in suboptimal performanceof the generated design.

Additionally, these tools currently focus on optimizing performance of the resulting

hardware by generatingpipelineddesigns in which combinational logic is broken into

registered stages which can operate concurrently to increase throughput. Pipelining does

not work for the class of problems exhibitingchainedvariable access, in which early

operations of a stage require the output of later operationsof the same stage. Consequently

current tools often generate a suboptimal design when facedwith problems of this type.

Tools that reduce the complexity of FPGA-based design to thelevel of a high-level

programming language while continuing to generate optimized hardware solutions would

allow researchers in many fields to quickly design hardware to meet specialized computing

needs. However, the current generation of C-to-HDL tools istoo immature to provide the

ease-of-use necessary to meet the needs of non-expert digital designers. By developing

techniques for automatic optimization in C-based EDA tools, the need for understanding of

digital design principles can be reduced. Furthermore, such techniques would also benefit

experienced designers by allowing fast design-space exploration for complex designs.

This work describes a technique,temporal relocation, for reordering and reorganizing

computations performed in successive pipeline stages suchthat path delays are balanced

between the stages. The primary goal of this optimization isto decrease thecritical path

lengths in the resulting design. The critial path in any design is the longest combinational

logic path; this path determines the maximum clock frequency at which a design can
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operate. Consequently, decreasing the critial path lengthincreases the clock frequency and

overall throughput. While this optimization is applicableto any design, it is of particular

importance in applications containing loops with chained variables accesses. For such

applications, the optimization techniques attempt to construct pipeline stages from the

remaining non-chained computations while moving the chained accesses to the final stage

in the pipeline.

1.2 Hypothesis

The hypothesis of this work is that HLL-based EDA tools can, through the use of

automatic temporal relocation optimizations, generate hardware solutions which perform

competitively with with hand-generated designs.

1.3 Summary of Main Contributions

The main contributions of this work are as follows:

1. Identification of a temporal relocation optimization that will increase the perfor-
mance and flexibility of designs generated by C-based EDA tools for problems ex-
hibiting chained variable access

2. Development of methods for generalizing and automating this optimization

3. Testing of this automated optimization both alone and in conjunction with automatic
loop unrolling

4. Investigation of the performance advantages of this optimization and comparison of
automatically-generated implementations to manually-designed solutions with em-
phasis on the following algorithms:

• the MD5 hash function

• the SHA-1 hash function
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• the Smith-Waterman algorithm

5. Results that show comparable performance for automatically-generated designs as
compared to manual designs

1.4 Organization of Thesis

The organization of this thesis is as follows. Chapter 2 presents background infor-

mation and a survey of related literature. First, the current state of C-based EDA tools is

explored. Next, the algorithms of interest and respective hand-tailored hardware solutions

are examined. Chapter 3 presents a novel hardware optimization, as well as an explana-

tion of the loop-unrolling optimization. Also examined is the prototype EDA tool and its

operation. After an overview of the tool, the generalization and automation of the novel

optimization and loop-unrolling is explored. Chapter 4 presents analysis of the automati-

cally generated solutions and comparisons to hand-tailored solutions. Chapter 5 presents

conclusions and questions for further study.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 C-Based EDA Tools

C-based EDA tools are not new, and have been pursued since the90’s with varying

degrees of success. In 1999, [22] outlined some of the difficulties of hardware synthesis

from C/C++. These difficulties, which are still relevant today, include:

• C/C++ are designed to express sequential algorithms, whilethe advantage of hard-
ware is the ability to exploit a large degree of concurrency;

• hardware circuits require some structural specification that cannot be expressed
within C/C++, one example of which is bit-vectors of non-byte-multiple lengths;

• timing constraints, while important in hardware design, cannot be easily expressed
within C/C++.

Nonetheless, many continue to see C-based tools as a viable and convenient hardware

design technique. In the following section, an overview of the most popular past and

present C-based tools is presented. However, many C-based EDA tools not discussed here

exist, some with novel aspects. An insightful enumeration of most such tools can be found

in a [9]. This paper, like [22], explores the practicality and current-state of C-like HDLs.
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2.1.1 Existing Tools

In the following sections, the existing C-based EDA tools are introduced. The opera-

tion of these tools and the types of optimizations they make are explored.

2.1.1.1 HardwareC

One of the earliest C-like hardware description languages was HardwareC, described

in [23]. Olympus was a synthesis system and one of the earliertools in field of elec-

tronic design automation (EDA). HardwareC served as the HDLfor the Olympus synthe-

sis system. Synthesis in the Olympus system was in three stages: the first stage translated

HardwareC into an implementation-independent graph-based representation. In this graph,

vertices represented operations to be performed and edges represented dependencies. The

second stage performed scheduling and resource binding andmapped the graph represen-

tation into a logic-level representation. The final stage translated this logic-representation

into a technology-dependent netlist. This stage was accomplished as two tasks: resource

binding and scheduling. After each stage, the Olympus system provided simulation tools

for verification purposes. The Olympus system also performed some automatic transfor-

mations/optimization, including:

• fixed-iteration loops were unrolled to provide optimization opportunities;

• variables correctly referenced last assigned values;

• multiple and conditional assignments used multiplexers inhardware;

• redundant operations were removed;

• dead code was eliminated;

7



• data and control dependencies were identified.

While HardwareC was more C-like than previous HDLs, it fell short of being a true C

language or even a subset of the C language. One language-related failing was the inclu-

sion of both “declarative semantics” and “procedural semantics”, equivalent to the notion

of concurrent statements and sequential statements. This placed the burden of exploiting

parallelism on the programmer, rather than the synthesis system.

2.1.1.2 PRISM-II

After HardwareC, there were a number of attempts at a C-subset HDL. This included

the PRISM-II Configuration compiler [30], which automatically partitioned a C program

into software modules designed to run on a microprocessor and hardware modules imple-

mented in FPGAs. This compiler used the GCC frontend in orderto take advantage of

the standard optimizations it provided. While innovative,this was not a general-purpose

algorithm-to-hardware solution as a microprocessor was required and only the simplest

and most easily parallelizable operations were translatedto hardware.

2.1.1.3 Transmogrifier C

Another such C-subset HDL was the Transmogrifier C HDL, detailed in [12]. This

paper presents as motivation the idea that hardware-based techniques would see more

widespread use if they could be made available to the many programmers proficient in

C. Transmogrifier C was an improvement over previous C-like HDLs in that it was a
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strict subset of C. Additionally, it could implement sequential circuits, a feature not al-

ways present in C-like HDLs up to that point. Transmogrifier Cused pragma statements

and special functions to specify synthesis parameters for which the C language was not

equipped. The compiler did not provide many timing configuration options. The timing

scheme was essentially as follows:

1. if statements and assignment statements corresponded to combinational logic;

2. new FSM stages were started only at the tops ofwhile loops and at function calls.

Transmogrifier C also makes no effort to share low-level primitives like comparators and

adders, although such structures can be forced to be shared by putting them inside a func-

tion. The language also does not allow the use of pointers or arrays.

The Transmogrifier C compiler was constructed using lex and yacc. It scanned over the

input C looking for combinational expressions that represented the values of each variable

in each state. The combinational expression for each variable was saved as a tree of 4-

input lookup tables (LUT)s. The LUTs in each tree were then minimized, and each state’s

netlist could be outputted as the combinational logic present in each variable’s tree. Some

simple optimizations performed by this compiler were:

• the boolean expressions for the 4-LUTs were minimized usingK-maps (up to 4
variables);

• duplicate 4-LUTs were removed;

• dead code was eliminated.

Overall, the Transmogrifier C compiler was functional, but simplistic in its view of timing

configurability and lack of high-level optimizations.
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2.1.1.4 C2Verilog

In 1998, a new commercial compiler C2Verilog was introduced[33]. C2Verilog trans-

lates ANSI C to RTL Verilog. It allows structures, loops, andfunction calls. With an

external memory module, addressable variables such as pointers and arrays are supported.

Illustrated in [33] is an example in which the LZW compression and decompression al-

gorithm is implemented in reconfigurable hardware. This algorithm includes arrays, indi-

rections, pointers, loops, and functions. The conclusion presented in [33] was that com-

piled hardware from C2Verilog was generally slower than theequivalent sequential pro-

gram running on a Pentium II. Nonetheless, the C2Verilog compiler consistently produced

functional hardware implementations with better performance than other automatically-

generated solutions. While C2Verilog is one of the most complete solution to date, it has a

number of flaws. One criticism of C2Verilog is that it relies completely on the compiler to

recognize and exploit parallelism and provides no natural mechanisms to the programmer

for expressing parallelism [9]. While C2Verilog provides amechanism by which timing

constraints can be specified, this is an unnatural and unwieldy method of affecting paral-

lelism. Consequently, C2Verilog can, at most, exploit instruction-level parallelism. There

are fundamental limits on the amount of concurrency that canbe achieved in this manner

[35].
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2.1.1.5 SystemC

Introduced in 1999 was SystemC [34]. SystemC is an object-oriented language based

on C++ that allows description of modules and their interaction. Although a small subset

of the language can be synthesized, the purpose of SystemC isnot to provide compilation

to hardware, but to model and simulate hardware systems. Since 1999, SystemC has

been established as an industry standard for system specification and many IP vendors, in

addition to providing hardware implementations, provide SystemC specifications for fast

simulation of designs.

2.1.1.6 Streams-C

In 2000, the Streams-C programming model was developed [13]. This model is best

applied to stream-oriented applications. Such applications are characterized by high data-

rate flow through compute-intensive operations. Streams-Cworks by dividing an applica-

tion into processes, streams, and signals. A process is “an independently executing object

with a process body that is given by a C subroutine.” It may runon either a host processor

or in synthesized hardware, though processes mapped to synthesized hardware must use

only a subset of ANSI C. Streams and signals are used to connect processes. [13] con-

cludes with an example application in which the automatically generated design is found

to be three times the area of and half the clock frequency of anequivalent handcrafted

design. A 2001 paper [11] further evaluated the Streams-C compiler through four appli-

cations and found results consistent with [13], namely thatcompiler-generated designs
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were 1.37-4 times the area and 0.5-1 times the clock frequency of handcrafted designs.

Both [13] and [11] found that handcrafted designs took approximately ten times longer

to develop than compiler-generated designs. Criticisms ofthe Stream-C compiler include

its deviation from the structural programming model, the limited subset of C allowed for

hardware processes, and its focus on stream-oriented applications.

2.1.1.7 Bach EDA

In 2001, a paper was published detailing the Bach EDA tool [10]. This compiler

provides mechanisms for explicit parallelism and bit-width specification of data types and

arithmetic. Additionally, Bach included the ability to easily handle multiple communicat-

ing processes. One criticism of the Bach compiler is that it is not a strict subset of ANSI C;

additions were made to the language to support explicit parallelism and non-byte-multiple

bit widths. These additions could instead have been implemented as pragma statements.

While the difference may seem superficial, the consequence of making additions to ANSI

C is that a specialized simulator is required for testing operation of the C code. However,

this fault is eased somewhat in that a Bach to ANSI C translator is provided which removes

these non-standard structures. An additional criticism ofBach is that it does not support

pointer types. One final criticism is that the Bach system performs minimal automatic

parallelism and mostly relies on the programmer for explicit parallelism.
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2.1.1.8 CASH EDA

In 2002, the CASH EDA compiler was released [4]. CASH can generate standalone

hardware or hardware to be used with a hard or soft general-purpose processor. CASH

operates by dividing a program into hyperblocks. These structures can be used to uncover

instruction-level parallelism as detailed in [21]. This approach allows CASH to uncover

more parallelism than comparable compilers. However, CASHsuffers from the same

deficiency as C2Verilog, in that there is no natural method for specifying parallelism;

identifying and exploiting parallelism is strictly the jobof the compiler.

2.1.1.9 Handel-C

In 2003, a paper was published describing the use of Handel-C[2]. This paper steps

through the methodology of implementing an application in Handel-C. Handel-C allows

a small subset of ANSI C, excluding pointers and floating-point arithmetic; it also allows

non-byte-multiple length data types. The main criticism ofHandel-C is that, as many

other EDA tools, it forces programmers to specify parallelism and offers few automatic

optimizations.

2.1.1.10 ImpulseC

In 2003, a new commercial compiler was introduced called ImpulseC which translates

ANSI C to Verilog [25]. Much like C2Verilog, this product is full-featured, with automatic

pipelining and many built-in optimizations. Unlike C2Verilog, ImpulseC provides both
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automatic optimization and a natural interface for the specification of manual optimization

parameters. ImpulseC is arguably the most complete C-basedEDA tool to date.

2.1.1.11 SUIF and DEFACTO

In 1996 the Stanford SUIF Compiler Group published a paper detailing their mul-

tiprocessor compiler SUIF which automatically identified and exploited parallelism on

multiprocessor systems [15]. More recently, the Information Sciences Institute at the Uni-

versity of Southern California has published work on utilizing SUIF to identify parallelism

for FPGA-based designs. Their system, called DEFACTO, serves as a test platform for the

many optimizations they have explored, namely:

• automatic selection of loop unrolling factor [37]

• automatic replacement of common array accesses with scalarvariables from regis-
ters [7]

• automatic division of arrays into separate block memories to maximize memory
parallelism [32]

• automatic optimization of communication between sequential pipeline stages [37]

2.1.2 Pipelining and Chaining

In many applications the majority of the processing is performed in loop constructs.

C loop semantics generally imply that an iterative process is required for performing the

operations specified in the loop body. These operations can be implemented as a single

repeated stage in a finite state machine. However,pipelining these operations has the

potential for significantly speeding up the performance of the loop.
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In a pipeline representing a C loop, the loop’s body is split into several stages. Each

stage is defined by a set of related computations (and the associated FPGA resources) that

are performed in a single clock cycle. Stages can operate concurrently with each other

such that each stage is operating on different loop iterations. For example, in a two-stage

pipeline, when the second stage is operating on iterationi (i.e., the second stage is finishing

the processing for iterationi), the first stage is operating on the(i + 1)th iteration (i.e., the

first stage is initiating the processing for iterationi + 1).

In order to optimize performance of synchronous (i.e., clocked) designs, the delay in-

troduced by logic and routing must be minimized, resulting in high clock frequencies.

Therefore, it is important for C-based EDA tools to generatepipelined stages with bal-

anced (i.e., as equal as possible) delay characteristics.

Most C-based EDA tools are capable of generating pipelined designs from C loops

because improving throughput via pipelining is an important aspect of high-performance

digital circuit design. However, existing tools typicallyperform a naive analysis of the

C codes, often resulting in a non-optimal pipeline implementation. One commonly used

scheme is to begin new pipeline stages at the beginning of nested controls structures such

asif andwhile and at the end of the scopes of such statements. Furthermore,the tools also

cannot effectively pipeline loops with chained variable accesses.

A chained variable is one which is modified at the end of a loop iteration and is read at

the beginning of the next iteration. Clearly, generating pipelined design is difficult in this
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situation because a stage cannot read the correct value of the chained variable while it is

still being computed by a subsequent stage.

2.2 Example Applications

Presented below are the example applications chosen for evaluation of the presented

temporal relocation optimization. These applications were chosen primarily due to their

chaining nature and the difficulties they present to pipelining. Also relevant is their widespread

use in real-world systems.

2.2.1 MD5

A hash algorithm is a method for transforming a large amount of data into relatively

small string or number which characterizes the data. This characterization or “fingerprint”

is called ahashof the data. While hash functions have a variety of uses in allareas of com-

puter science, a large portion of hash function research is in the area ofcryptographic hash

functions. This branch of hash functions is utilized in security applications such as encryp-

tion, integrity checking, digital signatures, and authentication. The primary application of

such hash functions is as a primitive in protocols like IPSec, SSL, and WAP, which are

used for encryption and message authentication. Presently, the two most commonly used

hash algorithms are MD5 and SHA-1, though security vulnerabilities have been identified

in both. In this section and the one that follows, the MD5 and SHA-1 algorithms are ex-

plained in detail in order to enable understanding of optimizations made to their hardware

implementations.
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Message digest 5 (MD5) was developed by Ron Rivest at MIT in 1991 [26]. This algo-

rithm has found widespread use in integrity checking for Internet downloads and password

storage. MD5 transforms a variable-length input message into a 128-bit digest or hash.

The algorithm proceeds as follows:

1. The message is padded as follows until its length is divisible by 512 bits:

(a) A single ’1’ bit is appended to the message

(b) ’0’ bits are appended until the message reaches a length that is 64 bits less than
a multiple of 512 bits

(c) The remaining 64 bits are filled with the 64-bit integer representing the length
of the original message in bits

2. A 128-bit state variable is designated that is divisible into four 32-bit words,A, B,
C, andD.

3. The state variable is initialized to certain fixed constants

4. The algorithm operates on each 512-bit block in turn and modifies the state variable
as follows:

• The block is operated upon in 64 sub-rounds as described in Figure 2.1.

• A sub-round is illustrated in Figure 2.2, whereft denotes a non-linear function
described below,Mt denotes a 32-bit block of the message input,St denotes a
left-shift by an iteration-dependent constant, andKt denotes a 32-bit constant
which is different for each sub-round

• Each round (or 16 sub-rounds) uses a different non-linear function as described
below:
F0<=t<16 = (B ∧ C) ∨ (¬B ∧ D)
F16<=t<32 = (B ∧ D) ∨ (C ∧ ¬D)
F32<=t<48 = B ⊕ C ⊕ D
F48<=t<64 = C ⊕ (B ∨ ¬D)
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Figure 2.1

MD5 block processing loop

Figure 2.2

Single sub-round of MD5 algorithm
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2.2.2 SHA-1

The Secure Hash Algorithm (SHA) designation encompasses five cryptographic hash

functions developed by the National Security Agency starting in 1995 as a replacement for

MD5 [1]. These algorithms are SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512.

The earliest and most widespread of these algorithms, SHA-1, has found use in protocols

like SSL, PGP, SSH, and IPSec as well as in integrity checkingfor Internet downloads and

password storage.

SHA-1 encompasses many of the design principles of the MD5 algorithm. Similar to

MD5, SHA-1 uses a state variable that is modified as the message body is iterated over;

the produced digest is 160-bits. The algorithm proceeds as follows:

1. The message is padded as follows until its length is divisible by 512 bits:

(a) A single ’1’ bit is appended to the message

(b) ’0’ bits are appended until the message reaches a length that is 64 bits less than
a multiple of 512 bits

(c) The remaining 64 bits are filled with the 64-bit integer representing the length
of the original message in bits

2. A 160-bit state variable is designated that is divisible into five 32-bit words,A, B, C,
D, andE.

3. The state variable is initialized to certain fixed constants

4. The algorithm operates on each 512-bit block in turn and modifies the state variable
as follows:

• The sixteen 32-bit words are extended into eighty 32-bit words with words
16-79 defined as

w[i] = (w[i − 3] ⊕ w[i − 8] ⊕ w[i − 14] ⊕ w[i − 16]) << 1
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• The resulting 80-word array is operated upon in 80 sub-rounds as described in
Figure 2.3, whereWt denotes a 32-bit block of the eighty-word array,Kt de-
notes a 32-bit constant which is different for each sub-round, and the function
ft changes every twenty sub-rounds (or one round) as follows
F0<=t<20 = (B ∧ C) ∨ (¬B ∧ D)
F20<=t<40 = B ⊕ C ⊕ D
F40<=t<60 = (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D)
F60<=t<80 = B ⊕ C ⊕ D

• The generalized implementation of a sub-round can be found in Figure 2.4

Figure 2.3

SHA-1 block processing loop

2.2.3 Hardware Implementations of Hash Functions

Any system intended to facilitate a large amount of secure communication must neces-

sarily have a high-throughput hash implementation. In systems where a high-performance

microprocessor is unavailable, hash functions are typically implemented in hardware along

with other cryptographic primitives. Consequently, hardware implementations are impor-

tant to the viability of secure mobile communication, sincesuch applications rarely have
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Figure 2.4

Single sub-round of SHA-1 algorithm

the capabilities or power for performing software-based encryption. In addition to perfor-

mance, another reason for hardware implementations of hashfunctions is the inherently

more secure nature of hardware when compared to software.

In the following sections, common hardware implementations of the MD5 and SHA-

1 algorithms are explored in order to enable understanding of the generated generalized

hardware optimizations.

The two common physical implementations of the algorithms are single-stage and

multiple-stage, with the multiple-stage implementationsvarying in number of stages [5]

[18]. In the single-stage implementation, a single sub-round of the algorithm is general-

ized and used repeatedly for each sub-round of the main MD5 orSHA-1 loop. This is

accomplished as followed:

• multiplexers are used, most notably for selection of the results of the non-linear
functionsF, G, H, andI

• a variable shifter, often a barrel shifter, is used rather than wire transposition to
accommodate the varying shift distances at different stages of the algorithm
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• a state machine with a large number of states is used to correctly control the state of
multiplexers, shift-length, and memory addresses

The single-stage design is obviously optimized for area, though its throughput can be

comparable to that of some multiple-stage implementations[5] [17].

In the multiple-stage implementation, the sub-rounds of the algorithm are divided into

stages with the goal of finding common elements in groups of sub-rounds that will allow

a number of sub-rounds to be implemented succintly with a single stage. This can often

create a series of stages each of which has a shorter criticalpath than a single stage imple-

menting a completely generalized iteration. The most obvious example of a multiple-stage

implementation is a fully-unrolled implementation. Such an implementation uses different

dedicated hardware for each of the 64 or 80 sub-rounds of MD5 or SHA-1, respectively.

This has a number of notable advantages, namely:

• multiplexers are not necessary for selecting the appropriate output fromF, G, H, and
I

• wire transpositions may be used to shift and complicated variable shifters are not
needed

• sub-round-specific constants can be hardwired into the design, rather than stored in
a lookup table or RAM

• a simpler state machine may be used

These multiple-stage designs are not fully pipelined, as stages do not execute concur-

rently. This is due to the chaining property of the MD5 and SHA-1 algorithms, which

dictates that the next round cannot begin until the previousround has completed. Thus,

the multiple-stage design serves only to reduce clock period. However, several efforts have
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focused on true pipelining by weaving multiple hash computations in the same multiple-

stage system [17]. These systems, apart from having higher resource requirements, require

that multiple different hash calculations be requested in order to reach maximum through-

put (i.e., they cannot reach maximum throughput for only one computation). Because of

this constraint, such solutions are not general-purpose and are considered outside the scope

of this work.

2.2.4 Smith-Waterman Algorithm

The Smith-Waterman algorithm is used in the field of bioinformatics for sequence

alignment of nucleotides or proteins. This algorithm uses adynamic programming ap-

proach to find locally optimal alignments in two stringsP andQ [31]. The main body

of the Smith-Waterman algorithm is described in Figure 2.5.In the figure,M [i, j] is a

chained variable because the computation ofM [i, j] depends on the value ofM [i, j − 1]

computed in the previous iteration. Figure 2.6 illustratesthe computations performed in

a single Smith-Waterman inner loop. The critical path in this design is highlighted using

boldface directional lines.

In the inner loop of the Smith-Waterman algorithm, the valueof i is a constant. Also,

the array read operations corresponding toM [i− 1, j − 1], M [i− 1, j], Q[j], andP [i] are

scheduled as part of the loop indexing scheme, and therefore, these values are available

at the beginning of the loop iteration in registersMi−1,j−1, Mi−1,j , q, andp, respectively.

Similarly, the functionsγ(′−′, Q[j]), γ(P [i],′ −′), andσ(P [i], Q[j]) are also implemented
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as table lookups as part of the loop indexing scheme, and therefore, their values are avail-

able in registersγq, γp, andσp,q, respectively.

Figure 2.5

Smith-Waterman block processing loop

While some earlier FPGA implementations of Smith-Watermanutilized single pro-

cessing elements, such solutions are no longer considered viable. All recent research im-

plements Smith-Waterman as a systolic array of processing elements that implement the

block processor in Figure 2.6. Thus far, most research has focused on optimization of the

systolic array structure and nearly all implementations have used a naive implementation

of the block processing elements [16] [36]. This work focuses on automatic optimization

of these block processors, for which there is little basis for comparison.
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Figure 2.6

Single stage of Smith-Waterman algorithm
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CHAPTER 3

METHOD

3.1 Optimizations

In C, loops are used to express repetition. When translated to hardware, they are typi-

cally implemented as a single pipeline stage which corresponds to a generalized iteration.

This single stage executes a number of times depending on theC loop boundaries.

The following two C-to-HDL optimizations for C loops are introduced:

• partial loop unrolling

• temporal relocation

Partial loop unrolling has been studied in detail for a number of applications and has been

automated in a number of tools [25] [15] [23] [33]. The other optimization, temporal

relocation, is novel but applicable only to classes of problems in which full concurrent

pipelining is impossible or difficult because of variable chaining.

3.1.1 Partial Loop Unrolling

One method for increasing the throughput of some C-based hardware designs is partial

loop unrolling. A loop iteration may be described by a long sequence of operations. Loop

unrolling enables one or more iterations to be combined intoa single stage. This has the
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potential for overlapping the operations in the combined iterations. While this technique

increases the amount of combinational logic between registers and the critical path length,

there is a greater amount of computation per clock period, atthe cost of reduced clock

frequency.

An example of partial loop unrolling in the SHA-1 algorithm can be found in Fig-

ure 3.1. In the original design of Figure 2.4, which is equivalent to the top-half of Fig-

ure 3.1, the critical path proceeds through the column of three adders on the right. While

this critical path still exists, combining two stages allows the next iteration to begin before

the previous iteration has finished. Specifically, the first two additions of the next stage

can begin immediately because they do not depend on any calculation from the previous

stage.

Partial loop unrolling allows designers the choice of having a given stage implement

multiple iterations of a loop instead of just one. While thismay decrease performance

for pipelined designs with concurrent stage execution, it can often provide a performance

boost for non-pipelined designs. Whether or not the application is pipelined, partial loop

unrolling is always a valuable tool as it allows designers toexperiment with the resource

versus performance tradeoff.

3.1.2 Temporal Relocation of Operations

Another method for increasing throughput of some C-based hardware designs is re-

location of operations between loop iterations. The principle of this optimization is that
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Figure 3.1

Partial loop unrolling on the SHA-1 algorithm

moving a computation to a previous iteration can balance outdelay paths in a given itera-

tion, decreasing the critical path length, and consequently increasing clock speed. At the

HDL level, this optimization corresponds to rearranging statements within a given stage.

However, performance improvement comes at a cost of increased memory, because the

results of temporally relocated computations must be stored across stage boundaries until

they are required.

An example of temporal relocation in the SHA-1 algorithm canbe found in Figure 3.2.

In the original design of Figure 2.4, the critical path proceeds through the column of three

adders on the right. After temporal relocation of two addersto the previous iteration, the

critical path proceeds through theft function and the two leftmost adders. Since theft
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functions are simple logical functions and much faster thanan addition, temporal reloca-

tion effectively removes an entire adder from the critical path.

Figure 3.2

Temporal relocation on the SHA-1 algorithm

Care must be taken to preserve functionality during temporal relocation. While this

naturally involves tracing dependencies between operations and ensuring that all are met,

consideration must also be given to start and end loop conditions. In the above example,

the correct functioning of the first loop iteration requiresthat TEMP be calculated in

the previous clock cycle. This requirement can be satisfied by duplicating the logic for

calculatingTEMP in the module’s reset block. In many situations, it is also necessary

to ensure that register values upon loop exit hold proper values as opposed to values from

the partial(n + 1)th iteration computed during the terminalnth iteration. This can be en-
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sured by registering the results of all relocated operations only when the loop termination

condition is not met in the current clock cycle.

In addition to constraints that preserve functionality, the process of selecting operations

for temporal relocation that will reduce critical path length is nontrivial; the relocation used

in the above example is not the only possible one for SHA-1. One method for identifying

the best statements for relocation is through the use of a delay model that specifies delays

associated with various operations on a particular technology or platform. Such a model

can be used to compute the effects of temporal relocation on critical path length. This

allows individual temporal relocations to be applied iteratively using a greedy procedure

in order to determine the best set of relocation operations.Any relocations that increase

critical path delays are rejected.

The most noteworthy property of the optimization is that itseffectiveness decreases

as the critical path length approaches the average operation time. This is because the

optimization depends on being able to overlap computationswith the critical path of the

previous stage or iteration. If the critical path length is comparable to that of a single

operation, the likelihood of accomplishing this overlap islow. In short, the usefulness of

this optimization is limited in highly pipelined systems. However, temporal relocation can

provide significant performance benefits for applications with chained variable access.
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3.2 Implementation Details

Exploration of optimizations to the C-to-HDL transformation requires an C-to-HDL

compiler into which said optimizations can be incorporated. Though some earlier C-based

EDA tools are open-source, they lack the functionality necessary for these optimizations

and in most cases documentation is poor. Nearly all modern C-based EDA tools are pro-

prietary. Consequently, a prototype platform was developed for testing the temporal relo-

cation optimization.

3.2.1 Operation of Prototype Tool

The basic operation of the prototype tool is described in thefollowing paragraphs. A

diagram overview of this tool may be found in Figure 3.3. As isevident from Figure 3.3,

the particular HLL and HDL chosen were ANSI C and Verilog respectively. However, it

should be noted that the front- and back-ends are implemented as interchangeable modules

for which other languages could be substituted. The tool itself is written in C/C++ with

some code sections generated by LeX and YACC as detailed in the following sections.

The tool’s preprocessor is HLL-specific. In this case, it is asimple ANSI C prepro-

cessor that handles preprocessor directives such as#include, #define, #ifdef, etc. It also

substitutes#defined values into appropriate places in the code. Lastly, it strips out all com-

ments and unnecessary whitespace. After preprocessing, the code is ready to be parsed and

is entirely devoid of “#” directives except for#pragmas, which are left to be parsed and

passed to the compiler.
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Figure 3.3

Overview of prototype tool

The parser used in the prototype tool was constructed using the LeX lexical analyzer

and the YACC parser generator. The LeX-generated lexical analyzer tokenizes the C code,

and the YACC-generated parser uses a full ANSI C grammar to parse the tokens. The

#pragma statements which control compiler options are also tokenized and parsed. The

output of this parser is a parse tree, the format of which is similar to that used in traditional

compilers. At this point, the parse tree, which is still C-specific, is passed to the compiler.

The compiler is the most complex stage of the prototype tool’s operation. The first step

of compilation is the conversion of the C to an FSM. While generic C-to-FSM conversion

is nontrivial, many non-general or restricted conversionshave been studied extensively in
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the papers presented in Chapter 2. The prototype tool, like many of the tools of Chapter 2,

places restrictions upon the C structures that may be used. Most notably:

• pointers are not allowed

• structs andunions are not allowed

• dynamic memory allocation is not allowed

• recursive functions are not allowed

• control structures may not be nested within pipeline blocks

The primary output of FSM generation is an HLL-independent tree-based data structure

which is easily translated to an HDL. The secondary output ofFSM generation is metadata

that identifies the C structures from which FSM elements weregenerated. It is necessary

to preserve this information into the optimization steps, because it allows the optimizer

to make assumptions about the behavior of a particular FSM that would be difficult and

compute-intensive to prove otherwise.

After FSM generation, the two optimizations are performed,assuming they were re-

quested through the use of#pragma statements. The output of the optimizations is in the

same format as that generated by FSM generation, namely an HLL-independent tree-based

data structure.

Following compilation, the final stage of the tool is translation to an HDL. The sim-

plicity of most HDLs makes this a trivial process, with majority of the effort involving

simple aspects such as:

• enumeration of registers in the form of variable declaration

• identification and declaration of inputs and outputs
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• construction of sensitivity lists

• implementation of the FSM

– expression of FSM next-state logic

– expression of FSM output logic

3.2.2 Optimization Implementation

The following sections discuss the implementation of the loop unrolling and temporal

relocation optimizations in the prototype tool.

3.2.2.1 Partial Loop Unrolling

Implementation of partial loop unrolling is straightforward. The process begins with

the output of FSM generation, in which each C loop corresponds to a single FSM stage

that implements a generalized iteration of the loop. It endswith a single FSM stage that

implements a generalized number of consecutive iterationsof the loop.

The steps for partially unrolling this single-iteration loop stage into anx-iteration loop

stage are as follows:

1. duplicate the combinational logic for the stagex times

2. for each duplicated stage:

(a) instantiate logic to correctly compute the loop-index of the duplicated stage

(b) replace all uses of the loop-index in the duplicated stage with the computed
loop-index

(c) where appropriate, replace inputs of duplicated stage with outputs from previ-
ous stage

3. combine the original stage with all duplicated stages to form a new single FSM stage
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In the prototype tool, loop unrolling is allowed on any C loopstructure through the

use of a#pragma statement, specifically#pragma combineiterations x wherex is the

number of consecutive iterations to combine.

3.2.2.2 Temporal Relocation of Operations

Temporal relocation is more complex than partial loop unrolling. The steps to optimize

a stage using temporal relocation are as follows:

1. search the FSM stage for an operation to move to the previous iteration according to
the following criteria:

• relocation of the operation must not alter loop functionality (i.e. operations
must not depend upon the results of any previous operations in this stage)

• relocation of the operation must not lengthen the critical path according to the
user-provided delay model

2. if such an operation is found, move it to the previous iteration by placing it at the
end of the FSM stage

3. repeat steps 1-2 until an acceptable operation is not found

4. duplicate any moved operations in the reset logic such that the first loop iteration,
which is structured on these operations having been completed in the previous iter-
ation, will operate correctly

5. ensure that results of relocated operations are registered only when the loop termi-
nation criteria is not met in the current clock cycle

The computationally-intensive portion of this process is location of an appropriate op-

eration for relocation. The dependency-checking step is accomplished by means of in-

ternal representation of loop operations used in the prototype tool, namely a dependency

graph. In this structure, operations eligible for relocation are those which exhibit no de-

pendencies in the dependency graph.
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The second step in determining an appropriate operation forrelocation is verifying that

a candidate for relocation will not increase critical path length. This is accomplished by

temporarily making the relocation then computing the new critical path length for com-

parison to the old critical path length. Given the user-specified delay model, critical path

calculation is trivially accomplished with a recursive algorithm operating on the operation

dependency graph. If the new critical path is longer than theoriginal critical path, the

relocation is rejected; otherwise, it is made permanent.

In the implementation of temporal relocation in the prototype tool, the following sim-

ple but effective delay model is used: each operation is assigned a constant delay value

expressed in multiples of an inverter-delay according to Table 3.1. These model param-

eters can be customized for any specific technology platformin order to accommodate

devices with different speed grades and resources (e.g., on-chip multipliers, accumulators,

and shift registers). Note that this delay model does not include bit-widths of data types;

while ignoring width is effective for a system in which majority of operations are of a

particular fixed width, a more advanced delay model would account for width differences.

In the prototype tool, temporal relocation is allowed on anyC loop structure through

the use of a#pragma statement, specifically#pragma optimize loop.

Once an operation is found for relocation, the actual relocation in the prototype tool’s

internal representation is relatively straightforward. The operations in the loop are repre-

sented as a tree data structure. Relocation of an operation is represented by relocating a

node in the tree (and re-computing the dependency graph to account for the relocation).
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Table 3.1

Delay model values used in prototype tool

Operation Delay Estimation
NOT 1

REGISTER 1
CONSTANT SHIFT 1

AND/OR/XOR 2
MAX/MIN 3

ADDITION/SUBTRACTION 4
MULTIPLICATION 10
VARIABLE SHIFT 10

DIVISION 20

Once optimization of the tree structure is complete, the operation tree and dependency

graph are transformed into Verilog.
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CHAPTER 4

EVALUATION

In the following sections, the automatically-generated optimized designs are presented.

They are then compared to the architectures of the automatically-generated unoptimized

designs and the hand-coded designs. Specifically, for the selected applications, the effect

of various combinations of temporal relocation and partialloop-unrolling are explored.

Additionally, the performance values of the automatically-generated SHA-1 and MD5 im-

plementations are compared with hand-coded implementations from the literature. This

comparison is not conducted for the Smith-Waterman algorithm, as differing systolic ar-

ray structures between implementations make direct comparison impractical. Despite the

absence of comparison to manual solutions, Smith-Watermanis nonetheless presented as

an example to further examine the effects of temporal relocation in a domain other than

hash functions.

The algorithms are expressed in ANSI C and translated to Verilog with the prototype

tool. All Verilog is synthesized for the Virtex 4 XC4VFX100 FPGA for design space

exploration. The MD5 and SHA-1 implementations are also synthesized for the dominant

research platforms for each, the Virtex 2 XC2V4000 and the Virtex 1 XCV150 FPGA

respectively.
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The simple delay model described in Chapter 3 is used for temporal relocation, with

the delay values specified in Table 3.1.

4.1 Implementations

The following sections present the automatically-generated optimized implementa-

tions produced by the prototype tool with no loop unrolling.A complete enumeration of

the designs produced for all possible loop unrolling factors would be of limited usefulness

and prohibitive length; consequently, such is not presented.

4.1.1 MD5

The automatically-generated stage with optimized temporal relocation for MD5 can

be found in Figure 4.1. The critical path of this implementation is two adders and the

ft function. This is shorter than the critical path of the naivestage implementation of

Figure 2.2. This is accomplished by moving two additions to the previous cycle.

4.1.2 SHA-1

The automatically-generated stage with optimized temporal relocation for SHA-1 can

be found in Figure 4.2. When compared to the naive stage implementation of Figure 2.4,

the most significant alteration due to temporal relocation is the decrease of the critical path

from three adders to two adders. This is accomplished by moving to the next iteration the

two adders responsible for adding the output of theft function to the left-shifted value ofA

and the sum ofW [t] andK[t]. A secondary relocation is the relocation of the left-shiftof
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Figure 4.1

Temporal relocation by prototype tool in MD5

A to the next iteration. Though this does not change the critical path (as constant-shifts are

implemented as zero-delay wire transpositions), this relocation is made in preparation for

the relocation of any operations which depended on this value and has no effect on critical

path length. This implementation is better than the examplerelocation of Figure 3.2,

because the critical path length is now two adders instead oftwo adders in series with the

non-linear functionft.

4.1.3 Smith-Waterman

The automatically-generated stage with optimized temporal relocation for Smith-

Waterman can be found in Figure 4.3. The critical path of thisimplementation is one

adder and twoMAX functions. This is shorter than the critical path of the naive stage
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Figure 4.2

Temporal relocation by prototype tool in SHA-1

implementation of Figure 2.6 which is one adder and threeMAX functions. This is ac-

complished by splitting the design such that two additions and aMAX execute in parallel

with the later half of the iteration. This results in a slightly unbalanced pipeline stage.

However, further improvement is not possible (clearly, evenly dividing an odd number of

MAX operations is impractical).

4.2 Performance

In the following sections, the performance of the various automatically-generated so-

lutions are presented and compared to that of both automatically- and manually-generated

designs. For the purposes of this document, throughput is defined for SHA-1 and MD5 as

in Equation (4.1).

throughput =
#bits · foperation

#operations
(4.1)
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Figure 4.3

Temporal relocation by prototype tool in Smith-Waterman

with #bits equal to the number of bits in the calculation,foperation equal to the frequency

at which operations are performed, and#operations equal to the number of clock cy-

cles before a full result is calculated. Throughput for Smith-Waterman is defined as in

Equation (4.2).

throughput = foperation ·
cells

clock
(4.2)

Wherefoperation is equal to the frequency at which operations are performed and cells
clock

is

equal to the number of loop iterations which are computed perclock cycle.

4.2.1 MD5

Performance of the automatically-generated MD5 designs with various loop-unrolling

factors are listed in Table 4.1. For throughput calculations,#bits = 512 corresponding to

the 512-bit block size of MD5 and#operations varies from 64 to 10 as#operations =
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64

Lf
+ 2 whereLf is the loop-unrolling factor and the+2 is due to the two additional clock

cycles for loading from and storing to the hash register.

Table 4.1

MD5 performance on Virtex 4 XC4VFX100

Loop-Unrolling Design Clock Speed Throughput Improvement
Factor (MHz) (Mbps) (%)

- unoptimized 105.64 819.51 0.0%
- optimized 119.15 924.32 12.8%
2 unoptimized 70.76 1065.56 30.0%
2 optimized 76.97 1159.08 41.4%
4 unoptimized 43.50 1237.33 50.9%
4 optimized 45.51 1294.51 58.0%
8 unoptimized 23.98 1227.77 49.8%
8 optimized 24.44 1251.33 52.7%

As expected, the results of Table 4.1 show that the temporally-relocated design invari-

ably outperforms the unoptimized design of the same loop-unrolling factor. Also evident

is a decrease in effectiveness as the loop-unrolling factorgrows. For comparison purposes,

the optimized design with no loop-unrolling was synthesized for the Virtex 2 XC2V4000

FPGA that has been utilized by other researchers in the past.The results from this com-

parison are listed in Table 4.2.

The optimized implementation outperforms all hand-constructed implementations ex-

cept for the 725Mbps, 2395Mbps, and 5857Mbps implementations in [17]. Both the

2395Mbps and 5857Mbps implementations use high-throughput techniques such as par-
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Table 4.2

MD5 comparison on Virtex 2 XC2V4000

Design Clock Speed Throughput
(MHz) (Mbps)

Holland 88.3 685
Deepakumara,et al. [5] 21.0 165
Deepakumara,et al. [5] 71.4 354

Diez,et al. [6] 60.2 467
Dominikus [8] 42.9 146

Jarvinen,et al. [17] 75.5 586
Jarvinen,et al. [17] 78.3 607
Jarvinen,et al. [17] 93.4 725
Jarvinen,et al. [17] 80.7 2395
Jarvinen,et al. [17] 75.5 5857

allel cores and a pipelining organization in which stages operate on different messages

concurrently. Both of these techniques are beyond the scopeof these research. Of the

presented implementations, only the 725Mbps outperforms the optimized implementation

using conventional techniques. In particular, the 725Mbpsimplementation uses a com-

pletely unrolled loop (i.e., 64 separate stages, one for each iteration).

4.2.2 SHA-1

Performance of the automatically-generated SHA-1 designswith various loop-unrolling

factors are listed in Table 4.3. For throughput calculations,#bits = 512 corresponding to

the 512-bit block size of SHA-1 and#operations varies from 82 to 12 as#operations =

80

Lf
+ 2 whereLf is the loop-unrolling factor and the+2 is due to the two additional clock

cycles for loading from and storing to the hash register.
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Table 4.3

SHA-1 performance on Virtex 4 XC4VFX100

Loop-Unrolling Design Clock Speed Throughput Improvement
Factor (MHz) (Mbps) (%)

- unoptimized 171.29 1069.52 0.0%
- optimized 235.41 1469.88 37.4%
2 unoptimized 139.47 1700.20 58.9%
2 optimized 169.35 2064.46 93.0%
4 unoptimized 110.11 2562.56 139.6%
4 optimized 120.71 2809.23 162.7%
8 unoptimized 78.93 3367.68 214.9%
8 optimized 82.99 3540.91 231.1%

As with MD5, the results of Table 4.3 show that the temporally-relocated designs out-

perform the unoptimized designs of the same loop-unrollingfactor. The same decrease

in effectiveness as the loop-unrolling factor grows is alsoobserved. For comparison

purposes, the optimized design with no loop-unrolling was synthesized for the Virtex 1

XCV150 FPGA that has been utilized by other researchers in the past. The results from

this comparison are listed in Table 4.4.

The optimized implementation outperforms the hand-constructed implementations in

[8], [27], [14], [19]. The remaining implementations report a significantly higher through-

put than the automatically-generated design because they divide the 80 SHA-1 iterations

into four blocks of 20 iterations such that each block is performed in a separate pipeline

stage. This way, each of the four stages can operate on different messages concurrently.
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Table 4.4

SHA-1 comparison on Virtex 1 XCV150

Design Clock Speed Throughput
(MHz) (Mbps)

Holland 86.0 537
Dominikus [8] 43.0 119

Selimis,et al. [27] 72.0 461
Grembowski,et al. [14] 86.0 530

Kang,et al. [19] 18.0 114
Sklavos,et al. [29] 71.0 1731
Sklavos,et al. [28] 72.0 1843

Lien, et al. [20] 64.0 1024
Kakarountas,et al. [18] 98.7 2527

However, this type of pipeline organization requires complex support logic that multi-

plexes blocks from different messages, and therefore, is beyond the scope of this research.

4.2.3 Smith-Waterman

Performance of the automatically-generated Smith-Waterman designs with various

loop-unrolling factors are listed in Table 4.5. The bit-width of variables in the Smith-

Waterman algorithm is dependent upon the alphabet size of the input sequences. This

affects both clock speed and throughput. For these experiments, a bit-width of 32 was

chosen to provide sequence alignment for unicode strings, though in bioinformatics the

alphabet is typically much smaller and input bit-widths of 4-5 are common withγ and

σ widths of 3-4 bits. Since bit-width is varible from application to application in Smith-
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Waterman, the throughput is specified incells/second rather than Mbps, where a cell is

the result of one iteration’s calculation.

Table 4.5

Smith-Waterman performance on Virtex 4 XC4VFX100

Loop-Unrolling Design Clock Speed Throughput Improvement
Factor (MHz) (Mcells/s) (%)

- unoptimized 102.79 102.79 0.0%
- optimized 134.78 134.78 31.1%
2 unoptimized 62.80 125.60 22.2%
2 optimized 72.76 145.52 41.6%
4 unoptimized 35.29 141.16 37.3%
4 optimized 37.89 151.56 47.4%
8 unoptimized 18.79 150.32 46.2%
8 optimized 19.33 154.64 50.4%

As with MD5 and SHA-1, the results of Table 4.5 show that the temporally-relocated

designs outperform the unoptimized designs of the same loop-unrolling factor. The same

decrease in effectiveness as the loop-unrolling factor grows is also observed.

4.2.4 Analysis

One noteworthy trend is that the performance increase due totemporal relocation

decreases as loop-unrolling factor increases. This is illustrated in Figure 4.4. The explana-

tion for this is that loop-unrolling naturally shifts the critical path to the chained variable

paths by exploiting non-chained concurrency; this leaves little concurrency for temporal

relocation to exploit.
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Nonetheless, temporal relocation improved performance atall loop-unrolling factors

for all three algorithms. Furthermore, the optimized versions of MD5 and SHA-1 were

shown to perform comparably to hand-coded solutions for these algorithms as hypothe-

sized.

Figure 4.4

Throughput % increase vs. loop-unrolling factor

4.3 Place and Route

To explore resource utilization and performance degradation due to routing, the var-

ious MD5 algorithms were placed and routed for the Virtex 4 XC4VFX100. The MD5

algorithm was chosen for its complexity when compared to SHA-1 and Smith-Waterman.

The results of these experiments can be found in Table 4.6. When compared to the syn-

thesized performance of MD5, a maximum performance decrease of 16.3% was observed,

with the average performance decrease being 11.7%.
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Table 4.6

MD5 place and route results on Virtex 4 XC4VFX100

Loop-Unrolling Factor Design Clock Speed Throughput Slices Flip-Flops
(#) (MHz) (Mbps)
- unoptimized 100.05 776.15 772 307
- optimized 111.40 864.19 933 403
2 unoptimized 64.80 975.81 1368 307
2 optimized 69.12 983.04 1514 404
4 unoptimized 37.56 1068.37 2512 307
4 optimized 38.11 1084.02 2523 420
8 unoptimized 20.32 1040.39 5638 308
8 optimized 21.33 1092.10 5446 421
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

During the course of this research, a prototype C-to-HDL tool was created which im-

plemented a translation from ANSI C to a Verilog hardware description. This tool imple-

mented a novel automatic temporal relocation optimizationwhich automatically relocates

operations to previous stages and iterations to reduce critical path length and increase clock

speed and throughput. The prototype tool was used to test temporal relocation on three

applications, namely MD5, SHA-1, and Smith-Waterman, eachof which exhibits the un-

desirable property of having chained variable access. For these applications, performance

increases of 13%-37% were measured. The effect of loop-unrolling upon temporal relo-

cation was also examined. It was found that the benefit of temporal relocation decreased

with high loop-unrolling factors.

5.2 Conclusions

HLL-based EDA tools continue to be a valid and capable designmethod, as both

the optimized and unoptimized automatically-generated implementations of our example

applications performed competitively when compared to similar hand-coded solutions.
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Additionally, this research has demonstrated that HLL-based EDA tools allow optimiza-

tions which would be difficult to implement at the lower HDL level, as current HDL-based

tools cannot grasp the overall structure and functionalityof a design. Also, while the as-

sertion is difficult to prove, HLL-based design at least arguably reduces the expert digital

design knowledge requirement of hardware design and consequently makes the benefits of

reconfigurable computing available to a broader community.

Furthermore, temporal relocation is a valid optimization worth integrating into existing

HLL-based design tools. In the example applications, performance increased 13%-37%

depending upon application. And though this effect decreased with loop-unrolling, such

unrolling is not always possible due to resource constraints. Consequently, temporal relo-

cation has its place in the arsenal of automatic optimizations.

5.3 Future Work

Future work includes:

• investigation of the effects of temporal relocation on problems which do not exhibit
chained variable access and comparison to hand-coded and automatically-generated
pipelined solutions

• investigation of improved delay models for temporal relocation

• investigation of the interaction between temporal relocation and automatic storage
access optimization in which an HLL-based tool automatically makes decisions on
where to place data (BRAM, registers, etc.), how to access data (BRAMs typically
allow a limited number of simultaneous accesses), and how toposition data for
optimal access (data can be split among multiple BRAM blocks)

• investigation of the effects of temporal relocation on non-loop programming con-
structs
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• comparison of automatically-generated designs with temporal relocation to automatically-
generated designs without temporal relocation
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