
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

5-3-2008 

Using Rule-based Structure to Evaluate Rule-based System Using Rule-based Structure to Evaluate Rule-based System 

Testing Completeness: A Case Study of Loci and Quick Test Testing Completeness: A Case Study of Loci and Quick Test 

Stephen Charles Medders 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Medders, Stephen Charles, "Using Rule-based Structure to Evaluate Rule-based System Testing 
Completeness: A Case Study of Loci and Quick Test" (2008). Theses and Dissertations. 4907. 
https://scholarsjunction.msstate.edu/td/4907 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4907&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/4907?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4907&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


USING RULE-BASED STRUCTURE TO EVALUATE RULE-BASED

SYSTEM TESTING COMPLETENESS: A CASE STUDY OF

LOCI AND QUICK TEST

By

Stephen Charles Medders

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2008



Copyright by

Stephen Charles Medders

2008



USING RULE-BASED STRUCTURE TO EVALUATE RULE-BASED

SYSTEM TESTING COMPLETENESS: A CASE STUDY OF

LOCI AND QUICK TEST

By

Stephen Charles Medders

Approved:

Edward B. Allen
Associate Professor of
Computer Science and Engineering
(Major Professor and
Graduate Coordinator)

Edward A. Luke
Associate Professor of
Computer Science and Engineering
(Committee Member)

Jeffrey C. Carver
Assistant Professor of
Computer Science and Engineering
(Committee Member)

Roger King
Associate Dean
for Research and Graduate Studies
of the Bagley College of Engineering



Name: Stephen Charles Medders

Date of Degree: May 02, 2008

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Edward Allen

Title of Study: USING RULE-BASED STRUCTURE TO EVALUATE RULE-BASED
SYSTEM TESTING COMPLETENESS: A CASE STUDY OF LOCI
AND QUICK TEST

Pages in Study: 62

Candidate for Degree of Master of Science

Rule-based systems are tested by developing a set of inputs which will produce already

known outputs. The problem with this form of testing is that the system code is not con-

sidered when generating test cases. This makes software testing completeness difficult to

measure. This is important because all the computational models are constructed within

the code. Therefore, to show the models of the system are tested, it must be shown that

the code is tested.

Chem uses the Loci rule-based application framework to build computational fluid

dynamics models. These models are tested using the Quick Test suite. The data flow

structure built by Loci, along with Quick Test, provided a case study for the research.

The test suite was compared against three levels of coverage. The measures indicated that



the lowest level of coverage was not achieved. This shows us that structural coverage

measures can be utilized to measure rule-based system testing completeness.

Key words: rule-based, structural, testing, Loci, scientific computing, software engineer-

ing
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CHAPTER 1

INTRODUCTION

Rule-based systems build computing environments by specifying sets of rules which

are executed, or fired, upon receiving data that matches a particular template. These types

of systems are commonly found in artificial intelligence, but are also used in scientific

computing to define physics models [13]. One issue that rule-based systems have is that

rarely are their programs tested in regards to the program’s code structure [5]. Some more

recent testing methods use rule-based structures, but not for the purpose of identifying cov-

erage. They instead are used for design [1], requirements verification [10], and identifying

rule inconsistencies such as contradictions and infinite loops [19].

1.1 Problem Specification

Rule-based systems define their computations and logic through interactions of rules

and data. These rules work together resulting in models representing complex compu-

tations and logical decisions. These systems are commonly tested by using a set of test

cases with known outcomes [2]. The problem is that this testing method ignores the code

and code structure of the rule-based system. Models represent the numerical computa-

tions and decisional logic which rule-based systems are intended to perform. Since these

models are built in the code, the models themselves need to be tested directly. Therefore,

1



testing simple functional requirements based on predefined scenarios is inadequate to pro-

vide assurance in the testing of a rule-based system. The code and structures produced by

relations of elements found within the code must be considered in test case generation in

order to provide assurance that the models of the rule-based system have been tested.

1.2 Hypothesis

Rule-based systems produce structures in the relations between the rules. These rela-

tions, defined by data and control flow, can become the basis for structural testing. They

can be used in structural testing to support rule-based systems by indicating, quantitatively,

the coverage over the rule-based system code that is achieved during testing. Therefore,

the hypothesis of this research can be stated as follows:

Rule-based systems can benefit from structural testing techniques. This is
because structural testing uses system code and structures formulated within
the code to generate test cases and to quantitatively show coverage of the
system by a test suite, ultimately providing assurance that the models of the
rule-based system are tested. The relations between the rules defined by the
flow of data from one rule to another can be used to define the structure to use
in structural testing.

In other words, structural testing can provide increased assurance in the testing of rule-

based systems. This benefit results from the fact that structural testing generates test cases

and measures completeness of a test suite based on the code of the system. With models

for rule-based systems constructed from code, structural testing provides the means to

explicitly show how the these models are tested, rather than just functional requirements.

2



1.3 Case Study

Loci, developed at Mississippi State University, uses Datalog-like syntax to build com-

putational fluid dynamics models [13]. Chem is a computational fluid dynamics software

package which uses Loci as its back end [11]. Currently, Chem is black box tested through

a regression test suite known as Quick Test.

Loci generates a rule-based structure by mapping the output of rules to the input of

other rules. This structure is currently used for scheduling concurrent execution of these

rules in order to perform complex calculations within a reasonable time. Quick Test tests

the models against a set of predefined inputs, or test cases. A test case is considered

successful when the output is within a set range of acceptable outputs. Whenever a change

is made to the C++ back-end code for Loci, or when the models for Chem are changed,

Quick Test is run to ensure that these changes did not break the system.

The Loci structure can be used to evaluate the completeness of Quick Test by exam-

ining the execution of the test suite with respect to coverage of the rule-based structure.

Measurements indicating the level of coverage reached can provide criteria for defining

the quality of the test suite and for proposing new test cases in order to improve coverage.

This case study will attempt to measure the quantity of coverage Quick Test achieves over

the Loci structures representing the physics models of the Chem software package.

1.4 Research

The research leading to this thesis was composed of four parts. A literature review was

done in order to understand prior work done in this field. Then, a graph analysis tool was

3



built in order to facilitate completing the case study. Next, Quick Test was analyzed by

the graph analysis tool as a case study. Finally, the measurements from the graph analysis

tool were reviewed to produce a conclusion. These steps worked together toward the goal

of answering the following questions:

1. Can relations between rules in a rule-based system provide a structure to use in
structural testing techniques for rule-based systems?

2. Can structural coverage measurements be used to evaluate the effectiveness of a
rule-based system test suite?

3. What level of coverage is achieved by test cases in Quick Test on the rule-based
system structure generated by Loci for Chem?

4. What portions of the rule-base structure for the models of Chem, if any, are currently
untested by Quick Test?

The first step in the research was an analysis of different rule-based structures already

proposed. This analysis was done via a systematic literature review (see Appendix A). The

literature review revealed two main types of structures. Antecedent-consequence rules

relate the variables and facts in a rule-based system to the rules [2, 7, 10, 13, 17, 19].

Rule-to-rule structures relate rules to each other, abstracting away the data [5, 9]. Our case

study was on Chem, which uses the Loci application framework. Loci uses an antecedent-

consequence rule structure in its processing. The Loci structures gives us a rule-based

structure to evaluate the completeness of the test suite for Chem.

A software tool was needed to take the graphs from the case study, along with the

test cases, and simulate program flow to calculate coverage. This tool was built using the

Gravisto library. The tool measures three metrics based on those presented by Barr [2].

The Classes measurement showed the ratio of class nodes in the structure which are cov-

ered by testing. Second, the Finding-Class Pairs metric indicated the amount of coverage
4



for paths between finding nodes and class nodes. Third, the Edges metric provided a more

detailed measurement of path coverage by showing the percentage of edges covered by the

test suite.

Finally, the test cases in Quick Test — the test suite for Chem — were analyzed against

the structures of the rule-based models found in Chem. The structures built by the Loci

framework for Chem were input to the tool along with the test case inputs. These mea-

surements were then analyzed to determine whether or not the structural analysis provides

support for the Quick Test suite.

5



CHAPTER 2

RELATED WORK

In order to identify prior work on rule-based systems (RBS) and structural testing, a

systematic literature review was performed. This review was based on a template provided

by Mian et al. [15]. This type of review is intended to provide repeatability of the literature

review, in order to help future researchers find the same sources used and identify sources

that are new since the review was completed. This chapter presents the results of the

review. For the review methods and statistics, please see appendix A.

2.1 Rule-Based Structures

The first question asked in this research is whether or not relations from rule to rule

can be used to build a structure for structural testing. This section presents the results of a

review identifying prior work specifying relations within a rule-based system which build

structures. All the structures reviewed are divided into two types. One type of structure

specifies antecedents and consequences to rules. The other structure defines abstracted

relations between rules.

6



2.1.1 Antecedent-Consequence Structures

These structures explicitly define facts or variables which act as inputs — the an-

tecedents — of rules. They also define the facts or variables which act as the output, or

decisions, of these rules. The output is known as the consequence. These structures were

the most commonly found and present the most detail of the system when compared to the

rule-based structures discussed later in this section. The relations in this type of structure

connect data in the system to rules in the system. Relations between rules can be identified

in this structure by showing output decisions or data of one rule acting as input of another.

The first structure of this type to be discussed is the Petri-net [7, 10, 17, 19]. Petri-nets

have two entities. Places, which represent facts and variables, can be inputs or outputs of

transitions, which represent the rules. Edges show flow through the rule base and can be

marked to imply negation of the antecedent or consequence. Figure 2.1 shows a simple

rule a, b → c. Petri-Nets represent a rule-based system starting from inputs and ending in

the computed values or decisions inferred by the rule base. Structural testing techniques

could start by marking variables in the system provided by inputs, then traversing the graph

by identifying which rules are capable of being fired and marking these rules as fired and

their outputs and edges. This structure would require knowledge of the logic within a rule

to generate test cases as well as analyze completeness.

Lee et al. [10] proposes a different type of Petri-net used for task verification. This

structure defines a transition as a task which can be composed of multiple sub-tasks, each

composed of multiple rules. These rules are also represented by transitions, which result

in multiple Petri-nets of varying levels of abstraction. This structure at its lowest level

7
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a b

c

Figure 2.1

Petri-Net for Rule-Based Systems

of abstraction is like other Petri-Nets and has the same benefits and down falls as other

Petri-Nets.

Wu and Lee [18] propose a token flow system for verifying rule-based systems. This

system is similar to Petri-nets, but instead of places and transitions, it uses P-Nodes and R-

Nodes, which represent the same thing. The added entity that makes this structure useful

is the sink node that represents goals in the system. The token flow structure represents a

rule-based system much the same way that a Petri-Net does. Token flows do not use marks

on edges to indicate value negation, but it does use a sink node to indicate the end of the

structure. This structure supports coverage analysis by providing a single end from which

to analyze path coverage with.

Argwal and Tanniru [1] propose the parameter dependency network. Similar to the

structure proposed by Lee et al. [10], this structure supports several types of abstraction

which can actually convert the graph into a rule-based graph. This structure would provide

8



benefit in hierarchically building a structural testing suite. Paths to end rules can first be

found, building up to identifying different sets of inputs covering multiple data flow paths.

Barr [2] discusses the TRUBAC structure, which is the most detailed type of structure.

This structure does not just abstract a rule to one entity, it contains a separate entity for

each boolean relationship between facts. This structure gives significant detail about a

rule-based structure and could even be used to give the greatest amount of path analysis

by showing logical paths within the rules themselves.

Ramaswamy et al. [16] present a hypergraph where nodes represent facts, compound

hypernodes represent groups of nodes required for a rule, and edges represent rules. This

type of structure presents a method of performing path analysis through the structure with-

out having to know the intricacies of the logic within the rules. This would lead to the

ability to have testers which do not necessarily have to understand the detailed logic of

each rule in order to traverse the graph from test case inputs to final outputs.

Zhang and Luke [21] present a structure used by the Loci high-performance computing

package for scheduling parallel processes. Because this system is the case study for this

research, this structure was the most interesting. Figure 2.2 shows an example from the

same rule as Figure 2.1. The difference between the Loci structure and regular Petri-nets

lies in the semantics and restrictions of the structure. This structure is a directed graph with

alternating entities. The first entity, represented by the circles, are the facts and variables.

The second entity, represented by the rectangles, are the rules. The edges show both data

and control flow.

9
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a b

c

1

Figure 2.2

DAG for Loci

2.1.2 Rule-Based

Rule-based structures represent rule-based systems by graphically showing the rela-

tions between rules while abstracting away the data of the system. Each structure is built

on a set of relations. These relations represent how one rule can be fired as a result of

another rule being fired. These types of structures can benefit rule-based system struc-

tural testing by representing control-flow paths through the system. By identifying which

rules are fired, testers can identify paths which have been exercised by the test suite. This

would result in a quantifiable means of determining completeness of a rule-based system

test suite.

Grossner et al. [5] presented a structure via a set of set-theory based relations between

rules. In this structure, only one type of entity exists, and this entity represents rules. The

only one-to-one relation is the depends-upon relation that states if rule B depends on rule

A, then the right hand side of rule A asserts a set of facts that match the template in the

left hand side of rule B. The next two relations are one-to-many. Rule A is “reachable”

10



from a rule set W if A depends-upon each rule in set W . This is called the “reachability”

relation. Also, rule set V “enables” rule A if all the rules in set V are required to assert

the facts in the left hand side of rule A. This relation is called “enablement.” Using these

relations, a developer can identify control paths from rule to rule. These paths can then be

used to generate test cases to maximize coverage.

Kiper [9] proposes the logical path graph which represents the logical paths that can

be traversed from one rule to another. Entities for this graph — nodes — represent rules.

The edges represent a depends-upon relation that is the same as proposed by Grossner

et al. [5]. When incoming edges to a node are connected by an arc, then all the source

nodes for these edges are required for flow to the target node. This relation is the same as

the “enablement” relation [5] described above. Figure 2.3 shows an example taken from

Kiper’s work. This graphical representation of the rule-to-rule relations gives testers the

ability visually trace paths and generate test cases intended to maximize coverage.

Powered by yFiles

1 2

3

Figure 2.3

A Logical Path Graph
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2.2 Coverage Metrics

Coverage metrics are needed to quantify the amount of a rule-based system which is

exercised by a test suite. During the review, two types of coverage metrics studies were

reviewed. Traditional coverage metrics are used to measure software built using imperative

programming languages. These metrics are used to analyze coverage of a program based

on control flow through the sequential list of instructions. Rule-based coverage metrics

seek to quantify coverage over the set of rules defined in the code.

2.2.1 Traditional Coverage Metrics

Jorgensen [8] presents several aspects on software testing, including traditional cover-

age based on DD-Paths. A DD-Path — decision-to-decision path — is a structure of nodes

and edges where each node is a decision statement in a program and each edge is a path

from one decision to the next. These measurements are pass-fail measurements indicating

that the testing has either achieved the particular level of coverage or it has not. They are

considered hierarchical in nature in that if one level of coverage is reached, previous levels

are also considered to have been reached. These different levels are presented in Table 2.1

from Jorgensen [8].

2.2.2 Rule-Based Coverage

Only one study was found discussing coverage metrics for rule-based systems [2].

Like traditional coverage analysis, the levels of coverage discussed by Barr [2] represent

hierarchical levels of coverage, making a sequential set of goals to attain through testing.
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Table 2.1

Structural Testing Coverage Metrics

Metric Description of Coverage
C0 Each statement in source executed
C1 Every DD-Path (predicate outcome)
C1p Every predicate to each outcome
C2 C1 coverage + loop coverage
Cd C1 coverage + Every Dependent pair of DD-Paths
CMCC Multiple condition coverage
Cik Every program path that contains up to k

repetitions for a loop (usually k = 1)
Cstat “Statistically Significant” fraction of paths
C∞ All possible execution paths

These levels of coverage start by focusing on classes, which are goals to be achieved by

running the rule-based system. The following levels of coverage seek to cover more paths

leading to these classes. The levels of coverage are enumerated in the following list starting

with the lowest level of coverage and leading to the highest [2].

1. Each-Class: A class is a sink node in the graph and represents a goal, which is a
calculation or decision requested by the user. This measure states that there is at
least one path to each class in the rule-base that is traversed by the test suite.

2. Each-hypoth: The test suite covers paths that traverse each sub-class leading to each
class.

3. Each-class-every-sub: For each sub-class/class combination, the test suite covers at
least one path containing the two.

4. Each-class-every-finding: A finding is a fact that is established during the execution
of the rule-based toward a specific class. This measure states that for each find-
ing/class pair which has an execution path between, the test suite covers at least one
path connecting the two.

5. All-edges: This is the highest level of feasible coverage. All edges in the graph are
covered by the test suite.
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6. All-paths: This measure states that every possible path in the structure or graph is
traversed by the test suite. Because there are too many paths in a real-world system
to test in a reasonable amount of time, reaching this level is infeasible.

2.3 Recommendations

First, this review shows that few studies have been done toward structural testing of

rule-based systems (see section A.5). While several structures were found, these structures

were developed with varying intents including proving completeness, finding conflicting

rules, and initial design. Only one of these structures was designed with the intent of

structural testing [2]. All together, these results indicate that rule-based systems do form a

structure which should be considered in developing test cases.

Second, of the studies found, few were done on sizeable case studies. Instead, the

most common approach was to build a small “toy” project and experiment with it. While

these toy projects can show that the concept has some merit, it does not show its validity

in real world situations. Case studies would do more to show how useful these rule-based

structures are for real world systems.

Finally, to truly evaluate the completeness of a test suite, coverage metrics need to be

used. While one study was found to propose a set of metrics, no coverage metrics were

found over the code itself. Code coverage includes goals such as covering all executable

lines of code and covering iterations through loops. Structural coverage metrics abstract

the code into entities of a structure and seek to maximize the paths covered through this

structure. While structural coverage is important, code coverage can be meaningful as

well. However, the structural metrics proposed are useful for our intended research, and
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can be used on the structures already in use by the Loci system. Therefore those metrics

will be included in the evaluation of the test suite currently in use for the Loci system.

2.4 Other Literature Reviewed

Other literature was reviewed toward the understanding of software coverage metrics.

These were not included in the review because they did not include structures or metrics for

rule-based systems, or the software quality aspects were not focused on internal structure.

Numerical software has its own set of quality issues. These studies were not included

in the systematic review because the studies did not discuss structural analysis or testing

of numerical software. However, these studies did present quality issues of numerical

software systems.

Hatton [6] presents the results of what are referred to as the T-experiments, which re-

veal a number of errors in numerical software. The first experiment, T1, presented a static

analysis, being an analysis of the code without running the program. The second experi-

ment, T2, performed a dynamic, or runtime, analysis. Hatton concluded that all commer-

cial numerical systems will have statically detectable errors and that current methods of

designing numerical systems are insufficient.

Gropp [4] presents several issues causing problems with numerical software. He lists

issues such as lack of modularity and orienting the numerical software according to the

algorithm used rather than the problem to be solved. These reasons cited are also presented

as the basis for building PETSc [4], a numerical software library, from the ground up rather
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than using existing libraries. Gropp concludes with a set of design decisions to optimize

PETSc.
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CHAPTER 3

CASE STUDY

Loci is a rule-based application framework developed at Mississippi State University

by Dr. Ed Luke [12]. Loci builds a graph structure from the rules defined for its framework

to generate and schedule parallel execution of computations. Chem is the first application

written around the Loci framework [11]. Used for computational fluid dynamics, Chem

builds a large variety of physics models with the rule-based syntax of Loci. Quick Test

is used to test these models with a set of inputs with known results. The structures Loci

builds for the Chem rule base and the Quick Test inputs together makes the case study for

this research.

3.1 The Loci System

Loci is a framework designed to reduce complexity in developing software for finite-

element applications [12]. The intent of Loci is to reduce errors made in typical numerical

applications caused by mistakes in control structures in code, and is accomplished by

generating control structures from the rule-based syntax.

Loci uses graphs to represent databases of facts and rules which, when combined,

produce transitions calculating new facts. One type of entity in this graph is a node repre-

senting values and variables in the system. Another type of entity is a node representing
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rules in the system [21]. Edges are entities in the graph representing data flow through the

system built with the Loci framework.

Values are mapped to the places in the structure representing facts [12]. These values

are then input to the rules to calculate new facts. This flow continues from the rules into

the next set of variable nodes. For each rule, all variables flowing into it must have values

mapped to them or the rule will not be executed by the system. This provides a means for

scheduling and parallelizing execution.

The Loci framework produces one of these graphs each time input is given to its rule-

based models. The graph is first produced starting at the top (where the inputs given are in

the rule database) and then pruned from the bottom up to produce a graph which defines

the execution structure for that specific set of inputs. For this case study, the pre-pruned

graphs were used. However, since these graphs are produced at run-time based on inputs,

they never really give an overall picture of the entire system. In order to do this a master

graph was produced, showing all the rules, yet ignoring iterations on looping rules.

3.2 Chem and Quick Test

Chem is a modeling program for chemical reaction flow models, or computational

combustion models [11]. This program, using the Loci framework, builds several physics

models. Quick Test is the test suite used for initial verification of the models built in Chem.

This means that Quick Test is used to show that the equations programmed into Chem are

the equations intended at that time.
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Quick Test is the testing suite that was analyzed for this case study. The inputs for

Quick Test were compared against the graph structure produced by the Loci framework

for the Chem models. The tool created for this study took the inputs and graph structures

and measured the coverage amount of each graph based on those inputs (see Chapter B).

3.3 Graph Analysis Tool

A software tool was required to analyze structure graphs for the Quick Test case study.

The requirements of the tool were to accept the graphs and test inputs in files. The tool

then needed to measure coverage of the graphs that resulted from traversal starting with

input nodes down to class nodes.

3.3.1 Metrics

For each metric used in this case study, definitions applying to the Loci framework

were needed. Then, using these definitions, the metrics were selected based on what was

considered useful, both for this study, and to the developers of Loci. The three metrics

selected were Each-Class, Each-class-every-finding, and All-edges. Each metric was re-

turned by the tool as a ratio. That particular level of coverage was considered achieved if

the returned value was 100%.

The use of ratios provided a comparison of individual test case measurements against

measuring the coverage over the master graph for the Chem models. As will be seen

in chapter 4, the master graph actually shows different coverage than the individual test

cases. While neither the master graph or any of the individual test cases show any level
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of coverage completed, the master graph had a higher ratio of classes covered. Also, Dr.

Luke stated that many of the classes are achieved through use of experimental features.

This leads to an acceptance of lower coverage due to the fact that the test cases do not

need to cover experimental features.

The metrics were output by the Graph Analysis Tool in a four-column spreadsheet.

The first column represented the name of each test case, while each column afterward

presented the measures from the Graph Analysis Tool in order: Classes, Finding-Class

Pairs, and Edges. This spreadsheet was put in a Comma Separated Variables file.

3.3.1.1 Classes Metric

In order to use the Each-Class metric, the term class had to be defined in terms of

Loci. Barr [2] defined a class as a value at the end of the set of computations or the final

value produced by the sequence of rules fired. In this case, a class is defined as the last set

of variable nodes in the flow of execution in the graph or variable nodes that have edges

flowing into them and no edges flowing out of them.

This measure was based on the Each-Class metric [2]. In the Graph Analysis Tool, a

variable node is differentiated from a rule node by a true value for the isVar attribute for

the node. The Classes metric was measured as a ratio of class nodes with isFired set to

true, to the total number of class nodes.

classesCalculated
totalClasses

(3.1)
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3.3.1.2 Findings-Class Pairs

The Findings-Class Pairs metric is derived from the Each-class-every-finding metric

proposed by Barr [2]. In section 2.2, a finding is described as “a fact that is established

during the execution of the rule-based system toward a specific class.” In terms of the Loci

graph, a finding is a variable node in the path between the initial input variable nodes and

the class variable nodes having both incoming and outgoing edges. In order to measure the

finding-class pair metric, each pair had to be identified. Then, a ratio was defined as the

number of finding-class pairs which had a path between the two nodes of the pair traversed

during program execution, divided by the total number of finding-class pairs. This level of

coverage is considered complete with a measure of 1.0 from the Graph Analysis Tool.

findingClassPairsIncluded
totalPair

(3.2)

3.3.1.3 All-Edges

The final metric did not require any special definitions. The All-edges metric was

modified to a ratio, as the other metrics used were modified. This ratio was the number of

edges traversed by program flow divided by the total number edges in the graph.

Edges in the Graph Analysis Tool hold a boolean attribute named isTraversed.

This attribute is set whenever a rule is fired, indicating flow down the structure graph.

The All-Edges metric is defined by Barr [2] as traversal of all edges in a graph. In our

tool, this metric would be defined as all edges in the graph holding a true value in its

isTraversed attribute. This tool returns a ratio of the number of edges meeting this
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criteria to the total number of edges. Again, 100% for this ratio indicates successful com-

pletion of this level of coverage.

edgesTraversed
totalEdges

(3.3)

3.3.2 Rule Lists

The rule lists were original used to debug the Graph Analysis Tool. They were kept in

the tool because it aids the Loci developers by specifically showing untested rules, adding

support for path analysis and test case generation. There were two types of rule lists. One

list was output for each test case in Quick Test. This contained each rule not fired during

testing, followed by an indented list of variables required for firing the rule but not present

during testing. The second list was generated due to overlap in the test case structures.

The structures for individual test cases had overlap in the rule nodes. However, a rule may

be omitted by one test case but included in another. The second rule list contains all the

rules which were never fired in the whole test suite, explicitly showing untested portions

of the structure.
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CHAPTER 4

RESULTS

There were two main results from the case study. The metrics taken (see section 3.3.1)

numerically show the amount of coverage accomplished by testing in respects to the rule-

based structure. The rule list augments these metrics by identifying the specific portions

of the structures which remain untested. Outputs were given for each test case. This is

because for Loci, a graph structure is produced when the inputs are given.

4.1 Measurements

Each test case has its own set of outputs. The metrics were output to a spreadsheet with

each test case being a separate row. The rule lists for each test case were put in different

text files.

4.1.1 Metrics

The metrics produced by analysis of Quick Test were put into a four column table (see

chapter B). The first column in the table contains the names of each test case. The next

three columns contained the metrics for each test case in order as follows: Classes Metric,

Findings-Class Pairs, and Edges Metric. The metrics, each indicating an increasing order
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of coverage over the previous, did not achieve 100% on any of the test cases or in the

analysis of the master graph. The table with the metrics can be found in appendix C.

Table 4.1 presents a small sampling of the results. The first set has the lowest level of

Classes coverage of the test cases. The second row presents about a middle level for the test

cases. However, very few metrics reached this, most staying around .47 (47%). The last

row represents the coverage over the master graph. At 77% this coverage is the highest

of them all, with the 60% coverage being the closest to full coverage. This coverage is

interesting because the master graph is supposed to represent the system as a whole rather

than the individual test cases. The exception to this is that looping structures found in the

individual test cases are removed from the master graph. The master graph could be used

as a overall barometer of the test suite while the individual test cases help to guide test

case generation for higher coverage.

Table 4.1

Metrics Sampling

Graph file
Classes Metric Findings-Class Pairs Edges Metric
Inviscid lowSpeed TEST shock tubegraph.dat
0.44444445 0.35183823 0.6638935

Viscous lowSpeed TEST wallLawTwallgraph.dat
0.6 0.43229812 0.69109666

masterGraph
0.7777778 0.1840504 0.4032941
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The Classes metric indicates that there are classes in the structure that are not exercised

by the test cases. Further analysis of the test cases can reveal which classes are not being

computed by the Quick Test suite. By identifying paths in the structure which lead to

each class not included by the testing, further test cases can be developed to include these

classes. This will increase the test coverage to 100% in respects to the Classes Metric.

The Finding-Class Pairs metric indicates that there are finding-class pairs (defined in

section 3.3.1.2) which have no path between the two invoked by the test suite. While

this information is easily deduced from the fact that there are classes alone which are not

covered by the test suite, what is not seen is that some classes may be covered but without

some findings paired with the class. After the Classes metric reaches 100%, each finding-

class pair not covered can be identified. Then, a path between the pair can be identified,

allowing the developer to create new test cases to cover the previously omitted pairs.

Finally, the Edges metric indicates that there are edges in the graph structure left un-

covered by the test suite. Again, this lack of coverage is easy to see when it is recognized

that there are paths uncovered leading to classes and between finding-class pairs. How-

ever, with full coverage on these previous measurements, there can still be multiple paths

leading to classes and between a class node and its preceding findings. After Finding-

Class Pairs coverage is complete, missing edges can be identified, allowing for additional

test cases which will incorporate these edges into the Quick Test suite.
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4.1.2 Rule Lists

The rule list enumerates the rules which were not fired during testing. There are two

types of rule lists for this case study. The first lists all the rules for each test case that did

not fire. Each rule is followed by a list of all the data not present but required to fire the

rule. These lists were stored in text files, one for each test case, and another for the master

graph (see chapter B). Since the graphs produced were not pruned for the inputs, there is

overlap in structure from graph to graph, causing some rules to fire in one graph,but not

in others. For this reason, a second rule list was also created consisting of rules that were

never fired in all of the test cases combined. These rule lists can be found in Medders’

technical report on the graph analysis tool [14].

The metrics indicate a clear need for additional test cases. The rule lists show where

the need can be found. Paths uncovered can be extracted from rules dependent on one

another present in the list. As each level of coverage in the metrics is sought, the rule lists

provide a map to this goal. What needs to be remembered, however, is that the two types

of rule lists should be used in conjunction with one another. If a rule is exercised in one

test case but not another, then it may be adequately covered.

4.1.3 Master Graph

The master graph is a compiled graph consisting of all the rules in the system. This

graph is “flattened” by omitting time-based iteration data that is found in the individual

test case graphs. All the inputs of each individual test case compiled produce the input

for the master graph. These metrics and rule lists provide an extra set of measurements
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which could be used to compare against the individual graphs and test cases. It may be

considered adequate to achieve completeness on the master graph. However, this graph

does not include timing and iteration data found in the details of the individual test cases.

If these details are considered important, then overlap of the test cases must be considered

in determining full coverage.

One of the rule lists output by the graph analysis tool (see section 3.3.2) represents

the list of rules not fired in all the test cases combined. A difference between this list and

the list of rules not fired during traversal of the master graph indicate that the difference

in the graph affects analysis. If more rules are covered in the master graph than in the

domain of the combined test cases, then an analysis of the rules not covered in the test

cases would be necessary to determine why they were not exercised. Such a scenario

could reveal execution paths which exist in the system but are not tested by the suite. New

test cases could be generated in consideration of these overlapping portions between test

cases structures. The master graph could also prove to have fewer rules covered than the

combined test cases. Such a finding would show that the master graph does not represent

enough of the structure for the models to provide an accurate picture of test coverage, and

therefore should be not used.
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CHAPTER 5

CONCLUSIONS

5.1 The Research

In the beginning of the research, a literature review presented several possible struc-

tures built on rule-based systems. Several structures were found, as seen in chapter 2.

Section 2.1.1 shows structures based on the flow of data, showing values as inputs and

outputs for rules. We also see control flow structures in section 2.1.2 illustrating rule-to-

rule relations. Loci, the application framework for the case study, utilizes a structure of

the former type in its methods of scheduling and executing the rule base [21]. This graph

provides a structure for the case study.

The case study was the test suite used for the Chem application developed around the

Loci framework. Known as Quick Test, this suite provides a set of inputs to the rule-based

models in Chem, each producing a set of computations with known outcomes. These

inputs, along with the rule-based structures from the Loci framework, offered a case study

which helped to understand how structural analysis can benefit rule-based systems.

In order to perform the case study, a software tool was needed to trace the graph starting

with the inputs provided. Marking the graph as it is traversed, the tool measures the amount

of coverage achieved by the test cases. Three metrics are used for this. The Classes metric
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gives the ratio of the number of class nodes in the graph reached by traversal to the total

number of classes. The Findings-Class Pairs metric gives the percentage of finding-class

pairs in the graph that have one or more paths between then exercised by the testing.

Finally, the Edges metric measures the number of edges traversed divided by the total

number of edges in the structure. Finally, after these metrics are calculated, all the rules not

covered by testing are listed, along with the missing variables needed to fire the rule. These

lists provide a way for the developers of Chem to identify parts of the model which Quick

Test omits. This extra input from the developers added to the analysis of the structural

testing for rule-based systems.

The final results of the research were produced from the metrics and the rule lists

produced by the graph analysis tool. Each of the metrics produced failed to reach 100%.

These metrics show that, in fact, the Quick Test suite does not test the entire structure

for Chem, and therefore does not adequately exercise the Chem models. Also, the list of

unfired rules, when analyzed by the developers, enabled them to identify the exact portions

of the models which remained untested.

5.2 Developer’s View

These results were presented to the primary developer of Loci, Dr. Ed Luke of Mis-

sissippi State University. He first stated that the metrics did not have a clear application

to Quick Test. However, the rule lists did provide a means to identify specific portions of

Chem models left untested by Quick Test. Dr. Luke pointed out that the rule lists showed

that some of the untested portions consisted of experimental features not intended for end
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users. Therefore, the lack of coverage on these portions of the models is acceptable. Other

uncovered portions identified by the rule lists were not experimental. These specific un-

covered portions did in fact show deficiencies in the test suite of which he was unaware.

Dr. Luke’s final assessment was that the structural analysis did provide beneficial infor-

mation regarding the completeness of Quick Test and indicated what portions of the Chem

model needed more focus by the test suite.

One additional comment from Dr. Luke was that the automated analysis provided by

the Graph Analysis Tool is useful to his work. The structures produced for the Chem

models were very large and complex. Manual analysis of these structures would have

been very long and tedious, as well as error prone if done by hand. The automated process

produced quick reliable results which revealed portions of the Chem models currently

untested.

5.3 Conclusions

Four questions guided this research based on the hypothesis presented in section 1.2.

These questions, listed in section 1.4 are as follows:

1. Can relations between rules in a rule-based system provide a structure to use in
structural testing techniques for rule-based systems?

2. Can structural coverage measurements be used to evaluate the effectiveness of a
rule-based system test suite?

3. What level of coverage over the rule-based system structure generated by Loci is
achieved by test case in Quick Test?

4. What portions of the rule-base structure in Quick Test, if any, are currently untested?
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Question 1 asks if there is a structure, relating rules to one another, which can be used

in structural testing for rule-based systems. During the literature review, several possible

structures for rule-based systems were found. They were originally proposed for several

different purposes. Barr, however, presented using one structure, TRUBAC [2], for the

purpose of structural testing.

Dr. Luke produced a rule-based high performance computing system known as Loci

[12]. The Loci framework produced, as part of its internal functions, a structure represen-

tative of the variables and rules within the models. In our case study, we used the structure

from Chem, built on the Loci framework, to measure coverage of Quick Test and iden-

tify untested portions of the models constructed by Chem. Analysis of these results by

the Chem and Loci developer Dr. Luke indicates that this type of structural analysis does

provide insight into finding untested portions of the system. This shows that rule-based

systems can be represented by a structure which is useful in structural testing techniques.

The next question builds on the first by asking if metrics taken on a rule-based system

structure can adequately quantify testing completeness. The literature review showed us

that Barr [2] had proposed a set of sequential goals to be achieved through testing. These

goals start with class values, or final computations, of the rule-based system. They incre-

ment in complexity as they seek to increase the number of possible paths to these class

values which are covered by testing.

During the case study, three measurements were taken, all based on those proposed by

Barr. These measures are as follows: Classes covered, Finding-Class Pairs covered, and

Edges covered. These measurements all indicated that portions of the Chem rule-based
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structures were in fact not tested. Analysis of the results by the Loci and Chem developer,

Dr. Luke, allowed him to use the rule lists to find the specific classes and the specific rules

which were lacking coverage. Therefore, it is reasonable to state that structural coverage

metrics can support testing assurance in a rule-based system by showing the need, or lack

thereof, for more testing for a system.

An important aspect of these results is that Dr. Luke identified some of the uncovered

portions to be experimental. These sections of the models did not need testing and there-

fore incomplete coverage is acceptable in this scenario. This leads to the conclusion that

the use of ratios for coverage metrics, rather than pure pass-fail sequential goals can be

beneficial to Dr. Luke because he can determine the amount of the system consisting of

experimental features and use this to establish a goal in terms of coverage ratios to achieve

in order to consider that level of coverage adequate for his system.

The final two questions were intended to direct the case study. The metrics chosen

(see sections 3.3.1.1 - 3.3.1.3) indicated that Quick Test had not achieved even the low-

est of the proposed levels of coverage. Along with this finding, the list of rules not fired

during tested indicated the specific areas not tested by Quick Test. Some of these sections

were considered experimental. The developers consider it acceptable to leave these exper-

imental features untested. Even so, some sections which need to be tested were omitted

by Quick Test. The rule lists enabled Dr. Luke to identify these untested portions of the

system.

One unexpected benefit from the research came from identifying some of the untested

portions of the structure which consist of experimental features. Dr. Luke stated that by
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identifying these features in the structure, he was able to begin to consider which parts of

the models utilized these experimental features. Occasionally, in order to obtain results,

these features were inserted into the model. This structural analysis helped Dr. Luke to

consider which portions of the model are still using experimental features. Dr. Luke could

then identify which computations are still considered experimental and not intended for

the end-user.

The hypothesis for this work stated that structural testing can provide evidence that the

models constructed within the rule-based system have been adequately tested. The case

study revealed the ability to use structural coverage metrics to identify the need for further

testing, and structural path analysis to identify untested portions of the system. Struc-

tural path analysis can also produce new test cases to maximize coverage. Therefore, this

research shows that structural testing provides additional assurance to rule-based system

testing by showing completeness of the test suite against the models the rule-based system

is intended to compute.

5.4 Contributions

Rule-based systems, like those built on the Loci framework, define computations through

the interaction of data with logical rules. Sometimes rules will interact with each other by

having decisions and computations of one set of rules act as input to another. Together,

these interactions create models intended to represent either physical conditions, like that

found in Chem’s computational fluid dynamics models, or logical conditions though pro-

cesses. While structures have been proposed, most of these structures are intended for

33



other purposes like design [1], specifically finding error in logic such as infinite loops or

self-contradictions [19], or requirements based testing [10]. These types of testing, known

as black box testing, do not consider code or code structure.

While black-box testing can be useful in supporting assurance, it does not show the

correctness of the code itself. Since the computational and logical models are found in

the code of a rule-based system, it is important to test the code, rather than just the func-

tionality. This testing can provide assurance in the correctness of the implementation of

the functionality. Structural testing techniques provide a method for developers to gener-

ate test cases which are centered around the code and the code structure of the rule-based

system. This testing technique provides a means to show how much of the code has been

tested, and therefore provide improved assurance in the implementation of that system.

This research provides support to rule-based system testing by showing that struc-

tural analysis can support the development of rule-based systems by improving testing

techniques. Structural analysis of Quick Test provided a means for the Loci and Chem

developers to find untested computations of the models. While Dr. Luke expected some

portions to be untested, he was not aware of what was untested and stated that he had no

way before this research to identify where deficiencies in Quick Test lay.

5.5 For Further Research

There remains much more research that can be performed from this point. The analysis

by the Graph Analysis Tool worked from the fact that each rule in the code requires all the

inputs to fire. This is different than the average rule-based system which can use complex
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logical expressions to determine whether a rule fires or not. Further research involving

case studies that use analysis on such a rule-based structure would help to provide better

understanding of how structures in rule-based systems lend themselves to providing white

box testing benefits.

Interestingly, extended research to measure more complex rule-based structures can

still use Chem or any other Loci-based application. After the research was complete, it

was learned that, while syntactically the rules do require all inputs to fire, the “priority”

rules behave in a way that creates a complex relation semantically which behaves like

a typical rule-based system. If the Graph Analysis Tool was designed to dynamically

generate its graph traversal engine based on results of parsing “priority” rules, this would

result in a study on a rule-based structure which uses a more complex mechanism for

scheduling rules to fire.

Even without branching into more complex rule structures, detailed path analysis could

be very beneficial to the field of rule-based system testing. As was shown in the case study,

after the metrics were analyzed, the list of non-fired rules enabled Dr. Luke to specifically

identify portions of the Chem models that have not been tested. The rule lists could in fact

then be used to support path analysis that would lead to new test cases. There could even

be a new tool generated which could identify uncovered paths which if tested would lead

to higher levels of coverage.

Finally, more metrics could be researched. Dr. Luke stated that the metrics used in this

research did not appear to have clear meaning to his system. While that does not mean that

they would not have clear meaning to any rule-based systems, it does show that identifying
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which metrics provide greater analysis support to rule-based system developers is needed.

Also, as more complex structures are used in future rule-based system testing research,

more metrics could be included. This could help determine which metrics provide mean-

ingful results to the testers and the developers. Barr presented several more metrics which

could be utilized in future research [2].

5.6 Potential Applications

The first of new applications this research can be used for is the development of new

testing techniques for rule-based systems. Testers can identify structural components in

their system which contribute to the different levels of coverage. For example, a tester

could first identify each class and make a test case to complete at least one path to each of

these classes. Then, paths between findings for these classes could be identified, adding

one more level of coverage. As further research improves the understanding of rule-based

systems, these techniques could result in more efficient test cases, reducing the time spent

in testing for a system.

Software tools, like the one built for the case study, can also be built to benefit testers.

These tools could be made to identify components of the rule-based structure which are not

yet tested, and possibly even highlight paths which would add necessary coverage to the

test suite. This coverage could lead to automated test case generations which maximizes

test coverage while reducing time spent in testing. Such a tool could increase quality

assurance of products designed around logical programming while possibly decreasing

cost of development.
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A systematic literature review was performed in order to identify previous work on

structural testing for rule-based systems. This review was based on the outline from Mian

et al. [15]. A systematic literature review is a formal review process which documents the

search, selection criteria, and the selection. This assured repeatability so future researchers

can use similar methods to determine what new work has developed since this review was

performed. The results of this review can be found in chapter 2. This appendix presents

the structure and methods used for the systematic review.

A.1 Review Needs and Background

The first step the systematic literature review is to establish the needs of the review as

well as the current knowledge of the reviewer. This section presents the problem which

inspired the literature review. From there, questions which we hope to answer with the

review are discussed. In order to establish a starting point, the researcher’s current knowl-

edge of structural testing and rule-based systems are presented. Finally, this section shows

what is hopefully to be gained from the work.

A.1.1 Problem

This literature review is intended to support research in identifying the usefulness of

structural coverage testing techniques for rule-based systems. Coverage testing for any

system requires two main aspects. These are structures defined over the system and metrics

defined over these structures. Therefore, this review needs to identify previous work done
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in order to define a structure contained within the knowledge base of a rule-based system,

and metrics defined which measure the coverage across these structures.

A.1.2 Questions

The following questions are the focus of the literature review:

• What structures can be extracted from a rule-based system?

• What metrics can be used to identify test coverage on a rule-based system?

A.1.3 Prior Knowledge

The following list contains the knowledge held by the reviewer prior to the review:

• logical programming — a basic understanding of building and using rule-based sys-
tems

• rule-based dependency — rules can effectively “call” one another by making asser-
tions in the right hand side which match the left hand side of another rule

• coverage testing — the process of testing a system in a manner to assure the maxi-
mum coverage of the system’s code and structure

• control flow and data flow — measurements and graphs depicting how control of
the system and data being processed is transferred from one portion of the program
to another

A.1.4 Keywords and Synonyms

In order to effectively find prior studies, the terms used in the rule-based systems and

structural testing literature, including various synonyms, needed to be identified. Since

often times authors use different words to describe the same thing, it is important to know

and understand different varieties. The following list presents the terms found to be used

commonly in literature:
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• Rule-based Systems:

– rule based, rule-based

– expert system

– production system

– knowledge base

• Structural Testing:

– structure

– metrics

– coverage

– testing

– verification

– validation

A.1.5 Intended Observations

We intended to find existing literature on defining structures on rule-based systems.

These structures were to show data flow, control flow, relations between rules, and log-

ical paths leading to intended calculations, decisions, or goals. We also intended to find

existing literature on coverage testing and coverage metrics defined on rule-based systems.

A.1.6 Expected Results

We expected to find literature about rule-based system structure, including structures

which define dependency, and structures defining data flow. We also expected to find

measurements across these structures defining path coverage and rule coverage.
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A.1.7 Population

We were searching the literature available in academic databases, the Internet in gen-

eral, and in the MSU Mitchell Memorial Library, as well as any other libraries searchable

via the online search at the MSU library website.

A.1.8 Application

We expect the results of this work to be useful to anyone developing software using

logical programming techniques.

A.2 Selection of Sources

The following sections list the criteria used to select sources and databases to be

searched.

A.2.1 Definition of Criteria

For a source to be included in the search, it must meet the following requirements:

• Language: The studies need to be documented in English.

• Accessible: Studies must be able to be found in one of the following:

– MSU Mitchell Memorial Library

– Public Libraries participating in Inter-Library Loan

– Online databases where full text is accessible to students of Mississippi State
University

• Searchable: The source needs to support a search option. This is because the topic
may be covered in multiple areas and an exhaustive search through various sources
without a computer-aided search method is infeasible.

• Subject Search: The source needs to support narrowing searches to computer science
studies.
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A.2.2 Identification of Sources

Sources were selected before the search began, and this selection evolved as the review

revealed other useful sources as well as showing that previously selected sources were not

helpful.

• Sources Search Methods:

– Expert Interview: librarians and professors

– MSU Library Database: database of academic sources with brief descriptions

– Google Scholar: Internet search engine indexing multiple academic sources

• Search String: Several search strings were used. While not all databases support the
complex boolean searches as they are, the search strings can be altered accordingly.
The searches are split up into searches for structures and searches for metrics

– Structure:

∗ (“rule based” OR “rule-based”) AND structure
∗ “expert system” AND structure
∗ “production system” AND structure
∗ “knowledge base” AND structure
∗ (“rule based” OR “rule-based”) AND (verification OR validation)
∗ “expert system” AND (verification OR validation)
∗ “production system” AND (verification OR validation)
∗ “knowledge base” AND (verification OR validation)

– Metrics:

∗ (“rule based” OR “rule-based”) AND “coverage metrics”
∗ (“rule based” OR “rule-based”) AND “coverage testing”
∗ “expert system” AND “coverage metrics”
∗ “expert system” AND “coverage testing”
∗ “knowledge base” AND “coverage metrics”
∗ “knowledge base” AND “coverage testing”
∗ “production system” AND “coverage metrics”
∗ “production system” AND “coverage testing”
∗ (“rule based” OR “rule-based”) AND metrics AND (NOT complexity)
∗ “expert systems” AND metrics AND (NOT complexity)
∗ “production systems” AND metrics AND (NOT complexity)
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∗ “knowledge base” AND metrics AND (NOT complexity)
∗ (“rule based” OR “rule-based”) AND testing AND coverage
∗ “knowledge base” AND testing AND coverage
∗ “expert systems” AND testing AND coverage

• Sources List: These sources were identified initially for the search.

– MSU Library Indexes and Databases

– Science Citation Index

– EBSCOHost

– ACM Digital Library

– ACM Guide

– IEEEXplore

– Google Scholar

A.2.3 Source Selection after Evaluation

The following list of sources contained included studies:

• ACM Digital Library

• IEEEXplore

• Google Scholar

A.3 Selection of Studies

Primary studies for this review were selected with the criteria presented in this section.

A.3.1 Study Selection Definition

Here, the methods for selecting studies are defined.

• Inclusion Criteria:

– Discusses structures built on rule-based systems, production systems, expert
systems, or knowledge bases
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– Discusses measurements for rule-based system structure for evaluating test
coverage for rule-based systems, production systems, expert systems, or knowl-
edge bases

• Exclusion Criteria:

– Discusses building rule-based systems to identify structures of other software
systems

– Discusses algorithms or other processes that use structures without defining
said structures

– Repeat studies by the same authors on previously found structures, except stud-
ies that extend the prior study, for example, from a small “toy” project to a real
world case study

• Study Types: The following types of studies were included:

– Journal articles

– Conference presentations

– Theoretical definitions

– Case studies

• Procedure: The selection was done in the following phases:

1. Title filtering: excluding studies whose titles clearly indicate the criteria is not
met

2. Abstract filtering: excluding studies whose abstracts contain exclusion criteria
or do not contain inclusion criteria

3. Introduction reading and study skimming:

(a) Read study introduction
(b) Skim study material
(c) Exclude studies with no promising definitions or figures

4. Data extraction:

(a) Read article
(b) Extract data to data extraction form (see section A.4.2)
(c) Exclude if no data can be extracted (see section A.4.1)
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A.3.2 Selection Execution

A small number of relevant studies were found. While a formal review including

parallel reviews and critiques was not performed, a brief evaluation of their content was

done.

• Included Studies: The following is the list of studies selected for this review.

– “Structural Testing of Rule-Based Expert Systems” [9]

– “Exploring the Structure of Rule-Based Systems” [5]

– “Rule-Based System Testing with Control and Data Flow Techniques” [2]

– “Dynamic Memory Management in the Loci Framework” [21]

– “Structured Tools for Rule-Based Systems” [1]

– “Rule-Base Verification Using Petri Nets” [19]

– “Enhanced High-Level Petri Nets with Multiple Colors for Knowledge Verifi-
cation/Validation of Rule-Based Expert Systems” [17]

– “A New Scheme for Verifying Rule-Based Systems Using Petri Nets” [7]

– “Using Directed Hypergraphs to Verify Rule-Based Expert Systems” [16]

– “A Token-Flow Paradigm for Verification of Rule-Based Expert Systems” [18]

– “A High-Level Petri Nets-Based Approach to Verifying Task Structures” [10]

• Study Quality: Quality was recorded in data extraction (see A.4.2) but was not used
for inclusion or exclusion criteria.

A.4 Information Extraction

Information was selected and extracted from the selected studies by the following

means.

A.4.1 Inclusion and Exclusion Criteria

After studies were selected, the information extraction criteria was divided into infor-

mation for structures and graphs representing rule-based systems and coverage metrics for

rule-based system structure.
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A.4.1.1 Graphs and Structures

Several graphs and structures were found in literature, but not all were found to be

useful. The following inclusion and exclusion criterion were used during the review pro-

cess.

• Inclusion:

– Well defined structures: at a minimum, verbal descriptions of entities and rela-
tions, formal definitions preferred

– Relations between rules can be shown:

∗ output of one rule acts as input to another
∗ entities are rules and relations between entities define relations between

rules

– Unique structures: redefinitions excluded

• Exclusion:

– Structures defined over non-rule-based systems

– Structures with no clear mapping to rule-based system attributes

A.4.1.2 Metrics

Metrics defined for the purpose of testing turned out to be fairly rare. Other metrics

were found however, and the following criterion were used to determine which studies

were pertinent the needs of this study.

• Inclusion:

– Metrics defined for test coverage

– Metrics defined over structures for rule-based systems

• Exclusion:

– Metrics defined for complexity

– Metrics defined over code

– Metrics defined over problem-space or knowledge space

– Metrics defined specifically for non rule-based system structures
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A.4.2 Data Extraction

Table A.1 was used for extraction of structure data for rule-based systems. Table A.2

was used for extraction of coverage metrics for rule-based system structure.

Table A.1

Structures for Rule-Based systems

Data Item Description
Bibliographic Data Full Citation
Database or Search engine Database that study was found in
Query used Query used to find study
Type of Article Journal, Conference presentation, workshop, etc

Theoretical, Toy Project, Case Study, Empirical
Structure Name of structure defined in study
Entities Entities in study, these usually are antecedents or rules
Relations Relations between entities in structure
Comments Miscellaneous comments about paper and structure

A.5 Distribution of Studies

The studies selected were found across three search engines, and varying in publication

types, study types, and specific topics. In this section, the distribution across these aspects

will be presented. Numbers presented are simply the count of the studies found out of the

ten included (see Section A.3.2).

What can be seen in Table A.3 is that the highest concentration of studies is with

IEEEXplore. The two studies found using Google Scholar were indexed on personal web

sites. The study listed as “Personal Web Site” was found on the developer’s Web site for
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Table A.2

Coverage Metrics for Rule-Based System Structures

Data Item Description
Bibliographic Data Full Citation
Database or Search engine Database that study was found in
Query used Query used to find study
Type of Article Journal, Conference presentation, workshop, etc

Theoretical, Toy Project, Case Study, Empirical
Metrics Definition of metrics
Comments Miscellaneous comments about paper and metrics

the Loci high-performance computing package. Because Google Scholar indexes several

databases, it was searched last. When no more studies were found to be indexed on other

databases, then we concluded that the search was complete.

Table A.4 shows that the included studies were approximately balanced between jour-

nal articles and conference presentations. No workshop presentations or technical reports

on this subject were found. Table A.5 shows that there were twice as many toy projects

studied than case studies, and no controlled or real-world experiments. This indicates a

need for more full-scale studies.

A.6 Publication Bias

The problem of publication bias refers to the tendency of positive results being more

likely to be published than negative results. The question proposed for this review was

to find what structures and metrics have been proposed. This does not include what have

been shown to be useful. Therefore, this problem does not present a threat to this review.
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Table A.3

Database/Search Engine Distribution

Database/Search Engine Number of Papers found
IEEEXplore 6
Google Scholar 2
ACM Digital Library 1
Personal Web Site 1

Table A.4

Article Type Distribution

Article Type Number of Studies
Journal Article 6
Conference Presentation 4
Workshop Presentation 0
Technical Report 0

Table A.5

Study Type Distribution

Study Type Number of Studies
Theoretical only 1
Toy Project 6
Case Study 3
Controlled Experiment 0
Real-World Experiment 0
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APPENDIX B

GRAPH ANALYSIS TOOL
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A software tool was required to analyze structure graphs for the Quick Test case study.

The requirements of the tool were to accept the graphs and test inputs in files. The tool

then needed to measure coverage of the graphs that resulted from traversal starting with

input nodes down to class nodes.

The graph analysis tool took several weeks to develop. The tool was used to analyze

graphs representing the structure of the Quick Test rule-base. The tool accepts the folder

containing the graph files. These graphs files are parsed, then measured. This chapter

describes the tool and how it supported this research.

B.1 Input Files

During execution, Loci generates a graph structure representing the relations of vari-

ables and rules to each other. The purpose of this structure is to determine which calcu-

lations can be performed in parallel and which must be completed sequentially. These

structures were saved to a file for the purpose of this research. This section discusses the

format of the files, and how they were parsed for the tool.

The file was an ASCII text file with a .dat file extension. The file amounted to a list of

inputs for that graph, a list of nodes, and a list of connections. Each node had an identifier

that was a non-zero integer. The difference between variable nodes and rule nodes were

that variable nodes had positive identifiers and rule nodes had negative identifiers.

The first section of the format is an optional section specifying a list of inputs for

the test case. After the list of inputs, the graph is given as a list of nodes and a list of

connections. The list of nodes is a set of colon separated integer-string pairs. The integer is
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a node identifier. A negative number indicates the node represents a rule in the rule-based

system. A positive number indicates the node is a variable. If the node is a rule node,

the string is the rule as it appears in the original source code. Should the node represent

a variable, the string represents the name of the variable in the rule-based system. Each

connection is represented in the connection list by one integer followed by a set of integers.

Each integer is a node identifier appearing in the node list earlier. The list represents edges

going from the first node to all the following node in the list for that set of connections.

B.2 Development

A graphing library was needed to represent the Quick Test graphs in memory and

provide a method for analyzing these graphs. The library needed to be able to iterate

through the nodes, number and list incoming and outgoing edges, and save the graph to

a portable file format. GraphML is a file format which uses XML syntax to represent

the graph’s nodes and edges. Meta-data can be represented by attributes to the nodes and

edges.

Two options in developing the tool were building a graphing API or using an off-the-

shelf API. The needs of the API would require data structures to represent the graph, the

nodes, and the edges. Also, the API would need to be able to store meta-data in the graph

and save the graph to a GraphML file. Gravisto provided all of these needs. Prior expe-

rience with Gravisto gave this option no learning curve and no needed development time.

For this reason, the Gravisto library was chosen over developing a customized graphing

library.
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B.2.1 Gravisto API

Gravisto provides classes to represent the graph, the nodes, and the edges. From

a graph object, a program can iterate through all the nodes or all the edges. A graph

object contains node objects and edge objects. This object can store attributes about the

graph of all major data types: Integer, Float, Double, Boolean, String, and generic Object.

These attributes are referred to by names, known as paths. Graphs can be directed or

undirected. Directed paths differentiate the direction of edges as incoming or outgoing

from a particular node. Undirected graph semantics define edge flow as bidirectional.

The node interface provides methods for many node-based functions. Using this inter-

face, a program can obtain a collection of all incoming or outgoing edges. The interface

also provides methods for acquiring adjacent nodes in the graph. The methods can dif-

ferentiate between adjacent nodes attached to incoming edges from those attached to out-

going edges. Finally, nodes also provide attribute support. These attributes can provide a

method for identifying variable nodes in a rule-based structure from rule nodes. A boolean

attribute can also be used to identify rules which have been fired and variables which have

been input or calculated.

Edge interfaces also provide many useful graph functions. Methods in the interface

allow a user to acquire the source node and target node objects for the edge. Attributes for

the edge, such as the node interface and the graph class, can be stored in most Java data

types. These attributes provide a means of identifying edges which have been traversed

within the rule-based graph.
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B.2.2 Traversing the Graph

Each node in the graph is given a boolean attribute labeled isFired. For variable

nodes, a true value for this boolean means the variable has either been provided as input

or calculated in the firing of a rule. In a rule node, this attribute indicates whether or not

the rule has been fired.

For all Quick Test graphs except the master graph, the file will have a set of inputs

listed. Each node with a name attribute matching one of the names in the input list has

the isFired attribute set to true. This sets the graph in its initial stage with input data

present. The master graph is a special graph which represents the system as a whole.

This graph removes time-based iterations but includes all rules within the system. The

tool aggregated the inputs of all the test cases together in order to initiate traversal of the

master graph.

In Loci, rules can be fired if all data is provided to the system as input [13]. There-

fore, for traversal, when a rule node is reached, all incoming node neighbors are iter-

ated through. If all incoming node isFired attributes are set to true, the rule node’s

isFired attribute can be fired, indicating the rule would be fired in the Loci system.

The first step in traversing the graph involves collecting a list of all rule nodes in

the graph. This list is iterated through multiple times. For each rule node, if the rule

can be fired, the isFired attribute is set, and all incoming and outgoing edges have

the isTraversed boolean attribute set to true. Also, the isFired attribute for all

outgoing neighbor nodes is set, and the rule node is removed from the list of rule nodes.
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This iteration is repeated until the list is empty, or until one full iteration is completed

without a single rule node being fired.

B.3 Output

The Graph Analysis Tool presented three outputs. The metrics spreadsheet showed

coverage measurements of Quick Test over the Loci structures. The rule lists presented

rules that were not fired in test cases along with variables not calculated. Finally, graphML

files were output representing uncovered portions of the Loci structures.

B.3.1 Metrics Spreadsheet

A comma separated variables file was used to represent a spreadsheet of metrics taken

for each test case in Quick Test by the Graph Analysis Tool. This spreadsheet consisted

of four columns. The first column listed each test case name according to the name of the

graph file provided for that test case. The following three columns represented the levels

of coverage achieved by each test case: Classes, Finding-Class Pairs, and Edges. These

metrics are discussed in further detail in section 3.3.1.

B.3.2 Rule Lists

While debugging the program, some rules in the graph were not being traversed, even

though it was known that these rules were being computed in the test cases. In order to

understand why, a text file listing each rule node which was not traversed was output. After

each rule, an indented list of required input variable nodes for that rule followed. One such

file was written per graph.
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After debugging was complete, this feature was left in the tool, in order to allow the

Loci developers to analyze the results better. The list of untested rules will allow the de-

velopers to identify new test cases. Such an analysis could also provide extended benefits

to this research by showing the usefulness of structural testing to the developers.

B.3.3 GraphML File

After processing the graph from the file, all nodes and edges covered were removed,

and the file was rewritten to disk with the changes. To do so, all edges with a true value

isTraversed were removed from the graph. Then, all nodes with no incoming or outgoing

edges were also removed. This process left a graph with only uncovered portions remain-

ing. As with the list of uncovered rules, this graph can be used by developers to determine

new test cases to cover the previously uncovered portions.

This graph is stored in the graphML format. This format is supported in the Gravisto

library [3]. As was discussed before, the graphML format is an XML-based format. The

Gravisto library automatically generates the XML and saves the graphML file. This file

can be viewed in any visualization toolkit which supports graphML. The graphML files

were not used in analysis of the case study, because they proved to be large and complex.

No visualization toolkit was found capable of rendering an organized presentation of the

graph along with its meta-data. This would lead to too much information presented in an

format which could not be organized and analyzed in the amount of time given for this

research.
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APPENDIX C

METRICS TABLE FROM THE GRAPH ANALYSIS TOOL
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The following tables present the metrics produced through use of the graph analysis

tool described in chapter B.

Table C.1

Metrics Results

Graph file
Classes Metric Findings-Class Pairs Edges Metric
Viscous highSpeed TEST wallLawTwallgraph.dat
0.6 0.43193159 0.6918446

Viscous lowSpeed TEST diffusiongraph.dat
0.47368422 0.4218492 0.6764627

Viscous lowSpeed TEST lidgraph.dat
0.47368422 0.4166172 0.6679629

Viscous lowSpeed TEST wallLawAdiabaticgraph.dat
0.6 0.43063426 0.6894229

Viscous lowSpeed TEST wallLawTwallgraph.dat
0.6 0.43229812 0.69109666

masterGraph
0.7777778 0.1840504 0.4032941
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Table C.1

Metrics Results cont’d

Graph file
Classes Metric Findings-Class Pairs Edges Metric
Inviscid lowSpeed TEST inflowgraph.dat
0.47368422 0.39823008 0.70780456

Inviscid lowSpeed TEST isentropicgraph.dat
0.47368422 0.399287 0.6550662

Inviscid lowSpeed TEST shock tubegraph.dat
0.44444445 0.35183823 0.6638935

Inviscid lowSpeed TEST superSonicgraph.dat
0.47368422 0.3969278 0.69996923

Viscous highSpeed TEST adiabaticgraph.dat
0.6 0.47372863 0.71039355

Viscous highSpeed TEST Twallgraph.dat
0.6 0.47332913 0.71170986

Viscous highSpeed TEST wallLawAdiabaticgraph.dat
0.6 0.43050477 0.68981904
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Table C.1

Metrics Results cont’d

Graph file
Classes Metric Findings-Class Pairs Edges Metric
Inviscid highSpeed TEST cfitgraph.dat
0.47368422 0.39757943 0.7013294

Inviscid highSpeed TEST cylindergraph.dat
0.47368422 0.3975939 0.6566139

Inviscid highSpeed TEST fixedMassgraph.dat
0.47368422 0.40121844 0.65475154

Inviscid highSpeed TEST inflowgraph.dat
0.47368422 0.39823008 0.70780456

Inviscid highSpeed TEST isentropicgraph.dat
0.47368422 0.399287 0.6550662

Inviscid highSpeed TEST nozzlegraph.dat
0.47368422 0.39848942 0.7094409

Inviscid highSpeed TEST shock tubegraph.dat
0.44444445 0.35183823 0.6638935

Inviscid highSpeed TEST superSonicgraph.dat
0.47368422 0.39785275 0.7083731

Inviscid highSpeed TEST wedgegraph.dat
0.52380955 0.4710093 0.6894494

Inviscid lowSpeed TEST cylindergraph.dat
0.47368422 0.3975939 0.6566139

Inviscid lowSpeed TEST fixedMassgraph.dat
0.47368422 0.40121844 0.65475154
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