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A two-year study was conducted to characterize isolates of the chestnut blight fungus 

(Cryphonectria parasitica) from the Great Smoky Mountains National Park (GRSM). Of 

339 isolates, 54 had abnormal cultural morphologies and 3 contained dsRNA. Analysis of 

vegetative compatibility (VC) divided all isolates into 34 groups, 16 of which only 

contained one isolate. A total of 19 isolates and 3 controls were inoculated onto healthy 

American chestnut trees in the Nantahala National Forest, North Carolina, and data on 

canker growth and stromata production were obtained over six months. Results from the 

field trial indicated that five isolates were potentially hypovirulent. Based on those data, 

isolate, 236-1C, has the greatest potential for use as a biological control agent for the 

pathogen in the GRSM, but compatibility is limited to select VC groups. Additional 

hypovirulent isolates representative of the other VC groups must be identified before 

large scale biocontrol can succeed. 
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CHAPTER 1 

INTRODUCTION 

The Great Smoky Mountains National Park (GRSM), which borders Western 

North Carolina and East Tennessee, contains approximately 2,200 km2 of a very diverse 

assemblage of plant life including over 130 tree and 1,570 vascular plant species 

(Sharkey, 2001). Elevations within this unique geographical area range from 265 to 

2,024 meters, and the park contains five major forest types ranging from low elevation 

cove hardwood and hemlock forests to high elevation spruce-fir forests (Great Smoky 

Mountains Institute at Tremont, unpub. data). Prior to 1920, the American chestnut 

(Castanaea dentata (Marsh.) Borkh.) composed approximately 65% of the overstory, or 

25% to 40% of tree basal area, of what is now the GRSM (Ashe, 1911; Vandermast and 

Van Lear, 2002). Presently, however, this species has been reduced to an understory 

species that does not contribute to overstory composition. 

Cryphonectria parasitica (Murr.) Barr. 

The chestnut blight fungus, belonging to the phylum Ascomycota and Order 

Diaporthales, is also parasitic on different species of chestnut trees, including European 
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chestnut (Castanea sativa Mill.), and Chinese chestnut (Castanaea mollissima Bl.). 

Cryphonectria parasitica has also been shown to be saprophytic on other hardwood 

species such as red oak (Quercus rubra L.) (Carey, 1985; Baird, 1991). Originally 

described as Diaporthe parasitica Murr., the fungus was soon renamed Endothia 

parasitica ( (Murr.) P.J. & H.W. And.) (Kuhlman, 1978), then later C. parasitica in 

1978 (Barr, 1978). 

Ascospores of the fungus are most frequently wind disseminated, while asexual 

conidia are often spread by rain splash (Liebhold et al., 1995). The fungus enters healthy 

bark tissue through wounds or direct penetration, after which it spreads into inner bark 

tissues by formation of mycelial fans (Hebard et al., 1984). Infection leads to canker 

formation which is often accompanied by a darkening of external bark tissue that 

eventually becomes slightly raised and violet to red in color. The center of a canker 

often develops distinct cracking or splitting, and a number of orange stromata extrude 

from the bark surface at the outer margins of the canker (Turchetti, 1978; Elliston, 

1982). Often, epicormic shoots form proximally to the canker in response to tissue death 

at the canker site (Turchetti, 1978; Jaynes and Elliston, 1982; Heiniger and Rigling, 

1994).

 The fungus does not infect the roots of chestnut trees, and will not survive in 

soil (Weidlich, 1978). The inability of the pathogen to persist in soil is believed to be 

due to the inhibitory effect of competition with other organisms, such as Trichoderma 

spp. (Weidlich, 1978). As a result of this antagonism, the roots of chestnut trees persist 
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after the pathogen has killed the entire aboveground portions of the host. No large, 

surviving American chestnut trees found to date have exhibited more than a low level of 

resistance to C. parasitica (Griffin et al., 1983; Kubisiak et al., 1997). Many surviving 

American chestnuts found in the forests of the eastern United States are located on 

desirable sites free from competition with other trees (Whittaker, 1956; Griffin, 1992). 

Chinese chestnut (Castanaea mollissima Blume) generally shows greater 

resistance to C. parasitica than American chestnut, although it has been reported that 

Chinese chestnut exhibits a wide variation in resistance to the pathogen (Huang et al., 

1996). Numerous programs have sought to breed American chestnut trees for resistance 

to C. parasitica through selective breeding and backcrossing with resistant species such 

as the Chinese chestnut (Given and Haynes, 1978; Anagnostakis, 1987; Anagnostakis, 

1992; Kubisiak et al., 1997). However, since Chinese chestnut does not develop a 

straight, tall bole, it does not have the potential to become a dominant overstory species 

as the American chestnut. Therefore, breeding efforts have focused on selecting for as 

many characteristics of the American chestnut as possible in hybrid trees while 

maintaining resistance to the fungus (Jaynes, 1978). However, because the policies of 

the National Park Service (NPS) prohibit the introduction of material not endemic to the 

park, introduction of crosses into the GRSM would not be allowed. 
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Discovery of Cryphonectria parasitica in North America 

Although the chestnut blight fungus is believed to have been introduced into 

eastern North America as early as 1890, the pathogen was originally reported in the 

United States at the New York Zoological Gardens in 1904 (Merkel, 1905; Elliston, 

1982). During that year, cankers were observed on American chestnut trees in a few 

scattered locations throughout the park. Within a year, over 98% of the chestnut trees in 

the park showed symptoms of C. parasitica infection (Merkel, 1905). It was quickly 

recognized that the pathogen had the potential to eliminate the entire population of the 

American chestnut within the region, and that any healthy trees in blighted stands were 

not disease-resistant, but simply had not yet become infected (Merkel, 1905; Gravatt, 

1926). By 1909, a majority of the American chestnut trees within 48 kilometers of New 

York City were infected, with the main disease center moving outward at approximately 

16 to 38 kilometers per year and numerous spot infections developing up to 190 

kilometers from the infection center (Kuhlman, 1978; Anagnostakis, 1987). 

It was observed that 10 cm diameter stems could be killed within 21 days of the 

initial development of symptoms, which often included the formation of necrotic 

cankers on bark tissue (Merkel, 1905; Elliston, 1982). The pathogen is hard to detect in a 

stand where less than 1% of the trees are infected with the pathogen, but once 

established, the fungus spreads rapidly to other portions of infected trees and to the 

surrounding population (Gravatt, 1926). 
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Soon after discovery of C. parasitica in the United States, state and local 

authorities attempted to control the spread of the fungus through various means. 

Methods of control including cutting and burning of infected material in an attempt to 

reduce the concentration of inoculum in an infected stand, and spraying of live trees 

with fungicides such as a solution of copper sulfate were attempted as a measure to 

lessen the severity of the fungus on individual trees, though spraying proved to be 

difficult and expensive (Merkel, 1905). In 1911, the state of Pennsylvania allotted 

$275,000 to the Chestnut Blight Commission, and authorized the commission to 

cooperate with landowners in the removal of infected material. However, these efforts 

did little to either stop or noticeably impede the spread of the pathogen (Hepting, 1974). 

Spread of Cryphonectria parasitica into Appalachia. The natural range of the 

American chestnut once extended from southwestern Maine to northern Georgia and 

Alabama following the Appalachian Mountains, where it composed up to 25% or more 

of standing timber in some areas (Elliston, 1982; Anagnostakis, 1987). Throughout the 

Appalachian region, the American chestnut was ecologically and culturally important. 

Many buildings, fences, and utility poles were constructed from chestnut logs, and the 

mast produced by mature trees was used to feed not only domestic animals such as hogs, 

but also wildlife such as squirrels and turkeys (Ashe, 1911; Hepting, 1974; 

Anagnostakis, 1982). 
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The pathogen spread rapidly to the southwest along the Appalachian and 

Allegheny Mountains (Gravatt, 1926). Within 20 years of it’s initial discovery in the 

United States, C. parasitica could be found infecting 80 to 100% of American chestnut 

trees in counties as far south as western North Carolina (Gravatt, 1926). By 1938, 

approximately 12 years after initial discovery of the fungus in the GRSM, 85% of the 

American chestnut trees in the park had been destroyed by the pathogen (MacKenzie 

and White, 1998). Today, the American chestnut generally persists in the environment 

as sprout coppice that originates from roots of trees of which the above ground portion 

has been destroyed, with a small number of trees larger than 20 cm diameter breast 

height (dbh) persisting in scattered locations throughout the southern Appalachians 

(Jaynes and Elliston, 1982; Griffin et al., 1983; Carey, 1985; Griffin, 1992). 

Following the loss of American chestnut in the park, succession in old-growth 

riparian areas led to a forest dominated by many species of oaks (Quercus spp.), while 

disturbed and logged sites are typically dominated by cove mesophytic species such as 

eastern hemlock (Tsuga canadensis L.) (Griffin, 1992; Vandermast and Van Lear, 

2002). However, several hundred American chestnut trees still persist in the understory 

throughout the GRSM (Wood, 2003). These trees are a valuable reservoir of genetic 

material in the survival of the American chestnut. 
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Chestnut Blight in Europe 

In 1938, C. parasitica was discovered near Genoa, Italy, and soon spread rapidly 

throughout Europe, threatening the European chestnut (Castanaea sativa Mill.) 

(Woodruff, 1946; Pavari, 1949; Anagnostakis, 1987). This tree species occurs in the 

Piedmont zone in northern Italy and throughout the middle mountain zone of the 

Apennine Mountains in Central and Southern Italy. In this region, European chestnut 

was an economically important species often grown in coppice stands with a rotation 

period of 15 to 30 years for use in the production of timber, tannin, and nuts 

(Mittempergher 1978; Heiniger and Rigling, 1994). By 1948, between 5% and 100% of 

chestnut trees in stands throughout northwest Italy showed symptoms of infection 

(Heiniger and Rigling, 1994). However, the fungus generally spread less rapidly 

throughout Europe than it had in the United States, and was found to be less virulent on 

European chestnut trees (Mittempergher, 1978; Heiniger and Rigling, 1994). 

Discovery of Hypovirulence (hv) 

In 1950, several abnormal cankers were noted on sprouts in the region around 

Genoa, Italy (Mittempergher, 1978; Elliston, 1982). These abnormal, superficial cankers 

did not completely girdle stems, and infection did not result in death of host tissue distal 

to cankers. A superficial canker is defined as having mycelial fans which do not 

penetrate the vascular cambium (Hebard et al., 1984), and is evidenced by the swelling 

of live bark tissue around the circumference of the canker and by the sparseness or 

7 



 

 

 

 

 

absence of stromata (Griffin et al., 1983; Carey, 1985; Griffin et al., 1993). This 

phenomenon was initially attributed to host resistance (Elliston, 1982), but the 

widespread, sudden appearance of superficial cankers on European chestnut trees 

throughout Italy and France ruled out this in favor of the hypothesis that superficiality of 

cankers resulted from a reduction in virulence of the pathogen (Turchetti, 1978). In 

1965, C. parasitica isolated from these unusual cankers was described as lacking orange 

pigmentation (Grente and Berthelay-Sauret, 1978a). It was later reported that the 

proportion of white isolates recovered was proportional to the superficiality of a canker 

and that white isolates from these cankers were termed “hypovirulent” (Grente and 

Berthelay-Sauret, 1978a). These hypovirulent isolates, if inoculated onto an actively 

growing canker, often cause a reduction in normal colonization rate and can eventually 

lead to formation of callus tissue (Elliston, 1978; Grente and Berthelay-Sauret, 1978b; 

Heiniger and Rigling, 1994). Hypovirulent isolates vary in their degree of virulence, 

although many have been described as completely nonpathogenic (Day, 1978; Willey, 

1980). Highly virulent isolates are able to penetrate the phellodermal generative layer of 

plant tissue that forms in response to infection, while hypovirulent isolates do not grow 

into this layer as quickly (Grente and Berthelay-Sauret, 1978b). 

Hypovirulent forms of C. parasitica were found to rapidly spread throughout Europe. 

Within 15 years of the initial discovery of superficial cankers, hypovirulent forms of C. 

parasitica had become widespread throughout the region (Mittempergher, 1978). In 

Europe, the high incidence of hypovirulent forms of the pathogen did not decrease the 

8 



 

 

 

 

  

 

 

 

incidence of chestnut blight, but drastically reduced its severity. Although C. parasitica 

is still widespread on chestnut trees throughout Europe, the frequency of active and 

superficial or sealed cankers in a region can vary widely, with one study reporting that 

5% to 72% of cankers in a given stand were superficial (Heiniger and Rigling, 1994). 

Hypovirulence Associated dsRNA viruses. In 1969, it was concluded that 

cytoplasmic agents, which could be transmitted through anastomosis, lowered the 

virulence and altered the morphology of isolates of the chestnut blight fungus in vitro 

(Grente and Berthelay-Sauret, 1978a; Elliston, 1982). Analysis of the cytoplasmic 

contents of hypovirulent isolates of C. parasitica revealed that, for all hypovirulent 

isolates examined, a double stranded ribonucleic acid (dsRNA) later found to represent a 

genome of Cryphonectria hypovirus 1 (CHV-1; Shapira et al., 1991) was present in 

fungal cytoplasm. This finding led researchers to conclude that the determining factor 

for hypovirulence was the presence of this dsRNA virus (Anagnostakis, 1978; Dodds, 

1978; Jaynes and Elliston, 1980; Elliston 1982). Through transformation experiments 

involving a vector containing the first open reading frame from a dsRNA known to 

induce hypovirulence, it was demonstrated that the phenotypic expression of 

hypovirulence is due to specific viral coding domains contained on this hypovirus rather 

than a general reaction of the fungus to the presence of replicating dsRNA strands (Choi 

and Nuss, 1992a). As noted by Elliston (1984), virulent isolates do not display wide 

morphological variation in vitro, while hypovirulent isolates exhibit a wide variety of 
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abnormal characteristics. In addition to a reduction in pathogenicity, the presence of 

dsRNA can result in an alteration of phenotypic characteristics such as reduced orange 

pigmentation, reduced sporulation, reduced growth rate (Elliston, 1982), and reduced 

laccase production (Choi and Nuss, 1992b). Hypovirulent isolates often show a lobate 

growth pattern on potato dextrose agar (PDA) (Enebak et al., 1994). Pigmentation in 

hypovirulent isolates varies, with some isolates remaining white and others developing 

cream, yellow, or light orange pigmentation, often in concentric rings, within three to 

five days following transfer (Elliston, 1982). Although the presence of dsRNA can lead 

to a reduction in virulence, some dsRNAs have been demonstrated to have little to no 

impact on pathogenicity in vivo or cultural morphology in vitro (Willey, 1980; Enebak et 

al., 1994; Smart et al., 1999). 

Various dsRNAs have since been described from Cryphonectria parasitica. Many 

of these dsRNAs constitute the genomes of viruses belonging to the genus Hypovirus in 

the family Hypoviridae (Nuss et al., 2005). There are currently four different viral 

species described from C. parasitica belonging to this taxon and designated 

Cryphonectria hypovirus 1 through 4 (CHV-1, CHV-2, CHV-3, CHV-4). Unlike a 

majority of viruses, no true virions are found associated with these viruses Instead, 

polymorphic vesicles containing dsRNA are present in fungal cytoplasm (Nuss et al., 

2005). These dsRNAs may vary in size from approximately 9 kilobase pairs (kbp) 

(CHV-3 and CHV-4) to 13 kbp (CHV-1 and CHV-2) depending on the virus species. 

The effects of these viruses on C. parasitica vary by virus species. CHV-1, CHV-2, and 
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CHV-3 dramatically reduce fungal virulence, while most strains of CHV-4 do not 

debilitate the host isolates. The most studied member of this family is Cryphonectria 

hypovirus 1 isolate EP713 (CHV-1/EP713), a European hypovirus that has become well 

established in fungal populations throughout Italy and France but has not become 

established in North America despite widespread release as biological control (Peever et 

al., 1997). Incidence of hypoviruses in C. parasitica population is higher in North 

America than in Asia (Peever et al., 1997; Peever et al., 1998). One study reported 

finding three hybridization groups throughout North America composed of different 

strains of hypoviruses that vary in their ability to induce hypovirulence in C. parasitica, 

including hypovirus CHV3-GH2 from Michigan and Ontario, (Hillman et al., 2000; 

Nuss et al., 2005), an SR2-type distributed throughout eastern North America, and a 

third hypovirus, CHV2, that was collected only in New Jersey with dsRNA incidence 

ranging from 6% to 100% in populations studied (Hillman et al., 1990; Peever et al., 

1997; Linder-Basso et al., 2005). Cryphonectria hypovirus 4 (CHV4) has been reported 

widely in the environment in West Virginia in both treated and untreated plots, although 

CHV4 is smaller in size and does not induce hypovirulence in C. parasitica (Liu et al., 

2002). Hypovirus CHV-4 is reported to be widespread throughout the entire eastern 

United States, but CHV-1, despite having been deliberately released as a biological 

control of the chestnut blight fungus, is largely absent in North America while being 

prevalent in Europe (Linder-Basso et al,. 2005). 
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Horizontal transmission of this dsRNA has only been demonstrated to occur 

through the exchange of cytoplasmic material of its fungal host with another isolate 

through anastomosis, but it has not been shown to infect other fungi through 

extracellular means (Nuss et al., 2002). Cyclohexamide added to PDA media has been 

demonstrated to destroy dsRNA from hypovirulent isolates and resulted in the isolation 

of virulent dsRNA-free types from originally hypovirulent types. These results provided 

evidence as to the causal role of dsRNA in hypovirulence (Fulbright, 1984). 

To date, Cryphonectria hypoviruses have never been observed to be disseminated 

through ascospores in nature, and can only effectively spread through conidia (Nuss et 

al., 2002). However, 10% to 90% of conidia produced by hypovirulent isolates have 

been found to be free of dsRNA (Nuss et al., 2002). It has been noted that, although 

sporulation is reduced in hypovirulent isolates of C. parasitica, dsRNAs have minimal 

impact on the viability of conidia (Peever et al., 2000). Although this dsRNA hypovirus 

does not contain a protein sheath and does not naturally occur outside of fungal 

cytoplasm, researchers have demonstrated techniques to isolate and identify dsRNA. 

Hillman et al. (1990) outlined a procedure for extraction and isolation of dsRNA from 

fungal tissue. An older procedure for isolation of dsRNA through column 

chromatography has been reported, but this method does not allow for accurate 

quantification of dsRNA present in a sample (Hillman et al., 1990). Following 

extraction, isolates of dsRNA have been examined using Restriction Fragment Length 

Polymorphism (RFLP) analysis and sequencing following Polymerase Chain Reaction 

12 



 

 

 

 

 

  

(PCR) amplification (Shapira et al., 1991; Alleman et al., 1999; Smart et al., 1999; 

Suzuki et al., 1999), and it has been reported that the observation of a band around 12.7 

kb on agarose gel can serve as a means for verifying the presence of dsRNA (Shapira et 

al., 1991; Smart et al., 1999). 

Vegetative Compatibility. Vegetative compatibility (VC) is believed to be the most 

significant factor impacting the conversion capacity of virulent isolates to hypovirulent 

forms. Two fungal isolates that are not vegetatively compatible will not undergo hyphal 

anastomosis, and instead a ridge of pycnidia often forms along the barrage between both 

isolates in vitro (Anagnostakis, 1978; Grente and Berthelay-Sauret, 1978b). As many as 

95% of paired isolates that undergo anastomosis successfully transfer dsRNA to 

adjacent, uninfected isolates (Kuhlman et al., 1984). Vegetative compatibility has been 

shown to not simply be related to the overall genetic similarity between two isolates, but 

rather to the number of differences in vic alleles between two isolates (Liu and 

Milgroom, 1996; Nuss et al., 2002). As the number of identical alleles at these genetic 

loci decreases, the ability of two isolates to fuse and undergo anastomosis decreases 

(Nuss et al., 2002). Thus, VC types, or groups of isolates that will undergo anastomosis 

with one another, are determined by alleles at vic loci (Milgroom and Cortesi, 1999). 

Since horizontal transmission of Cryphonectria hypoviruses requires anastomosis, 

vegetative compatibility has the capacity to severely limit the spread of hypovirulent 

forms of the pathogen in the environment, and significantly reduce the ability of a 
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hypovirulent isolate to effectively convert a virulent form of C. parasitica present in an 

active canker (Anagnostakis, 1978). 

Hypovirulence as a Biological Control Agent. In Europe, hypovirulent isolates 

have been applied extensively in orchards since 1974 as a biological control (Heiniger 

and Rigling, 1994; Bissegger et al., 1997; Robin et al., 2000). In addition, hypovirulent 

forms of C. parasitica containing dsRNA became well established in coppice forests 

throughout Europe, limiting the severity of the blight throughout the region (Robin et al., 

2000). In the United States, although it has been demonstrated that treatment of active 

cankers caused by C. parasitica with hypovirulent isolates can be used effectively to 

treat individual American chestnut sprouts, hypovirulence has not been found to persist 

as well in the environment as it has in Europe (Jaynes and Elliston, 1982; Anagnostakis, 

1987; Liu et al., 2002). Speculation as to the reasons for the greater severity of the blight 

in the United States in contrast to Europe include the greater abundance of virulent 

inoculum, the higher susceptibility of American chestnut trees to C. parasitica and the 

greater diversity of vegetative compatibility groups among C. parasitica in the United 

States (Bissegger et al., 1997; Robbins and Griffin, 1999). 

The lower diversity and number of VC types in Europe compared to the United 

States is believed to be due to the founder effect, which is the reduction of genetic 

diversity of vic alleles in the European population of C. parasitica as a result of this 

population having been initially colonized by a relatively small number of individuals 
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(Milgroom and Cortesi, 1999). In addition, it has been determined that little gene flow 

occurs between subpopulations in Southern and Northern Italy, further limiting their 

diversity (Milgroom and Cortesi, 1999). Furthermore, as C. parasitica becomes 

established in a stand, active cankers are more prevalent, but if dsRNA are present, the 

proportion of active to superficial cankers decreases as hypovirulent forms of the fungus 

become established in the fungal population (Heiniger and Rigling, 1994). 

A pathogen can benefit from the presence of hypovirulent forms of C. parasitica 

under certain conditions by not quickly killing the host (Taylor et al., 1998). Pathogens 

that do not quickly kill their hosts typically have higher reproductive success than highly 

virulent forms (Taylor et al., 1998). However, this phenomenon has not been shown to 

have occurred in the United States (Anagnostakis, 1981; Bissegger et al., 1997; Robbins 

and Griffin, 1999). 

As stated previously, researchers have attempted to control the severity of C. 

parasitica infections by inoculation of active cankers with hypovirulent isolates (Jaynes 

and Elliston, 1978; Kuhlman et al., 1984; Robbins and Griffin, 1999). Unfortunately, in 

North America, vegetative compatibility limits the effectiveness of some hypovirulent 

isolates to transfer dsRNA into the virulent C. parasitica hyphae present on an active 

canker. To overcome this compatibility problem, most cankers are inoculated with a 

mixture containing hypovirulent isolates from several VC groups (Anagnostakis, 1978; 

Day, 1978; Jaynes and Elliston, 1982; Kuhlman et al., 1984). One common inoculation 

method involves creating a wound in canker tissue using a cork borer, then inserting a 
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plug of PDA agar containing fungal hyphae into this hole (Willey, 1980; Huang et al., 

1996). Jaynes and Elliston (1978) have suggested that spraying an aqueous suspension 

of hypovirulent conidia onto the external surface of a canker may also be effective, but 

noted that this form of treatment is more effective if trees are wounded prior to 

inoculation. Field applications of hypovirulent isolates should be an effective means of 

increasing the dissemination of hypovirulent forms of the pathogen in the environment, 

having the potential to lessen blight severity (Kuhlman et al., 1984; Heiniger and 

Rigling, 1994). 

Research in the Southeastern United States 

Since many sprouts of the American chestnut are killed before they reach maturity, 

the relatively low number of trees of seed-bearing age now found in forests in the United 

States limits pollen sources, which minimizes sexual reproduction (Phares, 1978; 

Anagnostakis, 2001). This has generally limited the ability of the American chestnut to 

develop resistance to C. parasitica. With very little hope that natural resistance will 

enable reestablishment of American chestnut trees into areas such as GRSM, control 

methods must be attempted to enable populations of the tree to persist for future 

generations. 

Survival of introduced hypovirulent isolates in the environment has been 

examined in the United States (MacDonald and Double, 1978; Carey, 1985; Peever et 

al., 1997). Griffin et al. (1978) reported that most isolates sampled from trees in West 

16 



 

 

 

 

 

  

 

    

 

 

 

Virginia and Virginia were highly or moderately pathogenic, with only one hypovirulent 

isolate identified. In a survey involving plots in two national forests in West Virginia, 

179 of 202 isolates collected belonged to fourteen VC types, and plots containing a 

higher diversity of VC types also had higher incidence of infection (MacDonald and 

Double, 1978). 

In a survey of large chestnut trees throughout western North Carolina, abnormal 

isolates were cultured from only two of 39 infested sprouts within 30 m of American 

chestnut trees larger than 20 cm dbh, while 10 of 18 chestnut trees larger than 20 cm dbh 

contained abnormal isolates (Carey, 1985). This led Carey to conclude that the presence 

of abnormal, possibly hypovirulent isolates on these larger trees was likely responsible 

for their survival. In another study, it was observed that 12 years after initial 

inoculation of hypovirulent isolates containing CHV-1 in forests throughout West 

Virginia, no CHV-1 was recovered from areas in which it had previously been released 

(Liu et al., 2002). The low incidence and poor persistence of hypovirulence was 

speculated to be due to the lack of competition between the American chestnut trees in 

this study and other associated hardwoods (Liu et al., 2002). 

The GRSM, on the border of Tennessee and North Carolina and near the southern 

extent of the historic range of the American chestnut, is known to contain a remnant 

population of American chestnut. As previously mentioned, Wood (2003) located 288 

surviving trees greater than 10 cm dbh throughout the park, but no studies have 

examined the conditions of these trees or the virulence of fungal isolates associated with 
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them. National Park Service management policy does not allow for the introduction of 

material not endemic within the boundaries of the national park and does not allow for 

breeding programs involving material not endemic to the park (National Park Service, 

Department of the Interior, 2004). Only fungal isolates collected within the park can be 

inoculated onto chestnut trees in the GRSM. Naturally occurring hypovirulent isolates 

present on one of the trees recorded in the previous study (Wood 2003) could potentially 

be used to control the severity of the disease on select large, nut-producing chestnut 

trees within the park. This would enable park personnel to maintain a population of 

larger trees for future generations to observe and provide seed for further studies. 

Therefore, the objectives of this study were to: 

1. Culture hypovirulent and virulent isolates of C. parasitica from 10 cm dbh or 

larger American chestnut trees in the GRSM. 

2. Evaluate collected isolates in vitro for the presence of dsRNA and rate for 

hypovirulent potential based on morphological characteristics and hypovirus 

presence. 

3. Test isolates collected in objective 1 for VC types in vitro in order to determine 

the relative number and diversity of groups present in the GRSM. 

4. Perform in-field inoculation screening of select isolates to determine their 

virulent or hypovirulent potential based on visual signs and symptoms.  
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CHAPTER 2 

MATERIALS AND METHODS 

Field Sampling in the GRSM 

Surveying American chestnut trees. Bark samples from 81 of the 288 American 

chestnut trees documented during a survey in the GRSM (Wood, 2003) were collected 

from May 2006 through September 2007. Bark samples were removed from bark 

cankers formed by Cryphonectria parasitica on these trees. Universal Transverse 

Mercator (UTM) coordinates were obtained for these 288 trees (Wood, 2003) and a 

Garmin GPSMAP® 60CS Global Positioning System (GPS) (Garmin International Inc., 

Olathe, KS) was used to locate individual trees. 

Table 1 lists all sampling dates in 2006 and 2007. In the course of this study, 201 

of the 288 trees (Wood, 2003) were visited and 123 new trees were recorded in the 

GRSM, Nantahala National Forest, and Pisgah National Forest. A map of all trees 

visited in this study is shown in Figure 1. 
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 Sampling Date  Location     Number of trees 

4/14/2006   Sugarland Mountain  4  

5/12/2006    Cades Cove 6  

5/13/2006   Cove Mountain  28  

5/14/2006   Albert Mountain  5  

6/17/2006   Andrew's Bald  2  

6/19/2006  Smokemont  4  

6/20/2006  a  Albert Mountain  2  

6/21/2006   Thomas Divide  4  

6/22/2006   Sunkota Ridge  3  

6/24/2006   Foothills Parkway  4  

6/27/2006   Thomas Divide  39  

6/28/2006  a  Whiteside Mountain  6  

7/17/2006   Cove Mountain  6  

7/18/2006   Sugarland Mountain  11  

7/19/2006    Newfound Gap Road  2  

7/20/2006    Cataloochee Divide 40  

 8/7/2006  Noland Divide  17  

 8/8/2006    Balsam Mountain/ Beech Gap  4  

8/12/2006   Curry Mountain  6  

8/13/2006     High Rocks/ Welch Ridge  9  

 9/1/2006  Gregorys Bald  15  

 9/3/2006   Cataloochee Divide 1  

4/20/2007  a Lanier  1  

5/24/2007   Greenbrier Pinnacle  9  

6/11/2007    Hyatt Ridge Trail  7  

6/14/2007    Hemphill Bald Trail  3  

6/15/2007   Thomas Divide  9  

6/19/2007  a  Albert Mountain  5  

6/20/2007  Pisgaha  5  

6/25/2007  a  Whiteside Mountain  6  

6/26/2007     Bull Head Trail 6  

6/27/2007     Bote Mountain Trail 3  

7/23/2007      Chestnut Top Trail/ Roundtop Trail  3  

7/25/2007    Rich Mountain Loop  13  

7/26/2007  a  Scaly Mountain  5  

 
8/14/2007  a  Albert Mountain  14  

a Sampling locations outside of the Great Smoky Mountains National Park from which 
isolates were obtained. These isolates were not used in sub  sequent studies. 

Table 1. American chestnut bark sampling dates and localities in 2006 and 2007. 
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Figure 1. Locations of all American chestnut trees visited during the course of this study 
from May 2006 through September 2007. 
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For a given tree, sampling focused on all cankers between 0.5 and 2.5 meters 

from the ground. The condition of each canker sampled was noted based on guidelines 

outlined by Carey (1985). In his study, a canker is described as “diffuse” if necrotic 

tissue merges into surrounding bark with no visual evidence of callus formation, and 

rated as “swollen-diffuse” if the center portion is raised slightly in relation to 

surrounding healthy bark tissue while margins of the canker blend into surrounding bark 

as in a diffuse canker. The term “superficial” was used if the margin of cankered tissue 

appeared raised and swollen (Carey, 1985). Each sampled canker was numbered based 

on the tree it occurred on for future reference and location. Isolates obtained were 

assigned a number based on the specific tree and canker from which they were collected. 

Sampling cankers. When sampling individual cankers, a 10 mm diameter cork 

borer was used to remove bark pieces. Samples were taken at five points within a 

canker (Figure 2). One bark plug was removed from the approximate center of the 

canker, and two each along the horizontal and vertical axes of the canker. These 

outermost samples were removed from within 1 cm of the edge of a canker. Samples 

were removed to the edge of underlying uninfected cortex tissue or up to 2 cm deep, 

whichever was shallower. A number of cankers were diffuse, having no clear boundary 

between healthy and infected tissue. In this case, the edge of stromata formation was 

considered the outermost limit of the canker. The cork borer was sterilized with 70% 

ethanol and flamed between each use. 
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Figure 2. Locations of 10 mm sampling points on C. parasitica cankers of 
American chestnut trees. 
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Transport and short-term storage. The 10 mm bark samples were stored and 

transported in individual sterilized 2 ml cryogenic vials which were kept at ambient 

temperature for transport to a trailhead. The samples were then transferred to a cooler 

maintained between 0 and 10º C for transport to the laboratory at Mississippi State 

University, Mississippi State, MS. All samples were kept below 10º C until processed 

within 5 days as described below. 

Determination of Virulence 

Culturing and subculturing of collected isolates. Bark samples were surface 

sterilized in a 10% sodium hypochlorite (w/v 0.534) solution for two minutes. Samples 

were then placed onto a Petri plate (10 x 100 mm) containing 16 ml of potato dextrose 

agar (PDA, Difco™, Detroit, MI ) consisting of 39 g PDA in 1 l distilled water. Media 

was amended with chlorotetracycline (Sigma, St. Louis, MO; 50 mg/l) and streptomycin 

sulfate (Sigma, St. Louis, MO, 8 mg/l) to hinder bacterial growth. All cultural work 

conducted during this investigation employed PDA with antibiotics and all cultures were 

incubated at room temperature with alternating light-dark periods of 12 hours. After 7 

to 14 days, any isolates identified as C. parasitica through observation of morphological 

characteristics were subcultured from the advancing edge of the colony to ensure that 

pure cultures were obtained. These isolates were placed onto a fresh Petri plate 

containing PDA as described above, and kept under the same environmental conditions.  
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Determination of cultural morphology. Visual analysis of cultural characteristics 

of all C. parasitica isolates obtained during this study was undertaken in order to 

determine the potential for hypovirus presence. All isolates obtained from the GRSM 

were cultured onto PDA as previously described with two replications prepared per 

isolate. After seven days, resulting colonies were subcultured on PDA by removing a 3 

mm3 plug of mycelia from their actively growing margins. Cultural morphological 

characteristics of all isolates were compared to a positive, hypovirulent control known to 

contain dsRNA, and a negative, or virulent control isolate that is dsRNA-free. Three 

control isolates were obtained from Dr. William MacDonald of the Department of Plant 

and Soil Science at West Virginia University and subcultured from vials stored at -80 º 

C at the Mississippi State University Department of Plant Pathology, Mississippi State, 

MS. Two of these isolates, designated CHV-1/Euro 7 (referred to as E96) and 

Hypovirulent #98 (referred to as 98+), contained the CHV-1 dsRNA. Isolate Virulent 

#97 (referred to as 97-) contained no dsRNA. A fourth dsRNA-free control isolate, EP-

155, was obtained as an actively growing culture on PDA from Sandra Anagnostakis of 

the Connecticut Agricultural Experiment Station, New Haven, CT. 

Examination of morphological characteristics. After 14 days growth, 

morphological characteristics such as colony size, pigmentation, and number of stromata 

of resulting colonies were analyzed and recorded (Turchetti, 1978; Willey, 1980). After 

14 days growth, subcultured isolates were prepared for storage at -80º C by removing 
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ten 3 mm3 plugs of mycelia from the actively advancing edge of each colony grown on 

PDA. The mycelial plugs were placed into a sterile 1.2 ml cryogenic vial (Corning, 

Acton, MA), and 800 !l of a glycerol solution (10% glycerol + 90% sterile distilled 

water) was added to completely cover the sample. Vials containing these isolates were 

stored at -80º C for use later in this study. Additional backup isolates were prepared in 

15 ml screw top vials containing 5 ml of PDA. These cultures were grown for 72 hours 

at room temperature before being stored at 4 º C. 

Extraction of dsRNA 

In preparation for extraction of dsRNA, all isolates stored in vials were removed 

from -80º C and active cultures transferred to PDA using the methods described above 

for morphological comparison. An “EP complete” (Cryphonectria parasitica) liquid 

media described by Puhalla and Anagnostakis (1971) was prepared (Table 2), then 

divided into 150 ml aliquots, placed into 250 ml flasks, and autoclaved (Puhalla and 

Anagnostakis, 1971; Suzuki et al., 1999). Four 3 mm3 plugs of mycelia from 

subcultures were extracted from the advancing edge of the colony and placed into the 

liquid media. Two replicates were prepared per isolate for dsRNA extraction, and 

combined into a single sample after incubation. The flasks were placed on a laboratory 

shaker (New Brunswick C-24 Environmental Incubator Shaker, Edison, NJ) and 

incubated with agitation for 14 days at room temperature with 12 hour alternating light 

and dark periods. After 14 days, the contents of the flask were poured into a Buchner 
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Table 2. Components of liquid media for culturing isolates of C. parasitica in 
preparation for dsRNA extraction (Puhalla and Anagnostakis, 1971). 

Solution Component Amount 

Base media Glucose  10 mg 
Difco yeast extract  2.5 g 
Difco malt extract  7.5 g 
Thiamine  2 mg 
Salt solution (below)  62.5 ml 
Distilled water 937.5 ml 

Salt solution NH4NO3 2.5 g 
KH2PO4 1.6 g 
Na2SO4 4.0 g 
KCl 8.0 g 
MgSO4 • 7H2O 2.0 g 
CaCl2 1.0 g 
Trace element solution (below) 8 ml 
Distilled water (volume to) 1.0 l 

Trace element solution H3BO3 30 mg 
MnCl2 • 4H2O 70 mg 
ZnCl2 200 mg 
Na2MoO4 • 2H2O 20 mg 
FeCl3 • 6H2O  50 mg 
CuSO4 • 5H2O 200 mg 
Distilled water (volume to) 500 ml 
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funnel apparatus, and mycelia separated from liquid using 5.5 cm filter paper (Whatman 

#54), then finely ground in liquid nitrogen with a mortar and pestle. Ground mycelia 

were stored at -80º C until processed. 

DsRNA extraction encompassed a multistep process beginning with a 4-step 

extraction process (mixing, cleaning, washing, elution) which was used to separate all 

nucleic acids from other cellular components. These steps were followed by a 

concentration step which reduced the volume of each sample, and an enzymatic 

digestion step which digested all DNA and single stranded RNA in a sample, leaving 

only dsRNA intact. 

Mixing. Each ground sample was placed into a 250 ml beaker containing 15 ml 

of a 10% SDS (sodium dodecyl sulfate) solution, 1.0 ml of a 45 mg/ml bentonite 

suspension, and 1.0 ml of 2-mercaptoethanol in 45 ml of a 2x STE buffer. The 10X STE 

base solution was prepared from 58.44 g NaCl, 60.57 g Tris, and 3.72 g EDTA in H2O 

to 1.0 l and brought to a pH of 7.5 with concentrated hydrochloric acid. The resulting 

mixture was stirred vigorously for 10 minutes until all mycelia had thawed, and then a 

mixture of 30 ml chloroform and 30 ml phenol was added. Each sample was then stirred 

vigorously for 45 minutes at room temperature using a magnetic stir bar. 

Cleaning. After mixing, each sample was centrifuged in a Beckman J2-26 

centrifuge for 10 minutes at 10,000 revolutions per minute (rpm). The aqueous phase 
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containing nucleic acids was recovered in a 100 ml graduated cylinder. The volume of 

each sample was brought to 84 ml by addition of a 1x STE solution, and then 16 ml of 

absolute ethanol was added to each sample to bring the volume to 100 ml. To each 

sample, 1.0 g of CF-11 cellulose powder (Whatman) was added, and samples were 

stirred for 120 minutes at room temperature to allow nucleic acids to bind to the 

cellulose. 

Washing. Prior to the washing step, several liters of washing buffer were 

prepared from 100 ml of 10x STE, 165 ml ethanol, and water to 1 liter. Each sample was 

washed by centrifugation at 10,000 rpm for 7 minutes and the aqueous phase discarded, 

leaving a solid pellet of cellulose to which nucleic acids had bound in the presence of 

ethanol. Washings were repeated twice. After the final centrifugation, each sample pellet 

was then transferred to 50 ml of washing buffer and resuspended. 

The resulting suspension was then poured into a 50 ml syringe, into which a 

small piece of Miracloth (Calbiochem, San Diego, CA) was inserted. The suspension 

was poured slowly to allow cellulose column formation, with excess liquid being filtered 

out the bottom by gravity. Several 30 ml aliquots of washing buffer were poured over 

the cellulose and allowed to completely drain in order to further wash the cellulose. 

Elution. Following washing, any dsRNA bound to the cellulose was eluted with 

30 ml of an STE 1x solution. The eluted portion was filtered using the apparatus 
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illustrated in Figure 3, and the eluted dsRNA portion was collected in a 125 ml flask 

containing 2.5 volumes of absolute ethanol and 0.1 volumes of a 3M sodium acetate 

solution at pH 5.5. Samples were stored for at least eight hours at -20º C to precipitate 

nucleic acids. 

Concentration. At the end of the elution step, each sample volume was 

approximately 110 ml. This volume was reduced by centrifugation. Each sample was 

spun in a 50 ml centrifuge tube for 30 minutes at 10,000 rpm in order to precipitate all 

nucleic acids, as well as any remaining cellular debris. The aqueous phase was 

discarded, and each pellet was resuspended in 1.0 ml H2O and subsequently divided into 

two aliquots of 500 !l each. To each aliquot, 1.0 ml ethanol and 40 !l of 3M sodium 

acetate were added to precipitate nucleic acids. 

In order to remove any remaining cellular debris and cellulose residue, a mixture 

of equal volumes of a phenol and chloroform mixture was added. After two minutes of 

vigorous shaking, sample aliquots were centrifuged for three minutes at 13,000 rpm in 

order to separate the sample into an aqueous phase and a phenol phase. The aqueous 

phase was recovered, and dsRNA was precipitated in 2.5 volumes of ethanol and 0.1 

volumes of 3M sodium acetate (pH 5.5) overnight. 

Enzymatic digestion of nucleic acids. In order to separate any viral dsRNAs from 

other nucleic acids present in each sample, selective enzymatic digestion steps were 
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Figure 3. Elution of cellulose-bound dsRNA. 
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performed. First, each sample contained in 1.5 ml centrifuge tubes was centrifuged for 

30 minutes at 13,000 rpm in order to precipitate all nucleic acids into a pellet. The 

aqueous phase was discarded, and each sample was allowed to air dry for 60 minutes. 

To each sample, the following was added: 99 !l H2O, 1 !l MgCl2 (1M), and a DNAse 

solution (2 units/!l). Each sample was incubated at 37 º C in order to digest all DNA in 

the sample. After 30 minutes, 3 !l diluted RNAse solution (25 ng/ml) was added under 

high salt conditions (SSC 2X). Each sample was again incubated for 30 minutes at 37 º 

C to digest remaining traces of single stranded RNA. 

After 30 minutes, 3 !l of a proteinase K solution (3 !g/!l) was added to each 

sample in order to denature DNAse and RNAse and to halt further digestion of nucleic 

acids. Samples were incubated for an additional 30 minutes, after which time the 

following were added to each: 45 !l SDS 10%, 250 !l H2O, 225 !l phenol, and 225 !l 

chloroform. Again, a mixture of 225 !l phenol and 225 !l chloroform was added to each 

sample aliquot. After two minutes of vigorous shaking, sample aliquots were centrifuged 

for three minutes at 13,000 rpm in order to separate the sample into an aqueous phase 

and a phenol phase. The lower phenol phase was discarded. 

Visualization of extracted dsRNA. The product from the extraction procedure was 

separated by electrophoresis on a 1.0% agarose gel (1.0 g agarose (Difco™) in 100 ml 

Tris/Borate/EDTA (TBE) buffer) in order to determine the presence of any dsRNA in 

collected isolates. The TBE buffer (pH 8.3) was prepared from 60.55 g Tris base (0.5M), 
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25.68 g boric acid (0.4M), 1.86 g EDTA disodium salt (0.005M), and nanopure water to 

1.0 l. Ethidium bromide was used to visualize bands. 

Alternatively, dsRNAs were examined in 6% polyacrilamide gel electrophoresis 

(PAGE), and visualized using silver nitrate. Estimation of dsRNA size was made by 

comparison with high molecular weight markers (CHV-1 98+ isolate, Peanut stunt virus 

(PSV)). The data collected from the analysis of morphological characteristics and from 

the extractions of dsRNA was used to tentatively determine which isolates are 

considered to be virulent or hypovirulent. 

Determination of VC groups 

Isolates previously collected during the survey in the GRSM were tested against 

each other in order to determine the VC groups to which they belong (Appendix A1). A 

3 mm3 agar plug was removed from the actively growing colony edge of each 

subcultured isolate to be tested. Pairings of different isolates were placed approximately 

5 mm apart onto Petri plates (10 x 100 mm) containing PDA prepared as previously 

described and amended with 50 mg/l bromocrestol green in order to more easily 

visualize weakly incompatible interactions (Powell, 1995) as well as 0.6 ml of Tween 

20. Each pairing was replicated twice on individual plates (Liu and Milgroom, 1996). 

After 7 days, anastomosis or barrage formation was noted. Paired isolates were 

observed daily for 14 days to determine any pycnidia formation along the barrage zone 

(Liu and Milgroom, 1996). Isolates which underwent anastomosis upon contact were 
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considered in the same VC group (Figure 4). Additionally, the control isolates obtained 

previously (WVU and CT) were paired with the ones collected from the GRSM to test 

for compatibility. 

Verification of Hypovirulence Through Inoculation 

In April 2007, a location in the Highlands Ranger District of the Nantahala 

National Forest (N35.08641, W83.22033) containing susceptible American chestnut 

trees between 5 and 10 cm in dbh was selected for in situ study. The site was a 

previously clearcut second growth mixed hardwood site approximately 1,300 meters in 

elevation. On this site, 54 healthy American chestnut trees greater than 4 cm dbh were 

located in an area approximately 4 hectares in size (Figure 5; Appendix A2). 

On May 15, 2007, susceptible healthy American chestnut trees were inoculated 

using potentially virulent and hypovirulent isolates previously collected from the 

GRSM, as well as with virulent (dsRNA-free EP-155 and 97-) and hypovirulent (CHV-

1-containing E96) control isolates. Four replicates of each isolate inoculated were 

transferred to PDA 14 days prior to inoculation. Selected trees were inoculated using a 

randomized design while ensuring that no replicate isolate was inoculated twice onto a 

single tree (Appendix A3). Stems greater than 5 cm dbh were inoculated twice, with one 

inoculation at 0.5 and another at 1.5 meters above the ground surface with each 

inoculation site aligned to one of four randomly assigned cardinal directions (north, east, 

south, or west). 

Inoculations were performed with a 10 mm cork borer by punching a hole to the 

cambial layer of healthy bark tissue showing no external symptoms of C. parasitica 
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Figure 4. Anastomosis (a) and barrage formation (b) between paired isolates of Cryphonectria parasitica tested in vitro.
a 

a 
Anastomosis has occurred only in the two paired isolates in the left frame (a), indicating that these isolates are in the same 
VC group. Barrage formation and lack of interaction between other paired isolates (b) indicates that these isolates are in 
different VC groups. 



 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

Figure 5. Plot of all healthy American chestnut trees used for field inoculations, 
Nantahala National Forest, Highlands, NC; 2007. 
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infection. A punch of equal diameter was also used to extract a plug of three day old 

fungal mycelium from the growing colony edge of the subcultured isolates on PDA, and 

inserted into the bark with the mycelial surface down (Willey, 1980), then covered with 

masking tape to prevent desiccation (Carey, 1985; Anagnostakis et al., 1998). In order to 

prevent cross contamination, the cork borer was surface sterilized using 70% ethanol and 

flamed prior to each inoculation. 

Data Collection on inoculated American chestnut trees. Inoculation sites were 

checked monthly for canker growth. Observation dates in 2007 were as follows: June 28, 

July 24, August 15, September 30, and October 23. On each of these dates, pictures were 

also taken of each inoculation site. All masking tape was removed from inoculated trees 

during the first week of June. Stromata formation and canker width and height were 

recorded on each of these dates for any newly formed cankers at inoculation sites 

(Elliston, 1978; Griffin et al., 1978). Canker area (mm
2
) was calculated by multiplying 

canker length by canker width. In cases where cankers completely encircled a stem, 

canker width was calculated as the circumference of the stem at approximately the 

2vertical center of the canker. All stromata were counted in a 16 cm area surrounding 

the inoculation site (Baird, 1980). In addition, qualitative analysis of canker 

superficiality was recorded using the same criteria for rating cankers previously 

employed in this study (Carey, 1985). 

Re-isolation of C. parasitica. On October 23, all inoculation sites were sampled 

for C. parasitica using the methods employed previously in this study during tissue 
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collection from cankers on American chestnut trees. Following isolation of pure cultures 

on PDA, isolates were once again tested for the presence of dsRNA using the extraction 

method previously described. Any differences in dsRNA presence or cultural 

morphology were noted for an isolate after re-isolation from inoculated trees. 

Statistical Analysis 

Inoculation procedures were performed following a completely randomized 

design. Data on canker area and stromata production on cankers inoculated with 

hypovirulent isolates and dsRNA-free controls were analyzed using analysis of variance 

(ANOVA) and least squares means separation (LS Means). Pairwise comparisons of 

mean canker size were performed using Tukey’s test. A method of population analysis, 

the Shannon Diversity Index (Robin et al., 2000): 

s 

H’ = - ! pi ln pi   (2-1) 
i=1 

was used to estimate the diversity of VC types present among the population sampled 

from the GRSM, where S is the total number of VC groups found in this study and pi is 

the proportion of the total population composed of a given species. Statistical analyses 

were performed using the Statistical Analysis System (SAS) software package version 

9.2 (SAS Institute, Cary, NC). 
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CHAPTER 3 

RESULTS 

Tree Locations and Sampling 

A total of 67% of 288 known American chestnut trees greater than 10 cm dbh 

reported to occur in the GRSM (Wood, 2003) were located in 2006 and 2007. 

Additionally, 45 new trees were identified along trails while searching for documented 

trees. In total, 238 American chestnut trees were included in this study (Table A1), but 

only 81 trees contained one or more cankers. All cankers on the 81 infected trees were 

sampled in 2006 and 2007. An additional 48 trees were dead, and 20 trees from the 

Wood (2003) survey could not be located due to either tree mortality or incorrect 

coordinates. Coordinate data for all other trees were observed to be accurate to within 

approximately 30 m, with the majority of trees being found within 8 m of an indicated 

point. 

Of all 238 chestnut trees confirmed in the GRSM, 195 were located in seven 

disjunct localities throughout the park, usually on high ridgetops separated by valleys 

including Gregory Bald, Rich Mountain, Cove Mountain, Sugarlands Mountain, Noland 

Divide, Thomas Divide, and Cataloochee Divide (Table 3, Figure 6). The remaining 43 

trees were generally scattered in isolated spots throughout the park, with one to ten trees 
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occurring along a single trail or ridge. Trees ranged from 10 cm dbh to 26 cm dbh, with 

most being at the lower end of the range. 

Gregory Bald. Trees at this site were sampled on September 1, 2006. The trees 

were located within a high elevation (1450-1500 m) hardwood forest along the edge of a 

grassy bald. This area was unique in that it contained 15 diseased trees, and none were 

dead (Table 3). 

Rich Mountain. Trees at this site were sampled on May 12, 2006 and July 25, 

2007 (Table A1). American chestnut trees occurred along the southern slopes of this 

area containing cove hardwood forests (850-1120 m). Rich Mountain contained a fairly 

even distribution of healthy, diseased, and dead trees, with six of 19 asymptomatic, four 

containing one or more cankers, and four dead. An additional five trees from the Wood 

(2003) survey could not be located (Table 3). 

Cove Mountain. Trees at this location were sampled on May 13 and July 17, 

2006. Chestnut trees were located on the Little Greenbrier Trail between Wear Cove 

Gap (560 m), the summit of Cove Mountain (1230 m), and on the Cove Mountain Trail 

along the GRSM boundary above Holy Butt (900 m). Habitat along these trails consisted 

of mixed pine-hardwood forest on south-facing slopes within the GRSM boundary. Bark 

samples were obtained from nine of 34 trees for isolation of C. parasitica (Table 3). An 

additional 11 trees were healthy, 10 were dead, and four could not be found. One healthy 
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American chestnut tree (#45) was the largest one encountered during this investigation 

at 26 cm dbh. 

Sugarland Mountain. This site was sampled on April 14 and July 18, 2006. 

American chestnut were found throughout the lower half of this north-facing ridge (860-

1370 m) among cove hardwood forests intermixed with eastern hemlock (Tsuga 

canadensis L.). A total of seven trees occurring above 950 m were healthy, while four 

diseased trees and one dead tree were found between 860 and 950 m. 

Noland Divide. Trees at this site were sampled on August 7, 2006, and were 

located on a ridgetop containing 11 of 22 trees with no symptoms of C. parasitica. 

Along the lower elevations of this south-facing ridge, three dead trees were noted. 

Noland Divide was higher in elevation than the other six areas in the GRSM (1300-1830 

m), with seven diseased trees occurring throughout this elevation range. Trees along 

upper portions of this ridge were found in northern hardwood stands bordering the lower 

elevations of red spruce (Picea rubens Sarg.) forest, while the lower elevations 

contained primarily American beech (Fagus grandifolia Ehrh.) and maple (Acer spp.). 

Thomas Divide. This location (1250-1450 m) was sampled on June 21 and June 

27, 2006, and on June 15, 2007. This site contained the greatest known concentration of 

trees in the park, with 50 trees visited along the Thomas Divide Trail between Newfound 

Gap Road and the Deeplow Gap Trail. Habitat along Thomas Divide consisted of 

primarily northern hardwood and cove hardwood forest along an exposed, south-facing 
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ridgeline. Thomas Divide also had the highest number of infected or dead trees of all 

seven locations, containing 14 diseased and 14 dead trees. 

Cataloochee Divide. This geographical area (1250-1640 m) was sampled on July 

20, 2006. This location had the highest proportion of healthy trees in the park, among an 

overstory of mixed hardwood and American beech. A total of 28 out of 40 trees were 

asymptomatic for C. parasitica (Table 3) while six trees contained one or more cankers. 

The remaining 6 trees were dead. 

Isolation of Cryphonectria parasitica

 Isolates identified as C. parasitica were obtained from 104 out of 121 cankers 

sampled from the GRSM. Of that total, isolates were obtained from 77 of the 88 cankers 

sampled from the seven locations in the GRSM (Table 3). From 11% of all cankers 

sampled, only saprophytic fungi or contaminants such as Trichoderma spp. or 

Aspergillus spp. were identified. From all cankers sampled in this study, 339 isolates of 

C. parasitica were obtained from the GRSM. Of this total, 231 isolates came from trees 

at the seven locations, while 108 were obtained elsewhere in the park (Table 3). 

Morphological Characteristic Determination 

All 339 isolates obtained from the GRSM were found to be one of three 

morphotypes as per cultural characteristics described by Anagnostakis (1988). A total of 

278 cultures had a “normal” morphology and growth rate, in which fungi generally 

formed a radial growth pattern of white mycelia which completely colonized a 16 mm 
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Figure 6. Locations in the Great Smoky Mountains National Park containing the greatest known concentrations of 
American chestnut trees, 2006-2007.

a 

a 
1 = Gregory Bald; 2 = Rich Mountain; 3 = Cove Mountain; 4 = Sugarland Mountain; 5 = Noland Divide; 6 = Thomas 
Divide; 7 = Cataloochee Divide. 



 

                  
        

 

      
   

 
 

 

          

          

          

         

          

          

         

        

  
 

       

        

 
        
                    

           
                     

  

          

 

 

 

Table 3. Locations in the Great Smoky Mountains National Park (GRSM) containing the greatest concentrations of known American 
chestnut trees and their health status in 2006-2007. 

4
4
 

Locality Reference coordinates Total trees Healthy
a b

Diseased Dead
c d

Not found Cankers 

Gregory Bald N35.53030 W83.85628 15 0 15 0 0 22 

Rich Mountain N35.62727 W83.78499 19 6 4 4 5 4 

Cove Mountain N35.70109 W83.60471 34 11 9 10 4 17 

Sugarlands N35.64361 W83.54339 15 9 4 1 1 3 

Noland Divide N35.54874 W83.47392 22 11 7 3 2 8 

Thomas Divide N35.54270 W83.37456 50 19 14 14 3 17 

Cataloochee N35.59502 W83.07103 40 28 6 6 0 6 

Total 195 84 59 38 14 77 
e

Elsewhere in GRSM 63 25 22 10 6 32 

Total 258 109 81 48 20 104 

a 
Trees were asymptomatic for C. parasitica infection. 

b 
Trees containing one or more cankers caused by C. parasitica from which bark samples were obtained for fungal isolation. 

c 
Trees originally reported in previous surveys which were no longer living. 

d 
American chestnut trees which could not be located in the field using information and GPS coordinates from previous surveys within 
the park. 

e 
See Table A1 for coordinates to other trees in the GRSM. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Petri plate within 14 days. Approximately seven to ten days after subculturing, 

numerous brightly colored orange pycnidia formed on the surface of these “normal” 

cultures, often in concentric rings (Figure 7). A total of 54 isolates (Table 5, Figure 8) 

were observed to have distinct cultural morphologies. These isolates exhibited a range of 

abnormal morphological characteristics including reduced orange pigmentation, and in 

some cases appeared light yellow or nearly white. Limited pycnidia production was also 

noted on these cultures, and these structures were more widely spaced than those which 

developed on normal isolates. However, this characteristic was not consistent among all 

abnormal isolates. Seven additional isolates had a slow growing orange morphology in 

which fungal tissue was densely packed, brightly colored, but only grew to 

approximately half the diameter of a 16 mm Petri plate after 14 days (Table 4, Figure 9). 

Stromata were absent from such isolates, which were similar in appearance to the col1 or 

flat morphological type (Anagnostakis 1988). In no cases were cultures observed to have 

both a white color in conjunction with a slow growth rate. 

Extraction and Analysis of dsRNA 

Selection of isolates for dsRNA extraction was based on previous analysis of 

morphological characteristics (Tables 4, 5). Extraction of nucleic acids and enzymatic 

digestion was conducted on 20 of the 54 isolates which exhibited abnormal cultural 

characteristics as described previously, while another 34 could not be tested due to 

economic and time constraints. An additional 12 isolates with normal morphology were 

also chosen at random for comparison. 
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The presence of a high molecular weight dsRNA molecule resembling a 

hypovirus was observed in three of the tested isolates (236-1C, 324-1B, 325-1B). These 

isolates contained a major band which was calculated to be approximately 13,000 base 

pairs in size (Figure 10). 

Extraction of dsRNA was performed on re-isolated cultures following the field 

trial in 2007. The presence of bands indicating a high molecular weight dsRNA 

molecule was observed in the three isolates following re-isolation from the field trial. 

Vegetative Compatibility Group Determination 

All 107 isolates paired with each other and the three controls were determined to 

belong to 34 distinct groups (Table 7). Among all isolates examined, the VC groups 

varied in size, with the smallest groups containing one isolate and the largest with 14 

isolates. A total of 16 isolates did not undergo anastomosis with any other isolate. Such 

isolates were considered to belong to separate VC groups. On 27 trees which contained 

multiple cankers, isolates obtained from all cankers on a tree were vegetatively 

compatible with each other. For trees 175, 220, and 242, isolates from two different 

cankers on a single tree were not compatible. Among the seven different localities in the 

GRSM in which American chestnut trees were sampled, significant variation in the 

diversity of VC groups existed (Table 8). 

Species diversity (Shannon Index) values ranged from a low value of 0.56 on 

Sugarlands Mountain, which had two VC groups occurring on three cankers, to a high 
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Table 4. Abnormal isolates of C. parasitica obtained from American chestnut bark samples 
collected from the Great Smoky Mountains National Park in 2006 and 2007. 

Isolate numbers
a b

Morphology Location 

20-1A, 1C Abnormal Cataloochee Divide 

60-1B, 1C Abnormal Cove Mountain 

60-2A, 2B, 2C, 2D Abnormal Cove Mountain 

60-3A Abnormal Cove Mountain 

62-1B, 1C Abnormal Cove Mountain 

66-1A Abnormal Cove Mountain 

73-1A, 1D Abnormal Cove Mountain 

73-2B, 2C, 2D Abnormal Cove Mountain 

75-1B Abnormal Curry Mountain 

75-3B Abnormal Curry Mountain 

83-1C Abnormal Gregorys Bald 

88-1A, 1D Abnormal Gregorys Bald 

88-2B, 2C, 2D Abnormal Gregorys Bald 

90-2D Abnormal Gregorys Bald 

93-1B, 1C Abnormal Gregorys Bald 

98-2C Abnormal Gregorys Bald 

101-1B Abnormal Gregorys Bald 

101-3B, 3C Abnormal Gregorys Bald 

183-1A Abnormal Noland Divide 

214-2A, 2B, 2E Abnormal Smokemont 

236-1A, 1B, 1C Abnormal Thomas Divide 

242-2A, 2B Abnormal Thomas Divide 

262-1B Abnormal Thomas Divide 

291-1B Abnormal Cove Moutnain 

291-2C Abnormal Cove Mountain 

304-1B Abnormal Thomas Divide 

308-1B, 1C Abnormal Thomas Divide 

319-1A Abnormal Cataloochee Divide 

329-1A, 1B Abnormal Gregorys Bald 

16-1A, 1C Slow orange Cataloochee Divide 

38-1B Slow orange Cataloochee Divide 

49-1C Slow orange Cove Mountain 

90-2C Slow orange Gregorys Bald 

213-1A Slow orange Smokemont 

291-2B Slow orange Cove Mountain 

303-1A Slow orange Thomas Divide 

320-1B Slow orange Noland Divide 

325-1B Slow orange High Rocks 
a 

Numbers ending in B and C indicate replicate isolates obtained from a single bark plug. 
b 

Abnormal morphology similar to the phenotype observed in C. parasitica in vitro when 
associated with hypovirulence. Slow orange morphology indicates isolates exhibiting a 
phenotype similar in appearance to either the col1 or flat morphological designation. 
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     GRSM isolations                Field trial                   

dsRNA
a 

 Isolate   Cultural morphology        Cultural morphology       
20-1A    Abnormal  -    Abnormal   2 (2) 
38-1B     Slow orange  -     Slow orange   0 (0)   
45-1B    Orange   -    Orange    2 (2) 
49-1C     Slow orange  -    Orange    1 (1)   
60-2B    Abnormal  -     Abnormal  0 (0)   
75-1B    Abnormal  -     Abnormal  1 (1) 
88-1D    Abnormal   -     Abnormal  2 (2) 

d 
90-2C     Slow orange   -     Orange   1 (1)
101-3B    Abnormal  -     Abnormal   2 (2)

183-1A    Abnormal   -     Abnormal   1 (2)
192-1A    Orange    -     Abnormal   1 (1)

213-1A     Slow orange   -     Slow orange    1 (1)
236-1C    Abnormal  +      Abnormal   1 (1)
291-2B     Slow orange   -    Orange     2 (2)

303-1A     Slow orange   -    Abnormal    2 (2)

319-1A     Abnormal -    Abnormal    1 (1)
320-1B     Slow orange  -    Orange     1 (1)

324-1B    Orange   +     Orange     2 (2)  
325-1B     Slow orange  +     Abnormal         1 (1) 
a 

              (+) Detection of a nucleic acid band at approximately 13,000 kb following silver nitrate 
             staining on polyacrylamide gel (SDS-PAGE); (-) no nucleic acid was detected in sample. 

b 
             Cultural morphology of a majority of replicate isolates after re-isolation following the field 

  trial, 2007. 

__ 

Table 5. Extraction of dsRNA associated with isolates of C. parasitica obtained from American 
chestnut trees in the Great Smoky Mountains National Park (GRSM) prior to and 
following a field trial in the Nantahala National Forest, Highlands, NC, 2007. 
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Figure 7. Cryphonectria parasitica collected from the Great Smoky Mountains National 
Park in 2006 (isolate 291-2C) exhibiting virulent cultural morphology after 14 
days growth on potato dextrose agar. 
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Figure 8. Cryphonectria parasitica collected from the Great Smoky Mountains National 

Park in 2006 (isolate 304-1C) exhibiting abnormal cultural morphology after 
14 days growth on potato dextrose agar. 
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Figure 9. Cryphonectria parasitica collected from the Great Smoky Mountains 
National Park in 2006 (isolate 16-1A) exhibiting slow orange cultural 
morphology after 14 days growth on potato dextrose agar. 
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Figure 10. Electrophoretic profiles of dsRNA in PAGE showing both presence (a) and 
absence (b) of a dsRNA molecule approximately 13,000 base pairs in 
size.

a 
  

a 
Isolates of C. parasitica collected from the GRSM are in lanes 1-4: 236-1C (lane 1), 
291-2B (lane 2), 324-1B (lane 3), 325-1B (lane 4). Isolate (E96) obtained from West 
Virginia University and containing CHV-1 dsRNA (lane 5) and replicative forms of 
Peanut stunt virus (lane 6) are used as reference markers. 

52 



 

 

 

 

 

 

 

 

 

  

 

diversity of 1.79 at Cataloochee Divide, having six separate VC groups on six individual 

cankers (Table 7). Only four VC groups were found among 22 cankers sampled on 

Gregory Bald, giving a diversity index value of 1.28. Unfortunately, comparisons of 

diversity between individual locations were not feasible because of wide differences in 

numbers of trees and sampled cankers (Thomas Matney, MSU, pers. comm.). 

The largest two VC groups, 5 and 29, were each distributed over five of the areas 

in the GRSM (Table 7). The third largest group (8) occurred across three locations, 

whereas three other groups (2, 17, 25) were found at two sites each. The remaining 28 

groups occurred only at a single location. Of these 28, five groups occurred on two 

separate cankers on a single tree (trees 73, 135, 177, 204, and 232). 

Field Inoculation Trial 

Two weeks after inoculation, all bark tissue was asymptomatic for the presence 

of C. parasitica. Although no data was collected on this date, the presence of fungal 

mycelia at the immediate inoculation sites provided external signs of active fungal 

growth. Four weeks after inoculation, 14% of inoculation sites had visible canker 

formation, 20% at eight weeks, and 90% at 20 weeks. 

Canker formation. Presence of dsRNA in isolates had a significant correlation to 

canker size, with dsRNA-containing isolates being associated with smaller cankers 

(Tables 9, 10). Furthermore, canker sizes were similar when compared by isolate 
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morphology, which was not a significant indicator of hypovirulence. Analysis of 

variance of canker area data for all isolates, considering dsRNA presence, morphology, 

and time (Table 9) showed that time across sampling dates had a significant effect on 

canker area, with all cankers increasing in size per month. 

When canker size was compared by isolate, means separation of canker size after 

three and five months indicated that four isolates (20-1A, 236-1C, 325-1B, E96), 

produced notably smaller cankers than the virulent controls (Table 10). Isolate 60-2B, a 

slow orange isolate without dsRNA, produced cankers which were significantly smaller 

at three months, but similar at 5. Cankers formed by isolate 325-1B, a slow orange 

dsRNA-containing isolate, were only significantly smaller than virulent controls after 

five months. Two isolates, 20-1A and 236-1C, formed cankers similar to the E96 

hypovirulent control at both three and five months. Of these isolates, 20-1A and 325-1B 

had previously been found to be vegetatively incompatible with other isolates. However, 

isolate 236-1C was compatible with six other isolates in one group (Table 7), while 60-

2B belonged to the largest VC group noted in this study and was compatible with 13 

other isolates as well as the EP-155 virulent control (Table 7). These four isolates 

represent four of the 34 VC groups noted in this study. 

Five months following inoculation, canker growth was not significantly different 

between the two virulent control isolates (EP-155 and 97-), while the hypovirulent 

control isolate E96 had significantly smaller cankers than the virulent controls (Table 

11). In addition, five isolates (20-1A, 75-1B, 192-1A, 236-1C, 291-2B) caused 
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 Group 

 Isolates   
 

Locations
a 

 Isolate numbers  Isolates per group 
 1
 2 
 3 
 4 

 5 

 6 
 7 
 8 
 9 
 10
 11
 12 
 13 
 14 
 15
 16 
 17 
 18
 19 
 20
 21 
 22
 23 
 24 
 25 
 26
 27 
 28

 29 

 30
 31
 32
 33 
 34

 2-2 
 6-1, 39-1 

 16-1 
 20-1 

 26-1, 60-1, 60-2, 60-3, 62-1, 66-1, 75-1, 78-1, 78-2,
 b 

119-1, 123-1, 214-1, 214-2, 270-1, EP-155 

 38-1 
 45-1, 49-1 

 50-1, 50-2, 175-2, 192-1, 192-2, 192-3, 98+ 
 73-1, 73-2 

 79-1 
 82-1 

 83-1, 88-1, 88-2, 89-2, 89-3, 90-1, 90-2, 94,1, E96 
 93-1, 95-1, 95-2, 96-1, 98-1, 98-2, 99-1, 99-2 

 100-1, 101-1, 101-2, 101-3 
 130-1 

 135-1, 135-2 
140-1, 210-1, 210-2, 213-1, 213-3  

 175-1 
 177-1, 177-2 

 183-1 
 204-1, 204-2 

 220-1 
 220-2, 221-1, 221-2 

 232-1, 232-2 
 236-1, 277-1, 287-1, 291-1, 291-2, 292-2, 296-1 

 242-1 
242-2, 244-1, 244-2, 262-1, 262-2  

 277-2 

 304-1, 308-1, 319-1, 323-1, 323-2, 324-1, 326-1,
 328-1, 329-1, 336-1 

 313-1 
 320-1 
 325-1 

 337-1, 337-2, 339-1, 340-1 
 341-1 

 1
 2 
 1 
 1 

 15 

 1 
 2 
 7 
 2 
 1 
 1 
 9
 8 
 4 
 1 
 2 
 5 
 1 
 2 
 1 
 2 
 1 
 3 
 2 
 7 
 1 
 5 
 1 

 10 

 1 
 1 
 1 
 4 
 1 

 5 
 7, 8 

 7 
 8 

 2, 3, 6, 7, 8

 7 
 3 

 3, 6, 8 
 3 
 8 
 8 
 1 
 1 
 1 
 2 
 3 
 2, 8 

 6 
 5 
 5 
 2 
 4 
 4 
 8 
 3, 8 

 6 
 6 
 8 

 1, 5, 6, 7, 8

 7 
 5 
 8 
 6 
 8 

a 

b 
 

             Locations from which representatives of VC groups were obtained; 1= Gregory Bald, 2= Rich  
           Mountain, 3= Cove Mountain, 4= Sugarlands Mountain, 5= Noland Divide, 6= Thomas  

        Divide, 7= Cataloochee Divide, and 8= elsewhere in GRSM.  
            Control isolates are shown in bold print (hypovirulent E96 and 98+, virulent EP-155). 

Table 6. Vegetative compatibility (VC) between isolates of C. parasitica collected from 
the Great Smoky Mountains National Park in 2006 and 2007, compared to 
three control isolates. 

55 



 

 

 
 

    
 

     

     

     

     

     

     

     

   
   

 

 

 
 

 
5
6
 

Table 7. Number of American chestnut trees and diversity of vegetative compatibility (VC) groups among C. parasitica 
isolates collected from seven geographically separated locations in the Great Smoky Mountains National Park in 
2006 and 2007. 

Locality Total trees Cankers sampled VC groups (S) Diversity (H’)
a 

Gregory Bald 15 22 4 1.28 

Rich Mountain 19 4 4 1.39 

Cove Mountain 34 17 6 1.71 

Sugarlands 15 3 2 0.56 

Noland Divide 22 8 5 1.43 

Thomas Divide 50 17 7 1.72 

Cataloochee 40 6 6 1.79 
b

Total 195 77 34 
a
 Calculated using Shannon Diversity index (see equation 2-1) where S = number of VC groups per locality, ln = natural log, i 

= sum of all individuals belonging to each VC group, n = number of isolates in each VC group, N = total number of cankers 
sampled. 
b
 Isolates collected elsewhere in GRSM were excluded from analysis. 



 

   

 

 

 

 

 

significantly smaller cankers than the 97- virulent control. Of these isolates, two (75-

1B, 192-1A) had normal morphology and no dsRNA. Isolate 291-1B formed a slow 

orange morphology. Only 236-1C, an abnormal isolate with dsRNA, had significantly 

lower canker size than the virulent controls but was not significantly smaller than the 

hypovirulent control (Table 11). Among seven isolates (20-1A, 88-1D, 90-2C, 101-3B, 

303-1A, 320-1B, 324-1B) in which dsRNA had not been observed, only 20-1A formed 

cankers similar in size and morphology to the hypovirulent control. Canker growth rates 

for all other dsRNA-free isolates were significantly greater than the E96 hypovirulent 

control (Table 11), while being similar to both virulent control isolates (97-, EP-155). In 

total, eight isolates produced cankers statistically similar in size to the hypovirulent 

control, including 20-1A, 49-1C, 60-2B, 75-1B, 192-1A, 213-1A, 236-1C, and 291-2B. 

Three isolates (49-1C, 213-1A, 291-2B) had a slow orange morphology while another 

three (60-2B, 75-1B, 236-1C) had abnormal morphology. An additional isolate (192-1A) 

had a normal morphology. 

The growth rates of cankers formed by two virulent control isolates (EP-155 and 

97-) fit an increasing quadratic response (Table 12), as did cankers formed by 10 other 

isolates (183-1A, 213-1A, 319-1A, 320-1B, 324-1B, 325-1B, 38-1B, 49-1C, 75-1B, 88-

1D). These 12 isolates led to the formation of cankers which expanded exponentially in 

area by month. Four of these isolates (183-1A, 319-1A, 88-1D, 97-) also showed an 

increasing linear trend in canker area, in which canker area did not expand as rapidly. 
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Surface stromata production. The number of stromata on each canker 

significantly increased between one and five months, but neither dsRNA presence nor 

cultural morphology had a significant effect on stromata production (Table 13). Because 

neither interaction was found to have a significant effect on overall stromata production, 

further analysis between individual isolates could not be conducted. However, three 

isolates (E96, 236-1C, 325-1B) consistently had numerically lower numbers of stromata 

than all other isolates (Table 13). Stromata were present at only 1% of inoculation sites 

in June, 8% in July, and 88% in September and October (Table 13). Only one isolate 

(97-) was found to fit an increasing quadratic response, with number of stromata 

increasing significantly between each month (Table 13). 

Isolate morphology. Morphological characteristics were observed in isolates 

following isolation of the pathogen from newly formed cankers. Abnormal morphology 

was maintained in all eight isolates following reisolation. For three orange isolates, two 

had similar morphology (45-1B, 324-1B) while one isolate (192-1A) had an abnormal 

morphology in 50% of the replicates. Cultural morphology was least conserved among 

slow orange cultures, with six isolates out of eight (49-1C, 90-2C, 192-1A, 291-2B, 303-

1A, 320-1B) either having different morphologies following inoculation or being the 

result of natural infection by C. parasitica from the environment. Of the six isolates, 

four had a normal orange morphology (49-1C, 90-2C, 291-2B, 320-1B), and two 

abnormal (303-1A, 325-1B) following reisolation. 
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  Effect  df 
 

F
a

 Pr > F 
 b

 dsRNA  1  7.30  0.0073 
 

 Morphology
c 

 1  0.70  0.4042 

 dsRNA*Morphology   1  0.80  0.3731 
 d

 Time  4  76.08  <0.0001 

  dsRNA*Time  4  1.90  0.1097 

  Morphology*Time  4  0.18  0.9477 

  dsRNA*Morphology*Time  4  0.87  0.4810 

 
 

  
 

 
 
  

Table 8. Analysis of variance of canker size between June and October 2007 following inoculation of C. parasitica onto 
American chestnut trees in the Nantahala National Forest, Highlands, NC, 2007. 

a
 Numbers are significantly different at P ! 0.05. 

b
 Comparison between isolates with and without dsRNA as previously determined. 

c 
Isolates exhibiting either normal (orange) or abnormal (white or slow orange) morphology. 

d 
Monthly measurements taken over 5 months from June 2007 to October 2007. 
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Table 9. Evaluation of canker size after three and five months following inoculation of C. parasitica on healthy 
American chestnut stems at the Nantahala National Forest, Highlands, NC, 2007. 

6
0
 

2 b
Average canker area (mm )

Isolate
a 

August (3 months) September (4 months) October (5 months) 
20-1A 1038 c-e 2925 e-g 9350 cd 
88-1D 1325 a-d 8225 a-e 18075 ab 
90-2C 2300 a 8900 a 10000 a-c 
101-3B 1963 a-d 5850 a-g 10775 a-c 
303-1A 3063 a-c 6250 a-f 12225 a-c 
320-1B 1625 a-d 4525 a-g 15288 a-c 
324-1B

c 
1956 a-c 5375 a-e 7575 a-c 

38-1B 1588 a-d 4725 a-f 13975 a-c 
45-1B 1688 a-d 2625 b-g 15050 a-c 
49-1C 1650 a-d 2450 c-g 11100 a-c 
60-2B 888 c-e 2425 d-g 12650 a-c 
75-1B 1975 a-c 5450 a-e 9750 a-c 
183-1A 1850 a-d 7175 a-d 14788 a-c 
192-1A 1413 a-d 4975 a-g 10025 a-c 
213-1A 1500 a-d 6250 a-e 16725 a-c 
236-1C

c 
75 e 450 g 825 d 

291-2B 1181 a-d 6275 a-e 9213 a-c 
319-1A 1850 ab 7625 ab 15688 a 
325-1B

c 
1100 a-d 4125 c-g 8825 b-d 

EP-155 3050 a 8150 a-c 17875 a-c 
E96

c 
475 de 550 fg 600 d 

97- 1425 a-c 6250 a-e 17013 a 
a
 Isolates obtained from American chestnut trees in the Great Smoky Mountains National Park, 2006-2007. 

b 
Mean canker sizes followed by the same letter within a column are not significantly different (P! 0.05) following 
square root transformation of data and analysis using the Tukey test. 

c
 Isolates in which dsRNA was detected. 



 

                   

             
  

        
      

 
    

 
    

 
    

 
    

  
   

 
    

 
    

 
    

     

     

     
     
     

     

     
     
     

     
     

     

 

 
 

 
 
 
 

 

Table 10. Comparisons of canker area with hypovirulent and virulent control isolates over five months following inoculation of C. 

parasitica on American chestnut stems in the Nantahala National Forest, Highlands, NC, 2007. 

6
1
 

Pr > |t|
a 

Virulent controls Hypovirulent control 
b

Isolate EP-155 97- E96 
20-1A 0.1660 0.0348 0.1249 
88-1D 0.6117 0.2718 0.0163 

90-2C 0.8815 0.7017 0.0051 

101-3B 
b

0.5123 0.1864 0.0215 

303-1A 0.6042 0.3171 0.0179 

320-1B 0.5182 0.2410 0.0221 
d

324-1B 0.3392 0.1085 0.0395 

38-1B 0.3507 0.1250 0.0473 

45-1B 0.3660 0.1347 0.0319 

49-1C 0.2295 0.0747 0.0924 
60-2B 0.2330 0.0783 0.0880 
75-1B 0.8200 0.0128 0.2456 
183-1A 0.8927 0.4775 0.0056 

192-1A 0.1191 0.0301 0.1730 
213-1A 0.3002 0.1009 0.0591 

d
236-1C 0.0028 0.0005 0.8270 
291-2B 0.0812 0.0198 0.2118 
319-1A 0.9929 0.5957 0.0065 

d
325-1B 0.1689 0.0608 0.0810 
a
 Least squares means analysis of canker size over five months at the  ! = 0.05 level. 

b
 Isolates obtained from American chestnut trees in the Great Smoky Mountains National Park, 2006 to 2007. 

c
 Values in bold text indicate significant difference in canker area between individual isolate and control isolate. 

d
 Isolates in which dsRNA was detected. 



 

 

 
 

Isolate
a 

  
2 b  

Canker area (mm )    
L

c  
 

Q
c 
  June  July  August  September  October 

 
20-1A  0  350  1038  2925  9350  NS  NS 

 
88-1D  0  719  1325  8225  18075  **  ** 

 
90-2C  0  825  2300  8900  10000  NS  NS 

 
101-3B  0  750  1963  5850  10775  NS  NS 

 
303-1A  2  1575  3063  6250  12225  NS  NS 

 
320-1B  0  913  1625  4525  15288  NS  ** 

 
324-1B

e 
 0  950  1956  5375  7575  NS  ** 

 38-1B  0  1188  1588  4725  13975  NS  ** 
 45-1B  0  306  1688  2625  15050  NS  NS 
 49-1C  0  956  1650  2450  11100  NS  ** 
 60-2B  0  463  888  2425  12650  NS  NS 
 75-1B  0  763  1975  5450  9750  NS  ** 

 183-1A  0  563  1850  7175  14788  **  ** 
 192-1A  0  475  1413  4975  10025  NS  NS 
 213-1A  0  400  1500  6250  16725  NS  ** 
 236-1C

e 
 0  150  75  450  825  NS  NS 

 291-2B  0  563  1181  6275  9213  NS  NS 
 319-1A  0  1206  1850  7625  15688  **  ** 
 325-1B

e 
 0  425  1100  4125  8825  NS  ** 

d 
EP-155  0  1250  3050  8150  17875  NS  ** 

 d
E96  0  225  475  550  600  NS  NS 

 d
97-  2  413  1425  6250  17013  **  ** 

 
 

 

 
 

 

Table 11. Mean area of cankers associated with inoculation sites of  C.  parasitica  on healthy American chestnut stems 
over five months following inoculation at Nantahala National Forest, Highlands, NC, 2007.  

6
2
 

a
 Isolates obtained from American chestnut trees in the Great Smoky Mountains National Park, 2006-2007. 

b
 Canker area is defined as width times height as measured through the center of each inoculation point. 

c
 L refers to linear response, and Q to quadratic response of mean canker area among four replications; ** indicates a 
significant linear or quadratic response at P ! 0.05, while NS indicates nonsignificance. 

d
 Control isolates were EP-155 obtained from Connecticut Agricultural Experimental Station, New Haven, CT; E96 and 
97- obtained from West Virginia University, Morgantown, WV. 

e
 Isolates in which dsRNA was detected. 



 

                       
                

 

 
   

 
 

 
 

   

 
 

   

     

 
 

   

     

     

     

 
 

 
 

 
 
 
 
 
 
 
 

 

Table 12. Analysis of variance for area of number of stromata present within a 16 cm 
2 

area on cankers formed over five months 
following inoculation of C. parasitica onto American chestnut trees in the Nantahala National Forest, Highlands, NC, 
2007. 

source df F
a 

Pr > F 
b

dsRNA 1 3.13 0.0777 

Morphology
c 

1 0.27 0.6017 

dsRNA*Morphology 1 0.46 0.4978 
d

Time 4 14.73 <0.0001 

dsRNA*Time 4 0.40 0.8105 

Morphology*Time 4 1.12 0.3451 

dsRNA*Morphology*Time 4 0.74 0.5661 
a
 Numbers are significantly different at P ! 0.05. 

b
 Comparison between isolates with and without dsRNA as previously determined. 

c 
Isolates exhibiting either normal (orange) or abnormal (white or slow orange) morphology. 

d 
Monthly measurements taken over five months from June 2007 to October 2007. 
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Isolate
a 

 Average number of stromata    
 June  July  August  September  October 

 b
L

b
Q  

 
20-1A  3.3   0   0   2.8   9.7   NS  NS 

 
88-1D  0   0   1.3   5.8   11.0   NS  NS 

 
90-2C  0   0   5.3   13.3   22.3   NS  NS 

 
101-3B  0   0   4.3   7.3   13.0   NS  NS 

 
303-1A  0   1.5   2.7   7.0   7.0   NS  NS 

 
320-1B  0   0   6.0   14.3   20.3   NS  NS 

d 
324-1B  0   0   3.0   7.0   16.0   NS  NS 

 38-1B  0   0.5   3.8   13.5   12.3   NS  NS 
 45-1B  0   0   3.5   3.8   11.0   NS  NS 
 49-1C  0   0   2.5   3.0   11.5   NS  NS 
 60-2B  0   0.8   3.5   3.3   13.3   NS  NS 
 75-1B  0   0   1.5   4.3   9.8   NS  NS 

 183-1A  0   0   0.8   8.0   17.5   NS  NS 
 192-1A  0   5.0   0   3.5   13.3   NS  NS 
 213-1A  0   0   4.8   4.0   9.3   NS  NS 
d

236-1C   0   0   0   0   0   NS  NS 
 291-2B  0   1.8   0   4.8   15.5   NS  NS 
 319-1A  0   3.3   2.0   14   21.0   NS  NS 
d

325-1B   0   0   0   2.0   5.3   NS  NS 
 

EP-155
c 

 0   1.8   5.5   6.5   17.8   NS  NS 
 

E96
c 

 0   0   0.8   2.3   2.8   NS  NS 
 

97-
c 

 0   0   1.0   2.0   14.7   NS  ** 
 

  

 

 

 

Table 13. Mean number of stromata present within a 16 cm
2
 area on cankers associated with inoculation sites on healthy 

American chestnut  stems  over  five  months  in  the  Nantahala  National  Forest,  Highlands,  NC,  2007.  

6
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a
 Numbers refer to isolates obtained from American chestnut trees in the GRSM from 2006 to 2007. 

b 
L refers to linear response, and Q to quadratic response of mean canker area among four replications; ** indicates a 
significant linear or quadratic response at P ! 0.05, while NS indicates nonsignificance. 

c
 Control isolates were EP-155 obtained from Connecticut Agricultural Experimental Station, New Haven, CT; E96 and 
97- obtained from West Virginia University, Morgantown, WV. 

d
 Isolates in which dsRNA was detected. 



 

 

 

 

 

 

 

  

  

 

 

 

CHAPTER 4 

DISCUSSION 

This study sought to identify and characterize hypovirulent isolates in the 

GRSM, and to determine how these isolates may be used as a biological control of the 

chestnut blight pathogen. In working toward this goal, the first portion of this study 

sought to locate and sample as many American chestnut trees in the GRSM as was 

feasible. Although Wood (2003) reported the locations and reproductive potential of 

American chestnut in the GRSM, no data on disease incidence or impact was provided. 

Results of the tree survey and field study showed that incidence and severity of C. 

parasitica was very high in the GRSM. During the three years that elapsed between the 

two studies, 23% of 213 trees had been killed by the pathogen. An additional 29% 

contained one or more cankers, but were still living. This indicates that not only is 

disease incidence of C. parasitica in the GRSM high, but also that this pathogen has the 

potential to impact remaining trees within the park. Previous studies have also found that 

C. parasitica can persist as a saprophyte in an area even after numbers of American 

chestnut trees have been greatly reduced (Day, 1978; MacDonald and Double, 1978; 

Baird, 1991). Therefore, inoculum levels of this pathogen can potentially remain at high 

levels, quickly infecting new American chestnut sprouts (Merkel, 1905; Elliston, 1982). 
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Although incidence of C. parasitica was generally high throughout the study 

area, some variation existed among sites in the GRSM. Gregory Bald was unique in that 

every tree sampled showed signs of infection, but no trees were dead. However, a large 

number of dead trees were found at Rich Mountain, Cove Mountain, and Thomas 

Divide. Cove Mountain, the lowest elevation site, also had the highest disease incidence 

among all sites in the GRSM. In contrast, the higher elevation sites of Gregory Bald and 

Noland Divide had the fewest numbers of dead trees. This observation indicates a 

correlation between elevation and survival of American chestnut in the GRSM. It has 

been demonstrated that increased sunlight exposure leads to hotter, drier conditions 

which are generally not favorable to the growth of fungal pathogens, as is the case with 

the dogwood anthracnose pathogen (Redlin, 1991). The possibility exists that such a 

correlation is present between chestnut blight occurrence and light exposure, whereby 

the presence of associated overstory vegetation leads to decreased sunlight penetration. 

In general, trees at Gregory Bald were either located at the edges of a grassy bald, or 

were found at sites without overstory trees. Sugarland Mountain and Cataloochee Divide 

contained more exposed outcroppings and grassy areas in which chestnut composed the 

overstory. In contrast, Cove Mountain and Rich Mountain were dominated by a mixed 

hardwood and pine forest. This coincides with previous studies which have reported that 

American chestnut trees typically persist in areas such as along ridgetops and in canopy 

gaps in which this tree has a competitive advantage for sunlight (Woods and Shanks, 

1959; Griffin, 1992). 

All American chestnut trees included in this study were either found along the 

tops of ridges, or, in less than 10% of cases, along mountain slopes. No trees were found 
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along bottomland or riparian areas, with the exception of trees #191 and #192 which 

were located adjacent to a mown field along Newfound Gap Road. The American 

chestnut was once a dominant component of mountain slopes, but following the loss of 

mature trees due to C. parasitica, it was observed that other overstory species close 

canopy gaps more quickly at riparian sites and on slopes, while chestnut sprouts have 

been able to outcompete other species for sunlight on ridgetops (Whittaker, 1956; 

Vandermast and Van Lear, 2002). Survival of American chestnut in the GRSM will 

therefore be more likely in these ridgetop habitats. However, ridgelines throughout the 

park, while covered in trees, generally have a more open canopy than slopes or riparian 

areas (Whittaker, 1956). This may be why chestnut is found mostly along ridgetops, 

despite formerly also being found along slopes (Whittaker, 1956). 

Although 14 of the 19 C. parasitica isolates tested from the GRSM were 

virulent, five isolates (20-1A, 236-1C, 291-2B, 324-1B, 325-1B) tested in the field trial 

were determined to exhibit hypovirulent characteristics with respect to canker growth. 

These five isolates were not obtained from a single location, but were scattered 

throughout the GRSM. Isolate 20-1A was recovered from Cataloochee Divide, while 

291-2B was found on Cove Mountain, and isolate 236-1C was obtained from Thomas 

Divide. Isolate 324-1B was obtained from a tree on Noland Divide, and 325-1B along 

Welch Ridge north of High Rocks. With the exception of the tree on Cove Mountain, 

which was found in a low elevation (800 m) pine forest, each of these trees was located 

along an exposed ridgetop above 1500 m in elevation with little to no overstory 

vegetation greater than 15 m in height. Each of the trees from which these isolates were 
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obtained was located in an area which had one or more additional diseased chestnuts in 

proximity, although no hypoviruses were obtained from these adjacent trees. 

Other researchers have reported hypovirulent isolates from elsewhere in the 

United States. A study in West Virginia reported that one out of 45 isolates obtained 

from a clearcut setting exhibited hypovirulent characteristics in a field trial (MacDonald 

and Double, 1978). Likewise, Carey (1985) identified 10 such isolates on large 

American chestnut trees in national forests of western North Carolina. In his study, large 

American chestnut trees yielded abnormal isolates more frequently than small ones, 

indicating that presence of these hypovirulent isolates may be correlated with tree 

survival. While these two studies concentrated on clearcut and open areas containing 

chestnut, such sites do not exist in the GRSM. 

Vegetative Compatibility Group Determination 

The number of vegetative compatibility groups among all 104 isolates tested in 

this study (34) correlates with other research. Typically, diversity of VC groups 

increases southward across the eastern United States. Speculation as to the reasons for 

this increase in diversity include factors such as secondary introductions of C. parasitica 

into the southern United States between the 1920's and 1950's on imported material from 

Asia (Sandra Anagnostakis, Connecticut Experimental Station, pers. comm.), although 

this has not been proven as a cause. In West Virginia, one study reported that 14 VC 

groups occurred within two clearcut plots 80 km apart (MacDonald and Double, 1978). 

In other studies throughout the United States, between 28 and 54 types have been 

identified during surveys (Anagnostakis 1977; Kuhlman et al., 1984; Anagnostakis, 
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1986; Robbins and Griffin, 1999). In contrast, only 13 groups are known to exist among 

populations of C. parasitica in Europe (Bissegger et al., 1997; Milgroom and Cortesi, 

1999). The relatively greater number of VC groups observed in the southern 

Appalachian mountains compared to the northeastern United States presents a challenge 

in using dsRNA hypoviruses as a biological control, since it prevents hypovirus 

dissemination through anastomosis (Jaynes and Elliston, 1982; Anagnostakis, 1987; 

Robin et al., 2000; Liu et al., 2002). 

A total of 16 isolates did not undergo anastomosis with any other isolate, and 

therefore were considered to be within their own VC group. This result has been 

observed in other similar studies, and may cause estimates of VC diversity to be high. 

Studies in the United States and in Europe have discovered isolates which never undergo 

anastomosis with other isolates (MacDonald and Double, 1978; Milgroom and Cortesi, 

1999). However, it has been reported that differences in vic alleles do not always exist 

between incompatible isolates, suggesting that incompatibility is induced by additional 

factors and that the number of VC groups determined solely by VC groups is actually 

lower (Bissegger et al., 1997; Robin et al., 2000; Marra and Milgroom, 2001). This may 

be the case among the 16 isolates from this study, although this question lies outside the 

scope of this study. 

Much greater variation in VC groups is observed when isolates are compared 

over a wide geographic area versus a single plot (MacDonald and Double, 1978; Robin 

et al., 2000). In general, a single locality in the GRSM contained multiple 

representatives of one VC group on different trees, while many groups were found to be 

present at only one geographic location. A total of 28 out of the 34 VC groups identified 
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in this study were each only found at one single location in the GRSM, and any isolates 

compatible with each of these 28 groups were not found across more than one 

geographic location. Of these 28 groups, 16 were single isolates and another 12 were 

groups containing more than one compatible isolate obtained from multiple trees at a 

single location. Cankers formed by the dissemination of conidia are compatible with one 

another indicating that multiple infections on adjacent trees can frequently originate 

from a single localized inoculum source (MacDonald and Double, 1978). Other research 

has indicated that the number of compatibility groups observed in surveys is greater 

when isolates are obtained from several geographic locations rather than within a single 

location, indicating that gene flow among populations of C. parasitica at a regional scale 

is somewhat limited (Milgroom and Cortesi, 1999; Robin et al., 2000, Marra and 

Milgroom, 2001). 

Vegetative compatibility may limit the usefulness of the putatively hypovirulent 

isolates identified in this study. No hypoviruses were identified in isolates 20-1A or 291-

2B, although they were present in the other three. Isolate 325-1A was not found to be 

compatible with any other isolate in this study. Isolate 324-1B was in the same VC 

group as isolates found on several trees at Thomas Divide and Gregory Bald, and one 

tree each at Cataloochee and Noland Divide. Isolates 236-1C and 291-2B had the most 

geographically widespread compatibility, being in the same VC group as isolates found 

at High Rocks, Thomas Divide, Cove Mountain, Smokemont, and the Foothills 

Parkway. 
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Extraction and Analysis of dsRNA 

Presence of dsRNA can provide initial indication of potential hypovirulence in 

isolates. Extraction of dsRNA of the 19 isolates tested in the field trial indicated that 

three had evidence of dsRNA presence. However, previous studies have concluded that 

reliance on cultural morphology as an indicator of hypovirulence may cause some 

hypovirulent isolates to be overlooked (Peever et al., 1997). Hypovirulence in C. 

parasitica is most often associated with dsRNA hypoviruses in the family Hypoviridae 

(Enebak et al., 1994), but can also result from mutations in nuclear or mitochondrial 

DNA (Elliston, 1982). Also, since isolates with abnormal cultural morphology can still 

be virulent, morphological characteristics are not necessarily an indicator of 

hypovirulence. Therefore, further testing in the field is necessary to determine the 

hypovirulence of isolates with abnormal morphology or in which dsRNA presence has 

been confirmed (Choi and Nuss, 1992a; Robbins and Griffin, 1999; Nuss, 2002). Data 

collected from isolate morphological comparisons and field trial inoculations in this 

study confirm this lack of consistency between dsRNA presence, morphology, and 

hypovirulence. A majority of GRSM isolates exhibiting abnormal morphology (Table 5) 

were free of hypoviruses. In addition, many of these isolates were determined to be 

virulent in the field trial. In contrast, isolates 20-1A and 291-2B were determined to be 

hypovirulent, but lacked dsRNA. It is likely that other factors as discussed previously 

confer hypovirulent characteristics in these isolates. 

A variety of morphological characteristics were observed in the three isolates 

containing dsRNA. 236-1C had a fast growing abnormal morphology which has 

previously been described in association with hypovirulent isolates (Elliston, 1982; 
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Anagnostakis, 1988). Isolate 324-1B had a normal, orange morphology, while 325-1B 

had orange pigmented, densely packed, slow growing mycelium. 

Additional isolates collected in this study but not tested may also be 

hypovirulent. Ideally, in order to prevent such isolates from being overlooked, all 339 C. 

parasitica isolates need to be tested to determine dsRNA presence, including those with 

normal morphology. Because of economic constraints, not all isolates collected from the 

GRSM could be tested for dsRNA. Rather, isolates to be analyzed were chosen at 

random from those with abnormal morphological traits. 

Several techniques have been used to verify dsRNA presence. The method used 

for this study, which involved a phenol-chloroform extraction, can provide diagnostic 

evidence of dsRNA presence but is not specific to viral species (Morris and Dodds, 

1979). However, this method was chosen for its cost effectiveness as a straightforward 

method of determining dsRNA presence in a sample. The use of northern blot 

hybridization or reverse transcription polymerase chain reaction (RT-PCR), however, 

can be used to identify individual hypoviruses (Peever et al., 1997). These more specific 

techniques are useful to distinguish between dsRNAs associated with hypovirulence and 

other dsRNAs such as CHV-4, which is commonly found in C. parasitica throughout 

North America but does not confer hypovirulence (Enebak et al., 1994; Peever et al., 

1997; Linder-Basso et al., 2005). However, these methods must take into account the 

large diversity that exists among dsRNAs associated with hypovirulence (Enebak et al., 

1994; Peever et al., 1997). Other GRSM isolates not included in the dsRNA extraction 

portion of this study could be screened in the future using these diagnostic methods such 

as RT-PCR, applying specific primers for known Cryphonectria hypoviruses. Further 
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research of the three isolates in this study in order to determine the origin of associated 

dsRNA will be performed at a later date. 

Field Inoculation Trial 

All trees inoculated in this trial were four to 10 cm in diameter, and none of the 

trees died during the study period. Either natural or grafted trees about 10 cm in size 

have been shown to be ideal for studies spanning multiple years (Anagnostakis et al., 

1998; Robbins and Griffin, 1999). However, stems smaller than 10 cm in diameter have 

been successfully employed in single season field trials (Jaynes and Elliston, 1978, 

Enebak et al., 1994; Robbins and Griffin, 1999). 

Two factors, reduced canker size and reduced stromata production, have been 

used to establish hypovirulence in field trials (Griffin et al., 1983; Hebard et al., 1984; 

Carey, 1985; Elliston, 1984; Griffin et al., 1993). In this study, five out of 19 isolates 

had hypovirulent potential based on canker appearance, size, and stromata production. In 

general, canker morphology was found to be a good indicator of hypovirulence. This has 

also been demonstrated in previous research (Grente and Berthelay-Sauret, 1978b; 

Willey, 1980; Heiniger and Rigling, 1994). Either canker or callus tissue was observed 

at every inoculation point at six months after inoculation. While no inoculation sites had 

a callused morphology three months after inoculation, seven cankers had a callused 

appearance after five months. Six of these callused cankers had been inoculated with 

isolates which were putatively hypovirulent based on either cultural morphology or 

dsRNA presence. Cankers with this callused morphology have been associated with 

hypovirulence in previous research (Elliston, 1982, Kuhlman et al., 1984; Enebak et al., 
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1994; Robin et al., 2000; Hogan and Griffin, 2002). This is consistent with prior studies, 

which reported that superficial callus tissue arises about five to six months after fungal 

growth reaches the cambial layer (Hebard et al., 1984; Griffin et al., 1993). 

In this study, all isolates with a slow growing, densely packed orange 

morphology were determined to be virulent with the exception of 291-2B. Previous 

studies reported that slow orange cultural morphology may be the result of 

mitochondrial induced changes after repeated transfers (Anagnostakis, 1978) or may be 

indicative of hypovirulence. The shift of isolates to a normal growth pattern in culture 

after inoculation and re-isolation suggests either that this slow growing morphology may 

have been induced by cultural conditions (Anagnostakis, 1978), or that secondary 

infection by virulent C. parasitica present in the environment overtook inoculated 

isolates. In some cases, naturally occurring infections arose above inoculation sites 

during the field trial, although these cankers did not overrun inoculated cankers during 

the study period. Liebhold et al. (1995) reported that conidia can be washed down by 

rainwater and introduced into inoculation sites located below naturally occurring 

infection. Further testing of these isolates would be needed in order to verify that 

inoculated isolates were identical to those recovered following the field trial, rather than 

contaminates which entered the wound site following inoculation. 

Results of this study suggest that five isolates (20-1A, 75-1B, 236-1C, 291-2B, 

325-1B) have hypovirulent potential. Although isolate 20-1A and 75-1B had abnormal 

morphology in culture, these isolates have limited potential in future hypovirulence trials 

because they do not contain dsRNA. Only isolate 236-1C consistently exhibited 

hypovirulent characteristics in this study, forming distinct callused tissue and expanding 
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beyond the inoculation site in only one of four replications. In general, this isolate 

formed small, sunken cankers which developed a vertical split at five months after 

inoculation. This is consistent with the expected characteristics following inoculation of 

a hypovirulent isolate (Grente and Berthelay-Sauret, 1978a; Elliston, 1982; Hebard et 

al., 1984; Peever et al., 1997). Among all hypovirulent isolates confirmed in this study, 

this isolate has the greatest biological control potential, being vegetatively compatible 

with 16 other isolates present over a wide geographic range in the GRSM. 

Although a limited number of potential hypovirulent isolates were identified in 

this study, further testing of other collected isolates must be done in order to confirm 

hypovirulent potential. In order for biological control efforts to be effective, isolates 

must be found which have potential to convert members of the most widely represented 

VC groups found within the GRSM. Although isolates such as 236-1C have potential for 

use as a biological control based on the number of vegetatively compatible isolates in 

the park, further testing to confirm this biological control potential is needed. However, 

because of vegetative compatibility, the isolates in this study would likely have selective 

usefulness to park personnel unless additional hypovirulent isolates representing more 

widespread VC groups are found. 
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CHAPTER 5 

GENERAL CONCLUSIONS 

Over the two year study, 58 unreported American chestnut trees were located in 

the GRSM, while 180 previously reported trees were visited. An additional 68 

previously reported trees were either killed by the chestnut blight fungus or could not be 

located. Disease incidence of naturally occurring C. parasitica was high in the GRSM, 

with 104 out of 286 living trees containing one or more cankers caused by the pathogen. 

This high disease incidence indicates that the pathogen will continue to threaten 

remaining American chestnut trees in the southern Appalachians. 

Isolates of C. parasitica were obtained in pure culture from 107 cankers on 

diseased trees. Of these isolates, 54 contained abnormal morphology, which is one visual 

indicator of potential hypovirulence. In 2007, 22 isolates (19 from the GRSM and three 

controls) were selected for further analysis in a field trial based on morphology and 

dsRNA results. 

A higher number of VC groups have been observed in the southeastern United 

States compared to the northeastern portion of the country and Europe. All isolates from 

the GRSM were determined to belong to 34 distinct VC groups, with 16 groups only 

containing a single isolate and the largest two groups containing eight and 14 isolates. 
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Most of the VC groups in this study were not widely distributed, with 28 groups found at 

only one geographic location. However, biological control methods that rely on the 

natural dissemination of hypoviruses must focus on the more prevalent groups found in 

the GRSM. 

Three factors were used to evaluate hypovirulence in the field trial including 

canker size, canker appearance, and stromata production. Canker area was found to be a 

significant indicator of potential hypovirulence, while stromata production on the 

surface of cankers was similar among all isolates tested. Five isolates were found to 

form cankers which were significantly smaller than virulent controls, indicating 

hypovirulent potential. One isolate, 236-1C, was identified to have the greatest 

hypovirulent potential based on analysis of canker area and morphology as well as 

dsRNA presence. This single isolate may have the greatest potential for use as a 

biological control agent in Great Smoky Mountains based on the laboratory and field 

results. Four additional isolates (20-1A, 75-1B, 291-2B, and 325-1B) also had 

hypovirulent characteristics in the field trial, although vegetative compatibility may limit 

the usefulness of these isolates. Overall, additional sampling must be done to increase 

the number of hypovirulent isolates that overlap the majority of VC groups present in 

the park. Obtaining a larger sample of hypovirulent isolates from the GRSM may 

identify additional VC affinities allowing for greater biological control potential of C. 

parasitica on American chestnut trees in the park. 
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APPENDIX A. 

LOCATIONS, SAMPLING DATES, TREE CONDITION, AND NUMBER OF C. 

PARASITICA CANKERS ON ALL AMERICAN CHESTNUT TREES 

VISITED DURING 2006 AND 2007 IN THE GRSM, NANTAHALA 

AND PISGAH NATIONAL FORESTS, 

TENNESSEE/NORTH CAROLINA. 
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a
Tree # Latitude Longitude Location 

b
Date

c
Condition

d
Cankers

1 35.53835 -83.49413 Noland Divide 6/17/2006 Not Found 0 

2 35.53878 -83.49325 Noland Divide 6/17/2006 Sampled 2 

4 35.63753 -83.20752 Beech Gap 8/8/2006 Not Found 0 

5 35.63544 -83.20741 Beech Gap 8/8/2006 Healthy 0 

6 35.66219 -83.49448 Bull Head Trail 6/26/2007 Sampled 1 

7 35.66119 -83.49337 Bull Head Trail 6/26/2007 Healthy 0 

8 35.66119 -83.49337 Bull Head Trail 6/26/2007 Healthy 0 

9 35.66089 -83.49234 Bull Head Trail 6/26/2007 Healthy 0 

10 35.66022 -83.4899 Bull Head Trail 6/26/2007 Not Found 0 

11 35.57716 -83.73369 Bote Mountain Trail 6/27/2007 Healthy 0 

12 35.58313 -83.73417 Bote Mountain Trail 6/27/2007 Healthy 0 

13 35.58623 -83.73332 Bote Mountain Trail 6/27/2007 Healthy 0 

16 35.58238 -83.07897 Cataloochee Divide 7/20/2006 Sampled 1 

17 35.58222 -83.07909 Cataloochee Divide 7/20/2006 Healthy 0 

18 35.58475 -83.07786 Cataloochee Divide 7/20/2006 Dead 0 

19 35.58606 -83.07717 Cataloochee Divide 7/20/2006 Dead 0 

20 35.63039 -83.04746 Cataloochee Divide 9/3/2006 Sampled 1 

24 35.60729 -83.06562 Cataloochee Divide 7/20/2006 Healthy 0 

25 35.60741 -83.06564 Cataloochee Divide 7/20/2006 Dead 0 

26 35.60739 -83.06571 Cataloochee Divide 7/20/2006 Sampled 1 

27 35.6071 -83.06568 Cataloochee Divide 7/20/2006 Healthy 0 

28 35.60703 -83.06582 Cataloochee Divide 7/20/2006 Dead 0 

29 35.60761 -83.06611 Cataloochee Divide 7/20/2006 Dead 0 

30 35.60672 -83.06633 Cataloochee Divide 7/20/2006 Healthy 0 

31 35.60447 -83.0688 Cataloochee Divide 7/20/2006 Healthy 0 

32 35.60426 -83.06884 Cataloochee Divide 7/20/2006 Healthy 0 

33 35.60428 -83.06881 Cataloochee Divide 7/20/2006 Healthy 0 

34 35.60418 -83.06904 Cataloochee Divide 7/20/2006 Healthy 0 

35 35.60424 -83.06896 Cataloochee Divide 7/20/2006 Healthy 0 

36 35.58915 -83.07713 Cataloochee Divide 7/20/2006 Dead 0 

37 35.58765 -83.07715 Cataloochee Divide 7/20/2006 Healthy 0 

38 35.58814 -83.07718 Cataloochee Divide 7/20/2006 Sampled 1 

39 35.58804 -83.07715 Cataloochee Divide 7/20/2006 Sampled 1 

40 35.58797 -83.07717 Cataloochee Divide 7/20/2006 Healthy 0 
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Appendix A1, continued.

a
Tree # Latitude Longitude Location 

b
Date

c
Condition

d
Cankers

41 35.58787 -83.07724 Cataloochee Divide 7/20/2006 Healthy 0 

42 35.58771 -83.07716 Cataloochee Divide 7/20/2006 Healthy 0 

43 35.58795 -83.07696 Cataloochee Divide 7/20/2006 Healthy 0 

44 35.59476 -83.07546 Cataloochee Divide 7/20/2006 Healthy 0 

35.697 -83.56998 Cove Mountain 5/13/2006 Sampled 1 

46 35.69704 -83.57305 Cove Mountain 5/13/2006 Healthy 0 

47 35.69497 -83.57277 Cove Mountain 5/13/2006 Healthy 0 

48 35.69473 -83.57299 Cove Mountain 5/13/2006 Dead 0 

49 35.69455 -83.57293 Cove Mountain 5/13/2006 Healthy 0 

35.69468 -83.57297 Cove Mountain 5/13/2006 Sampled 2 

51 35.69439 -83.57329 Cove Mountain 5/13/2006 Dead 0 

52 35.69709 -83.56967 Cove Mountain 5/13/2006 Dead 0 

54 35.69919 -83.56416 Cove Mountain 5/13/2006 Dead 0 

35.69915 -83.60316 Cove Mountain 5/13/2006 Dead 0 

56 35.70036 -83.60122 Cove Mountain 5/13/2006 Healthy 0 

57 35.70049 -83.60117 Cove Mountain 5/13/2006 Healthy 0 

58 35.69891 -83.59679 Cove Mountain 5/13/2006 Dead 0 

59 35.69975 -83.59899 Cove Mountain 5/13/2006 Not Found 0 

35.69879 -83.59682 Cove Mountain 5/13/2006 Sampled 3 

61 35.69897 -83.59695 Cove Mountain 5/13/2006 Sampled 1 

62 35.69905 -83.59653 Cove Mountain 5/13/2006 Sampled 1 

64 35.69545 -83.58325 Cove Mountain 5/13/2006 Dead 0 

35.69597 -83.58199 Cove Mountain 5/13/2006 Not Found 0 

66 35.69607 -83.58146 Cove Mountain 5/13/2006 Healthy 0 

67 35.69602 -83.58126 Cove Mountain 5/13/2006 Healthy 0 

68 35.69625 -83.57883 Cove Mountain 5/13/2006 Dead 0 

69 35.69599 -83.57867 Cove Mountain 5/13/2006 Dead 0 

35.69541 -83.57858 Cove Mountain 5/13/2006 Not Found 0 

71 35.6948 -83.57867 Cove Mountain 5/13/2006 Not Found 0 

72 35.69465 -83.57809 Cove Mountain 5/13/2006 Healthy 0 

73 35.69536 -83.57627 Cove Mountain 5/13/2006 Sampled 2 

74 35.65628 -83.7214 Chestnut Top Trail 7/23/2007 Dead 0 

35.6505 -83.63346 Curry Mountain 8/12/2006 Sampled 1 

76 35.6532 -83.63197 Curry Mountain 8/12/2006 Healthy 0 

77 35.65444 -83.63122 Curry Mountain 8/12/2006 Healthy 0 

78 35.65557 -83.63084 Curry Mountain 8/12/2006 Sampled 2 
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Appendix A1, continued.

a
Tree # Latitude Longitude Location 

b
Date

c
Condition

d
Cankers

79 35.65642 -83.62974 Curry Mountain 8/12/2006 Sampled 1 

35.65603 -83.63062 Curry Mountain 8/12/2006 Not Found 0 

81 35.61616 -83.96599 Foothills Parkway 6/24/2006 Dead 0 

82 35.62766 -83.95341 Foothills Parkway 6/24/2006 Sampled 1 

83 35.5194 -83.86761 Gregorys Bald 9/1/2006 Sampled 1 

88 35.52129 -83.85787 Gregorys Bald 9/1/2006 Sampled 2 

89 35.5213 -83.85797 Gregorys Bald 9/1/2006 Sampled 3 

35.52138 -83.85779 Gregorys Bald 9/1/2006 Sampled 2 

93 35.52127 -83.85782 Gregorys Bald 9/1/2006 Sampled 1 

94 35.52136 -83.85777 Gregorys Bald 9/1/2006 Sampled 1 

95 35.52157 -83.85766 Gregorys Bald 9/1/2006 Sampled 2 

96 35.52136 -83.85779 Gregorys Bald 9/1/2006 Sampled 1 

98 35.52167 -83.85752 Gregorys Bald 9/1/2006 Sampled 2 

99 35.52158 -83.85757 Gregorys Bald 9/1/2006 Sampled 2 

35.52162 -83.85752 Gregorys Bald 9/1/2006 Sampled 1 

101 35.52135 -83.85754 Gregorys Bald 9/1/2006 Sampled 3 

106 35.7187 -83.34576 Greenbrier Pinnacle 5/24/2007 Healthy 0 

107 35.71864 -83.3456 Greenbrier Pinnacle 5/24/2007 Healthy 0 

108 35.71769 -83.34699 Greenbrier Pinnacle 5/24/2007 Healthy 0 

109 35.7175 -83.34759 Greenbrier Pinnacle 5/24/2007 Healthy 0 

35.71823 -83.34851 Greenbrier Pinnacle 5/24/2007 Healthy 0 

111 35.7182 -83.34845 Greenbrier Pinnacle 5/24/2007 Healthy 0 

112 35.71989 -83.34963 Greenbrier Pinnacle 5/24/2007 Dead 0 

113 35.71583 -83.34775 Greenbrier Pinnacle 5/24/2007 Dead 0 

114 35.71543 -83.34603 Greenbrier Pinnacle 5/24/2007 Dead 0 

115 35.5525 -83.12657 Hemphill Bald Trail 6/14/2007 Dead 0 

116 35.55315 -83.1259 Hemphill Bald Trail 6/14/2007 Not Found 0 

118 35.49989 -83.62112 High Rocks 8/13/2006 Dead 0 

119 35.61522 -83.24205 Hyatt Ridge Trail 6/11/2007 Sampled 1 

35.61656 -83.24116 Hyatt Ridge Trail 6/11/2007 Dead 0 

121 35.62333 -83.77636 Rich Mountain Loop 7/25/2007 Dead 0 

122 35.624 -83.77639 Rich Mountain Loop 7/25/2007 Not Found 0 

123 35.62365 -83.77704 Rich Mountain Loop 7/25/2007 Sampled 1 

124 35.62521 -83.77824 Rich Mountain Loop 7/25/2007 Dead 0 

125 35.62733 -83.7834 Rich Mountain Loop 7/25/2007 Healthy 0 

126 35.62802 -83.78466 Rich Mountain Loop 7/25/2007 Dead 0 
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Appendix A1, continued.

a
Tree # Latitude Longitude Location 

b
Date

c
Condition

d
Cankers

127 35.62687 -83.79276 Rich Mountain Loop 7/25/2007 Not Found 0 

128 35.62584 -83.7938 Rich Mountain Loop 7/25/2007 Healthy 0 

129 35.62561 -83.79388 Rich Mountain Loop 7/25/2007 Healthy 0 

130 35.625 -83.79598 Rich Mountain Loop 7/25/2007 Sampled 1 

131 35.62448 -83.81015 Rich Mountain Loop 7/25/2007 Dead 0 

135 35.69317 -83.63612 Cove Mountain 7/17/2006 Sampled 2 

136 35.69344 -83.64386 Cove Mountain 7/17/2006 Healthy 0 

137 35.69334 -83.64377 Cove Mountain 7/17/2006 Healthy 0 

138 35.69515 -83.63878 Cove Mountain 7/17/2006 Healthy 0 

139 35.69712 -83.63311 Cove Mountain 7/17/2006 Dead 0 

140 35.69787 -83.63246 Cove Mountain 7/17/2006 Sampled 1 

167 35.58462 -83.07788 Cataloochee Divide 7/20/2006 Healthy 0 

168 35.58551 -83.07848 Cataloochee Divide 7/20/2006 Healthy 0 

169 35.58544 -83.07842 Cataloochee Divide 7/20/2006 Healthy 0 

170 35.58588 -83.07847 Cataloochee Divide 7/20/2006 Healthy 0 

171 35.5433 -83.35843 Thomas Divide 6/27/2006 Dead 0 

172 35.54394 -83.3607 Thomas Divide 6/27/2006 Dead 0 

173 35.54373 -83.36059 Thomas Divide 6/27/2006 Dead 0 

174 35.54266 -83.35857 Thomas Divide 6/27/2006 Healthy 0 

175 35.54213 -83.35866 Thomas Divide 6/27/2006 Sampled 2 

176 35.55082 -83.4631 Noland Divide 8/7/2006 Healthy 0 

177 35.54977 -83.46183 Noland Divide 8/7/2006 Sampled 2 

178 35.54962 -83.4622 Noland Divide 8/7/2006 Healthy 0 

179 35.5494 -83.46191 Noland Divide 8/7/2006 Healthy 0 

180 35.53781 -83.45906 Noland Divide 8/7/2006 Healthy 0 

181 35.53749 -83.45842 Noland Divide 8/7/2006 Healthy 0 

182 35.53772 -83.45838 Noland Divide 8/7/2006 Healthy 0 

183 35.53652 -83.45663 Noland Divide 8/7/2006 Sampled 1 

184 35.53655 -83.45641 Noland Divide 8/7/2006 Dead 0 

185 35.53667 -83.45632 Noland Divide 8/7/2006 Healthy 0 

186 35.53586 -83.45648 Noland Divide 8/7/2006 Healthy 0 

187 35.53587 -83.4565 Noland Divide 8/7/2006 Healthy 0 

188 35.53583 -83.45641 Noland Divide 8/7/2006 Dead 0 

189 35.53575 -83.45618 Noland Divide 8/7/2006 Dead 0 

190 35.5343 -83.45678 Noland Divide 8/7/2006 Healthy 0 

191 35.63108 -83.45938 Newfound Gap Road 7/19/2006 Sampled 1 
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Appendix A1, continued.

a
Tree # Latitude Longitude Location 

b
Date

c
Condition

d
Cankers

192 35.63126 -83.45916 Newfound Gap Road 7/19/2006 Sampled 3 

204 35.63411 -83.79104 Cades Cove 5/12/2006 Sampled 2 

35.63867 -83.79541 Cades Cove 5/12/2006 Not Found 0 

206 35.63869 -83.79542 Cades Cove 5/12/2006 Not Found 0 

207 35.6395 -83.79629 Cades Cove 5/12/2006 Healthy 0 

208 35.63942 -83.79696 Cades Cove 5/12/2006 Not Found 0 

209 35.64298 -83.80481 Cades Cove 5/12/2006 Sampled 1 

35.6909 -83.65517 Roundtop Trail 7/23/2007 Healthy 0 

211 35.68873 -83.6566 Roundtop Trail 7/23/2007 Healthy 0 

212 35.57091 -83.3249 Smokemont 6/19/2006 Not Found 0 

213 35.57577 -83.32946 Smokemont 6/19/2006 Sampled 3 

214 35.57576 -83.32941 Smokemont 6/19/2006 Sampled 2 

35.66876 -83.57135 Sugarland Mountain 4/14/2006 Dead 0 

216 35.66846 -83.57083 Sugarland Mountain 4/14/2006 Sampled 1 

217 35.66746 -83.56892 Sugarland Mountain 4/14/2006 Sampled 2 

218 35.66701 -83.56818 Sugarland Mountain 4/14/2006 Not Found 0 

219 35.66117 -83.55415 Sugarland Mountain 7/18/2006 Healthy 0 

35.66072 -83.55392 Sugarland Mountain 7/18/2006 Sampled 2 

221 35.66021 -83.5538 Sugarland Mountain 7/18/2006 Sampled 2 

222 35.65424 -83.55087 Sugarland Mountain 7/18/2006 Healthy 0 

223 35.63052 -83.51056 Sugarland Mountain 7/18/2006 Healthy 0 

224 35.63064 -83.51399 Sugarland Mountain 7/18/2006 Healthy 0 

35.63292 -83.5177 Sugarland Mountain 7/18/2006 Healthy 0 

226 35.63297 -83.51834 Sugarland Mountain 7/18/2006 Healthy 0 

227 35.63314 -83.51958 Sugarland Mountain 7/18/2006 Healthy 0 

228 35.63398 -83.52001 Sugarland Mountain 7/18/2006 Healthy 0 

35.63797 -83.53264 Sugarland Mountain 7/18/2006 Healthy 0 

231 35.5038 -83.41159 Sunkota Ridge 6/22/2006 Dead 0 

232 35.50995 -83.40942 Sunkota Ridge 6/22/2006 Sampled 2 

233 35.51053 -83.40917 Sunkota Ridge 6/22/2006 Not Found 0 

35.49888 -83.3829 Thomas Divide 6/21/2006 Healthy 0 

236 35.49114 -83.38552 Thomas Divide 6/21/2006 Sampled 1 

237 35.56914 -83.38504 Thomas Divide 6/27/2006 Healthy 0 

238 35.56913 -83.38457 Thomas Divide 6/27/2006 Healthy 0 

239 35.56883 -83.3848 Thomas Divide 6/27/2006 Healthy 0 

35.56897 -83.38426 Thomas Divide 6/27/2006 Dead 0 
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Appendix A1, continued.

a
Tree # Latitude Longitude Location 

b
Date

c
Condition

d
Cankers

241 35.56897 -83.38464 Thomas Divide 6/27/2006 Healthy 0 

242 35.56487 -83.38322 Thomas Divide 6/27/2006 Healthy 0 

243 35.56446 -83.3828 Thomas Divide 6/27/2006 Dead 0 

244 35.56495 -83.37993 Thomas Divide 6/27/2006 Sampled 2 

35.56428 -83.37934 Thomas Divide 6/27/2006 Not Found 0 

246 35.51407 -83.38321 Thomas Divide 6/21/2006 Not Found 0 

247 35.51631 -83.37943 Thomas Divide 6/15/2007 Sampled 1 

248 35.51452 -83.37945 Thomas Divide 6/21/2006 Healthy 0 

249 35.51977 -83.37404 Thomas Divide 6/15/2007 Dead 0 

35.52166 -83.37177 Thomas Divide 6/15/2007 Healthy 0 

251 35.56383 -83.37877 Thomas Divide 6/27/2006 Not Found 0 

252 35.56366 -83.37848 Thomas Divide 6/27/2006 Healthy 0 

253 35.56371 -83.37847 Thomas Divide 6/27/2006 Healthy 0 

254 35.56372 -83.37786 Thomas Divide 6/27/2006 Healthy 0 

35.56387 -83.37797 Thomas Divide 6/27/2006 Dead 0 

256 35.5626 -83.37752 Thomas Divide 6/27/2006 Healthy 0 

257 35.56256 -83.37744 Thomas Divide 6/27/2006 Healthy 0 

258 35.56181 -83.37641 Thomas Divide 6/27/2006 Dead 0 

259 35.56161 -83.37567 Thomas Divide 6/27/2006 Healthy 0 

35.55692 -83.37228 Thomas Divide 6/27/2006 Sampled 1 

261 35.55482 -83.37313 Thomas Divide 6/27/2006 Dead 0 

262 35.55444 -83.3726 Thomas Divide 6/27/2006 Sampled 2 

263 35.55394 -83.37272 Thomas Divide 6/27/2006 Healthy 0 

264 35.55386 -83.37264 Thomas Divide 6/27/2006 Dead 0 

35.55353 -83.3726 Thomas Divide 6/27/2006 Healthy 0 

266 35.55108 -83.37141 Thomas Divide 6/27/2006 Dead 0 

267 35.54974 -83.37067 Thomas Divide 6/27/2006 Dead 0 

268 35.54976 -83.37062 Thomas Divide 6/27/2006 Dead 0 

269 35.54149 -83.36705 Thomas Divide 6/27/2006 Dead 0 

35.52398 -83.37192 Thomas Divide 6/15/2007 Sampled 1 

277 35.49011 -83.62215 High Rocks 8/13/2006 Sampled 2 

285 35.55466 -83.56781 Welch Ridge 8/13/2006 Healthy 0 

286 35.55441 -83.56776 Welch Ridge 8/13/2006 Sampled 1 

287 35.5545 -83.56772 Welch Ridge 8/13/2006 Sampled 1 

288 35.55328 -83.56806 Welch Ridge 8/13/2006 Dead 0 

291 35.69586 -83.57859 Cove Mountain 5/13/2006 Sampled 2 
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Appendix A1, continued.

a
Tree # Latitude Longitude Location 

b
Date

c
Condition

d
Cankers

35.57105 -83.3233 Smokemont 6/19/2006 Sampled 2 

35.05547 -83.47758 Albert Mountain 6/20/2006 Sampled 1 

35.05539 -83.4775 Albert Mountain 6/20/2006 Healthy 0 

35.63274 -83.94105 Foothills Parkway 6/24/2006 Healthy 0 

35.6272 -83.95331 Foothills Parkway 6/24/2006 Sampled 1 

35.08294 -83.13642 Whiteside Mountain 6/28/2006 Healthy 0 

35.08121 -83.13827 Whiteside Mountain 6/28/2006 Healthy 0 

35.0802 -83.13916 Whiteside Mountain 6/28/2006 Healthy 0 

35.08017 -83.13934 Whiteside Mountain 6/28/2006 Healthy 0 

35.07899 -83.14095 Whiteside Mountain 6/28/2006 Healthy 0 

35.079 -83.14092 Whiteside Mountain 6/28/2006 Healthy 0 

35.56768 -83.38235 Thomas Divide 6/27/2006 Sampled 1 

35.56418 -83.37933 Thomas Divide 6/27/2006 Sampled 1 

35.56371 -83.37858 Thomas Divide 6/27/2006 Sampled 1 

35.54559 -83.36875 Thomas Divide 6/27/2006 Healthy 0 

35.54437 -83.36451 Thomas Divide 6/27/2006 Healthy 0 

35.54429 -83.36452 Thomas Divide 6/27/2006 Sampled 1 

35.5986 -83.07366 Cataloochee Divide 7/20/2006 Healthy 0 

35.59884 -83.07354 Cataloochee Divide 7/20/2006 Healthy 0 

35.59943 -83.07303 Cataloochee Divide 7/20/2006 Healthy 0 

35.59988 -83.07247 Cataloochee Divide 7/20/2006 Healthy 0 

35.6002 -83.07217 Cataloochee Divide 7/20/2006 Sampled 1 

35.60097 -83.07176 Cataloochee Divide 7/20/2006 Healthy 0 

35.60166 -83.07196 Cataloochee Divide 7/20/2006 Healthy 0 

35.60197 -83.07201 Cataloochee Divide 7/20/2006 Healthy 0 

35.60222 -83.07191 Cataloochee Divide 7/20/2006 Healthy 0 

35.60233 -83.07207 Cataloochee Divide 7/20/2006 Healthy 0 

35.6023 -83.07191 Cataloochee Divide 7/20/2006 Sampled 1 

35.54624 -83.46033 Noland Divide 8/7/2006 Sampled 1 

35.54275 -83.4601 Noland Divide 8/7/2006 Healthy 0 

35.54576 -83.46068 Noland Divide 8/8/2006 Sampled 1 

35.56704 -83.48193 Noland Divide 8/8/2006 Sampled 2 

35.56649 -83.47733 Noland Divide 8/13/2006 Sampled 1 

35.63551 -83.20819 High Rocks 8/13/2006 Sampled 1 

35.63526 -83.20792 High Rocks 8/13/2006 Sampled 1 

35.54448 -83.84096 Gregorys Bald 9/1/2006 Sampled 1 
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Appendix A1, continued.

a
Tree # Latitude Longitude Location 

b
Date 

c
Condition

d
Cankers

328 35.52129 -83.85769 Gregorys Bald 9/1/2006 Sampled 1 

329 35.52158 -83.85752 Gregorys Bald 9/1/2006 Sampled 1 

331 35.61322 -83.24302 Hyatt Ridge Trail 6/11/2007 Sampled 1 

332 35.61322 -83.24302 Hyatt Ridge Trail 6/11/2007 Healthy 0 

333 35.61438 -83.24224 Hyatt Ridge Trail 6/11/2007 Healthy 0 

334 35.61516 -83.24202 Hyatt Ridge Trail 6/11/2007 Healthy 0 

335 35.61549 -83.24195 Hyatt Ridge Trail 6/11/2007 Healthy 0 

336 35.51969 -83.37526 Thomas Divide 6/15/2007 Sampled 1 

337 35.51959 -83.37376 Thomas Divide 6/15/2007 Sampled 2 

338 35.52385 -83.37178 Thomas Divide 6/15/2007 Healthy 0 

339 35.52392 -83.37188 Thomas Divide 6/15/2007 Sampled 1 

340 35.52392 -83.37188 Thomas Divide 6/15/2007 Sampled 1 

341 35.56016 -83.10793 Hemphill Bald Trail 6/14/2007 Healthy 0 

344 35.66145 -83.49398 Bull Head Trail 6/26/2007 Sampled 1 

345 35.61726 -83.76898 Rich Mountain Loop 7/25/2007 Healthy 0 

346 35.62265 -83.77525 Rich Mountain Loop 7/25/2007 Healthy 0 

ALB-01 35.05547 -83.47758 Albert Mountain 5/14/2006 Sampled 1 

ALB-02 35.0554 -83.47755 Albert Mountain 5/14/2006 Sampled 1 

ALB-03 35.04461 -83.47331 Albert Mountain 5/14/2006 Sampled 1 

ALB-04 35.06641 -83.49554 Albert Mountain 5/14/2006 Sampled 1 

ALB-05 35.06639 -83.49559 Albert Mountain 5/14/2006 Sampled 1 

ALB-06 35.03069 -83.46198 Albert Mountain 6/19/2007 Sampled 2 

ALB-07 35.03069 -83.46198 Albert Mountain 6/19/2007 Sampled 1 

ALB-08 35.03376 -83.47226 Albert Mountain 6/19/2007 Healthy 0 

ALB-09 35.04461 -83.47331 Albert Mountain 6/19/2007 Sampled 1 

ALB-10 35.04458 -83.4733 Albert Mountain 6/19/2007 Sampled 1 

ALB-11 35.03154 -83.45338 Albert Mountain 8/14/2007 Sampled 1 

ALB-12 35.03061 -83.45516 Albert Mountain 8/14/2007 Sampled 1 

ALB-13 35.0306 -83.45516 Albert Mountain 8/14/2007 Healthy 0 

ALB-14 35.03096 -83.45504 Albert Mountain 8/14/2007 Sampled 1 

ALB-15 35.03096 -83.45504 Albert Mountain 8/14/2007 Sampled 1 

ALB-16 35.03098 -83.45508 Albert Mountain 8/14/2007 Healthy 0 

ALB-17 35.03201 -83.45465 Albert Mountain 8/14/2007 Healthy 0 

ALB-18 35.03201 -83.45465 Albert Mountain 8/14/2007 Healthy 0 

ALB-19 35.03231 -83.45533 Albert Mountain 8/14/2007 Healthy 0 

ALB-20 35.03165 -83.45784 Albert Mountain 8/14/2007 Healthy 0 

94 



 

 
   

 
 

   
   

        

        

        

        

       

       

       

       

       

       

        

        

        

        

        

        

        

        

        

        

        

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Appendix A1, continued.

a b c d
Tree # Latitude Longitude Location Date Condition Cankers 

ALB-21 35.03042 -83.46308 Albert Mountain 8/14/2007 Healthy 0 

ALB-22 35.03036 -83.46437 Albert Mountain 8/14/2007 Healthy 0 

ALB-23 35.03163 -83.46729 Albert Mountain 8/14/2007 Sampled 1 

ALB-24 35.03502 -83.47415 Albert Mountain 8/14/2007 Sampled 1 

BC01 35.62128 84.10672 Lanier 4/20/2007 Sampled 1 

P01 35.25426 82.86064 Pisgah 6/20/2007 Healthy 0 

P02 35.25426 82.86064 Pisgah 6/20/2007 Healthy 0 

P03 35.25412 82.86077 Pisgah 6/20/2007 Sampled 1 

P04 35.25413 82.86077 Pisgah 6/20/2007 Healthy 0 

P05 35.25422 82.8607 Pisgah 6/20/2007 Sampled 2 

WM01 35.08283 -83.13652 Whiteside Mountain 6/25/2007 Healthy 0 

WM02 35.08292 -83.13655 Whiteside Mountain 6/25/2007 Healthy 0 

WM03 35.08265 -83.1366 Whiteside Mountain 6/25/2007 Healthy 0 

WM04 35.0806 -83.13896 Whiteside Mountain 6/25/2007 Healthy 0 

WM05 35.08429 -83.13445 Whiteside Mountain 6/25/2007 Healthy 0 

WM06 35.08305 -83.13622 Whiteside Mountain 6/25/2007 Healthy 0 

ST01 35.0301 -83.28345 Scaly Mountain 7/26/2007 Sampled 2 

ST02 35.02944 -83.2825 Scaly Mountain 7/26/2007 Sampled 1 

ST03 35.04019 -83.27826 Scaly Mountain 7/26/2007 Sampled 1 

ST04 35.0419 -83.27902 Scaly Mountain 7/26/2007 Sampled 1 

ST05 35.04013 -83.28138 Scaly Mountain 7/26/2007 Healthy 0 
a
 Tree numbers 1-288 were originally assigned by Wood (2003); all other designations 

were assigned to newly recorded trees, 2006 and 2007. 
b
 Dates on which locations were visited. 

c
 Healthy trees contained no outward signs of C. parasitica infection; sampled trees 

contained one or more cankers caused by C. parasitica; dead trees are those which had 
previously been reported but had subsequently been killed. 
d 
Number of cankers caused by C. parasitica. 
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APPENDIX B. 

LOCATIONS AND ELEVATION OF HEALTHY AMERICAN CHESTNUT TREES 

LOCATED AT HIGHLANDS PLOT, NANTAHALA NATIONAL FOREST, 

NORTH CAROLINA IN 2007. 
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Tree # Latitude Longitude Altitude (m) 

HL1 35.08719 -83.22019 1235 

HL2 35.08718 -83.22014 1233 

HL3 35.0871 -83.22013 1235 

HL4 35.08721 -83.22046 1240 

HL5 35.08706 -83.22039 1238 

HL6 35.08699 -83.22072 1243 

HL7 35.08688 -83.22072 1244 

HL8 35.08692 -83.22069 1244 

HL9 35.08691 -83.22079 1245 

HL10 35.08691 -83.22086 1246 

HL11 35.08685 -83.22087 1246 

HL12 35.08698 -83.22107 1225 

HL13 35.08702 -83.22107 1226 

HL14 35.0868 -83.22121 1220 

HL15 35.08674 -83.22117 1216 

HL16 35.08678 -83.22099 1215 

HL17 35.08659 -83.22122 1226 

HL18 35.08666 -83.22116 1224 

HL19 35.08668 -83.22102 1214 

HL20 35.08682 -83.22096 1216 

HL21 35.08699 -83.2209 1244 

HL22 35.0871 -83.22112 1230 

HL23 35.08725 -83.22114 1242 

HL24 35.08728 -83.22125 1184 

HL25 35.08731 -83.2211 1241 

HL27 35.08734 -83.22132 1179 

HL28 35.08722 -83.22141 1197 

HL30 35.08727 -83.22146 1198 

HL31 35.0872 -83.22144 1196 

HL32 35.0872 -83.2213 1213 

HL33 35.08709 -83.22154 1212 

HL34 35.08698 -83.22139 1217 

HL35 35.08697 -83.22137 1221 

HL36 35.0873 -83.22127 1181 
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Appendix A2, continued.

Tree # Latitude Longitude Altitude (m) 

HL37 35.08671 -83.2213 1220 

HL38 35.08677 -83.22125 1220 

HL40 35.08687 -83.22071 1243 

HL41 35.08665 -83.22127 1221 

HL42 35.0866 -83.22122 1221 

HL43 35.08662 -83.22124 1221 

HL44 35.08689 -83.22119 1226 

HL45 35.08737 -83.22126 1179 

HL46 35.08709 -83.22089 1241 

HL48 35.08783 -83.22139 1221 

HL49 35.08786 -83.22143 1221 

HL50 35.08786 -83.22118 1221 

HL51 35.08759 -83.22159 1223 

HL53 35.08668 -83.22122 1220 

HL54 35.08659 -83.22126 1222 
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APPENDIX C. 

TREE ASSIGNMENTS AND INOCULATION LOCATION AND DIRECTION FOR 

ISOLATES OF C. PARASITICA INOCULATED ONTO HEALTHY AMERICAN 

CHESTNUT DURING A FIELD TRIAL, NANTAHALA 

NATIONAL FOREST, HIGHLANDS, NC; 2007. 
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

a
Upper Lower 

Tree Isolate 
b

Direction Isolate Direction 

HL 101-3B E 291-2B N 

HL 45-1B S 20-1A N 

HL 303-1A E EP-155 W 

HL 88-1D N 38-1D W 

HL E96 W 291-2B S 

HL 60-2B S 192-1A E 

HL 325-1B N EP-155 S 

HL 319-1A E 320-1B W 

HL 90-2C N 236-1C W 

HL E96 E 325-1B N 

HL 20-1A S 213-1A S 

HL 303-1A N 319-1A W 

HL 88-1D S 75-1B N 

HL 192-1A N 291-2B S 

HL 183-1A W 320-1B N 

HL 49-1C N 60-2B W 

HL 90-2C N 236-1C S 

HL 45-1B S 183-1A E 

HL 97- W 101-3B S 

HL 324-1B E 49-1C N 

HL 324-1B E 38-1B W 

HL 75-1B W 97- N 

HL 75-1B W 38-1B S 

HL 325-1B N 60-2B S 

HL 97- N 20-1A S 

HL 236-1C W 49-1C S 

HL 320-1B E 183-1A W 

HL 101-3B S 192-1A E 

HL EP-155 N 303-1A W 

HL 45-1B S 213-1A W 

HL 88-1D N 49-1C E 

HL 319-1A W 291-2B E 
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Appendix A3, continued.

Tree Isolate Direction Isolate Direction 

HL33 324-1B E E96 N 

HL34 38-1B N 90-2C S 

HL35 213-1A W 75-1B E 

HL36 97- E 324-1B N 

HL37 236-1C S 303-1A W 

HL38 101-3B W 325-1B N 

HL39 319-1A N 90-2C E 

HL40 320-1B W EP-115 S 

HL41 88-1D W 60-2B N 

HL42 20-1A W 192-1A E 

HL43 183-1A W 213-1A N 

HL44 E96 W 45-1B E 
a 
Upper isolates were inoculated at 1.5 m from the ground; lower isolates were 

inoculated at 0.5 m. 
b 
Cardinal direction indicating side of tree on which inoculations were performed; N= 

north, E= east, S= south, W= west. 
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