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Inhibition of blueberry PPO activity by sodium benzoate, potassium sorbate and 

potassium metabisulfite and their influence on degradation of individual anthocyanins in 

an extract was studied.  Maceration of blueberries was carried out at 55ºC for 1h with the 

addition of 0.1% sodium benzoate or with blanching pretreatment at 90ºC for 1min.  

After maceration pretreatments the extracted juice was processed with traditional hot fill 

pasteurization, high hydrostatic pressure (HHP) and pulsed electric field (PEF).  

Sodium benzoate and potassium metabisulfite were very effective PPO inhibitors 

in concentrations of 0.1% and 10ppm, respectively.  Potassium sorbate was the weakest 

inhibitor, with 50% PPO remaining.  

Degradation of anthocyanins by PPO was dependent on their structure.  Tri-

phenolic anthocyanins experienced the most degradation, followed by diphenolic and 

monophenolic compounds, respectively.  Sodium benzoate was the most effective at 



  

preventing anthocyanin degradation; potassium metabisulfite did not have any protective 

effect, while potassium sorbate increased anthocyanin degradation  

 Blanching of blueberries inactivated native PPO, but also increased the 

degradation of anthocyanins, especially malvidin glycosides.  Addition of 0.1% sodium 

benzoate decreased PPO activity when compared to frozen blueberries but not in respect 

to control maceration. 

Only 12% of anthocyanins and 33-41% of phenolics were extracted into juice 

from the frozen fruit.  Hot fill pasteurization, high hydrostatic pressure and pulsed 

electric field did not significantly influence anthocyanins, phenolics and antioxidant 

activity in blueberry juice. 
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CHAPTER I 
 

                                          INTRODUCTION 
 
 
Polyphenol oxidase (PPO) is a generic term for a group of enzymes that 

catalyzes the oxidation of phenolics compounds leading to the development of 

browning (Kader and others 1997b).  The extent to which naturally occurring 

phenolic substrates contribute to enzymatic browning of individual fruits and 

vegetables depends on the localization and concentration of the phenols as well as on 

the color intensity of the macromolecular pigments obtained from the different 

quinines (Vamos-Vigyazo 1981). 

O-quinones, the primary products of the oxidative reaction catalyzed by the 

enzyme, (a) react with each other to form high molecular weight polymers, (b) form 

molecular complexes with amino acids or proteins, and anthocyanins, and (c) oxidize 

compounds that have lower oxidation-reduction potential (Mathew and Parpia 1971).  

These subsequent reactions may bring about changes in physical, chemical, 

nutritional and sensory characteristics of food products (Mayer and Harel 1979). 

Browning may be prevented not only by inactivating the enzyme, but also by 

eliminating one of the two substrates necessary for the reaction (Phenols and O2), or 

by reacting with the products of enzyme action to inhibit the formation of the colored 

compounds produced in secondary, non-enzymatic  reaction steps  (Vamos-Vigyazo 

1981).   
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Many compounds have been identified as possible PPO and browning 

inhibitors but most of them are not allowed for the use in food.  The use of browning 

inhibitors in food processing is restricted by special requirements such as non-

toxicity, wholesomeness, effect on taste, flavor, texture, etc (Vamos-Vigyazo 1981).   

Carboxylic acids are shown to be strong inhibitors of PPO (Pifferi and others 

1974; Walker and Wilson 1975; Walker and McCallion 1980; Gunata and others 

1987; Ferrar and Walker 1996).  Benzoic acid and some derivatives of cinnamic acid 

were found to be mostly competitive inhibitors of PPO (Pifferi and others 1974). 

Sulfites are arguably the most versatile food additives available.  They act not 

only as a food preservative but have an important role as inhibitors of enzymatic and 

non-enzymatic browning as inhibitors of a wide range of enzymes including 

proteases, oxidases, peroxidases, and are alleged to prevent oxidative spoilage 

(Wedzicha 1992).  Sulfites are highly effective in controlling browning but are 

subject to regulatory restrictions because of adverse effect on health (Sapers 1993).  

Sulfites can act as PPO inhibitors and can also react with intermediates to prevent 

pigment formation (Sayavedra-Soto and Montgomery 1986) 

Anthocyanins are the most important water-soluble pigments in plant tissues, 

and produce blue, red and purple colors.  Color of anthocyanins-containing media 

depends on structure and concentration of the pigment, pH, temperature, presence of 

copigments, metallic ions, enzymes, oxygen, ascorbic acid, sugars and their 

degradation products, sulfur dioxide, actual anthocyanins concentration and other 

factors (Mazza and Miniati 1993).  There is experimental evidence that certain 

anthocyanins and flavonoids have anti-inflammatory properties, and there are reports 
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that orally administrated anthocyanins are beneficial for treating diabetes, ulcers and 

may have antiviral and antimicrobial activities and can also provide protection against 

UV radiation (Mazza and Miniati 1993).  Anthocyanins, as a functional food 

component, can aid in the prevention of obesity and diabetes (Tsuda and others 

2003).  It is well known that anthocyanins are poor substrates of PPO, and this is 

probably due to the presences of the sugar moiety causing steric hindrance, since the 

aglucon forms are often oxidized by PPO (Mathew and Parpia 1971). 

Blueberries are a very rich source of anthocyanins and other phenolics.  

Enzymatic oxidation of phenolics compounds present in blueberries by PPO can 

occur during processing as soon the berries are damaged.  The first reaction step that 

occurs is oxidation of phenolics substrates to their o-quinones.  Quinones are very 

reactive species which are able, as oxidants, to oxidize other substrates, being reduced 

in the process to the original phenol, and as electrophiles to react with various 

nucleophiles (Sarni and others 1995).  These reactions of o-quinones, namely 

oxidation and condensation reactions can lead to discoloration and can involve other 

phenolics compounds especially anthocyanins. The use of model systems has shown 

that the enzymatically generated o-quinines play an essential role in the process of 

anthocyanin degradation (Kader and others 1999a).  Degradation of anthocyanins can 

be inhibited by direct inhibition of PPO and with that formation of o-quinines or by 

the inhibiting anthocyanins from reacting with already generated o-quinones.  

Maintaining high antioxidant activity with preserving anthocyanins and other 

phenolics is of crucial importance for any blueberry processed product.  Inhibition of 

PPO during processing, thus preventing oxidation of phenolics and degradation of 
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anthocyanins should be a preliminary step in any blueberry processing.  Since 

anthocyanins are heat sensitive use of inhibitors could be the best solution for PPO 

inhibition without the degradation of anthocyanins.   

Health attributes ascribed to blueberries create a need for the development of 

processed blueberry products that are convenient for the consumer.  Blueberries can 

be pressed into juice and juice concentrate, in order to reach a more wide spread 

consumption (Rossi and others 2003).  Desirable color is a very important sensory 

characteristic for the consumer of fruits and processed fruit products (Garzon and 

Wrolstad 2002).  Huge economic losses can also be accrued by the company due to 

the loss of attractive product color.  A concord grape juice producer reported about $ 

700,000 in losses due to the loss of juice color (Wrolstad and others 1994).  The 

stability of color in blueberries is an important aspect of quality control during 

processing and storage (Yang and Yang 1987).  Not just because they impart color 

but also because of their possible beneficial effect, particular attention has to be paid 

to the changes that anthocyanin pigments undergo during processing.   

Anthocyanins are not as efficiently extracted in the pressing operation as 

sugars, acids and other water solubles, which can have a negative impact on juice 

quality (Skrede and others 2000; Lee and others 2002).  The anthocyanins that give 

color to blueberries exist almost exclusively in the skin, whereas phenolics and other 

antioxidants are mostly in the flesh (Lee and Wrolstad 2004).  Since anthocyanins in 

blueberries are only found in the skin, skin breaking and maceration are needed to 

extract color and obtain good quality juice.  Lee and others (2002) concluded that 

heating of berries may have contributed to a breakdown of the skins, increasing 
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extraction of the color, but still with a substantial amount of anthocyanins left in the 

press cake.  Cold processing of blueberries was not as efficient at transferring 

antioxidants or phenols to the final juice as hot processing (Carlson 2003).   

During juice processing, anthocyanins can be lost due to enzymatic break-

down, heat treatment and some are removed with the pulp (Iversen 1999).  The 

primary steps of juice processing (thawing, crushing, depectinization and pressing) 

contribute to a large loss in total anthocyanins (Skrede and others 2000; Lee and 

others 2002).  The studies listed above reported that substantial losses of 

anthocyanins and other polyphenolics occurred when blueberries were processed into 

juice, and in addition different classes of compounds had varying susceptibility to 

degradation with different processing operations, and the highest losses occurred 

during milling and depectinization due to the action of native polyphenoloxidase, 

PPO (Skrede and others 2000). 

Processing or any wounding of fruits and vegetables may cause cell disruption 

that can lead to quinone formation due to the action of PPO leading to product 

deterioration.  Not only the appearance of food and beverages may be affected, but 

also their taste and nutritional value, often decreasing the quality of the final products 

(Gandia-Herrero and others 2005).  Degradation of anthocyanins occurs when active 

PPO and its substrate are present in the system.  Although anthocyanins are not direct 

substrates for PPO, anthocyanins with a o-diphenolic B ring were oxidized via 

enzymatically generated o-quinines of catechol, catechin, chlorogenic acid (Peng  and 

Markakis 1963; Pifferi and Cultrera 1974; Raynal and Moutounet 1989; Wesche-

Ebeling and Montgomery 1990b) and caftaric acid (Cheynier and others 1994).  It has 
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been reported that heat inactivation of PPO is unacceptable in anthocyanin-containing 

juice products, since the high temperature required for PPO inactivation can cause 

anthocyanin degradation (Siddiq and others 1992). 

Processing and storage can also have marked effects on the phenolics’ content 

of fruits that might also affect their health promoting properties (Zafrilla and others 

2001).  As a general rule, during processing, phenolic biosynthesis is interrupted by 

the enzyme’s destruction and/or cell structure degradation (Tomas-Barberan and 

Espin 2001a). Processing can enhance phenolic compound degradation (chemically or 

enzymatically if the oxidative enzymes have not been inactivated) or can produce 

chemical changes that affect quality characteristics (Tomas-Barberan and Espin 

2001a).  

Blanching or addition of PPO inhibitors can have a positive effect on juice 

quality.  Blanching of strawberries before juice and concentrate production had a 

protective effect on anthocyanin pigments, leucoanthocyanins, flavanols, total 

phenolics and ascorbic acid, and also resulted in improved color stability (Wrolstad 

and others 1980).  Chemical treatments like SO2, citric acid and SnCl2 had a 

stabilizing effect on strawberry  anthocyanins during processing of strawberry jam 

(Sistrunk and others 1982). Heat and SO2 pretreatment before pressing the juice 

increased recovery of anthocyanins in all processing steps (Lee and others 2002). 

There is a demand from consumers and retailers for minimum processed foods 

that are also safe.  Therefore, producers and researchers are searching for alternative 

food processing methods to gently preserve foods (Houska and others 2006).  
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Although thermal preservation methods provide safe foods, there is loss of food 

quality, and nutritional value that is associated with this processing method.  Hence, 

the main objective of low- and non-thermal preservation methods is to minimize the 

degradation of food quality through limiting heat damage (Senorans and others 2003). 

Compared with thermal processing, nonthermal methods provide a high retention of 

flavors and nutrients, giving products a “natural/fresh” taste (Zhong and others 2005). 

High voltage pulsed electric fields (PEF) is a promising non thermal 

processing technology.  Treating liquid foods with PEF may inactivate 

microorganisms and enzymes with only small increases in temperature, 

simultaneously providing consumers with safe, nutritious, and fresh foods (Aguilar-

Rosas and others 2007).  Consumer demand for a higher quality, fresh appearing and 

safe food supply is the ultimate catalyst for the emergence of PEF on a commercial 

scale (Yeom and others 2002) 

Cranberry juice treated by PEF had a similar flavor or aroma profile as the 

nontreated juice; whereas thermal treatment significantly altered the overall flavor 

profile of the juice (Jin and Zhang 1999).  No differences were observed in the 

content of anthocyanin pigments between PEF-treated samples and controls.  

However, thermal treatment significantly reduced their anthocyanin content 

High hydrostatic pressure (HHP) is considered a nonthermal technology with 

the most promising perspective of industrial utilization.  There are already known 

industrial applications in Japan, USA, France and Spain (Houska and others 2006).  

This technology can enable processors to produce innovative foods with fresh-like, 

natural-like attributes and natural looking colors which are all aspects that are valued 
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by consumers (Deliza 2005).  In addition information on the benefits that are offered 

by high pressure technology presented on the juice package had a positive 

contribution on purchase intention (Deliza 2005).  High pressure treatment is 

expected to be less detrimental than thermal processing to low molecular weight food 

compounds such as flavoring agents, pigments, vitamins, etc., since covalent bonds 

are not affected by pressure ( Butz and others 2002).  The pressure stability of 

antioxidants is of interest since they play an important role in reducing the risk of free 

radical-related oxidative damage associated with a number of diseases (Butz and 

others 2002). 

High hydrostatic pressure is a promising alternative to traditional thermal 

processing techniques of food preservation, but associated changes to a diversity of 

phytonutrients have not been extensively investigated (Talcott 2003). Making 

comparisons between HHP and thermal processes is one way to assess its benefits by 

monitoring destruction of heat labile compounds (Talcott 2003).  

The need to preserve valuable phytonutrients in blueberries with minimum 

impact on the quality and taste in the final product leads to the need for this type of 

study.  The objectives of this study were: 

1. To determine inhibition of polyphenol oxidase (PPO) by preservatives 

and their influence on anthocyanins in a blueberry extract and 

2. To determine influence of blueberry mash pretreatment and various 

processes on anthocyanins, phenolics and antioxidant activity of 

blueberry juice. 
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CHAPTER II 

LITERATURE REVIEW 

 

Polyphenol oxidase 

Polyphenol oxidase (PPO) is a generic term for the group of enzymes that 

catalyze the oxidation of phenolic compounds that cause browning.  Based on 

substrate specificity there are:  Monophenol monoxygenase, cresolase or tyrosinase ( 

EC 1.14.18.1); Diphenol oxidase or catechol oxidase (EC 1.10.3.2); and laccase or p-

diphenol oxygen oxidoreductase (EC 1.10.3.1) (Shahidi and Naczk 1995).  Numerous 

reports on enzymes from various sources suggests that there is a copper content of 

one atom per polypeptide chain or subunit of catechol oxidase (Mayer and Harel 

1979).  The structure of the active site of the enzyme, in which copper is bound by six 

or seven histidine residues and a single cysteine residue is highly conserved (Mayer 

2006). 

A variety of phenolic compounds car serve as PPO substrates.  The 

compartmentation of the phenolics substrate of the enzyme, both in special cells and 

within the cell have been reported which results in the separation between the enzyme 

and the bulk of its phenolics substrates in situ (Mayer and Harel 1979). 

The most important natural substrates of PPO in fruits and vegetables are 

catechins, cinnamic acid esters (chlorogenic acid), 3,4-dihydroxy phenylalanine 
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(DOPA), and tyrosine (Vamos-Vigyazo 1981).  The sphere of naturally 

occurring substrates of PPO is limited by the fact that the enzyme does not act on 

glycosides (Baruah and Swain 1959), and most of the phenolic in plants are present in 

that form.  Negative or positive charges near the phenolic ring, disturb the catalytic 

process resulting in low activity (Casado-Vela and others 2005).  Affinity of the PPO 

toward substrate is highly dependent on the plant source from which the enzyme is 

extracted.  The crude enzyme extract from concord grapes had activity toward all of 

the dihydroxyphenols but no activity with monophenols (Cash and others 1976).  

Although gallic and chlorogenic acid were of dihydroxy configuration, the crude 

grape enzyme extract did not effectively utilize either of these compounds as its 

substrate (Cash and others 1976) while the chlorogenic acid was the best substrate for 

blueberry PPO (Kader and others 1997b).  The extent to which naturally occurring 

phenolic substrates contribute to the enzymatic browning of individual fruits and 

vegetables depends on the localization and concentration of the phenols as well as on 

the color intensity of the macromolecular pigments that are obtained from the 

different quinines (Vamos-Vigyazo 1981). 

Polyphenol oxidase catalyzes two basic reactions (Shahidi and Naczk 1995):  

1. hydroxylation to the o-position adjacent to an existing hydroxyl group of the 

phenolic substrate (monophenol oxidase activity). 
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2. and oxidation of diphenol to o-benzoquinones (diphenol oxidase activity). 

 

Both reactions utilize molecular oxygen as a co-substrate.  Whether a single 

enzyme system exhibits both mono- and di phenol oxidase activities is still unclear. 

However, when both monophenol and diphenol oxidases are present in plants, the 

ratio of monophenol to diphenol oxidase activity is usually 1:10 or as low as 1:40 

(Nicolas and Potus 1994). 

The primary products of the oxidative reaction catalyzed by the enzyme, the 

o-quinones, (a) react with each other to form high molecular weight polymers, (b) 

form molecular complexes with amino acids or proteins, and anthocyanins, and (c) 

oxidize compounds of lower oxidation-reduction potential (Mathew and Parpia 1971).  

Non-enzymatic reactions (a) and (b) lead to the formation of brown pigments, the 
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color which is darker the higher their molecular mass (Vamos-Vigyazo 1981).  These 

subsequent reactions may bring about changes in physical, chemical, nutritional and 

sensory characteristics of food products (Mayer and Harel 1979).  The rate of 

enzymatic browning reactions depends on the nature and content of phenolic 

compounds, activity of phenoloxidase present in food, presence of oxygen reducing 

substances and metal ions, pH and temperature (Shahidi and Naczk 1995). 

Products of reaction  of type (c) are colorless (Vamos-Vigyazo 1981).  In the 

reaction that belong to group (c), quinines formed by the reaction of PPO, oxidize 

compounds of lower oxidation-reduction potentials and are again reduced to 

dihydroxyphenols which provides “fresh” substrate for PPO.  This reaction can 

continue until the enzyme gets inactivated by the reaction products, or compounds of 

lower oxidation-reduction potential are depleted (Vamos-Vigyazo 1981).                                          

PPO can be found in both soluble and membrane-bound forms in chloroplast, 

mitochondria, microsomes, peroxisomes and cytoplasm (Tomas-Barberan and Espin 

2001b).  Serradell and others (2000) concluded that strawberry PPO is associated 

with the membranes since it was released from the fruit using detergent (Triton X-

100) and NaCl.  The strength of binding of PPO to the membrane appears to be 

dependent on the tissue and the stage of development (Mayer and Harel 1979).  

Solubilization of  PPO occurs during ripening or aging of fruits (Mayer and Harel 

1979).  It was strongly suggested that apple PPO is solubilized and denatured at the 

later stage of development, but with enough remaining to cause browning (Murata 

and others 1995).  Serradelll and others (2000) reported that PPO is more abundant in 

immature strawberry fruit than in the ripe one.   
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One of the oldest suggestions of the physiological role of PPO is that of of o-

diphenol synthesis.  This suggestion is based on the ability of many catechol-oxidase 

preparations to oxidase monophenols to the corresponding o-quinones (Mayer and 

Harel 1979).  Changes in the catecholase activity during maturation  are related to the 

formation of anthocyanins (Sanchez-Ferrer and others 1989).  PPO has also been 

reported to be a defensive protein against pathogen attack in various crops (Tomas-

Barberan and Espin 2001b). 

As with any other enzyme activity, PPO is highly dependent on pH and 

temperature.  The optimum pH of PPO activity varies with the source of the enzyme 

and with the substrate in a relatively wide range but in most cases is between 4.0 and 

7.0 (Vamos-Vigyazo 1981).  Optimum activity of the crude enzyme extract occurred 

at pH 5.9-6.3 while over 50% of its maximum activity was retained at 3.4, the normal 

pH of the grape juice (Cash and others 1976).  Polyphenol oxidase from strawberries 

showed maximum activity at a pH of 5.3 (Serradell and others 2000).  

PPO is not an extremely heat-stable enzyme.  Short exposures, in the tissue 

and solutions, to temperatures of 70 to 90ºC are, in most cases, sufficient for partial or 

total irreversible destruction of its catalytic function (Vamos-Vigyazo 1981).  Most 

PPO enzymes show optimum activity at temperatures between 30 and 40ºC 

(Lamikanra and others 1992).  Strawberry polyphenol oxidase exhibited maximum 

activity at 50ºC and than decreased sharply at higher temperatures although it showed 

considerable activity (15-20%) at extreme temperatures of 0 to 70ºC.  These authors 

also reported that the enzyme retained 71 and 43% of its activity after incubation at 

55ºC for 30 and 120 min respectively, while temperatures of 65ºC caused an almost 
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complete loss of activity even after 30 min.  PPO from concord grapes showed a 

maximum activity between 25 and 30ºC, after which the reaction rate declined very 

rapidly as temperature increased (Cash and others 1976).  Enzyme from Emir grape 

extract was heat stable at 65ºC, retaining up to 73% of activity after 30 min of heating 

with a D value of 213 min (Unal and Sener 2006).  Activity of apple PPO increased 

with mild heating and reached a maximum, and as heating progressed, activity 

decreased, first gradually and then rapidly (Yemenicioglu and others 1997). This 

increased activity by heat was explained by the activation of latent PPO.  The 

activation of latent PPO can be attributed to protein association and dissociation 

(Mathew and Parpia 1971).  

 

Blueberry PPO 

Kader and others (1997b) used native PAGE to demonstrate that blueberry 

PPO presents two isoenzymes PPO1 and PPO2.  Although they found that caffeic 

acid as a substrate would provide highest PPO activity, absence of caffeic acid in 

highbush blueberries would make chlorogenic acid a better substrate for assessing 

PPO activity in blueberries since it is the major hydroxycinnamic derivative.  

Oxidation of chlorogenic acid by purified blueberry PPO produced degradation of 

only 50%, whereas 70% oxidation was obtained when nonpurified PPO was used 

(Kader and others 1998).  These researchers concluded that PPO in the nonpurified 

extract is probably protected by non-PPO proteins which react with the oxidized 

polyphenols, thereby sparing the PPO.  
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The optimum activity of the enzyme was a pH of 4 with the shoulder at pH 5 

(Kader and others 1997b).  At pH 5, about 80% of the maximum activity remained 

with the rapid decrease in activity with an increase in pH to 5.5 (Kader and others 

1997b).  This behavior was explained by the presence of two isoforms.  Blueberry 

PPO was found to be very active at low pH’s that are similar to the pH of fruits (3-

3.2) (Kader and others 1994).  

 

Inhibition of PPO activity  

Browning may be prevented by inactivating the enzyme, by eliminating one of 

the two substrates necessary for the reaction (Phenols and O2), or by reacting with the 

products of enzyme action to inhibit the formation of the colored compounds that are 

produced in secondary, non-enzymatic  reaction steps  (Vamos-Vigyazo 1981).  In 

many cases, it is not easy to distinguish the different mechanisms that underlay the 

action of a browning inhibitor; moreover, some inhibitors act simultaneously on the 

enzyme and the substrate or products (Vamos-Vigyazo 1981).  In general PPO 

inhibitors can be divided into two groups; those that act primarily on the enzyme and 

the those that react with the reaction products on the substrate.  The use of browning 

inhibitors in food processing is restricted by special requirements such as non-

toxicity, wholesomeness, effect on taste, flavor, texture, etc (Vamos-Vigyazo 1981).   

Carboxylic acids are strong inhibitors of PPO (Pifferi and others 1974; Walker 

and Wilson 1975; Walker and McCallion 1980; Gunata and others 1987; Ferrar and 

Walker 1996).  Benzoic acid (Figure 1) and some derivatives of cinnamic acid 

(Figure 2) are mostly competitive inhibitors of PPO (Pifferi and others 1974).  The 
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only efficient structural requirement for the inhibitory effect is the association of the 

carboxyl group with the benzene nucleus or with an unsaturated open chain (Pifferi 

and others 1974).  It was shown that PPO was inhibited by cinnamic and  p-coumaric 

acdis (Walker and Wilson 1975; Walker and McCallion 1980; Gunata and others 

1987), benzoic acid (Gunata and others 1987) and to a lesser extent, by ferulic acid 

(Walker and Wilson 1975; Walker and McCallion 1980).   

 

 

Figure 1.  Structure of benzoic acid 

 

 

 

Figure 2.  Structure of cinnamic acid.   
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Hydroxylation, methylation of the benzene ring of these acids and the 

esterification of the carboxyl group of benzoic and cinnamic acids leads to a 

considerable decrease in their inhibitory strength (Gunata and others 1987).  It has 

been suggested that for strong inhibition, aromatic acid inhibitors require a free 

carboxylic group to be substituted directly on the benzene ring (Vamos-Vigyazo 

1981).  Benzoic acid was found to be a competitive inhibitor when 4-methylcatechol 

and (+)-catechin were used as substrates and non-competitive with caffeic acid 

(Gunata and others 1987).  Janovitz-Klapp and others (1990) also concluded that 

benzoic acid is competitive with 4-methyl catechol since it does not affect the 

apparent Vm and increases the apparent Km.  In the system with benzoic acid, 

phenolic substrate (4-methyl catechol) and oxygen are present, oxygen is the first 

substrate to be bound to apple PPO, forming an E-O2 complex to which the benzoic 

acid as an inhibitor can bind only with enzymatic forms of PPO which are free of 

other phenolics i.e., E or E-O2 (Janovitz-Klapp and others 1990b).  Some PPO 

inhibitors require protonation of the acidic group (i.e., low pH) in order to display 

inhibition (Pifferi and others 1974; Janovitz-Klapp and others 1990a) that should be 

taken into account when investigating inhibition (Ferrar and Walker 1996).  The 

inhibition of mushroom PPO by benzoic acid and by cyanide, respectively, showed 

the former to be competitive with catechol (substrate) and non competitive with O2, 

while the later inhibitor showed a reversed behavior.  This was interpreted as the 

result of the existence of two distinct substrate binding sites on the enzyme molecule, 

one of which had a high affinity for aromatic compounds, including phenolic 

substrates, while the other, which probably contained the enzyme copper, served for 
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metal-binding agents and oxygen (Duckworth and Coleman 1970).  Benzoic acid was 

found to be a mixed-type inhibitor of gum arabic PPO showing the strongest 

inhibition among all carboxylic acids tested at a pH of 5.3 (Billaud and others 1996). 

The inhibitors of enzymatic browning that react with the reaction products or 

substrates, can be divided into following groups (Vamos-Vigyazo 1981).  

1. Reducing agents acting on the formed quinines by restituting the o-dihydroxy 

phenols.  These compounds are consumed in the process of inhibition, and 

thus provide only temporary protection against discoloration, unless used in 

high concentration, in which case reaction inactivation of the enzyme might 

occur prior to the depletion of reducing agent.  Some frequently used 

representatives of this group are ascorbic acid, SO2, potassium metabisulfite, 

2-mercaptoethanol, and thioglycollate.  

2. Quinone couplers forming stable colorless compounds with quinones, thus 

providing permanent protection as long as they are not entirely consumed.  

Cysteine, glutathione, benzensulphinic acid, DIECA, Na-ethyl xanthate , 

among others, are able to perform such reactions.  

Sulfites are arguably the most versatile food additives available.  They act not 

only as a food preservative but have an important role as inhibitors of enzymatic and 

non-enzymatic browning, inhibitors of a wide range of enzymes including proteases, 

oxidases, peroxidases, and are alleged to prevent oxidative spoilage (Wedzicha 1992).  

Sulfites are highly effective at controlling browning but are subject to regulatory 

restrictions because of adverse effect on health (Sapers 1993).  The main reason for 
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the reactivity of sulfites in foods is the high nucleophilicity of the sulfite ion 

(Wedzicha 1992) 

Sulfites have a very complex action on the PPO-polyphenol system(Vamos-

Vigyazo 1981).  Sulfites can act as PPO inhibitors and can also react with 

intermediates to prevent pigment formation (Sayavedra-Soto and Montgomery 1986).  

Sulfites can inhibit browning by combining irreversibly with the quinones to form 

colorless addition products, at the same time reducing the activity of the enzyme 

towards both mono-and dihyroxy phenols (Embs and Markakis 1965 and Markakis 

and Embs 1966).  Inhibition of browning involves nucleophilic attack by the sulfite 

ion on formed quinone by PPO reaction to form sulfonate, where quinone is reduced 

and sulfonate is unreactive towards PPO (Wedzicha and others 1991).  Inhibition of 

browning is permanent if all the substrate (quinone) is converted to sulfonate 

(Wedzicha and others 1991).  Some authors have reported that sulfite has direct effect 

on enzyme (Golan-Goldhirsh and Whitaker 1984; Sayavedra-Soto and Montgomery 

1986; Valero and others 1992).  The product (quinone) accumulation curve in the 

presence of metabisulfite includes initial an lag period due to the chemical reaction 

between the quinone products of the enzyme catalysis and metabisulfite  and a steady 

state phase, where all of the inhibitor has been depleted. During the steady state phase 

the catalytic activity that is expressed is lower than in the absence of metabisulfite, 

which is probably an indication of the direct effect of metabisulfite on PPO (Valero 

and others 1992).  It is assumed that the inactivation of the oxy form of PPO involves 

the formation of an enzyme-sulfite complex, which subsequently undergoes an 

irreversible isomerization reaction that inactivates the enzyme (Valero and others 
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1992).  The main action of sulfite on the enzyme might be sulfitolysis at the vital 

point for the enzyme activity (Sayavedra-Soto and Montgomery 1986).  These 

researchers also suggested that the formation of PPO-SO3 complex could have 

occurred due to the interaction between sulfite and PPO, forming inactive PPO that 

differed in some properties that was shown by additional bands on electrophoresis 

and the disappearance of the protein band where the active PPO should have been 

noticed (Sayavedra-Soto and Montgomery 1986).  Presence of the lag phase was also 

observed and was attributed to the formation of complexes between the o-quinones 

and sulfite before the onset of browning  (Sayavedra-Soto and Montgomery 1986).  

The inhibitor is gradually consumed in the quinone-coupling precess: thus its action 

depends on its concentration, as well as on the nature and concentration of the 

phenols present  (Vamos-Vigyazo 1981).  In the presence of o-dihydroxy phenols, 

sulfite may get entirely consumed before complete enzymatic inactivation has 

occurred (Vamos-Vigyazo 1981).  In such a case color formation is delayed and 

attenuated, but not entirely eliminated (Haisman 1974).  In the presence of both 

mono- and dihydroxy phenols , ascorbic acids interferes (by its reducing action) with 

the quinone coupling to sulphite, and thus promotes sulphite inhibition of the enzyme 

(Vamos-Vigyazo 1981).   

Sodium metabisulfite was the most potent inhibitor of Emir grape PPO with 

5.5, 13.5, 41.1 and 100% inhibition with concentrations of 0.05, 0.1, 0.25 and 0.50 

mmol/L respectively (Unal and Sener 2006).  It was reported that sodium bisulfite has 

a direct irreversible inhibition effect on mushroom PPO with an I50 value 

(concentration required to reduce the observed activity by 50%) of 0.20mM (Golan-
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Goldhirsh and Whitaker 1984).  Presence of sulfites in standardized foods should be 

declared on the label when the sulfating agents have a functional effect or are present 

at a detectable level, defined as 10 ppm of more (Title 21, U.S. Code of Federal 

Regulations 101.100).  Use of sulfites to inhibit browning presents some 

disadvantages: 1) the corrosion of machinery 2) the destruction of nutrients, 3) the 

production of tissue softening and off-flavors, and 4) adverse health effects (Girelli 

and others 2004).  

Sorbates are considered GRAS.  The presence of sorbic acid as an 

antimicrobial agent had a minimal effect on the browning of avocado puree (Soliva-

Fortuny and others 2002).  Sorbates are unstable in aqueous solution and suffer and 

oxidative degradation that depends on pH and the presence of other additives 

(Campos and Gerschenson 1996; Campos and others 1997).  Autoxidative 

degradation of sorbates proceeds at higher rates at acidic pH values due to the fact 

that only undissociated molecules are prone to oxidative degradation (Arya 1980).  

Carbonyl compounds are formed during the degradation of sorbate that can take part 

in non-enzymatic browning reactions and lead to undesirable changes (Campos and 

others 1997).   

Ascorbic acid is a highly effective inhibitor of enzymatic browning primarily 

because of its ability to reduce quinones to phenolic compounds before they can 

undergo further reactions to form pigments (Sapers 1993).  However, once added, 

ascorbic acid has been completely oxidized to DHAA by this reaction, and quinones 

can accumulate and undergo browning and DHAA can brown non-enzymatically 

(Sapers 1993).   
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Since PPO is a metalloprotein with copper as the prosthetic group, it can be 

inhibited by metal chelating agents.  Distinct differences were found in the action of 

this group of inhibitors upon PPO from chloroplasts, mitochondria or the soluble 

fraction (Vamos-Vigyazo 1981).  PPO can also be inhibited by procyanidins, native 

and oxidized, and by the oxidation products of caffeoylquinic acid and (-)-epicatechin 

(Le-Bourvellec and others 2004).  Some compounds like cyclodextrins have dual 

effects, activating or inhibiting browning, according to the plant material used (Sojo 

and others 1999).  Proteins, peptides, and amino acids can effect PPO activities by 

reacting with o-quinones and by chelating the copper at the active site of PPO (Girelli 

and others 2004).  Dipeptides vary widely in their inhibition effect on mushroom PPO 

ranging from direct, indirect or no inhibition at all (Girelli and others 2004).  In recent 

studies, sodium chlorite emerged as a potential PPO inhibitor with mixed inhibition 

that is dependent on pH and inhibitor concentration (Lu and others 2006). The search 

for naturally occurring inhibitors has led to the discovery of a number of active 

compounds like chalcones and related compounds (Mayer 2006). 

Oxalate in spinach leaves and quercetin and leucoanthocyanins in tea leaves 

have been described as natural inhibitors of catechol oxidase (Mayer 1987).  PPO is 

inhibited by trans  rasveratrol with a linear relationship between PPO activity and 

trans-rasveratrol concentration (Fan and Mattheis 2001).  Inhibition of apple PPO by 

native and oxidized procyanidinas which are oxidation products of caffeoylquininc 

acid and (-) epicatechin, was reported by Le-Bourvellec and others (2004).  
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Anthocyanins 

Anthocyanins are the most important water-soluble pigments in plant tissue, 

and impart blue, red and purple colors.  The anthocyanins (Greek anthos, flower and 

kyanos, blue) are part of the very large and widespread group of plant constituents 

known collectively as flavonoids.  The basic structure of anthocyanins is a flavylium 

cation with different groups attached to different positions in the molecule.  The six 

most common anthocyanidins or aglucones out of the 17 that occur in nature are: 

pelargonidin, cyaniding, peonidin, delphinidin, petunidin and malvidin (Figure 3).  

Differences between the individual anthocyanins are the number of hydroxyl groups 

in the molecule, the degree of methylation of these hydroxyl groups, the nature and 

number of sugars attached to the molecule and the position of attachment, and the 

nature and number of aliphatic or aromatic acids attached to the sugar in the molecule 

(Mazza and Brouillard 1987b).  The sugars most commonly attached to 

anthocyanidins are glucose, galactose, rhamnose and arabinose (Mazza and 

Brouillard 1987b).  Sugar present in anthocyanin molecule imparts a higher solubility 

and stability.  Sugars, acylated sugars, methoxyl and hydroxyl groups have a marked 

effect upon the color and reactivity of anthocyanins (Mazza and Brouillard 1987b).  

Fifteen anthocyanins have been identified in the blueberries cultivated in North 

America and they are 3-arabinoside, 3-galctoside, and 3-glucoside of peonidin, 

cyaniding, malvidin, delphinidin and petunidin (Sapers and others 1984; Ballington 

and others 1987; Mazza and Miniati 1993).  The color of anthocyanin-containing 

media depends on structure and concentration of the pigment, pH, temperature, 

presence of copigments, metallic ions, enzymes, oxygen, ascorbic acid, sugars and 
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their degradation products, sulfur dioxide, actual anthocyanin concentration and other 

factors (Mazza and Miniati 1993).  Generally as the number of phenolic hydrolysis 

increases, the color changes from pink to blue.  Methoxyl groups replacing hydroxyl 

reverse the trend (Mazza and Brouillard 1987b).  In aqueous media, most of the 

natural anthocyanins behave like pH indicators.  Anthocyanin solutions are red or 

yellow at low pH’s in a form of a flavylium cation, blush at intermediate pH’s in the 

form of a quinoidal base, and colorless at high pH in a form of carbinol pseudobase 

and chalcone form (Mazza and Brouillard 1987a). 

 

 

Figure 3.  Structure of most commonly found anthocyanidins.  
      (http://health.wedar.com/show.asp?id=4701) 
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It is generally accepted that in acidic solutions anthocyanins exist as 

equilibrium mixtures of the colored flavylium cation and the colorless carbinol or 

pseudo base (hemicetal form) (Timberlake and Bridle 1967b) (Figure 4).  Thus for 

example for cyanidin 3-glucoside, at a pH of 3.01, 50 % will be in the colored form 

and 50% will be colorless (Wrolstad 2004).   

 

 

Figure  4.  Forms of anthocyanins present in acidic solution 

 

The electron deficient anthocyanins molecule is susceptible to nucleophilic 

attack of compound which may exist naturally in the plant and food materials.  

Foremost among these nucleophiles is ascorbic acid, which has been shown to 

accelerate anthocyanin breakdown.  Anthocyanins can disappear as monomeric 

compounds and transform into polymeric forms which result in a color change to a 

brown pigmentation (Iversen 1999).  

The anthocyanins pigment of the native European blueberry or bilberry 

(Vaccinium myrtillus) have long been used for improving visual acuity and treating 
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circulatory disorders (Mazza and Miniati 1993).  There is experimental evidence that 

certain anthocyanins and flavonoids have anti-inflammatory properties, and there are 

reports that orally administrated anthocyanins are beneficial for treating diabetes, 

ulcers and may have antiviral and antimicrobial activities and can also provide 

protection against UV radiation (Mazza and Miniati 1993).  Anthocyanins, as a 

functional food component, can aid in the prevention of obesity and diabetes (Tsuda 

and others 2003).  The chemical structure (position, number and types of substitution) 

of an individual anthocyanin molecule has a bearing on the degree to which 

anthocyanins exert their bioactive properties (Lila 2004).  The nature of the sugar 

conjugated and the aglucone are important determinants of anthocyanin absorption 

and excretion in both human and rats (McGhie and others 2003).  Delphinidin but not 

malvidin or cyanidin, provided endothelim-dependent vasorelaxation in the rat aorta 

(Andriambeloson and others 1998). 

 

Degradation of anthocyanins by PPO 

It is well known that anthocyanins are poor substrates for PPO, and this is 

probably due to the presence of the sugar moiety that causes steric hindrance, since 

the aglucon forms are often oxidized by PPO (Mathew and Parpia 1971).  It has been  

reported that PPO can act on anthocyanins when triphenolic function is present on the 

B ring of the flavylium structure (delphinidin derivatives) (Sakamura and Obata 

1963; Sakamura and others 1965).  The loss of about  20% of pigments in a model 

containing PPO and cyanidin seems to indicate that the enzyme could act directly on 

this pigment (Wesche-Ebeling and Montgomery 1990b).  This could be due to the 
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presence of cyanidin in the aglucone (no sugar attached) form although the 

concentration of cyanidin in the aglucone form was not determined (Wesche-Ebeling 

and Montgomery 1990b).  Enzymatic oxidation of phenolic compounds that are 

present in blueberries by PPO can occur during processing as soon the berries are 

damaged.  The first reaction step that occurs is the oxidation of phenolic substrates to 

their o-quinones.  Quinones are very reactive species which are able, as oxidants, to 

oxidize other substrates, being reduced in the process to the original phenol, and as 

electrophiles to react with various nucleophiles (Sarni and others 1995).  These o-

quinones reactions, namely oxidation and condensation reactions can lead to 

discoloration and can involve other phenolic compounds, especially anthocyanins. 

The use of model systems has shown that the enzymatically generated o-quinones 

play an essential role in the process of anthocyanin degradation (Kader and others 

1999a).  Although anthocyanins are not direct substrates for PPO, anthocyanins with 

an o-diphenolic B ring were enzymatically oxidized by generated o-quinines of 

catechol, catechin, chlorogenic acid (Peng  and Markakis 1963; Pifferi and Cultrera 

1974; Raynal and Moutounet 1989; Wesche-Ebeling and Montgomery 1990b) and 

caftaric acid (Cheynier and others 1994).  Degradation of anthocyanins occurs when 

active PPO and its substrate are present in the system.  In the model system 

containing chlorogenic acid, the degradation rate of PPO and anthocyanins was much 

faster than without chlorogenic acid, and no degradation occurred when the 

enzymatic extract was inactivated by heating and chlorogenic acid was also not 

oxidized (Kader and others 1997a).  Degradation of anthocyanins is also tied to its 

structure, which is strictly correlated to the reaction pH (Pifferi and Cultrera 1974).  
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What ever the PPO substrate used, the degradation of anthocyanins increased as the 

pH increased with the sharp rise at pH 4.2 (Pifferi and Cultrera 1974).  Sarni-

Manchado and others (1997) showed that a hemiacetal form of malvidin are more 

reactive than the flavylium form which is directly dependent on pH.  Mechanism and 

rate of anthocyanin degradation by o-quinones is closely related to their structure, 

especially their B ring.  Sarni and others (1995) concluded that the first reaction step 

that leads to the discoloration of grape must like model solution depends on the nature 

of the anthocyanin: o-diphenolic anthocyanins behave mostly as reductants whereas 

non o-diphenolic anthocyanins act as nucleophiles to yield condensation products.  

These researchers also concluded that in complex media like grape must, both 

reactions occur simultaneously but o-diphenolic anthocyanins are degraded faster. 

In the presence of chlorogenic acid and enzyme extract, cyanidin-3- rutinoside 

was rapidly degraded and could not be detected after  20 min of reaction (Raynal and 

Moutounet 1989).  The quinones that are formed from the action of PPO on 

chlorogenic acid seem to be responsible for the oxidation of anthocyanins because  

degradation was not evident when quinones were blocked by glutathione (Raynal and 

Moutounet 1989).  In the oxidizing grape must concentration of o-diphenolic 

anthocyanins like delphinidin cyanidin and petunidin  decreased much faster than non 

o-diphenolic anthocyanins like malvidin and peonidin (Cheynier and others 1994).  

Degradation of cyanidin- glucoside (o-diphenol) was much faster than the 

degradation of pelargonidin-3-glucoside and proceeded by a mechanism of coupled 

oxidation in the presence of the chlorogenic acid o-quinone (Kader and others 2002).  

The secondary anthocyanin o-quinones generated by coupled oxidation also 
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proceeded further to condensation products (Sarni and others 1995).  Once formed, all 

condensation products were rapidly degraded to a colorless compound, either by 

enzymatic oxidation or by reaction with primary or secondary quinines (Sarni and 

others 1995).   

The mechanism of anthocyanin degradation depends not only on the structure 

of the anthocyanin but also whether the degradation was monitored on one particular 

anthocyanin or a mixture of anthocyanins.  Cheynier and others (1994) reported that 

non-o-diphenolic anthocyanins may react with caffeoyltartaric o-quinone or 

secondary quinones that are formed from delphinidin and petunidin-3-glucoside 

leading to the formation of copolymers.  These reactions have also been mentioned by 

Sarni and others (1995) and can only take place in a mixture of o-diphenolic and non-

o-diphenolic anthocyanins.   

 

Degradation of o-diphenolic anthocyanins  

Cyanidin glycoside is a diphenolic anthocyanin that is very susceptible to a reaction 

with o-quinines, secondary products of phenolics oxidation by PPO.  Sarni and others 

(1995) proposed a mechanism of cyaniding-3-glucoside by PPO in the presence of 

caffeoyltartaric acid o-quinine generated by PPO in the presence of caffeoyltartaric 

acid as a substrate in a 2 stage process: 

1. caffeoyltartaric acid o-quinine + o-diphenolics anthocyanin = caffeoyltartaric 

acid + anthocyanin o-quinine 

Quinines of cyaniding-3-glucoside are extremely unstable and proceed readily to 

condensation products : 
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2. anthocyanin o-quinine + anthocyanin = caffeoyltartaric acid-anthocyanin 

product 

The addition of caffeic acid quinine to a cyanidin-3-glucoside solution resulted in 

the disappearance of the red color and the concomitant formation of a slight orange 

color (Kader and others 1999a).  Kader and others (1999a) proposed identical 

mechanism of degradation for cyanidin-3-glucoside with caffeic acid quinone as 

Sarni and others (1995).  They did not observed any brown color in the reaction 

mixture, which means that degradation products of cyanydin-3-glucoside are not 

involved in the formation of brown polymers.  Kader and others (1998) incubated 

equimolar concentrations of chlorogenic acid and cyaniding-3-glucoside with 

blueberry PPO and reported that after 10 min of reaction, pigment could not be 

detected in the reaction mixture and after 20 min, the reaction turned brown. These 

researchers concluded that cyaniding-3-glucoside is oxidized by a coupled oxidation 

mechanism involving chlorogenic acid o-quinone that is generated by PPO in the 

presence of chlorogenic acid which leads to complete discoloration.  The ratio of 

degraded cyaniding-3-glucoside to oxidized chlorogenic acid is relatively constant 

and equal 2, which means that part of the chlorogenic acid is incorporated into 

degradation products of cyaniding-3-glucoside (Kader and others 1998) 

 

Degradation of non–diphenolic anthocyanins 

The degradation of non-o-diphenolic anthocyanins has been regarded as a two 

step process involving the enzymatic oxidation of the o-diphenolic substrate into the 

corresponding o-quinone, followed by the reaction of the enzymatically generated o-
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quinone with the anthocyanins (Kader and others 1999b).  The latter reaction leads to 

the formation of adducts which can be oxidized either by enzymatic oxidation or by 

reaction with the o-quinine with no coupled oxidation occurring as expected by their 

structure (Sarni and others 1995). 

Malvidin glycosides are non o-diphenolic anthocyanins that are less 

susceptible to the degradation of PPO generated o-quinines.  However, Sarni and 

others (1995) noticed a decrease in malvidin-3-glucoside in the model system in the 

presence of PPO and caffeoyltartaric acid (PPO substrate) and attributed that decrease 

to following reaction; 

caffeoyltartaric acid o-quinine + anthocyanin = caffeoyltartaric acid –anthocyanin 

product 

There was no degradation of malvidin-3-O-glucoside in the presence of PPO 

without the substrate (caftaric acid), and no new products appeared in the system with 

malvidin-3-O-glucoside and caftaric acid as a PPO substrate (Sarni-Manchado and 

others 1997).  This indicated that malvidin-3-O-glucoside is not a direct substrate for 

PPO and that it does not directly interact with the PPO substrate, caftaric acid in this 

case (Sarni-Manchado and others 1997).  They also concluded that at a pH of 3.4, 

(where 2 forms of malvidin-3-O-glucoside, flavylium and hemicetal coexist) both 

reacted with caftaric acid o-quinone that was formed by the action of PPO forming 

colored flavylium/caftaric acid and hemicetal/caftaric adducts. 

Weische-Ebeling and Montgomery (1990) studied the degradation of 

pelargonidin-3-glycoside by strawberry PPO.  A model system containing 

pelargonidin-3-glycoside + PPO showed a slight loss of pigment (5%), but in the 
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presence of catechin as a PPO substrate, 50% of pelargonidin-3-glycoside was lost 

after 24 h.  The authors proposed a mechanism of degradation by incorporation of 

anthocyanins into condensation products of catechin by quinine-phenol reaction.   

Kader and others (1999) reported that pelargonidin-3-glycoside is not a substrate for 

PPO since no molecular oxygen was consumed in the mixture of PPO and 

pelargonidin-3-glycoside.  The degradation of pelargonidin-3-glycoside occurred only 

when both chlorogenic acid and blueberry PPO were present in the mixture.  These 

researchers suggested that chlorogeno-quinone that was generated during the 

oxidation of chlorogenic acid by PPO plays an important role in the mechanism of 

pelargonidin-3-glycoside degradation and that the simplest hypothesis to explain this 

behavior is the concept of a condensation reaction between the chlorogeno-quinone or 

its degradation products and pelargonidin-3-glycoside.  Pelargonidin 3-glucoside 

reacted with the hydroxycaffeic acid o-quinone formed by the dismutation of caffeic 

acid in aqueous media which led to the formation of condensation products that 

contained both caffeic acid and pelargonidin 3-glucoside moieties (Kader and others 

2001) 

 

Inhibition of anthocyanins degradation 

Degradation of anthocyanins can be inhibited by the direct inhibition of PPO 

and with that, formation of o-quinines or by the inhibition of reaction of anthocyanins 

with already generated o-quinones.  The quinones formed from the action of PPO on 

chlorogenic acid seem to be responsible for the oxidation of anthocyanins because the 

degradation was not evident when quinones were blocked by glutathione (Raynal and 
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Moutounet 1989).  Cheynier and others (1994) also reported that the degradation of 

anthocyanins was totally inhibited by the addition of glutathione in grape must prior 

to oxidation.  In the conditions when glutathione was added, caffeoyltartaric acid 

quinones that were by enzymatic oxidation were converted to other products, which 

prevented them from reacting and degrading the anthocyanins.  With larger amounts 

of the inhibitor glutathione, competition between trapping of the quinones by 

glutathione and their reduction by anthocyanins was in favor of the former (Cheynier 

and others 1994)  

Addition of ascorbic acid as a reducing agent to the reaction mixture 

containing pelargonidin-3-glucoside, chlorogenic acid and blueberry PPO induced 

instantaneous bleaching after 2 min of reaction, (Kader and others 2001).  These 

researchers concluded that in the presence of excess reducing agent, the o-quinones 

that were formed were reduced to original phenol.  On the other hand Sakamura and 

others (1965) reported that the addition of ascorbic acid retards the loss of pigment as 

long as ascorbic acid is present in the mixture.  Inhibition of PPO activity by 

phenylthiourea prevented oxidation of chlorogenic acid which in addition prevented 

the degradation of cyanidin-3-rutinoside (Raynal and Moutounet 1989). 

Addition of sulfites was reported both to degrade anthocyanins and to inhibit 

their degradation by the action of PPO.  This bleaching can be reversible or 

irreversible.  The reaction of sulphites with anthocyanins, nicotinamide derivatives, 

the flavin moiety of flavoenzymes and folate all cause reversible binding of the 

additive (Wedzicha 1992).  The reversible reaction with sulfur dioxide involves 

reaction with colored flavylium to form colorless chromen-2 (or 4)-sulphonic acid, 
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which is similar in structure and properties to an anthocyanin carbinol  (pseudo) base 

(Jurd 1963).  When sulphur dioxide was added to a diluted blackcurrant juice, the 

visible color fell rapidly to a minimum value and than rose slowly during the course 

of several hours (Timberlake and Bridle 1967a).  This recovering of the color was 

attributed to the other substances present in juice (e.g. sugars and dehydroascorbic 

acid) that were competing with the anthocyanins for SO2 and were slowly removing it 

from the initially formed anthocyanin complex (Timberlake and Bridle 1967a).   

Sulfur dioxide (8ppm)completely inhibited the degradation of anthocyanin in 

a model system containing mushroom PPO and catechol as a substrate at pH 6.5 

(Goodman and Markakis 1965).  In tart cherry juice under similar conditions, but 

with no catechol added, 30ppm of SO2 was required for complete inhibition of 

anthocyanin degradation (Goodman and Markakis 1965).  These greater 

concentration of SO2 in the juice than in the model system that was necessary for the 

inhibition of PPO was attributed to the SO2-binding capacity of carbonyl compounds 

that are present in the juice.   

Influence of the added SO2 on the content of the colored anthocyanins 

depends of the content of the SO2-binding carbonyl compounds present in wine with 

the same level of total SO2 that differently influences anthocyanin color in different 

wines (Dallas and Laureano 1994).  Malvidin 3-glucoside is immediately decolorized 

by an excess of SO2 (2000mg/l) (Dallas and Laureano 1994).  It was found that SO2 

had a strong stabilizing effect on pelargonidin 3-glucoside in canned and bottled 

strawberries (Adams and Ongley 1973) and in strawberry juice (Bakker and Bridle 

1992).  Sodium sulphite was found to a have a strong stabilizing effect on 
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pelargonidin 3-glucoside in canned and bottled strawberries, and it was originally 

theorized that this was either due to its antioxidant action or to the fact that it forms 

addition compounds with aldehydes such as furfural and 5-hydroxymethylfurfural 

(arising from the break down of sugars) which might otherwise condense with the 

anthocyanin to yield colorless or brown compounds (Adams and Ongley 1973).  

Incorporation of sulfur dioxide in the extraction medium significantly increased the 

yield of anthocyanins from apple peel (Timberlake and Bridle 1971). 

 

Blueberry juice 

Most of the blueberries in Mississippi are sold on the fresh market 

(http://www.mdac.state.ms.us/n_library/pub_form/publications/pdf/com_blueberries.

pdf.)  Mississippi’s early season helps growers get top prices before northern 

blueberries start competing in the market.  The perishable nature of blueberries in the 

fresh form coupled with the decrease in price in southern berries once northern 

production starts, requires rapid movement to market (Sadfar and Albert 2000) or 

further processing.  There is also a lot of excess fruit that includes unripe, blemished 

and broken berries that are not suitable for the fresh or frozen markets.  Frozen berries 

are difficult to sell profitably due to supply exceeding demand and high storage costs 

(Main and others 2001).  Use of excess fruit in juice products is especially attractive 

since machine-harvested fruit can be used (Bakker and others 1998).  Health 

attributes ascribed to blueberries create a need for the development of processed 

blueberry products that are convenient for the consumer.  Of all fruits and vegetables, 

blueberries are ranked highest in their antioxidant activity (Prior and others 1998).  
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Both cranberry and blueberry juice contain high molecular weight constituents which 

selectively inhibit mannose resistant adhesions that are produced by urinary isolates 

of Eschericia coli by binding to the bacterial surface, possibly to the adhesion itself 

(Ofek and others 1996).   

Blueberries are often pressed into juice and juice concentrate, to reach more 

wide spread consumption (Rossi and others 2003).  Recent reports in the beverage 

industry indicate an increase in the production of functional beverages.  Blueberry 

juice would be a rich source of antioxidants and could be classified as a functional 

beverage.  Blueberries may be the biggest berry beverage breakthrough yet.  In Asia 

and Europe, blueberries are one of the most popular flavors for fruit beverages and 

juices (http://www.foodprocessing.com/articles/2005/559.html?page=2).  In North 

America, blueberries in beverages are suddenly becoming popular with companies 

like Izze Beverage Co., extending their line of pure fruit juice sodas with blueberry 

last year; Leading Brands released TrueBlue blueberry juice cocktail; Island Juice 

Company produces a line of berry blend juice beverages; Ocean Spray introduced its 

new cocktail, Organic Cranberry-Blueberry, for a double-shot of health 

(http://www.foodprocessing.com/articles/2005/559.html?page=2). 

Blueberry juice is an expensive product because blueberries are priced higher 

than other small fruits (Main and others 2001).  Blueberry juice can be also mixed 

with other juices and still produce a blueberry like juice or juice cocktail (Main and 

others 2001).  Berry juices have become widely used in blends with the more 

traditional juices, such as apple, cranberry, and orange juice (Roberts and others 

2004). 
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The percentage of blueberry juice in the blend and the type of blending juice 

greatly affects the final product.  Concord and Venus grapes blended with blueberry 

juice resulted in a flavor similar in intensity to pure blueberry juice while apple and 

cranberry blends produced a juice with diminished blueberry flavor (Main and others 

2001).  

 

Blueberry juice processing methods 

Juice processing methods affect the quality of the final product.  The stability 

of color in blueberry is an important aspect of controlling quality during processing 

and storage (Yang and Yang 1987).  Anthocyanins exist almost exclusively in the 

skin, whereas phenolics and antioxidant properties are mostly in the flesh (Lee and 

Wrolstad 2004).  Since blueberries contain anthocyanins that impart the red color in 

the skin, breaking the skin and maceration of the blueberry mash are necessary steps 

in order to extract the color and obtain good quality juice.  Freezing and heating of 

the blueberries had a more pronounced effect than pectolytic enzymes on the skin 

cells, and consequently on the liberation of color pigments.  The loss of 

semipermeability and mechanical injury  to the cell membranes appears to determine 

the total color released (Fuleki and Hope 1964).  Crushing of the berries and heating 

have been used to increase color extraction from the berries and increase yield.  

Fuleki and Hope (1964) compared three treatments; hot pressing (62ºC for 30 min), 

cold enzyme pressing and hot enzyme pressing on blueberry juice yield and 

composition.  They reported that the hot enzyme treatment was superior to the other 

two, although the higher extraction of color was mainly attributed to the increased 
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temperature and mechanical injury to the skin rather than the action of pectolytic 

enzymes.  Lee and others (2002) also concluded that heating of berries may have 

contributed towards a breakdown of the skins, which could have increased color 

extraction, but still with a substantial amount of anthocyanins in the press cake.  

Reextracting the press cake or crushing the blueberries into fine particles may aid in 

greater extraction of anthocyanins into the final product (Lee and others 2002).  

Blueberry puree that was held for 60 min at 60ºC had higher anthocyanin and 

phenolic concentration than puree held at 25ºC, with anthocyanins being more 

affected than phenolics (Kalt and others 2000).  The increased extraction of 

anthocyanins was attributed to the increased permeability of membranes in the 

macerated berries at higher temperatures, and to decreased solubility of oxygen at 

higher temperatures that decreases oxidative degradation (Kalt and others 2000).  

Skrede and others (2000) obtained 83% yield of juice with the press cake residue 

accounting for 10% of the starting material.  They also had 7% loss of material in the 

milling, enzyme maceration and pressing unit operations.  Processing operations for 

the production of juice included thawing (5ºC), milling (6-7mm), depectinization at 

43°C for 2h, pressing (0.5bar), pasteurization  (90ºC, 1  min), and filtering to obtain 

single strength  juice with 15 Brix and further concentration at 40ºC to 73.5 Brix.  Lee 

and others (2002) compared two pretreatments: addition of 100 ppm SO2 and heat 

(95ºC for 2 min) followed by crushing, pectinase treatment, pressing, clarification, 

pasteurization (90ºC for 90s) and concentration on juice quality.  Yield of the juice 

ranged from 74 to 89% (w/w), with anthocyanins not efficiently extracted, which had 

a negative influence on juice quality.  Pretreatments with heat and SO2 resulted in 
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higher recovery of red color pigments with the more intense color (higher chroma) in 

pasteurized juice compared to control, while the heat treatment samples were darker 

(smaller L values) than the control and SO2 treated juice (Lee and others 2002).  

Rossi and others (2003) reported a juice yield that ranged from 79 to 81% (w/w) 

when they used a process that consisted of thawing, blanching, milling, 

depectinization for 1h at room temperature with enzymes, pressing and 

pasteurization.  They concluded that the addition of steam blanching of the fruits 

should be considered a very important factor when evaluating processed blueberry 

products for their possible health benefits (Rossi and others 2003).  The cold 

processing of blueberries was not as efficient at transferring antioxidants or phenols 

to the final juice as methods where heat was used (Carlson 2003).  Pasteurization 

using a steam kettle was the most effective at retaining antioxidant activity as 

measured by total phenols and ORAC in the final products.  One likely reason for this 

significantly higher level of antioxidant retention is due to exposure to higher heating 

temperatures resulting in increased permeability of water soluble substances, which 

then diffused into the liquid stream.  The higher heat also degrades enzymes (PPO 

and glucosidase) that would be harmful to the anthocyanins and lower the oxygen 

concentration in the final products (Carlson 2003). 

 

PPO in food processing 

Polyphenol oxidase (PPO) is a very important enzyme in the food industry. 

Processing or any wounding of fruits and vegetables may cause cell disruption that 

can lead to quinone formation due to the action of PPO with subsequent product 
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deterioration.  The appearance of food and beverages may be affected but also the 

taste and nutritional value, often decreasing the quality of the final products (Gandia-

Herrero and others 2005).  For the fruit and vegetable processor, the action of PPO is 

primarily connected to the enzymatic browning of fresh and off-flavor generation in 

canned or frozen horticultural products, respectively (Vamos-Vigyazo 1981).  Both 

phenomena are of vital importance to the manufacturer as they impart not only the 

sensory properties and hence, the marketability of a product, but often lower its 

nutritional value (Vamos-Vigyazo 1981).  Enzymatic oxidation of phenolic 

compounds present in blueberries by PPO can occur during processing as soon the 

berries are damaged.  The first reaction step that occurs is oxidation of phenolics and 

conversion of substrates to their o-quinones.  Quinones are very reactive species 

which are able, as oxidants, to oxidize other substrates, being reduced in the process 

to the original phenol, and as electrophiles to react with various nucleophiles (Sarni 

and others 1995).  These reactions of o-quinones, namely oxidation and condensation 

reactions can lead to discoloration and can involve other phenolic compounds, 

especially anthocyanins.  Degradation of anthocyanins occurs when active PPO and 

its substrate are present in the system.  Although anthocyanins are not direct 

substrates for PPO, anthocyanins with an o-diphenolic B ring were oxidized via 

enzymatically generated o-quinines of catechol, catechin, and chlorogenic acid (Peng  

and Markakis 1963; Pifferi and Cultrera 1974; Raynal and Moutounet 1989; Wesche-

Ebeling and Montgomery 1990b) and caftaric acid (Cheynier and others 1994).  

Thermal treatment and addition of chemical inhibitors are some ways to inhibit the 

action of PPO.   
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PPO is not an extremely heat-stable enzyme.  Short exposure, in the tissue and 

solutions, to temperatures of 70 to 90ºC are, in most cases, sufficient for partial or 

total irreversible destruction of its catalytic function (Vamos-Vigyazo 1981).  

Blanching (3 min in a steam blanching tunnel) of blueberry fruit was extremely 

effective at reducing PPO activity, maximizing anthocyanin recovery in the juice 

(Rossi and others 2003).  The PPO in crude extracts of plum, apple, pear and avocado 

was inactivated at 60-65ºC, whereas for grape PPO, a temperature of 55ºC was 

enough for inactivation (Weemaes and others 1998).  PPO thermal stability can be 

affected by some substances that are present in the food (Tomas-Barberan and Espin 

2001a).  Addition of both EDTA and benzoic acid increased the thermal stability of 

mushroom PPO, whereas gluthatione produced a sensitization to temperature 

treatments, probably due to an interaction with a disulphide bond of the enzyme 

(Weemaes and others 1997).  

It has been reported that heat inactivation of PPO is unacceptable in 

anthocyanin-containing juice products, since the high temperature required for PPO 

inactivation can cause anthocyanin degradation (Siddiq and others 1992).  Carboxylic 

acid is a strong inhibitor of PPO (Pifferi and others 1974; Walker and Wilson 1975; 

Walker and McCallion 1980; Gunata and others 1987; Ferrar and Walker 1996).  

Benzoic acid and some derivatives of cinnamic acid are competitive inhibitors of PPO 

(Pifferi and others 1974).  When 4-methyl catechol is used as a substrate, benzoic 

acid is a competitive inhibitor of PPO (Gunata and others 1987; Janovitz-Klapp and 

others 1990b).  Benzoic acid at a concentration of 2.5mM (0.03%), inhibited 43% of 

grape PPO at pH 5 (Gunata and others 1987).  The presence of 5mM benzoic acid 
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lowered enzyme activity by 5%.  At higher concentrations of benzoic acid, the 

enzyme activity was reduced more: 11% at 10mM, 36% at 25mM and 52% at 50mM 

(Weemaes and others 1997).  This decrease in activity is probably due to competition 

between benzoic acid and catechol for the active site of the enzyme (Weemaes and 

others 1997).    

 

Acids in blueberries 

Sixteen different organic acids were identified in highbush blueberries with 

the predominant acids being citric, malic, quinic and chlorogenic, averaging 70%, 

7%, 4% and 16%, respectively (Markakis and others 1963).  In rabbiteye fruit, the 

percentage contribution by citric, succinic, malic and quinic acid is about 10%, 50%, 

34% and 6%, respectively (Kalt and others 1996).  Other researchers reported 95% 

citric acid and 1% to 2% each of quinic and malic acid in ripe Wolcott fruit 

(Kushman and Ballinger 1968).  Succinic and malic acids were the predominant acids 

in rabbiteye cultivars averaging 50% and 33%, respectively (Ehlenfeldt and others 

1994).  Among rabbiteye clones, citric acid averaged 10% and was never found to be 

more than 22%, while quinic acid was consistently present as only a minor 

constituent, averaging 6% (Ehlenfeldt and others 1994).  Quinic acid is found in 

plants and microorganisms and has a regulation role in the biosynthesis of aromatic 

compounds in the shikimate pathway (Dewick 1998).  The biosynthesis of quinic and 

shikimic acid are interlinked and both are targets in the search for the new herbicidal, 

antifugal, antibacterial and antiparasitic agents that may not affect mammals (Pansare 

and Adsool 2006).  High concentrations of quinic acid, between 0.5 and 1.18%, were 
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reported in juices from different varieties of cranberries and lingenberries but only 

trace amounts were found in blueberrie’s from Germany and Argentina (Jensen and 

others 2002).  Quinic acid is also starting material in the synthesis of viral 

neuraminidase inhibitors for the treatment of influenza (Kim and others 1997).  

Quinic and shikimic acids are gaining interest because they can be a starting material 

in the production of the bird flu medicine, Tamiflu (Bradley 2005).  Shikimic acid is 

also a starting material for the making of Tamiflu, but there is only a limited supply 

of the acids, with the most abundant source from star anise and the leaves of gingko 

biloba (Bradley 2005).  Tamiflu can also be synthesized from quinic acid found in 

cinchona bark, but supplies are also limited (Bradley 2005).  

 

Phenolics 

Phenolics are present in fruits, vegetables, leaves, nuts, seeds, flowers and 

barks.  Although structurally diverse, phenolics can be classified into two groups – 

the flavonoids and the nonflavonoids.  The flavonoid family includes flavonols 

(myricetin, querecetin, kaempferol and isorhamnetin), flavan-3-ols (catehin and 

epcatehin) and anthocyanins.  The nonflavonoids encompass galic acid, 

hydrohycinnamates ( p-coumeric acid, caffeic acid, and caftaric) and rasveratol.  

Anthocyanin flavonoids and hydroxycinnamates are the largest constituents of the 

total phenolic content of blueberries (Kalt and others 2000).  Blueberries are very rich 

in total phenolics.  The total phenolics content of highbush and lowbush blueberries is 

about 4-fold higher than in strawberries and raspberries (Kalt and others 1999).  

Reported values of total phenolics in rabbiteye blueberries vary between authors.  
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Values of 717-961 mg of gallic acid equivalents in 100 g of rabbiteye blueberries 

(Moyer and others 2002), 230.8 to 457.5 (Prior and others 1998), and 270.02 to 

929.62 (Sellappan and others 2002), were reported  depending on cultivar.  Large 

differences in total phenolics within the same variety can be attributed to maturity 

stage of berries, weather conditions during the year, growing season, plant disease, 

geographic location, extraction method and many other factors (Sellappan and others 

2002).  Total phenolics play an important role in the plant tissue and the human diet.  

Many distinctive development features of fleshy fruits, such as loss of astringency 

and color, are related to changes in the synthesis and accumulation of phenolic 

compounds.  Phenolic compounds are considered nonnutrient biologically active 

compounds (Sellappan and others 2002).  The functionality of these compounds is 

expressed through their action as an inhibitor or and activator for a large variety of 

mammalian enzyme systems, and as metal chelators and scavengers of free oxygen 

radicals (Sellappan and others 2002).  Several research groups have suggested the 

significance of fruit and vegetables phenolics as dietary antioxidants.  Their studies 

suggested that phenolics have substantial antioxidant capacity and may reduce the 

risks of cardiovascular disease and cancer (Kalt and others 1999).   

 

Changes in anthocyanins during juice processing 

Attractive color is a very important sensory characteristic for the consumer of 

fruits and processed fruit products (Garzon and Wrolstad 2002).  Huge economic 

losses can also be accrued by the company due to the loss of attractive product color.  

A concord grape juice producer reported an approximate loss of $ 700,000 due to the 



 45 
 

loss of juice color (Wrolstad and others 1994).  Not just because they impart color, 

but also because of their possible beneficial effect, particular attention has to be paid 

to the changes that anthocyanin pigments undergo with processing.  Pronounced 

changes in anthocyanins occurred during all processing steps, with the most dramatic 

difference between the berry fruit and the initial pressed juice (Skrede and others 

2000).  Anthocyanins are not as efficiently extracted in the pressing operation as 

sugars, acids and other water solubles, which can have a negative impact on juice 

quality (Skrede and others 2000; Lee and others 2002).  There was greater than 76% 

loss of anthocyanins in pasteurized juices when compared to frozen fruit (Lee and 

others 2002).  Anthocyanins as well as other polyphenolics are readily oxidized 

because of their antioxidant properties and, thus, susceptible to degradative reactions 

during various unit processing operations (Skrede and others 2000; Rossi and others 

2003).  The oxidation of anthocyanins may be most significant in fruit juices or 

beverages, because the aqueous matrix can dissolve large amounts of oxygen during 

processing, as compared to products with low water content (Kalt and others 2000).  

The primary steps of processing (thawing, crushing, depectinization, and pressing) 

contributed a large loss in total anthocyanins (Skrede and others 2000; Lee and others 

2002).  It was shown that substantial losses of anthocyanins and other polyphenolics 

occurred when blueberries were processed into juice and that different classes of 

compounds had varying susceptibility to degradation, with different processing 

operations with the highest losses occurring during milling and depectinization due to 

the action of native PPO (Skrede and others 2000).  
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Stability of anthocyanins in food system is influenced by several factors, 

including chemical structure of the pigment, total anthocyanin concentration, 

presence of other phenolics and ascorbic acid, and processing conditions.  The 

relative anthocyanins stability is related to their chemical structure.  Diglycosidic 

substitution is reported to give more stability to the molecule than monoglycosidic 

substitution ((Mazza and Miniati 1993; Garzon and Wrolstad 2002).  The delphinidin 

glycosides with the greatest lability have 3 ortho phenolics groups in the B ring and 

the cyanidin and petunidin derivatives, which have the second order of reactivity, 

have 2 orto phenolics groups (Skrede and others 2000).  Peonidin and malvidin 

glycosides, which have the least reactivity, possess 1 phenolic substituent in the B 

ring with 1 and 2 adjacent metoxy substituents, respectively (Skrede and others 

2000).  Anthocyanin stability in products can also be related to total anthocyanin 

concentration in the products.  The higher the total pigment concentration, the higher 

the stability of the berry juice or products (Garzon and Wrolstad 2002; Rein and 

Heinonen 2004).  Color stability is more dependent on the total anthocyanin content 

rather than the qualitative anthocyanin composition (Skrede and others 2000).  Lower 

pH (3.0) was found to stabilize the color of anthocyanins in the blueberry puree, 

because the equilibrium between colored flavylium and colorless pseudobase is 

shifted toward the flavylium at this pH (Yang and Yang 1987).  Phenolics, especially 

phenolic acids have a protective effect on anthocyanin color (Rein and Heinonen 

2004).  Total anthocyanins concentration and ascorbic acid are also believed to be 

major factors that influence the stability of anthocyanins (Garzon and Wrolstad 

2002).  Fortification of syrups and jams with ascorbic acid caused a decrease in 
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pigment stability (Garzon and Wrolstad 2002).  Not all anthocyanins are affected the 

same way during processing.  Malvidin glycosides comprised 44% of the total 

anthocyanins in blueberry fruit and increased to 63% in pasteurized juice and 

concentrate (Skrede and others 2000).  Similar results were reported by Lee and 

others (2002), in which malvidin glycosides in the berry were 51% of total 

anthocyanins and increased to 60-77% in pasteurized juice and concentrate.  

Delphinidin glucoside were the most unstable decreasing form 12% in blueberry fruit 

to 5% in pasteurized juice with only a trace amount present in the initial pressed juice 

(Skrede and others 2000).  Decrease of delphinidin glycosides was also reported by 

Lee and others (2002) but only for the juice that received no pretreatment prior to 

pressing.   

During juice processing, anthocyanins can be lost due to enzymatic break-

down, heat treatment and some are removed with the pulp (Iversen 1999).  Activity of 

PPO is one of the most important factors that influence the color loss of Concord 

grape juices (Cash and others 1976).  After addition of crude PPO extract to juice 

samples, formation of the brown precipitate was noticed and became greater as 

reaction time increased.  The precipitate appeared to be the end result of enzymatic 

hydrolysis of anthocyanins to brown degradation products which then became 

polymerized and settled out of solution (Cash and others 1976).  Chlorogenic acid 

will stimulate PPO destruction of anthocyanins during grape juice processing 

(Yokotsuka and Singleton 1997).  Endogenous enzymes in blueberry fruit can cause 

pigment degradation in juice processing (Skrede and others 2000).  The anthocyanin 

content of pasteurized single-strength juice was significantly higher than that of initial 
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pressed juice which was attributed to the action of the endogenous polyphenol 

oxidase (Skrede and others 2000; Lee and others 2002).  Iversen (1999) also reported 

a higher anthocyanin content in the pasteurized black currant juice than in the raw 

juice.  Kader and others (1997) also reported that endogenous PPO from highbush 

blueberries caused anthocyanin degradation in crushed fresh berries.  The chlorogenic 

acid present in blueberries is an additional compositional factor which can contribute 

to the pronounced color degradation in blueberry juice (Skrede and others 2000).  

Use of commercially available enzymes is widely used in the juice industry.  

Although most of the commercial enzyme preparations increase the yield of the juice, 

they also cause changes in the anthocyanin profiles.  These changes include a 

decrease in anthocyanidin glycosides and formation of unknown components that are 

attributed to the high galactosidase, glucosidase and arabinosidase activities found in 

the enzyme preparations (Buchert and others 2005).  Wightman and Wrolstad (1995) 

reported that destruction of the pigment most likely involves two steps.  In the first 

step an enzymatic hydrolysis of the anthocyanin to anthocyanidin and sugar occurs, 

and than spontaneous transformation of the aglucone pigment causes the formation of 

colorless juice.  As a result of all enzymatic treatments, practically no anthocyanidin 

galactosides were detected (Buchert and others 2005).  Treatment without enzyme 

addition gave the highest yield of anthocyanins and phenolics (Lee and Wrolstad 

2004). 

Blanching of strawberries before juice and concentrate production had a 

protective effect on anthocyanin pigments, leucoanthocyanins, flavanols, total 

phenolics and ascorbic acid and also resulted in improved color stability (Wrolstad 
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and others 1980).  Heating of the grape must before pressing had the greatest impact 

on the juice yield, amount of press fraction, pH, TA and color components, and 

nutraceutical analysis showed higher anthocyanin and phenolic content in the heated 

must (Threlfall and others 2005).  After 2 h mash treatment at 50ºC, 97% of the 

original anthocyanins content in the black currant  berries were intact (Iversen 1999).  

Blanching of blueberry fruit (steam for 3 min) before milling induced higher 

anthocyanin retention (23 % instead 12%) when processed into juice with total 

anthocyanin content of juice from blanched blueberry twice the non blanched one 

(Rossi and others 2003).  They concluded that better retention of anthocyanins for the 

blanched fruit could be due to the total inactivation of native PPO and increased skin 

permeability of fruit caused by the heat treatment.  Rossi and others (2003) also 

observed that juice from blanched blueberry fruit before milling was more blue and 

less red than the juice obtained from the traditional process (without blanching).  

These color findings were in accordance with the anthocyanin recovery.  Percent 

recovery in the blanching process of delphinidin glycosides and petunidin glycosides 

(tri-substituted), which are the most intense blue pigments, was higher than that of 

cyaniding-glycosides and peonidin glycosides (di-substituted).   

Chemical treatments like SO2, citric acid and SnCl2 had a stabilizing effect on 

strawberry anthocyanins during the processing of strawberry jam (Sistrunk and others 

1982).  Heat and SO2 pretreatment before pressing the juice increased recovery of 

anthocyanins in all processing steps (Lee and others 2002).  Less than 22% of the 

frozen berries’ anthocyanins were present in the pressed juice with the control pressed 

juice having the lowest recovery when compared to the heat and SO2 treated fruit 
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(Lee and others 2002).  Heated and SO2 treated pasteurized juices had 1.8 times the 

anthocyanin content of the control pasteurized juice (Lee and others 2002).  Control 

pasteurized juice had a higher amount of anthocyanins than the initial pressed juice 

which was mainly attributed to enzymatic losses (Lee and others 2002).  The press 

cake residues contained a substantial amount of anthocyanins (about 43-55% of 

frozen berry anthocyanins) with the control press cake containing the greatest 

amounts (Lee and others 2002).  Heating of the berries may have contributed toward 

a breakdown of the skin, which would have increased the extractability of the 

anthocyanins (Lee and others 2002).  Rossi and others (2003) demonstrated the effect 

of the blanching step prior to the milling of blueberries on the recovery of different 

anthocyanins is anthocyanin dependent.  The anthocyanins that showed the highest 

benefit from the blanching treatment were, in decreasing order, the glycosides of 

delphinidin, petunidin , and cyanidin with the exception of cyanidin 3-glucoside that 

showed the lowest recovery (Rossi and others 2003).  Malvidin and petunidin 

glucoside, having a single hydroxyl group on the phenolics ring were least affected by 

blanching and  PPO inactivation (Rossi and others 2003).  The highest percent 

recovery increase observed for delphinidin-glucoside could also be linked to their 

higher water solubility, due to the presence of three free phenolics functions (Rossi 

and others 2003).  The proportion of malvidin-glycosides increased with the initial 

pressing compared to the fresh fruit.  Malvidin-glycosides in the berry fruit were 51% 

of the total anthocyanins and increased to 60 to 77% in pasteurized juice and 

concentrate (Lee and others 2002).  There was a concomitant decrease in delphinidin 

and petunidin glycosides (Lee and others 2002).  Proportion of delphinidin-glycosides 
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decreased, especially in the control sample with only 8% left, while heat and SO2 

treated had 20 and 23% retained in the pasteurized juice (Lee and others 2002).  The 

relative ratio of delphinidin glycosides versus cyanidin glycosides remained about the 

same in the juices as compared with the whole berry (Buchert and others 2005).  

 

Changes in phenolics during juice processing 

Processing and storage can have a marked effect on the phenolic content of 

fruits, and might in turn affect their health promoting properties (Zafrilla and others 

2001).  As a general rule, during processing, phenolic biosynthesis is interrupted by 

the enzyme’s destruction and/or cell structure degradation (Tomas-Barberan and 

Espin 2001a).  Processing can enhance phenolic compound degradation (chemically 

or enzymatically if the oxidative enzymes have not been inactivated) or can produce 

chemical changes that affect quality characteristics (Tomas-Barberan and Espin 

2001a).  Lee and others (2002) reported considerable loss of phenolics during 

thawing, crushing and pressing with similar results obtained by Skrede and others 

(2000).  Sixty to 65% of blueberry polyphenolics was lost during thawing, crushing 

and pressing (Lee and others 2002).  There were no significant differences in 

polyphenolics taken after each processing step between the control, heat and SO2 

treated berries (Lee and others 2002).  The press cake held 15 to 25% of the frozen 

berry polyphenolics, which is less than the proportion of anthocyanins left in the press 

cake (Lee and others 2002).  Thirty six to 39% of the polyphenolics in the berries was 

present in the pasteurized juice.  Forty two to 45% of the frozen berry phenolics was 

lost during juice processing and not accounted in the final pasteurized juices and 
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press cake (Lee and others 2002).  Control pressed juice (no pretreatment) and SO2 

treated pressed juice had a lower value of polyphenolics than their pasteurized juices, 

but that was not the case for heat treatment.  Hot pressed blueberries had higher 

amounts of total phenolics than cold pressed ones (Lee and others 2002).  

Not all phenolic groups are affected the same by processing.  Rossi and others 

(2003) observed a significant recovery of cinammates when blueberry juice was 

blanched before milling, but lower than total anthocyanins.  A significant increase in  

total cinnamates (phenolic) was observed in the heat treated juice, but lower than that 

of total anthocyanins (Rossi and others 2003).  Extraction of cinnamates from the 

pulp is less affected by the heat treatment than that of anthocyanins from the fruit skin 

(Kalt and others 2000).  Lee and others (2002) observed no changes in cinnamic acids 

of juices due to the heat treatment.  Skrede and others (2000) reported a considerable 

loss of flavonol glycosides with processing with the pattern somewhat different than 

that of anthocyanins and chlorogenic acid.  Some flavonol glycosides remained in the 

press cake residue (7%), but unlike with anthocyanins and chlorogenic acid, initial 

pressed juice contained higher levels than pasteurized single strength and concentrate 

which implied that flavonol glycosides were not as susceptible to enzymatic 

degradation as the anthocyanins and chlorogenic acid.  Lee and others (2002) 

reported that higher levels of flavonol glycosides remained in the press cake (26-35% 

of the starting material’s flavonol-glycosides), with just minor changes after the 

pressing step.  An extensive decrease in procyanidin levels occurred during 

processing.  The levels of procyanidin in initial pressed juice and single strength 

pasteurized juice was about 40% of the level in the fruit (Skrede and others 2000).  
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Thermal processing of raspberries into jam did not have much effect on the major 

phenolic present (Zafrilla and others 2001). 

 

Non-thermal processing 

There is the demand of consumers and retailers for minimum processed foods 

but being safe at the same time.  Therefore, producers and researchers are searching 

for the new food processing methods to gently preserve foods (Houska and others 

2006).  Even though processed blueberry products may retain a significant portion of 

antioxidant activity and total phenolic content as compared to fresh and frozen fruit, 

other forms of bioactivity like antiproliferation power may be compromised.  Heat 

treated products suffered significant losses in antiproliferative activity, even in 

products in which total phenols and in vitro antioxidant activity were maintained 

(Schmidt and others 2005).  Although thermal preservation methods provide safer 

foods, there is a loss in food quality that is associated with this processing method.  

Hence, the main objective of non-thermal preservation methods is to minimize the 

degradation of food quality through limiting heat damage of food (Senorans and 

others 2003).  Compared with thermal processing, nonthrmal methods provide high 

retention of flavors and nutrients, giving products a more natural taste (Zhong and 

others 2005).  

 

Pulsed electric field 

Consumer demand for a higher quality, fresh appearing and safe food supply 

is the ultimate catalyst for the emergence of PEF on a commercial scale (Yeom and 
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others 2002).  Thermal pasteurization is quite efficient in preventing microbial 

spoilage, but the applied heat may also cause undesirable nutritional and biochemical 

changes that can affect the overall quality of the final products.  High voltage pulsed 

electric field (PEF) treatment is a promising non thermal processing technique that 

may radically change liquid food preservation technology.  Treating liquid foods with 

PEF may inactivate microorganisms and enzymes with only a small increase in 

temperature, simultaneously providing consumers with safe, nutritious, and fresh like 

quality foods (Aguilar-Rosas and others 2007).  PEF treatment might be suitable for 

the reduction of microbial cell counts in media that contain thermosensitive 

components like proteins and vitamins, which are difficult to pasteurize by heat 

processing (Grahl and Markl 1996).  Reduction of living cell counts by PEF treatment 

in media that contain primarily yeast cells, i.e. fruit juices or other acid media, is of 

great interest, because in this case sufficient lethal effects are already produced by a 

very low energy output (Grahl and Markl 1996).  Application of a pulsed electric 

field is restricted to food products that can withstand high electric fields, have low 

electrical conductivity, and do not contain or form bubbles (Senorans and others 

2003).  The products are minimally affected by the process since damage occurs on a 

cellular level and flavor and enzyme activity are not significantly diminished 

(Senorans and others 2003).  Products with low pH’s (such as apple juice, cranberry 

juice and orange juice) are more suitable for preservation by the PEF process than the 

neutral pH products such as milk.  It is possible that the high acid environment of the 

food products may prevent sub-lethally damaged cells from recovery (Wouters and 

others 2001).  The fact that PEF processes that are currently employed can not 
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inactivate bacterial spores limits the applications of PEF.  As a consequence, only 

high acid conditions that can prevent outgrowth with a limited shelf life are 

applicable to preserve food products with this technology at present (Wouters and 

others 2001).  PEF can possibly provide a reduction in the amount of energy that is 

required for fruit juice processing (Toepfl and others 2006).  

The results of many researchers indicate that PEF operating with conditions 

with electric fields between 15 and 80kV/cm, pulse widths between 1 and 100Ms and 

the frequency of 1-100 pulses were sufficient for inactivation of bacteria and some 

certain enzymes, while taste and flavors are unaffected (Barbosa-Canovas and others 

2001; Wesierska and Trziszka 2007).  The initial counts of viable cells in cranberry 

juice were only around 100 cfu/ml and were not detected after PEF treatment (Jin and 

Zhang 1999).  No differences were observed in the reduction of cell counts between 

thermal treatment and PEF treatment with an electric field strength of 40 kV/cm for a 

treatment time of 150µs (Jin and Zhang 1999).  PEF treatment of cranberry juice 

using a bench scale PEF system at 20 kV/cm for 150µs resulted in about a 5 log cycle 

reduction in aerobic bacteria, yeast and molds, which was as effective as thermal 

treatment at 90ºC for 90 min (Jin and Zhang 1999).  

High intensity pulsed electric field (PEF) processing involves the application 

of pulses of high voltage (typically 20-80 kV/cm) to food that is placed between 2 

electrodes.  The PEF system usually consists of a high voltage pulse generator, a 

treatment chamber and a fluid handling system (Yeom and others 2002).  The pulsed 

generator is capable of converting low voltage electricity into high voltage energy to 

be stored into capacitors until discharged.  Electric pulses are generated when a pair 
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of high voltage electrodes are charged and discharged in a fraction of a second 

(Wesierska and Trziszka 2007).  To process a product using PEF in a continuous 

system, the product flows through a series of  PEF treatment chambers where it is 

exposed to the desired electric field strength for a desired amount of time (Yeom and 

others 2002). 

It was observed that PEF-pretreatment caused an increase in anthocyanin 

concentration in resulting grape juice (Knorr 2003).  PEF treatment caused the 

degradation of cyanindin-3 glycoside in aqueous-methanol solution.  As the electric 

field intensity and the treatment time of PEF increased, degradation of cyanidin-3 

glycoside increased significantly (Zhang and others 2007).   

Organic acid and volatile aroma compounds of citrus juices did not change 

with PEF treatment  of 28 kV/cm with 50 pulses (Cserhalmi and others 2006).  When 

the most extreme PEF treatment was applied to orange juice, the decrease in the 

concentration of carotenoids with vitamin A activity was very small (Cortes and 

others 2006).  PEF-treated orange juice retained better color and a higher 

concentration of vitamin C than heat-pasteurized orange juice through storage but no 

differences were found in pH, acidity and Brix (Elez-MartÃ-nez and others 2006).  

Antioxidant activities determined with DPPH method were not different between 

unprocessed and PEF processed orange juice (Elez-MartÃ-nez and others 2006).  For 

grapes, a juice yield of 87%, similar to that after enzymatic maceration, and an 

increased content of soluble solids and pigments was reported after cell disintegration 

by PEF (Toepfl and others 2006).  PEF treated cranberry juice had similar flavor and 

aroma profiles as the controls, and thermal treatment significantly altered the overall 
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flavor profile of the juice (Jin and Zhang 1999). No significant differences were 

observed in the content of anthocyanin pigments between PEF-treated samples and 

controls.  However, thermal treatment significantly reduced the anthocyanin pigment 

content.  HTST treatment of apple juice caused a considerable loss of phenols 

(32.2%) when compared with PEF treatment, which only caused a 14.49% reduction 

(Aguilar-Rosas and others 2007).  The apple juice treated by PEF retained greater 

amounts of vitamin C and some representative flavor compounds, than the 

pasteurized juice (94.6ºC for 30s) during storage at 4ºC (Aguilar-Rosas and others 

2007).  Peroxidase and polyphenol oxidase showed a moderate 30-40% reduction 

with PEF treatment (Ho and others 1997).  PEF treatment reduced 35% of PPO 

activity which was equivalent to heating the extract for 30 min at 60ºC (Zuckerman 

and others 2004).  Enzyme activity of PPO decreased 38.2% when treated at 

33.6kV/cm for 126 µs (Yang and others 2004) 

 

High pressure processing 

HPP is considered a technology with the most promising perspective of 

industrial utilization.  There are already known industrial applications, namely in 

Japan, USA, France and Spain (Houska and others 2006).  The most successful 

products that are treated with high pressure pasteurization process are Golden oysters, 

orange juice, avocado sauce Guacamole, stewed packed ham, cooked rice and cooked 

reice mixtures, marinated chicken meat, etc. (Houska and others 2006).  One of the 

main advantages of this process is the almost instantaneous and isostatic pressure 

transmission to the product, independent of size, shape, and food composition 
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yielding highly homogenous products (Deliza and others 2005).  HPP can enable 

processors to produce innovative foods with fresh-like, natural-like attributes and 

natural looking colors which are all aspects valued by consumers (Deliza and others 

2005).  Information on the benefits offered by high pressure technology presented on 

the juice package also had a positive contribution on purchase intention (Deliza and 

others 2005). 

High hydrostatic pressure is a promising alternative to traditional thermal 

processing techniques in food preservation, but associated changes to a diversity of 

phytonutrients have not been extensively investigated (Talcott and others 2003).  

Making comparisons between HPP and thermal processes is one way to assess its 

benefits by monitoring destruction of heat labile compounds (Talcott and others 

2003).    

High pressure treatment is expected to be less detrimental than thermal 

processing to low molecular weight food compounds such as flavouring agents, 

pigments, vitamins, etc., as covalent bondings are not affected by pressure (Butz and 

others 2002).  The pressure stability of antioxidants is of interest since they reduce the 

risk of free radical-related oxidative damage that is associated with a number of 

diseases (Butz and others 2002).  When used as a pretreatment of juice before 

processing, High Pressure treatment resulted in a significant increase in anthocyanins 

(Knorr 2003).  In general, HPP was more detrimental to anthocyanins, ascorbic acid, 

and color characteristic as compared to thermally pasteurized and control juices due 

to oxidase enzymes that were active during HPP processing of muscadine juice 

(Talcott and others 2003).  Potential mechanisms for destruction include the role of 
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PPO and/or autoxidative mechanisms, resulting in co-oxidation of anthocyanins and 

ascorbic acid (Talcott 2003).  Without added ascorbic acid, total anthocyanin 

decreases were equal (3-5%) between treatments, but in the presence of ascorbic acid, 

anthocyanin losses were influenced by processing and resulted in 12.4% and 18.1% 

loss during pasteurization and HPP respectively (Talcott and others 2003).  Losses 

ranged from 12 -15% following thermal pasteurization for delphinidin, cyanidin, 

petunidin and pelargonidin, compared to 15-25% for HPP while peonidin and 

malvidin were more stable (Talcott and others 2003).  For high pressure to be a viable 

option for fresh muscadine grape juice, issues surrounding removal, inactivation or 

inhibition of native oxidase are critical for quality retention (Talcott and others 2003).  

Treatments of 400 MPa of muscadine juice had greater phytonutrients and antioxidant 

losses than treatment of 550 MPa due to the highly oxidative conditions that resulted 

from PPO activation during pressurization (Del Pozo-Insfran and others 2007).  

Anthocyanin degradation was observed at both processing pressures (400 and 

550MPa) but was appreciably higher at 400MPa (70% loss) when compared with 550 

MPa (46% loss), and these were correlated to antioxidant activity (r=0.86) (Del Pozo-

Insfran 2007).  After 60 min of 600MPa pressure treatment and extreme temperature 

processing (95ºC for 60 min), no changes were observed in the total concentration of 

lucopene of B-carotene when compared to control (Butz an others 2002).  Stability of 

pigments may be explained by a matrix effect: within tissues, the pigments are often 

compartmentalized and thus protected from adverse influences (Butz and others 

2002).  Processing pressures of 500 and 800 KPa did not significantly reduced 

vitamin C and carotenoid content of treated orange juice when compared to 



 60 
 

unprocessed orange juice (Fernandez Garcia and others 2001).  Water soluble 

antioxidant capacities of orange and carrot juices can be increased by thermal 

treatment and maintained by high pressure treatment (Indrawati and others 2004). 
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CHAPTER III 

MATERIALS AND METHODS 

 

EXPERIMENT I 

 

Extraction of anthocyanins and phenolics 

Frozen blueberries were homogenized in a commercial blender, weighed (25g), 

mixed with 25 ml of cold acetone (Fisher Scientific Co., Fair Lawn, NJ) and 

homogenized using a Brinkmann homogenizer (Polytron, Switzerland) at speed 4 for 2 

minutes.  An additional 25 ml of 70% acetone was used to wash the homogenizer and for 

reextraction.  The extract was separated from insoluble plant material by filtering the 

slurry through a Whatman grade No.1 filter paper by vacuum suction using a Buchner 

funnel.  Plant material was reextraced three times with 25 ml of 70% acetone until a clear 

filtrate was obtained.  The volume of the filtrate was recorded and transferred to a 

separatory funnel where it was mixed with 2 volumes of chloroform (Fisher Scientific 

Co., Fair Lawn, NJ).  The funnel was turned upside a down few times to mix solvents and 

stored overnight at 4ºC until the clear portion between the two phases was obtained.  The 

aqueous phase (upper portion) that contained the desired extract was transferred to a 500 

ml boiling flask.  The residual acetone/chloroform was removed in a Brinkman Bushi 

rotovapor model EL 131 (Brinkman Instruments, Westbury NY) at 40ºC under vacuum.  
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The remaining aqueous extract was diluted to a known volume (100ml) with acidified 

deionized distilled water.   

 

Total anthocyanins 

Total anthocyanins were determined using the pH differential method.  To 

measure absorbance, the extract was diluted with buffer.  The buffers used were pH =1 

and pH=4.5.  Buffer pH= 1 was made by mixing 125 ml of 0.2N KCl (Fisher Scientific 

Co., Fair Lawn, NJ) with 385 ml of 0.2N HCl (Fisher Scientific Co.).  Buffer pH=4.5 was 

made by mixing 400ml of 1M sodium acetate (136g/l)(Fisher Scientific Co.) with 240 ml 

of 1N HCl and 360 ml distilled water.  The pH of the buffers was adjusted as required to 

obtain final pH values of 1 and 4.5.  The order of dilution was such that the sample at pH 

1 had an absorbance of less than 1, preferably in the range of 0.4 to 0.6.  The dilution 

strength was the same for both pH 1 and  pH 4.5 samples.  From the obtained extract, in 

order to obtain an  absorbance in this range, the sample had to be diluted 50X, so the 

dilution factor was 50.  The absorbance of the diluted extract was measured by placing 

the sample in a semimicro disposable cuvette (Fisher Scientific Co.) and reading the 

absorbance using a Genesys 5 UV/VIS spectrophotometer 336008 Model  (Spectronic 

Analytical Instruments, Leeds, UK) at λ= 510nm and λ= 700nm for both buffers.  The 

maximum absorbance for the anthocyanins was at λ= 510nm.  Turbidity or haze was 

corrected by measuring the absorbance at λ= 700 nm and subtracting this from the 

absorbance at the wavelength of maximum adsorption, λ= 510.  Actual absorbance for 

the calculation of total anthocyanins was calculated using the following formula: 
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A= (A510 – A700  ) pH 1.0  – (A510  – A700 ) pH 4.5 

Concentration of total anthocyanins in mg/l was calculated using the following formula: 

C (mg/l) = A/εL x MW x 103 x 50  

where: 

A =calculated absorbance 

MW = molecular weight of cyanidin–3–glucoside (445,2 g/mol) 

Ε = molar extinction coefficient of cyanidin–3–glucoside (26,900 M-1 cm-1) 

L = pathlength (1 cm) 

 

Anthocyanin determination by HPLC-DAD and LC-MS 

An Agilent 1100 series HPLC (Agilent Technologies, Santa Clara CA) that is 

equipped with a quaternary pump, diode array detector, and a Gemini 5µm C18 110A 

(250 x 4.6 mm) column, fitted with a 4.0 x 3.0 mm inner diameter guard column, from 

Phenomenex (Torrance, Calif., U.S.A) was used for the separation of anthocyanins.  

Solvent A was 100% acetonitrile (Fisher Scientific Co.) and solvent B was 10% formic 

acid (Fisher Scientific Co.) in HPLC grade water (Fisher Scientific Co.).  The program 

used the gradient presented in Table 1 with detection at 520 nm.   

 
Table  1.  Linear gradient program used for the separation of anthocyanins  
 
 

 Time (min)                  Solvent % 
 Acetonitrile 10% formic acid 
0 7 93 
17 15 85 
22 30 70 
24 100 0 
34 100 0 
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The injection volume was 25µl for pure extract of anthocyanin identification and 

100 µl for diluted extract for anthocyanins degradation by PPO.  The column was at room 

temperature and samples were filtered with 0.45 µm syringe filter (Fisher Scientific Co) 

before HPLC injection.  

Anthocyanins were analyzed with LC-MS using Bruker Esquire(Bruker 

Daltonics, Bremen, Germany)  in positive mode scanning from 100-500 m/z. located at 

Mississippi State Chemical Laboratory.  The software employed was Esquire LC NT 

version 3.1 (Bruker Daltonics, Bremen, Germany).  The program used same liner 

gradient like for HPLC separation (Table 1) except that solvent B was 0.1% formic acid 

in water.   

 

Extraction of Polyphenoloxidase (PPO) 

Ten grams of frozen blueberries was mixed with 20 ml cold (~4ºC) 200 mM 

phosphate buffer pH =7 containing 0.1% Triton 100-X (Sigma Chemical Co, St.Louis, 

MO) and 2% PVPP (Sigma Chemical Co.).  The mixture was centrifuged at 10000 g for 

15 min at 4ºC using a Sorvall® RC 5B plus fixed angle centrifuge (Sorvall Products, L.P. 

Newton, CT).  Triton 100-X was used to reverse or inhibit formation of tannin-protein 

complexes (Wesche-Ebeling and Montgomery 1990c).  Blueberries contain a high level 

of phenolic compounds that may interfere in the extraction of the enzyme, or its 

enzymatic assay.  Therefore PVPP, a not-specific phenolic absorbent, was included in the 

extraction buffer (Serradell and others 2000).  The pellet was discarded and the 

supernatant was used for all further experiments as an enzyme source. 
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Determination of total protein  

Total protein was determined using the Micro-Bradford assay by placing 1 ml of 

25 times diluted protein extract with 1 ml of Bradford reagent (Sigma Chemical Co.) 

directly in the cuvette.  After 15 min of incubation, absorbance was recorded at 595 nm 

using a Genesys 5 UV/VIS spectrophotometer Model 336008 (Spectronic Analytical 

Instruments, Leeds, UK).  Calculations of the total protein were made according to the 

standard curve (Figure 5).  Standard curve was constructed by placing 1ml of a known 

concentration of BSA protein (Sigma Chemical Co.) with 1 ml of Bradford reagent and 

recording the absorbance at 595nm after 15 min of incubation.  

 

 

 

Figure  5.  Standard curve for determination of total protein with BSA as a standard 
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PPO assay 

Polyphenol oxidase activity was measured polarographically using a digital 

controller Model 10 equipped with a 7 ml Pyrex Rank inverted O2 electrode (Rank 

Brothers, Cambridge, England) (Figure 6), and oxygen consumption was recorded using 

an ADC16 data logger (Pico Technology, St. Neots, UK).  The instrument was 

standardized using air saturated water, assuming that 100% oxygen was equivalent to 233 

µmol dissolved oxygen per liter (the solubility of O2 in water equilibrated with air at 

30ºC) (Wrolstad 2001).  To determine the electrode response and set zero oxygen 

concentration, few crystals of sodium diothionite (Sigma Chemical Co.) were placed in 

an electrode chamber that contained distilled water prior to performing the assay.  In 

order to optimize the working concentration of the enzyme to ensure that assay gives a 

true measure of the initial rate of reaction, and that the relationship between enzyme 

concentration and rate lies within the liner range, the range finding was performed using 

different concentrations (amounts) of enzyme in the assay (Wrolstad 2001).  The total 

assay volume was 3 ml containing 0.5ml  (100mM) 4-methylcatechol (Sigma Chemical 

Co.), 0.2 ml enzyme extract and Mcillvane buffer pH=3.6.  The temperature in the 

electrode incubation chamber was kept at 30ºC by circulating water heated in the Isotemp 

202 water bath (Fisher Scientific Co.) to 30ºC with a pump (Manostat, New York, NY).  

The assay was performed for 180 s and the rate of reaction was calculated from the initial 

linear portion of the obtained curve.  Results were expressed in µmol O2/min/100g of 

berries. 
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Figure  6.  Digital controller model 10 (a) and Rank inverted oxygen electrode (b) 
 

Inhibition study 

The polarographic method can be very useful in inhibition studies since it can 

indicate whether compounds were actually inhibiting PPO per se or merely affecting the 

formation of colored products (Ferrar and Walker 1996).  

Food grade sodium benzoate, potassium sorbate (Xena International, St. Charles, 

IL), potassium metabisulfite (Basf Corporation, Florham Park, NJ) and a combination of 

sodium benzoate and potassium metabisulfite were used for the PPO inhibition study.  

Concentrations of inhibitors that were used are determined according to the standards 

currently used in the food industry (Table 2). Concentrations of 0.1% sodium benzoate 

and potassium sorbate are the maximum allowable concentrations (Title 21, U.S. Code of 

Federal Regulations ) for the use in food, while a concentration of ≤10 ppm of sulfite is 

not necessary for declaration on the label (Title 21, U.S. Code of Federal Regulations 

101.100).   

The effect of an inhibitor on PPO activity was determined by placing the 

designated amount of inhibitor solution in the electrode chamber together with 0.5ml 

(100mM) 4-methylcatechol (Sigma Chemical Co.), 0.2ml enzyme extract and Mcillvane 



 68 
 

buffer pH=3.6 to a total volume of 3 ml.  Final concentrations of the inhibitors that were 

used are presented in Table 2.  The temperature in the electrode incubation chamber was 

kept at 30ºC by circulating water heated in the Isotemp 202 water bath (Fisher Scientific 

Co.) to 30ºC with a pump (Manostat, New York, NY). The assay was performed for 180 

s and the rate of reaction was calculated from the linear portion of the obtained curve.  

Activity of the enzyme was calculated in µmol O2/min/100g of berries and expressed as a  

percentage compared to the enzyme activity without the inhibitor that was designated as 

100%. Linear regression lines for each inhibitor were obtained by transforming percent 

activity to log percent activity and plotting that against inhibitor concentrations.  

 

Table  2.  Concentration of inhibitors used in the PPO inhibition study. 
 
  Inhibitor levels    
Inhibitors 0 1 2 3 4 
benzoate (%) 0 0.025 0.05 0.075 0.1 
sorbate (%) 0 0.025 0.05 0.075 0.1 
sulfite (ppm) 0 4 6 8 10 
benzoate(%)/sulfite(ppm) 0 0.025/8 0.05/8 0.075/8 0.1/8 

 

 

Degradation of anthocyanins by blueberry PPO in the model system 

The model system contained 400 µl of anthocyanin extract (205.59±13.05 

mg/100g of blueberries); 200 µl of crude enzyme extract (31.14 ±0.67 mg/100g of 

blueberries of total protein and PPO activity of 397±38 µmol O2/min/100g of berries) and 

500 µl of 100mM 4-methyl catechol as a PPO substrate.  Different volumes of inhibitors 

were added to make up final concentrations of 0.05 and 0.1 % of sodium benzoate and 

potassium sorbate, 4 and 10 ppm of potassium metabisulfite and 0.05 %/ 8ppm and 0.1% 
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/ 8ppm sodium benzoate/potassium metabisulfite.  Total volume was adjusted to 3ml with 

Mcviline buffer pH 3.6.  Total reaction time was 10 min at room temperature.  After the 

reaction samples were filtered through a 0.45  micro filter (Fisher Scientific Co.) and 

analyzed with a HPLC utilizing the same linear gradient used for the separation and 

identification of anthocyanins (Table 1).  Peak areas that were obtained with incubating 

just 400 µl of anthocyanin extract in a total volume of 3 ml in buffer was designated as 

100 %.  Anthocyanin extract was incubated separately for 10 min with the enzyme 

extract and 4-methyl catechol and no degradation of anthocyanin was observed.   

 

Statistical analysis 

For the analysis of the inhibitor effect on the PPO activity, each inhibitor was 

treated as a separate experiment.  Completely randomized designs with inhibitor 

concentrations as treatments with three replications were used to determine the effect of 

inhibitor concentration on PPO activity.  The least significant difference test was used to 

separate treatments means (p <0.05).  Slopes from the obtained regression lines for each 

inhibitor were treated as separate treatment and were analyzed in CR design and means 

were separated with LSD.  

A split plot design was utilized for the analysis of anthocyanins destruction by 

PPO with and without the inhibitors.  Inhibitor was designated as a main plot and the 

concentration of inhibitor as a split plot.  Since the interaction between main and split 

plot was significant, mean separation was conducted on treatment combinations (inhibitor 

concentration) using SNK.  
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EXPERIMENT II 

 

Maceration pretreatment of blueberry mash  

Frozen blueberries were obtained from a local blueberry packer and were kept 

frozen (-15ºC ) for about 10 months prior to processing.  Blueberries were processed into 

juice at the Mississippi State University Dept. of Food Science Nutrition and Health 

Promotion Ammerman-Hearnsberger pilot plant.  Frozen berries were heated in a steam 

kettle and constantly stirred during maceration.  There were three maceration treatments 

(Figure 7) prior to pressing blueberries into juice: Control (no treatment), initial heat 

treatment and sodium benzoate treatment.  Control fruit were thawed macerated at 55ºC 

for 1h, pressed, placed into half gallon plastic jugs and frozen for further analysis.  The 

heat treatment procedure differed only in that the fruit was heated to 90ºC for 1 min prior 

to the maceration treatment.  Sodium benzoate treatment differed from the control in that 

0.1% of sodium benzoate (Xena International, St. Charles, IL) was added during the 

maceration step.  All three treatments were replicated three times.  Approximately 41 kg 

of frozen berries were used for each replication.  After maceration, berries were pressed 

using a vertical press, and the juice was passed through a few layers of cheese cloth to 

remove seeds and pieces of skin.  The juice was weighed to calculate the yield of the 

juice and then frozen for further treatment.   

 

Blueberry juice filtration 

Before pasteurization, blueberry juice samples were thawed overnight in the 

refrigerator and first filtered through polypropylene string wound with a 100 micron 
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cartridge (FCPSF1100) and then through 20 micron (FCPSF1020) filters (Siemens Water 

Technologies, Lowel, MA) to remove particles.  The resulting juice was frozen at -20ºC 

until needed.  

 

Juice treatments 

Frozen, filtered juice was defrosted overnight in a refrigerator prior to treatments.  

For heat pasteurization, thawed blueberry juice was processed in a steam jacketed kettle 

for 1 min at 90ºC.  Hot juice was immediately filled into 6 oz glass bottles and kept 

refrigerated (~3 d) at 4ºC prior to analysis.   

For Pulsed Electric treatment (PEF) thawed, blueberry juice samples, were 

transported to Louisiana State University in an ice chest (~ 5h) with ice and immediately 

processed.  Pulsed Electric Field equipment was located at Louisiana State University in 

the Department of Dairy and Animal Science.  Pulsed Electric field was carried out in a 

continuous flow bench scale system (OSU-4K, The Ohio State University, Columbus, 

OH) using square wave pulses (Figure 8).  The flow rate was 60 ml/min and was 

controlled by a pump.  The PEF processing conditions were 25 kV/cm electrical field 

applied in bipolar mode, 3 µs pulse width, 10,000 µs pulse period making a total of 600 

µs of pulse in 1 second (1000000 s x 6 µs/ 10000 s) and 200 pulses per second (600 µs/3 

µs).  Processed juice was filled in autoclaved 6 oz glass bottles.  A portion of the filled 

bottled juice was frozen for further analysis.    
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For High Pressure Processing (HPP), thawed blueberry juice (125ml) was vacuum 

packed in double bags and processed at 3 different pressures: 200, 400 and 600 MPa 

using a Quintus Food Press QFP 35-L600 with 7XS-6000 Intensifier Pump.  These 

experiments were performed at Virginia Polytechnic Institute (Blacksburg, Virginia).  

The control sample was also vacuum packaged but was not subject to high pressure 

treatment.  All samples were ran with the water starting at room temperature (about 20ºC) 

and with a holding time of 5 min.  Pressures of 200, 400 and 600 MPa reached maximum 

vessel temperatures of 21, 27 and 32ºC, respectively.  Each pressure treatment was 

replicated three times. 

 

 

Figure 8.  OSU-4K Pulsed Electric Field Equipment. 
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Statistical analysis 

Completely randomized designs with three replications were utilized to analyze 

data obtained from maceration and juice processing treatments  The least significant 

difference test was used to separate treatments means (p <0.05).   

 

Analysis 

Extraction of anthocyanins and phenolics 

Frozen blueberry mash was homogenized in a commercial blender, weighed (25g) 

and processed as described in experiment I. 

 

Anthocyanin determination by HPLC-DAD  

Anthocyanins in the blueberry mash, pomace and juice were determined as 

described in experiment I.  The only difference was that the concentration of 

anthocyanins was determined according to cyanindin-3-glucoside standard curve (Figure 

9).  An external standard was prepared by dissolving different amounts on cyanidin-3 

glucoside in acidified HPLC grade water. 
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Cyanidin 3-glucoside standard curve
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Figure 9.  Cyanidin 3-glucoside standard curve 

 

Extraction and assay of Polyphenoloxidase (PPO) 

Ten grams of frozen blueberry mash was used to determine PPO activity as 

described in experiment I. 

 

Total phenolics 

Total phenolics in the blueberry extracts were determined with the Folin-

Ciocalteu reagent by the method of Singleton and Rossi using gallic acid as the standard 

(Singleton and Rossi 1965).  Twenty microliters of sample were mixed directly in the 

cuvette with 1.58 ml of water and 100 µl of Folin-Ciocalteu reagent.  The cuvette was 

incubated between 1 and 8 min and 300 µl of 20% sodium carbonate was added.  

Samples were incubated at room temperature for 2 h and the absorbance was recorded at 

765 nm using a Genesys 5 UV/VIS spectrophotometer Model 336008 (Spectronic 
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Analytical Instruments, Leeds, UK).  Results were obtained using the gallic acid standard 

curve (Figure 10) and expressed as mg gallic acid equivalents in 100 g of blueberries. 
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Figure 10.  Gallic acid standard curve. 

Polymeric color 
 

Polymeric color was determined using the method described by Wrolstad (1976).  

The same extract that was used for the determination of anthocyanins and phenolics was 

diluted 50 times with distilled water.  Two cuvettes were used for each sample. In each 

cuvette 2.8 ml of diluted sample were placed.  In the first cuvette, 0.2 ml of freshly made 

20% potassium metabisulfate (Fisher Scientific Co.) was added, and 0.2 ml of distilled 

water was placed in the second cuvette.  Samples were left to equilibrate at room 

temperature (21°C) for 15 min. Absorbance for all samples was measured at λ=420nm, 

510nm and 700nm (to correct for haze) against the blank cell filled with distilled water, 

using a Genesys 5 UV/VIS spectrophotometer Model 336008 (Spectronic Analytical 
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Instruments, Leeds, UK).  Color density of the control sample (treated with water) was 

calculated using the formula; 

CD =[ (A420  – A700  ) – (A510  – A700 )  ] x 50 

Polymeric color of the bisulfite bleached sample was calculated as follows: 

PC= [A= (A510  – A700  )  + (A510  – A700 )  ]x 50 

Percent polymeric color was calculated as: 

% PC = (Polymeric color/ color density) x 100 

 

Antioxidant activity 

The antioxidant activities of the extracts were determined using 2,2-Diphenyl-1-

picrylhydrazyl (DPPH) (Sigma Chemical Co, St.Louis, MO) as a free radical, (Brand-

Williams and others 1995).  In its radical form, DPPH absorbs at 515 nm, but upon 

reduction by an antioxidant or radical species, the absorption disappears.  Aliquots of 

0.075 ml 5x diluted extract were added to 1.9 ml of 0.025g/l DPPH solution in methanol.  

The decrease in absorbance was determined at 515 nm at zero minutes, and every minute 

for a period of 20 min using a Genesys 5 UV/VIS spectrophotometer Model 336008 

(Spectronic Analytical Instruments, Leeds, UK).  The concentration of DPPH in the 

reaction medium was calculated from the calibration curve (Figure 11).  The percentage 

of remaining DPPH (%DPPH REM ) at the steady state, was determined as follows: 

%DPPH· REM  = [DPPH·]T/ [DPPH·]T=0     

Results were expressed graphically by plotting time against the percentage of DPPH 

remaining after a given time. 
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DPPH Standard Curve
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Figure 11.  2,2-Diphenyl-1-picrylhydrazyl (DPPH) standard curve  

 

Acids 

An Agilent 1100 series HPLC (Agilent Technologies, Santa Clara CA) equipped with 

quaternary pump, diode array detector and a Gemini 5µm C18 110A (250 x 4.6 mm) 

column, fitted with a 4.0 x 3.0 mm inner dia guard column, from Phenomenex (Torrance, 

Calif., U.S.A) was used for the separation of acids. 

An isocratic elution with 0.01M H2SO4 as the mobile phase, with the flow rate of 

0.5 ml/min, column temperature of 35ºC and UV detection at 214nm was used.  

Standard curves of quinic (Figure 12), malic (Figure 13), citric (Figure 14) and shikimic 

acid (Figure 15) were used to calculate the concentration of these acids in the sample. 
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Quinic acid standard curve
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Figure 12. Quinic acid standard curve 

 

 

 

Figure 13.  Malic acid standard curve 
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Figure 14. Citric acid standard curve 
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Figure 15. Shikimic acid standard curve 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

EXPERIMENT I 

 

Enzyme activity and inhibition 

Significant differences were found between treatments (concentrations) for all 

inhibitors used (p<0.01).  Addition of sulfite and combination of sulfite and benzoate had 

significantly higher regression slopes that benzoate alone and sorbate indicating better 

inhibition effect (Table 3).   

Increasing the percentage of benzoate from 0 to 0.025 to 0.05 significantly 

decreased PPO activity (Figure 16).  Utilization of 0.1 % sodium benzoate, which is the 

maximum that is allowed for use in food products (21CFR 184.1733), decreased PPO 

activity to only 5.05% in comparison to the activity without inhibitor (Figure 16).  This 

PPO activity was not significantly different (p>0.05) from the activity of 8.78% when 

0.075 % of benzoate was used.   

When 4-methyl catechol is used as a substrate, benzoic acid is found to be a 

competitive inhibitor of PPO (Gunata and others 1987; Janovitz-Klapp and others 

1990b).  Benzoic acid at 2.5mM (0.03%) inhibited 43% of grape PPO at pH 5 (Gunata 

and others 1987) while in the present study a 76 % inhibition (23.98 % activity) was 

observed with 0.025 % at pH 3.6, using 4-methy catechol as a substrate. The addition of 
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0.025% sodium benzoate reduced PPO activity to 23.98 % (Figure 16) while the same 

concentration of potassium sorbate reduced it to only 81.97 %, clearly indicating that the 

sodium benzoate is a better inhibitor.  Benzoic and sorbic acid had a similar inhibition 

effect on  PPO from banana, mushroom and apple, while sodium metabisulfite had the 

highest inhibition effect  at 3300 µM, the same concentration of  (Ferrar and Walker 

1996).  The similarity in inhibition effect between benzoate and sorbate can be explained 

by the high concentrations used, 4.03% and 3.7% respectively, in comparison to 0.1% as 

the highest concentration used in our experiments.  Potassium sorbate also significantly 

decreased PPO activity but with almost 50% of activity remaining when the maximum 

allowable concentration of 0.1% was used.  Benzoic acid is a better inhibitor of gum 

arabic PPO compared to  sorbic acid (Billaud and others 1996).  Piffere and others (1974) 

also concluded that inhibitors containing the benzene nucleus showed a greater 

effectiveness than aliphatic compounds, with benzoic acid being a better inhibitor than 

sorbic acid.  Of all the inhibitors used, potassium sorbate was the weakest PPO inhibitor 

with a significantly lower regression slope (Table 3).  The presence of sorbic acid as an 

antimicrobial agent had a minimal effect on the browning of avocado puree (Soliva-

Fortuny and others 2002).   

Potassium metabisulfite in concentration as low as 4 ppm inhibited almost 70% of 

PPO activity (Figure 17).  There was no significant difference (p>0.05) in PPO activity 

between 8 and 10 ppm sulfite (Figure 17), which is very important from the practical 

point of view since amounts of less than 10 ppm of sulfites do not have to declared on the 

product label (Title 21, U.S. Code of Federal Regulations 101.100).  Inhibition of PPO in 

the presence of sodium metabisulfite using an O2 –electrode indicated that the enzyme 
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was directly inhibited rather than by inhibition through secondary o-quinones.  Ferrar and 

others (1996) concluded that sodium metabisulfite inhibition effect is probably due to the 

formation of colorless sulpho-quinones, rather than PPO inhibition per se, although the 

O2 –electrode assay also showed inhibition, suggesting that enzyme inactivation may also 

occur.  Direct and indirect effects of sulfites were reported by various authors and the 

mode of action depends on the inhibitor concentration, substrate and the complexity of 

the system (presence of other compounds).   

Sodium metabisulfite was the most potent inhibitor of Emir grape PPO with 5.5, 

13.5, 41.1 and 100% inhibition with concentrations of 0.05, 0.1, 0.25 and 0.50 mmol/L 

respectively (Unal and Sener 2006).  Inhibition of  PPO by sulfite in concentration of 

0.04 mg/ml was instantaneous below pH 4 (Sayavedra-Soto and Montgomery 1986).  

Potassium metabisulfite at a concentration of 1mM inhibited 74% of strawberry PPO 

(Wesche-Ebeling and Montgomery 1990a).  Metabisulfite at  concentrations of 10µM,  

0.1mM 0.4mM and 1mM inhibited 0, 31, 100 and 100% PPO activity from grapes 

respectively (Nunez-Delicado and others 2005).  Na2S2O5 inhibited 90, 98 and 100 % 

PPO activity from concord grapes in concentrations of 0.05, 0.5 and 5mM respectively 

(Cash and others 1976). 

A combination of 0.05% of sodium benzoate with 8ppm of sulfite inhibited 

almost all PPO activity (Figure 18).  There were significant differences between 

regression slopes between benzoate and the benzoate/sulfite combination, indicating that 

addition of 8ppm of sulfite had a significant effect on PPO inhibition (Table 3).  From the 

present study it appears that the combination of benzoic acid and potassium metabisulfite 

(reducing agent) has a greater inhibition affect on blueberry PPO than either inhibitor by 
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itself.  Similar results were obtained with the combination of benzoic acid and ascorbic 

acid (reducing agent) where browning of the apple was inhibited to a greater extent when 

a combination of inhibitors were used rather than either treatment alone.  This 

demonstrates that the inhibition effect appears to be synergistic rather than additive 

(Sapers and others 1989).  Ferrar and Walker (1996) also concluded that the majority of 

strong inhibitors were either aromatic or sulfhydryl compounds while aliphatic 

compounds exhibited weaker inhibition effect. This is in accordance to conclusions 

presented in this work since sodium benzoate and potassium metabisulfite were better 

inhibitors than potassium sorbate as demonstrated by the slopes of the inhibition (Table 

3).  Mechanism of inhibition may depend on the substrate and enzyme source (Ferrar and 

Walker 1996) which may explain some differences between results obtained in the 

current study and previous studies.   

 

Identification of anthocyanins  

Anthocyanins were identified at 520 nm according to previous studies (Kader and 

others 1996; Lee and others 2002; Kahkonen and others 2003; Nakajima and others 2004; 

Buchert and others 2005).  Peak identification was confirmed with HPLC/ESI-MS 

(Figure 20).  Anthocyanins (mostly in the oxonium form at low pH) generate positive 

ions that can be detected by MS.  An anthocyanin’s single positive charge allows the 

mass-to-charge ratio (m/z) to correspond directly to the molecular weight of the 

anthocyanins (Lee and Wrolstad 2004).  Fifteen different anthocyanins were identified in 

the rabbiteye blueberry extract (Table 4) and the clear peaks can been seen on the 

extracted ion chromatogram (Figure 20).  Fourteen anthocyanins were separated using 



 85 
 

HPLC and had visible peaks at 520nm (Figure 19).  Peonidin 3- arabinoside coeluted 

together with malvidin 3-glucoside (peak #13) and identification was only possible using 

mass spectroscopy.  Lee and Wrolstad (2004) also found a low concentration of peonidin 

3-arabinoside in highbush ’Rubel’ blueberries which made its identification difficult.  

Coelution of the two can be clearly seen on the extracted ion chromatogram of 

anthocyanins, peaks 13 and 13a (Figure 20).  In the same figure it can be seen that 

malvidin 3-galactoside and peonidin 3-glucoside also coelute, although their separation 

was possible using HPLC (Figure 19), possibly due to the use of 10% formic acid as 

opposed to only 0.1% formic acid used in HPLC-MS.  Coelution of peonidin 3-glucoside 

with malvidin 3-galactoside (peaks 11 and 12) and peonidin 3-arabinoside and malvidin 

3-glucoside (peaks 13 and 13a) was previously reported (Prior and others 2001; Lee and 

Wrolstad 2004; Nakajima and others 2004).  Identical m/z and ion chromatograms of 

glycosides and galactosides of delphinidin (Figures 22 and 23), cyanidin (Figure 25 and 

26), petunidin (Figures 31 and 32) peonidin (Figures 34 and 35) and malvidin (Figures 38 

and 39) can be noted although they have different retention times.  Their identification 

was possible due to the clear differences in retention times and the fact that galactosides 

elute before glycosides in the C18 column (Figures 21, 24, 30, 33 and 37).  Extracted ion 

chromatograms and ion chromatograms of all 15 anthocyanins are presented in figures 

21-41.  Similar anthocyanin profiles to this study were reported for highbush blueberries 

grown in Europe (Kader and others 1996) and highbush “Rubel” blueberries grown in 

Oregon (Lee and Wrolstad 2004).   

Derivatives of malvidin were the most abundant anthocyanins (42.1%), followed 

by delphinidin (19.86 %), cyanidin (11.58%), petunidin (16%) and peonidin (6.6 %).  
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Malvidin 3-galactoside was the most abundant individual anthocyanin, with 18.9%.  

Anthocyanins with the galactose in the molecule were the most abundant (44.68%) 

followed by the ones with the glucose (32.53%) and arabinose (18.93%). 

Derivatives of malvidin and delphinidin accounted for 37 and 31% of the total 

anthocyanins, respectively, while 3-monogalactoside derivatives constituted about 41% 

(Kader and others 1996).  Malvidin and delphinidin derivatives were the major 

anthocyanins in highbush blueberries (77.2%) (Vaccinium corymbosum L.cv. Rubel ) 

(Lee and others 2002).  Malvidin 3-galactoside was a major anthocyanin in highbush 

‘Rubel’ blueberries grown in Oregon with malvidin glycosides being most abundant 

accounting for 54.7% of all anthocyanins followed by delphinidin (25.7%), petunidin 

(14.7%), cyanidin (3.9%) and peonidin (1%) based on the peak area percentage (Lee and 

Wrolstad 2004).  Malvidin 3-galactoside predominates in lowbush and ‘Tifblue’ 

blueberries (Prior and others 2001), in highbush ‘Rubel’ blueberries (Lee and others 

2002) and rabbiteye blueberries grown in Japan (Nakajima and others 2004).    Malvidin 

derivatives were most abundant in highbush blueberries, comprising 44% of the total 

anthocyanin in blueberries (Skrede and others 2000).   

 

Degradation of anthocyanins 

In the model system, anthocyanins were degraded by the action of quinones 

formed by the action of blueberry PPO on 4-methyl catechol.  Blueberry PPO degraded 

36% of the total anthocyanins present in the model system (Figure 42).  Degradation of 

anthocyanins was closely related to their structure.  Triphenolic anthocyanins suffered the 

highest percentage of degradation (delphinidin 77 %), followed by diphenolic (petunidin 
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48% and cyanidin 24%) and monomeric (malvidin 19% and peonidin 16%) (Figure 43).  

All individual derivatives of these anthocyanins (glycosides, galactosides and 

arabinosides) followed a similar pattern of degradation (Figures 45-62).   

The relative anthocyanin stability is related to their chemical structure.  The 

delphinidin glycosides with the greatest liability have 3 ortho phenolic groups in the B 

ring and the cyanidin and petunidin derivative, which have the second order of reactivity, 

have 2 ortho phenolic groups.  Peonidin and malvidin glycosides, which have the least 

reactivity, possess one phenolic substituent in the B ring with one and two adjacent  

methoxyl substituents, respectively (Skrede and others 2000).  The high degradation of 

delphinidin anthocyanins can also be explained by the possible direct action of PPO.  It 

was previously shown that PPO can act on anthocyanins when triphenolic function is 

present on the B ring of the flavylium structure as in the case of delphinidin (Sakamura 

and Obata 1963).   

Fifty three percent of nasunin (delphinidin 3-(p-coumaroylrutinoside)-5-

glucoside) was destroyed by PPO and the destruction increased to 98 % with the addition 

of chlorogenic acid (Sakamura and Obata 1963).  This suggests that high degradation of 

delphinidin derivatives may be the result of direct action by PPO and indirect action by 

PPO generated quinones.  Delphinidin glycosides were the most unstable during 

processing of the blueberry juice which mostly contributed to the action of blueberry 

PPO (Skrede and others 2000).  Delphinidin-glycosides (based on its structure, 

delphinidin is most labile) were degraded the most, and malvidin-glycosides appear to 

have degraded the least by PPO, especially when the starting material was whole berries 

(Lee and Wrolstad 2004), which implies that the native enzymes present in the blueberry 
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destroyed anthocyanins (Skrede and others 2000).  In a study of the Oxygen Radical 

Absorbance Capacity (ORAC) of different anthocyanins, it was reported that delphinidin 

and cyanidin derivatives had higher Trolox equivalents than malvidin and peonidin 

(Wang and others 1997), which is similar to results that were observed in this study.  

Wesche-Ebeling and Montgomery (1990) reported increased degradation of o-dipehnolic 

anthocyanins in comparison to non o-diphenolic in a model system containing PPO and 

catechin as the PPO substrate.  After 24 h, 60% of cyanidin anthocyanins was destroyed 

when compared to 50% pelargonidin anthocyanins (Wesche-Ebeling and Montgomery 

1990b).  In the presence of chlorogenic acid and enzyme extract, cyanidin-3- rutinoside 

was rapidly degraded and could not be detected after  20 min of reaction (Raynal and 

Moutounet 1989). 

Malvidin derivatives should not be oxidized by the enzyme or by coupled 

oxidation (Sarni and others 1995).  Degradation may occur due to the incorporation of 

anthocyanins into condensation products by quinone-phenol reactions as postulated by 

Wesche-Ebeling and Montgomery (1990).  Sarni and others (1995) also demonstrated the 

degradation of both cyanidin and malvidin derivatives, with cyanidin degrading more 

rapidly than malvidin.  The faster degradation of cyanidin-3-glucoside was due to its 

particular capacity (related to the o-diphenolic moiety) to be invoked in coupled 

oxidation, although the presence of methoxyl groups like in malvidin may also impede 

nucleophilic addition into quinone (Sarni and others 1995).  Competition between 

cyanidin and malvidin 3-glucoside for the PPO generated o-quinine resulted  in favor of 

the o-diphenol (cyanidin) (Sarni and others 1995), that can also explain more degradation 

of cyanidin in this study when compared to malvidin.  Anthocyanins with arabinose in 
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their molecule seem to degrade more than the anthocyanins with glucose and galactose 

(Figure 44).   

Addition of 0.05 and 0.1% sodium benzoate significantly decreased the percent of 

anthocyanins that were degraded by the PPO from 35% to 25% when  0.05% was used, 

and to 18 with 0.1% benzoate (Figure 42).  With the addition of 0.1% sodium benzoate, 

almost 50% of degraded anthocyanins were protected.  Protection of anthocyanin 

degradation by benzoate was not in the same order for all anthocyanins.  The more the 

anthocyanins are susceptible to degradation the more they were protected by benzoate.  

At 0.1 %, benzoate protected approximately 30% of delphinidin (Figures 45-48), 25% of 

petunidin (Figures 49-52), 12% of cyanidin (Figures 53-56), 13% of malvidin (Figures 

57-60) and 8% of peonidin (Figures 61-63).  This is especially important since 

delphinidin and petunidin anthocyanins have the highest antioxidant activity and give the 

characteristic blue color to the blueberries. 

Anthocyanin extracts contained additional compounds including acids and other 

phenolics.  These compounds did not interfere with the inhibition of blueberry PPO by 

sodium benzoate.  Even with an excess PPO substrate present, the generation of quinones 

that degrade anthocyanins is very fast, and benzoate was able to protect anthocyanins.   

Addition of 8 ppm of potassium metabisulfite to the different concentrations of 

sodium benzoate (0.05% and 0.1%) did not significantly affect anthocyanin degradation 

compared to the addition of benzoate alone.  Potassium metabisulfite and potassium 

sorbate did not have any protective effect on total and individual anthocyanin degradation 

by PPO.  Potassium sorbate in the concentration of 0.1% significantly increased 

degradation of delphinidin (Figures 45-48) and petunidin (Figures 49-52) anthocyanins.   
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It is well known that sulfites can bleach anthocyanins, but since the order of 

degradation with sulfites was the same as without them, it can be concluded that the 

degradation of anthocyanins in the system with added sulfites was not due to the 

bleaching of anthocyanins but due to the action of PPO.   

Although sulfites inhibited PPO activity (Figure 17), they did not protect 

anthocyanins that were present in the model solution.  Concentration of sulfites (strong 

reducing agents) in our model system, might not be enough to reduce 4-methyl catechol 

quinones back to 4-methyl catechol which would protect anthocyanins.  In the presence 

of excess reducing agent, o-quinines that were formed from the chlorogenic acid were 

reduced to o-diphenol (Kader and others 1999). Sulfur dioxide (8ppm) completely 

inhibited the degradation of anthocyanin in a model system containing mushroom PPO 

and catechol as a substrate at pH 6.5 (Goodman and Markakis 1965).  In tart cherry juice, 

under similar conditions, but with no catechol added, 30ppm of SO2 were required for a 

complete inhibition of anthocyanin degradation (Goodman and Markakis 1965).  This 

greater concentration of SO2 in the juice than in the model system necessary for the 

inhibition of PPO was attributed to the SO2-binding capacity of carbonyl compounds 

present in the juice.  Influence of the added SO2 on the content of the colored 

anthocyanins depends on the content of the SO2-binding carbonyl compounds present in 

wine with the same level of total SO2 influencing differently anthocyanins color in 

different wines (Dallas and Laureano 1994).  It was found that the amount of 

anthocyanins decreased less rapidly with the high concentration of SO2 (Ribereau-Gayon 

and others 1983).  Anthocyanin extract used in our model system contained other 

phenolic compounds and acids from the blueberries that might react with SO2 before it 
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was able to inhibit PPO activity and formation of o-quinones that are responsible for 

anthocyanin destruction.  Higher concentrations of potassium metabisulfite might be 

needed for the inhibition of anthocyanin degradation. 

One of the reasons that sulfite did not inhibit the degradation of anthocyanins is 

that it may be in the bound form.  Bound sulfite usually represents the portion of the 

additive which is present as hydroxysulphonate adducts that are formed by reactions 

between carbonyl groups and HSO3-. (Wedzicha 1992).  Such adducts are decomposed 

slowly when sulfite treated foods are acidified or during titration with iodine, but rapidly 

if the pH of samples is raised to pH >10 or when acidified solutions are boiled (Wedzicha 

1992).  A well known observation of the browning of  sulfite treated foods, while there is 

still residual sulfite present, indicates that in such situations the concentration of free 

sulphite may be depleted to an extend that it becomes kinetically limiting (Wedzicha 

1992).  The inhibition of enzymatic browning catalyzed by polyphenol oxidase is 

potentially capable of leading to irreversible binding of sulphites (Wedzicha 1992).  In 

the case of 4-methyl catechol as a PPO substrate, sulfite can react with the formed o-

quinone by forming 4-sulphocatechol which is neither oxidized by an enzyme nor does 

inhibit the enzyme (Wedzicha 1992).     

Failure of potassium metabisulfite to protect against the degradation of 

anthocyanins could also be due to the fact that some of the sulfite was tight up in the 

enzyme sulfite complex after the enzyme had enough time to react with 4-methyl 

catechol and form quinones that reacted with anthocyanins.  
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Table 3.  Slopes of the inhibitor regression lines.   
 
 

Treatment slope 
Benzoate 0.307 b 
Sorbate 0.078 c 
Sulfite 0.54 a 
Benzoate/sulfite 0.528 a 
LSD 0.0785 
CV 11.45 

 
 
Means within the column followed by the same letter (abc) are not    
significantly Different (p < 0.05) 
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Figure 16.  Effect of sodium benzoate and potassium sorbate on blueberry  

       PPO activity 
 
 

Means followed by the same letter (abcd and ABCD) are not significantly different 
(p<0.05).  
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Figure 17.  Effect of potassium metabisulfite on blueberry PPO activity  
  
 
Means followed by the same letter (abcd) are not significantly different (p<0.05)  
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Figure 18.  Effect of combination of sodium benzoate and potassium metabisulfite on  
                   blueberry PPO activity  
 
 
Means followed by the same letter (abcd) are not significantly different (p<0.05).  
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Figure 19.  HPLC chromatogram of 14 anthocyanins detected at 520 nm using  
      DAD 

 

 

Figure 20.  Extracted ion chromatogram of 15 identified anthocyanins 
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Figure 21.  Extracted chromatogram of delphinidin 3-galactoside and delphinidin 3-      
                   glucoside m/z 465 
 
 
 

 
 
Figure 22.  Ion chromatogram of delphinidin 3-galactoside (peak # 1) 
 
 
 

 
 
Figure 23.  Ion chromatogram of delphinidin 3-glucoside (peak # 2) 
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Figure 24.  Extracted chromatogram of cyanidin 3-galactoside, cyanidin 3-glucoside  
                   and petunidin 3-arabinoside m/z 449 
 
 
 

 
 
Figure 25.  Ion chromatogram of cyanidin 3-galactoside (peak # 3) 
 
 
 

 
 
Figure 26.  Ion chromatogram of cyanidin 3-glucoside (peak # 5) 
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Figure 27 .  Ion chromatogram of petunidin 3-arabinoside (peak # 10).   
 
 
 

 
 
Figure 28.  Extracted chromatogram of delphinidin 3- arabinoside m/z 435 
 
 
 

 
 
Figure 29.  Ion chromatogram of delphinidin 3- arabinoside (peak # 4) 
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Figure 30.  Extracted chromatogram of petunidin 3-galactoside and petunidin 3- 
                   glucoside m/z 479.  
 
 

 
 
Figure 31.  Ion chromatogram of petunidin 3-galactoside (peak # 6) 
 
 
 

 
 
Figure 32.  Ion chromatogram of petunidin 3-glucoside (peak # 8) 
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Figure 33.  Extracted chromatogram of peonidin 3-galactoside, peonidin 3- 

       glucoside and malvidin 3-arabinoside m/z 463 
 
 

 
 
Figure 34.  Ion chromatogram of peonidin 3-galactoside (peak # 9) 
 
 

 
 
Figure 35.  Ion chromatogram of peonidin 3-glucoside (peak # 11) 
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Figure 36.  Ion chromatogram of malvidin 3-arabinoside (peak # 14) 
 
 
 

 
 
Figure 37.  Extracted chromatograms of malvidin 3-galactoside  and malvidin 3- 

       glucoside m/z 493 
 
 

 
 
Figure 38.  Ion chromatogram of malvidin 3-galactoside (peak #12) 
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Figure 39.  Ion chromatogram of malvidin 3-glucoside (peak #13) 
 
 
 

 
 
Figure 40.  Extracted chromatogram of peonidin 3-arabinoside m/z 433 
 
 

 
 
Figure 41.  Ion chromatogram of peonidin 3-arabinoside  
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Degradation of total anthocyanins by PPO with and without inhibitors 
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Figure 42.  Degradation of total anthocyanins by blueberry PPO with and without  
       inhibitors   
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Figure 43.  Degradation of anthocyanins by blueberry PPO 
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Degradation of anthocyanins by PPO grouped according the attached sugar
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Figure 44.  Degradation of anthocyanins by PPO grouped according to the sugar in  
       the molecule  
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Figure 45.  Degradation of delphinidin anthocyanins by PPO with and without  
       inhibitors   
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Degradation of delphinidin 3-galactoside by PPO with and without inhibitors 
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Figure 46.  Degradation of delphinidin 3-galactoside by PPO with and without  
       inhibitors   
 
 

Means followed by the same letter are not significantly different (p<0.05) 
 
 
 

Degradation of delphinidin 3-glucoside by PPO with and without inhibitors 
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Figure 47.  Degradation of delphinidin 3-glucosde by PPO with and without  

       inhibitors   
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Degradation of delphinidin 3-arabinoside by PPO with and without inhibitors 
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Figure 48.  Degradation of delphinidin 3-arabinosede by PPO with and without  

       inhibitors  
 
 

Means followed by the same letter are not significantly different (p<0.05) 
 
 
 

Degradation of petunidin anthocyanins by PPO with and without inhibitors 
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Figure 49.  Degradation of petunidin anthocyanins by PPO with and without  

       inhibitors  
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Degradation of petunidin 3-galactoside by PPO with and without inhibitors 
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Figure 50.  Degradation of petunidin 3-galactoside by PPO with and without  

       inhibitors  
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Figure 51.  Degradation of petunidin 3-glucoside by PPO with and without  

inhibitors  
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Degradation of petunidin 3-arabinoside by PPO with and without inhibitors 
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Figure 52.  Degradation of petunidin 3-arabinoside by PPO with and without   
                   inhibitors 
 
 
Means followed by the same letter are not significantly different (p<0.05) 
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Figure 53.  Degradation of cyanidin anthocyanins by PPO with and without  

inhibitors 
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Degradation of cyanidin 3-galactoside by PPO with and without inhibitors 
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Figure 54.  Degradation of cyanidin 3-galactoside by PPO with and without  

inhibitors 
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Figure 55.  Degradation of cyanidin 3-glucoside by PPO with and without inhibitors 

       
 

Means followed by the same letter are not significantly different (p<0.05) 
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Degradation of cyanidin 3-arabinoside by PPO with and without inhibitors 
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Figure 56.  Degradation of cyanidin 3-arabinoside by PPO with and without  

inhibitors 
 
 
Means followed by the same letter are not significantly different (p<0.05) 
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Figure 57.  Degradation of malvidin anthocyanins by PPO with and without  

       inhibitors 
 
 
Means followed by the same letter are not significantly different (p<0.05) 
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Degradation of malvidin 3-galactoside by PPO with and without inhibitors 
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Figure 58.  Degradation of malvidin 3-galactoside by PPO with and without  

       Inhibitors 
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Figure 59.  Degradation of malvidin 3-glucoside by PPO with and without  

inhibitors 
 
 
Means followed by the same letter are not significantly different (p<0.05) 
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Degradation of malvidin 3-arabinoside by PPO with and without inhibitors 
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Figure 60.  Degradation of malvidin 3-arabinoside by PPO with and without  

       inhibitors 
 
 

Means followed by the same letter are not significantly different (p<0.05) 
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Figure 61.  Degradation of peonidin anthocyanins by PPO with and without  

inhibitors 
 
 
Means followed by the same letter are not significantly different (p<0.05) 
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Degradation of peonidin 3-galactoside by PPO with and without inhibitors 
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Figure 62.  Degradation of peonidin 3-galactoside by PPO with and without  

inhibitors 
 
 
Means followed by the same letter are not significantly different (p<0.05) 
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Figure 63.  Degradation of peonidin 3-glucoside by PPO with and without inhibitors 

       
 
 
Means followed by the same letter are not significantly different (p<0.05) 
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EXPERIMENT II 

 
 
Identification and quantification of anthocyanins 

Fourteen different anthocyanins were identified in the frozen rabbitey blueberry 

extract (Table 4) and clear peak separations can been seen on the HPLC chromatogram 

detected at 520 nm (Figure 19).  Separation of Peonidin 3- glucoside and malvidin 3-

galactoside, peaks number 11 and 12 (Figure 19) was variable.  In most of the analysis 

for different treatments, the two coeluted and no clear pattern of separation could be 

found.  Because of that, it was impossible to analyze data for peonidin 3- glucoside, so 

the data was omitted in all analysis.  Determination of total anthocyanins by HPLC 

method was a summation of individual anthocyanin peaks detected at 520 nm.  Individual 

anthocyanins were quantified by comparisons with an external standard of cyanidin-3-

glucoside.  

Concentration of total anthocyanins in frozen blueberries was 328 mg/100 g. 

These value fall within the range of 25 to 495mg/100g for highbush blueberries (Mazza 

and Miniati 1993).  In the frozen berries, malvidin glucoside was the most abundant 

(50.43%) followed by delphinidin (19.3), petunidin (15.64), cyanidin (10.68%) and 

peonidin (4.1%).  Concentrations of individual anthocyanins expressed as mg/L of 

cyanidin 3–glucoside are presented in table 3.  Malvidin and delphinidin derivatives were 

the major anthocyanins in highbush blueberries (77.2%) (Vaccinium corymbosum L.cv. 

Rubel ) (Lee and others 2002).  Malvidin 3-galactoside was a major anthocyanin in 

highbush ’Rubel’ blueberries grown in Oregon with malvidin glycosides being most 

abundant accounting for 54.7% of all anthocyanins followed by delphinidin (25.7%), 
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petunidin (14.7%), cyanidin (3.9%) and peonidin (1%) based on the peak area percentage 

(Lee and Wrolstad 2004).  Malvidin 3-galactoside predominates in lowbush (V. 

angustifolium) and ‘Tifblue’ (V. ashei) blueberries (Prior and others 2001), in Highbush 

‘Rubel’ blueberries (Lee and others 2002) and rabbiteye (V. ashei) blueberries grown in 

Japan (Nakajima and others 2004).  Malvidin derivatives were most abundant in 

highbush blueberries, comprising 44% of the total anthocyanins in blueberries (Skrede 

and others 2000).   

 

Identification and quantification of acids 

Separation of acid standards (Figure 64) and acids in the blueberry extract (Figure 

65) was carried out at 214 nm.  The acids that were identified in frozen blueberry extract 

were quinic, malic, citric and shikimic.  The most abundant acid identified in the 

blueberry extract was quinic 941.6 mg/100g, followed by malic 89.4 mg/100g, citric 29.4 

mg/100g and shikimic 8.9mg/100g (Table 6).  Conflicting reports about acid 

concentrations were found in the literature.  In rabbiteye fruit, the percentage contribution 

of citric, succinic, malic and quinic acid is about 10%, 50%, 34% and 6%, respectively 

(Kalt and others 1996).  In the present research, blueberry extract was also screened for 

succinic acid but it was not detected.  Other researchers reported a average of 95% citric 

acid and 1% to 2% each of quinic and malic acid in ripe “Wolcott” fruit (Kushman and 

Ballinger 1968).  Succinic and malic acids were the predominant acids in rabbiteye 

cultivars averaging 50% and 33%, respectively (Ehlenfeldt and others 1994).  Among 

rabbiteye clones, citric acid averaged 10% and was never found to be more than 22%, 
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while quinic acid was consistently present only as a minor constituent, averaging 6% 

(Ehlenfeldt and others 1994). 

 

PPO activity in blueberry mash 

Maceration treatment affected (p<0.05) PPO activity (Figure 70).  Maceration 

temperature at 55ºC reduced (p<0.05) PPO activity from 233 to 52.3 µmolO2/min/100g. 

Although there were no significant differences between the control treatment (60 min 

maceration at 55ºC) and heat treatment, no PPO activity was detected in blueberry mash 

that was heat treated at 90C and then macerated for 60 min at 55ºC.  This is to be 

expected since PPO is not an extremely heat-stable enzyme.  Short exposures, in the 

tissue and solutions, to temperatures of 70 to 90ºC are, in most cases, sufficient for partial 

or total irreversible destruction of its catalytic function (Vamos-Vigyazo 1981).  

Blanching blueberry fruit for 3 min in a steam tunnel totally inactivated PPO (Rossi and 

others 2003).  Inactivation of PPO did not begin to occur until the grape juice was heated 

above 60ºC and heating above 87ºC was necessary to completely inactivate the enzyme 

(Montgomery and others 1982).  Activity of the PPO was reduced 100 times when the 

temperature was raised to 88-99ºC,  to 4 and 3 µmoles O2/min/2.5ml from 445 µmoles 

O2/min/2.5ml, while at 60ºC PPO activity decreased 10 times to 44 µmoles O2/min/2.5ml 

(Montgomery and others 1982).  The PPO in  crude extracts of plum, apple, pear and 

avocado was inactivated at 60-65ºC, whereas in grape extracts, 55ºC was enough for 

inactivation (Weemaes and others 1998).   

Addition of 0.1% of sodium benzoate to blueberry mash significantly reduced 

PPO activity compared to frozen blueberries but was also unexpectedly significantly 
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higher than a control sample without added inhibitor (Figure 70).  It could be possible 

that the addition of sodium benzoate increased thermal stability of PPO and that the 

added amounts were not enough to inhibit enzyme.  Thermal stability of PPO can be 

affected by some substances present in the food (Tomas-Barberan and Espin 2001a).  

Addition of both EDTA and benzoic acid increased the thermal stability of mushroom 

PPO, whereas gluthatione produced a sensitization to temperature treatments, probably 

due to an interaction with a disulphide bond in the enzyme (Weemaes and others 1997).  

Benzoic acid at 50 mM protected PPO from temperature treatment, thus increasing the 

thermal stability of the enzyme (Weemaes and others 1997).  It could also be possible 

that some other phenolic compounds that are abundant in blueberries are bound to PPO 

without inhibiting activity but preventing sodium benzoate to bind to an enzyme and 

inhibit its activity.  There are two distinct substrate binding sites on the enzyme molecule, 

one of which had a high affinity for aromatic compounds, including phenolic substrates, 

while the other, which probably contained the enzyme copper, served for metal-binding 

agents and oxygen (Duckworth and Coleman 1970).  In the system with benzoic acid, 

phenolic substrate (4-methyl catechol) and oxygen are present, oxygen is the first 

substrate to be bound to the apple PPO forming E-O2 complex to which benzoic acid as 

an inhibitor can bind only with enzymatic forms of PPO which are free of other phenolics 

i.e., E or E-O2 (Janovitz-Klapp and others 1990b).   

 

Degradation of anthocyanins, acids and phenolics in blueberry mash 

Since blueberries contain anthocyanins that impart their color only in the skin, 

breaking the skin and maceration of the mash are necessary to extract the color and 
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obtain good quality juice.  Freezing and heating of the blueberries had a more 

pronounced effect than pectolytic enzymes on the skin cells, and consequently on the 

liberation of color pigments.  The loss of semipermeability and mechanical injury  to the 

cell membranes appears to determine the total color released (Fuleki and Hope 1964).  

Significant differences were found between maceration treatments in respect to 

concentration of total anthocyanins (Figure 66).  No significant differences were found 

between frozen blueberries and control mash treatment (Figure 66), proving that 55ºC 

was not high enough to affect anthocyanins but on the other hand was high enough to 

decrease PPO activity almost 4 times (Figure 70), thus protecting anthocyanins and 

preserving the red color.   

Blueberry puree that was held for 60 min at 60ºC had higher concentrations of 

anthocyanins and phenolics than the one held at 25ºC, with anthocyanins  being more 

affected than phenolics (Kalt and others 2000).  The increased extraction of anthocyanins 

was attributed to the increased permeability of membranes in the macerated berries at 

higher temperatures and to decreased solubility of oxygen at higher temperatures that can 

prevent oxidative degradation (Kalt and others 2000). After 2h mash treatment at 50ºC, 

97% of the original anthocyanin content in black currant berries were intact (Iversen 

1999).   

Maceration treatments with added sodium benzoate and heat had a significantly 

lower concentration of total anthocyanins (Figure 66).  Heat treatment at 90ºC inactivated 

PPO, but degraded approximately 30% of anthocyanins.  The kinetics of thermal 

degradation is generally first order up to 110˚C and is influenced by temperature, plant 

species, pH, presence of oxygen and sugar content.  A logarithmic relationship between 
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temperature and pigment degradation has been described (Francis 1989).  Although PPO 

activity can degrade anthocyanins, degradation of anthocyanins in the heat treated 

(blanched) blueberry mash can be the result of the heat treatment rather than the action of 

PPO since PPO activity was barely detectible in the heat treated mash (Figure 70).   

The benzoate treatment also significantly reduced total anthocyanins, but possibly 

due to the action of PPO rather than heat, since 55ºC was not enough to degrade 

anthocyanins (Figure 66).  Addition of sodium benzoate decreased PPO activity only by 

42% from 233 to 137 µmolO2/min/100g (Figure 70) leaving enough active enzyme to 

degrade anthocyanins. It was shown that substantial losses of anthocyanins and other 

polyphenolics occurred when blueberries were processed into juice and that different 

classes of compounds had varying susceptibility to degradation with different processing 

operations with the highest losses occurring during milling and depectinization due to the 

action of native PPO (Skrede and others 2000).  

Not all anthocyanin aglucones were effected the same by the treatments.  No 

significant differences were found between frozen blueberries and control mash in 

respect to all anthocyanin aglucones (Figure 67).  All anthocyanin aglucones except 

cyanidin aglucones were significantly decreased by heat treatment (Figure 67) when 

compared to frozen berries.  Heat treatment had the highest negative influence on 

malvidin anthocyanins (~34 % degraded), followed by delphinidin and petunidin (28% 

degraded), and cyanidin (20% degraded), in comparison to the frozen berries (Figure 67).  

The three most representative blueberry anthocyanins (i.e.malvidin glycosides) showed a 

minor recovery increase with blanching (Rossi and others 2003).  Sodium benzoate 

significantly decreased all anthocyanin aglucones due to the action of PPO that was still 



 120 
 

active (Figure 67).  Treatment with benzoate showed a similar trend of anthocyanin 

degradation except that malvidin glycosides were less degraded than with the heat 

treatment, with only 25% degradation.  These results suggest that malvidin glycosides are 

more susceptible to heat degradation than to the action of PPO.  Malvidin glycosides are 

non o-diphenolic anthocyanins which are less susceptible to degradation of PPO 

generated o-quinines.  Nevertheless, Sarni and others (1995) noticed a decrease in 

malvidin-3-glucoside in a model system in the presence of PPO and caffeoyltartaric acid 

(PPO substrate). 

Individual anthocyanins were affected by maceration treatment similarly to their 

aglucones (Table 5).  Maceration treatments did not have a significant influence on 

polymeric color (Figure 69).  This indicates that the association of anthocyanins with 

each other and with other phenolics occurred within the blueberries and was not affected 

in any way by treatments.   

No significant differences were found between maceration treatments in respect to  

total phenolic concentration (Figure 68). Total phenolic concentration was retained 

during jam processing of some berries (Amakura and others 2000; Zafrilla and others 

2001). Thermal processing of raspberries into jam had a minimal effect on the major 

phenolics present (Zafrilla and others 2001). 

Significant differences were found between blueberry mash maceration treatments 

in respect to the concentration of identified acids (Table 6).  Concentrations of quinic 

acid and citric acids were significantly higher in heat treated mash than in the control 

maceration treatment (Table 6).  Heat treatment probably helped increase the extraction 

of these acids from the blueberry skin and seeds.   
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Juice yield  

Yield of blueberry juice was around 52% and there were no significant 

differences between maceration treatments (Figure 75).  Higher yields for blueberry juice 

were reported in previous studies:79-81 % (Rossi and others 2003), 83% (Roberts and 

others 2004), 83%(Skrede and others 2000), and 78-82% for both cold and hot pressed 

juice (Carlson 2003).  Higher yields may be due to the use of added pectolytic enzymes, 

smaller scale production and use of more sophisticated pressing equipment.  

 

Anthocyanins, phenolics and acids in pressed juice and press cake 

After pressing, anthocyanins are released into juice either in soluble form or in 

small suspended fruit particles (Iversen 1999).  No significant differences in anthocyanins 

were found between different maceration treatments in extracted juice (Figure 71).  

Although, heat treated blueberry mash had a significantly lower concentration of total 

anthocyanins after 60 min of maceration when compared to the control (Figure 66), no 

significant differences in anthocyanins in the extracted juice could be the consequence of 

better extraction of anthocyanins from the heat-broken skin.  Recovery of anthocyanins 

was 12 % from the control and benzoate treated mash, and 17% from the heat treated 

juice.  Anthocyanins are not as efficiently extracted in the pressing operation as are 

sugars, acids and other water solubles, which can have a negative impact on juice quality 

(Skrede and others 2000; Lee and others 2002).  It was shown that substantial losses of 

anthocyanins and other polyphenolics occurred when blueberries were processed into 

juice and that different classes of compounds had varying susceptibility to degradation 
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with different processing operations, with the highest losses occurring during milling and 

depectinization due to the action of native PPO (Skrede and others 2000).  

Pretreatments with heat and SO2 resulted in higher recovery of red color pigments 

with a more intense color  (higher chroma) in pasteurized juice when compared to the 

control,  while the heat treated samples were darker (smaller L values) than the control 

and SO2 treated juice (Lee and others 2002).  Only 12% of total  blueberry anthocyanins 

were extracted in juice, increasing to 23% when the juice was blanched (Rossi and others 

2003).  Rossi and others (2003) reported that the total anthocyanin content of juice from 

blanched blueberry fruit was twice that of non blanched fruit.  These researchers 

concluded that this was the result of PPO inactivation and the greater extraction yield was 

linked to the increase of fruit skin permeability caused by the heat treatment. 

No significant differences in anthocyanin aglucones were found between control 

extracted, benzoate and heat treated juices (Figure 72).  Heat extracted juice had 

significantly higher amounts of delphinidin, cyanidin and petunidin anthocyanins 

compared to benzoate treated juice (Figure 72).  Malvidin glycosides were the most 

readily extracted anthocyanins for all treatments, contributing approximately 57-65% of 

the total anthocyanins that were present in the juice, while their contribution in the frozen 

blueberry fruit was aproximatelly 50%.  Malvidin glycosides comprised 44% of the total 

anthocyanins in blueberry fruit and increased to 63% in pasteurized juice and concentrate 

(Skrede and others 2000). Similar results were reported by Lee and others (2002) where 

malvidin glycosides in the berry were 51% of total anthocyanins and increased to 60-77% 

in pasteurized juice and concentrate. Contribution of delphinidin and petunidin 

anthocyanins to total anthocyanins decreased in extracted juice compared to their 
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contribution in frozen berries, while cyanidin and peonidin ratios remained the same.  

Delphinidin anthocyanins decreased the most of all anthocyanins, decreasing from 19% 

contribution of total anthocyananins present in the frozen berries to 11% in the pressed 

juice.  Delphinidin glucoside were the most unstable decreasing from 12% in blueberry 

fruit to 5% in pasteurized juice with only trace amounts in the initial pressed juice 

(Skrede and others 2000).  Decreases in delphinidin glycosides was also reported by Lee 

and others (2002) but only for the juice that received no pretreatment before pressing.  

There was a concomitant decrease in delphinidin and petunidin glycosides (Lee and 

others 2002). The proportion of delphinidin-glycosides decreased especially in the 

control sample with only 8% left, while heat and SO2 treated samples had 20 and 23% 

retained in the pasteurized juice (Lee and others 2002). The relative ratio of delphinidin 

glycosides versus cyanidin glycosides remained about the same in the juices as compared 

with the whole berry (Buchert and others 2005).  Rossi and others (2003) obtained very 

different results with the higher percent recovery increase of delphinidin glycosides and 

petunidin –glycosides which have a more intense blue than that of cyanidin-glycosides 

and peonidin-glycosides, which are orange in color.  The highest percentage recovery 

increase observed for delphinidin-glycosides could also be linked to their higher water-

solubility, due to the presence of three free phenolic functions (Rossi and others 2003).   

The anthocyanins that showed the highest benefits from the blanching treatment 

were, in decreasing order, the glycosides of delphinidin, petunidin , and cyanidin with the 

exception of cyanindin-3-glucoside that showed the lowest recovery (Rossi and others 

2003).  The three most representative blueberry anthocyanins (i.e.malvidin glycosides) 

showed a minor recovery increase with blanching (Rossi and others 2003).  In the present 
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study, heat treatment (blanching) did not significantly decrease recovery of malvidin 

glycosides (Figure 67).  Lee and others (2002) concluded that heat and SO2 treatment of 

highbush blueberries were effective in increasing the recovery of anthocyanins but not 

other phenolics in the juice.  Only significant differences between treatments in extracted 

juice with respect to individual anthocyanins were found between delphinidin-3-

galactoside, cyanidin-3-galactoside, petunidin-3-galactoside and malvidin-3-arabinoside 

(Table 7).  There were no significant differences in percent polymerization between 

different treatments indicating that anthocyanins did not associate with each other or with 

other phenolics (Figure 74).   

Substantial amounts of anthocyanins, 641, 595 and 503 mg/100g of press cake 

remained in the control, benzoate and heat pretreated press cake after the extraction of 

juice (Figure 76).  No significant differences in the press cake were found between 

different pretreatments in respect to total anthocyanins.  Heat pretreated press cake had 

significantly lower concentration of malvidin glycosides (Figure 77).  Concentration of 

malvidin -3- galactoside and malvidin-3-arabinoside was significantly lower in the heat 

pretreated press cake (Table 9).  This low concentration was expected since malvidin 

glycosides were the most readily extracted anthocyanins for all treatments, contributing 

aproximatlly 57-65% of total anthocyanins present in the juice, while their contribution in 

the frozen blueberry fruit was around 50%.  In addition, the heat treatment had the 

highest negative influence on malvidin anthocyanins (~34 % degraded), followed by 

delphinidin and petunidin (28% degraded) and cyanidin (20% degraded) in comparison to 

the frozen berries (Figure 67).  Changes in malvidin glycosides with processing were the 

most noticeable, ranging from 50% in frozen berries, to 65% in pressed juice and to 43% 
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in the press cake.  The press cake residues contained substantial amounts of 

anthocyanins, about 43-55% of frozen berry anthocyanins, with the control press cake 

containing the greatest amounts (Lee and others 2002).  No significant differences in 

percent anthocyanin polymerization in press cake were found between different 

pretreatments (Figure 79).  

       Significant differences were found between pretreatments in respect to the total 

amount of phenolics extracted into the juice (Figure 73).  Heat extracted juice had a 

significantly higher amount of total phenolics than the benzoate treatment, but not more 

than the control (Figure 73).  Less extraction of phenolics from the benzoate treated 

blueberry mash can be explained by the fact that benzoate treated mash had a lower 

initial concentration of phenolics (Figure 68).  Phenolics percent extraction from the 

corresponding blueberry mash was 33%, 35% and 41% for the control, benzoate treated 

and heat treated samples, respectively.  Lee and others (2002) reported a considerable 

loss in phenolics during thawing, crushing and pressing with similar results obtained by 

Skrede and others (2000).  Sixty to 65% of blueberry polyphenolics were lost during 

thawing, crushing and pressing (Lee and others 2002).  There were not significant 

differences in polyphenolics taken after each processing step between the control, heat 

and SO2 treated berries.  Thirty six to 39% of the polyphenolics in the berries were 

present in the pasteurized juice. Forty two to 45% of the frozen berry phenolics were lost 

during juice processing and not accounted in the final pasteurized juices and press cake 

(Lee and others 2002).  Control pressed juice (no pretreatment) and SO2 treated pressed 

juice had lower polyphenolics than their pasteurized juices.  Hot pressed blueberries had 

higher amounts of total phenolics than the cold pressed ones (Lee and others 2002).  
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Considerable amounts of total phenolics remained in the press cake after juice extraction.  

Heat pretreated press cake seem to contain the highest amount of phenolics, but was not 

significantly higher than the other two treatments (Figure 78).  Blueberry extract had 

5500 ppm of total phenolics, hot pressed blueberries had around 3200 ppm while 

pasteurized blueberries had 5000 ppm (Carlson 2003).   

The blueberry mash treatment did not have a significant influence on extracted 

acids, except for citric acid (Table 8).  Heat pretreated extracted juice had significantly 

higher amounts of citric acid when compared to control and benzoate pretreated juice 

(Table 8). The higher amounts of extracted citric acid are the result of higher amounts of 

citric acid in the blueberry mash from which the juice was extracted (Table 6).  Heat 

treatment probably broke the cells which helped extract more citric acid.  The press cake 

did not contain any citric acid for any of the treatments, indicating that this acid is readily 

extracted into juice (Table 10).  Significant differences between treatments were found 

with respect to concentration of shikimic and malic acid in the pomase (Table 10).  Their 

concentrations were higher in the heat-treated pomace and lower in the benzoate-treated 

pomace. 

 

Juice Processing 

Pulsed electric fields, PEF  

Many researchers indicate that PEF operating with electric fields between 15 and 

80kV/cm, pulse widths between 1 and 100Ms, and a frequency of 1-100 pulses, were 

sufficient for inactivation of bacteria and certain enzymes, while taste and flavors were 

unaffected (Barbosa-Canovas and others 2001; Wesierska and Trziszka 2007).  The PEF 
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treatment did not have significant influence on total anthocyanins, individual 

anthocyanins, total phenolics, percent anthocyanin polymerization, and DPPH remaining 

after 5 min (Table 11).  In addition to that, no significant differences were found in 

respect to anthocyanins aglucones (Figure 80).  It was observed that PEF-pretreatment 

caused an increase in anthocyanin concentration in grape juice (Knorr 2003). The PEF 

treatment caused degradation of cyanindin-3 glycoside in a aqueous-methanol solution.  

As the electric field intensity and the treatment time increased, degradation of cyanidin-3 

glycoside significantly increased (Zhang and others 2007).  Purified solution of single 

anthocyanins might be more susceptible to degradation than a juice extract containing 

other soluble compounds.  PEF-treated cranberry juice had a similar flavor or aroma 

profiles as the controls, while thermal treatment significantly altered the overall flavor 

profile of the juice (Jin and Zhang 1999). No significant differences were observed in the 

content of anthocyanin pigments between PEF-treated samples and controls.  However, 

thermal treatment significantly reduced the anthocyanin pigment content.  HTST 

treatment of apple juice caused a considerable loss of phenols (32.2%) when compared 

with PEF treatment, which only caused a 14.49% reduction (Aguilar-Rosas and others 

2007).  Antioxidant activity monitored as percent DPPH over a period of 20 min 

remained the same before and after PEF treatment (Figure 81).  Antioxidant activities that 

were determined with the DPPH method were not different between unprocessed and 

PEF processed orange juice (Elez-Martinez and others 2006).  The PEF treatment also 

did not have any significant influence on the acids that are present in the juice (Figure 

82). Organic acid and volatile aroma compounds of citrus juices did not change with PEF 

treatment  at 28kV/cm with 50 pulses (Cserhalmi and others 2006).   
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Pasteurization 

Kettle pasteurization for 1 min at 90ºC did not have a significant influence on 

anthocyanins aglucones (Figure 83), total anthocyanins, individual anthocyanins, % 

anthocyanin polymerization, total phenolic and % DPPH remaining after 5 min (Table 

12).  There are conflicting reports in the literature on the influence of heat on 

phytonutrients in red colored juices.  Industrial processing of pomegranates to obtain 

juices increased their antioxidant capacity and phenolics content (Gil and others 2000). 

Reduction of anthocyanins content in strawberry juice upon heating was reported 

(Rwabahizi and Wrolstad 1988 and Bakker and others 1992).  Juice obtained after 

filtration was not clear blueberry juice which could have some protective effect on 

phytonutrients present during pasteurization.  Large loss of  strawberry anthocyanins after 

clarification of the juice compared to the purees was observed, and it was attributed 

mostly to the loss of colored compounds bound to the proteins due to filtration (Bakker 

and others 1992). Pigment destruction was more pronounced in clarified juice (Wrolstad 

and others 1994). 

Curves obtained by monitoring the disappearance of DPPH could not be 

distinguished, indicating the same antioxidant activity of juice before and after 

pasteurization (Figure 84).  The DPPH free radical scavenging activity assay did not 

show clear division between heat-treated and non-heat treated products (Schmidt and 

others 2005).   

Pasteurization using a steam kettle was the most effective at retaining antioxidant 

activity as measured by total phenols and (ORAC) in the final products. One likely 

reason for this significantly higher level of antioxidant retention is the exposure to higher 
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heating temperatures resulting in increased permeability of water soluble substances, 

moving out of the cells.  The higher heat also degraded enzymes (PPO and glucosidase) 

present that would be harmful to the anthocyanins and also lowered the levels of oxygen 

present in the final products which contribute to antioxidant destruction (Carlson 2003) 

Pasteurization caused a significant increase of quinic and shikimic acids (Figure 85).   

 

High Pressure Processing, HPP 

High pressure treatment is expected to be less detrimental than thermal process to 

low molecular weight food compounds such as flavouring agents, pigments, vitamins, 

etc., as covalent bondings are not affected by pressure ( Butz and others 2002).  Although 

different processing pressures did not have a significant influence on concentration of 

total anthocyanins, a trend of increased concentration of anthocyanins with increased 

pressure was noted (Figure 86).  Anthocyanin degradation was observed at both 

processing pressures (400 and 550MPa) but was appreciably higher at 400MPa compared 

with 550 MPa, and these were correlated to antioxidant activity (r=0.86) (Del Pozo-

Insfran 2007).  Anthocyanin aglucones (Figure 87), individual anthocyanins (Table 13), 

percent anthocyanin polymerization (Figure 88) and total phenolics (Figure 89) were not 

significantly influenced by high pressure treatments.  After 60 min of 600MPa pressure 

treatment and extreme temperature processing (95ºC for 60 min), no changes were 

observed in the total concentration of lucopene of β-carotene compared to control ( Butz 

an others 2002).  Stability of pigments may be explained by matrix effect: within tissues, 

the pigments are often compartmentalized and thus protected from adverse influences 

(Butz an others 2002).  Processing pressures of 500 and 800 KPa did not significantly 
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reduce vitamin C and carotenoid content of treated orange juice (Garcia and others 2001).  

It has been reported previously that HPP was more detrimental to anthocyanins, ascorbic 

acid, and color characteristic as compared to thermally pasteurized and control juice’s 

due to oxidase enzymes that were active during HPP processing of muscadine juice 

(Talcott 2003).  Potential mechanisms for destruction include the role of PPO and/or 

autoxidative mechanisms resulting in co-oxidation of anthocyanins and ascorbic acid 

(Talcott 2003).  In the present study, no PPO activity was detected in the blueberry juice 

before processing, which can also explain the retention of anthocyanins during high 

pressure processing.  No differences in antioxidant activity measured as disappearance of 

DPPH over time was noticed (Figure 90).  All high pressure treatments significantly 

increased concentration of the citric acid.  Concentration of quinic acid was significantly 

higher in juice treated at 400MPa than the control and 600MPa treatment (Table 14).    
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Figure 64.  HPLC separation of acid standards detected at 214 nm  
 
 
4000 ppm quinic,350 ppm malic, 50 ppm shikimic and 200 ppm citric 
 
 
 

 
 
Figure 65.  HPLC separation of acids detected at 214 nm 



  
 

 
 
Figure 66.  Concentration of total anthocyanins after 60 min of maceration as affected  

       by different treatments 
 
 
Frozen (no maceration), No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% 
sodium benzoate) and Heat (90ºC, 1min blanching followed by maceration at 55ºC for 
1h).  Means followed by the same letter are not significantly different (p<0.05) 
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Anthocyanins grouped by the aglucone after 60 min of maceration as 
affected by treatment
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Figure 67.  Concentration of anthocyanin aglucones after 60 min of maceration as  

affected by treatments 
 
 

Frozen (no maceration), No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% 
sodium benzoate) and Heat (90ºC, 1min blanching followed by maceration at 55ºC for 
1h).  Means followed by the same letter are not significantly different (p<0.05) 
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Total phenolics after 60 min of maceration as affected by treatment

0

100

200

300

400

500

600

Frozen blueberries No treatment Benzoate Heat

Treatment

To
ta

l p
he

no
lic

s 
m

g/
10

0g
 b

lu
eb

er
ris A A

A

A

 
 
Figure 68.  Concentration of total phenolics after 60 min of maceration as affected by     

      different treatment   
 

Frozen (no maceration), No treatment (maceration 55ºC 1h),Benzoate (55ºC, 1h, 0.1% 
sodium benzoate) and Heat (90ºC 1min blanching followed by maceration at 55ºC for 
1h).  Means followed by the same letter are not significantly different (p<0.05) 
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Changes in polymeric color after 60 min of maceration as affected by treatment
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Figure 69.  Changes in polymeric color after 60 min of maceration as affected by  
                   different treatment 
 
 
Frozen (no maceration), No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% 
sodium benzoate) and Heat (90ºC, 1min blanching followed by maceration at 55ºC for 
1h).  Means followed by the same letter are not significantly different (p<0.05) 
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Figure 70.  Activity of PPO (µmol O2/min/100g) after 60 min of maceration as affected     
                   by different treatment 
 
 
Frozen (no maceration), No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% 
sodium benzoate) and Heat (90ºC, 1min blanching followed by maceration at 55ºC for 
1h).  Means followed by the same letter are not significantly different (p<0.05) 
 
 
 
Table 6 .   Concentration of acids in blueberry mash as affected by different maceration 

treatments 
 
    Acids mg/100g   
Treatment Quinic Malic Shikimic Citric 
Frozen blueberries 941.6 ab 89.4 a 8.9 ab 29.4 b 
Control Maceration 868.9 b 79.1 a 9.4 ab 25.7 b 
Benzoate Maceration 922.5 ab 103.9 a 7.3 b 25.9 b 
Heat Maceration 1072.9 a 71.6 a 15.0 a 42.6 a 
LSD 153.4 45.1 6.4 12.7 
CV 8.5 27.9 33.2 21.8 

 
ab -  Means within the column followed by the same letter are not significantly       
         different (p<0.05) 
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Concentration of total anthocyanins in the pressed juice as 
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Figure 71.   Concentration of total anthocyanins in the pressed juice as affected by  
                    different treatment 
 
 
No treatment (maceration 55ºC  1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are  not significantly different (p<0.05) 
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Anthocyanins grouped by the aglucone in the pressed juice as 
affected by treatment
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Figure 72.  Concentration of anthocyanin aglucones in the pressed juice as affected by     

       different treatment 
 
 
No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC, 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are not significantly different (p<0.05) 
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Total phenolics in the pressed juice as affected by treatment
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Figure 73.  Concentration of total phenolic in pressed juice expressed as gallic acid  
                   equivalents as affected by different maceration treatments 
 
 
No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC, 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are not significantly different (p<0.05) 
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Changes in polymeric color in the pressed juice as affected by 
treatment
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Figure 74.  Percent polymeric color in pressed juice as affected by different maceration 

      treatments 
 
 
No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC, 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are not significantly different (p<0.05) 
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Yield of the pressed juice as affected by treatment
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Figure 75.  Yield of the pressed juice as affected by different maceration treatments: 
 
 
No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC, 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are not significantly different (p<0.05) 
 
 
 
Table 8.  Concentration of acids in pressed juice as affected by different maceration 
    treatments 
 
    Acids mg/1000ml   
Treatment Quinic Malic Shikimic Citric 
No treatment 11309.0 a 672.2 a 118.7 a 345.3 b 
Benzoate  10914.0 a 728.6 a 113.1 a 256.7 c 
Heat  11615.0 a 696.1 a 167.1 a 481.2 a 
LSD 3263.0 312.5 86.6 61.8 
CV 14.5 23.5 32.6 8.6 

 
abc- Means within the raw followed by the same letter are not significantly different        
(p<0.05) 
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Figure 76.    Concentration of total anthocyanins in pomace as affected by different 
          maceration treatments  
 
 
No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC, 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are not significantly different (p<0.05) 
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Anthocyanins grouped by the aglucone in the pomese as affected by 
treatment
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Figure 77.  Concentration of anthocyanin aglucones in pomace as affected by different 
        maceration treatments 
 
 
No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC, 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are not significantly different (p<0.05) 
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Figure 78.  Concentration of total phenolics in pomace expressed as gallic acid   
                   equivalents as affected by different maceration treatments 
 
 
No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC, 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are not significantly different (p<0.05) 
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Figure 79.  Percent polymeric color in pomace as affected by different maceration 

treatments 
 
 
No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC, 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are not significantly different (p<0.05) 
 
 
Table 10.   Concentration of acids in blueberry pomace as affected by different 

maceration Treatments 
 
            Acids mg/100g pomace 
Treatment Quinic Malic Shikimic Citric 
No treatment 877.4 a 46.9 b 9.7 ab nd 
Benzoate treated 836.7 a 64.7 a 6.6 b nd 
Heat treated 1032.6 a 55.2 ab 14.3 a nd 
 
LSD 201.0 14.5 6.9  
CV 10.9 13.1 34.0   

 
 
No treatment (maceration 55ºC, 1h), Benzoate (55ºC, 1h, 0.1% sodium benzoate) and 
Heat (90ºC, 1min blanching followed by maceration at 55ºC for 1h).  Means followed by 
the same letter are not significantly different (p<0.05) 
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Changes in anthocyanins with PEF treatment
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Figure 80.  Concentration of total anthocyanins before and after PEF treatment.   
 
 
No significant differences were found between treatments (p>0.05) 
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Table 11.  Concentration of individual anthocyanins, total phenolic, % polymeric color, 

total anthocyanins and antioxidant activity before and after PEF treatment 
 
 
                  PEF TREATMENT     
  Before  After  LSD CV 
Individual anthocyanins             Concentration (ppm)      
Delphinidin-3-galactoside 124.42 113.52 24.28 9 
Delphinidin-3-glucoside 25.77 23.22 6.12 11.02 
Cyanidin-3-galactoside 84.5 78.42 12.52 6.78 
Delphinidin-3-arabinoside 44.69 40.19 12.22 12.7 
Cyanidin-3-glucoside 26.06 23.61 5.01 8.89 
Petunidin-3-galactoside 98.83 91.17 17 7.89 
Cyanidin-3-arabinoside 26.95 24.71 6.37 10.88 
Petunidin-3-glucoside 32.38 29.59 6.61 9.41 
Peonidin-3-galactoside 48.15 44.12 5.83 5.58 
Petunidin-3-arabinoside 30.29 27.15 7.56 11.61 
Malvidin-3-galactoside 378.83 366.85 67.34 7.97 
Malvidin-3-glucoside 119.68 109.61 17.13 6.59 
Malvidin-3-arabinoside 124.32 113.56 21.89 8.12 
Total Anthocyanins 1164.87 1085.72 198.42 7.77 
Other parameters         
% Polymeric color 39.41 38.48 2.28 2.58 
Total Phenolics (ppm) 6254.4 5213.7 1134.9 8.73 
% DPPH remaining (5min) 31.16 30.71 16.09 22.95 

 

No significant differences (p>0.5)were found between treatments (before and after PEF) 
in respect to all measured parameters  
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Dissapearance of DPPH
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Figure 81.  Spectrophotometric recordings of the disappearance of DPPH at 515 nm in  
                   the presence of blueberry juice before and after PEF treatment 
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Figure 82.  Concentration of acids before and after PEF treatment.   
 
 
No significant differences were found between treatments (p>0.05) 



 152 
 

Changes in anthocyanins with steam kettle pasteurization treatment
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Figure 83.  Concentration of anthocyanin aglucones before and after pasteurization 
 
 
No significant differences were found between treatments (p>0.05) 
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Figure 84.  Spectrophotometric recordings of the disappearance of DPPH at 515 nm in  
                   the presence of blueberry juice before and after pasteurization 
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Table 12.  Concentration of individual anthocyanins, total phenolic, % polymeric color,  
                 total anthocyanins and antioxidant activity before and after pasteurization 
 

          PASTEURIZATION     
  Before  After  LSD CV 
Individual anthocyanins      Concentration (ppm)      
Delphinidin-3-galactoside 125.07 123.23 35.26 12.53 
Delphinidin-3-glucoside 25.58 25.45 9.18 15.87 
Cyanidin-3-galactoside 85.99 85.05 17.11 8.83 
Delphinidin-3-arabinoside 45.89 44.67 15.52 15.11 
Cyanidin-3-glucoside 26.41 26.42 6.4 10.68 
Petunidin-3-galactoside 100.35 98.85 24.19 10.71 
Cyanidin-3-arabinoside 27.54 28.31 7.18 11.35 
Petunidin-3-glucoside 32.57 32.07 10.66 14.55 
Peonidin-3-galactoside 48.76 47.66 7.83 7.16 
Petunidin-3-arabinoside 31.16 29.88 9,08 13.13 
Malvidin-3-galactoside 397.94 388.69 55.76 6.25 
Malvidin-3-glucoside 119.96 117.75 27.51 10.21 
Malvidin-3-arabinoside 129.6 124.19 21.65 7.52 
Total Anthocyanins 1197.64 1171.44 246.91 9.19 
Other parameters         
% Polymeric color 38.78 42.82 4.64 5.02 
Total Phenolics (ppm) 4324.8 4713.7 574.3 5.6 
% DPPH remaining (5min) 22.22 22.83 7.73 15.15 

 

No significant differences were found between treatments (before and after 
pasteurization) in respect to all measured parameters  
 

 
 
 
 
 



 154 
 

Concentration of acids before and after pasteurization

12762

174 435

14135

189 465
0

2000
4000
6000
8000

10000
12000
14000
16000

Quinic Shikimic Citric

Acids

C
on

ce
nt

ra
tio

n 
(p

pm
) Before

After
B A

B A A A

 
 
Figure 85.  Concentration of acids before and after pasteurization   
 
 
Means followed by the same letter are not significantly different (p≤ 0.05) 
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Figure 86.  Concentration of total anthocyanins as affected by different processing  
        pressures 
 
 
Means followed by the same letter are not significantly different (p≤ 0.05) 
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Effect of high pressure treatments on anthocyanins grouped 
by their aglucone
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Figure 87.  Concentration of anthocyanins aglucones as affected by different processing 
                   pressures 
 
 
No significant differences were found between treatments (p>0.05) 
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Figure 88.  Percent anthocyanin polymerization as affected by different processing 
                   pressures 
 
 
Means followed by the same letter are not significantly different (p≤ 0.05) 
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Effect of high pressure treatments on total phenolics
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Figure 89.  Effect of different processing pressures on total phenolics expresses as  

       ppm of gallic acid equivalents 
 

Means followed by the same letter are not significantly different (p≤ 0.05) 
 
 
 
Table 14.  Concentration of acids in juice as affected by High Pressure treatments  

 
     High Pressure Treatments       
 Control 200 Mpa 400MPa 600MPa     
Acids        Concentration (ppm)   LDS CV 
Quinic 13,279.0b 13,446.6ab 14,156.5a 13,310.8b 823.5 3.2 
Shikimic 181.2ab 179.5b 184.2a 180.4ab 4.0 1.2 
Citric 514.7b 614.0a 674.4a 687.2a 84.3 7.2 

 
abc- Means within the raw followed by the same letter are not significantly different        
(p<0.05) 
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Disappearance of DPPH as influcenced by high pressure 
treated blueberry juice
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Figure 90.  Disappearance of DPPH, at 515 nm, in blueberry juice processed at  

      different pressures for 10 minutes. 
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CHAPTER V 
 

SUMMARY AND CONCLUSIONS 
 

 
Inhibition of blueberry PPO in food processing is crucial for good quality and the 

retention of nutrients in products made from blueberries.  All inhibitors that were studied 

decreased the activity of blueberry PPO.  Concentration of 0.1 % (maximum allowable 

for use in food products) and 0.075% of sodium benzoate decreased PPO activity to 

5.05% and 8.78%, respectively.  Potassium sorbate also decreased PPO activity but 

almost 50% of activity remained after the maximum allowable concentration of 0.1% was 

used.  Potassium metabisulfite in a concentration as low as 4 ppm inhibited almost 70% 

of PPO activity.  Sulfites (8 ppm) was a strong inhibitor of blueberry PPO which is very 

important from a practical point of view since amounts of less than 10ppm of sulfites do 

not have to be declared on the product label (Title 21, U.S. Code of Federal Regulations 

101.100).   

Fifteen different anthocyanins were identified in the rabbiteye blueberry extract.  

Derivatives of malvidin were the most abundant (42.1%), followed by delphinidin (19.86 

%), cyanidin (11.58%), petunidin (16%) and peonidin (6.6 %).  Malvidin 3-galactoside 

was the most abundant individual anthocyanin, with 18.9%.  In the model system, 

anthocyanins were degraded by the action of quinones that were formed by the action of 

blueberry PPO on 4-methyl catechol.  Blueberry PPO degraded 36% of total 

anthocyanins that were present in the model system.  Degradation of anthocyanins was 



 160

closely related to their structure.  Triphenolic anthocyanins suffered highest percentage of 

degradation (delphinidin 77 %), followed by diphenolic (petunidin 48% and cyanidin 

24%) and monomeric anthocyanins (malvidin 19% and peonidin 16%).  Addition of 0.1% 

sodium benzoate protected 50% of initially degraded anthocyanins by blueberry PPO.  

Protection of anthocyanin degradation by benzoate was not in the same order for all 

anthocyanins.  The more susceptible that the anthocyanins were to degradation the more 

they were protected by benzoate.  At 0.1 %, benzoate protected approximately 30% of 

delphinidin, 25% of petunidin, 12% of cyanidin, 13% of malvidin and 8% of peonidin 

anthocyanins.  This is especially important since delphinidin and petunidin anthocyanins 

have the highest antioxidant activity and impart the characteristic blue color to the 

blueberries.  Although sulfites inhibited PPO activity, they did not protect anthocyanins 

that were present in the model solution from the action of PPO.  Potassium sorbate in the 

concentration of 0.1% increased the degradation of delphinidin and petunidin 

anthocyanins.   

Not all anthocyanins were equally represented in frozen blueberries.  Malvidin 

glucoside were the most abundant (50.43%) followed by delphinidin (19.3), petunidin 

(15.64), cyanidin (10.68%) and peonidin (4.1%).  Acids identified in frozen blueberry 

extract were quinic, malic, citric and shikimic.  The most abundant acid identified in the 

blueberry extract was quinic 941.6 mg/100g, followed by malic 89.4 mg/100g, citric 29.4 

mg/100g and shikimic 8.9mg/100g.   

Maceration treatments before juice extraction influenced  PPO activity and 

phytonutirent content of blueberry mash.  Maceration temperature of 55ºC reduced PPO 

activity from 233 to 52.3 µmolO2/min/100g.  No PPO activity was detected in blueberry 
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mash that was heat treated at 90ºC and then macerated for 60 min at 55ºC.  Maceration 

temperature of 55ºC was not high enough to affect anthocyanins but on the other hand 

was high enough to decrease PPO activity almost 4 times thus protecting anthocyanins 

and red color.   

Heat treatment of 90ºC that was used to inactivate PPO degraded around 30% of 

anthocyanins.  Although PPO activity can degrade anthocyanins, degradation of 

anthocyanins in the heat treated (blanched) blueberry mash can be the result of the heat 

treatment rather than the action of PPO since PPO activity of was barely detectible in the 

heat treated mash.   

Benzoate treatment also significantly reduced total anthocyanins, but possibly due 

to the action of PPO rather than heat, since 55ºC was not enough to degrade anthocyanins 

.Addition of sodium benzoate decreased PPO activity only around 42% leaving enough 

active enzyme to degrade anthocyanins.   

Not all anthocyanin aglucones were affected the same by the treatments.  No 

significant differences were found between frozen blueberries and control mash in 

respect to all anthocyanin aglucones.  All anthocyanin aglucones except cyanidin 

aglucones were significantly decreased by heat treatment compared to frozen berries.  

Heat treatment had the highest negative influence on malvidin anthocyanins (~34 % 

degraded), followed by delphinidin and petunidin (28% degraded), and cyanidin (20% 

degraded), in comparison to the frozen berries.  Addition of sodium benzoate 

significantly decreased all anthocyanin aglucones due to the action of PPO that was still 

active.  Treatment with benzoate showed a similar trend of anthocyanin degradation as 

the heat treatment except that malvidin glycosides were less degraded than with the heat 
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treatment, with only 25% degradation.  These results suggest that malvidin glycosides are 

more susceptible to heat degradation than to the action of PPO.  No significant 

differences were found between maceration treatments in respect to the total phenolics.  

Concentrations of quinic acid and citric acids were significantly higher in heat treated 

mash than in the control maceration treatment.  Heat treatment probably helped increase 

extraction of these acids from the blueberry skin and seeds.   

Yield of blueberry juice was around 52% and there were no significant 

differences between maceration treatments. No significant differences in anthocyanins 

were found between different maceration treatments in extracted juice.  Although heat 

treated blueberry mash had a significantly lower concentration of total anthocyanins after 

60 min of maceration when compared to the control, a lack of  differences in 

anthocyanins in the extracted juice could be the consequence of better extraction of 

anthocyanins from the heat-broken skin.  Recovery of anthocyanins was 12 % from the 

control and benzoate treated mash, and 17% from the heat treated mash from the frozen 

fruit.   

Malvidin glycosides were the most readily extracted anthocyanins for all 

treatments, contributing aproximatly 57-65% of total anthocyanins present in the juice, 

while their contribution in the frozen blueberry fruit was around 50%.  The ratio of 

delphinidin and petunidin anthocyanins to total anthocyanins decreased in extracted juice 

compared to their contribution in frozen berries, while cyanidin and peonidin ratios 

remained the same.  Delphinidin anthocyanins decreased the most of all anthocyanins, 

decreasing from 19% of total anthocyanins present in the frozen berries to 11% in the 

pressed juice.   
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Substantial amounts of anthocyanins, 641, 595 and 503 mg/100g remained in the 

control, benzoate and heat pretreated press cake after the extraction of juice.  No 

significant differences in press cake were found between different treatments in respect to 

total anthocyanins.  Although not significant, heat pretreated press cake had lower 

amount of anthocyanins than the other two treatments.  This can be explained by the fact 

that the heat pretreatment helped brake the skin of the berries which helped the extraction 

of the anthocyanins into the juice leaving less amounts in the press cake.   

Heat extracted juice had a significantly higher amount of total phenolics than 

benzoate treatment, but not more than the control juice.  Less extraction of phenolics 

from the benzoate treated blueberry mash can be explained by the fact that benzoate 

treated mash had a lower initial concentration of phenolics .  Phenolics percent extraction 

from the corresponding blueberry mash was 33%, 35% and 41% for the control, benzoate 

treated and heat treated samples, respectively.   

Blueberry mash treatment did not have a significant influence on extracted acids 

other than citric acid.  Heat pretreated extracted juice had significantly higher amounts of 

citric acid when compared to the control and benzoate pretreated one.  Heat treatment 

probably broke the cells which helped extract more citric acid.   

Press cake did not contain any citric acid for any of the treatments indicating that 

this acid is readily extracted into the juice.   

The PEF treatment, kettle pasteurization and HHP treatment did not have a 

significant influence on total anthocyanins, individual anthocyanins, total phenolics, 

percent anthocyanin polymerization, and antioxidants in the processed juice.  

Pasteurization caused a significant increase in quinic and shikimic acids.   



 164

From the objectives of this study we can conclude that: 
 

1. Sodium benzoate, potassium metabisulfite and a combination of these two are 

very good inhibitors of blueberry PPO, while potassium sorbate was the 

weakest inhibitor. 

2. Anthocyanins were protected by sodium benzoate in the model system. 

Addition of potassium metabisulfite failed to protect anthocyanins and the 

addition of potassium sorbate increased anthocyanin degradation 

3. In respect to inactivation of PPO without negative influence on 

phytonutrients, especially anthocyanins, maceration treatment for 1h at 55ºC 

would be recommended. 

4. Thermal and non thermal processes (PEF and HHP) performed the same in 

respect to phytonutrients retention.  
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