
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-13-2008

Design, Construction, Inverse Kinematics, And Visualization Of Design, Construction, Inverse Kinematics, And Visualization Of

Continuum Robots Continuum Robots

Srinivas Neppalli

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Neppalli, Srinivas, "Design, Construction, Inverse Kinematics, And Visualization Of Continuum Robots"
(2008). Theses and Dissertations. 1316.
https://scholarsjunction.msstate.edu/td/1316

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1316?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1316&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

DESIGN, CONSTRUCTION, INVERSE KINEMATICS,

AND VISUALIZATION OF CONTINUUM ROBOTS

By

Srinivas Neppalli

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

December 2008

Copyright by

Srinivas Neppalli

2008

DESIGN, CONSTRUCTION, INVERSE KINEMATICS,

AND VISUALIZATION OF CONTINUUM ROBOTS

By

Srinivas Neppalli

Approved:

Bryan A. Jones
Assistant Professor of Electrical and
Computer Engineering
(Major Advisor and Director of Thesis)

Thomas H. Morris
Assistant Professor of Electrical and
Computer Engineering
(Committee Member)

Sarah A. Rajala
Dean of the Bagley
College of Engineering

Eric A. Hansen
Associate Professor of Computer Science

 and Engineering
(Minor Advisor and Committee Member)

 James E. Fowler
Professor of Electrical and Computer
Engineering

 (Graduate Program Director)

Name: Srinivas Neppalli

Date of Degree: October 23, 2007

Institution: Mississippi State University

Major Field: Electrical Engineering

Major Professor: Dr. Bryan A. Jones

Title of Study: DESIGN, CONSTRUCTION, INVERSE KINEMATICS,
 AND VISUALIZATION OF CONTINUUM ROBOTS

Pages in Study: 74

Candidate for Degree of Master of Science

Continuum robots are the biologically inspired robots that mimic the behaviors of

mammalian tongues, elephant trunks, and octopus arms.

The drawbacks of two existing designs are examined and a new mechanical

design that uses a single latex rubber tube as the central member is proposed, providing a

design that is both simple and robust. Next, a novel verification procedure is applied to

examine the validity of the proposed model in two different domains of applicability. A

two-level electrical control scheme enables rapid prototyping and can be used to control

the continuum robot remotely. Next, a new geometrical approach to solve inverse

kinematics for continuum type robot manipulators is introduced. Given the tip of a three-

section robot, a complete inverse kinematics solution is obtained. Finally, the techniques

involved in visualization of AirOctor/OctArm in 3D space in real-time are discussed.The

algorithm has been tested with several system topologies.

Key words: Biologically inspired robots, Continuum manipulators, Inverse

kinematics.

DEDICATION

To my loving parents

ii

ACKNOWLEDGEMENTS

I take this opportunity to sincerely express my gratitude towards my advisor, Dr.

Bryan A. Jones for his invaluable guidance and support throughout my research and

during my Masters program at Mississippi State University. Also, I am grateful to my

committee members Dr. Eric A. Hansen, and Dr. Thomas H. Morris for their valuable

suggestions and guidance.

I would like to extend my thanks to the staff of the ECE department for their

dedication in helping students to excell in their career. Especially, I am very thankful to

my colleagues and friends for all their encouragement. Lastly, and most importantly, I

wish to thank my parents for their unparalleled support.

iii

TABLE OF CONTENTS

Page

DEDICATION.. ii

ACKNOWLEDGEMENTS... iii

LIST OF TABLES... vi

LIST OF FIGURES .. vii

CHAPTER

I. INTRODUCTION ..1

II. DESIGN AND CONSTRUCTION ..5

2.1 Introduction...5
2.2 Design and Construction of a Continuum Robot10
2.3 Modeling and Verification of a Continuum Robot14

2.3.1 Modeling..14
2.3.2 Model Verification...17

2.4 Electrical Design ...20
2.5 Summary ...24

III. INVERSE KINEMATICS ..25

3.1 Introduction...25
3.2 Single-Section Kinematics ..28

3.2.1 Inverse kinematics ...29
3.2.2 Special cases (Singularities) ..31

3.3 Multi-Section Kinematics ...32
3.3.1 Inverse Kinematics Algorithm...32
3.3.2 Incorporating Dead-Length Sections ...33

3.4 End-Point Locations of Each Section for a Multi-Section
Continuum Robot..33

3.4.1 Overview..35
3.4.2 Derivation ..36

iv

3.5 Results ...40
3.6 Potential Applications ...44
3.7 Summary ...44

IV. VISUALIZATION OF CONTINUUM ROBOTS ...46

4.1 Introduction...46
4.2 Background ...48
4.3 Code ..49

4.3.1 Nurbs Trunk...50
4.3.2 3-D rendering: mInventor, MatlabOI, Coin, and OpenInventor....53
4.3.3 Nurbs-related functions..56

4.4 Flowcharts ...57
4.5 Code Flow ...65
4.6 Summary ...67

V. CONCLUSION AND FUTURE WORK..69

5.1 Conclusion ..69
5.2 Future Work ..70

REFERENCES ..72

v

LIST OF TABLES

TABLE Page

1 Various combinations of tubes and sleeves .. 12

2 Expansion at various pressures ... 13

3 Experimental Verification... 18

vi

LIST OF FIGURES

FIGURE Page

1 Continuum robot constructed based on the proposed design.................... 6

2 Picture featuring AirOctor .. 7

3 Picture featuring OctArm.. 8

4 Cross-sectional view of the trunk.. 11

5 Simplified model of kinematics .. 15

6 Experimental procedure without the effect of gravity to verify the
validity of the proposed design... 17

7 Experimental verification with the effect of gravity to verify the
validity of the proposed design... 19

8 Unique two level electrical design to control a continuum robot 20

9 Simulink block diagram that sends joystick input from PC to PC/104
via UDP protocol .. 21

10 Simulink block diagrams representing the send and receive modules
on the PC/104.. 23

11 Implementation of the inverse kinematics algorithm 25

12 A single section of a continuum trunk .. 27

13 Manipulator variables s, k, and  .. 28

14 A single section of continuum trunk that lies entirely in xz plane............ 30

15 Rigid-link configuration of a robot ... 34

16 Rigid-link robot after the transformation of coordinate frames 37

vii

17 Results of the algorithms in section 3.3.1 and 3.4.2 39

18 Simulation results illustrating the possible singular configurations 41

19 Results of singular configuration .. 43

20 Diagram illustrating the hierarchical structure of the code....................... 52

21 Shown above is the first part of the flowchart for the
drawTrunk function .. 58

22 Shown above is the second part of the flowchart for the
drawTrunk function .. 59

23 This is the third and last part of the flowchart for the
drawTrunk function .. 60

24 Shown above is the first part of the flowchart for the
setTrunk function .. 61

25 Shown above is the second and last part of the flowchart for the
setTrunk function .. 62

26 Shown above is the first part of the flowchart for the
getNurbsText function... 63

27 Shown above is the second and last part of the flowchart for
getNurbsText function... 64

28 The above diagram illustrates the code flow sequence of the
 trunk visualization code .. 66

viii

CHAPTER I

INTRODUCTION

In the past few decades we have seen some amazing advancements in science and

engineering, like micro processors, materials, communications, and artificial intelligence

which provide powerful tools and techniques enabling roboticists to build fast, precise,

mobile, rugged, intractable, multi-functional, and intelligent robots. Robots that are

intelligent and mobile can be of great assistance to us in places where humans cannot

reach such as nuclear research, space exploration, mining, underground and underwater

exploration. Robots are also very useful in scenarios where several procedures have to be

repeatedly performed with high speed and accuracy for long periods of time such as in

industry assembly line.

One of the more challenging aspects of robots begins when robots step outside the

research laboratories and become a part of a daily life. This thesis presents a step forward

in achieving those goals by making contributions in the field of continuum robotics.

Continuum robots are the biologically inspired robots that mimic the behaviors of

mammalian tongues, elephant trunks, and octopus arms. Continuum robots do not contain

any rigid arms or links; instead they are similar to their biological counterparts, such as

termed muscular hydrostats.

1

Muscular hydrostats consists mainly of muscle fibers and no skeletal structure

which gives them the ability to grasp objects of different shapes and sizes. This thesis

presents three distinct yet vital contributions to the field of continuum robots. The first

contribution includes the design and construction of a general purpose continuum robot

prototype, verifivation of the design and the proposal of a novel two-level electrical

design to control the robot. With an available prototype, the focus of this thesis then turns

to solving multi-section inverse kinematics for a continuum truck, such as the prototype

developed, when only the final end-point is known is the second contribution. The third

contribution consists of development of a platform to visualize a continuum trunk in 3D

space. The visualization platform produces an accurate and intuitive representation of the

continuum robot on the screen, which assists in solving and visualizing the inverse

kinematics problem. This graphical representation also plays an important role in the

proposed electrical design where the user could monitor and compare the configurations

of the robot without directly looking at it. The first, second, and third contributions are

described in detail in chapters two, three, and four respectively.

The second chapter discusses the design and construction of a simple, economic,

and robust continuum robot. The chapter motivates the need to have a standardized

prototype that can be used as the common development platform for continuum robots.

Design and construction focuses on using a pressurized latex rubber tube which is

covered tightly with a nylon mesh is used as the central member of the robot. A novel

method of verification is then introduced to examine the validity of the prototype in two

different domains of applicability.

2

A new electrical model is proposed which can be used to control the continuum

robot remotely with a joystick via a Local Area Network (LAN) while watching the real-

time 3D visualization of the robot on screen. Data from the sensors that are mounted on

the robot can be accessed from the remote computer in real-time.

Chapter three presents a geometrical approach to calculate inverse kinematics for

continuum manipulators. This approach starts by applying inverse kinematics to a single

section continuum trunk. In the second step the algorithm is extended to a multi-section

continuum trunk assuming that the end-points of each section are known. Given the tip of

a three-section robot, end-points of section 1 and section 2 are computed, thus achieving

a complete inverse kinematics solution for a multi-section continuum robot. The

geometrical approach proposed in this chapter converts the complex simultaneous

equation problem of inverse kinematics into few inequalities which can be solved much

faster than existing approaches. Moreover, the algorithm provides a solution space rather

than a single valid solution. The insight into the solution space provides an ability to

avoid obstacles and better maneuverability.

Chapter four discusses techiniques for visualization of AirOctor/OctArm in 3D

space in real-time. The trunk visualization code uses Non-Uniform Rational Bsplines

(NURBS) to represent the continuum section of the trunk accurately. The bridge program

enables the user to completely program in Matlab, which is much convenient that shifting

between Matlab and C++.

3

The code uses Coin3D which is a collection of C++ libraries from

www.coin3d.org that are compatible with OpenInventor which is a toolkit for graphics

programming that is built on top of OpenGL. The chapter clearly explains all parts of the

code with flowcharts and a code flow diagram.

The first step in this process involves the design and construction of a continuum

robot, presented in the following chapter.

4

www.coin3d.org

CHAPTER II

DESIGN AND CONSTRUCTION

2.1 Introduction

Continuum robots are biologically-inspired robots that mimic the behavior of

muscular hydrostats like elephant trunks and mammalian tongues. These continuum or

invertebrate structures give rise to a novel approach to kinematic analysis in contrast to

the well-known methods of deriving kinematics for rigid link robots. Methods used to

derive the kinematics include D-H tables [1], a geometric approach [2], and twist theory

[3, 4].

All the methods that are used to derive kinematics are in fact solving statics and

rely on assumptions such as the absence of gravity about the flexible structure underlying

the trunk. Sometimes these assumptions make the kinematics in real world inaccurate.

The ultimate goal is to find a model which accurately reflects the mechanics of

continuum robots. Therefore, it is important to verify the accuracy of all the proposed

theories. In order to compare model accuracy, all the theories should be tested against a

single standardized prototype by comparing pedicted versus actual robot shape.

Therefore there is a need to construct a standard prototype which can be used to

find the most accurate model. However, instead of a single prototype researchers across

the globe have come up with many designs of continuum robots to support their theories.

5

…

Latex
rubber

tube

Nylon
sleeve

Cable
guides

Hose
Clamps

Sealed
end capTo air-inlet

Cables

Figure 1 Continuum robot constructed based on
the proposed design.

A latex rubber tube is used as the central member
that is surrounded by three cables mutually
separated by 120 . See figure 3 for a cross-
sectional view of the trunk.

Such existing designs taken from [5] include the flexible micro-actuator, the AMADEUS

hand, the pizeohydraulic systems, the active hose, the EDORA colonoscope, the slim

slime robot, the shaped-memory alloy tentacles, McKibben-based trunks,

electrorheological fluid-based manipulators, electrostrictive polymer artificial muscles,

OctArm, and AirOctor. Instead, a standard prototype is required that can be used as a

common platform to compare the accuracy of various theories against a physical

prototype. None of these existing designs can be chosen to be a standard prototype

because a standard prototype should be inexpensive, easily reproducible, possess good

mechanical qualities, and require minimal assembly.

6

Figure 2 Picture featuring AirOctor

A continuum robot with drier-hose as the
single central member and cables as actuators.

Because existing designs are application-specific and do not exhibit such

characteristics, there is a need for the design that would fulfill the requirements of a

standard prototype for continuum robot. In pursuit of the standard prototype we have

designed a new prototype shown in Figure 1 that is derived from Air Octor [6] and

OctArm [7].

As shown in Figure 2, Air Octor uses a dryer hose as a single central member

which is actuated by the cables on its periphery. The parts used are easily available and

inexpensive. The construction is easy and takes little time.

7

Figure 3 Picture featuring OctArm

A continuum robot with multiple pressurized central members. The pressure levels
in the central memebra define the configuration of this trunk.

Simple and cost effective design is a great advantage to Air Octor. However, due

to the weakness of the dryer hose it lacks strength, while excessive tendon friction

significantly reduces itsflexibility.

OctArm, shown in Figure 3, uses pressurized rubber tubes as multiple central

members. Each section has three different pressure chambers that act as actuators, so

there are no cables on its periphery. The pressure in each actuator defines the shape of the

robot. Using multiple pressurized central members gives OctArm a great advantage in

terms of strength and flexibility. However, constructing it is a very difficult because of its

complex design that has custom machined parts and costly components.

8

It takes more than a week to assemble an OctArm after understanding the design

and construction process. Even though OctArm is strong and flexible, it is difficult and

costly to build. The new design brings the simplicity of Air Octor and agility of OctArm

together. A pressurized latex rubber tube is used as a single central member that makes

the design simpler than OctArm and stronger than AirOctor. It is covered with a nylon

sleeve to ensure longitudinal expansion. Cable ties which run through the nylon sleeve

make small loops, which act as cable guides, offering lower friction to sliding cables. A

latex rubber tube, nylon sleeve, and cable ties are readily available and cheap products in

the market.

Therefore this approach offers a simple, inexpensive, and easily reproducible

design with good strength. Complementing the mechanical design an electrical design is

also proposed to control the suggested design. It deploys a two-level control using a

standard PC and a single-board PC/104 computer. The wide variety of commercial, off-

the shelf I/O add-on boards for PC/104 [8] systems coupled with the availability of

drivers for many of these included in Matlab’s xPC Target [9] provides a cost-effective

rapid-prototyping environment.

In addition to the new design the chapter also introduces a new method of

verifying this design and all other designs based on the same principle. This method

proposes two types of verification. The first type verifies the mechanical qualities of a

physical continuum trunk. The second verification method determines the accuracy of a

proposed model by comparing predicted versus actual position of the physical robot.

9

This two-step verification process proceeds as follows. First, the accuracy of the

mechanical prototype is confirmed by examining its shape when free of external forces

such as gravity, where theoretical models give exact analytical results. Second, with the

confidence of an accurate mechanical prototype, model predictions in the presence of

gravity can then be compared against the physical prototype.

2.2 Design and Construction of a Continuum Robot

This chapter contributes a novel design combining the simplicities of Air Octor

[6] with the agility of OctArm [7], resulting in a continuum robot that is not only

mechanically simple and easy to build but also robust and efficient. This chapter

examines Air Octor and OctArm, where Air Octor is a simpler design to construct and the

OctArm offers better performance in grasping and whole arm manipulation than the

former.

OctArm is flexible, elastic and has good strength, but is complex to build and

control because of the multiple pressurized central members that make the design

mechanically challenging. Air Octor, on the other hand, is much less complex to build

and control because of the single central member and the use of cables as actuators but

lacks flexibility and strength due to high cable friction which cannot be overcome by low

pressure in the central member, resulting in cable binding which in turn causes

undesirable movements of the trunk.

10

Cable 1

Cable 2 Cable 3

120o

Rubber Tube

Nylon
Sleeve

Cable Ties

Figure 4 Cross-sectional view of the trunk.

Showing three cables that are mutually separated by
120 . Cable ties run through the nylon sleeve to form
small loops through which the cables can be passed
freely. See Figure 1 for a picture of the actual trunk.

The trunk presented in this chapter is not only easy to build and control but also

provides good strength and flexibility for the continuum robot. This chapter presents a

novel approach for building a continuum robot that replaces the dryer hose, the

problematic central member of Air Octor, with a latex rubber tube that has more strength

and flexibility [10]. Like many previous designs [5], the central member is surrounded by

three cables separated by 120 degree intervals [5]. Figure 4 shows a cross-sectional view

of the trunk explaining the arrangement of cables around the trunk. The lengths of these

three cables define the shape of the continuum robot [1]. The central member is made up

of a latex rubber tube covered with an expandable nylon sleeve. A rubber tube is a better

choice for building a continuum robot than a dryer hose (used in Air-OCTOR) because of

its flexibility, elasticity and strength. A rubber tube can handle pressures up to 483 kPa

whereas a dryer hose can be pressurized only up to 13.8 kPa [10].

11

 Table 1 Various combinations of tubes and sleeves

Tube
No.

Outer
Diameter

in cm

Thickness
in mm

Nylon Sleeve
Size in

cm

Type of cable
guides used

Tube 1

Tube 2

Tube 3

2.5

2.8

2.1

3

5

5

1.6

1.6

0.9

Dual Layer
Nylon Sleeve

Cable ties

Dual Layer
Nylon Sleeve

In addition, this approach uses only one pressurized member per section which

makes it a simpler mechanical design than that of OctArm. The length of this member

can be changed by varying the pressure in the member. When pressurized, a rubber tube

expands in all directions like a balloon. To restrict the expansion longitudinally without

losing its cylindrical shape, it is covered tightly with an expandable nylon sleeve. Various

sizes of rubber tubes and matching sizes of nylon sleeves that were experimentally

determined are shown in Table 1. The rubber tube is sealed on both sides with a metal

tube fitting. One end is permanently blocked. A small air inlet is placed on the other end.

Hose clamps are used to hold the sleeve, tube and fittings in place. The physical

dimensions of the tube and sleeve affect the amount of expansion at a given pressure.

The results after experimental verification with different combinations of tubes

and sleeves and their expansions at various pressures are tabulated as shown in Table 2.

Tube 2 is the best combination among those verified, demonstrating an extension of 34%

at 483 kPa.

12

 Table 2 Expansion at various pressures

Pressure
in kPa

Tube 1
Length in

cm

Tube 2
Length in

cm

Tube 3
Length in

cm

0 58.5 64 54

138 61 68 55

207 64 72 56

276 66 74 58.5

345 68 78 60

414 71 81 61

483 72.5 85.5 62

Because the central member of Air-Octor can withstand only a very low pressure

(13.8 kPa) the cable guides used offer a considerable amount of friction compared to the

pressure, resulting in binding of cables. In addition to increasing the pressure in this new

prototype, two methods were examined for the use of lower-friction cable guides to avoid

binding. In the first method cable ties are used as cable guides. Cable ties hold the cables

to the sleeve that covers the trunk and run through the sleeve and form small loops

through which the cables can be passed freely. A hose clamp is used to hold the cables on

the terminating side.

13

In the second method, two layers of nylon sleeve are used as cable guides. The

inner layer covers the rubber tube tightly and the outer layer holds the cables running

through it. A nylon sleeve offers low friction comparable to cable ties but the outer layer

of the sleeve restricts the expansion of rubber tube. Therefore we choose the first method

as the cable guiding mechanism. Several experiments were conducted using various tubes

and types of cable guides. Their expansions at different pressures are shown in Tables 1

and 2.

2.3 Modeling and Verification of a Continuum Robot

Though the circular arc assumption made by the model proposed in section 2.2

and shared by much of the continuum kinematics literature [1-3, 11, 12] has been widely

used, this underlying assumption has not been experimentally verified. This section of the

chapter describes a novel procedure to experimentally verify this assumption for a

continuum robot for two different cases (with and without gravity).

2.3.1 Modeling

An analysis of the dynamics of a planar flexible beam undisturbed by external

forces and subject to a torque applied to the end of the beam shows that the beam forms a

curve of constant curvature, which is an arc of a circle [13]. This constant-curvature

assumption provides a basis for much of the existing kinematic analysis of continuum

robots [1-3, 11, 12].

14

Z

Arc of trunk
extending along

Z axis
Y Circle center

at

 1 r



c

r cos
 r sin 
 0  

X

Figure 5 Simplified model of kinematics.

This can be derived through purely geometrical
means. Arc of the trunk extends along the +z axis
and bends along the direction  in the xy plane.

The following paragraphs present a novel, concise derivation of the kinematic

results of this assumption, followed by an experimental examination of the validity of this

assumption. To determine the kinematics of an arc, note that the motion due to the trunk

is a classical rigid motion: a revolute joint placed at the center c of the arc defining the

trunk, rather than at the origin. The kinematics of this class of robots can therefore be

derived through purely geometrical means, without the need of D-H tables and

accompanying transformations [1, 2], screw theory [3], or extensive and error-prone

computation [11].

Examining Figure 5, c for a trunk which extends along the +z axis and bends

1along the direction  in the xy plane is c  r cos r sin 0T where r    is the

radius of the circle.

15

As shown in the figure, the axis  about which points on the circle rotate is

perpendicular to the circle, computed as R z ,90c then normalizing to yield

   sin cos 0T
. From [14], a rotation R , about the axis c can be computed

by first translating to the origin, performing the rotation, then translating back. Therefore,

 I c  R 0  I c 
1 R I R  c ,  ,  ,the desired A is A    .  T   T   T 

0 1  0 1 0 1  0T 1 

Substituting and recalling   r1 and noting that the necessary rotation  about the

circle is determined by the ratio of the arc length s of the trunk to the circle’s radius r, so

that   s r , the resulting homogenous transformation matrix is

 cos2  cos s 1 1 sin cos cos s    1

sin cos cos s 1 cos2  1 cos s  cos s

A  
 cos sin  s sin sin  s


0 0
 (1)

cos sin  s  1 cos 1 cos s


sin sin s  1 sin 1 cos s  .
cos s  1 sin  s 


0 1 

Further transformations given in [10] allow computation of the amount of

curvature  based on the lengths of cables l1 , l2 and l3 and radius of the trunk d

16

.

.

1 r




Trunk bending in
an arc of constant

curvature

Figure 6 Experimental procedure without the
effect of gravity to verify the validity of
the proposed design.

The large red circle indicates the arc of constant
curvature in which trunk is bending. The inverse
of the distance between the center and a point on
the arc gives the curvature of the trunk.

2 2 2l l l l l l l l l     1 2 3 1 2 2 3 1 3  2 . (2)
(l l)d l  1 2 3

2.3.2 Model Verification

Under ideal conditions the curvature produced by the trunk should match with the

curvature calculated using the formula. An experiment was done where the curvatures of

the trunk were measured for various combinations of cable lengths. A paper with circles

of different radii drawn on it is used to measure the curvature of the trunk.

17

 Table 3 Experimental Verification

l1 l2 l3  calculated  measured Error
in cm in cm in cm in %

53 53 53 - - -

45.5 53 53 .0780 .0787 0.89

53 46.5 53 .0671 .0656 2.2

53 53 48.5 .0459 .0463 0.87

For a given combination of l1 , l2 and l3 , the trunk bends producing a uniform

curvature  1/ r . The shape of the trunk is then matched against the reference circles

drawn on the paper as shown in Figure 6. The curvature of the matching circle is then

measured as the curvature of the trunk.

The entire experiment is performed by resting the trunk on the ground, therefore

eliminating the effect of gravity on the trunk; the frictional effects of the paper are

negligible. Table 3 shows  and  for different combinations of the trunk calculated measured

lengths l1 , l2 and l3 . As shown in the table, the percentage of error is very small.

The same experiment was repeated considering the effect of gravity. This time the

trunk fails to bend with a uniform curvature as shown on Figure 7. The effect of gravity

on the trunk is considerable, and the constant curvature assumption does not apply under

gravity, because of the low stiffness of the trunk compared to the load carried.

18

Heavy end cap
causing sag and

loading

Torsion

Gravity

Figure 7 Experimental verification with the effect
of gravity to verify the validity of the
proposed design.

The trunk failed to bend in a constant curvature
arc because of the low stiffness compared to the
heavy end cap causes sag and torsion.

The weight of the metal tube fitting at the end of the trunk causes the trunk to

deform from its original shape. While this metal fitting can be replaced with a plastic

fitting, or the tube can be sealed in some other way without adding additional weight to

the trunk, when the trunk is used for practical applications, we expect it to carry a tool at

the end of its trunk, which would add weight to the trunk.

Though models to estimate the effect of gravity on continuum robots exist [13,

15], their complexity is too high to run them in real-time which makes them unsuitable to

implement. This motivates the need for development of real-time dynamics for

continuum trunks [16].

19

Graphical
View

Host PC

Joystick

UDP PC/104 D/A H-Bridge
Z12A8

Air
Compressor

Continuum
Trunk Motors Encoders 104-Quad-8

Figure 8 Unique two level electrical design to control a continuum robot.

2.4 Electrical Design

This section of the chapter presents the design of an electrical system to control a

continuum robot. Figure 8 provides an overview of the electrical setup. A host PC

calculates the lengths l1 , l2 and l3 needed to obtain the required shape of a trunk. It then

passes these parameters to the PC/104 [8] module, a compact form-factor single board

computer suitable for executing real-time applications and supported by a wide variety of

off-the-shelf I/O boards.

The PC/104 module acts as a driver that actuates the motors to adjust the lengths

of cables. The striking feature of this design is the two-level control using a PC and

PC/104, which accelerates the development and prototyping process. A Simulink [17]

model is developed on the host PC and converted to executable code using the Real Time

Workshop [18].

20

Pack
UDP
Send
Binary

u fcn y
Send

Embedded

Axes

Buttons

.

joyinput

Joystick Input Pack
MATLAB Function

Figure 9 Simulink block diagram that sends joystick input from PC to
PC/104 via UDP protocol.

This executable code is then downloaded from the host PC to the PC/104 running

the xPC Target real-time kernel [9]. The PC/104 handles the I/O operations through its

add-on boards and acts as a driver for the end effectors. The wide variety of commercial,

off-the-shelf I/O add-on boards for PC/104 systems coupled with the availability of

drivers for many of these included in Matlab’s xPC Target provides a cost-effective

rapid-prototyping environment. In addition, this two-level design utilizes the greater

computational ability of a host PC by tasking it with performing the major computational

work required to calculate the kinematics of a continuum robot and providing a real-time

graphical representation of a continuum robot [19].

This graphical model provides essential feedback to the users while they operate

the robot. The overview of the electrical design architecture is shown in the block

diagram. The process is initiated when the user uses the joystick connected to PC to

control the continuum trunk. The joystick used is standard joystick that is widely

available in the market which features three axes, 12 buttons and one throttle. The

joystick is connected to PC via a USB port.

21

The Virtual Reality Toolbox [20] for Simulink includes a built-in module that

recognizes the joystick without the need of any external drivers as shown in Figure 9. The

input data received from the joystick is then assembled into packets of data to be

transmitted to the PC/104 via the UDP protocol. Figure 9 shows the Simulink block

diagram to perform this task. Next, the PC/104 receives the joystick data sent by the PC

via the UDP protocol and unpacks it into positions for all joystick axes and buttons state

as shown in Figure 10. The required signals are then routed to the digital-to-analog

converter, a Diamond Ruby-mm-1612 [21] expansion board for the PC/104 capable of

providing 16 analog outputs with 12-bit resolution and supported by drivers included in

Matlab’s xPC target toolbox.

The digital-to-analog converter converts the joystick axis position to an analog

voltage which supplies input to an Advanced Micro Controls Z12A8 dual H-bridge [22].

Three motors powered by the H-bridges actuate the trunk by determining the lengths of

three equally-spaced cables which travel along a trunk composed of a pressurized latex

rubber tube covered with a nylon sleeve and sealed on one end. By varying the cable

lengths 1 3 different configurations of the continuum robot can be obtained. l 

22

Q8

1
2

PC-104 Quad 8 3
4Acces I/O 5

Incremental Encoder 6
7
8 Send

UDP
Send
Binary

Pack

Pack

Unpack
double (4)

uint8(12)

uint8 (44)

double

UDP
Receive
Binary

Embedded Ruby -MM -1612 Unpack Receive MATLAB Function

Terminator

Figure 10 Simulink block diagrams representing the send and receive modules on the
PC/104.

The receive module receives the motor actuation signals from the PC via UDP and the
send module sends the encoder values to the PC in the same way.

m1
j1 m2

fcn
m3

j2 m4

1
Ruby -MM -1612

2
Diamond

3 Analog Output
4

The motors can be mounted with encoders that continuously measure the rotation

of the shaft. With the diameter of the shaft known, the encoder reading can be used to

find the lengths of the three cables 1 3 . These measured lengths can then be compared l 

against the desired lengths to provide closed-loop control over cable length. An Accessio

104-quad-8[23], a quadrature encoder expansion board for the PC/104 reads the encoder

values.

Because Matlab does not provide built-in support for this board, a custom driver

was developed in the C language for the board to work with Matlab’s xPC target toolbox

[9]. The captured encoder values are then packed and transmitted to the PC via the UDP

protocol as shown in the simulink block diagram executing this diagrammed in Figure 10.

23

The host PC then receives the encoder values and can compare the actual values

against the required values and make corrections to the lengths 1 3 to achieve the desiredl 

configuration of the continuum robot. A simulation of the actual and required

configurations of the robot can also be seen on the PC during this process. A 3D

graphical view of the trunk can be drawn using the actual values from user and encoder

feedback which can enable the user to understand the operation of continuum robot much

easier during real-time operation. The fourth chapter provides an in-depth discussion of

the creation of a 3D view of the robot.

2.5 Summary

This chapter examined two existing mechanical designs and developed a new

design combining the simplicity of construction of AirOctor with the agility of the

OctArm. This low cost design and can be easily reproduced which makes it suitable as a

general purpose continuum robot that can be used a standard prototype for verification of

various continuum robotic models. Unique experimental examination of the circular arc

assumption made by the constant-curvature model reveals that it does not hold in cases

where loading due to gravity overcomes the trunk stiffness.

This verification procedure is the first approach to verify the constant curvature

assumption shared by most of the continuum robots. Finally, this chapter presents a

unique two-level electrical design with which the continuum trunk can be operated using

a computer via Local Area Network (LAN).

24

CHAPTER III

INVERSE KINEMATICS

3.1 Introduction

Figure 11 Implementation of the inverse kinematics algorithm

The inverse kinematics algorithms described in section 3.2 move both a
simulated and an actual trunk from a vertical starting posture in (a) to a bent
posture in (b) while maintaining tip position, moving only the section 2 end-
point. This maneuver could be used to avoid obstacles in the trunk path while
maintaining a desired tip position.

25

Kinematic redundancy, where more degrees of freedom exist in the system than

are strictly required for task execution, offers the benefit of improved performance in the

form of singularity avoidance, obstacle avoidance as illustrated in Figure 11, fault

tolerance, joint torque optimization, and impact minimization via effective use of the self-

motion inherent in the resulting systems. Kinematic redundancy in manipulators has been

extensively studied, and surveys of many of the fundamental results for conventional

(rigid-link) redundant manipulators are presented in [24, 25]. However, for the recently

emerging class of continuum manipulators [5], progress in developing practical

kinematics has been slower. Continuum robots, resembling biological trunks and

tentacles, feature continuous backbones, for which conventional kinematics algorithms

do not apply. While numerous hardware realizations of continuum manipulators have

appeared [5], only recently have accurate and practical kinematic models for continuum

manipulators emerged [1, 4].

Many existing continuum robot designs are kinematically redundant. Indeed, the

inclusion of many extra degrees of freedom (hyper-redundancy) has been a key

motivation for continuum robots, enabling them to maneuver in congested environments

[26] and allowing them to form whole arm grasps [27] of a wide range of objects. While

there have been attempts to adapt the conventional (rigid link) approaches to redundancy

resolution by appropriately selecting the shape of the robot subject to task constraints [2],

their practical effectiveness have been hampered by the complexity of the analysis,

particularly in the resulting Jacobians.

26

O

PD

x



z

y

C

Figure 12 A single section of a continuum trunk

A single section of a continuum trunk modeled as an arc of a circle in
3D space with its center in xy plane. One of the end-points O is at the
origin and other end-point P is located anywhere in 3D space.

This chapter presents a geometric approach to determining the inverse kinematics

for single and multi-section continuum robots. The algorithm given in section 3.2

determines a closed-form solution to the inverse kinematics problem for a single

continuum section trunk. Section 3.3 discusses extending the results from section 3.2 to

an n-section continuum manipulator, assuming knowledge of the end-point locations for

each section of the trunk. Section 3.4 presents a procedure to compute these per-section

end-points given a single end-point for the entire trunk. Next, section 3.5 presents results

obtained by implementing these inverse kinematics, in simulation and on a physical

device (OctArm VI), as shown in Figure 11. Section 3.6 concludes with a discussion of

the advantages and disadvantages of this approach and potential applications.

27

θ

Figure 13 Manipulator variables s,  , and 

Where  gives the direction of bending measured
in the xy plane,  defines the curvature as the
inverse of the trunk radius and s gives the length
of the trunk.

3.2 Single-Section Kinematics

For our analysis we model a single section of a continuum manipulator as an arc

of a circle with one end-point O fixed to the origin of a right-handed Euclidean space, the

other end-point P located anywhere in the space, and the center of the arc C in the xy

plane (see Figure 12). We parameterize a section of a continuum manipulator by its arc

length s , its curvature  , and its orientation  as shown in Figure 13. From these

parameters the tip location of a single continuum section is calculated [28].

These assumptions reflect the physical structure of many continuum manipulators

when subjected to a constant moment applied to the end of the section as derived in [13]

and applied in [1-4] including Air-Octor [6] and the OctArm [7] series of manipulators.

28

In particular, the ability of these trunks to not only move to a given curvature 

and direction of curvature  but also to extend to a trunk length s enables them to attain

the desired tip position based on the  ,  , and s determined by the inverse kinematics.

3.2.1 Inverse kinematics

The trunk parameters s,  , and  for a single continuum section can be

determined given the end-point location P in a closed-form expression. The direction of

bending  can be trivially determined by dividing the x and y coordinates, giving

y    tan 1
 . (3)

x 

The curvature can be determined by finding the distance from the origin to the

center of the arc formed by the continuum section. Rotating P about the z axis by 

produces a point P ' such that x '  x2  y2 , y '  0 , and z '  z (see Figure 14), yielding

an arc of the same curvature which lies entirely in the xz plane. Our model assumes the

center of the arc to be in the xy plane; after rotation, this center must lie along the x axis.

Therefore, the radius r of the center of this arc C lies at r,0 in the xz plane. Noting that

the end-point and the origin of the arc must be equidistant from C and recalling that the

origin of the arc coincides with the origin of the coordinate system gives

2 2x  r 2  z  r .

29

. …

z

p
D

  

C

r

1r 
x

x r 

xO

Figure 14 A single section of continuum trunk that lies entirely in xz
 plane

Which is obtained by rotating end-point P about the z axis by  (see
  Figure 12). Observing C P x and applying law of cosines,

1 1cos    x  r r . Therefore, cos    x      .

 1 2 2Solving for r and noting that  r ,   2x  z  x  z . Substituting for x

and z ,

2 x2  y2

  . (4)
2 2 2x  y  z

The angle  as shown in Figure 13 can be calculated from the curvature and the

Cartesian coordinates of P. Looking at the planar case of P , examining the    C P D in

1 1 1Figure 14 gives   cos   x '   when z ' 0 and

1 1 1  2  cos   x '   when z ' 0 . Noting that the rotation of P does not affect

30

the arc-length, x '  x2  y2 as before.

Simplifying gives

 1 2 2cos 1 x  y  , z  0   (5)
1 2 22  cos 1 x  y  , z  0.



Knowing that length of arc is the product of the angle subtended by the arc and

the radius of the arc, the length of the trunk section s r  , where r  1  (see Figure

13).

3.2.2 Special cases (Singularities)

Endpoint coordinates along the z axis present singularities in the inverse

kinematics calculations and can be grouped into three different cases: z  0 , z  0 , and

z  0 . Coordinates along the z axis with z  0 produce (correct) curvature values of

zero; this creates a divide-by-zero condition in the arc-length calculation. When x  0

and y  0 the orientation calculation also produces the divide-by-zero condition.

This case is easily handled by assigning  to any arbitrary value and determining

the arc length as s z . In the second case, when P  0 0 0T
, multiple solutions exist  

as an arc forming a complete circle with any radius at any orientation satisfies this

condition. In this case, choose   2 and choose any value for  and  . The last case

occurs when P lies along the z axis where z  0 .

31

This case poses an impossibility given the physical constraints of a continuum

manipulator section, requiring a solution of   0 and s z where  is arbitrary. 

3.3 Multi-Section Kinematics

The inverse kinematics derived in the previous section can be iteratively applied

to multiple, serially-linked continuum sections to model an n-section continuum

manipulator.

3.3.1 Inverse Kinematics Algorithm

Given a list of end-points (one for each section), the values of s,  , and  can be

computed for each section by determining the values of s,  , and  for the base section,

subtracting the translation due to the base section from the remaining endpoints, applying

the opposite rotation due to the base section to the remaining endpoints, and then

repeating this process with the remaining sections. Recalling from [28] the rotation due to

a single trunk section occurs about the axis    sin cos 0T by the angle  , the

adjusted end-point coordinates can be expressed as pnext  R ,  pnext  pcurrent  where

p is the end-point of the section whose s,  , and  values are currently beingcurrent

computed and pnext is the end-point of a remaining, distal section.

32

3.3.2 Incorporating Dead-Length Sections

Many actual continuum manipulator devices contain lengths of space between

each section that do not bend. There are three ways to represent these ‘dead’ lengths as

part of each section. The non-bending length of each section can be included at either end

of the section or split between the two.

Taking the approach of including the non-bending length at the end of each

section, incorporating these ‘dead’ lengths can be easily handled by adding an

appropriate translation at the beginning of each loop in the inverse algorithm. Following

this method, simply subtract the vector 0 0 lT where l gives the dead length for the

current section from pnew computed for the following sections,

p  R  p  p  0 0 l T .next  , next current current

3.4 End-Point Locations of Each Section for a Multi-Section Continuum Robot

An essential ingredient to applying the inverse kinematics in the previous section

is the x, y, and z coordinate of the endpoints of each section of the trunk in addition to the

endpoint of the trunk itself. This section presents an algorithm to assist in choosing these

intermediate coordinates while also exposing structure of the solution space of the inverse

kinematics problem, providing the possibility of using this solution space for choosing

configurations of the trunk which avoid obstacles, minimize trunk curvature, or maximize

some other desirable trunk characteristic.

33

y

p2l2
p1 l3

l1 r1
p3

r2

O x

z

Figure 15 Rigid-link configuration of a robot

Figure showing the rigid-link configuration of a robot with
link lengths 1 3 . The tip of the robot lies atl  p3 .

The well-known difficulty of deriving the inverse kinematics for an arbitrary

rigid-link robot stems from the complex nature of the non-linear equations involved.

These complex non-linear equations can be resolved into simple inequalities for any

rigid-link robot composed of spherical joints by following a geometric approach as

detailed in [29, 30].

Observing that each section of a continuum robot consists of the equivalent of a

spherical joint, this paper applies the solution procedure in [29, 30] to a three-section

continuum robot by modeling it as a three-link rigid-link robot composed of spherical

joints. The endpoints of each of the rigid links produced by this algorithm then provide

the necessary endpoints for the multi-section inverse kinematics algorithm described in

the previous section which fits a trunk to these endpoints.

34

3.4.1 Overview

To formally stating the problem solved in this section: given the endpoint p3 and

the link lengths l  of a three-link rigid-link robot composed of spherical joints, find the 1 3

endpoints p1 and p2 of the first and second links of the rigid-link robot as shown in

Figure 15. The procedure begins by forming two triangles from Op p and Op p1 2 2 3

based on this information, where r1 represents unknown length.

Inequalities on r1 given in (6) define one dimension of the resulting solution

space. Choosing any value which satisfies these constraints completes the first step. Next,

knowing the lengths r1 , r2 , and l3 which define one triangle and the coordinate of two of

its endpoints (O and p3), the second step gives the second dimension of the solution


space as an arbitrary rotation of p2 about Op3 and computes a specific p2 given that

rotation angle. In the final step, p1 is determined as a rotation of the other triangle about


Op2 , completing the solution.

35

3.4.2 Derivation

Given a desired end-point p3 and lengths l1 , l2 , and l3 shown in Figure 15 which

specify fixed lengths of the straight lines joining the start-point and endpoint of sections

one, two, and three respectively, this algorithm computes per-section endpoints p1 and

p2 . Referring to Figure 15, length r2  p3 while triangle inequality theorems for

Op p and Op p r1 bound length r1 as2 3 1 2

r l r    2 3 1 r2 l3
 (6)

l l r    1 2 1 l1 l2

Step 1: Choose any r1 which satisfies the inequalities above. A complete solution space

that includes all possible configurations of the robot can be built by repeating the rest of

the derivation using all valid values of r1 . The equality sign observed in the inequalities

(6) implies a “flat” triangle consisting of a single line and corresponds to a singular

configuration of robot, as discussed in section 3.5 and illustrated in Figure 18 and Figure

19.

36

…………..
…

Y

2r

2l

1l

3l

1r
1p 2p

O

2p

2r

3p

1d

1h

1r

1n
3l

1

Z

p3

X

Figure 16 Rigid-link robot after the
transformation of coordinate frames.

The rigid link robot after a transformation of
coordinate frames from OXYZ to OX Y Z   . This
aligns Op2 along the +z axis. Links in the

transformed coordinate frame are indicated by
dashed lines. Point p2 is placed in the yz plane

and p2 lies on the z axis; therefore, Op p is2 3

present in the yz plane.

Step 2: With p3 , r1 , r2 , and l fixed, triangle Op p constrains to lie on a circle 3 2 3 p2


formed by rotating p2 about Op3 . Choose any dihedral angle 1 which gives the rotation

of Op p about Op and therefore determines the location of p2 . To calculate p2 from 2 3 3


1 , first rotate the coordinate frame OXYZ to OX Y Z Op3   in such a way that aligns

with the positive z axis. In this configuration, apply 1 as a rotation about the +z axis.

Finally, perform the inverse rotations to return to OXYZ with p2 now determined.

37

This initial transformation to OX Y Z   can be achieved by performing two

consecutive rotations first about the y axis then about the z axis by angles 1 and 1

respectively, which are calculated in (9)-(12). Due to this rotation, p3 now lies on the +z

axis, at a distance of r2 from O as shown in Figure 16, making its location 0 0 r2 
T

.

Considering Op p , point p2 can be any point on the circle around the z axis centered2 3

at n1
 with radius equal to height h1 . Since p2 can be any point around the z axis, begin

1 2 2 2by placing it in the yz plane. Applying the law of cosines, 1  cos r2  r1  l3  2r r1 2  .

The location of p2 is therefore 0 h d T where d  r cos and h  r sin  .1 1 1 1 1 1 1 1

After rotating p2 about the z axis by 1 , the following equation rotates the coordinate

frame back to OXYZ to obtain the coordinates of p2 :

p  R R R p (7) 2 z ,1 y ,1 z ,1 2

where R , represents a rotation about axis  by angle  . Substituting the

individual transformation matrices in equation (7) yields

38

(a)

(b) (c)

P3

P1

P2

P1

P2

P3

Figure 17 Results of the algorithms in section 3.3.1 and 3.4.2.

Graphic (a) illustrates the result of 3.4.2 exhibiting the orientation of
triangles Op 2 3p and Op 1 2 p in 3-D space. Op 2 3p and Op 1 2 p lie in

two different planes in space inclined at an angle to each other. The
angles of orientation of the triangular planes are termed dihedral
angles. Items (b) and (c) illustrate a continuum trunk fit to the skeleton
in (a) from differing perspectives.

c c 1
c  

1 1 s1
s 1 s1

c1
c   

 1
c

1
s  s c   1 1 1 

 p 2  c c1 1
s 1  s 

1
c 1 s1

c 1
s

1 c c 1 1 s 1
s 

1  p2 (8)
  s c   

1 1
s1

s 1 c1 

where c  cos and s  sin .

The rotation angles, taken from a standard axis/angle rotation, are

 sin  k1y k 2 2
1 1x  k1y (9)

 cos1  k1x k 2
1x  k 2

1y (10)

39

sin 1  k1
2
x  k1

2
y (11)

cos   k (12) 1 1z

T 
where k1  k1x k1y k1z  is a unit vector along Op3 .

Step 3: Choose dihedral angle  which orients Op p in 3-D space by following a2 1 2


similar process. After rotation such that Op2 is aligned with +z axis, applying the law of

1 2 2 2cosines produces  2  cos (r1  l2  l1) 2r l1 2  . The location of p1 is therefore

0 h d T where d  l cos and h  l sin  . The position p  Rp where R is2 2 2 1 2 2 1 2 1 1


given in (8) and k1 in (9)-(12) is replaced by k2 , a unit vector along Op2 .

3.5 Results

The OctArm continuum trunk [7] consists of a pneumatically-actuated, three-

section, intrinsically-actuated trunk. Pressure regulation values control length and

bending of each section while string encoders measure the resulting curvature for

feedback to a PC-104-based control system. A remote PC accepts user input via joystick

and relays desired trunk postures to the OctArm system; the remote PC also displays a

real-time, 3D model of the expected trunk shape.

40

 …
… … … . .

One difficulty faced when evaluating the trunk in the field [7] was the inability to

command the trunk to avoid obstacles while maintaining tip position for insertion or

inspection tasks. Although traditional Jacobian null-space techniques could be used, these

lack a user-centric method of specifying how the trunk should be shaped to avoid these

obstacles.

To remedy this, the single-section kinematics described in this section were

implemented by adding an additional control mode to the user interface routines

described in [19].

P3 P3

P2

P2P1

(b) P1

(a)

Figure 18 Simulation results illustrating the possible
singular configurations.

In (a), algorithms in both section 3.3.1 and in 3.4.2 result in
singular configuration where the rigid-link robot as well as
the continuum trunk are stretched completely in order to
reach the farthest tip location. In (b), only the rigid-link robot
assumes a singular configuration with all the links extended
in a straight line.

41

In this mode, the operator can select trunk sections to move using the inverse

kinematic algorithms given in section 3.2 and then control resulting trunk movement via

the joystick. A maneuver designed to illustrate potential obstacle avoidance techniques

produced using these algorithms is pictured in Figure 11. Beginning with a straight trunk

shown in Figure 11(a), the user then selected the second to last section of the trunk and

moved it to the left via the joystick, while the algorithm kept all other points stationary.

Thus shaped, the tip of the trunk could now be moved around an obstacle located at the

bend in the second section. To assess the suitability of the multi-section inverse

kinematics algorithms presented for operation in real time, timing results for the multi-

section algorithm obtained on a 3.0 GHz Pentium 4 show that the algorithm requires 0.3

ms to execute for a 3 section continuum robot, making it eminently suitable for real-time

application. However, this algorithm has not yet been evaluated on the actual robot.

In addition, the algorithms and derivations in section 3.3.1 and 3.4.2 were

implemented in Matlab and visualized in a 3D graphics library. Figure 17 shows a three

section continuum manipulator starting at origin and reaching to 1 1 11T with rigid-

link lengths of l  5 , l  4 , and l  3 and dihedral angles   2 / 3 and   0 . The1 2 3 1 2

output of the procedure given in section 3.4.2 is shown in Figure 17(a) where p1 , p2 ,

and are indicated as small red spheres. This shows triangles Op p and Op p inp3 2 3 1 2

3D space with orientations 2 3 and 0 respectively. Figure 17(b) shows the final output 

from algorithm 3.3.1 where a continuum manipulator can be seen along the skeleton

obtained from applying derivation 3.4.2.

42

P2 P3 P2 P3

P1 P1

(a)

(b)

Figure 19 Results of singular configuration

Item (a) shows a singular configuration of the rigid-link robot
produced by a “flat” triangle configuration where r l l  . Image 1 1 2

(b) shows the continuum trunk developed from the knowledge of
end-points given in (a). Red, green, and blue coordinate axis
represent x, y, and z axis respectively. Red, green, and blue sections
of trunk represent sections 1, 2, and 3 respectively.

Singular configurations explored in Figure 19 illustrate a case with a “flat”

triangle (when 1   2); as a result Op p is no longer present. Two different singularr l l1 1 2

configurations are illustrated in Figure 18. Figure 18(a) is a case where both 3.3.1 and

3.4.2 achieve a singular configuration when robot is reaching the farthest point it can go

to by stretching completely. Figure 18(b) is a case where only 3.4.2 produces a singular

configuration with all rigid links in one line.

43

3.6 Potential Applications

The unique nature of a hyper-redundant continuum trunk presents both daunting

challenges and fascinating opportunities for grasping and manipulation of a wide range of

objects. Given a desired tip position, algorithms presented in this paper provide a simple,

closed-form solution to move a single trunk section (which possesses three degrees of

freedom) to the given endpoint. The ability to choose the endpoint for each section of a

multi-section trunk allows fine control of trunk shape for obstacle avoidance, grasping,

and related tasks as illustrated in Figure 11.

Additional algorithms allow specification of a single end-point for the entire trunk

and provide insight into the solution space of the system. These inverse kinematics tools

provide a foundation for additional exploration into methods to make use of the

marvelous dexterity present in continuum manipulators.

3.7 Summary

This chapter presents a solution for a multi-section inverse kinematics problem

when only the final end-point of the continuum trunk is known. The procedure starts by

finding the end-points of section 1 and section 2; then, the inverse kinematics for section

1 is solved by applying the single-section inverse kinematics algorithm. Forward

kinematics is used to find the translations and rotations to the end of section 1. Then the

inverse of these transformations are applied on section 2 to move it to origin and now

inverse kinematics for section 2 can be solved similar to section 1.

44

The whole procedure is repeated for section 3. Therefore a complete inverse

kinematics solution for a multi-section continuum trunk is obtained. Moreover, these

algorithms provide insight into the solution space of the system rather than giving a

single solution. The ability to choose the end-point for each section of a multi-section

trunk allows fine control of trunk shape for obstacle avoidance, grasping, and related

tasks. These inverse kinematics tools provide a foundation for additional exploration into

methods to make use of the marvelous dexterity present in continuum manipulators.

45

CHAPTER IV

VISUALIZATION OF CONTINUUM ROBOTS

4.1 Introduction

The rapid advancements in the field of computer graphics over the past decade

enable roboticists to visualize, manipulate, test, and analyze robots. For example, a

joystick can be used to manipulate the virtual model of the robot on a PC, enabling a

researcher to easily evaluate, estimate and compare the functionality of the robot. After

such a validation the model can be modified to rectify errors or include additional

functionality. Thus a virtual model is more intuitive, feasible and cost-effective to

validate than a physical robot.

Moreover, a 3D model is not only used for evaluation but also for real-time

control of a physical robot. Following the methods outlined in the “Electrical Design”

section of Chapter 2, a physical robot can be controlled from a remote PC via a local area

network connection. Using concepts presented in this chapter which detail creation of a

real-time 3D model of a continuum robot, on the monitor of such a system user will see

two different models of the robot. One will be a simulation of the desired shape of the

robot that is generated based on input from the user. This input will also be sent to the

physical robot via the local area network, whose encoders will report actual robot shape

to the PC, which is then reflected by a 3D model of the actual shape of the physical robot.

46

The user can now compare the ideal model and the real model side by side. Thus

the 3D visualization of the robot enables the researchers not only to evaluate a virtual

model but also to control a physical robot remotely and compare the performance in a

real-world situation. While many techniques for visualization of traditional rigid-link

robots exist, techniques to visualize and manipulate continuum robots using 3D graphics

based on non-uniform rational B-splines (NURBS) have only recently been developed

[31].

Non-uniform rational B-splines (NURBS) are a very powerful technique for

computer-aided design (CAD), manufacturing (CAM), and engineering (CAE). Not only

standard and mathematical shapes like conic sections, but also free-form shapes can be

reproduced using NURBS. They are also efficient in terms of memory usage and

calculation speed. A NURBS curve is defined by three parameters: control points that

define the shape of the curve; a knot vector that determines where and how control points

affect the NURBS curve, and the order of a NURBS curve that specifies the number of

nearby control points that influence any given point on the curve. Translations and

rotations can be performed on a NURBS curve by simply applying them to the curve’s

control points. Moreover, NURBS curves and surfaces are supported by various 3D

Graphic Application Programming Interfaces (APIs) like OpenGL, DirectX, and high

level APIs like OpenInventor.

This chapter describes the programming techniques used in developing a 3D

visualization interface for AirOctor and OctArm. The basic mathematics and the

algorithm to draw a single section continuum trunk using NURBS is acquired from [31].

47

This work extends this technique to accurately represent and animate multi-

section AirOctor and OctArm continuum robots. In addition, it provides a convenient

MATLAB interface enabling easy control of the model, in contrast to [31] C++ interface.

4.2 Background

[31] used Coin3D implementation of OpenInventor platform for NURBS

visualization. The OpenInventor standard specifies a set of C++ libraries which provides

convenient, high-level interface in which to create and visual 3D graphics entities, in

contrast with the lower-level complexity of OpenGL. MATLAB’s language and

toolboxes provide an excellent tool for determining the control points for the NURBS

trunk, while C++’s limitations make performing the necessary calculations difficult and

error-prone to develop. Therefore, to obtain the maximum benefit from Matlab as well as

OpenInventor, a Bridge library which interfaces the Coin3D implementation of

OpenInventor to MATLAB has been developed to enable users to build code in Matlab to

draw a NURBS trunk.

The graphics code is created in Matlab in the form of a string that contains the

complete description of the NURBS trunk as a scene graph [32] which is then passed to

the Bridge program. The Bridge program uses the Coin3D libraries to convert the high

level scenegraph description into desired output on the screen. Compared with C++, the

development time is significantly reduced by using MATLAB to implement an algorithm

involving scientific and matrix operations.

48

At the same time being able to visualize the possible solution in 3D makes the

process of developing an algorithm time efficient. For example, a Matlab GUI with

several sliders was developed to study the inverse kinematics of continuum robot where

the sliders can dynamically change the 3D representation of trunk. This GUI has been

very useful in analyzing multiple solutions to the inverse kinematics problem.

The features of the code include the OpenInventor Graphical User Interface (GUI)

window where the trunk can be rotated, zoomed, and can be seen in several viewing

modes which is very useful to understand the structure of the trunk in 3D. The same

statement can be used to draw an AirOctor or OctArm just by switching a number in the

input to the function. Co-ordinate axes placed at the starting of each actuator are helpful

to understand the orientation of trunk in 3D space. Complete code is divided into small

and separate functions, so it becomes very easy to upgrade the code to include new

features without completely rewriting the code. The rest of the chapter gives a detailed

overview of the functionality and the features of the code.

4.3 Code

Figure 20 shows all the MATLAB m-files and the internal functions which

comprise the complete trunk visualization code. Figure 20 also highlights different layers

of abstraction in the code such as the graphics driver, OpenGL, OpenInventor, the Matlab

Bridge, Matlab, and NURBS applications.

49

Each solid rectangular box represents one m-file and the boxes inside it are the

internal functions of the m-file. Beginning at the top of the diagram:

 demoNurbsTrunk.m is an example of a simple top-level NURBS application.

Applications like these can be easily developed to visualize various configurations of

AirOctor and OctArm robots by simple modifications of this program. Different

configurations of the robots can be produced by using simple commands without any

knowledge of the underlying code. A complete listing of this program, shown below,

illustrates all the essential operations this software package provides.

mi = mInventor;
trunk = nurbsTrunk(mi);
trunk.drawTrunk([pi/3,pi/3,pi/3],[0.2,0.2,0.2],[0,0,0],1,0,2);
trunk.setTrunk([pi/3,pi,pi/3],[0.2,0.2,0.2],[0,0,0],1,0,2);

4.3.1 Nurbs Trunk

 inst = nurbsTrunk(mInventorInst) is the main file that generates the NURBS trunk.

It consists of two subfunctions, drawTrunk and setTrunk. When this function is called it

takes an instance of the function mInventor as input and returns the equivalent of a

nurbsTrunk class instance which provides access to drawTrunk and setTrunk.

50

 drawTrunk(theta,kappa,phi,d,base,choice) is the subfunction which draws a

complete NURBS trunk. It can create either a single or multiple section trunk of either

OctArm or AirOctor. This function internally calls the getNurbsText function to generate

the text required to draw a single NURBS section. To draw a trunk, getNurbsText is

called multiple times, once for each section (for AirOctor) or three times for each section

(for OctArm, which is composed o three actuators per section). This function accepts

basic parameters that define a trunk like theta – the angle subtended by the trunk at its

center, kappa – the curvature of the trunk, phi – the angle of orientation of the trunk, d –

the radius of the trunk, base – the base rotation angle, and choice – this parameter gives

the user an option to draw either an AirOctor (choice = 1) or an OctArm (choicei = 2).

The length of the vector given for each parameter determines the number of sections of

the trunk. For example, choosing a 2-element theta, kappa, phi, and d produces a two-

section trunk.

51

Figure 20 Diagram illustrating the hierarchical structure of the code.

Each rectangle is a function written in a separate file. The rectangles inside a rectangle are
the sub-functions of the function represented by the outer rectangle.

52

 setTrunk(theta,kappa,phi,d,base,choice) is used to modify the parameters of an

existing NURBS trunk. This function is useful to visualize different configurations of the

robot without completely redrawing the entire scenegraph. The input parameters for this

function are exactly the same as that of drawTrunk.

 str = getNurbsText(theta,kappa,phi,d,act) is the function that is responsible for

taking all the transformation matrices, control points, vectors and all other mathematical

values and formatting them into the string that describes the scene graph of the NURBS

trunk. This function is used to create the string for both AirOctor and OctArm. The input

parameters for this function include the physical parameters of the trunk which were

passed to drawTrunk or setTrunk earlier. In addition to that, one more parameter ‘act’ is

included which is used to identify whether it is actuator 1, 2, or 3 in case of an OctArm. It

is a 0 in case of an AirOctor. This function returns a string ‘str’ as an output.

4.3.2 3-D rendering: mInventor, MatlabOI, Coin, and OpenInventor

 inst = mInventor provides Matlab access to OpenInventor. When called this function

will return an instance of the class it represents through which its internal functions

create, setwait, and terminate can be accessed. Matlab can access OpenInventor through

these internal functions. mInventor depends upon the matlaboi MEX-function, which

implements all the underlying OpenInventor operations through the MATLAB MEX

interface. This function does not have any input parameters.

53

 ret = create(str) is a sub function of mInventor, accepts a string as an argument

which contains the complete description of a scene. The information in this string is then

passed over to OpenInventor, then to OpenGL, and finally to the graphics driver and

down the graphics pipeline at the end of which the 3D picture is displayed on the screen.

 ret = setWait(varargin) is a sub function of mInvetor, is used to modify the objects

that are already present in an existing scene. The value of a field of an object in the scene

can be set using this function. Thus this function can change the shape, size, appearance,

orientation, and many other fields of an object in the scene resulting in a completely new

way a scene is rendered. There can be variable number of arguments for this function.

The number of arguments depends upon the type of parameter that is being set.

 ret = terminate is a sub function of mInventor, is the opposite of create. It terminates

the OpenInventor process but does not delete the mInventor instance. When called, this

routine deletes the entire scene, requiring a call to. Subsequent calls to create begin a new

scene.

 matlaboi.cpp accepts parameters from mInventor which contains all the information

necessary to draw a NURBS trunk and forwards them to osinterface for 3D rendering via

OpenInventor, passing results from OpenInventor back to mInventor.

54

 osinterface.cpp & osinterface.h act as link between matlaboi and OpenInventor. Due

to OpenInventor’s design, OpenInventor must be run in a separate thread, handled by

osinterface. These routines provide the necessary synchronization between the MATALB

thread in which matlaboi executes and the OpenInventor thread run by osinterface to

move commands from MATLAB to OpenInventor and results (such as error codes or a

success code) from OpenInventor back to MATLAB. Specifically, osinterface passes

commands from matlabio to the OpenInventor thread and those commands are rendered

into a 3D scene. This function synchronizes both matlaboi and OpenInventor. It holds the

execution of OpenInventor thread until matlaboi finishes parsing the commands. It also

holds the matlaboi thread until OpenInventor finishes rendering the scene.

 OpenInventor is a 3D toolkit that enables programmers to write programs to create

interactive 3D applications with very little programming effort. It is a collection of

objects and methods which build on OpenGL which is written in C++.

 Coin3D is a collection of C++ libraries which are compatible with OpenInventor

provided by www.coin3d.org. The Coin3D implementation provides a free, well-

maintained, multi-platform realization of the OpenInventor standard.

55

www.coin3d.org

4.3.3 Nurbs – related functions

 A = amatrix(k,phi,theta,thetactrl) is used to calculate A matrix, a homogenous

transformation matrix used to place control points for a NURBS trunk. Its derivation is

given in [31]. It is called from drawTrunk, setTrunk, and drawnurbs functions.

 vknotstring = makevknots(vknots) creates a formatted string from vknots vector,

based on the knot vector described in [31, 32]. It is called from getNurbsText function.

 axis = drawaxis(cyr,cyh,cor,coh,choice) creates a formatted string to draw a

coordinate axis at the beginning of each NURBS section.

 Pts = makepoints(P) converts CONTROL_POINTS matrix into a formatted string

that matlaboi and OpenInventor would recognize.

 [ControlPts, vknots] = drawnurbs(thetaf,kappa,phi,d) is the function where all the

computation necessary to draw the trunk takes place. It calculates the

CONTROL_POINTS matrix and VKNOT vector necessary to draw a single NURBS

section.

P0 = P0matrix(d), B = bmatrix(thetactrl), and RZ = RZphi(phi) are three functions used

by drawnurbs to compute three different matrices defined in [31].

56

4.4 Flowcharts

This section presents the flowcharts for the main functions of the code such as

drawTrunk (see Figure 21, Figure 22, Figure 23), setTrunk (see Figure 24, Figure 25),

and getNurbsText (see Figure 26, Figure 27).

57

Start

Assign
baseCubeStr

strStart
strEnd

AirOctor?

Get the string str from
getNurbsText

Str = strStart + baseCubeStr + str + strEnd
Calculate the main string

Pass the srting to
mInventor.create function

Calculate
Amatrix

Set Translation & Rotation
for the section

Y

For i = 1 to
numSections

Next i

Stop

AN

drawTrunk can be used to draw
either AirOctor or OctArm. If not
AirOctor the connection A leads

to the flowchart of OctArm.

baseCubeStr draws a cube as the
base of the trunk. This base includes

a motor that can rotate the trunk
through 360 degrees.

strStart and strEnd are the srtings
that contain OpenInventor
keywords, brackets, and

parenthesis which are used to
format the string according to the

syntax

The loop here calculates
the transformation

matrices for each section
of the trunk so that the

second section is
accurately aligned at the
end of the first section

The final version of the string
with the base, NURBS trunk, the
start and the end is put together

to pass it on to the create
function

and so on...

Figure 21 Shown above is the first part of the flowchart for the drawTrunk function.

58

…
Figure 22 Shown above is the second part of the flowchart

for the drawTrunk function.

59

 …………
…………...

Figure 23 This is the third and last part of
the flowchart for the drawTrunk
function.

60

 . …
…………...
Figure 24 Shown above is the first part of the

flowchart for the setTrunk function.

61

. .
…………...
Figure 25 Shown above is the second and last part of

the flowchart for the setTrunk function.

62

…………...
Figure 26 Shown above is the first part of the flowchart for the getNurbsText

function.

63

 ……
……………………

 Figure 27 Shown above is the second and last part of the flowchart for
getNurbsText function.

64

4.5 Code Flow

Shown above in Figure 28 is the code flow diagram for the NURBS code. The sequence

of execution of code is explained in steps below.

1. demoNurbsTrunk calls mInventor and receives an instance of mInventor. Internal

functions of mInventor can be accessed using this instance.

2. demoNurbsTrunk passes the mInventor instance to nurbsTrunk and receives an

instance of nurbsTrunk.

3. drawTrunk function which is an internal function of nurbsTrunk is now called using

the instance of nurbsTrunk function that has been received in Step 2.

4. getNurbsText function is called from inside the drawTrunk function. getNurbsText is

an internal function of nurbsTrunk and it cannot be used directly by the user.

5. drawnurbs function is called from inside the getNurbsText function.

6. function calls to P0matrix, bmatrix, and RzPhi are placed from inside the drawnurbs

function to obtain required matrices.

7. drawnurbs completes calculating the ‘Control_Points’ and the ‘vknots’ required to

draw the trunk and returns them to getNurbsText.

8. After receiving ‘Control_Points’ and the ‘vknots’ from drawnurbs, getNurbsText

calls functions drawaxis, makepoints, and makenknots to format the string necessary

to draw the trunk.

9. getNurbsText finishes formatting the string and returns it to drawTrunk.

65

…………...

demoNurbsTr
unk

mInventor

drawTrunk

setTrunk

nurbsTrunk

setWait
create

amatrix

drawnurbs

getNurbsText

drawaxismakevknots

makepoints

P0matrix

RzPhi

bmatrix

Figure 28 The above diagram illustrates the code flow sequence of the trunk
visualization code.

Each circle represents an individual function in the code. The interconnections
explain where each function is being accessed from.

 66

10. drawTrunk receives the string from getNurbsText and passes it to the create function

to display the trunk on the screen.

11. At this point, the trunk will be displayed on the screen but the required

transformations will not be present. drawTrunk calls amatrix function to calculate the

required transformations.

12. After amatrix returns the transformation matrix, drawTrunk calls setwait function to

set the missing transformations in the trunk.

13. A complete NURBS trunk will appear on the screen which is accurate and can be

moved around or rotated using the OpenInventor GUI.

14. Physical parameters of the existing trunk can be modified by calling the setTrunk

function with the new parameters as inputs.

15. setTrunk calls drawnurbs internally to calculate new ‘Control Points’ and ‘vknots’.

16. setTrunk updates the new values for ‘Control Points’ and ‘vknots’ by calling setwait.

17. Calls to amatrix provide new transformation matrices.

18. setTrunk again calls setwait to modify the transformations in the new trunk.

19. End of demoNurbsTrunk.

4.6 Summary

This chapter describes the programming techniques used in developing a 3D

visualization interface for AirOctor and OctArm. The trunk visualization code uses Non-

Uniform Rational B-Splines (NURBS) to represent continuum sections of the trunk

accurately.

67

The bridge program enables the user to completely program in Matlab, which is

more convenient than shifting between Matlab and C++. The code uses Coin3D which is

a collection of C++ libraries from www.coin3d.org that are compatible with

OpenInventor, a toolkit for graphics programming built on top of OpenGL. The chapter

clearly explains all parts of the code with flowcharts and a code flow diagram.

68

www.coin3d.org

CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis presents a significant contribution in the design, construction,

verification, inverse kinematics, and visualization of continuum robots. First, a novel

approach in the design, construction and analysis of a continuum robot was presented in

chapter two. The drawbacks of two existing designs were examined and a new

mechanical design that uses a single latex rubber tube as the central member was

proposed which provided a design that is both simple and robust. This is a low-cost

design and can be easily reproducible which makes it suitable as a general purpose

continuum robot that can be used a standard prototype. A novel verification procedure is

then applied to examine the validity of the proposed design in two different domains of

applicability and could be used to verify many other models that are constructed based on

similar assumptions. Finally, a two-level electrical control scheme was introduced which

enables rapid prototyping.

A novel solution to the inverse kinematics problem for a single-section and multi-

section continuum trunk was proposed in chapter three. Given a desired tip position,

algorithms presented in this chapter provide a simple, closed-form solution to move a

single trunk section (which possesses three degrees of freedom) to the given end-point.

69

The ability to choose the end-point for each section of a multi-section trunk

allows fine control of trunk shape for obstacle avoidance, grasping, and related tasks.

Additional algorithms allow specification of a single end-point for the entire trunk and

provide insight into the solution space of the system. The results of implementing these

algorithms in simulation were presented and possible applications discussed. These

inverse kinematics tools provide a foundation for additional exploration into methods to

make use of the marvelous dexterity present in continuum manipulators.

Finally, chapter four provides an insight into the techniques involved in

visualizing continuum robots. A series of routines and interfaces enable the end-user to

easily visualize two different versions of continuum robots, Air Octor and OctArm.

Combination of tools like MATLAB, Coin3D and OpenInventor provided an easy and

rapid development of this trunk visualization project. The Graphical User Interface (GUI)

is equipped with several controls and options which make the visualizations more clear

and intuitive. The complete functionality and the features of this visualization code were

explained in detail using block diagrams and flowcharts.

5.2 Future Work

There is a wide possibility for improvement in mechanical design, where lighter

and stronger materials can be used to increase the overall strength, accuracy and

flexibility of the trunk can be improved. Replacing PC104 modules with PIC24

microcontrollers may provide much simpler, cheaper and faster prototyping.

70

Inverse kinematic algorithms should be able to automatically reduce the solution

space to a few solutions that are optimum for the trunk in term of physical constraints of

the robot. The trunk visualization code can be improved to include more realistic effects

on the trunk such as torsion, shear, stress, and bending which in turn enable users to

visualize different variations of continuum trunk designs.

71

REFERENCES

[1] B. A. Jones and I. D. Walker, "Kinematics for Multisection Continuum Robots,"
IEEE Transactions on Robotics, vol. 22, pp. 43-55, Feb. 2006.

[2] M. W. Hannan and I. D. Walker, "Kinematics and the Implementation of an
elephant's trunk manipulator and other continuum style robots," Journal of
Robotic Systems, vol. 20, pp. 45-63, Feb. 2003.

[3] P. Sears and P. Dupont, "A Steerable Needle Technology Using Curved
Concentric Tubes," in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, 2006, pp. 2850-2856.

[4] R. J. Webster, A. M. Okamura, and N. J. Cowan, "Toward Active Cannulas:
Miniature Snake-Like Surgical Robots," in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Beijing, China, 2006, pp. 2857-2863.

[5] G. Robinson and J. B. C. Davies, "Continuum robots - a state of the art," in
Proceedings of the IEEE International Conference on Robotics and Automation,
Detroit, Michigan, 1999, pp. 2849-2854.

[6] W. McMahan, B. A. Jones, and I. D. Walker, "Design and implementation of a
multi-section continuum robot: Air-Octor," in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Edmonton, Canada,
2005, pp. 3345-3352.

[7] W. McMahan, B. A. Jones, V. Chitrakaran, M. Csencsits, M. Grissom, M. Pritts,
C. D. Rahn, and I. D. Walker, "Field trials and testing of the OctArm continuum
manipulator," in Proceedings of the International Conference on Robotics and
Automation, Orlando, FL, USA, 2006, pp. 2336-2341.

[8] P. E. Consortium, "PC/104 Specification," November 2003.

[9] The MathWorks Inc., "Matlab xPC Target toolbox user's guide," 2007.

[10] B. A. Jones, W. McMahan, and I. D. Walker, "Design and analysis of a novel
pneumatic manipulator," in Proceedings of the 3rd IFAC Symposium on
Mechatronic Systems, Sydney, Australia, 2004, pp. 745–750.

72

[11] Y. Bailly and Y. Amirat, "Modeling and Control of a Hybrid Continuum Active
Catheter for Aortic Aneurysm Treatment," in Proceedings of the IEEE
International Conference on Robotics and Automation, Barcelona, Spain, 2005,
pp. 936-941.

[12] G. Chen, M. T. Pham, and T. Redarce, "Development and kinematic analysis of a
silicone-rubber bending tip for colonoscopy," in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Beijing, China,
2006, pp. 168-173.

[13] I. A. Gravagne, C. D. Rahn, and I. D. Walker, "Large deflection dynamics and
control for planar continuum robots," IEEE/ASME Transactions on Mechatronics,
vol. 8, pp. 299-307, June 2003.

[14] J. M. Selig, "Active versus passive transformations in robotics," IEEE Robotics &
Automation Magazine, vol. 13, pp. 79-84, 2006.

[15] M. Ivanescu, N. Popescu, and D. Popescu, "A Variable Length Tentacle
Manipulator Control System," in Proceedings of the IEEE International
Conference on Robotics and Automation, Barcelona, Spain, 2005, pp. 3274-3279.

[16] E. Tatlicioglu, I. D. Walker, and D. M. Dawson, "Dynamic Modelling for Planar
Extensible Continuum Robot Manipulators," in International Conference on
Robotics and Automation, Rome, Italy, 2007, pp. 1357-1362.

[17] The MathWorks Inc., "Simulink reference manual, version 6.6," Natick, MA,
2007.

[18] The MathWorks Inc., "The Real-Time Workshop user's guide," 2007.

[19] M. Csencsits, B. A. Jones, and W. McMahan, "User interfaces for continuum
robot arms," in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Edmonton, Canada, 2005, pp. 3011-3018.

[20] The MathWorks Inc., "Matlab Virtual Reality toolbox user's guide," 2007.

[21] D. S. Corporation, "Ruby-mm-1612 User Manual V1.1," 2001.

[22] A. M. Controls, "Series Z12A PWM Servo Amplifiers," 2007.

[23] I. Acces I/O Products, "104-quad-8 User Manual," 2006.

[24] D. Nenchev, "Redundancy resolution through local optimization: a review,"
Journal of Robotic Systems, vol. 6, pp. 769-798, 1989.

73

[25] B. Siciliano, "Kinematic control of redundant robot manipulators: a tutorial,"
Journal of Intelligent and Robotic Systems, vol. 3, pp. 201-212, Sept. 1990.

[26] R. Buckingham, "Snake arm robots," Industrial Robot: An International Journal,
vol. 29, pp. 242-245, 2002.

[27] H. Mochiyama, "Whole-arm impedence of a serial-chain manipulator," in
Proceedings of the IEEE International Conference on Robotics and Automation,
Seoul, Korea, 2001, pp. 2223-2228.

[28] S. Neppalli and B. A. Jones, "Design, Construction, and Analysis of a Continuum
Robot," in Proceedings of the International Conference on Intelligent Robots and
Systems, San Diego, CA, USA, 2007, pp. 1503-1507.

[29] L. Han and L. Rudolph, "The inverse kinematics of a serial chain with joints
under distance constraints," in Proceedings of Robotics: Science and Systems
(RSS), Philadelphia, Pennsylvania, USA, 2006.

[30] L. Han and L. Rudolph, "A unified geometric approach for inverse kinematics of
a spatial chain with spherical joints," in Proceedings of the IEEE International
Conference on Robotics and Automation, Rome, Italy, 2007, pp. 4420-4427.

[31] B. A. Jones and I. D. Walker, "Three-Dimensional Modeling and Display of
Continuum Robots," in Proceedings of the International Conference on
Intelligent Robots and Systems, Beijing, China, 2006, pp. 5872-5877.

[32] J. Wernecke, The Inventor mentor: programming object-oriented 3D graphics
with Open Inventor, release 2. Reading, Mass.: Addison-Wesley, 1994.

74

	Design, Construction, Inverse Kinematics, And Visualization Of Continuum Robots
	Recommended Citation

