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Continuum robots are the biologically inspired robots that mimic the behaviors of 

mammalian tongues, elephant trunks, and octopus arms. 

The drawbacks of two existing designs are examined and a new mechanical 

design that uses a single latex rubber tube as the central member is proposed, providing a 

design that is both simple and robust. Next, a novel verification procedure is applied to 

examine the validity of the proposed model in two different domains of applicability. A 

two-level electrical control scheme enables rapid prototyping and can be used to control 

the continuum robot remotely. Next, a new geometrical approach to solve inverse 

kinematics for continuum type robot manipulators is introduced. Given the tip of a three-

section robot, a complete inverse kinematics solution is obtained. Finally, the techniques 

involved in visualization of AirOctor/OctArm in 3D space in real-time are discussed.The 

algorithm has been tested with several system topologies. 

Key words: Biologically inspired robots, Continuum manipulators, Inverse 
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CHAPTER I 

INTRODUCTION 

In the past few decades we have seen some amazing advancements in science and 

engineering, like micro processors, materials, communications, and artificial intelligence 

which provide powerful tools and techniques enabling roboticists to build fast, precise, 

mobile, rugged, intractable, multi-functional, and intelligent robots. Robots that are 

intelligent and mobile can be of great assistance to us in places where humans cannot 

reach such as nuclear research, space exploration, mining, underground and underwater 

exploration. Robots are also very useful in scenarios where several procedures have to be 

repeatedly performed with high speed and accuracy for long periods of time such as in 

industry assembly line.   

One of the more challenging aspects of robots begins when robots step outside the 

research laboratories and become a part of a daily life. This thesis presents a step forward 

in achieving those goals by making contributions in the field of continuum robotics. 

Continuum robots are the biologically inspired robots that mimic the behaviors of 

mammalian tongues, elephant trunks, and octopus arms. Continuum robots do not contain 

any rigid arms or links; instead they are similar to their biological counterparts, such as 

termed muscular hydrostats.  
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Muscular hydrostats consists mainly of muscle fibers and no skeletal structure 

which gives them the ability to grasp objects of different shapes and sizes. This thesis 

presents three distinct yet vital contributions to the field of continuum robots. The first 

contribution includes the design and construction of a general purpose continuum robot 

prototype, verifivation of the design and the proposal of a novel two-level electrical 

design to control the robot. With an available prototype, the focus of this thesis then turns 

to solving multi-section inverse kinematics for a continuum truck, such as the prototype 

developed, when only the final end-point is known is the second contribution. The third 

contribution consists of development of a platform to visualize a continuum trunk in 3D 

space. The visualization platform produces an accurate and intuitive representation of the 

continuum robot on the screen, which assists in solving and visualizing the inverse 

kinematics problem. This graphical representation also plays an important role in the 

proposed electrical design where the user could monitor and compare the configurations 

of the robot without directly looking at it. The first, second, and third contributions are 

described in detail in chapters two, three, and four respectively.  

The second chapter discusses the design and construction of a simple, economic, 

and robust continuum robot. The chapter motivates the need to have a standardized 

prototype that can be used as the common development platform for continuum robots. 

Design and construction focuses on using a pressurized latex rubber tube which is 

covered tightly with a nylon mesh is used as the central member of the robot. A novel 

method of verification is then introduced to examine the validity of the prototype in two 

different domains of applicability.  

2 



    

 

 

A new electrical model is proposed which can be used to control the continuum 

robot remotely with a joystick via a Local Area Network (LAN) while watching the real-

time 3D visualization of the robot on screen. Data from the sensors that are mounted on 

the robot can be accessed from the remote computer in real-time. 

Chapter three presents a geometrical approach to calculate inverse kinematics for 

continuum manipulators. This approach starts by applying inverse kinematics to a single 

section continuum trunk. In the second step the algorithm is extended to a multi-section 

continuum trunk assuming that the end-points of each section are known. Given the tip of 

a three-section robot, end-points of section 1 and section 2 are computed, thus achieving 

a complete inverse kinematics solution for a multi-section continuum robot. The 

geometrical approach proposed in this chapter converts the complex simultaneous 

equation problem of inverse kinematics into few inequalities which can be solved much 

faster than existing approaches. Moreover, the algorithm provides a solution space rather 

than a single valid solution. The insight into the solution space provides an ability to 

avoid obstacles and better maneuverability. 

Chapter four discusses techiniques for visualization of AirOctor/OctArm in 3D 

space in real-time. The trunk visualization code uses Non-Uniform Rational Bsplines 

(NURBS) to represent the continuum section of the trunk accurately. The bridge program 

enables the user to completely program in Matlab, which is much convenient that shifting 

between Matlab and C++. 

3 



    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The code uses Coin3D which is a collection of C++ libraries from 

www.coin3d.org  that are compatible with OpenInventor which is a toolkit for graphics 

programming that is built on top of OpenGL. The chapter clearly explains all parts of the 

code with flowcharts and a code flow diagram. 

The first step in this process involves the design and construction of a continuum 

robot, presented in the following chapter. 

4 
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CHAPTER II 

DESIGN AND CONSTRUCTION 

2.1 Introduction 

Continuum robots are biologically-inspired robots that mimic the behavior of 

muscular hydrostats like elephant trunks and mammalian tongues. These continuum or 

invertebrate structures give rise to a novel approach to kinematic analysis in contrast to 

the well-known methods of deriving kinematics for rigid link robots. Methods used to 

derive the kinematics include D-H tables [1], a geometric approach [2], and twist theory 

[3, 4]. 

All the methods that are used to derive kinematics are in fact solving statics and 

rely on assumptions such as the absence of gravity about the flexible structure underlying 

the trunk. Sometimes these assumptions make the kinematics in real world inaccurate. 

The ultimate goal is to find a model which accurately reflects the mechanics of 

continuum robots. Therefore, it is important to verify the accuracy of all the proposed 

theories. In order to compare model accuracy, all the theories should be tested against a 

single standardized prototype by comparing pedicted versus actual robot shape.  

Therefore there is a need to construct a standard prototype which can be used to 

find the most accurate model. However, instead of a single prototype researchers across 

the globe have come up with many designs of continuum robots to support their theories. 

5 
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Latex 
rubber 

tube 

Nylon 
sleeve 

Cable 
guides 

Hose 
Clamps 

Sealed 
end capTo air-inlet 

Cables 

Figure 1 Continuum robot constructed based on 
the proposed design. 

A latex rubber tube is used as the central member 
that is surrounded by three cables mutually 
separated by 120 . See figure 3 for a cross-
sectional view of the trunk. 

Such existing designs taken from [5] include the flexible micro-actuator, the AMADEUS 

hand, the pizeohydraulic systems, the active hose, the EDORA colonoscope, the slim 

slime robot, the shaped-memory alloy tentacles, McKibben-based trunks, 

electrorheological fluid-based manipulators, electrostrictive polymer artificial muscles, 

OctArm, and AirOctor.  Instead, a standard prototype is required that can be used as a 

common platform to compare the accuracy of various theories against a physical 

prototype. None of these existing designs can be chosen to be a standard prototype 

because a standard prototype should be inexpensive, easily reproducible, possess good 

mechanical qualities, and require minimal assembly.  

6 



    

  

 

 
 

 

Figure 2 Picture featuring AirOctor 

A continuum robot with drier-hose as the 
single central member and cables as actuators. 

Because existing designs are application-specific and do not exhibit such 

characteristics, there is a need for the design that would fulfill the requirements of a 

standard prototype for continuum robot. In pursuit of the standard prototype we have 

designed a new prototype shown in Figure 1 that is derived from Air Octor [6] and 

OctArm [7]. 

As shown in Figure 2, Air Octor uses a dryer hose as a single central member 

which is actuated by the cables on its periphery. The parts used are easily available and 

inexpensive. The construction is easy and takes little time.  

7 



    

 

 
 

 

Figure 3 Picture featuring OctArm 

A continuum robot with multiple pressurized central members. The pressure levels 
in the central memebra define the configuration of this trunk. 

Simple and cost effective design is a great advantage to Air Octor. However, due 

to the weakness of the dryer hose it lacks strength, while excessive tendon friction 

significantly reduces itsflexibility. 

OctArm, shown in Figure 3, uses pressurized rubber tubes as multiple central 

members. Each section has three different pressure chambers that act as actuators, so 

there are no cables on its periphery. The pressure in each actuator defines the shape of the 

robot. Using multiple pressurized central members gives OctArm a great advantage in 

terms of strength and flexibility. However, constructing it is a very difficult because of its 

complex design that has custom machined parts and costly components.  

8 



    

 

  

 

 

It takes more than a week to assemble an OctArm after understanding the design 

and construction process. Even though OctArm is strong and flexible, it is difficult and 

costly to build. The new design brings the simplicity of Air Octor and agility of OctArm 

together. A pressurized latex rubber tube is used as a single central member that makes 

the design simpler than OctArm and stronger than AirOctor. It is covered with a nylon 

sleeve to ensure longitudinal expansion. Cable ties which run through the nylon sleeve 

make small loops, which act as cable guides, offering lower friction to sliding cables. A 

latex rubber tube, nylon sleeve, and cable ties are readily available and cheap products in 

the market.  

Therefore this approach offers a simple, inexpensive, and easily reproducible 

design with good strength. Complementing the mechanical design an electrical design is 

also proposed to control the suggested design. It deploys a two-level control using a 

standard PC and a single-board PC/104 computer. The wide variety of commercial, off-

the shelf I/O add-on boards for PC/104 [8] systems coupled with the availability of 

drivers for many of these included in Matlab’s xPC Target [9] provides a cost-effective 

rapid-prototyping environment. 

In addition to the new design the chapter also introduces a new method of 

verifying this design and all other designs based on the same principle. This method 

proposes two types of verification. The first type verifies the mechanical qualities of a 

physical continuum trunk. The second verification method determines the accuracy of a 

proposed model by comparing predicted versus actual position of the physical robot.  

9 



    

 

 

 

 

  

This two-step verification process proceeds as follows. First, the accuracy of the 

mechanical prototype is confirmed by examining its shape when free of external forces 

such as gravity, where theoretical models give exact analytical results. Second, with the 

confidence of an accurate mechanical prototype, model predictions in the presence of 

gravity can then be compared against the physical prototype. 

2.2 Design and Construction of a Continuum Robot 

This chapter contributes a novel design combining the simplicities of Air Octor 

[6] with the agility of OctArm [7], resulting in a continuum robot that is not only 

mechanically simple and easy to build but also robust and efficient. This chapter 

examines Air Octor and OctArm, where Air Octor is a simpler design to construct and the 

OctArm offers better performance in grasping and whole arm manipulation than the 

former.  

OctArm is flexible, elastic and has good strength, but is complex to build and 

control because of the multiple pressurized central members that make the design 

mechanically challenging. Air Octor, on the other hand, is much less complex to build 

and control because of the single central member and the use of cables as actuators but 

lacks flexibility and strength due to high cable friction which cannot be overcome by low 

pressure in the central member, resulting in cable binding which in turn causes 

undesirable movements of the trunk.  

10 



    

 

 

 

 

 

 

 
 

 

 

Cable 1 

Cable 2 Cable 3 

120o 

Rubber Tube 

Nylon 
Sleeve 

Cable Ties 

Figure 4 Cross-sectional view of the trunk. 

Showing three cables that are mutually separated by 
120 . Cable ties run through the nylon sleeve to form 
small loops through which the cables can be passed 
freely. See Figure 1 for a picture of the actual trunk. 

The trunk presented in this chapter is not only easy to build and control but also 

provides good strength and flexibility for the continuum robot. This chapter presents a 

novel approach for building a continuum robot that replaces the dryer hose, the 

problematic central member of Air Octor, with a latex rubber tube that has more strength 

and flexibility [10]. Like many previous designs [5], the central member is surrounded by 

three cables separated by 120 degree intervals [5]. Figure 4 shows a cross-sectional view 

of the trunk explaining the arrangement of cables around the trunk. The lengths of these 

three cables define the shape of the continuum robot [1]. The central member is made up 

of a latex rubber tube covered with an expandable nylon sleeve. A rubber tube is a better 

choice for building a continuum robot than a dryer hose (used in Air-OCTOR) because of 

its flexibility, elasticity and strength. A rubber tube can handle pressures up to 483 kPa 

whereas a dryer hose can be pressurized only up to 13.8 kPa [10]. 

11 



    

 

 

 

 

 

 

 Table 1 Various combinations of tubes and sleeves 

Tube 
No. 

Outer 
Diameter 

in cm 

Thickness 
in mm 

Nylon Sleeve 
Size in 

cm 

Type of cable 
guides used 

Tube 1 

Tube 2 

Tube 3 

2.5 

2.8 

2.1 

3 

5 

5 

1.6 

1.6 

0.9 

Dual Layer 
Nylon Sleeve 

Cable ties 

Dual Layer 
Nylon Sleeve 

In addition, this approach uses only one pressurized member per section which 

makes it a simpler mechanical design than that of OctArm. The length of this member 

can be changed by varying the pressure in the member. When pressurized, a rubber tube 

expands in all directions like a balloon. To restrict the expansion longitudinally without 

losing its cylindrical shape, it is covered tightly with an expandable nylon sleeve. Various 

sizes of rubber tubes and matching sizes of nylon sleeves that were experimentally 

determined are shown in  Table 1. The rubber tube is sealed on both sides with a metal 

tube fitting. One end is permanently blocked. A small air inlet is placed on the other end. 

Hose clamps are used to hold the sleeve, tube and fittings in place. The physical 

dimensions of the tube and sleeve affect the amount of expansion at a given pressure.  

The results after experimental verification with different combinations of tubes 

and sleeves and their expansions at various pressures are tabulated as shown in  Table 2. 

Tube 2 is the best combination among those verified, demonstrating an extension of 34% 

at 483 kPa. 
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 Table 2 Expansion at various pressures 

Pressure 
in kPa 

Tube 1 
Length in 

cm 

Tube 2 
Length in 

cm 

Tube 3 
Length in 

cm 

0 58.5 64 54 

138 61 68 55 

207 64 72 56 

276 66 74 58.5 

345 68 78 60 

414 71 81 61 

483 72.5 85.5 62 

Because the central member of Air-Octor can withstand only a very low pressure 

(13.8 kPa) the cable guides used offer a considerable amount of friction compared to the 

pressure, resulting in binding of cables. In addition to increasing the pressure in this new 

prototype, two methods were examined for the use of lower-friction cable guides to avoid 

binding. In the first method cable ties are used as cable guides. Cable ties hold the cables 

to the sleeve that covers the trunk and run through the sleeve and form small loops 

through which the cables can be passed freely. A hose clamp is used to hold the cables on 

the terminating side. 

13 



    

 

 

 

 

In the second method, two layers of nylon sleeve are used as cable guides. The 

inner layer covers the rubber tube tightly and the outer layer holds the cables running 

through it. A nylon sleeve offers low friction comparable to cable ties but the outer layer 

of the sleeve restricts the expansion of rubber tube. Therefore we choose the first method 

as the cable guiding mechanism. Several experiments were conducted using various tubes 

and types of cable guides. Their expansions at different pressures are shown in Tables 1 

and 2. 

2.3 Modeling and Verification of a Continuum Robot 

Though the circular arc assumption made by the model proposed in section 2.2 

and shared by much of the continuum kinematics literature [1-3, 11, 12] has been widely 

used, this underlying assumption has not been experimentally verified. This section of the 

chapter describes a novel procedure to experimentally verify this assumption for a 

continuum robot for two different cases (with and without gravity). 

2.3.1 Modeling 

An analysis of the dynamics of a planar flexible beam undisturbed by external 

forces and subject to a torque applied to the end of the beam shows that the beam forms a 

curve of constant curvature, which is an arc of a circle [13]. This constant-curvature 

assumption provides a basis for much of the existing kinematic analysis of continuum 

robots [1-3, 11, 12]. 

14 



    

 

 

  

  

 
 

 

Z 

Arc of trunk 
extending along 

Z axis 
Y Circle center 

at 

 1 r 


 
c 

r cos 
 r sin  
 0   

X 

Figure 5 Simplified model of kinematics. 

This can be derived through purely geometrical 
means. Arc of the trunk extends along the +z axis 
and bends along the direction   in the xy plane. 

The following paragraphs present a novel, concise derivation of the kinematic 

results of this assumption, followed by an experimental examination of the validity of this 

assumption. To determine the kinematics of an arc, note that the motion due to the trunk 

is a classical rigid motion: a revolute joint placed at the center c  of the arc defining the 

trunk, rather than at the origin. The kinematics of this class of robots can therefore be 

derived through purely geometrical means, without the need of D-H tables and 

accompanying transformations [1, 2], screw theory [3], or extensive and error-prone 

computation [11]. 

Examining Figure 5, c  for a trunk which extends along the +z axis and bends 

1along the direction   in the xy plane is c  r cos r sin 0T  where r     is the 

radius of the circle. 

15 



    
 

 

 

 

 

 

  

 

As shown in the figure, the axis   about which points on the circle rotate is 

perpendicular to the circle, computed as R z ,90c  then normalizing to yield 

   sin cos 0T 
. From [14], a rotation R ,  about the axis c  can be computed 

by first translating to the origin, performing the rotation, then translating back. Therefore, 

 I c  R 0  I c 
1 R I R  c ,  ,  ,the desired A is A    .  T    T    T 

0 1   0 1 0 1  0T 1  

Substituting and recalling   r1  and noting that the necessary rotation   about the 

circle is determined by the ratio of the arc length s of the trunk to the circle’s radius r, so 

that   s r , the resulting homogenous transformation matrix is 

 cos2  cos s 1 1 sin cos cos s     1 

sin cos cos s 1 cos2  1 cos s  cos s

A   
 cos sin  s sin sin  s 
 

0 0
 (1) 

cos sin  s  1 cos 1 cos s 


sin sin s  1 sin 1 cos s  . 
cos s  1 sin  s  


0 1  

Further transformations given in [10] allow computation of the amount of 

curvature   based on the lengths of cables l1 , l2  and l3  and radius of the trunk d 

16 
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1 r 


 

Trunk bending in 
an arc of constant 

curvature 

Figure 6 Experimental procedure without the 
effect of gravity to verify the validity of 
the proposed design. 

The large red circle indicates the arc of constant 
curvature in which trunk is bending. The inverse 
of the distance between the center and a point on 
the arc gives the curvature of the trunk. 

2 2 2l  l  l  l l  l l  l l        1 2 3 1 2 2 3 1 3  2 .     (2)  
( l l )d l   1 2 3 

2.3.2 Model Verification 

Under ideal conditions the curvature produced by the trunk should match with the 

curvature calculated using the formula. An experiment was done where the curvatures of 

the trunk were measured for various combinations of cable lengths. A paper with circles 

of different radii drawn on it is used to measure the curvature of the trunk.  
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 Table 3 Experimental Verification 

l1 l2 l3  calculated  measured Error 
in cm in cm in cm in % 

53 53 53 - - -

45.5 53 53 .0780 .0787 0.89 

53 46.5 53 .0671 .0656 2.2 

53 53 48.5 .0459 .0463 0.87 

For a given combination of l1 , l2  and l3 , the trunk bends producing a uniform 

curvature  1/ r . The shape of the trunk is then matched against the reference circles 

drawn on the paper as shown in Figure 6. The curvature of the matching circle is then 

measured as the curvature of the trunk.  

The entire experiment is performed by resting the trunk on the ground, therefore 

eliminating the effect of gravity on the trunk; the frictional effects of the paper are 

negligible.  Table 3 shows   and   for different combinations of the trunk calculated measured 

lengths l1 , l2  and l3 . As shown in the table, the percentage of error is very small. 

The same experiment was repeated considering the effect of gravity. This time the 

trunk fails to bend with a uniform curvature as shown on  Figure 7. The effect of gravity 

on the trunk is considerable, and the constant curvature assumption does not apply under 

gravity, because of the low stiffness of the trunk compared to the load carried.  
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Heavy end cap 
causing sag and 

loading 

Torsion 

Gravity 

Figure 7 Experimental verification with the effect 
of gravity to verify the validity of the 
proposed design. 

The trunk failed to bend in a constant curvature 
arc because of the low stiffness compared to the 
heavy end cap causes sag and torsion. 

The weight of the metal tube fitting at the end of the trunk causes the trunk to 

deform from its original shape. While this metal fitting can be replaced with a plastic 

fitting, or the tube can be sealed in some other way without adding additional weight to 

the trunk, when the trunk is used for practical applications, we expect it to carry a tool at 

the end of its trunk, which would add weight to the trunk. 

Though models to estimate the effect of gravity on continuum robots exist [13, 

15], their complexity is too high to run them in real-time which makes them unsuitable to 

implement. This motivates the need for development of real-time dynamics for 

continuum trunks [16]. 
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View 

Host PC 

Joystick 

UDP PC/104 D/A H-Bridge 
Z12A8 

Air 
Compressor 

Continuum 
Trunk Motors Encoders 104-Quad-8 

Figure 8 Unique two level electrical design to control a continuum robot. 

2.4 Electrical Design 

This section of the chapter presents the design of an electrical system to control a 

continuum robot. Figure 8 provides an overview of the electrical setup. A host PC 

calculates the lengths l1 , l2  and l3  needed to obtain the required shape of a trunk. It then 

passes these parameters to the PC/104 [8] module, a compact form-factor single board 

computer suitable for executing real-time applications and supported by a wide variety of 

off-the-shelf I/O boards.  

The PC/104 module acts as a driver that actuates the motors to adjust the lengths 

of cables. The striking feature of this design is the two-level control using a PC and 

PC/104, which accelerates the development and prototyping process. A Simulink [17] 

model is developed on the host PC and converted to executable code using the Real Time 

Workshop [18]. 
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Figure 9 Simulink block diagram that sends joystick input from PC to 
PC/104 via UDP protocol. 

  

 

 

This executable code is then downloaded from the host PC to the PC/104 running 

the xPC Target real-time kernel [9]. The PC/104 handles the I/O operations through its 

add-on boards and acts as a driver for the end effectors. The wide variety of commercial, 

off-the-shelf I/O add-on boards for PC/104 systems coupled with the availability of 

drivers for many of these included in Matlab’s xPC Target provides a cost-effective 

rapid-prototyping environment. In addition, this two-level design utilizes the greater 

computational ability of a host PC by tasking it with performing the major computational 

work required to calculate the kinematics of a continuum robot and providing a real-time 

graphical representation of a continuum robot [19].  

This graphical model provides essential feedback to the users while they operate 

the robot. The overview of the electrical design architecture is shown in the block 

diagram. The process is initiated when the user uses the joystick connected to PC to 

control the continuum trunk. The joystick used is standard joystick that is widely 

available in the market which features three axes, 12 buttons and one throttle. The 

joystick is connected to PC via a USB port.  
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The Virtual Reality Toolbox [20] for Simulink includes a built-in module that 

recognizes the joystick without the need of any external drivers as shown in Figure 9. The 

input data received from the joystick is then assembled into packets of data to be 

transmitted to the PC/104 via the UDP protocol. Figure 9 shows the Simulink block 

diagram to perform this task. Next, the PC/104 receives the joystick data sent by the PC 

via the UDP protocol and unpacks it into positions for all joystick axes and buttons state 

as shown in Figure 10. The required signals are then routed to the digital-to-analog 

converter, a Diamond Ruby-mm-1612 [21] expansion board for the PC/104 capable of 

providing 16 analog outputs with 12-bit resolution and supported by drivers included in 

Matlab’s xPC target toolbox.  

The digital-to-analog converter converts the joystick axis position to an analog 

voltage which supplies input to an Advanced Micro Controls Z12A8 dual H-bridge [22]. 

Three motors powered by the H-bridges actuate the trunk by determining the lengths of 

three equally-spaced cables which travel along a trunk composed of a pressurized latex 

rubber tube covered with a nylon sleeve and sealed on one end. By varying the cable 

lengths 1 3  different configurations of the continuum robot can be obtained.  l  
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Figure 10 Simulink block diagrams representing the send and receive modules on the 
PC/104. 

The receive module receives the motor actuation signals from the PC via UDP and the 
send module sends the encoder values to the PC in the same way. 
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The motors can be mounted with encoders that continuously measure the rotation 

of the shaft. With the diameter of the shaft known, the encoder reading can be used to 

find the lengths of the three cables 1 3  . These measured lengths can then be compared l  

against the desired lengths to provide closed-loop control over cable length.  An Accessio 

104-quad-8[23], a quadrature encoder expansion board for the PC/104 reads the encoder 

values. 

Because Matlab does not provide built-in support for this board, a custom driver 

was developed in the C language for the board to work with Matlab’s xPC target toolbox 

[9]. The captured encoder values are then packed and transmitted to the PC via the UDP 

protocol as shown in the simulink block diagram executing this diagrammed in Figure 10.  
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The host PC then receives the encoder values and can compare the actual values 

against the required values and make corrections to the lengths 1 3  to achieve the desiredl  

configuration of the continuum robot. A simulation of the actual and required 

configurations of the robot can also be seen on the PC during this process. A 3D 

graphical view of the trunk can be drawn using the actual values from user and encoder 

feedback which can enable the user to understand the operation of continuum robot much 

easier during real-time operation. The fourth chapter provides an in-depth discussion of 

the creation of a 3D view of the robot. 

2.5 Summary 

This chapter examined two existing mechanical designs and developed a new 

design combining the simplicity of construction of AirOctor with the agility of the 

OctArm. This low cost design and can be easily reproduced which makes it suitable as a 

general purpose continuum robot that can be used a standard prototype for verification of 

various continuum robotic models. Unique experimental examination of the circular arc 

assumption made by the constant-curvature model reveals that it does not hold in cases 

where loading due to gravity overcomes the trunk stiffness.  

This verification procedure is the first approach to verify the constant curvature 

assumption shared by most of the continuum robots. Finally, this chapter presents a 

unique two-level electrical design with which the continuum trunk can be operated using 

a computer via Local Area Network (LAN). 

24 



    

 

 

 

  

 

 

 

 

 

CHAPTER III  

INVERSE KINEMATICS 

3.1 Introduction 

Figure 11 Implementation of the inverse kinematics algorithm 

The inverse kinematics algorithms described in section 3.2 move both a 
simulated and an actual trunk from a vertical starting posture in (a) to a bent 
posture in (b) while maintaining tip position, moving only the section 2 end-
point. This maneuver could be used to avoid obstacles in the trunk path while 
maintaining a desired tip position. 
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Kinematic redundancy, where more degrees of freedom exist in the system than 

are strictly required for task execution, offers the benefit of improved performance in the 

form of singularity avoidance, obstacle avoidance as illustrated in Figure 11, fault 

tolerance, joint torque optimization, and impact minimization via effective use of the self-

motion inherent in the resulting systems. Kinematic redundancy in manipulators has been 

extensively studied, and surveys of many of the fundamental results for conventional 

(rigid-link) redundant manipulators are presented in [24, 25]. However, for the recently 

emerging class of continuum manipulators [5], progress in developing practical 

kinematics has been slower. Continuum robots, resembling biological trunks and 

tentacles, feature continuous backbones, for which conventional kinematics algorithms 

do not apply. While numerous hardware realizations of continuum manipulators have 

appeared [5], only recently have accurate and practical kinematic models for continuum 

manipulators emerged [1, 4]. 

Many existing continuum robot designs are kinematically redundant. Indeed, the 

inclusion of many extra degrees of freedom (hyper-redundancy) has been a key 

motivation for continuum robots, enabling them to maneuver in congested environments 

[26] and allowing them to form whole arm grasps [27] of a wide range of objects. While 

there have been attempts to adapt the conventional (rigid link) approaches to redundancy 

resolution by appropriately selecting the shape of the robot subject to task constraints [2], 

their practical effectiveness have been hampered by the complexity of the analysis, 

particularly in the resulting Jacobians. 
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Figure 12 A single section of a continuum trunk 

A single section of a continuum trunk modeled as an arc of a circle in 
3D space with its center in xy plane. One of the end-points O is at the 
origin and other end-point P is located anywhere in 3D space. 

This chapter presents a geometric approach to determining the inverse kinematics 

for single and multi-section continuum robots. The algorithm given in section 3.2 

determines a closed-form solution to the inverse kinematics problem for a single 

continuum section trunk. Section 3.3 discusses extending the results from section 3.2 to 

an n-section continuum manipulator, assuming knowledge of the end-point locations for 

each section of the trunk. Section 3.4 presents a procedure to compute these per-section 

end-points given a single end-point for the entire trunk. Next, section 3.5 presents results 

obtained by implementing these inverse kinematics, in simulation and on a physical 

device (OctArm VI), as shown in Figure 11. Section 3.6 concludes with a discussion of 

the advantages and disadvantages of this approach and potential applications. 
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Figure 13 Manipulator variables s,  , and  

Where   gives the direction of bending measured 
in the xy plane,   defines the curvature as the 
inverse of the trunk radius and s gives the length 
of the trunk. 

3.2 Single-Section Kinematics 

For our analysis we model a single section of a continuum manipulator as an arc 

of a circle with one end-point O fixed to the origin of a right-handed Euclidean space, the 

other end-point P  located anywhere in the space, and the center of the arc C in the xy 

plane (see Figure 12). We parameterize a section of a continuum manipulator by its arc 

length s , its curvature  , and its orientation   as shown in Figure 13. From these 

parameters the tip location of a single continuum section is calculated [28].  

These assumptions reflect the physical structure of many continuum manipulators 

when subjected to a constant moment applied to the end of the section as derived in [13] 

and applied in [1-4] including Air-Octor [6] and the OctArm [7] series of manipulators.  
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In particular, the ability of these trunks to not only move to a given curvature  

and direction of curvature   but also to extend to a trunk length s  enables them to attain 

the desired tip position based on the  ,  , and s determined by the inverse kinematics. 

3.2.1 Inverse kinematics 

The trunk parameters s,  , and  for a single continuum section can be 

determined given the end-point location P in a closed-form expression. The direction of 

bending   can be trivially determined by dividing the x and y coordinates, giving 

y    tan 1 
 .     (3)  

x   

The curvature can be determined by finding the distance from the origin to the 

center of the arc formed by the continuum section. Rotating P about the z axis by  

produces a point P '  such that x '  x2  y2 , y '  0 , and z '  z  (see Figure 14), yielding 

an arc of the same curvature which lies entirely in the xz plane. Our model assumes the 

center of the arc to be in the xy plane; after rotation, this center must lie along the x axis. 

Therefore, the radius r of the center of this arc C lies at r,0  in the xz plane. Noting that 

the end-point and the origin of the arc must be equidistant from C and recalling that the 

origin of the arc coincides with the origin of the coordinate system gives 

2 2x  r 2  z  r . 
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Figure 14 A single section of continuum trunk that lies entirely in xz
 plane 

Which is obtained by rotating end-point P about the z axis by  (see 
  Figure 12). Observing C P x  and applying law of cosines, 

1 1cos    x  r r . Therefore, cos    x      . 

 1 2 2Solving for r and noting that  r ,   2x  z  x  z . Substituting for x 

and z , 

2 x2  y2 

  .     (4)  
2 2 2x  y  z 

The angle   as shown in Figure 13 can be calculated from the curvature and the 

Cartesian coordinates of P. Looking at the planar case of P , examining the    C P D  in 

1 1 1Figure 14 gives   cos   x '    when z ' 0  and 

1 1 1  2  cos    x '   when z ' 0 . Noting that the rotation of P does not affect 
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the arc-length, x '  x2  y2 as before. 

Simplifying gives 

 1 2 2cos 1 x  y  , z  0    (5) 
1 2 22  cos 1 x  y  , z  0.

 

Knowing that length of arc is the product of the angle subtended by the arc and 

the radius of the arc, the length of the trunk section s r  , where r  1   (see Figure 

13). 

3.2.2 Special cases (Singularities) 

Endpoint coordinates along the z axis present singularities in the inverse 

kinematics calculations and can be grouped into three different cases: z  0 , z  0 , and 

z  0 . Coordinates along the z axis with z  0  produce (correct) curvature values of 

zero; this creates a divide-by-zero condition in the arc-length calculation. When x  0 

and y  0  the orientation calculation also produces the divide-by-zero condition.  

This case is easily handled by assigning   to any arbitrary value and determining 

the arc length as s z  . In the second case, when P  0 0 0T 
, multiple solutions exist   

as an arc forming a complete circle with any radius at any orientation satisfies this 

condition. In this case, choose   2  and choose any value for   and  . The last case 

occurs when P lies along the z axis where z  0 . 
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This case poses an impossibility given the physical constraints of a continuum 

manipulator section, requiring a solution of   0  and s z  where   is arbitrary.  

3.3 Multi-Section Kinematics 

The inverse kinematics derived in the previous section can be iteratively applied 

to multiple, serially-linked continuum sections to model an n-section continuum 

manipulator. 

3.3.1 Inverse Kinematics Algorithm 

Given a list of end-points (one for each section), the values of s,  , and  can be 

computed for each section by determining the values of s,  , and   for the base section, 

subtracting the translation due to the base section from the remaining endpoints, applying 

the opposite rotation due to the base section to the remaining endpoints, and then 

repeating this process with the remaining sections. Recalling from [28] the rotation due to 

a single trunk section occurs about the axis    sin cos 0T  by the angle  , the 

adjusted end-point coordinates can be expressed as pnext  R ,  pnext  pcurrent  where 

p  is the end-point of the section whose s,  , and  values are currently beingcurrent 

computed and pnext  is the end-point of a remaining, distal section. 
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3.3.2 Incorporating Dead-Length Sections 

Many actual continuum manipulator devices contain lengths of space between 

each section that do not bend.  There are three ways to represent these ‘dead’ lengths as 

part of each section. The non-bending length of each section can be included at either end 

of the section or split between the two.  

Taking the approach of including the non-bending length at the end of each 

section, incorporating these ‘dead’ lengths can be easily handled by adding an 

appropriate translation at the beginning of each loop in the inverse algorithm. Following 

this method, simply subtract the vector 0 0  lT  where l gives the dead length for the 

current section from pnew  computed for the following sections, 

p  R  p  p  0 0  l T .next  , next current current 

3.4 End-Point Locations of Each Section for a Multi-Section Continuum Robot 

An essential ingredient to applying the inverse kinematics in the previous section 

is the x, y, and z coordinate of the endpoints of each section of the trunk in addition to the 

endpoint of the trunk itself. This section presents an algorithm to assist in choosing these 

intermediate coordinates while also exposing structure of the solution space of the inverse 

kinematics problem, providing the possibility of using this solution space for choosing 

configurations of the trunk which avoid obstacles, minimize trunk curvature, or maximize 

some other desirable trunk characteristic. 
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Figure 15 Rigid-link configuration of a robot  

Figure showing the rigid-link configuration of a robot with 
link lengths 1 3  . The tip of the robot lies atl  p3 . 

    

 

 

The well-known difficulty of deriving the inverse kinematics for an arbitrary 

rigid-link robot stems from the complex nature of the non-linear equations involved. 

These complex non-linear equations can be resolved into simple inequalities for any 

rigid-link robot composed of spherical joints by following a geometric approach as 

detailed in [29, 30].  

Observing that each section of a continuum robot consists of the equivalent of a 

spherical joint, this paper applies the solution procedure in [29, 30] to a three-section 

continuum robot by modeling it as a three-link rigid-link robot composed of spherical 

joints. The endpoints of each of the rigid links produced by this algorithm then provide 

the necessary endpoints for the multi-section inverse kinematics algorithm described in 

the previous section which fits a trunk to these endpoints. 
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3.4.1 Overview 

To formally stating the problem solved in this section: given the endpoint p3  and 

the link lengths l   of a three-link rigid-link robot composed of spherical joints, find the 1 3  

endpoints p1  and p2  of the first and second links of the rigid-link robot as shown in 

Figure 15. The procedure begins by forming two triangles from Op p  and Op p1 2  2 3  

based on this information, where r1  represents unknown length. 

Inequalities on r1  given in (6) define one dimension of the resulting solution 

space. Choosing any value which satisfies these constraints completes the first step. Next, 

knowing the lengths r1 , r2 , and l3  which define one triangle and the coordinate of two of 

its endpoints (O and p3 ), the second step gives the second dimension of the solution 

 
space as an arbitrary rotation of p2  about Op3  and computes a specific p2  given that 

rotation angle. In the final step, p1  is determined as a rotation of the other triangle about 

 
Op2 , completing the solution. 
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3.4.2 Derivation 

Given a desired end-point p3  and lengths l1 , l2 , and l3  shown in Figure 15 which 

specify fixed lengths of the straight lines joining the start-point and endpoint of sections 

one, two, and three respectively, this algorithm computes per-section endpoints p1  and 

p2 . Referring to Figure 15, length r2  p3  while triangle inequality theorems for 

Op p  and Op p r1  bound length r1  as2 3  1 2  

r l  r      2 3 1 r2 l3
    (6)  

l l  r     1 2 1 l1 l2 

Step 1: Choose any r1  which satisfies the inequalities above. A complete solution space 

that includes all possible configurations of the robot can be built by repeating the rest of 

the derivation using all valid values of r1 . The equality sign observed in the inequalities 

(6) implies a “flat” triangle consisting of a single line and corresponds to a singular 

configuration of robot, as discussed in section 3.5 and illustrated in Figure 18 and Figure 

19. 
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Figure 16 Rigid-link robot after the 
transformation of coordinate frames. 

The rigid link robot after a transformation of 
coordinate frames from OXYZ  to OX Y Z   . This 
aligns Op2  along the +z axis. Links in the 

transformed coordinate frame are indicated by 
dashed lines. Point p2  is placed in the yz plane 

and p2  lies on the z axis; therefore, Op p is2 3  

present in the yz plane. 

 

Step 2: With p3 , r1 , r2 , and l  fixed, triangle Op p  constrains  to lie on a circle 3 2 3  p2 

 
formed by rotating p2  about Op3 . Choose any dihedral angle 1  which gives the rotation 

of Op p  about Op  and therefore determines the location of p2 . To calculate p2  from 2 3  3 

 
1 , first rotate the coordinate frame OXYZ  to OX Y Z Op3   in such a way that aligns 

with the positive z axis. In this configuration, apply 1  as a rotation about the +z axis. 

Finally, perform the inverse rotations to return to OXYZ with p2  now determined. 
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This initial transformation to OX Y Z    can be achieved by performing two 

consecutive rotations first about the y axis then about the z axis by angles 1  and 1 

respectively, which are calculated in (9)-(12). Due to this rotation, p3 now lies on the +z 

axis, at a distance of r2  from O  as shown in Figure 16, making its location 0 0  r2 
T

. 

Considering Op p , point p2 can be any point on the circle around the z axis centered2 3  

at n1 
 with radius equal to height h1 . Since p2 can be any point around the z axis, begin 

1 2 2 2by placing it in the yz plane. Applying the law of cosines, 1  cos r2  r1  l3  2r r1 2  . 

The location of p2  is therefore 0 h d  T  where d  r cos  and h  r sin  .1 1 1 1 1 1 1 1 

After rotating p2 about the z axis by 1 , the following equation rotates the coordinate 

frame back to OXYZ  to obtain the coordinates of p2 : 

p  R R R  p     (7)  2 z ,1 y ,1 z ,1 2 

where R ,  represents a rotation about axis   by angle  . Substituting the 

individual transformation matrices in equation (7) yields 
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Figure 17 Results of the algorithms in section 3.3.1 and 3.4.2.  

 

Graphic (a) illustrates the result of 3.4.2 exhibiting the orientation of 
triangles Op 2 3p  and Op 1 2  p  in 3-D space. Op 2 3p  and Op 1 2  p  lie in 

two different planes in space inclined at an angle to each other. The 
angles of orientation of the triangular planes are termed dihedral 
angles. Items (b) and (c) illustrate a continuum trunk fit to the skeleton  
in (a) from differing perspectives. 
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                           p 2  c c1  1 
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c 1  s1

c 1
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1  p2   (8)
  s c     

1 1 
s1

s 1  c1 

where c  cos and s  sin . 

 

The rotation angles, taken from a standard axis/angle rotation, are  

 

 sin  k1y k 2 2 
1 1x  k1y       (9) 

 cos1  k1x k 2 
1x  k 2 

1y       (10) 
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sin 1  k1
2 
x  k1

2 
y     (11)  

cos   k     (12)  1 1z 

T  
where k1  k1x k1y k1z   is a unit vector along Op3 . 

Step 3: Choose dihedral angle   which orients Op p  in 3-D space by following a2 1 2  

 
similar process. After rotation such that Op2  is aligned with +z axis, applying the law of 

1 2 2 2cosines produces  2  cos (r1  l2  l1 ) 2r l1 2  . The location of p1  is therefore 

0 h d T  where d  l cos  and h  l sin  . The position p  Rp  where R is2 2 2 1 2 2 1 2 1 1 

 
given in (8) and k1  in (9)-(12) is replaced by k2 , a unit vector along Op2 . 

3.5 Results 

The OctArm continuum trunk [7] consists of a pneumatically-actuated, three-

section, intrinsically-actuated trunk. Pressure regulation values control length and 

bending of each section while string encoders measure the resulting curvature for 

feedback to a PC-104-based control system. A remote PC accepts user input via joystick 

and relays desired trunk postures to the OctArm system; the remote PC also displays a 

real-time, 3D model of the expected trunk shape. 
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One difficulty faced when evaluating the trunk in the field [7] was the inability to 

command the trunk to avoid obstacles while maintaining tip position for insertion or 

inspection tasks. Although traditional Jacobian null-space techniques could be used, these 

lack a user-centric method of specifying how the trunk should be shaped to avoid these 

obstacles. 

To remedy this, the single-section kinematics described in this section were 

implemented by adding an additional control mode to the user interface routines 

described in [19]. 

P3 P3 

P2 

P2P1 

(b) P1 

(a) 

Figure 18 Simulation results illustrating the possible 
singular configurations. 

In (a), algorithms in both section 3.3.1 and in 3.4.2 result in 
singular configuration where the rigid-link robot as well as 
the continuum trunk are stretched completely in order to 
reach the farthest tip location. In (b), only the rigid-link robot 
assumes a singular configuration with all the links extended 
in a straight line. 

41 



    

 

      

 

  

 

In this mode, the operator can select trunk sections to move using the inverse 

kinematic algorithms given in section 3.2 and then control resulting trunk movement via 

the joystick. A maneuver designed to illustrate potential obstacle avoidance techniques 

produced using these algorithms is pictured in Figure 11. Beginning with a straight trunk 

shown in Figure 11(a), the user then selected the second to last section of the trunk and 

moved it to the left via the joystick, while the algorithm kept all other points stationary. 

Thus shaped, the tip of the trunk could now be moved around an obstacle located at the 

bend in the second section. To assess the suitability of the multi-section inverse 

kinematics algorithms presented for operation in real time, timing results for the multi-

section algorithm obtained on a 3.0 GHz Pentium 4 show that the algorithm requires 0.3 

ms to execute for a 3 section continuum robot, making it eminently suitable for real-time 

application. However, this algorithm has not yet been evaluated on the actual robot. 

In addition, the algorithms and derivations in section 3.3.1 and 3.4.2 were 

implemented in Matlab and visualized in a 3D graphics library. Figure 17 shows a three 

section continuum manipulator starting at origin and reaching to 1 1 11T  with rigid-

link lengths of l  5 , l  4 , and l  3 and dihedral angles   2 / 3  and   0 . The1 2 3 1 2 

output of the procedure given in section 3.4.2 is shown in Figure 17(a) where p1 , p2 , 

and  are indicated as small red spheres. This shows triangles Op p  and Op p  inp3 2 3  1 2  

3D space with orientations 2 3  and 0 respectively. Figure 17(b) shows the final output  

from algorithm 3.3.1 where a continuum manipulator can be seen along the skeleton 

obtained from applying derivation 3.4.2. 
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P2 P3 P2 P3 

P1 P1 

(a) 

(b) 

Figure 19 Results of singular configuration 

Item (a) shows a singular configuration of the rigid-link robot 
produced by a “flat” triangle configuration where r l l  . Image 1 1 2 

(b) shows the continuum trunk developed from the knowledge of 
end-points given in (a). Red, green, and blue coordinate axis 
represent x, y, and z axis respectively. Red, green, and blue sections 
of trunk represent sections 1, 2, and 3 respectively. 

Singular configurations explored in Figure 19 illustrate a case with a “flat” 

triangle (when 1   2 ); as a result Op p is no longer present. Two different singularr l l1 1 2  

configurations are illustrated in Figure 18. Figure 18(a) is a case where both 3.3.1 and 

3.4.2 achieve a singular configuration when robot is reaching the farthest point it can go 

to by stretching completely. Figure 18(b) is a case where only 3.4.2 produces a singular 

configuration with all rigid links in one line. 
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3.6 Potential Applications 

The unique nature of a hyper-redundant continuum trunk presents both daunting 

challenges and fascinating opportunities for grasping and manipulation of a wide range of 

objects. Given a desired tip position, algorithms presented in this paper provide a simple, 

closed-form solution to move a single trunk section (which possesses three degrees of 

freedom) to the given endpoint. The ability to choose the endpoint for each section of a 

multi-section trunk allows fine control of trunk shape for obstacle avoidance, grasping, 

and related tasks as illustrated in Figure 11. 

Additional algorithms allow specification of a single end-point for the entire trunk 

and provide insight into the solution space of the system. These inverse kinematics tools 

provide a foundation for additional exploration into methods to make use of the 

marvelous dexterity present in continuum manipulators. 

3.7 Summary 

This chapter presents a solution for a multi-section inverse kinematics problem 

when only the final end-point of the continuum trunk is known. The procedure starts by 

finding the end-points of section 1 and section 2; then, the inverse kinematics for section 

1 is solved by applying the single-section inverse kinematics algorithm. Forward 

kinematics is used to find the translations and rotations to the end of section 1. Then the 

inverse of these transformations are applied on section 2 to move it to origin and now 

inverse kinematics for section 2 can be solved similar to section 1.  
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The whole procedure is repeated for section 3. Therefore a complete inverse 

kinematics solution for a multi-section continuum trunk is obtained. Moreover, these 

algorithms provide insight into the solution space of the system rather than giving a 

single solution. The ability to choose the end-point for each section of a multi-section 

trunk allows fine control of trunk shape for obstacle avoidance, grasping, and related 

tasks. These inverse kinematics tools provide a foundation for additional exploration into 

methods to make use of the marvelous dexterity present in continuum manipulators. 
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CHAPTER IV 

VISUALIZATION OF CONTINUUM ROBOTS 

4.1 Introduction 

The rapid advancements in the field of computer graphics over the past decade 

enable roboticists to visualize, manipulate, test, and analyze robots. For example, a 

joystick can be used to manipulate the virtual model of the robot on a PC, enabling a 

researcher to easily evaluate, estimate and compare the functionality of the robot. After 

such a validation the model can be modified to rectify errors or include additional 

functionality. Thus a virtual model is more intuitive, feasible and cost-effective to 

validate than a physical robot. 

Moreover, a 3D model is not only used for evaluation but also for real-time 

control of a physical robot. Following the methods outlined in the “Electrical Design” 

section of Chapter 2, a physical robot can be controlled from a remote PC via a local area 

network connection. Using concepts presented in this chapter which detail creation of a 

real-time 3D model of a continuum robot, on the monitor of such a system user will see 

two different models of the robot. One will be a simulation of the desired shape of the 

robot that is generated based on input from the user. This input will also be sent to the 

physical robot via the local area network, whose encoders will report actual robot shape 

to the PC, which is then reflected by a 3D model of the actual shape of the physical robot. 
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The user can now compare the ideal model and the real model side by side. Thus 

the 3D visualization of the robot enables the researchers not only to evaluate a virtual 

model but also to control a physical robot remotely and compare the performance in a 

real-world situation. While many techniques for visualization of traditional rigid-link 

robots exist, techniques to visualize and manipulate continuum robots using 3D graphics 

based on non-uniform rational B-splines (NURBS) have only recently been developed 

[31]. 

Non-uniform rational B-splines (NURBS) are a very powerful technique for 

computer-aided design (CAD), manufacturing (CAM), and engineering (CAE). Not only 

standard and mathematical shapes like conic sections, but also free-form shapes can be 

reproduced using NURBS. They are also efficient in terms of memory usage and 

calculation speed. A NURBS curve is defined by three parameters: control points that 

define the shape of the curve; a knot vector that determines where and how control points 

affect the NURBS curve, and the order of a NURBS curve that specifies the number of 

nearby control points that influence any given point on the curve. Translations and 

rotations can be performed on a NURBS curve by simply applying them to the curve’s 

control points. Moreover, NURBS curves and surfaces are supported by various 3D 

Graphic Application Programming Interfaces (APIs) like OpenGL, DirectX, and high 

level APIs like OpenInventor. 

This chapter describes the programming techniques used in developing a 3D 

visualization interface for AirOctor and OctArm. The basic mathematics and the 

algorithm to draw a single section continuum trunk using NURBS is acquired from [31]. 
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This work extends this technique to accurately represent and animate multi-

section AirOctor and OctArm continuum robots. In addition, it provides a convenient 

MATLAB interface enabling easy control of the model, in contrast to [31] C++ interface. 

4.2 Background 

[31] used Coin3D implementation of OpenInventor platform for NURBS 

visualization. The OpenInventor standard specifies a set of C++ libraries which provides 

convenient, high-level interface in which to create and visual 3D graphics entities, in 

contrast with the lower-level complexity of OpenGL. MATLAB’s language and 

toolboxes provide an excellent tool for determining the control points for the NURBS 

trunk, while C++’s limitations make performing the necessary calculations difficult and 

error-prone to develop. Therefore, to obtain the maximum benefit from Matlab as well as 

OpenInventor, a Bridge library which interfaces the Coin3D implementation of 

OpenInventor to MATLAB has been developed to enable users to build code in Matlab to 

draw a NURBS trunk. 

The graphics code is created in Matlab in the form of a string that contains the 

complete description of the NURBS trunk as a scene graph [32] which is then passed to 

the Bridge program. The Bridge program uses the Coin3D libraries to convert the high 

level scenegraph description into desired output on the screen. Compared with C++, the 

development time is significantly reduced by using MATLAB to implement an algorithm 

involving scientific and matrix operations.  
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At the same time being able to visualize the possible solution in 3D makes the 

process of developing an algorithm time efficient. For example, a Matlab GUI with 

several sliders was developed to study the inverse kinematics of continuum robot where 

the sliders can dynamically change the 3D representation of trunk. This GUI has been 

very useful in analyzing multiple solutions to the inverse kinematics problem.  

The features of the code include the OpenInventor Graphical User Interface (GUI) 

window where the trunk can be rotated, zoomed, and can be seen in several viewing 

modes which is very useful to understand the structure of the trunk in 3D. The same 

statement can be used to draw an AirOctor or OctArm just by switching a number in the 

input to the function. Co-ordinate axes placed at the starting of each actuator are helpful 

to understand the orientation of trunk in 3D space. Complete code is divided into small 

and separate functions, so it becomes very easy to upgrade the code to include new 

features without completely rewriting the code. The rest of the chapter gives a detailed 

overview of the functionality and the features of the code. 

4.3 Code 

Figure 20 shows all the MATLAB m-files and the internal functions which 

comprise the complete trunk visualization code. Figure 20 also highlights different layers 

of abstraction in the code such as the graphics driver, OpenGL, OpenInventor, the Matlab 

Bridge, Matlab, and NURBS applications. 
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Each solid rectangular box represents one m-file and the boxes inside it are the 

internal functions of the m-file. Beginning at the top of the diagram: 

 demoNurbsTrunk.m is an example of a simple top-level NURBS application. 

Applications like these can be easily developed to visualize various configurations of 

AirOctor and OctArm robots by simple modifications of this program. Different 

configurations of the robots can be produced by using simple commands without any 

knowledge of the underlying code. A complete listing of this program, shown below, 

illustrates all the essential operations this software package provides. 

mi = mInventor; 
trunk = nurbsTrunk(mi);
trunk.drawTrunk([pi/3,pi/3,pi/3],[0.2,0.2,0.2],[0,0,0],1,0,2);
trunk.setTrunk([pi/3,pi,pi/3],[0.2,0.2,0.2],[0,0,0],1,0,2); 

4.3.1 Nurbs Trunk 

 inst = nurbsTrunk(mInventorInst) is the main file that generates the NURBS trunk. 

It consists of two subfunctions, drawTrunk and setTrunk. When this function is called it 

takes an instance of the function mInventor as input and returns the equivalent of a 

nurbsTrunk class instance which provides access to drawTrunk and setTrunk. 
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 drawTrunk(theta,kappa,phi,d,base,choice) is the subfunction which draws a 

complete NURBS trunk. It can create either a single or multiple section trunk of either 

OctArm or AirOctor. This function internally calls the getNurbsText function to generate 

the text required to draw a single NURBS section. To draw a trunk, getNurbsText is 

called multiple times, once for each section (for AirOctor) or three times for each section 

(for OctArm, which is composed o three actuators per section). This function accepts 

basic parameters that define a trunk like theta – the angle subtended by the trunk at its 

center, kappa – the curvature of the trunk, phi – the angle of orientation of the trunk, d – 

the radius of the trunk, base – the base rotation angle, and choice – this parameter gives 

the user an option to draw either an AirOctor (choice = 1) or an OctArm (choicei = 2). 

The length of the vector given for each parameter determines the number of sections of 

the trunk. For example, choosing a 2-element theta, kappa, phi, and d produces a two-

section trunk. 
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Figure 20 Diagram illustrating the hierarchical structure of the code.  

Each rectangle is a function written in a separate file. The rectangles inside a rectangle are 
the sub-functions of the function represented by the outer rectangle.  
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 setTrunk(theta,kappa,phi,d,base,choice) is used to modify the parameters of an 

existing NURBS trunk. This function is useful to visualize different configurations of the 

robot without completely redrawing the entire scenegraph. The input parameters for this 

function are exactly the same as that of drawTrunk. 

 str = getNurbsText(theta,kappa,phi,d,act) is the function that is responsible for 

taking all the transformation matrices, control points, vectors and all other mathematical 

values and formatting them into the string that describes the scene graph of the NURBS 

trunk. This function is used to create the string for both AirOctor and OctArm. The input 

parameters for this function include the physical parameters of the trunk which were 

passed to drawTrunk or setTrunk earlier. In addition to that, one more parameter ‘act’ is 

included which is used to identify whether it is actuator 1, 2, or 3 in case of an OctArm. It 

is a 0 in case of an AirOctor. This function returns a string ‘str’ as an output. 

4.3.2 3-D rendering: mInventor, MatlabOI, Coin, and OpenInventor 

 inst = mInventor  provides Matlab access to OpenInventor. When called this function 

will return an instance of the class it represents through which its internal functions 

create, setwait, and terminate can be accessed. Matlab can access OpenInventor through 

these internal functions. mInventor depends upon the matlaboi MEX-function, which 

implements all the underlying OpenInventor operations through the MATLAB MEX 

interface. This function does not have any input parameters. 
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 ret = create(str) is a sub function of mInventor, accepts a string as an argument 

which contains the complete description of a scene. The information in this string is then 

passed over to OpenInventor, then to OpenGL, and finally to the graphics driver and 

down the graphics pipeline at the end of which the 3D picture is displayed on the screen. 

 ret = setWait(varargin) is a sub function of mInvetor, is used to modify the objects 

that are already present in an existing scene. The value of a field of an object in the scene 

can be set using this function. Thus this function can change the shape, size, appearance, 

orientation, and many other fields of an object in the scene resulting in a completely new 

way a scene is rendered. There can be variable number of arguments for this function. 

The number of arguments depends upon the type of parameter that is being set. 

 ret = terminate is a sub function of mInventor, is the opposite of create. It terminates 

the OpenInventor process but does not delete the mInventor instance. When called, this 

routine deletes the entire scene, requiring a call to. Subsequent calls to create begin a new 

scene. 

 matlaboi.cpp accepts parameters from mInventor which contains all the information 

necessary to draw a NURBS trunk and forwards them to osinterface for 3D rendering via 

OpenInventor, passing results from OpenInventor back to mInventor. 
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 osinterface.cpp & osinterface.h act as link between matlaboi and OpenInventor. Due 

to OpenInventor’s design, OpenInventor must be run in a separate thread, handled by 

osinterface. These routines provide the necessary synchronization between the MATALB 

thread in which matlaboi executes and the OpenInventor thread run by osinterface to 

move commands from MATLAB to OpenInventor and results (such as error codes or a 

success code) from OpenInventor back to MATLAB. Specifically, osinterface passes 

commands from matlabio to the OpenInventor thread and those commands are rendered 

into a 3D scene. This function synchronizes both matlaboi and OpenInventor. It holds the 

execution of OpenInventor thread until matlaboi finishes parsing the commands. It also 

holds the matlaboi thread until OpenInventor finishes rendering the scene. 

 OpenInventor is a 3D toolkit that enables programmers to write programs to create 

interactive 3D applications with very little programming effort. It is a collection of 

objects and methods which build on OpenGL which is written in C++. 

 Coin3D is a collection of C++ libraries which are compatible with OpenInventor 

provided by www.coin3d.org. The Coin3D implementation provides a free, well-

maintained, multi-platform realization of the OpenInventor standard. 
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4.3.3 Nurbs – related functions 

 A = amatrix(k,phi,theta,thetactrl) is used to calculate A matrix, a homogenous 

transformation matrix used to place control points for a NURBS trunk. Its derivation is 

given in [31]. It is called from drawTrunk, setTrunk, and drawnurbs functions. 

 vknotstring = makevknots(vknots) creates a formatted string from vknots vector, 

based on the knot vector described in [31, 32]. It is called from getNurbsText function. 

 axis = drawaxis(cyr,cyh,cor,coh,choice) creates a formatted string to draw a 

coordinate axis at the beginning of each NURBS section. 

 Pts = makepoints(P) converts CONTROL_POINTS matrix into a formatted string 

that matlaboi and OpenInventor would recognize. 

 [ ControlPts, vknots] = drawnurbs(thetaf,kappa,phi,d) is the function where all the 

computation necessary to draw the trunk takes place. It calculates the 

CONTROL_POINTS matrix and VKNOT vector necessary to draw a single NURBS 

section. 

P0 = P0matrix(d), B = bmatrix(thetactrl), and RZ = RZphi(phi) are three functions used 

by drawnurbs to compute three different matrices defined in [31].  
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4.4 Flowcharts 

This section presents the flowcharts for the main functions of the code such as 

drawTrunk (see Figure 21, Figure 22, Figure 23), setTrunk (see Figure 24, Figure 25), 

and getNurbsText (see Figure 26, Figure 27). 
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The final version of the string 
with the base, NURBS trunk, the 
start and the end is put together 

to pass it on to the create 
function 

and so on... 

Figure 21 Shown above is the first part of the flowchart for the drawTrunk function. 
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… 
Figure 22 Shown above is the second part of the flowchart 

for the drawTrunk function. 
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…………...

Figure 23 This is the third and last part of 
the flowchart for the drawTrunk 
function. 
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Figure 24 Shown above is the first part of the 

flowchart for the setTrunk function. 
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Figure 25 Shown above is the second and last part of 

the flowchart for the setTrunk function. 
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Figure 26 Shown above is the first part of the flowchart for the getNurbsText 

function. 
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 Figure 27 Shown above is the second and last part of the flowchart for 
getNurbsText function. 
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4.5 Code Flow 

Shown above in Figure 28 is the code flow diagram for the NURBS code. The sequence 

of execution of code is explained in steps below. 

1. demoNurbsTrunk calls mInventor and receives an instance of mInventor. Internal 

functions of mInventor can be accessed using this instance. 

2. demoNurbsTrunk passes the mInventor instance to nurbsTrunk and receives an 

instance of nurbsTrunk. 

3. drawTrunk function which is an internal function of nurbsTrunk is now called using 

the instance of nurbsTrunk function that has been received in Step 2. 

4. getNurbsText function is called from inside the drawTrunk function. getNurbsText is 

an internal function of nurbsTrunk and it cannot be used directly by the user. 

5. drawnurbs function is called from inside the getNurbsText function. 

6. function calls to P0matrix, bmatrix, and RzPhi are placed from inside the drawnurbs 

function to obtain required matrices. 

7. drawnurbs completes calculating the ‘Control_Points’ and the ‘vknots’ required to 

draw the trunk and returns them to getNurbsText. 

8. After receiving ‘Control_Points’ and the ‘vknots’ from drawnurbs, getNurbsText 

calls functions drawaxis, makepoints, and makenknots to format the string necessary 

to draw the trunk. 

9. getNurbsText finishes formatting the string and returns it to drawTrunk. 
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…………...

demoNurbsTr 
unk 

mInventor 

drawTrunk 

setTrunk 

nurbsTrunk 

setWait 
create 

amatrix 

drawnurbs 

getNurbsText 

drawaxismakevknots 

makepoints 

P0matrix 

RzPhi 

bmatrix 

Figure 28 The above diagram illustrates the code flow sequence of the trunk 
visualization code. 

Each circle represents an individual function in the code. The interconnections 
explain where each function is being accessed from.
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10. drawTrunk receives the string from getNurbsText and passes it to the create function 

to display the trunk on the screen. 

11. At this point, the trunk will be displayed on the screen but the required 

transformations will not be present. drawTrunk calls amatrix function to calculate the 

required transformations. 

12. After amatrix returns the transformation matrix, drawTrunk calls setwait function to 

set the missing transformations in the trunk. 

13. A complete NURBS trunk will appear on the screen which is accurate and can be 

moved around or rotated using the OpenInventor GUI. 

14. Physical parameters of the existing trunk can be modified by calling the setTrunk 

function with the new parameters as inputs. 

15. setTrunk calls drawnurbs internally to calculate new ‘Control Points’ and ‘vknots’. 

16. setTrunk updates the new values for ‘Control Points’ and ‘vknots’ by calling setwait. 

17. Calls to amatrix provide new transformation matrices. 

18. setTrunk again calls setwait to modify the transformations in the new trunk. 

19. End of demoNurbsTrunk. 

4.6 Summary 

This chapter describes the programming techniques used in developing a 3D 

visualization interface for AirOctor and OctArm. The trunk visualization code uses Non-

Uniform Rational B-Splines (NURBS) to represent continuum sections of the trunk 

accurately. 
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The bridge program enables the user to completely program in Matlab, which is 

more convenient than shifting between Matlab and C++. The code uses Coin3D which is 

a collection of C++ libraries from www.coin3d.org  that are compatible with 

OpenInventor, a toolkit for graphics programming built on top of OpenGL. The chapter 

clearly explains all parts of the code with flowcharts and a code flow diagram. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis presents a significant contribution in the design, construction, 

verification, inverse kinematics, and visualization of continuum robots. First, a novel 

approach in the design, construction and analysis of a continuum robot was presented in 

chapter two. The drawbacks of two existing designs were examined and a new 

mechanical design that uses a single latex rubber tube as the central member was 

proposed which provided a design that is both simple and robust. This is a low-cost 

design and can be easily reproducible which makes it suitable as a general purpose 

continuum robot that can be used a standard prototype. A novel verification procedure is 

then applied to examine the validity of the proposed design in two different domains of 

applicability and could be used to verify many other models that are constructed based on 

similar assumptions. Finally, a two-level electrical control scheme was introduced which 

enables rapid prototyping. 

A novel solution to the inverse kinematics problem for a single-section and multi-

section continuum trunk was proposed in chapter three. Given a desired tip position, 

algorithms presented in this chapter provide a simple, closed-form solution to move a 

single trunk section (which possesses three degrees of freedom) to the given end-point.    
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The ability to choose the end-point for each section of a multi-section trunk 

allows fine control of trunk shape for obstacle avoidance, grasping, and related tasks. 

Additional algorithms allow specification of a single end-point for the entire trunk and 

provide insight into the solution space of the system. The results of implementing these 

algorithms in simulation were presented and possible applications discussed. These 

inverse kinematics tools provide a foundation for additional exploration into methods to 

make use of the marvelous dexterity present in continuum manipulators. 

Finally, chapter four provides an insight into the techniques involved in 

visualizing continuum robots. A series of routines and interfaces enable the end-user to 

easily visualize two different versions of continuum robots, Air Octor and OctArm. 

Combination of tools like MATLAB, Coin3D and OpenInventor provided an easy and 

rapid development of this trunk visualization project. The Graphical User Interface (GUI) 

is equipped with several controls and options which make the visualizations more clear 

and intuitive. The complete functionality and the features of this visualization code were 

explained in detail using block diagrams and flowcharts. 

5.2 Future Work 

There is a wide possibility for improvement in mechanical design, where lighter 

and stronger materials can be used to increase the overall strength, accuracy and 

flexibility of the trunk can be improved. Replacing PC104 modules with PIC24 

microcontrollers may provide much simpler, cheaper and faster prototyping.  
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Inverse kinematic algorithms should be able to automatically reduce the solution 

space to a few solutions that are optimum for the trunk in term of physical constraints of 

the robot. The trunk visualization code can be improved to include more realistic effects 

on the trunk such as torsion, shear, stress, and bending which in turn enable users to 

visualize different variations of continuum trunk designs.  
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