
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-5-2007

Automated Mapping of Clocked Logic to Quasi-Delay Insensitive Automated Mapping of Clocked Logic to Quasi-Delay Insensitive

Circuits Circuits

Lokesh Shivakumaraiah

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Shivakumaraiah, Lokesh, "Automated Mapping of Clocked Logic to Quasi-Delay Insensitive Circuits"
(2007). Theses and Dissertations. 824.
https://scholarsjunction.msstate.edu/td/824

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/824?utm_source=scholarsjunction.msstate.edu%2Ftd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

AUTOMATED MAPPING OF CLOCKED LOGIC TO

QUASI-DELAY INSENSITIVE CIRCUITS

By

Lokesh Shivakumaraiah

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

May 2007

Copyright by

Lokesh Shivakumaraiah

2007

AUTOMATED MAPPING OF CLOCKED LOGIC TO

QUASI-DELAY INSENSITIVE CIRCUITS

By

Lokesh Shivakumaraiah

Approved:

_________________________________ _________________________________
Robert B. Reese Jerry W. Bruce
Associate Professor of Electrical and Associate Professor of Electrical and
Computer Engineering Computer Engineering
(Director of Dissertation) (Committee Member)

_________________________________ _________________________________
James C. Harden Thomas Philip
Retired Head of the Department and, Professor of Computer Science and
Professor of Electrical and Computer Engineering (Committee Member)
Engineering
(Committee Member)

_________________________________ _________________________________
Nicholas H. Younan Kirk Schulz
Graduate Program Director and Professor Dean and Professor
of Electrical and Computer Dean of Engineering
Engineering

Name: Lokesh Shivakumaraiah

Date of Degree: May 4, 2007

Institution: Mississippi State University

Major Field: Computer Engineering

Major Professor: Robert (Bob) Reese

Title of Study: AUTOMATED MAPPING OF CLOCKED LOGIC TO QUASI-DELAY

INSENSITIVE CIRCUITS

Pages in Study: 121

Candidate for Degree of Doctor of Philosophy

The use of computer aided design (CAD) tools has catalyzed the growth of IC

design techniques. The rapid growth in transistor count for synchronous digital circuits

has increased circuit complexity. This growing complexity of synchronous circuits has

exposed design issues such as clock skew, increased power consumption, increased

electromagnetic interference and worst case performance.

The increasing number of challenges posed by synchronous designs has

encouraged researchers to explore asynchronous design techniques as an alternative

methodology. Asynchronous circuits do not use a global clock signal that is the primary

cause of many design challenges faced by synchronous designers. It has also been shown

in some designs that asynchronous circuits consumes less power, and exhibits better

average case performance than synchronous circuits.

Asynchronous design techniques, even with their various advantages over

synchronous systems, are not widely accepted by logic designers. This is due to the

shortcomings of asynchronous design methodologies, primarily, the limited availability

of CAD tool support and the use of proprietary specification languages.

To overcome the shortcomings of current asynchronous design techniques, this

research uses a methodology for designing asynchronous circuits starting from clocked

RTL design. This research extends the concepts of Phased Logic (PL) and marked graphs

to quasi-delay insensitive gates (QDI) gates to create an asynchronous PL-QDI

methodology. The PL methodology is easy to use as it maps conventional RTL designs

into delay insensitive PL circuits using commercial CAD tools. Caltech’s QDI gates

exhibit fast forward latency, but the use of Caltech’s methodology requires a user skilled

in the pecurialities of the Caltech design methodology. This research uses best of

Caltech’s QDI circuit methodology and the PL methodology to come up with a new

asynchronous PL-QDI methodology. It also presents a synthesis algorithm that uses

commercially available synchronous CAD tools to map clocked designs to PL-QDI

systems.

Results of this research show that third-party clocked RTL codes including

intellectual property (IP) cores can be converted to asynchronous PL-QDI systems using

the PL-QDI CAD tools presented in this research. This work shows how mature

synchronous CAD tools can be used to design clockless circuits.

 ii

DEDICATION

I would like to dedicate this research to my parents (D. Shivakumaraiah and

Sakamma) and my brother (Vasanthkumar Shivakumaraiah) who have greatly supported

me throughout my life. They have always encouraged me to pursue my PhD. Without

their encouragement it would not have been possible to reach this milestone in my career.

 iii

ACKNOWLEDGMENTS

I would like to extend my special thank to Dr. Robert (Bob) Reese for taking his

precious time for guiding me through out the research. His words “hard work never go

unnoticed” always keeps me motivated while working through the tough problem.

I also want to express gratitude to Dr. Jim C. Harden, Dr. Thomas Philip and Dr.

Jerry W. Bruce who had their doors open for me to discuss either my academic/research

topics or student life.

 iv

TABLE OF CONTENTS

 Page

DEDICATION... ...ii

ACKNOWLEDGMENTSiii

LIST OF TABLES... .vii

LIST OF FIGURES ...viii

CHAPTER

I. INTRODUCTION1

1.1 Disadvantages of Synchronous Circuits2
1.1.1 Clock Skew2
1.1.2 Worst-case Performance2
1.1.3 Increased Power Dissipation..3
1.1.4 High Electromagnetic Interference3
1.1.5 Metastability4
1.1.6 No Change in Performance with External Environment4

1.2 Advantages of Asynchronous Circuits...4
1.2.1 Absence of Clock Skew...4
1.2.2 Average-case Performance5
1.2.3 Low Power Consumption5
1.2.4 Less Electromagnetic Interference...6
1.2.5 Tolerence to External Environment6
1.2.6 Challenges Faced by Asynchronous Design............................6
1.2.7 Research Overview9

1.3 Thesis Organization9

II. ASYNCHRONOUS DESIGN CONCEPTS12

2.1 Data Communication in Synchronous and Asynchronous Circuits..... ..12
2.2 Asynchronous Circuit Classification Based on Delay Models15

2.2.1 Bounded Delay Model16
2.2.2 Unbounded Delay Models16
2.2.3 Delay insensitive Circuits16
2.2.4 Quasi-delay Insensitive Circuits17
2.2.5 Speed Independent Circuits18

2.3 Data-encoding for Asynchronous Data.. ..18
2.3.1 Single-rail Encoding18

 v

2.3.2 1-of-N Encoding20
2.4 Handshaking Protocols23

2.4.1 Two-phase Handshaking.. ..25
2.4.2 Four-phase Handshaking25

III. PHASED LOGIC SYSTEMS & QUASI-DELAY INSENSITIVE SYSTEMS................... ..28

3.1 Phased Logic Systems.. ..28
3.1.1 Level-encoded Dual-rail Encoding29
3.1.2 Phased Logic Gates.. ..30
3.1.3 Petri-nets32
3.1.4 Marked Graph33
3.1.5 Mapping Clocked Netlists to PL Netlists................................. ..34

3.2 Quasi-Delay Insensitive Systems... ..39
3.2.1 Weak-conditioned Half Buffer39
3.2.2 Precharged Half Buffer and Precharge Full Buffer40
3.2.3 Four-phase Handshaking in PCHB Gates................................ ..43
3.2.4 PCHB Gates Internal Operation... ..44
3.2.5 Caltech’s Asynchronous Design Methodology47

3.3 Summary51

IV. PHASED LOGIC FOR QUASI-DELAY INSENSITIVE CIRCUITS............................... ..52

4.1 A Cell Design for PL-QDI systems52
4.1.1 Performance of Caltech’s QDI Design Cells52
4.1.2 PL-QDI Template Gate.. ..54

4.2 Token Abstraction for Quasi-Delay Insensitive Gates54
4.3 Mapping of a Clocked Netlist to a PL-QDI Netlist58
4.4 PL-QDI Gate Interaction.. ..59
4.5 Modifications to the PL-QDI Gate Template for Barrier Gates65

4.5.1 Forced Token at the Barrier Gate Output65
4.5.2 Initial Token Removal on the Barrier Gate Output Feedback . ..67

V. CAD SUPPORT FOR PL-QDI CIRCUIT DESIGN.. ..68

5.1 Introduction to Synchronous CAD Tools68
5.2 An RTL Flow for Synchronous Circuits.. ..70
5.3 CAD Tools and Asynchronous Integrated Circuit Design73
5.4 PL-QDI Synthesis74

5.4.1 PL-QDI Synthesis Algorithm75
5.5 CAD Tool Flow of PL-QDI Methodology84
5.6 PL-QDI Gate Library... ..90
5.7 Summary93

VI. PL-QDI DESIGN EXAMPLES95

6.1 PL-QDI System Features95
6.1.1 PL-QDI Systems Maintain The Synchronous Property.......... ..95

 vi

6.1.2 PL-QDI Gates Exhibit Fast Forward Latency96
6.2 PL-QDI Testbench98
6.3 Design Examples ...101

6.3.1 Counter Designs...101
6.3.2 64-bit Floating Point Clipper Circuit104
6.3.3 picoJava-II Floating Point Unit..108

VII. CONCLUSION AND FUTURE WORK ...114

7.1 Summary of Results...114
7.2 Future Work ...115

7.2.1 Modified PL-QDI Gate Library ...115
7.2.2 Physical Design..115

REFERENCES ..116

 vii

LIST OF TABLES

TABLE Page

 3.1 CHP notation ... 47

 3.2 Operators and the production rules.. 50

 6.1 Comparison of number of gates in clocked and PL-QDI designs……......... 102

 6.2 Gate count for 64-bit clipper examples ... 108

 6.3 Floating point unit arithmetic operations .. 111

 6.4 Floating point unit data type conversion operations...................................... 111

 6.5 Gate count of picoJava-II FPU designs ... 111

 viii

LIST OF FIGURES

FIGURE Page

 2.1 Data communication in synchronous and asynchronous circuits.................. ..13

 2.2 Classifications of delay models15

 2.3 Wire delay and gate delay model17

 2.4 Asynchronous circuit using single-rail encoding.20

 2.5 Dual-rail four-phase and two-phase encoding... ..23

 2.6 Synchronous circuit with sequential and combinational gates...................... ..24

 2.7 Handshaking protocols27

 3.1 LEDR encoding29

 3.2 PL Gate phase and corresponding token representation................................ ..31

 3.3 PL translation steps.. ..36

 3.4 PL feedback insertion rules and corresponding token markings................... ..38

 3.5 Weak conditioned half buffer gate40

 3.6 PCHB and PCFB gates.. ..42

 3.7 2-input PCHB AND gate operation... ..43

 3.8 Data communication in PCHB gates46

 4.1 Pl-QDI gate template... ..53

 4.2 Four-phase handshaking in PL-QDI gate54

 4.3 Token flow in PL-QDI gate, steps 1-356

 ix

 4.4 Token flow in PL-QDI gate, steps 4-557

 4.5 An example PL-QDI circuit..60

 4.6 Token marking in PL-QDI system during reset62

 4.7 Initial token marking after the release of reset showing safety violation...... ..63

 4.8 Live and safe initial token marking of PL-QDI circuit64

 4.9 PL-QDI barrier gate and waveforms explaining its working66

 5.1 RTL flow72

 5.2 PL-QDI synthesis pseudo code76

 5.3 One-to-one mapping of AND2 gate to PL-QDI AND2 gate......................... ..77

 5.4 Clocked circuit and equivalent PL-QDI network.. ..78

 5.5 Splitter gate insertion to break direct barrier gate to barrier gate path80

 5.6 Buffer function insertion81

 5.7 Feedback in a PL-QDI circuit.. ..82

 5.8 PL-QDI 2-bit counter with count enable83

 5.9 PL-QDI CAD flow85

 5.10 RTL code of 2-bit counter with count enable.. ..86

 5.11 Synthesized gate netlist of 2-bit counter with count enable87

 5.12 PL-QDI system produced from the PL-QDI CAD flow89

 5.13 PL-QDI through gate... ..90

 5.14 PL-QDI barrier gate... ..92

 x

 5.15 PL-QDI logic high constant generator93

 5.16 PL-QDI logic low constant generator.. ..93

 6.1 PL-QDI gate compute block.. ..97

 6.2 Block diagram of PL-QDI testbench...100

 6.3 Marked graph representation of PL-QDI testbench101

 6.4 PL-QDI counter testbench...103

 6.5 Clipper circuit high level abstraction ..104

 6.6 Datapath and control of clipper circuit ..106

 6.7 PL-QDI 64-bit clipper testbench ...107

 6.8 PL-QDI wrapper used around microcode ROM ...109

 6.9 PL-QDI 64-bit FPU block diagram ...112

 6.10 PL-QDI 64-bit FPU marked graph representation ..113

1

CHAPTER I

INTRODUCTION

Integrated chip design techniques have witnessed rapid growth since the invention

of the first commercial integrated circuits in the 1960s [29]. Transistor sizes have shrunk

to nanometer levels [43] and the number of transistors on a single chip has risen to

millions [30]. The use of computer aided design (CAD) tools [35] has catalyzed the

growth of IC design techniques. The rapid growth in transistor count for synchronous

digital circuits has increased circuit complexity. This growing complexity of synchronous

circuits has exposed design issues such as clock skew, increased power consumption,

increased electromagnetic interference (EMI), metastability and worst case performance

[28, 31, 32, 34, 36].

The increasing number of challenges posed by synchronous designs has

encouraged researchers to explore asynchronous design techniques [2, 4, 7, 9, 11, 26, 32,

37] as an alternative methodology. Asynchronous circuits have advantages such as no

clock skew, lower power consumption for average case performance, decreased

electromagnetic interference and average case performance [31, 32, 24].

2

1.1 Disadvantages of Synchronous Circuits

1.1.1 Clock Skew

Global clocks are used to synchronize output computations in synchronous

circuits. Shrinking transistor sizes has increased the number of gates on a chip, which has

increased the capacitive load on the global clock signal. Furthermore, the increasing

differences between gate delays (have decreased) and global wire delay (has remained

relatively constant) have exacerbated clock skew problems. Clock edges arrive earlier at

gates that are near, and late at gates that are far from the clock origin. Accounting for

clock skew means an increase in clock period and a decrease in the circuit speed [31]. To

tackle the problem of clock skew, designers must resort to using techniques such as

hierarchical clocks [53], clock distribution [52] and clock deskewing [50]. Thus, clock

skew is becoming increasingly challenging in synchronous IC design.

1.1.2 Worst-case Performance

Synchronous designers use clock periods that are greater than the longest path in

the design. This allows enough time for the completion of the output computation in the

longest path. At the same time, circuit paths whose delays are shorter than that of the

longest path must wait until the end of the clock period for the start of the next

computation. This results in idle time within the clock period and a decrease in

performance [32].

3

1.1.3 Increased Power Dissipation

Power is dissipated in synchronous designs due to dynamic power dissipation and

static power dissipation [47]. Static power dissipation is due to leakage current and sub-

threshold currents. Dynamic power is dissipated during the charging and discharging of

the gate’s load capacitance, and accounts for most of the power dissipation in

synchronous circuits [38]. The dynamic power consumption of synchronous circuits is

directly proportional to clock frequency, gate load capacitance, and the square of the

power supply. Advances in synchronous design methodologies have increased clock

frequency and the number of gates per chip resulting in increased power dissipation.

Sections of the synchronous circuit not involved in the current computation also undergo

switching due to the availability of the clock signal. This unnecessary switching adds to

the power dissipation in synchronous circuits. Furthermore, combinational gates undergo

temporary transitions before settling down to a stable output value. This unwanted

temporary switching also increases power dissipation in synchronous circuits. Increased

power dissipation has become a cause of concern for synchronous designers.

1.1.4 High Electromagnetic Interference

Rapidly changing current in synchronous circuits causes EMI [39]. Increased EMI

in synchronous circuits make it vulnerable to security attacks [28]. Thus, applications

requiring high security that use synchronous circuits require EMI shielding.

4

1.1.5 Metastability

Metastability is a condition where the circuits that stores states (ex: cross coupled

inverters) become biased at the midpoint of the two stable states representing logic high

and low [38, 24]. A circuit can remain in the metastable state for an unknown amount of

time before returning to a stable state. This can be harmful to synchronous designs as

clocked circuits cannot wait for the circuit in a metastable state to return to a stable state.

Synchronous systems should evaluate within a known period of time, so a metastable

output value may either be interpreted as a logic low or high resulting in unknown circuit

operation. After this kind of erroneous operation, the proper functionality of the

synchronous system cannot be restored.

1.1.6 No Change in Performance with External Environment

Designers of synchronous systems must account for variations of gate delays with

respect to temperature, power-supply voltage and fabrication parameters to determine the

clock period of the design under construction. This clock period must account for worst

case operating conditions and the longest delay path resulting in a longer clock period,

reducing the performance of synchronous circuits.

1.2 Advantages of Asynchronous Circuits

1.2.1 Absence of Clock Skew

 Asynchronous gates communicate with each other by means of a handshaking

protocol, thus eliminating the need for a global clock. Absence of a clock means there is

no clock skew in asynchronous circuits [28, 32, 31].

5

1.2.2 Average-case Performance

Asynchronous gates use handshaking signals such as input request and output

acknowledgement to establish data communication between gates. These handshaking

signals ensure that asynchronous gates begin a new computation at the arrival of new

inputs and do not have to wait for other gates to complete their computation. The variable

computation time of asynchronous gates results in an average case performance [24, 32,

31] of asynchronous systems that can be better than the worst-case performance of

synchronous systems.

1.2.3 Low Power Consumption

The global clock network that is a major source of power dissipation in

synchronous circuits is absent in asynchronous circuits. Asynchronous gates compute

outputs only after the arrival of all of the input signals, thus eliminating temporary

transitions seen in combinational gates. There are no transitions in unused parts of

asynchronous systems as they are waiting for input arrivals. Thus, many asynchronous

circuits show decreased power consumption over synchronous circuits that implement

similar functionality [28, 32, 31]. For example, Theseus Logic [46] implemented

Motorola’s STAR08 8-bit microcontroller using asynchronous Null Conventional Logic

(NCL). This asynchronous microcontroller (NCL08) exhibited approximately 38% less

power consumption than the synchronous STAR08 [45].

6

1.2.4 Less Electromagnetic Interference

Asynchronous circuits exhibit less EMI due to reduced switching activity [28].

The asynchronous NCL08 had 11db lower EMI than the synchronous STAR08 [45].

1.2.5 Tolerence to External Environment

Asynchronous circuits dynamically adjust their performance to best/typical/worst

case operating temperatures, power supply voltage, and fabrication variation [32]. This

means that the performance of asynchronous system when subjected to best case external

environment can be relatively faster than in the worst case. This is not the case with

synchronous circuits as their fastest performance depends on their worst case clock

period which is based upon the worst case environmental conditions irrespective of the

actual environmental conditions.

1.2.6 Challenges Faced by Asynchronous Design

Asynchronous design techniques even with their various advantages over

synchronous systems, are not widely accepted by logic designers. This is due to the

shortcomings of asynchronous design methodologies, primarily the limited availability of

CAD tool support [11] and the use of proprietory specification languages [36, 42]. This

section briefly discusses some common asynchronous methodologies and highlights their

drawbacks. Later, it explains how each of these disadvantages acts as barriers to adoption

of these methodologies by the IC design industry.

 Martin’s asynchronous design methodology [7, 27] translates communicating

sequential processes (CSP) into quasi-delay insensitive (QDI) asynchronous systems. In

7

this methodology, asynchronous circuit behavior is defined using sequential

communication hardware processes (CHP). Process decomposition is used to convert

asynchronous circuits described using CHP processes into a set of interactive concurrent

CHP processes. Hand shaking expansions (HSE) are used to implement communication

channels between the CHP processes using signal wires. HSEs obtained from the

previous transformation process are converted into a set of production rules (PRs) that

eliminates explicit sequencing. The operator reduction stage is then used to map PRs into

standard hardware components and state variables. Additional information about this

methodology is given in Chapter 3. The disadvantages of Caltech’s asynchronous QDI

methodology are the use of the CHP language and the systematic semantics-preserving

transformations that requires a skilled designer in order to produce optimum results.

 The asynchronous null convention logic (NCL) [41] methodology uses

synchronous CAD tools to generate asynchronous circuits. This design technique requires

the RTL to be coded using a specific coding style that separates registers and

combinational logic. Designers must also explicitly specify each register's request and

acknowledgement signals in the RTL code. The RTL is synthesized using an NCL-

specific target library. After synthesis, the gate netlist is mapped to delay-insensitive

minterm synthesis (DIMS) [48] type dual-rail assignments. DIMS is a method of boolean

algebra simplification similar to sum of products simplification, but in DIMS, minterms

are formed by using C-gates [20]. This methodology has some major drawbacks that

make it user unfriendly. Restrictions on RTL coding style make this methodology

unsuitable for using third party RTL or intellectual property (IP) RTL cores. Re-writing

8

RTL code in a specific coding style demands extensive work by the designer, and the

resulting code must be reverified as having the same functionality as the original.

 Beerel’s asynchronous methodology [24] requires circuit specifications using

state graphs with special properties. It uses cube lists to represent circuits. The synthesis

algorithm performs a series of transformations on the cube list to create asynchronous

designs. The disadvantage of this methodology is the use of a custom specification

language.

 The Phased Logic (PL) methodology maps clocked RTL to asynchronous circuits.

Linder and Harden in [9] describes PL as a delay insensitive methodology used to

describe asynchronous circuit operations in terms of token flow within marked graphs

while maintaining the synchronous paradigm. It uses level encoded dual-rail (LEDR)

signaling for data encoding to reduce power consumption due to signal transitions. This

methodology is easy to use in that it starts from a clocked netlist. However static CMOS

PL gates have an output latch that increases the critical path of PL systems. To help

overcome this performance penalty, PL systems can sometimes use early evaluation (EE)

gates in the critical paths. EE gates fire upon the arrival of an input subset (trigger

function) that can guarantee the correct output value. EE gates contain extra logic that is

used to detect the early trigger. The use of EE gates increases the transistor count of the

system.

This section has highlighted some of the drawbacks in present asynchronous

design techniques. The communicating processes compilation technique uses a full-

custom methodology and is not supported by commercial CAD tools. NCL logic has

9

restrictions on the RTL coding style. Beerel’s asynchronous design technique uses a

custom tool for synthesis. The PL methodology use gates with output latches that add

delay in the critical path.

The limited availability of commercially available mature CAD tools and

inadequate skilled manpower are huge barriers to the IC industry for accepting an

asynchronous methodology for logic design. To overcome these shortcomings, designers

are calling for the development of new CAD tools [31] or the use of commercial CAD

tools in asynchronous circuit design.

1.2.7 Research Overview

This research extends the concept of Phased Logic (PL) [9] and marked graphs to

quasi-delay insensitive gates (QDI) [15] gates to create an asynchronous PL-QDI

methodology. It also presents a synthesis algorithm that can make use of commercial

CAD tools to map clocked designs to PL-QDI systems.

The marked graph token abstraction first introduced in the PL methodology is

extended to QDI gates. A straight forward extension of PL concepts to QDI gates violates

PL initial token marking rules as well as QDI handshaking protocols resulting in a dead

system. This work overcomes these problems to construct a live PL-QDI system.

1.3 Thesis Organization

This section explains the organization of the remaining chapters in this thesis. It

gives a brief review of the concepts explained in each of the chapters.

10

Chapter II: Asynchronous Design Concepts

Chapter II describes different types of data encoding schemes and handshaking

protocols that are used in asynchronous design. Classification of asynchronous circuits

based on delay models is also briefly discussed.

Chapter III: Phased Logic Systems & Quasi-Delay Insensitive Systems

This chapter describes phased logic (PL) and quasi-delay insensitive (QDI)

circuits. The first part of this chapter gives an in-depth explanation of Petri-nets [10],

marked graphs [10], token abstraction, PL gate operation, PL gate firing rules, and the

PL-synthesis algorithm. The second half of the chapter gives an overview of QDI gates

and Caltech asynchronous design methodologies.

Chapter IV: Phased Logic for Quasi-Delay Insensitive circuits

Chapter IV covers the asynchronous design methodology developed in this

research. This chapter gives a detailed explanation of how token abstraction and marked

graph concepts are extended to QDI systems and explains how Caltech’s PCHB gate

design are modified to suit the PL-QDI methodology. A simple example of a PL-QDI

gate and its implementation is used to explain the operation of PL-QDI systems.

Chapter V: CAD Support for the PL-QDI methodology

This chapter explains the use of CAD tools in IC design and shows an example

RTL CAD flow used in RTL synthesis. The current state of CAD tools in the

asynchronous community is also discussed. A detailed explanation of the synthesis

algorithm used to map clocked RTL designs to asynchronous PL-QDI designs is covered

11

in this chapter. Finally, it describes the PL-QDI CAD flow developed by using

commercially-available mature CAD tools.

Chapter VI: Design examples

This chapter describes PL-QDI circuit features and explains how a PL-QDI

system interacts with its external environment. Results from clocked systems mapped to

PL-QDI systems are presented along with a discussion of test bench construction for PL-

QDI systems.

Chapter VII: Conclusion and Future Work

This chapter summarizes the results and explores areas of future work.

12

CHAPTER II

ASYNCHRONOUS DESIGN CONCEPTS

Unlike synchronous designs that use a clock signal to control data movement,

asynchronous designs use handshaking signals to exchange data between gates.

Handshaking signals are sequenced in a particular order defined by a handshaking

protocol to accomplish data communication. This chapter introduces the concepts of

asynchronous design. Section 1 compares data communication in synchronous systems

and asynchronous systems. Section 2 provides different classifications for asynchronous

methodologies, while section 3 describes data encoding schemes used within

asynchronous circuits. Finally, section 4 discusses common handshaking protocols for

data transmission within asynchronous circuits.

2.1 Data Communication in Synchronous and Asynchronous Circuits

In synchronous circuits, a global clock signal is used to synchronize data flow

within the circuit. Combinational gate outputs are assumed valid and latched into

sequential gates on either a rising/falling edge signal (edge-triggered) or by a high/low

level signal (level-sensitive). Asynchronous circuits do not have a global clock. Data

communication between asynchronous gates is performed by using handshaking signals

[22]. Input data arrival is detected by an input validity circuit, while output completion is

detected by an output completion circuit. Handshaking signals used for data transfer are

13

generated by using additional circuitry and data encoding styles. Data encoding styles

used in asynchronous gates are discussed later in this section.

Figure 2.1 Data communication in synchronous and asynchronous circuits

14

Figures 2.1a and 2.1b compare data communication within synchronous and

asynchronous circuits. Assume that the synchronous circuit shown in Figure 2.1a

processes its inputs on the rising clock edge. In Figure 2.1a, gate G1 produces its output

before the second rising clock edge for use by gate G2. Similarly, gates G2 and G3 must

produce their outputs before the next corresponding rising clock edge. This means that

the longest register-to-register path delay between synchronous gates G1, G2, G2 must all

be less than or equal to the clock period. The computation time in synchronous circuits

are fixed and is equal to the clock period. Figure 2.1b shows one method of asynchronous

communication using separate channels for data and handshaking signals. Asynchronous

gates G1 and G2 exchange data using acknowledgement ack and request req signals.

Gate G2 sends a request signal to Gate G1 indicates that it has finished computation and

is ready for new input data. Gate G2 responds by asserting the ack signal when the G2

output is ready. A similar exchange of handshaking signals is used for communication

between gates G2 and G3. The order in which handshaking signals are exchanged to

establish successful communication between asynchronous gates is defined as a

handshaking protocol. The handshaking protocol used for data communication in

asynchronous circuits allows the computation time of the asynchronous gates to be

variable. The variable computation time of asynchronous gates can be explained by using

the asynchronous circuit shown in Figure 2.1b. Gates G1, G2, G3 have computation

times of 2 ns, 8 ns, and 4 ns respectively. In a straight pipelined system this is not an

advantage, but in a system with feedback in the pipeline this can be used to produce a

15

lower average-case execution time during some interactive calculations in which the

delay of each loop iteration are variable.

2.2 Asynchronous Circuit Classification Based on Delay Models

Asynchronous circuits can be classified on the basis of the delay models used in

their designs. Delay models [11, 16] give information regarding the timing constraints

used in the circuit design stage. Delay models used in the design of asynchronous circuits

are classified as bounded and unbounded, depending on the timing assumptions of the

gate and wire delays in the system. Figure 2.2 shows the delay model classifications.

Figure 2.2 Classifications of delay models

16

2.2.1 Bounded Delay Model

A bounded delay model assumes known or bounded gate and wire delays that fall

within predefined minimum and maximum values. The bounded delay model concept is

related to the synchronous design’s delay model where gate and wire delays cannot

exceed the clock period of the circuit. This similarity made the bounded delay models

popular during the early stages of asynchronous design research [2, 16]. Circuits based on

bounded delay models involve stringent timing constraints during physical

implementation.

2.2.2 Unbounded Delay Models

An unbounded delay model assumes unbounded gate and wire delays, and is

further divided into delay insensitive, quasi-delay insensitive, and speed-independent

delay models based on the timing assumptions on the gate and wire delays.

2.2.3 Delay insensitive Circuits

The delay insensitive (DI) model is independent of gate and wire delays.

Asynchronous circuits implemented using the DI model should exhibit proper operation

for any arbitrary finite positive values for the gate and wire delays [11]. In Figure 2.3,

this is represented by finite random positive delay for all the gate delays (ΔGn) and wire

delays (wdn). In [14], Martin explains the limitations of DI circuits and shows that only

circuits composed of C-elements and buffers can be classified as delay insensitive.

Martin developed a new genre of delay insensitive circuits called quasi-delay insensitive

(QDI) circuits, which is a practical approximation of delay insensitive circuits.

17

Note Adopted from [16]

Figure 2.3 Wire delay and gate delay model

2.2.4 Quasi-delay Insensitive Circuits

The delay model used in quasi-delay insensitive (QDI) circuits assumes equal

delays on the branches of isochronic forks [13, 14, 7] and is independent of the other gate

and wire delays. Isochronic forks are splits in the circuit interconnect where the wire

delays of the splits are similar and small when compared to gate delays, such as to not

affect the correct operation of the circuit. In Figure 2.3, this is represented by nearly equal

wire delays (wd1 º wd2 º wdi where i = 3 to n) and random positive value for gate delays

(ΔGn).

18

2.2.5 Speed Independent Circuits

This delay model assumes random finite positive values for gate delays and

negligible wire delays [24]. In Figure 2.3, this is represented by all wire delays set to zero

(wd1= wd2= wdi = 0) where i = 3 to n and a random positive value for the gate delays

(ΔGn). In modern CMOS circuits, this is an impractical delay model since wire delays are

not negligible when compared to gate delays in submicron and nanometer designs.

2.3 Data-encoding for Asynchronous Data

 Data is encoded in asynchronous designs to facilitate the generation of

handshaking signals by the arrival of input data. Asynchronous gates have extra logic to

compute handshaking signals such as input completion and output completion signals.

The logic used for output completion detection and input data validity depends upon the

data encoding [1, 2, 4] scheme that is used in asynchronous circuits. This section

describes some of the different data-encoding schemes used in asynchronous design. Two

common forms of asynchronous data encoding are single-rail encoding and 1-of-N

encoding.

2.3.1 Single-rail Encoding

This is also called bundled-data or delay-matching encoding. In this type of

encoding, data and data valid signals are in separate channels. The data set can be

composed of many data signals and has an associated control signal called the data valid

signal. Thus, the data set is said to be bundled with its control signal [1]. Each data signal

in the data set is single-rail encoded, i.e. one physical signal is used for each bit of

19

information. The data valid signal is asserted only when the output is ready. Assertion of

the data valid signal represents valid data being present on the data line(s) and completion

of the functional computation. This is achieved by matching the delay of the data valid

signal with the worst case delay of the compute block that produces the data. This

technique is called delay matching. Circuits that use delay matching may encounter a race

between the data valid signal and the data [3]. Figure 2.4 shows a block diagram of an

asynchronous circuit that uses a bundled data approach. Each gate has a compute block

and a delay block. The compute block is used to perform the logical operation of the gate,

while the delay block is used to match the delay of the data valid signal to the worst case

delay path of the compute block. Unequal wiring delays between compute and delay

blocks can cause race conditions between the arrival of the data set and the data valid

signal.

20

Figure 2.4 Asynchronous circuit using single-rail encoding

2.3.2 1-of-N Encoding

1-of-N encoding derives the data valid signal from the input signals. This is done

by encoding N data values using N wires (i.e, encoding two values 0 and 1 requires two

wires, with one wire asserted for each value). In this type of encoding there is no race

between the arrival of the input data and the data valid signal, since the data valid signals

are generated from the 1-of-N encoded input data. The most common 1-of-N encoding

scheme is for N=2 and is called dual-rail encoding [23]. In a dual-rail encoding scheme,

each bit is represented by a pair of wires.

As an example, consider a signal S represented in dual-rail format using the

signals st and sf, where the subscripts t, f stands for logic high and low values

21

respectively. Dual-rail signals can be encoded either by using 2-phase encoding or 4-

phase encoding as shown in Figure 2.5. Figure 2.5a illustrates 4-phase encoding in which

a logical high value is represented as ‘10’ and a logical low value is encoded as ‘01’ on

the signal pair st, sf. Data arrival at the input of a gate is detected by st and sf being

unequal to each other. After each transmission of a logical high/low value, a null code of

‘00’ is placed on st, sf, to prepare the signals for next data value [3]. The null code is also

referred to as a spacer code [9] or a reset code. The code word ‘11’ is considered as an

invalid word in the dual-rail 4-phase encoding scheme. The logical values transmitted

using 4-phase encoding scheme can be interpreted by using only the current code word

irrespective of the previous codeword. This is called context-free encoding. A

disadvantage of 4-phase encoding is that the time spent transmitting the spacer code can

be thought of as wasted time, as this time period does not contain logic data. This return-

to-null of the sf, st signals also consumes power as it increases signal transitions. The

advantage of 4-phase dual-rail encoding is the simpler logic used for input detection and

output completion. Asynchronous circuits that use two phase encoding schemes has more

complex logic for input detection and output completion as they need to remember the

previous input data to interpret the current input data. Null code transmission time is used

by dynamic gates for CMOS precharge operation before transmission of the next data

value. Data arrival in two-phase and four-phase dual-rail signaling is detected by a

transition on either st or sf signal. Transitions of both the st and sf signals during a code

word transmission are not allowed.

22

 Figure 2.5b shows a two-phase dual-rail encoding scheme. In this method, every

transition on the dual-rail signals st and sf represents a transmission. A ‘0’ value is

transmitted by toggling the sf signal and a ‘1’ value is transmitted by toggling the st

signal. Both rising and falling transitions on st and sf indicate transmissions of logic

values. All the code words of 00, 01, 10 and 11 are used for transmitting logical data

values. A logic gate must have an internal state that remembers the previously transmitted

data value to determine if a code word represents a ‘1’ or ‘0’. This is a disadvantage of 2-

phase encoding as it requires more complex gate logic. The advantage of 2-phase

encoding is that it is not necessary to transmit the null code after logical data

transmission, resulting in less signal transitions and less power consumption.

23

Figure 2.5 Dual-rail four-phase and two-phase encoding

2.4 Handshaking Protocols

In synchronous circuits, data flow between gates is synchronized by a global

clock signal. An example synchronous gate is shown in Figure 2.6. It has combinational

gates embedded between stages of sequential gates. Signals in the combinational block

24

Figure 2.6 Synchronous circuit with sequential and combinational gates

25

may undergo several transitions in a clock period before they are captured by the

sequential gates at the end of the clock cycle.

In asynchronous circuits, the data flow between gates is governed by handshaking

protocols. There are two types of handshaking protocols, two-phase and four-phase.

2.4.1 Two-phase Handshaking

Two-phase handshaking protocol consists of two events for a complete

handshaking cycle. In two-phase handshaking, each transition (rising/falling) on the

handshaking signals represent either a request or an acknowledgement. It may be

implemented either by using two wires, with each wire representing request and

acknowledge signals, or by using a single wire representing both request and

acknowledge signals [25]. In the two wire implementation, a transition on the request line

represents a new request and a transition on the acknowledge line represents an

acknowledgement of the request. In the single wire implementation, a rising edge

represents a request and a falling edge represents an acknowledgement or vice-versa.

Two-phase handshaking protocols using two wires and one wire are shown in Figure 2.7a

and Figure 2.7b respectively.

2.4.2 Four-phase Handshaking

A complete four-phase handshaking cycle has four events and is level based. The four

phases represents start of handshake (request), process completion (acknowledgement),

reset of request to null, and reset of acknowledgement to null for completing the

handshaking cycle. Implementations often use null states to precharge dynamic logic

26

gates. Four-phase handshaking operation is shown in Figure 2.7c. The request line goes

high, indicating that there is a request for new data from the destination gate. The source

gate responds by raising the acknowledgement signal when its output data is ready. The

destination gate negates the request line after consuming the input data. The source gate

then negates its acknowledgment signal to complete the four-phase handshaking cycle.

27

Figure 2.7 Handshaking protocols

28

CHAPTER III

PHASED LOGIC SYSTEMS & QUASI-DELAY INSENSITIVE SYSTEMS

Previous chapters gave an overview of asynchronous design. This chapter

describes asynchronous phased logic (PL) and quasi-delay insensitive systems (QDI).

PL[9] is a methodology used to describe asynchronous circuit operations in terms of data

flow in a marked graph. QDI circuits use four-phase dual-rail signaling and assume

isochronic forks [7]. Isochronic forks are the splits in the circuits where the difference in

the wire delays of the splits is negligible when compared to gate delays [13, 14, 7].

Section 1 gives an overview of PL systems and section 2 explains QDI circuits.

3.1 Phased Logic Systems

The Phased logic (PL) [9] methodology permits translation of synchronous systems

to asynchronous systems. Marked graphs (MG) are used to represent gate operation and

data flow in phased logic systems. MGs are a subclass of directed graphs called petri-nets

(PN) that are often used in representing asynchronous, concurrent systems. This section

discusses the concepts of PL circuit and explains the properties of PNs, MGs as used in

PL systems.

29

3.1.1 Level-encoded Dual-rail Encoding

PL circuits use a form of two-phase dual-rail encoding known as level-encoded

dual rail (LEDR) [21] encoding. This is different from the previously discussed

traditional two-phase dual-rail encoding in Chapter 2. Figure 3.1 shows the LEDR

encoding scheme. Observe that the two signal lines used in two-phase encoding are

named value ‘sv’ and phase ‘st’ lines respectively, as per the naming convention adopted

by Linder [9]. The value signal contains the logical value (‘0’ or ‘1’) of the transmitted

data, while the phase signal is designated as either even or odd. Thus, transmitted logical

data is named even 0, odd 0, even 1, or odd 1. The phase always changes between

successive transmissions, while the value may or may not change. In LEDR encoding

only the value wire or the phase wire changes state between each transmission.

Figure 3.1 LEDR Encoding

30

3.1.2 Phased Logic Gates

Phased logic systems use phase logic gates for logic computation. The inputs and

outputs of PL gates are LEDR encoded, with data containing both phase and value

components as previously mentioned. Just as a PL signal has an even/odd phase, a PL

gate also has a phase associated with it. The matching of all the input signal phases and

the gate phase implies valid input data and the gate is ready for the computation. Logic

computation by a PL gate at the arrival of valid input data is called firing. Matching of all

input phases with gate phase causes the gate to fire. Matching of input phase and the gate

phase is graphically represented by placing a dot at the corresponding input. This dot is

called a token. The correspondence between the gate phase and the tokens is shown in

Figure 3.2. The gate fires if there are tokens on all its inputs, causing the gate phase and

output phase to toggle. PL gate firing causes consumption of all input tokens because the

gate phase is toggled; each gate firing also places a token on all output (i.e. the phase of

all outputs are toggled).

31

Figure 3.2 PL Gate phase and corresponding token representation

32

3.1.3 Petri-nets

The Petri-nets definitions in this section are adopted from [10]. Petri-nets are

directed, bipartite graphs with two types of nodes namely, places and transistions,

representing conditions and events in that order. Places contain tokens, and the number of

tokens in a place p, is represented by M(p) where M is the marking. M is a function of the

form M:F {0, 1, 2, … }. PNs have an initial state referred as the initial marking (M0).

Places connect to transitions, and transitions connect to places. The arcs going from

places to transitions and from transitions to places represent the flow relationship of the

system. A Petri-net whose places can hold an unlimited number of tokens is called an

infinite capacity net whereas a Petri-net with a bounded number of tokens in its places is

called a finite capacity net or k-bounded net. A transition is enabled if all of its input

places contain at least one token. An enabled transition can fire, which places one token

at its output places and removes one token from each of its input places. A source

transition that does not have any input places are unconditionally enabled, while sink

transitions with no output places consume their input tokens.

The firing sequence of a PN consists of the sequence of markings generated by

the firings of enabled transitions. If the firing sequence is represented by a non-empty set

{M0, (t1,M1), (t2,M2), … (tn,Mn)} then the marking, Mn, can be reached from the initial

marking M0, by following the firing sequence.

A petri-net is said to be live if an enabled transition is possible from the current

marking, Mn, by following the firing sequence, regardless of the current transition that

has been reached starting from the initial marking, M0. Thus, a live PN never encounters

33

a deadlock situation. A petri-net with a live initial marking, M0, will always result in a

live network.

3.1.4 Marked Graph

A marked graph [9] is a subclass of petri-nets where each place has only one input

transition and one output transition. The transitions of the MG are represented by the

graph vertices, with arcs only shown between graph vertices and the intervening places

assumed to be present. A directed circuit in an MG is defined as a directed path that starts

and ends at the same transition. Like PNs, MGs also have an initial token marking. MGs

are used to represent PL systems. Two properties [17] of MGs used in the PL

methodology are safety and liveness properties and are defined as follows [9]:

Theorem 1: An MG is live if and only if the initial token marking places at least

one token on each directed circuit of the MG.

Theorem 2: An MG is safe if and only if all of the edges are part of a directed

circuit that contains at most one token.

A transition in a marked graph fires whenever all of its input arcs contain a token.

Firing consumes one token from each input arc and places one token on each output arc.

In a PL system, a MG transition is a PL gate, while arcs are signals between PL gates. PL

circuits require a safe and live marked graph for effective functioning of the system. A

live initial token marking ensures that there is always a gate ready to fire, i.e., that the

circuit does not enter deadlock condition. A safe PL system means that there is only one

token on an input or output arc at any point in time. Safety also implies that a PL gate

cannot fire until its output tokens have been consumed by its destination gates.

34

3.1.5 Mapping Clocked Netlists to PL Netlists

The Phased logic methodology produces delay insensitive circuits starting from a

clocked system. Linder in [9] introduced the concept of barrier gates and through gates

to distinguish sequential and combinational gates in the clocked system to facilitate

mapping the clocked netlist to a PL netlist. Sequential gates such as DFFs are mapped to

barrier gates and any combinational gates are mapped to through gates. The distinction

between combinational and sequential gates is necessary to satisfy the initial token

marking rules of PL systems. In static CMOS PL systems, Barrier and through gates are

connected by using LEDR signals. The translation process also involves inserting

feedback signals to make the PL circuits live and safe. Feedback signals are single-rail

inputs and represent the output phase of the destination gate.

This section gives a brief description of the translation algorithm used to map a

clocked netlist to a PL netlist. For a detailed explanation of this algorithm, please refer to

[9] and [17]. The algorithm is divided into four stages: Initial token marking, splitter gate

insertion, marking of safe and unsafe signals, and feedback insertion.

Stage 1: Initial Token Marking

In this stage, a one-to-one mapping of the clocked netlist to a PL netlist is done.

Single-rail data signals in the clocked netlist are replaced by LEDR data signals. An

external global reset signal is used to reset all the PL gates to the same phase at the

release of reset. During one-to-one mapping of the clocked netlist to PL netlist, sequential

gates are mapped to barrier gates and combinational logic to through gates. Token

markings on the barrier and through gates are defined by the initial token marking rules.

35

Initial token marking rules require tokens at the outputs of barrier gates. This means that

the barrier gate outputs are connected to gates whose phase is equal to the barrier output

phase. Initial token marking rules also require that the non-feedback outputs of a through

gate cannot have tokens. This implies that a through gates output must be connected to

the destination gate whose phase is opposite to that of the through gate output phase.

Figure 3.3b shows the initial token markings at the release of reset.

Stage 2: Splitter Gate Insertion

Direct barrier to barrier gate connections can cause safety problems when

feedback signals are inserted, so splitter gates are inserted to break barrier gate to barrier

gate paths. Splitter gates are through gates and act as logical buffers when they are

inserted in PL circuits. Figure 3.3c shows the PL system after the insertion of splitter

gate. Splitter gate s1 is inserted between the two barrier gates u2 and u3.

Stage 3: Marking of safe signals

All signals that are a part of a directed circuit that have only one token after the initial

token marking are marked as safe signals. Directed circuits are those circuits that has at

least one path that originate and terminate at the same gate. If a gate has multiple fanouts,

each fanout is treated as a separate arc in the marked graph and all of the arcs have to be

safe in order to achieve a live and safe PL circuit. After the initial token markings, only

the barrier gate outputs have an associated token, so any signal in a directed circuit that

has only one barrier gate is considered safe. Figure 3.3c shows that the signals s4, s6 and

s7 are unsafe after the initial token marking as they do not belong to a directed circuit

with only one token. The unsafe signals are identified with a * designation.

36

Note (a) Clocked circuit. (b) Initial token marking. (c) Splitter gate insertion.
 (d) Feedback insertion

Figure 3.3 PL translation steps

37

Stage 4: Feedback Insertion

Feedback signals are single-rail acknowledgement signals that contain the gate

phase. Feedback signals are used when necessary to create new directed circuits with

only one token in the initial token marking to convert unsafe signals to safe signals. If an

initial unsafe signal is made safe by the addition of a feedback signal, then the signal is

said to be covered by the feedback. Figure 3.3d represents the PL circuit after feedback

signal insertion. The signals s4, s6, and s7 that were initially unsafe are now covered by

feedback signals f2, f1, and f3 respectively. Feedback insertion rules and the

corresponding initial token markings are shown in Figure 3.4. All of the allowable

feedback insertion configurations are indicated with a check mark besides the Figure.

Feedback signals that originate and terminate on the through gate should have an initial

token as seen in Figure 3.4b. Feedback signals originating from a through gate and

terminating on a barrier gate should not have an initial token (see Figure 3.4a). Any

feedback signal originating from a barrier gate has an initial token because all outputs of

a barrier gate have an initial token. Feedback signals that originate from and terminate on

a through gate contain an initial token as shown in Figure 3.4c. Figure 3.4d shows that

feedback signals cannot originate and terminate at a barrier gate as this creates a directed

circuit with two token, which is a safety violation. To solve this problem, a splitter gate is

inserted between the two barrier gates. The initial token marking of the two barrier gates

separated by a splitter gate is indicated in Figure 3.4e.

There are multiple options for feedback insertion. A scoring function is used to

aid in the process of feedback insertion [17]. The scoring function is given by

38

Note (a) Through gate to barrier gate feedback.
 (b) Barrier gate to through gate feedback.
 (c) Through gate to through gate feedback.
 (d) Forbidden barrier gate to barrier gate feedback
 (e) Splitter gates between Barrier gates

Figure 3.4 PL feedback insertion rules and corresponding token markings

39

score = S – F/k – p * L

The variables used by the scoring function are the number of unsafe signals covered by

feedback insertion S, a user-defined constant k that restricts the number of feedbacks on a

single node, feedback length L, and a user-specified constant p that favors shorter

feedbacks over longer feedbacks.

3.2 Quasi-Delay Insensitive Systems

Quasi-delay insensitive (QDI) circuits do not have any assumptions about delay

of gates and wires except for isochronic forks [7, 13, 14, 32, 49]. The most popular QDI

gates used in the design of asynchronous QDI circuits are Caltech’s weak-conditioned

half buffer (WCHB), precharged half buffer (PCHB), and precharged full buffer (PCFB)

[5, 6, 7, 12]. These gates are viewed as communicating processes [26], and transfer data

by using a four-phase handshaking protocol.

3.2.1 Weak-conditioned Half Buffer

Figure 3.5 shows the circuit diagram of a WCHB gate. Signals (L0, L1), (R0, R1)

represent false and true inputs and outputs respectively. Le and Re are active low signals

representing input and output acknowledgement signals. Initially, both Le and Re are high.

Assertion of either L0 or L1 asserts Le, thus acknowledging the input arrival. The output

data is sent to destination gates that respond by asserting Re. The gate then waits for input

neutrality (either L0 or L1 is negated) before resetting the output. Its disadvantage is that

the input neutrality is checked before resetting the output. This is known as weak-

conditioned logic [11, 12]. Weak-conditioned logic increases the forward latency of

40

circuits built using WCHB gates as the gate waits for input neutrality before resetting the

output.

Note Adopted from [12]

Figure 3.5 Weak conditioned half buffer gate

3.2.2 Precharged Half Buffer and Precharge Full Buffer

The PCHB and PCFB gates shown in Figure 3.6a and Figure 3.6b have separate

input/output validity and neutrality checking circuits. This eliminates the dependency of

resetting the output based on the input neutrality [12].

In Figure 3.6, the LCD block represents the input validity and neutrality detection

circuit, while RCD represents the output completion and neutrality detection circuit. The

compute block uses dual-rail domino logic for input evaluation. The difference between

PCHB and PCFB circuits is that in PCFB gates input neutrality and output neutrality can

41

occur in parallel, whereas in PCHB gates the input will be neutralized after the output is

neutralized.

 The PCHB design has dual-rail input/output signals, a pull down compute block, a

precharge circuit, completion detection circuits, handshaking signals, and a C-element

[20]. The precharge circuit of a PCHB gate is composed of two pmos transistors in series.

Dual-rail inputs are fed to the pulldown nmos compute block to generate the

complimentary outputs. The dual-rail inputs are also fed to input completion (LCD) and

output completion (RCD) detection circuits. There are two active low handshaking

signals: input acknowledgement signal Le and output acknowledgement signal Re. The Le

and Re signals are used to establish proper data communications between PCHB gates.

Signal Le is an acknowledgement sent to the source gate and Re is an acknowledgement

coming from the destination gate. Gates exchange data by using a four-phase

handshaking protocol.

42

Note Adopted from [7]

Figure 3.6 PCHB and PCFB gates

43

3.2.3 Four-phase Handshaking in PCHB Gates

Figure 3.7 demonstrate the four-phase handshaking protocol of an PCHB AND

gate. In this example, Le and Re represent active low input and output acknowledgement

signals respectively, pairs (Af,At) and (Bf,Bt) are dual-rail inputs and pair (Yf,Yt) is the

dual-rail output.

Figure 3.7 2-input PCHB AND gate operation

Initially after reset, Re and Le are both high. Arrival of all of the valid inputs at

time 2 causes the circuit to evaluate the new input data, producing a valid output at time

3. Signal Le goes low at time 4 acknowledging the input signals, stating that the input is

processed and a valid output is ready. After some unknown time at time 5 (depending

44

upon the destination gates), the output acknowledgement Re goes low confirming the

output consumption by the destination gate. Low values on the Le and Re signals

precharge the dual-rail output Yf, Yt forcing them back low, as seen at time 8. Re returns to

‘1’ at time 9 indicating that the destination gate is precharged and ready to accept new

data. Signal Le is negated at time 10 after the negation of both input and output,

completing the four-phase handshaking.

3.2.4 PCHB Gates Internal Operation

In this section, the relationship between the four-phase protocol of Figure 3.7 and

the internal PCHB gate operation of Figure 3.6a is discussed. At reset, the Le and Re

signal are both high. After the release of reset, the gate waits for the arrival of all of the

valid inputs, where input arrival is defined as assertion of one of the dual-rail wires for a

dual-rail input signal. Arrival of all inputs, regardless of the order of arrival, causes the

input validity circuit (LCD) to go high and the compute block to produce complimentary

outputs. The computation of the complimentary outputs after input arrival is denoted as

the output “firing”. The output firing causes the output completion detection circuit to be

asserted high. Assertion of the outputs of both the LCD and RCD circuits forces the

output Le of the C-element to be asserted low. Note that the circuit produces an input

acknowledgement Le only after the arrival of all inputs and the evaluation of the outputs.

The buffered Le is used as an enable signal en in the PCHB gate for enabling the compute

block. A low Le precharges the preceding gate, causing the inputs to be negated. The

assertion of Le also states that the PCHB gate will not accept the next new input until it

precharge its outputs to a zero. Output consumption by the destination gate (destination

45

gate firing) causes the output acknowledgement Re to go low. At this stage both the input

acknowledgement Le and output acknowledgement Re are low, enabling the PCHB gate to

precharge.

Figure 3.8 demonstrates the data communication between the PCHB gates using a

circuit composed of three PCHB gates (G0, G1, G2) represented as black boxes along

with data and handshaking signals. Each gate alternates between the evaluation state and

the precharge state.

46

Figure 3.8 Data communication in PCHB gates

47

3.2.5 Caltech’s Asynchronous Design Methodology

Both synchronous and asynchronous circuits can be modeled using concurrent

processes that communicate with each other. The Caltech’s asynchronous design

methodology translates communicating sequential processes (CSP) into quasi-delay

insensitive asynchronous systems by using a series of systematic semantics-preserving

transformations. The transformation process is outlined in the following section. For a

detailed explanation of this methodology, please refer to [27].

Asynchronous circuit behavior defined using a sequential Communication

Hardware Processes (CHP) program is the starting point for this methodology. Table 3.1

adopted from [7] explains the CHP notation used to describe asynchronous circuits.

Table 3.1 CHP notation

*[S] Repeat statement S for ever
xÆ x is high, where x is a boolean variable
x∞ x is low, where x is a boolean variable
; sequential composition of two elementary actions
, concurrent composition of two elementary actions
[G1 Ø S1[] .. Gi Ø Si[]] Gi represent Boolean expression (guards) and Si represent program parts

Gi Ø Si is read as waiting until one of the guards is true and then
executing, the corresponding Si with true guard Gi

[G] Waiting for condition G to become true
[B]; xÆ; [ŸB]; x∞ Represents four-phase handshaking by alternation of waits and boolean

assignments
R!x Send value x over the channel R
L?x Receive value x over the channel L

Transformation 1: Process Decomposition

In this step, asynchronous circuit behavior defined using CHP notation is

converted into a set of interactive concurrent CHP processes. This iterative step is

repeated until the transformation leads to simple processes that communicate with each

other using input and output channels. The decomposition process leads to asynchronous

48

circuits that use one of the three possible Caltech QDI templates: WCHB, PCHB, or

PCFB as discussed in the preceding section.

Transformation 2: Hand Shaking Expansion

This transformation process implements a communication channel between

processes using signal wires. The channel (C, D) can be implemented using a pair of

wires (co w di) and (do w ci). After implementing the communication channel, a

communication protocol must be established to exchange data using handshaking signals.

The communication action between the processes is replaced by the four-phase

handshaking protocol. A technique called HSE reshuffling is used to rearrange the non-

data dependent portion of the four-phase communication. Reshuffling improves the speed

and size by reducing the number of sequencing and the state variables required to

implement the HSE. There are three types of reshufflings: weak-conditioned half-buffer

(WCHB), precharge-logic half buffer (PCHB), and precharge-logic full buffer (PCFB).

The WCHB, PCHB and PCFB gates described in the previous section are the result of

different types of reshuffling.

A simple one-bit buffer circuit example adopted from [5] is used to outline the three

types of reshuffling. The buffer circuit receives the data x on channel L and sends it on

channel R without any computation. The CHP notation for this buffer is given by *[L?x;

R!x]. The handshaking expansion of the communication action between the two channels

L and R is represented as:

*[[L0 Ø x0Æ [] L1 Ø x1Æ]; Le∞; [ŸL0⁄ ŸL1]; LeÆ;

 [x0 Ø R0Æ [] x1 Ø R1Æ]; [ŸRe]; R0∞, R1∞;[ŸRe];]

49

The three types of reshufflings for the buffer circuit are shown below.

WCHB ª *[[Re]; [L0 Ø R0Æ [] L1 Ø R1Æ]; Le∞;

 [ŸRe]; [ŸL0⁄ ŸL1]; R0∞, R1∞; LeÆ;]

As can be seen from the above WCHB reshuffling, the gate waits for the

neutrality of the output before resetting the outputs. To eliminate this dependency of

output reset on the input neutrality, precharge logic reshufflings are used, which postpone

the neutrality of inputs [ŸL0⁄ ŸL1]. The PCHB reshuffling of buffer circuit is:

PCHB ª *[[Re]; [L0 Ø R0Æ [] L1 Ø R1Æ]; Le∞;

 [ŸRe]; R0∞, R1∞; [ŸL0⁄ ŸL1]; LeÆ;]

In circuits where speed is critical, PCFB reshuffling can be used as it allows the

reset phases of the input and output to execute concurrently. Although this requires an

additional state variable en resulting in an increase in gate size, it also produces a faster

CMOS implementation by removing a few transitions in the handshake cycle. So the

PCFB reshufflings are primarily used in circuits that trade area for speed.

PCFB ª *[[Re]; [L0 Ø R0Æ [] L1 Ø R1Æ]; Le∞; en∞

 ([ŸRe]; R0∞, R1∞), ([ŸL0⁄ ŸL1]; LeÆ); enÆ]

Transformation 3: Production Rules Expansion

Hand shaking expansions obtained from the second transformation process is

converted into a set of production rules (PR) that eliminates explicit sequencing. The

production rule G Ø xÆ suggests that the node x goes high after the guard (G) becomes

true. The guard function ensures that the PRs are fired as specified by the hand shaking

expansion. The guard function G is said to be stable if it holds the value until the

50

production rule executes. In this step, the PRs that match operator semantics are

identified to form a network of operators. Examples of primary operators are and, or, C-

element, wire, and fork. Table 3.2 obtained from [27] shows the production rule sets for

these primary operators.

Table 3.2 Operators and the production rules

Operator Production Rules

C-element (x,y) C z ª x ⁄ yØ zÆ
 Ÿx ⁄ ŸyØ z∞

AND (x,y) ⁄ z ª x ⁄ yØ zÆ
 Ÿx ¤ ŸyØ z∞

OR (x,y) ¤ z ª x ¤ y Ø zÆ
 Ÿx ⁄ ŸyØ z∞

Wire (x,y) w z ª x Ø yÆ
 Ÿx Ø y∞

Fork x f (y,z) ª x Ø yÆ, zÆ
 Ÿx Ø y∞, z∞

Note Adopted from [27]

Transformation 4: Operator Reduction

In the final transformation process, production rule sets in the program and the

production rule sets of operators are matched to represent the program as a network of

operators. If the production rules cannot be mapped into the set of operators, the guards

of the production rules are transformed to that of a guard of operators. A complex guard

with a large number of variables is broken down into smaller production rules using new

internal variables. This stage maps PRs to standard hardware components and state

variables.

51

3.3 Summary

This chapter introduced two methods of implementing asynchronous circuits: the

phased logic methodology and Caltech’s asynchronous design methodology. The Phased

logic methodology converts synchronous circuits into delay insensitive circuits. Since the

PL methodology uses a clocked netlist as an input and automatically converts it into an

asynchronous netlist, it does not require an expert to produce asynchronous circuits.

Anyone with solid foundation in synchronous design can use the PL methodology to

produce delay insensitive asynchronous circuits. This eliminates the arduous and lengthy

learning period required in designing asynchronous circuits using other asynchronous

methodologies.

The Caltech’s asynchronous methodology described in this chapter produces QDI

circuits starting from a behavioral description of the design in CHP notation. The

advantages of Caltech’s asynchronous QDI circuits are that they have fast forward

latency when compared to synchronous domino logic, as they do not require output latch.

They are also energy efficient and smaller in size when compared to non-pipelined QDI

circuits [12]. The disadvantages of Caltech’s asynchronous QDI methodology are the use

of the CHP language and the systematic, semantics-preserving transformations that

requires a skilled designer for creating an efficient asynchronous QDI implementation.

As will be seen later, this research combines the PL methodology and Caltech’s

QDI gates with their fast forward latency to produce QDI asynchronous circuits, thus

using the best parts of each methodology.

52

CHAPTER IV

PHASED LOGIC FOR QUASI-DELAY INSENSITIVE CIRCUITS

This research extends the concept of phased logic and marked graphs to quasi-

delay insensitive circuits. QDI systems with PL features are termed PL-QDI systems. The

first step of extending PL concepts to QDI circuits is to extend the concept of token

abstraction to QDI gates.

4.1 A Cell Design for PL-QDI systems

The first step of PL-QDI research is to decide which QDI cell design will be used

for PL-QDI systems. A comparison of the performance of Caltech’s QDI gates is helpful

in selecting one of the three QDI design cells (WCHB, PCHB, PCFB).

4.1.1 Performance of Caltech’s QDI Design Cells

The WCHB gate has the lowest cycle time of all the three Caltech’s QDI design

cells with 10 transition counts, but the use of WCHB gate increases the forward latency

of the circuit. The PCFB gate has a cycle time of 12 transitions and a PCHB gate has a

cycle time of 14 transitions, so obviously the PCFB gate is faster, but not by a large

factor. This speed is achieved at the cost of larger gate size of PCFB gates because they

require more logic for the generation of an extra state variable and extra completion

53

detection [5, 12]. Due to the larger size of PCFB gates, they are used only in design of

circuits where speed is critical. The PCHB gates are considered the “work horses” for

most applications since they have comparatively faster throughput, smaller in size and are

easy to design [5, 12, 6].

Note Adopted from [7]

Figure 4.1 PL-QDI gate template

54

4.1.2 PL-QDI Template Gate

 In this research, the Caltech’s QDI PCHB gate is used as the PL-QDI gate due to

its smaller size, substantial speed, and ease of design when compared to the WCHB and

PCFB gates. The QDI gates used in the PL-QDI systems are called PL-QDI gates. The

PCHB gate’s compute blocks are restricted to having a maximum of two inputs in this

work, but can be increased with additional logic at a speed cost due to the extra

complexity of the pulldown network and input completion detection logic. The PL-QDI

gate template is shown in Figure 4.1.

4.2 Token Abstraction for Quasi-Delay Insensitive Gates

This section gives a brief review of the four-phase handshaking protocol in QDI

gates and explains how it is translated into a token abstraction.

Figure 4.2 Four-phase handshaking in PL-QDI gate

55

Figure 4.2 illustrates the four-phase handshaking for a single input QDI gate. In

Figure 4.2, Le and Re represents active low input feedback and output feedback signals,

and the signal pairs (Af, At) and (Yf, Yt) represents dual-rail input and output respectively.

At time 1, the QDI gate is in its initial state where the gate is waiting for the arrival of

new dual-rail input. Dual-rail input (Af, At) arrives at time 2. Output computation takes

place between time 2 and 3, and the dual-rail output (Yf, Yt) is ready at time 3. Active low

input feedback signal Le is asserted at time 4 indicating that the input is consumed and the

output computation is done. Output feedback signal Re goes low at time 5 indicating the

output consumption by the destination gate. At time 6 Re is deasserted to request for new

output. Le is deasserted at time 7 indicating that the gate has been precharged and ready

for new input. This cycle repeats continuously to facilitate data communication among

the QDI gates.

Let us now translate the four-phase handshaking protocol of QDI gates into a

token abstraction. A QDI gate with token abstraction is referred to as a PL-QDI gate. To

describe the token abstraction, a PL-QDI gate is represented as a marked graph as shown

in Figure 4.3. In Figure 4.3, the compute node represents the compute block, LCD and

RCD nodes represent input arrival and output completion detection circuits, and the C

node represents the block used to generate the input feedback Le and compute block

enable en. The signals in Figure 4.3 are compute node input in1, LCD node input in1_lcd,

output feedback Re, input valid signal Lv, output valid signal Rv, compute block output

ready s3, and PL-QDI gate outputs s1 and s2 going to a destination gate's compute node

and LCD node.

56

Figure 4.3 Token flow in PL-QDI gate, steps 1-3

57

Figure 4.4 Token flow in PL-QDI gate, steps 4-5

Figure 4.3 and Figure 4.4 describes the token flow in the PL-QDI gate. At time 1,

the PL-QDI gate is waiting for the arrival of dual-rail input. In this condition, there is no

valid dual-rail data on the input, and Le and Re are deasserted. In terms of token

abstraction, this is represented by no token on the input and tokens on Le and Re

indicating that the gate will fire once it receives tokens on all of its inputs. At time 2,

dual-rail inputs arrive. This places a token on the input in1, in1_lcd and consumes the

58

token on Le because in order for the preceding gate to fire, it must consume the Le token.

Now the compute node and the LCD node have tokens on all their inputs and are ready to

fire. At time 3, the compute and LCD nodes fire. Firing of the compute node consumes

the token on its inputs (in1, en, Re) and places the token on signal s3 and PL-QDI gate

outputs s1 and s2. Firing of the input completion detection node LCD consumes the token

on its input in1_lcd and places a token on Lv. The output completion detection node RCD

fires at time 4 by consuming the token on s3 and placing a token on Rv. At time 5, a

token arrives on Re indicating the output consumption by the destination blocks. Node C

also fires by consuming the tokens on Lv and Rv, and placing new tokens on signals en

and Le. A token on the input feedback signal Le indicates that the PL-QDI gate is ready

for new data.

4.3 Mapping of a Clocked Netlist to a PL-QDI Netlist

The fine grain mapping [8, 19] methodology is used to convert a clocked netlist to

an asynchronous PL-QDI netlist. In fine grain mapping, a one to one mapping of the

gates in the clocked netlist to PL-QDI gates is done followed by feedback insertion to

make the circuit live and safe.

PL-QDI circuits must satisfy the liveness property, safety property and initial

token marking rules of a PL system and must also follow the four-phase handshaking

protocol of QDI gates. The PL-QDI PCHB gates must be divided into through gates and

barrier gates for the purpose of initial token marking [18]. Combinational gates such as

AND, OR, NAND gates are mapped as through gates, and sequential gates such as DFFs,

are mapped as barrier gates. As discussed in Chapter III, PL initial token marking places

59

a token on all barrier gate outputs. The initial token marking also requires that through

gate to barrier gate feedback signals should not have an initial token to satisfy the safety

property. But at the same time, the initial condition of the QDI gates at time 1 in Figure

4.3 suggests that Le and Re signals should contain a token at reset. A resolution for this

problem is discussed in the next section.

If there is a directed circuit of PL-QDI gates, then there must be at least three PL-

QDI gates to satisfy the four-way handshaking protocol. PL-QDI gates with a logical

buffer function must be inserted into any directed circuit that does not fulfill this

requirement. At least one of the gates in the directed circuit must be a barrier gate. There

cannot be any directed circuit of only through gates in the netlist, as this would imply a

combinational loop in the original clocked netlist, which is not allowed.

PL system rules also does not allow direct barrier gate to barrier gate connection.

Splitter gates are inserted to break any barrier gate to barrier gate paths.

4.4 PL-QDI Gate Interaction

 At this point the PL-QDI gate identified in section 4.1, the PL-QDI token

abstraction from section 4.2 and the initial token marking from section 4.3 are used to

examine PL-QDI gate interaction within a netlist. Consider an example PL-QDI directed

circuit containing a barrier gate and two through gates as shown in Figure 4.5.

60

Figure 4.5 An example PL-QDI circuit

 Figure 4.6 shows the token marking of the PL-QDI system during reset. As per

the initial token requirement for QDI gates, input and output feedbacks (Re1, Re2, Re3),

and compute node enables (en1, en2, en3) have initial tokens.

 The release of reset must place tokens on the barrier gate outputs s1, s2 as shown

in Figure 4.7. Placing tokens at the barrier gate outputs makes the circuit unsafe as the

directed circuits (s2, Lv2, Re1) and (s1, s8, Rv2, Re1) contains two tokens, which is a

violation of the safety rule. The unsafe signals are designated with a * besides them.

Furthermore, the feedback Re1 from the through gate n2 to the barrier gate n1 contains a

token, which is a violation of the initial token marking rule.

Removal of the initial token on the output feedback signal Re1 will fix the safety

violation and satisfy the initial token marking rules stated earlier. Figure 4.8 shows the

initial token marking of the circuit at the release of reset and without the token on signal

Re1. This initial token marking is live, safe, and satisfies both PL and QDI system

61

properties. A live and safe initial token marking as in Figure 4.8 ensures that the system

does not enter a deadlock condition.

The PL-QDI template gate shown in Figure 4.1 can be used as a through gate but

not as barrier gate as it cannot generate the initial output token after reset. Also, it must

somehow remove the initial token on its output feedback signal. So, in order to have a

PL-QDI system that satisfies both PL and QDI gate properties, the PL-QDI template gate

must be modified to be used as a PL-QDI barrier gate.

62

Figure 4.6 Token marking in PL-QDI system during reset

63

Figure 4.7 Initial token marking after the release of reset showing safety violation

64

Figure 4.8 Live and safe initial token marking of PL-QDI circuit

65

4.5 Modifications to the PL-QDI Gate Template for Barrier Gates

The PL-QDI barrier gate must place an initial token at its outputs and must not

have an initial token on its output feedback signal. Extra logic is added to the PL-QDI

template gate to implement this functionality.

4.5.1 Forced Token at the Barrier Gate Output

The logic used to force a token at the output of the barrier gate after the release of

reset is shown in the shaded region #1 of Figure 4.9a. The signals R0 and R1 are the false

and true outputs of the PCHB gate. The logic indicated in the shaded region #1 pulls R0

to high for a short period of time until the output feedback signal Re, is asserted for the

first time. The waveform shown in Figure 4.9b explains how a forced token is produced

at the barrier gate output after the release of reset. At the release of reset# the SR latch

output x goes high, pulling the NAND gate output y down to zero. A low y causes the PL-

QDI output R0 to go high while the output R1 is still low. In terms of the token

abstraction this places a token at the barrier gate output to trigger initial gate firing with

in the system. When the destination gate consumes the output, it asserts the active low

output feedback signal Re. Once Re is asserted, x goes low negating y. After this, the

normal PL-QDI system operation continues until the next assertion of the reset# signal.

66

Figure 4.9 PL-QDI barrier gate and waveforms explaining its working

67

4.5.2 Initial Token Removal on the Barrier Gate Output Feedback

As discussed earlier, the presence of an initial token on the barrier gate output

feedback signal at the release of reset causes an initial token marking rule violation. This

problem can be solved by removing the initial token on the barrier gate output feedback

signal Re. The shaded region #2 in Figure 4.9 shows the logic used to remove the initial

token on the feedback originating from a through gate. The waveform shown in Figure

4.9d explains the functionality of the extra logic. The AND gate is driven low during

reset and until the output feedback signal Re is asserted for the first time. The low value

on the AND gate output disconnects the compute block from the pulldown tree and

prevents the gate from evaluating until the first assertion of the output feedback signal.

Thus, it removes the initial token on the output feedback signal until the initial tokens on

the barrier gate outputs are consumed by the destination gates. When the output feedback

signal is asserted, the SR latch output becomes ‘1’, connecting the output feedback signal

Re to the pull down circuit of the compute block. This restores the normal operation of the

PL-QDI gate.

The modified PL-QDI gate template shown in Figure 4.9 is used as the PL-QDI

barrier gate. The initial token marking of the PL-QDI system (shown in Figure 4.5) using

a PL-QDI barrier gate is the same as the initial token marking shown in Figure 4.8,

resulting in a live and safe PL-QDI system.

68

CHAPTER V

CAD SUPPORT FOR PL-QDI CIRCUIT DESIGN

The advent of computer aided design (CAD) tools in the semiconductor industry

has revolutionized the integrated circuits (IC) design process [29]. This chapter explains

the CAD tool flow for designing PL-QDI circuits starting from clocked circuits. Section 1

discusses the evolution and advantages of synchronous CAD tools. Section 2 gives a brief

explanation of the CAD tool flow used in a synchronous logic design. Section 3 provides

an overview of the state of currently available asynchronous CAD tools. Section 4

discusses the synthesis algorithm used to map clocked system topology to asynchronous

PL-QDI systems. Section 5 explains how synchronous CAD tools can be used for

asynchronous PL-QDI circuit design and lists the commercial CAD tools used in each

stage of the CAD flow. A brief overview of the PL-QDI gate library and the test bench

approach used to simulate PL-QDI systems is also included in this section.

5.1 Introduction to Synchronous CAD Tools

The first commercial digital IC was developed by Texas Instruments in the early

1960s [30]. Since then, the IC industry has experienced a rapid growth from small scale

integration (SSI) circuits with less than one hundred transistors to very large scale

integration (VLSI) circuits or ultra large scale integration (ULSI) systems with millions

of transistors. During the period of SSI circuits, the IC masks used in fabrication of ICs

69

were generated by hand drawn mask patterns [29]. As the semiconductor industry entered

the age of VLSI/ULSI chips, it became increasingly difficult to design and fabricate

integrated chips manually. To handle the increasing number of transistors and growing

complexity of integrated chip design, IC designers started to make use of CAD tools. By

the early 1980s, CAD tools were used in the functional design, physical implementation

and verification of integrated circuits. Circuit designs are now described at the register

transfer level (RTL) using hardware description languages (HDL) such as VHDL and

Verilog, Logic synthesis from RTL to a gate level netlist and system level modeling are

a few examples where CAD tools are used in digital circuit design. CAD tools are also

used in the physical design of ICs and aid designers in layout generation, mask-pattern

generation, and IC floor planning. In the verification of integrated circuits, CAD tools

find applications in RTL, gate, and transistor level simulations, as well as in layout

design rule checking. Furthermore, CAD tools have also found application in CAD tool

management, which has helped CAD engineers to implement centralized maintenance

and support for a corporate CAD flow. This has given the flexibility of adding new

features and state- of-the-art off-the shelf CAD tools for continued product improvement.

A corporate CAD tool flow refers to the general methodology used in the semiconductor

industry for IC design [40]. The long-term use of CAD tools for IC design has enabled

synchronous CAD tools to become reliable and efficient. The use of CAD tools means

reduced design time to market, efficient use of resources, increased productivity,

decreased cost due to mass production, reduced chances of human error, and has made it

70

easier to adopt to new technology or toolset. All these advantages in using CAD tools in

IC designs have made it clear that CAD tools are essential to the modern designer.

5.2 An RTL Flow for Synchronous Circuits

A synchronous circuit processes its inputs depending on either the clock edge

(edge-triggered circuits) or the high/low level of the clock signal (level based circuits).

For synchronous digital circuits, part of the CAD flow methodology is the transformation

of an RTL code description of the circuit to a synthesized gate level netlist that passes

functional verification. Functional design verification of synchronous circuits means that

the circuit is tested for correct functionality by simulation with different input test cases.

A synchronous circuit described using either RTL code or a gate netlist is functionally

correct if the circuit yields the desired output during simulation of the RTL code or gate

netlist.

Figure 5.1 adopted from [40] gives the RTL flow used in synchronous circuit

design. A complete CAD flow for synchronous IC design is given in [40]. The first stage

in the RTL flow is the design specification of the circuit under construction, which

describes the functional behavior of the circuit, I/O interface, timing constraints, and the

available resources. For example, assume the circuit to be designed is a rising edge

triggered, synchronous 2-bit counter with count enable. “Synchronous” means that the

counter changes state on the rising edge of the clock and only if the count enable is

asserted. This design specification must be converted into the next level of abstraction

called the RTL description of the design by using hardware description languages such as

VHDL or Verilog.

71

The RTL code is simulated using circuit simulators to test the functionality of the

design. If the functionality check fails, the RTL code has to be redefined until the design

passes the functionality test. There are large numbers of circuit simulators available in

the market for different operating systems. Mentor Graphics Modelsim [55] and MSIM

[56] are examples of RTL simulators.

After successful completion of functional verification, the RTL code is

synthesized to a gate level netlist using HDL synthesis tools. A synthesis tool maps RTL

code to a gate netlist using a target gate library. The gate library contains gate definitions

for all available gates that can be used in the design. Commercially available HDL

synthesis tools include Synopsys Design compiler [59], Altera [57], and Xilinx [58].

The synthesized gate netlist is simulated to verify its functionality. If the gate

level netlist produces the desired output, then the gate level circuit is functionally correct.

If the gate netlist fails the functionality check, the RTL code must be modified, re-

synthesized, and simulated until the synthesized netlist produces the correct output.

Mentor Graphics Modelsim [55] is an example of a gate netlist simulator.

72

Note Adopted from [40]

Figure 5.1 RTL Flow

73

5.3 CAD Tools and Asynchronous Integrated Circuit Design

As mentioned previously, the number of transistors inside a chip and circuit

complexity has increased dramatically over the last two decades. This has posed new

design challenges like clock skew, increased power consumption, and increased EMI as

described in Chapter I. These increasing challenges to synchronous design have

encouraged researchers [27, 24, 1, 9, 41] to explore an alternative area of IC design –

Asynchronous design.

Asynchronous design techniques are still in the research stage, and do not have

the support of mature CAD tools that has aided the rapid growth of synchronous IC

designs. Asynchronous designers make use of proprietary tools [41, 42] or custom design

styles [12, 27] to build asynchronous circuits. The use of custom tools and design styles

has several disadvantages when compared to the synchronous IC design process. The

custom built tools demand considerable expertise in the corresponding asynchronous

design methodology to produce efficient circuits. Furthermore, the majority of engineers

are trained in synchronous techniques, not asynchronous techniques. As such, there are

very few asynchronous design engineers when compared to the synchronous community.

This deficiency of skilled manpower make an asynchronous design methodology cost

ineffective for use by the IC industry. Training of manpower to design asynchronous

circuits increases the production cost [41] of asynchronous systems. Asynchronous

designs also suffer from the lack or limited availability [24] of CAD tools. The available

asynchronous tools have very limited features relative to commercial synchronous CAD

tools [41]. This increases time to market for asynchronous ICs. The production time of

74

asynchronous designs is further increased due to the additional time spent by

asynchronous designers for developing custom tools to aid them in asynchronous circuit

design. All the above drawbacks of the asynchronous methodology have caused the IC

design industry to resist the use of asynchronous design techniques for IC design.

To counter these drawbacks, the PL methodology introduced by Linder and

Harden [9] allows asynchronous designs to be produced from clocked networks. This

research adopts the PL methodology for use with QDI circuits to produce a combined

methodology termed PL-QDI.

5.4 PL-QDI Synthesis

This section formally defines a synchronous system and describes a synthesis

algorithm adopted from the PL methodology for converting a synchronous system to an

asynchronous PL-QDI system. The formal definitions of synchronous systems that follow

are adopted from [9].

Definition 1: Synchronous gate: A synchronous gate G is a three-tuple (I, O, F) where,

I = {i1, i2, i3, …} is a non-empty set representing input terminals of gate G,

O = {o1, o2, o3, …} is a non-empty set representing output terminals of gate G

F is the logical behavior of the gate.

If gate G is a combinational gate, then the outputs is a function of current input

values and are assigned as soon as there is a change in input values. If gate G is a

sequential gate, it represents a finite state machine and its output is a function of the

current inputs and the previous state output.

75

Definition 2: Synchronous Signal: A synchronous signal is a three-tuple (Gi, Go, C)

where Gi is the driving gate, Go is destination gate and C represents the connection

between driving gate and destination gate. C is a two-tuple (I, O); where I represent an

output of Gi and O represents an input of Go.

Definition 3: Synchronous system: A synchronous system is a two-tuple (G, S), where G

represents synchronous gates and S represents synchronous signals.

There are a few restrictions on synchronous systems that are required for

successful mapping of clocked systems to PL-QDI systems. A synchronous system

should have only one clock signal driving all the sequential gates. The synchronous

system cannot have directed graphs constituting of only combinational gates, i.e, each

directed graph in the synchronous system should have at least one sequential gate.

5.4.1 PL-QDI Synthesis Algorithm

The synthesis algorithm takes a synchronous system topology and converts it into

its asynchronous PL-QDI equivalent circuit. The resulting asynchronous PL-QDI system

exhibits the same functionality as that of the original clocked system. The algorithm

ensures that the PL-QDI system is live, safe, and satisfies the initial token marking rules

as described in Chapter 2. The algorithm also guarantees that PL-QDI gates can

communicate between each other using a four-phase handshaking protocol without any

deadlock. The pseudo code of the algorithm used in the synthesis of a PL-QDI system is

given in Figure 5.2. The synthesis algorithm involves three steps: one-to-one mapping of

synchronous gates to PL-QDI gates, splitter gate insertion, and feedback insertion.

76

Figure 5.2 PL-QDI synthesis pseudo code

77

Step 1: One-to-One Mapping of Synchronous Gates to PL-QDI Gates

In the first stage of the synthesis process, a one-to-one mapping of clocked gates

to PL-QDI gates is performed. Gates in the clocked system have single-rail inputs and

outputs, while the PL-QDI gates have dual-rail inputs and outputs. During this stage, the

global clock network is removed and all single rail signals are converted to dual-rail

signals. All combinational gates in the clocked system are replaced by logically

equivalent PL-QDI gates.

Figure 5.3 One-to-one mapping of AND2 gate to PL-QDI AND2 gate

Figure 5.3 shows the one-to-one mapping of a 2-input AND2 gate to a PL-QDI

AND2 gate. Sequential gates such as a DFF are replaced by barrier gates in the PL-QDI

netlist. Barrier gates do not perform any logical operation but only transport the input to

its output. All barrier gate outputs have an initial token on them at the release of reset.

The resulting gate topology at the end of step 1 is termed as a “PL-QDI network”. Figure

78

5.4 shows an example clocked system and its equivalent PL-QDI network at the end of

step 1 of the synthesis algorithm.

Figure 5.4 Clocked circuit and equivalent PL-QDI network

79

Step 2: Splitter Gate Insertion

As described in Chapter 3, to ensure a live and safe PL-QDI circuit there should

not be any direct barrier gate to barrier gate path. If there is any barrier gate to barrier

gate connection, a splitter gate is inserted between them to break this path. Figure 5.5

shows splitter gate insertion to break a barrier gate to barrier gate path. Splitter gates are

through gates that act as buffers when inserted in PL-QDI circuits.

Furthermore, to guarantee correct four-phase communication between PL-QDI

gates, the PL-QDI network topology should not have directed graphs with less than three

PL-QDI gates. If there are less than three PL-QDI gates in a directed graph, it will lead to

a deadlock. Deadlock is a condition where PL-QDI gates stops communicating with each

other. This can be prevented by adding a through (buffer logic function) gate in the loop

that has less than three PL-QDI gates as shown in Figure 5.6. These loops can be detected

in a network by doing a depth-first search until depth 2 of the network is reached.

Consider a barrier gate B0 as the root of a tree, and through gates T1 and T2 are its child

nodes. Assume that through gate T1 is connected to the input of B0. If we do a depth-first

search with B0 as the root it will first lead to T1, then by continuing the depth first tree at

level 1 node T1, it will point to the root B0 of the tree. This detects the existence of a loop

with only two PL-QDI gates. A through gate has to be inserted between B0 and B1 to

ensure a live PL-QDI system.

80

Note a) Forbidden continuous barrier gate to barrier gate path
 b) Direct barrier gate to barrier gate path broken by splitter gate insertion

Figure 5.5 Splitter gate insertion to break continuous barrier gate to barrier gate path

81

Note a) Forbidden directed path with less than 3 PL-QDI gates
 b) Through gate (buffer function) inserted to allow communication using 4-phase
 handshaking protocol

Figure 5.6 Buffer function insertion

82

Step 3: Feedback Concentrator Insertion

The QDI handshaking protocols require a feedback from each of a source gate’s

destinations. At the end of steps 1 and 2 there may still be some unsafe signals in the PL-

QDI systems. There can be cases where a gate (e.g. G1) drives multiple gates (G2, G3); in

this case gate G1 must receive feedback signals from gates G2, G3. The algorithm adds a

feedback concentrator to receive feedbacks from all the destination gates as shown in

Figure 5.7a. A Muller C-element is used as a feedback concentrator if a gate receives

multiple feedbacks. If a gate (e.g. G1) is driven by multiple gates (G2 G3), then the gate

(G1) should send feedback to its source gates (G2, G3) as shown in Figure 5.7b. Trees of

C-gates are used to concentrate feedback signals if more than a 4-input C-gate is

required. Figure 5.8 shows the PL-QDI circuit equivalent of the clocked 2-bit counter

with count enable, first transformed in Figure 5.4.

Figure 5.7 Feedback in a PL-QDI circuit

83

Figure 5.8 PL-QDI 2-bit counter with count enable

84

5.5 CAD Tool Flow of PL-QDI Methodology

This research implements the PL-QDI synthesis algorithm by using commercially

available CAD tools. The PL-QDI CAD flow closely follows the synchronous RTL CAD

flow explained earlier in this chapter. A PL-QDI mapping tool written in the C language

is added to the synchronous RTL CAD flow to automatically convert a clocked netlist to

an asynchronous PL-QDI netlist. The mapping tool outputs the PL-QDI netlist and a

testbench for simulating the design. Figure 5.9 shows the complete PL-QDI CAD flow

used to map clocked RTL to a PL-QDI gate netlist. The PL-QDI mapping tool is

indicated in the shaded area. The steps of the synthesis algorithm described earlier are

also shown in Figure 5.9.

The input to the PL-QDI CAD flow is an RTL description of a synchronous

circuit written using VHDL or Verilog. For example, consider the RTL description of a

2-bit counter with count enable as shown in Figure 5.10 used as an input to the PL-QDI

CAD flow. The clocked design is first simulated using a simulator to verify the circuit

functionality.

85

Figure 5.9 PL-QDI CAD flow

86

Figure 5.10 RTL Code of 2-bit counter with count enable

After the successful verification of the RTL design, logic synthesis is performed

using a two-input static CMOS gate library to produce a gate-level netlist. The logic

synthesis is done by using Synopsys Design Complier. The gate level netlist is then

87

simulated to check the functionality of the synthesized design. The clocked gate-level

netlist of the 2-bit counter with count enable in VHDL format is shown in Figure 5.11.

Figure 5.11 Synthesized gate netlist of 2-bit counter with count enable

The clocked netlist in EDIF format is used as the input for the PL-QDI mapping

tool. The mapping tool reads the clocked netlist and does a fine grain mapping to a PL-

88

QDI netlist as previously described. The PL-QDI system generated by the mapping tool

is a VHDL netlist of PL-QDI gates and C-gates. The VHDL netlist of the PL-QDI 2-bit

counter with count enable is shown in Figure 5.12. The signal declarations and temporary

signal instantiation are excluded from Figure 5.12 for length reasons. The mapping tool

also outputs a template VHDL testbench for simulating the PL-QDI system. The PL-QDI

testbench is explained in detail in Chapter 6.

The PL-QDI system is simulated using a library of PL-QDI gates defined in

Verilog. The Mentor Graphics Modelsim simulator that was used for simulation of

clocked RTL and gate netlist is also used for PL-QDI circuit simulation. Thus, the entire

conversion of clocked RTL design to asynchronous PL-QDI is done using commercially

available synchronous CAD tools and a custom PL-QDI mapping tool.

89

Figure 5.12 PL-QDI system produced from the PL-QDI CAD flow

90

5.6 PL-QDI Gate Library

Note Adopted from [7]

Figure 5.13 PL-QDI through gate

91

The PL-QDI gate library consists of 2-input gates with dual rail inputs and

outputs. Figure 5.13 gives a through gate block diagram. The through gate’s pull down

tree is used to realize basic logic functions such as AND, NAND, XOR, XNOR, OR and

NOR. The circuit used to generate control signals required for the communication of data

between PL-QDI gates is shown by dotted region in Figure 5.13. The detailed

explanation of through gate operation is given in Chapter 4.

The PL-QDI gate library has a second gate type for barrier gates as previously

explained for replacing sequential gates. A PL-QDI barrier gate is shown in Figure 5.14.

The PL-QDI barrier gate operation is explained in detail in Chapter 4. There are two

types of barrier gates. The first type is a barrier gate whose initial output after reset

represents dual-rail logic high (“10”) and the other one is a barrier gate whose initial

output after reset is a dual-rail logic low (“01”). Figure 5.14 shows a barrier gate whose

initial output after reset is logic low.

Designers often assign some signal values to constant high or low values in clocked

circuit design (ex: output_ready = 1). To implement this functionality in PL-QDI designs,

a modified through gate is used to generate dual-rail constant values. PL-QDI constant

generators should alternate between evaluate phase and precharge phase depending on

the output feedback signal received from the destination gate. This is necessary for other

PL-QDI gates to continue communicating with each other using the four-phase

handshaking protocol. Figure 5.15 shows a modified PL-QDI gate used for generating the

logical high equivalent in dual-rail encoding (“10”). If output feedback Re of a destination

PL-QDI gate is high, the constant generator output is a valid dual-rail logic high (“10”)

92

value. When Re goes low, the constant generator output is a null code or spacer code (

“00”). Similarly, a PL-QDI logic low constant generator is shown in Figure 5.16 and is

also implemented using a through gate.

Figure 5.14 PL-QDI barrier gate

93

Figure 5.15 PL-QDI logic high constant generator

Figure 5.16 PL-QDI logic low constant generator

5.7 Summary

This chapter has described the synthesis algorithm used to design PL-QDI

systems starting from a clocked netlist. It has also introduced a PL-QDI CAD flow that

uses commercially available synchronous CAD tools for the design of PL-QDI systems.

The use of commercial synchronous CAD tools in the design of PL-QDI systems reduces

time to market and production cost. Designing a PL-QDI system starting from a clocked

94

netlist and using synchronous CAD tools makes it possible for anyone with design

knowledge of clocked circuits to create asynchronous circuits.

95

CHAPTER VI

PL-QDI DESIGN EXAMPLES

The PL-QDI CAD flow was introduced in Chapter 5. This chapter describes

circuits that were generated using the PL-QDI methodology. Section 1 explains PL-QDI

circuit features. Section 2 describes the template testbench used to simulate a PL-QDI

system. Section 3 gives PL-QDI design examples varying from a simple counter to a

complex 64-bit floating point unit.

6.1 PL-QDI System Features

6.1.1 PL-QDI Systems Maintain The Synchronous Property

The word synchronous is associated with logic designs that have one or more

clock signals. Clock signals are used to determine when data values are stable in clocked

circuits. The clock period is the time taken for one complete clock cycle. Digital

designers adjust the clock period depending on the largest delay path in the clocked

system. Clocked systems are made up of two types of gates, namely, sequential and

combinational gates. Combinational gates are placed between sequential gates.

Sequential gates in the clocked system are evaluated once per clock cycle. This ensures

that the sequential gate evaluating for the nth time uses the (n-1)th output of itself or other

96

sequential gates that has passed through the combinational gates. The level or edge of

clock signal is used to determine whether the data values are stable or undergoing

intermediate transitions. This concept is used to synchronize logic computations in

clocked systems. The number of clock cycles used for an output computation is

multiplied by the clock period to determine the output computation time.

Before discussing the PL-QDI system’s synchronous property, it is important to

briefly describe how asynchronous PL systems maintain the synchronous property [9]. In

PL systems, the cycle number of a gate gives the number of times the gate has fired since

the release of reset. A fully functional PL system is live, safe and satisfies initial token

marking rules and feedback insertion rules as discussed previously. This means that the

nth firing of a barrier gate uses the (n-1)th evaluation output of itself or other barrier gates.

This is analogous to a clocked system’s characteristic that the sequential gate evaluating

for the nth time uses the (n-1)th output of itself or other sequential gates that have passed

through the combinational gates. Thus, the PL system maintains the synchronous

paradigm.

Because PL-QDI systems are formed by extending the concepts of PL systems to

QDI gates, a fully functional PL-QDI system is live safe and satisfies initial token

marking rules and feedback insertion rules. As such, a PL-QDI system also maintains the

synchronous paradigm.

6.1.2 PL-QDI Gates Exhibit Fast Forward Latency

PL-QDI gates generate dual-rail outputs by using a pulldown compute block, so

PL-QDI gates can fire early, that is produce an output before all inputs have arrived. The

97

parallel NFET tree in the PL-QDI gate compute block can compute the output at the

arrival of an early input, but the input feedback signal is generated only after the arrival

of all the input values. Thus, PL-QDI gates have fast forward latency and slow backward

latency. This is the same functionality as produced by early evaluation PL gates in a static

CMOS PL system, without the need for additional logic. An example pull-down block of

PL-QDI compute block is shown in Figure 6.4.

In Figure 6.4, if input A is assumed to be early arrival input and input B is the late

input, the PL-QDI gate computes the output at the arrival of A, but it only sends the input

feedback after the arrival of input B.

Figure 6.1 PL-QDI gate compute block

98

6.2 PL-QDI Testbench

Figure 6.2 gives a block diagram representation of the VHDL testbench generated

by the PL-QDI mapping tool. The testbench instantiates the device under test (DUT),

provides dual-rail input test vectors to the DUT and traces dual-rail output values of the

PL-QDI system. The testbench receives feedbacks fbin1, fbin2, …fbinN (where N is the

number of inputs) from the DUT inputs and generates input feedback tb_fbin by using

the C-gate cg_fbin. The testbench also detects individual output completions by XORing

the dual-rail outputs and computes an overall output completion signal tb_fbout. Signal

ext_re, a delayed version of tb_fbout is used as feedback for the DUT outputs. VHDL

processes input_gen and ouput_gen are used to generate dual-rail input values and trace

output values.

The Input_gen process is triggered if there is an event on the tb_fbin signal. A low

tb_fbin value indicates that the input values have been consumed and that the input PL-

QDI gates are ready to precharge. At this point the input_gen process drives the dual-rail

inputs with the null code to cause the input PL-QDI gates to precharge. If tb_fbin is high,

this indicates that the input PL-QDI gates have been precharged and are ready to accept

dual-rail inputs. This also means that input_gen process should provide valid dual-rail

inputs but not necessarily new dual-rail inputs. In many digital systems handshaking

output signals are used to differentiate valid outputs from temporary output values. They

also indicate when the circuit is ready for new input values. Similarly, in PL-QDI

circuits, handshaking output signals are used to indicate when the PL-QDI system is

99

ready to accept new dual-rail inputs. In cases where the PL-QDI DUT requires new dual-

rail inputs each time tb_fbin is driven high, then new dual-rail inputs are provided by the

input_gen process. This case is analogous to a clocked design that accepts new inputs

each clock cycle.

The Output_gen process is used to trace PL-QDI DUT outputs. This process is

instantiated by an event on tb_fbout. XOR gates A1, A2, ….. An are used to detect

individual output completion signals. A high on the output on any of these XOR gates

indicate a valid output for that corresponding dual-rail output. All of the individual output

completion signals are fed to a C-gate cg_fbout to generate an overall output completion

signal tb_ fbout. A low tb_ fbout indicates valid dual-rail outputs on all of the outputs and

indicates that the output PL-QDI gates can be precharged after output consumption.

Signal ext_re is a delayed version of tb_fbout and is used to indicate output consumption.

Signal ext_re is used as a feedback input to the DUT outputs. A low ext_re enables

precharge of the output PL-QDI gates. A high tb_fbout means the output PL-QDI gates

have been precharged and are waiting for signal ext_re to request new outputs. Thus, the

tb_fbin, tb_fbout signals are used to sequence the input and output PL-QDI gates between

the evaluation and precharge states.

100

Note Adopted from [60]

Figure 6.2 Block diagram of PL-QDI testbench

101

The marked graph representation for the testbench generated by the PL-QDI

mapping tool is shown in Figure 6.3. It shows the interface between the testbench and the

DUT as a marked graph. Figure 6.3 shows that the initial token marking for the marked

graph is live and safe, ensuring correct operation.

Figure 6.3 Marked graph representation of PL-QDI testbench

6.3 Design Examples

This section describes example designs developed using the PL-QDI CAD flow.

Clocked RTL designs were used as the input to the PL-QDI CAD flow. These PL-QDI

circuits produced from the PL-QDI CAD flow were simulated to verify that their

functionality matched their clocked counter parts.

6.3.1 Counter Designs

For initial testing, four different clocked counters were used to exercise the PL-

QDI methodology as shown below:

• 2-bit counter

• 2-bit counter with count enable

102

• 4-bit counter

• 4-bit counter with count enable

The RTL for the counters were synthesized to clocked gate level netlists in EDIF

format. The PL-QDI mapper tool was used to map the clocked netlists to PL-QDI gate

netlists. Each PL-QDI netlist was simulated using PL-QDI testbench. The block diagram

representation and the marked graph representation of the testbench used for simulation

of the 2-bit PL-QDI counter with count enable are shown in Figure 6.4a and Figure 6.4b.

Similar testbenches were used for simulating the other PL-QDI counters.

Table 6.1 compares the number of gates in the synthesized clock design and the

PL-QDI gate netlists. The increase in the number of gates in the PL-QDI gate netlists are

due to the insertion of splitter gates and buffer gates.

Table 6.2 Comparison of number of gates in clocked and PL-QDI designs

Designs Clocked PL-QDI
 Total gates Total gates

2-bit counter 3 6
2-bit counter with enable 5 7

4-bit counter 9 14
4-bit counter with enable 11 15

103

Note (Adopted from [60]) (a) Block diagram (b) Marked graph representation

Figure 6.4 PL-QDI counter testbench

104

6.3.2 64-bit Floating Point Clipper Circuit

The 64-bit floating point clipper designs used in this example are adopted from

[60]. A clipper circuit passes an input stream to the output constraining the output to lie

between user-specified lower and upper bound values. A high level abstraction of the

logic used in the non-pipelined clipper circuit is shown in Figure 6.5. The VHDL RTL

design implementation has a four-state finite state machine (FSM) and a datapath. The

datapath and control used for the clipper circuit is shown in Figure 6.6. Two states were

used to load the upper and lower bound values into the clipper circuit, and the remaining

two states were used to compute clipped output values.

Note Adopted from [60]

Figure 6.5 Clipper circuit high level abstraction

The 64-bit clocked netlist was converted to a 64-bit PL-QDI netlist using the PL-

QDI CAD flow. The PL-QDI design was simulated using 1000 randomly generated input

105

test vectors between +15 and -15, with -5 and +5 used as the upper and lower bound

values for the clipper circuits. The block diagram and marked graph of the testbench used

for PL-QDI simulation is shown in Figure 6.7. Table 2 gives the comparison of the

number of gates in the clocked and PL-QDI designs. Simulation results verified that the

PL-QDI output computations matched those of the clocked system.

106

Note Adopted from [60]

Figure 6.6 Datapath and control of clipper circuit

107

A pipelined variation of the 64-bit clipper circuit [60] was also tested. The

pipeline contains three stages. The first pipeline stage is used to load upper/lower bound

values and input test vector values for the clipper circuit. The second stage is used to

compare the input value with the lower bound value and the third stage for comparing the

input value with the higher bound value. Table 6.2 shows the number of gates for the

clocked and PL-QDI design. The same test vectors used for the non-pipelined designs

were also used for this design, and the PL-QDI simulation results matched the clocked

simulation results.

Note Adopted from [60] (a) Block diagram (b) Marked graph representation

Figure 6.7 PL-QDI 64-bit clipper testbench

108

Table 6.3 Gate count for 64-bit clipper circuits

Designs Clocked PL-QDI
 Total gates Total gates

Non-pipelined 64-bit clipper 1964 1964
3-stage pipelined 64-bit clipper 9180 9308

6.3.3 picoJava-II Floating Point Unit

This mapping was done to illustrate that the PL-QDI methodology can also work

for complex IP cores implemented by others. A floating point unit from Sun

Microsystem’s [59] picoJavaII CPU that performs both single and double precision

floating point operations in IEEE 754 format was used to test the PL-QDI methodology.

Verilog RTL of the FPU is available from Sun Microsystems. The FPU is a microcoded

design with a 32-bit datapath and that uses two 160 X 54 bit ROMs to store the

microcode. This test case is different from previous cases, as the FPU RTL is specified in

Verilog and the design uses a microcoded architecture. The FPU Verilog RTL was

restructured to separate the microcode ROMs from the rest of the synthesizable datapath.

This was needed so that a PL-QDI wrapper could be placed around the microcoded

ROMs. The Verilog FPU RTL was synthesized to a clocked gate netlist, and then mapped

to a PL-QDI gate netlist using the PL-QDI mapper tool.

109

Figure 6.8 PL-QDI wrapper used around microcode ROM

110

A PL-QDI wrapper was created around the microcoded ROM to make it function

as a PL-QDI ROM. The block diagram of the PL-QDI wrapper around the microded

ROM is shown in Figure 6.8. The PL-QDI ROM was interfaced with the PL-QDI gate

netlist obtained from the PL-QDI mapper tool. The wrapper functionality is twofold: it

behaves as a PL-QDI gate when interacting with the PL-QDI design and as a regular

clocked I/O interface for the internal clocked microcoded ROM. The wrapper reads dual-

rail outputs and input feedback from the PL-QDI design, generates output feedback,

converts single-rail outputs of the microcode ROM to dual-rail outputs, and places an

initial token after the release of reset at its output. The wrapper supplies inputs from the

PL-QDI design to the clocked ROM, converts single-rail ROM output to dual-rail output

required for PL-QDI design, and generates a local clock signal required for the clocked

ROM triggered by the arrival of all input signals.

The PL-QDI FPU was simulated by using 20 randomly generated test vectors to

test each of the single, double precision arithmetic operations and conversion operations

listed in Table 6.3 and Table 6.4. Simulation results of the PL-QDI system matched those

of the clocked system. The block diagram and marked graph representation of the

testbench used to simulate PL-QDI FPU is shown in Figure 6.9 and Figure 6.10. Table

6.5 shows the comparison of the number of gates used in clocked picoJava-II FPU and

PL-QDI FPU unit.

111

Table 6.4 Floating point unit arithmetic operations

No Floating Point Arithmetic Operations Description
1 Single precision addition
2 Single precision subtraction
3 Single precision multiplication
4 Single precision division
5 Single precision reminder
6 Single precision less than comparison
7 Single precision greater than comparison
8 Double precision addition
9 Double precision subtraction
10 Double precision multiplication
11 Double precision division
12 Double precision reminder
13 Double precision less than comparison
14 Double precision greater than comparison

Table 6.5 Floating point unit data type conversion operations

No Floating Point Unit Conversion Operations Description
1 IEEE 754 single precision floating point number to double precision number
2 IEEE 754 single precision floating point number to integer number
3 IEEE 754 single precision floating point number to long number
4 IEEE 754 double precision floating point number to single precision number
5 IEEE 754 double precision floating point number to integer number
6 IEEE 754 double precision floating point number to long number
7 Integer number to IEEE 754 single precision floating point number
8 Integer number to IEEE 754 double precision floating point number
9 Long number to IEEE 754 single precision floating point number
10 Long number to IEEE 754 double precision floating point number

Table 6.6 Gate count of picoJava-II FPU designs

Designs Clocked PL-QDI
 Total gates Total gates

picoJava-II FPU 17561 17571

112

Figure 6.9 PL-QDI 64-bit FPU block diagram

113

Figure 6.10 PL-QDI 64-bit FPU marked graph representation

114

CHAPTER VII

CONCLUSION AND FUTURE WORK

This research presented an asynchronous PL-QDI synthesis algorithm and CAD

flow to counter the growing problems of synchronous circuits and to address the

drawbacks of current asynchronous methodologies. This chapter summarizes the results

and future work involving the PL-QDI methodology.

7.1 Summary of Results

 The concept of marked graphs and token abstraction were extended to QDI

circuits. PL-QDI gates for PL-QDI design were built by modifying Caltech’s

PCHB gate design. The final PL-QDI systems obtained are live, safe, satisfy

initial token marking rules, maintain the synchronous paradigm, and use four-

phase handshaking protocol for communication between PL-QDI gates.

 A PL-QDI CAD tool flow was developed using commercial synchronous CAD

tools. The use of PL-QDI CAD tool flow aims to decrease design time to market

of asynchronous PL-QDI systems and reduces production cost by reducing the

need for proprietary tools.

 Because the PL-QDI methodology begins with a clocked netlist, it does not

require any special skills to use this methodology. Anyone with synchronous RTL

design skills can use this tool for designing asynchronous PL-QDI systems. This

115

encourages people outside the asynchronous community to experiment with an

asynchronous methodology and increases the manpower available to the IC

industry for implementing asynchronous designs.

 PL-QDI systems take natural advantage of the early evaluation capability of the

PL-QDI gate without the need for extra logic as required for the static CMOS EE

gates used in [18].

 PL-QDI gates do not have output latches, thus reducing the forward latency

compared to original static CMOS PL systems.

 The PL-QDI sample designs in Chapter VI showed that clocked RTL designs,

including IP cores, can be used to generate asynchronous PL-QDI systems.

In short, the PL-QDI methodology and PL-QDI CAD flow encourage designers to

explore PL-QDI asynchronous design as an alternative design technique for logic design.

7.2 Future Work

7.2.1 Modified PL-QDI Gate Library

The PL-QDI gate library should be expanded to include PL-QDI gates with three

or four inputs to take advantage of the parallel structure in the pulldown compute block.

7.2.2 Physical Design

PL-QDI systems should be physically implemented and compared to other

asynchronous and synchronous designs. This will help to evaluate area, power, and speed

of PL-QDI systems, allowing comparisons to other asynchronous implementations.

 116

REFERENCES

 [1] M. B. Josephs, S. M. Nowick, C. H. V. Berkel, “Modeling and Design of

Asynchronous circuits”, Proceedings of IEEE on Asynchronous Circuits and
Systems, version 87, February 1999.

 [2] R. O. Ozdag, P. A. Beerel, “High-Speed QDI Asynchronous Pipelines”,
Proceedings of the 8th International Symposium on Asynchronus Circuits and
Systems (ASYNC’02) 2002.

 [3] C. Piguet, "Logic Synthesis of Race-Free Asynchronous CMOS Circuits" IEEE
JSolid State Circuits, Vol 26, no 3, March 1991, pp. 271-380.

 [4] T. Verhoeff, “Delay-insensitive codes-An overview,” Distributed Computing, vol.
3, no. 1, pp. 1-8, 1988.

 [5] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U.
Cummings, T. K. Lee, “The Design of an Asynchronous MIPS R3000
Microprocessor”, in Proceedings of 17th Conference on Advanced Research in
VLSI, 164-181, IEEE Computer Society Press, 1997.

 [6] A. J. Martin, M. Nystrom, K. Papadantonakis, P. I. Penzes, P. Prakash, C. G.
Wong, J. Chang, K. S. Ko, B. Lee, E. Ou, J. Pugh, E. V. Talvala, “The Lutonium:
A Sub-Nanojoule Asynchronous 8051 Microcontroller”, Proceedings of 9th IEEE
International Symposium on Asynchronous Systems & Circuits (ASYNC), May
2003.

 [7] A. J. Martin, M. Nystrom, C. G. Wong, “Three Generatinos of Asynchronous
Microprocessors”, IEEE Design & Test of Computers, special issue on Clockless
VLSI Design, November/December 2003.

 [8] K. Saleh, H. Pedram, M. Naderi, M. H. Shafiaabadi, H. Kalantari, A. Farhoodfar,
“Synthesis Tools for Asynchronous Circuits Based on PCFB and PCHB”, in
Proceedings of the 9th Annual Computer Society of Iran Computer Conference
(CSICC2004), Feb. 2004.

 [9] D. Linder, “Phased Logic: A methodology for delay insensitive Synchronous
Circuitry”, PhD Thesis, Mississippi State University, 1994.

 117

 [10] T. Murata, “Petri-Nets: Properties, Analysis and Applications”, IEEE
Proceedings, Vol 77, pp 541-580, April 1989.

 [11] R. O. Ozdug, “Template Based Asynchronous Design”, PhD Thesis, University of
Southern California, November 2003.

 [12] A. Lines, “Pipelined Asynchronous Circuits”, Masters Thesis, California Institute
of Technology, June 1995.

 [13] K. V. Berkel, “Beware the Isochronic fork,” Integration, the VLSI Journal., vol.
13, pp. 103-128, 1992.

 [14] A. J. Martin “The limitations of delay-insensitivity in Asynchronous Circuits”, in
Proceedings of the 1990 MIT Conference on Advanced Research in Asynchronous
Circuits, 1990, pp 263-278.

 [15] C. J. Myers, “Asynchronous circuit design”, Wiley-Interscience Publication,
2001.

 [16] J. Sparso, S. Furber, “Principles of Asynchronous circuit design”, Kluwer
Academic Publishers.

 [17] D Linder, J. Harden, “Phased Logic: Supporting the Asynchronous design
paradigm with delay-insensitive circuit”, IEEE transactions on Computers, pp
1031-1044, September 1996 .

 [18] R. B. Reese, M. A. Thornton, C. Traver, D. Hemmendinger, “Early Enhancement
for Performance Enhancement in Phased Logic”, Vol 24, pp 532-550, April 2005.

 [19] R. B. Reese, M. A. Thornton, C. Traver, “A Fine-grain Phased Logic CPU”, in
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Feb 2003, pp 70-
79.

 [20] D. E. Muller, W. S. Bartky, “A Theory of Asynchronous Circuits”, in Proceedings
of International Sypmosium on Theory of Switching, vol 29, pp.204-243, 1959.

 [21] M. E. Dean, T. E. Williams, D. L. Dill, “Efficient Self-Timing with Level-
Encoded 2-Phase Dual-Rail (LEDR)”, in Advanced Research in VLSI, 1991, pp.
55-70.

 118

 [22] A. Davis, S. M. Nowick, “An introduction to asynchronous circuit design”, in
Encylopedia of Computer Science and Technology, vol. 38, supplement 23, 1998.

 [23] C. L. Seitz, “System timing”, in “Introduction to VLSI Systems”, C. A. Mead and
L. A. Conway, Eds. MA: Addison-Wesley, 1980, ch. 7.

 [24] P A. Beerel, “CAD Tools for the Synthesis, Verification, and Testability of
Robust Asynchronous Circuits”, PhD thesis, Stanford University, 1994.

 [25] K. Berkel, A. Bink, “Single-track handshaking signaling with application to
micropipelines and handshake circuits”, Proceedings of International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pp. 122-133, IEEE
Computer Society press, March 1996.

 [26] C. A. R. Hoare, “Communicating Sequential Processes”, ACM, vol. 21, no. 8, pp.
666-677, 1978.

 [27] A. J. Martin, “Compiling Communicating Processes into Delay-Insensitive VLSI
Circuits”, Distributed Computing, pp 226-234, 1986.

 [28] A. Kondratyev, K. Lwin, "Design of Asynchronous Circuits by Synchronous
CAD Tools”, Proceedings of IEEE Design & Test, vol 19, pp 107 – 177.

 [29] A. R. Newton, A. L. Sangiovanni-Vincentelli, “Computer-Aided Design for VLSI
Circuits”, IEEE Communication Magazine, August 2002.

 [30] G. E. Moore, “Intel – Memories and the Microprocessors”, The National
Academies Press http://darwin.nap.edu/books/0309054451/html/77.html

 [31] K. D. Emerson, “Asynchronous Design – an Interesting Alternative” ,
Proceedings of 10th International Conference on VLSI Design, January, 1997.

 [32] S. Hauck, “Asynchronous Design Methodologies: An Overview”, Proceedings of
the IEEE, Vol. 83, No. 1, pp 69-93, January, 1995.

 [33] M. Afghani, C. Svensson “Performance of Synchronous and Asynchronous
Schemes for VLSI Systems”, Proceedings of IEEE Transactiona on computers,
vol 41, no. 7, pp 858-872, July 1992.

 119

 [34] A. Smirnov, A. Taubin, M. Karpovsky, L. Rozenblyum, “Gate Transfer Level
Synthesis as an Automated Approach to Fine-Grain Pipelining”, Proceedings of
Workshop on Token Based Computing, June 2004.

 [35] S. M. Kang, “Computer-Aided Design For VLSI”, Proceedings of International
Conference on Circuits and Systems, vol 1, pp 1-5, June 1991.

 [36] R. B. Reese, M. A. Thornton, C. Traver, “A Standard Cell Implementation of a
Phased Logic CPU”, Proceedings of Workshop on Token based computing
(ToBaCo), Satellite Event of the 25-th International conference on application
and theory of Petri nets, June, 2004.

 [37] R. B. Reese, M. A. Thornton, C. Traver, “A Fine-Grain Phased Logic CPU”,
Proceedings of IEEE Computer Society Annual Symposium on VLSI, pp. 70-79,
Feb 2003.

 [38] J. M. Rabaey, A. Chandrakasan, B. Nikolic, “Digital Integrated Circuits – A
Design Perspective Second Edition”, 2nd Edition, Prentice Hall Electronics and
VLSI Series, 2003.

 [39] H. W. Johnson, M. Graham, “High-Speed Digital Design – A handbook of Black
Magic”, Prentice Hall PTR, 1993.

 [40] P. Kurup, T. Abbasi, R. Bedi, “It’s the Methodology, Stupid!”, ByteK Designs,
Inc, 1998.

 [41] M. Ligthart, K. Fant, R. Smith, A. Taubin, A. Kondratyev, “Asynchronous Design
Using Commercial HDL Synthesis Tool”, Proceedings of Sixth International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pp
114-125, 2000.

 [42] C. P. Sotiriou, “Implementing Asynchronous Circuits using a Conventional EDA
Tool-Flow”, Proceedings of Design Automation Conference, pp 415-418, June
2002.

 [43] J. W. Specks, “Computer-Aided Design and Scaling of Deep Submicron CMOS”,
IEEE Transactions on Computer Aided Design of Integrated Circuit and Systems,
vol 12, no 9, pp. 1357-1367, 1993.

 120

 [44] W. Maly, “Computer-Aided Design for VLSI Circuit Manufacturability”,
Proceedings of the IEEE, Vol 78, No 2, pp 356-392, February 1990.

 [45] J. McCardle, D. Chester, “Measuring an Asynchronous Processor’s Power and
Noise”, Synopsys Solvenet, https://solvnet.synopsys.com/

 [46] www.theseuslogic.com

 [47] M. K. Gowan, L. L. Biro, D. B. Jackson, “Power Considerations in the Design of
the Alpha 21264 Microprocessor”, Design Automation Conference, pp 726-731,
1998.

 [48] J. Sparso, J. Staunstrup, “Design and Performance Analysis of Delay Insensitive
Multi-Ring Structures”, Proceedings of the twenty-sixth International Conference
on Systems Sciences, vol 1, pp. 349-358, Jan 1993.

 [49] K. V. Berkel, F. Huberts, A. Peeters, “Stretching Quasi Delay Insensitivity by
Means of Extended Isochronic Forks”, Proceedings of Second Working
Conference on Asynchronous Design Methodologies, pp 99-106, 1995.

 [50] S. Tam, S. Rusu, U. N. Desai, R. Kim, J. Zhang, I. Young, “Clock Generation and
Distribution for the First IA-64 Microprocessor”, Proceedings of IEEE Journal of
Solid-State Circuits, vol. 35, no. 11, pp 1545-1552, November 2000.

 [51] C. H. V. Berkel, M. B. Josephs, S. M. Nowick, “Scanning the Technology –
Applications of Asynchronous Circuits”, Proceedings of the IEEE, vol 87, no. 2,
pp 234-242, February 1999.

 [52] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, R. L. Allmon,
“High-Perfornamce Microprocessor Design”, Proceedings of IEEE Journal of
Solid-State Circuits, vol. 33, no. 5, pp 676-686, May 1998.

 [53] D. W. Bailey, B. J. Benschneider, "Clocking Design and Analysis for a 600-MHz
Alpha Microprocessor", Proceedings of IEEE Journal of Solid-State Circuits, vol.
33, no. 11, pp. 1627-1633, November 1998.

 [54] Synopsys, www.synopsys.com

 [55] Mentor Graphics Modelsim, http://www.model.com/default.asp

 121

 [56] Legend Design Technology, http://www.legenddesign.com/products/msim.shtml

 [57] Altera, www.altera.com

 [58] Xilinx, www.xilinx.com

 [59] SUN Microsystems, www.sun.com

 [60] R. B. Reese, “Phased Logic Async 2004 Tutorial Document”,
http://www.hpc.msstate.edu/mpl/projects/phased_logic/publications/async2004_t
ut.pdf

	Automated Mapping of Clocked Logic to Quasi-Delay Insensitive Circuits
	Recommended Citation

	Microsoft Word - dissertation_v9_print.doc

