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The use of computer aided design (CAD) tools has catalyzed the growth of IC 

design techniques. The rapid growth in transistor count for synchronous digital circuits 

has increased circuit complexity. This growing complexity of synchronous circuits has 

exposed design issues such as clock skew, increased power consumption, increased 

electromagnetic interference and worst case performance. 

The increasing number of challenges posed by synchronous designs has 

encouraged researchers to explore asynchronous design techniques as an alternative 

methodology. Asynchronous circuits do not use a global clock signal that is the primary 

cause of many design challenges faced by synchronous designers. It has also been shown 

in some designs that asynchronous circuits consumes less power, and exhibits better 

average case performance than synchronous circuits.  

Asynchronous design techniques, even with their various advantages over 

synchronous systems, are not widely accepted by logic designers. This is due to the 



  

shortcomings of asynchronous design methodologies, primarily, the limited availability 

of CAD tool support and the use of proprietary specification languages.  

To overcome the shortcomings of current asynchronous design techniques, this 

research uses a methodology for designing asynchronous circuits starting from clocked 

RTL design. This research extends the concepts of Phased Logic (PL) and marked graphs 

to quasi-delay insensitive gates (QDI) gates to create an asynchronous PL-QDI 

methodology. The PL methodology is easy to use as it maps conventional RTL designs 

into delay insensitive PL circuits using commercial CAD tools. Caltech’s QDI gates 

exhibit fast forward latency, but the use of Caltech’s methodology requires a user skilled 

in the pecurialities of the Caltech design methodology. This research uses best of 

Caltech’s QDI circuit methodology and the PL methodology to come up with a new 

asynchronous PL-QDI methodology. It also presents a synthesis algorithm that uses 

commercially available synchronous CAD tools to map clocked designs to PL-QDI 

systems.  

Results of this research show that third-party clocked RTL codes including 

intellectual property (IP) cores can be converted to asynchronous PL-QDI systems using 

the PL-QDI CAD tools presented in this research. This work shows how mature 

synchronous CAD tools can be used to design clockless circuits. 
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CHAPTER I  

 
INTRODUCTION 

 
 
 

Integrated chip design techniques have witnessed rapid growth since the invention 

of the first commercial integrated circuits in the 1960s [29]. Transistor sizes have shrunk 

to nanometer levels [43] and the number of transistors on a single chip has risen to 

millions [30]. The use of computer aided design (CAD) tools [35] has catalyzed the 

growth of IC design techniques. The rapid growth in transistor count for synchronous 

digital circuits has increased circuit complexity. This growing complexity of synchronous 

circuits has exposed design issues such as clock skew, increased power consumption, 

increased electromagnetic interference (EMI), metastability and worst case performance 

[28, 31, 32, 34, 36].  

The increasing number of challenges posed by synchronous designs has 

encouraged researchers to explore asynchronous design techniques [2, 4, 7, 9, 11, 26, 32, 

37] as an alternative methodology. Asynchronous circuits have advantages such as no 

clock skew, lower power consumption for average case performance, decreased 

electromagnetic interference and average case performance [31, 32, 24]. 
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1.1 Disadvantages of Synchronous Circuits 

1.1.1 Clock Skew 

Global clocks are used to synchronize output computations in synchronous 

circuits. Shrinking transistor sizes has increased the number of gates on a chip, which has 

increased the capacitive load on the global clock signal. Furthermore, the increasing 

differences between gate delays (have decreased) and global wire delay (has remained 

relatively constant) have exacerbated clock skew problems. Clock edges arrive earlier at 

gates that are near, and late at gates that are far from the clock origin. Accounting for 

clock skew means an increase in clock period and a decrease in the circuit speed [31]. To 

tackle the problem of clock skew, designers must resort to using techniques such as 

hierarchical clocks [53], clock distribution [52] and clock deskewing [50].  Thus, clock 

skew is becoming increasingly challenging in synchronous IC design. 

1.1.2 Worst-case Performance 

Synchronous designers use clock periods that are greater than the longest path in 

the design. This allows enough time for the completion of the output computation in the 

longest path. At the same time, circuit paths whose delays are shorter than that of the 

longest path must wait until the end of the clock period for the start of the next 

computation. This results in idle time within the clock period and a decrease in 

performance [32].  
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1.1.3 Increased Power Dissipation 

Power is dissipated in synchronous designs due to dynamic power dissipation and 

static power dissipation [47]. Static power dissipation is due to leakage current and sub-

threshold currents. Dynamic power is dissipated during the charging and discharging of 

the gate’s load capacitance, and accounts for most of the power dissipation in 

synchronous circuits [38]. The dynamic power consumption of synchronous circuits is 

directly proportional to clock frequency, gate load capacitance, and the square of the 

power supply. Advances in synchronous design methodologies have increased clock 

frequency and the number of gates per chip resulting in increased power dissipation. 

Sections of the synchronous circuit not involved in the current computation also undergo 

switching due to the availability of the clock signal. This unnecessary switching adds to 

the power dissipation in synchronous circuits. Furthermore, combinational gates undergo 

temporary transitions before settling down to a stable output value. This unwanted 

temporary switching also increases power dissipation in synchronous circuits. Increased 

power dissipation has become a cause of concern for synchronous designers. 

1.1.4 High Electromagnetic Interference 

Rapidly changing current in synchronous circuits causes EMI [39]. Increased EMI 

in synchronous circuits make it vulnerable to security attacks [28]. Thus, applications 

requiring high security that use synchronous circuits require EMI shielding. 



   

4 

1.1.5 Metastability 

Metastability is a condition where the circuits that stores states (ex: cross coupled 

inverters) become biased at the midpoint of the two stable states representing logic high 

and low [38, 24]. A circuit can remain in the metastable state for an unknown amount of 

time before returning to a stable state. This can be harmful to synchronous designs as 

clocked circuits cannot wait for the circuit in a metastable state to return to a stable state. 

Synchronous systems should evaluate within a known period of time, so a metastable 

output value may either be interpreted as a logic low or high resulting in unknown circuit 

operation. After this kind of erroneous operation, the proper functionality of the 

synchronous system cannot be restored. 

1.1.6 No Change in Performance with External Environment 

Designers of synchronous systems must account for variations of gate delays with 

respect to temperature, power-supply voltage and fabrication parameters to determine the 

clock period of the design under construction. This clock period must account for worst 

case operating conditions and the longest delay path resulting in a longer clock period, 

reducing the performance of synchronous circuits.  

1.2 Advantages of Asynchronous Circuits 

1.2.1 Absence of Clock Skew 

 Asynchronous gates communicate with each other by means of a handshaking 

protocol, thus eliminating the need for a global clock. Absence of a clock means there is 

no clock skew in asynchronous circuits [28, 32, 31]. 
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1.2.2 Average-case Performance 

Asynchronous gates use handshaking signals such as input request and output 

acknowledgement to establish data communication between gates. These handshaking 

signals ensure that asynchronous gates begin a new computation at the arrival of new 

inputs and do not have to wait for other gates to complete their computation. The variable 

computation time of asynchronous gates results in an average case performance [24, 32, 

31] of asynchronous systems that can be better than the worst-case performance of 

synchronous systems.  

1.2.3 Low Power Consumption 

The global clock network that is a major source of power dissipation in 

synchronous circuits is absent in asynchronous circuits. Asynchronous gates compute 

outputs only after the arrival of all of the input signals, thus eliminating temporary 

transitions seen in combinational gates. There are no transitions in unused parts of 

asynchronous systems as they are waiting for input arrivals. Thus, many asynchronous 

circuits show decreased power consumption over synchronous circuits that implement 

similar functionality [28, 32, 31]. For example, Theseus Logic [46] implemented 

Motorola’s STAR08 8-bit microcontroller using asynchronous Null Conventional Logic 

(NCL). This asynchronous microcontroller (NCL08) exhibited approximately 38% less 

power consumption than the synchronous STAR08 [45].   
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1.2.4 Less Electromagnetic Interference 

Asynchronous circuits exhibit less EMI due to reduced switching activity [28]. 

The asynchronous NCL08 had 11db lower EMI than the synchronous STAR08 [45].  

1.2.5 Tolerence to External Environment  

Asynchronous circuits dynamically adjust their performance to best/typical/worst 

case operating temperatures, power supply voltage, and fabrication variation [32]. This 

means that the performance of asynchronous system when subjected to best case external 

environment can be relatively faster than in the worst case. This is not the case with 

synchronous circuits as their fastest performance depends on their worst case clock 

period which is based upon the worst case environmental conditions irrespective of the 

actual environmental conditions.    

1.2.6 Challenges Faced by Asynchronous Design 

Asynchronous design techniques even with their various advantages over 

synchronous systems, are not widely accepted by logic designers. This is due to the 

shortcomings of asynchronous design methodologies, primarily the limited availability of 

CAD tool support [11] and the use of proprietory specification languages [36, 42]. This 

section briefly discusses some common asynchronous methodologies and highlights their 

drawbacks. Later, it explains how each of these disadvantages acts as barriers to adoption 

of these methodologies by the IC design industry.  

 Martin’s asynchronous design methodology [7, 27] translates communicating 

sequential processes (CSP) into quasi-delay insensitive (QDI) asynchronous systems. In 
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this methodology, asynchronous circuit behavior is defined using sequential 

communication hardware processes (CHP). Process decomposition is used to convert 

asynchronous circuits described using CHP processes into a set of interactive concurrent 

CHP processes. Hand shaking expansions (HSE) are used to implement communication 

channels between the CHP processes using signal wires. HSEs obtained from the 

previous transformation process are converted into a set of production rules (PRs) that 

eliminates explicit sequencing. The operator reduction stage is then used to map PRs into 

standard hardware components and state variables. Additional information about this 

methodology is given in Chapter 3. The disadvantages of Caltech’s asynchronous QDI 

methodology are the use of the CHP language and the systematic semantics-preserving 

transformations that requires a skilled designer in order to produce optimum results.  

 The asynchronous null convention logic (NCL) [41] methodology uses 

synchronous CAD tools to generate asynchronous circuits. This design technique requires 

the RTL to be coded using a specific coding style that separates registers and 

combinational logic. Designers must also explicitly specify each register's request and 

acknowledgement signals in the RTL code. The RTL is synthesized using an NCL-

specific target library. After synthesis, the gate netlist is mapped to delay-insensitive 

minterm synthesis (DIMS) [48] type dual-rail assignments. DIMS is a method of boolean 

algebra simplification similar to sum of products simplification, but in DIMS, minterms 

are formed by using C-gates [20]. This methodology has some major drawbacks that 

make it user unfriendly. Restrictions on RTL coding style make this methodology 

unsuitable for using third party RTL or intellectual property (IP) RTL cores. Re-writing 
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RTL code in a specific coding style demands extensive work by the designer, and the 

resulting code must be reverified as having the same functionality as the original.  

 Beerel’s asynchronous methodology [24] requires circuit specifications using 

state graphs with special properties. It uses cube lists to represent circuits. The synthesis 

algorithm performs a series of transformations on the cube list to create asynchronous 

designs. The disadvantage of this methodology is the use of a custom specification 

language. 

 The Phased Logic (PL) methodology maps clocked RTL to asynchronous circuits. 

Linder and Harden in [9] describes PL as a delay insensitive methodology used to 

describe asynchronous circuit operations in terms of token flow within marked graphs 

while maintaining the synchronous paradigm. It uses level encoded dual-rail (LEDR) 

signaling for data encoding to reduce power consumption due to signal transitions. This 

methodology is easy to use in that it starts from a clocked netlist. However static CMOS 

PL gates have an output latch that increases the critical path of PL systems. To help 

overcome this performance penalty, PL systems can sometimes use early evaluation (EE) 

gates in the critical paths. EE gates fire upon the arrival of an input subset (trigger 

function) that can guarantee the correct output value. EE gates contain extra logic that is 

used to detect the early trigger. The use of EE gates increases the transistor count of the 

system. 

This section has highlighted some of the drawbacks in present asynchronous 

design techniques. The communicating processes compilation technique uses a full-

custom methodology and is not supported by commercial CAD tools. NCL logic has 
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restrictions on the RTL coding style. Beerel’s asynchronous design technique uses a 

custom tool for synthesis. The PL methodology use gates with output latches that add 

delay in the critical path.  

The limited availability of commercially available mature CAD tools and 

inadequate skilled manpower are huge barriers to the IC industry for accepting an 

asynchronous methodology for logic design. To overcome these shortcomings, designers 

are calling for the development of new CAD tools [31] or the use of commercial CAD 

tools in asynchronous circuit design.  

1.2.7 Research Overview 

This research extends the concept of Phased Logic (PL) [9] and marked graphs to 

quasi-delay insensitive gates (QDI) [15] gates to create an asynchronous PL-QDI 

methodology. It also presents a synthesis algorithm that can make use of commercial 

CAD tools to map clocked designs to PL-QDI systems.  

The marked graph token abstraction first introduced in the PL methodology is 

extended to QDI gates. A straight forward extension of PL concepts to QDI gates violates 

PL initial token marking rules as well as QDI handshaking protocols resulting in a dead 

system. This work overcomes these problems to construct a live PL-QDI system. 

1.3 Thesis Organization 

This section explains the organization of the remaining chapters in this thesis. It 

gives a brief review of the concepts explained in each of the chapters. 
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Chapter II: Asynchronous Design Concepts 

Chapter II describes different types of data encoding schemes and handshaking 

protocols that are used in asynchronous design. Classification of asynchronous circuits 

based on delay models is also briefly discussed.  

Chapter III: Phased Logic Systems & Quasi-Delay Insensitive Systems 

This chapter describes phased logic (PL) and quasi-delay insensitive (QDI) 

circuits. The first part of this chapter gives an in-depth explanation of Petri-nets [10], 

marked graphs [10], token abstraction, PL gate operation, PL gate firing rules, and the 

PL-synthesis algorithm. The second half of the chapter gives an overview of QDI gates 

and Caltech asynchronous design methodologies.  

Chapter IV: Phased Logic for Quasi-Delay Insensitive circuits  

Chapter IV covers the asynchronous design methodology developed in this 

research. This chapter gives a detailed explanation of how token abstraction and marked 

graph concepts are extended to QDI systems and explains how Caltech’s PCHB gate 

design are modified to suit the PL-QDI methodology. A simple example of a PL-QDI 

gate and its implementation is used to explain the operation of PL-QDI systems. 

Chapter V: CAD Support for the PL-QDI methodology 

This chapter explains the use of CAD tools in IC design and shows an example 

RTL CAD flow used in RTL synthesis. The current state of CAD tools in the 

asynchronous community is also discussed. A detailed explanation of the synthesis 

algorithm used to map clocked RTL designs to asynchronous PL-QDI designs is covered 
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in this chapter. Finally, it describes the PL-QDI CAD flow developed by using 

commercially-available mature CAD tools.  

Chapter VI: Design examples 

This chapter describes PL-QDI circuit features and explains how a PL-QDI 

system interacts with its external environment. Results from clocked systems mapped to 

PL-QDI systems are presented along with a discussion of test bench construction for PL-

QDI systems.  

Chapter VII: Conclusion and Future Work 

This chapter summarizes the results and explores areas of future work. 
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CHAPTER II  
 

ASYNCHRONOUS DESIGN CONCEPTS 
 
 
 

Unlike synchronous designs that use a clock signal to control data movement, 

asynchronous designs use handshaking signals to exchange data between gates. 

Handshaking signals are sequenced in a particular order defined by a handshaking 

protocol to accomplish data communication. This chapter introduces the concepts of 

asynchronous design. Section 1 compares data communication in synchronous systems 

and asynchronous systems. Section 2 provides different classifications for asynchronous 

methodologies, while section 3 describes data encoding schemes used within 

asynchronous circuits. Finally, section 4 discusses common handshaking protocols for 

data transmission within asynchronous circuits. 

2.1 Data Communication in Synchronous and Asynchronous Circuits 

In synchronous circuits, a global clock signal is used to synchronize data flow 

within the circuit. Combinational gate outputs are assumed valid and latched into 

sequential gates on either a rising/falling edge signal (edge-triggered) or by a high/low 

level signal (level-sensitive). Asynchronous circuits do not have a global clock. Data 

communication between asynchronous gates is performed by using handshaking signals 

[22]. Input data arrival is detected by an input validity circuit, while output completion is 

detected by an output completion circuit. Handshaking signals used for data transfer are 
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generated by using additional circuitry and data encoding styles. Data encoding styles 

used in asynchronous gates are discussed later in this section.  

 

 

Figure 2.1 Data communication in synchronous and asynchronous circuits 
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Figures 2.1a and 2.1b compare data communication within synchronous and 

asynchronous circuits. Assume that the synchronous circuit shown in Figure 2.1a 

processes its inputs on the rising clock edge. In Figure 2.1a, gate G1 produces its output 

before the second rising clock edge for use by gate G2. Similarly, gates G2 and G3 must 

produce their outputs before the next corresponding rising clock edge. This means that 

the longest register-to-register path delay between synchronous gates G1, G2, G2 must all 

be less than or equal to the clock period. The computation time in synchronous circuits 

are fixed and is equal to the clock period. Figure 2.1b shows one method of asynchronous 

communication using separate channels for data and handshaking signals. Asynchronous 

gates G1 and G2 exchange data using acknowledgement ack and request req signals. 

Gate G2 sends a request signal to Gate G1 indicates that it has finished computation and 

is ready for new input data. Gate G2 responds by asserting the ack signal when the G2 

output is ready. A similar exchange of handshaking signals is used for communication 

between gates G2 and G3. The order in which handshaking signals are exchanged to 

establish successful communication between asynchronous gates is defined as a 

handshaking protocol. The handshaking protocol used for data communication in 

asynchronous circuits allows the computation time of the asynchronous gates to be 

variable. The variable computation time of asynchronous gates can be explained by using 

the asynchronous circuit shown in Figure 2.1b. Gates G1, G2, G3 have computation 

times of 2 ns, 8 ns, and 4 ns respectively. In a straight pipelined system this is not an 

advantage, but in a system with feedback in the pipeline this can be used to produce a 
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lower average-case execution time during some interactive calculations in which the 

delay of each loop iteration are variable. 

2.2 Asynchronous Circuit Classification Based on Delay Models 

Asynchronous circuits can be classified on the basis of the delay models used in 

their designs. Delay models [11, 16] give information regarding the timing constraints 

used in the circuit design stage. Delay models used in the design of asynchronous circuits 

are classified as bounded and unbounded, depending on the timing assumptions of the 

gate and wire delays in the system. Figure 2.2 shows the delay model classifications. 

 

 

Figure 2.2 Classifications of delay models 
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2.2.1 Bounded Delay Model 

A bounded delay model assumes known or bounded gate and wire delays that fall 

within predefined minimum and maximum values. The bounded delay model concept is 

related to the synchronous design’s delay model where gate and wire delays cannot 

exceed the clock period of the circuit. This similarity made the bounded delay models 

popular during the early stages of asynchronous design research [2, 16]. Circuits based on 

bounded delay models involve stringent timing constraints during physical 

implementation.  

2.2.2 Unbounded Delay Models 

An unbounded delay model assumes unbounded gate and wire delays, and is 

further divided into delay insensitive, quasi-delay insensitive, and speed-independent 

delay models based on the timing assumptions on the gate and wire delays.  

2.2.3 Delay insensitive Circuits 

The delay insensitive (DI) model is independent of gate and wire delays. 

Asynchronous circuits implemented using the DI model should exhibit proper operation 

for any arbitrary finite positive values for the gate and wire delays [11]. In Figure 2.3, 

this is represented by finite random positive delay for all the gate delays (ΔGn) and wire 

delays (wdn). In [14], Martin explains the limitations of DI circuits and shows that only 

circuits composed of C-elements and buffers can be classified as delay insensitive. 

Martin developed a new genre of delay insensitive circuits called quasi-delay insensitive 

(QDI) circuits, which is a practical approximation of delay insensitive circuits.  
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Note Adopted from [16] 
 
Figure 2.3 Wire delay and gate delay model 
 

2.2.4 Quasi-delay Insensitive Circuits 

The delay model used in quasi-delay insensitive (QDI) circuits assumes equal 

delays on the branches of isochronic forks [13, 14, 7] and is independent of the other gate 

and wire delays. Isochronic forks are splits in the circuit interconnect where the wire 

delays of the splits are similar and small when compared to gate delays, such as to not 

affect the correct operation of the circuit. In Figure 2.3, this is represented by nearly equal 

wire delays (wd1 º wd2 º wdi where i = 3 to n) and random positive value for gate delays 

(ΔGn).  
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2.2.5 Speed Independent Circuits 

This delay model assumes random finite positive values for gate delays and 

negligible wire delays [24]. In Figure 2.3, this is represented by all wire delays set to zero 

(wd1= wd2= wdi = 0) where i = 3 to n and a random positive value for the gate delays 

(ΔGn). In modern CMOS circuits, this is an impractical delay model since wire delays are 

not negligible when compared to gate delays in submicron and nanometer designs. 

2.3 Data-encoding for Asynchronous Data 

 Data is encoded in asynchronous designs to facilitate the generation of 

handshaking signals by the arrival of input data. Asynchronous gates have extra logic to 

compute handshaking signals such as input completion and output completion signals. 

The logic used for output completion detection and input data validity depends upon the 

data encoding [1, 2, 4] scheme that is used in asynchronous circuits. This section 

describes some of the different data-encoding schemes used in asynchronous design. Two 

common forms of asynchronous data encoding are single-rail encoding and 1-of-N 

encoding. 

2.3.1 Single-rail Encoding 

This is also called bundled-data or delay-matching encoding. In this type of 

encoding, data and data valid signals are in separate channels. The data set can be 

composed of many data signals and has an associated control signal called the data valid 

signal. Thus, the data set is said to be bundled with its control signal [1]. Each data signal 

in the data set is single-rail encoded, i.e. one physical signal is used for each bit of 
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information. The data valid signal is asserted only when the output is ready. Assertion of 

the data valid signal represents valid data being present on the data line(s) and completion 

of the functional computation. This is achieved by matching the delay of the data valid 

signal with the worst case delay of the compute block that produces the data. This 

technique is called delay matching. Circuits that use delay matching may encounter a race 

between the data valid signal and the data [3]. Figure 2.4 shows a block diagram of an 

asynchronous circuit that uses a bundled data approach. Each gate has a compute block 

and a delay block. The compute block is used to perform the logical operation of the gate, 

while the delay block is used to match the delay of the data valid signal to the worst case 

delay path of the compute block. Unequal wiring delays between compute and delay 

blocks can cause race conditions between the arrival of the data set and the data valid 

signal. 
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Figure 2.4 Asynchronous circuit using single-rail encoding 
 

2.3.2 1-of-N Encoding 

1-of-N encoding derives the data valid signal from the input signals. This is done 

by encoding N data values using N wires (i.e, encoding two values 0 and 1 requires two 

wires, with one wire asserted for each value). In this type of encoding there is no race 

between the arrival of the input data and the data valid signal, since the data valid signals 

are generated from the 1-of-N encoded input data. The most common 1-of-N encoding 

scheme is for N=2 and is called dual-rail encoding [23]. In a dual-rail encoding scheme, 

each bit is represented by a pair of wires.  

As an example, consider a signal S represented in dual-rail format using the 

signals st and sf, where the subscripts t, f stands for logic high and low values 
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respectively. Dual-rail signals can be encoded either by using 2-phase encoding or 4-

phase encoding as shown in Figure 2.5. Figure 2.5a illustrates 4-phase encoding in which 

a logical high value is represented as ‘10’ and a logical low value is encoded as ‘01’ on 

the signal pair  st, sf. Data arrival at the input of a gate is detected by st and sf being 

unequal to each other.  After each transmission of a logical high/low value, a null code of 

‘00’ is placed on st, sf, to prepare the signals for next data value [3]. The null code is also 

referred to as a spacer code [9] or a reset code. The code word ‘11’ is considered as an 

invalid word in the dual-rail 4-phase encoding scheme.  The logical values transmitted 

using 4-phase encoding scheme can be interpreted by using only the current code word 

irrespective of the previous codeword. This is called context-free encoding. A 

disadvantage of 4-phase encoding is that the time spent transmitting the spacer code can 

be thought of as wasted time, as this time period does not contain logic data. This return-

to-null of the sf, st signals also consumes power as it increases signal transitions. The 

advantage of 4-phase dual-rail encoding is the simpler logic used for input detection and 

output completion. Asynchronous circuits that use two phase encoding schemes has more 

complex logic for input detection and output completion as they need to remember the 

previous input data to interpret the current input data. Null code transmission time is used 

by dynamic gates for CMOS precharge operation before transmission of the next data 

value. Data arrival in two-phase and four-phase dual-rail signaling is detected by a 

transition on either st or sf signal. Transitions of both the st and sf signals during a code 

word transmission are not allowed. 
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 Figure 2.5b shows a two-phase dual-rail encoding scheme. In this method, every 

transition on the dual-rail signals st and sf represents a transmission.  A ‘0’ value is 

transmitted by toggling the sf signal and a ‘1’ value is transmitted by toggling the st 

signal. Both rising and falling transitions on st and sf indicate transmissions of logic 

values. All the code words of 00, 01, 10 and 11 are used for transmitting logical data 

values. A logic gate must have an internal state that remembers the previously transmitted 

data value to determine if a code word represents a ‘1’ or ‘0’. This is a disadvantage of 2-

phase encoding as it requires more complex gate logic. The advantage of 2-phase 

encoding is that it is not necessary to transmit the null code after logical data 

transmission, resulting in less signal transitions and less power consumption. 
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Figure 2.5 Dual-rail four-phase and two-phase encoding 
 

2.4 Handshaking Protocols 

In synchronous circuits, data flow between gates is synchronized by a global 

clock signal. An example synchronous gate is shown in Figure 2.6. It has combinational 

gates embedded between stages of sequential gates. Signals in the combinational block  
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Figure 2.6 Synchronous circuit with sequential and combinational gates 
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may undergo several transitions in a clock period before they are captured by the 

sequential gates at the end of the clock cycle.  

In asynchronous circuits, the data flow between gates is governed by handshaking 

protocols. There are two types of handshaking protocols, two-phase and four-phase. 

2.4.1 Two-phase Handshaking 

Two-phase handshaking protocol consists of two events for a complete 

handshaking cycle. In two-phase handshaking, each transition (rising/falling) on the 

handshaking signals represent either a request or an acknowledgement. It may be 

implemented either by using two wires, with each wire representing request and 

acknowledge signals, or by using a single wire representing both request and 

acknowledge signals [25]. In the two wire implementation, a transition on the request line 

represents a new request and a transition on the acknowledge line represents an 

acknowledgement of the request. In the single wire implementation, a rising edge 

represents a request and a falling edge represents an acknowledgement or vice-versa. 

Two-phase handshaking protocols using two wires and one wire are shown in Figure 2.7a 

and Figure 2.7b respectively. 

2.4.2 Four-phase Handshaking 

A complete four-phase handshaking cycle has four events and is level based. The four 

phases represents start of handshake (request), process completion (acknowledgement), 

reset of request to null, and reset of acknowledgement to null for completing the 

handshaking cycle. Implementations often use null states to precharge dynamic logic 
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gates. Four-phase handshaking operation is shown in Figure 2.7c. The request line goes 

high, indicating that there is a request for new data from the destination gate. The source 

gate responds by raising the acknowledgement signal when its output data is ready. The 

destination gate negates the request line after consuming the input data. The source gate 

then negates its acknowledgment signal to complete the four-phase handshaking cycle. 
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Figure 2.7 Handshaking protocols 
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CHAPTER III  
 

PHASED LOGIC SYSTEMS & QUASI-DELAY INSENSITIVE SYSTEMS 
 
 
 

Previous chapters gave an overview of asynchronous design. This chapter 

describes asynchronous phased logic (PL) and quasi-delay insensitive systems (QDI). 

PL[9]  is a methodology used to describe asynchronous circuit operations in terms of data 

flow in a marked graph. QDI circuits use four-phase dual-rail signaling and assume 

isochronic forks [7]. Isochronic forks are the splits in the circuits where the difference in 

the wire delays of the splits is negligible when compared to gate delays [13, 14, 7]. 

Section 1 gives an overview of PL systems and section 2 explains QDI circuits. 

3.1 Phased Logic Systems 

The Phased logic (PL) [9] methodology permits translation of synchronous systems 

to asynchronous systems. Marked graphs (MG) are used to represent gate operation and 

data flow in phased logic systems. MGs are a subclass of directed graphs called petri-nets 

(PN) that are often used in representing asynchronous, concurrent systems. This section 

discusses the concepts of PL circuit and explains the properties of PNs, MGs as used in 

PL systems.  
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3.1.1 Level-encoded Dual-rail Encoding 

PL circuits use a form of two-phase dual-rail encoding known as level-encoded 

dual rail (LEDR) [21] encoding. This is different from the previously discussed 

traditional two-phase dual-rail encoding in Chapter 2. Figure 3.1 shows the LEDR 

encoding scheme. Observe that the two signal lines used in two-phase encoding are 

named value ‘sv’ and phase ‘st’ lines respectively, as per the naming convention adopted 

by Linder [9]. The value signal contains the logical value (‘0’ or ‘1’) of the transmitted 

data, while the phase signal is designated as either even or odd. Thus, transmitted logical 

data is named even 0, odd 0, even 1, or odd 1. The phase always changes between 

successive transmissions, while the value may or may not change. In LEDR encoding 

only the value wire or the phase wire changes state between each transmission.  

 

 

Figure 3.1 LEDR Encoding 
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3.1.2 Phased Logic Gates 

Phased logic systems use phase logic gates for logic computation. The inputs and 

outputs of PL gates are LEDR encoded, with data containing both phase and value 

components as previously mentioned. Just as a PL signal has an even/odd phase, a PL 

gate also has a phase associated with it. The matching of all the input signal phases and 

the gate phase implies valid input data and the gate is ready for the computation. Logic 

computation by a PL gate at the arrival of valid input data is called firing. Matching of all 

input phases with gate phase causes the gate to fire. Matching of input phase and the gate 

phase is graphically represented by placing a dot at the corresponding input. This dot is 

called a token. The correspondence between the gate phase and the tokens is shown in 

Figure 3.2. The gate fires if there are tokens on all its inputs, causing the gate phase and 

output phase to toggle. PL gate firing causes consumption of all input tokens because the 

gate phase is toggled; each gate firing also places a token on all output (i.e. the phase of 

all outputs are toggled).  
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Figure 3.2 PL Gate phase and corresponding token representation 
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3.1.3 Petri-nets 

The Petri-nets definitions in this section are adopted from [10]. Petri-nets are 

directed, bipartite graphs with two types of nodes namely, places and transistions, 

representing conditions and events in that order. Places contain tokens, and the number of 

tokens in a place p, is represented by M(p) where M is the marking. M is a function of the 

form M:F {0, 1, 2, … }. PNs have an initial state referred as the initial marking (M0). 

Places connect to transitions, and transitions connect to places. The arcs going from 

places to transitions and from transitions to places represent the flow relationship of the 

system. A Petri-net whose places can hold an unlimited number of tokens is called an 

infinite capacity net whereas a Petri-net with a bounded number of tokens in its places is 

called a finite capacity net or k-bounded net. A transition is enabled if all of its input 

places contain at least one token. An enabled transition can fire, which places one token 

at its output places and removes one token from each of its input places. A source 

transition that does not have any input places are unconditionally enabled, while sink 

transitions with no output places consume their input tokens. 

The firing sequence of a PN consists of the sequence of markings generated by 

the firings of enabled transitions. If the firing sequence is represented by a non-empty set 

{M0, (t1,M1), (t2,M2), … (tn,Mn)} then the marking, Mn, can be reached from the initial 

marking M0, by following the firing sequence.  

A petri-net is said to be live if an enabled transition is possible from the current 

marking, Mn, by following the firing sequence, regardless of the current transition that 

has been reached starting from the initial marking, M0. Thus, a live PN never encounters 
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a deadlock situation. A petri-net with a live initial marking, M0, will always result in a 

live network. 

3.1.4 Marked Graph 

A marked graph [9] is a subclass of petri-nets where each place has only one input 

transition and one output transition. The transitions of the MG are represented by the 

graph vertices, with arcs only shown between graph vertices and the intervening places 

assumed to be present. A directed circuit in an MG is defined as a directed path that starts 

and ends at the same transition. Like PNs, MGs also have an initial token marking. MGs 

are used to represent PL systems. Two properties [17] of MGs used in the PL 

methodology are safety and liveness properties and are defined as follows [9]:  

Theorem 1: An MG is live if and only if the initial token marking places at least 

one token on each directed circuit of the MG.  

Theorem 2: An MG is safe if and only if all of the edges are part of a directed 

circuit that contains at most one token. 

A transition in a marked graph fires whenever all of its input arcs contain a token. 

Firing consumes one token from each input arc and places one token on each output arc. 

In a PL system, a MG transition is a PL gate, while arcs are signals between PL gates. PL 

circuits require a safe and live marked graph for effective functioning of the system. A 

live initial token marking ensures that there is always a gate ready to fire, i.e., that the 

circuit does not enter deadlock condition. A safe PL system means that there is only one 

token on an input or output arc at any point in time. Safety also implies that a PL gate 

cannot fire until its output tokens have been consumed by its destination gates.  
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3.1.5 Mapping Clocked Netlists to PL Netlists 

The Phased logic methodology produces delay insensitive circuits starting from a 

clocked system.  Linder in [9] introduced the concept of barrier gates and through gates 

to distinguish sequential and combinational gates in the clocked system to facilitate 

mapping the clocked netlist to a PL netlist. Sequential gates such as DFFs are mapped to 

barrier gates and any combinational gates are mapped to through gates. The distinction 

between combinational and sequential gates is necessary to satisfy the initial token 

marking rules of PL systems. In static CMOS PL systems, Barrier and through gates are 

connected by using LEDR signals. The translation process also involves inserting 

feedback signals to make the PL circuits live and safe. Feedback signals are single-rail 

inputs and represent the output phase of the destination gate.  

This section gives a brief description of the translation algorithm used to map a 

clocked netlist to a PL netlist. For a detailed explanation of this algorithm, please refer to 

[9] and [17]. The algorithm is divided into four stages: Initial token marking, splitter gate 

insertion, marking of safe and unsafe signals, and feedback insertion. 

Stage 1: Initial Token Marking 

In this stage, a one-to-one mapping of the clocked netlist to a PL netlist is done. 

Single-rail data signals in the clocked netlist are replaced by LEDR data signals. An 

external global reset signal is used to reset all the PL gates to the same phase at the 

release of reset. During one-to-one mapping of the clocked netlist to PL netlist, sequential 

gates are mapped to barrier gates and combinational logic to through gates. Token 

markings on the barrier and through gates are defined by the initial token marking rules.  
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Initial token marking rules require tokens at the outputs of barrier gates. This means that 

the barrier gate outputs are connected to gates whose phase is equal to the barrier output 

phase. Initial token marking rules also require that the non-feedback outputs of a through 

gate cannot have tokens. This implies that a through gates output must be connected to 

the destination gate whose phase is opposite to that of the through gate output phase. 

Figure 3.3b shows the initial token markings at the release of reset. 

Stage 2: Splitter Gate Insertion 

Direct barrier to barrier gate connections can cause safety problems when 

feedback signals are inserted, so splitter gates are inserted to break barrier gate to barrier 

gate paths. Splitter gates are through gates and act as logical buffers when they are 

inserted in PL circuits.  Figure 3.3c shows the PL system after the insertion of splitter 

gate. Splitter gate s1 is inserted between the two barrier gates u2 and u3. 

Stage 3: Marking of safe signals 

All signals that are a part of a directed circuit that have only one token after the initial 

token marking are marked as safe signals. Directed circuits are those circuits that has at 

least one path that originate and terminate at the same gate. If a gate has multiple fanouts, 

each fanout is treated as a separate arc in the marked graph and all of the arcs have to be 

safe in order to achieve a live and safe PL circuit. After the initial token markings, only 

the barrier gate outputs have an associated token, so any signal in a directed circuit that 

has only one barrier gate is considered safe. Figure 3.3c shows that the signals s4, s6 and 

s7 are unsafe after the initial token marking as they do not belong to a directed circuit 

with only one token. The unsafe signals are identified with a * designation. 
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Note (a) Clocked circuit. (b) Initial token marking. (c) Splitter gate insertion.  
 (d) Feedback insertion 
 
Figure 3.3 PL translation steps 
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Stage 4: Feedback Insertion 

Feedback signals are single-rail acknowledgement signals that contain the gate 

phase. Feedback signals are used when necessary to create new directed circuits with 

only one token in the initial token marking to convert unsafe signals to safe signals. If an 

initial unsafe signal is made safe by the addition of a feedback signal, then the signal is 

said to be covered by the feedback. Figure 3.3d represents the PL circuit after feedback 

signal insertion. The signals s4, s6, and s7 that were initially unsafe are now covered by 

feedback signals f2, f1, and f3 respectively. Feedback insertion rules and the 

corresponding initial token markings are shown in Figure 3.4. All of the allowable 

feedback insertion configurations are indicated with a check mark besides the Figure. 

Feedback signals that originate and terminate on the through gate should have an initial 

token as seen in Figure 3.4b. Feedback signals originating from a through gate and 

terminating on a barrier gate should not have an initial token (see Figure 3.4a). Any 

feedback signal originating from a barrier gate has an initial token because all outputs of 

a barrier gate have an initial token.  Feedback signals that originate from and terminate on 

a through gate contain an initial token as shown in Figure 3.4c. Figure 3.4d shows that 

feedback signals cannot originate and terminate at a barrier gate as this creates a directed 

circuit with two token, which is a safety violation. To solve this problem, a splitter gate is 

inserted between the two barrier gates. The initial token marking of the two barrier gates 

separated by a splitter gate is indicated in Figure 3.4e. 

There are multiple options for feedback insertion. A scoring function is used to 

aid in the process of feedback insertion [17]. The scoring function is given by 
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Note (a) Through gate to barrier gate feedback.  
 (b) Barrier gate to through gate feedback.  
 (c) Through gate to through gate feedback.  
 (d) Forbidden barrier gate to barrier gate feedback  
 (e) Splitter gates between Barrier gates 
 
Figure 3.4 PL feedback insertion rules and corresponding token markings    
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score = S – F/k – p * L 

The variables used by the scoring function are the number of unsafe signals covered by 

feedback insertion S, a user-defined constant k that restricts the number of feedbacks on a 

single node, feedback length L, and a user-specified constant p that favors shorter 

feedbacks over longer feedbacks. 

3.2 Quasi-Delay Insensitive Systems 

Quasi-delay insensitive (QDI) circuits do not have any assumptions about delay 

of gates and wires except for isochronic forks [7, 13, 14, 32, 49]. The most popular QDI 

gates used in the design of asynchronous QDI circuits are Caltech’s weak-conditioned 

half buffer (WCHB), precharged half buffer (PCHB), and precharged full buffer (PCFB) 

[5, 6, 7, 12]. These gates are viewed as communicating processes [26], and transfer data 

by using a four-phase handshaking protocol.  

3.2.1 Weak-conditioned Half Buffer 

Figure 3.5 shows the circuit diagram of a WCHB gate. Signals (L0, L1), (R0, R1) 

represent false and true inputs and outputs respectively. Le and Re are active low signals 

representing input and output acknowledgement signals. Initially, both Le and Re are high. 

Assertion of either L0 or L1 asserts Le, thus acknowledging the input arrival. The output 

data is sent to destination gates that respond by asserting Re. The gate then waits for input 

neutrality (either L0 or L1 is negated) before resetting the output. Its disadvantage is that 

the input neutrality is checked before resetting the output. This is known as weak-

conditioned logic [11, 12]. Weak-conditioned logic increases the forward latency of 
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circuits built using WCHB gates as the gate waits for input neutrality before resetting the 

output.  

 

 

Note Adopted from [12] 
 
Figure 3.5 Weak conditioned half buffer gate 
 

3.2.2 Precharged Half Buffer and Precharge Full Buffer 

The PCHB and PCFB gates shown in Figure 3.6a and Figure 3.6b have separate 

input/output validity and neutrality checking circuits. This eliminates the dependency of 

resetting the output based on the input neutrality [12].  

In Figure 3.6, the LCD block represents the input validity and neutrality detection 

circuit, while RCD represents the output completion and neutrality detection circuit. The 

compute block uses dual-rail domino logic for input evaluation. The difference between 

PCHB and PCFB circuits is that in PCFB gates input neutrality and output neutrality can 
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occur in parallel, whereas in PCHB gates the input will be neutralized after the output is 

neutralized. 

 The PCHB design has dual-rail input/output signals, a pull down compute block, a 

precharge circuit, completion detection circuits, handshaking signals, and a C-element 

[20]. The precharge circuit of a PCHB gate is composed of two pmos transistors in series. 

Dual-rail inputs are fed to the pulldown nmos compute block to generate the 

complimentary outputs. The dual-rail inputs are also fed to input completion (LCD) and 

output completion (RCD) detection circuits. There are two active low handshaking 

signals: input acknowledgement signal Le and output acknowledgement signal Re. The Le 

and Re signals are used to establish proper data communications between PCHB gates. 

Signal Le is an acknowledgement sent to the source gate and Re is an acknowledgement 

coming from the destination gate. Gates exchange data by using a four-phase 

handshaking protocol.  
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Note Adopted from [7] 
 
Figure 3.6 PCHB and PCFB gates  



    

43 

3.2.3 Four-phase Handshaking in PCHB Gates 

Figure 3.7 demonstrate the four-phase handshaking protocol of an PCHB AND 

gate. In this example, Le and Re represent active low input and output acknowledgement 

signals respectively, pairs (Af,At) and (Bf,Bt) are dual-rail inputs and pair (Yf,Yt) is the 

dual-rail output. 

 

 

Figure 3.7 2-input PCHB AND gate operation  
  

Initially after reset, Re and Le are both high. Arrival of all of the valid inputs at 

time 2 causes the circuit to evaluate the new input data, producing a valid output at time 

3. Signal Le goes low at time 4 acknowledging the input signals, stating that the input is 

processed and a valid output is ready. After some unknown time at time 5 (depending 
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upon the destination gates), the output acknowledgement Re goes low confirming the 

output consumption by the destination gate. Low values on the Le and Re signals 

precharge the dual-rail output Yf, Yt forcing them back low, as seen at time 8. Re returns to 

‘1’ at time 9 indicating that the destination gate is precharged and ready to accept new 

data. Signal Le is negated at time 10 after the negation of both input and output, 

completing the four-phase handshaking. 

3.2.4 PCHB Gates Internal Operation 

In this section, the relationship between the four-phase protocol of Figure 3.7 and 

the internal PCHB gate operation of Figure 3.6a is discussed. At reset, the Le and Re 

signal are both high. After the release of reset, the gate waits for the arrival of all of the 

valid inputs, where input arrival is defined as assertion of one of the dual-rail wires for a 

dual-rail input signal. Arrival of all inputs, regardless of the order of arrival, causes the 

input validity circuit (LCD) to go high and the compute block to produce complimentary 

outputs. The computation of the complimentary outputs after input arrival is denoted as 

the output “firing”. The output firing causes the output completion detection circuit to be 

asserted high. Assertion of the outputs of both the LCD and RCD circuits forces the 

output Le of the C-element to be asserted low. Note that the circuit produces an input 

acknowledgement Le only after the arrival of all inputs and the evaluation of the outputs. 

The buffered Le is used as an enable signal en in the PCHB gate for enabling the compute 

block. A low Le precharges the preceding gate, causing the inputs to be negated. The 

assertion of Le also states that the PCHB gate will not accept the next new input until it 

precharge its outputs to a zero. Output consumption by the destination gate (destination 
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gate firing) causes the output acknowledgement Re to go low. At this stage both the input 

acknowledgement Le and output acknowledgement Re are low, enabling the PCHB gate to 

precharge.  

Figure 3.8 demonstrates the data communication between the PCHB gates using a 

circuit composed of three PCHB gates (G0, G1, G2) represented as black boxes along 

with data and handshaking signals. Each gate alternates between the evaluation state and 

the precharge state. 
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Figure 3.8 Data communication in PCHB gates 
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3.2.5 Caltech’s Asynchronous Design Methodology 

Both synchronous and asynchronous circuits can be modeled using concurrent 

processes that communicate with each other. The Caltech’s asynchronous design 

methodology translates communicating sequential processes (CSP) into quasi-delay 

insensitive asynchronous systems by using a series of systematic semantics-preserving 

transformations. The transformation process is outlined in the following section. For a 

detailed explanation of this methodology, please refer to [27].  

Asynchronous circuit behavior defined using a sequential Communication 

Hardware Processes (CHP) program is the starting point for this methodology. Table 3.1  

adopted from [7] explains the CHP notation used to describe asynchronous circuits. 

Table 3.1 CHP notation 
 
*[S] Repeat statement S for ever 
xÆ x is high, where x is a boolean variable 
x∞ x is low, where x is a boolean variable 
; sequential composition of two elementary actions 
, concurrent composition of two elementary actions 
[G1 Ø S1[] .. Gi Ø Si[]] Gi represent Boolean expression (guards) and Si represent program parts 

Gi Ø Si is read as waiting until one of the guards is true and then 
executing, the corresponding Si with true guard Gi 

[G] Waiting for condition G to become true 
[B]; xÆ; [ŸB]; x∞ Represents four-phase handshaking by alternation of waits and boolean 

assignments  
R!x Send value x over the channel R 
L?x Receive value x over the channel L 
 
Transformation 1: Process Decomposition  

In this step, asynchronous circuit behavior defined using CHP notation is 

converted into a set of interactive concurrent CHP processes. This iterative step is 

repeated until the transformation leads to simple processes that communicate with each 

other using input and output channels. The decomposition process leads to asynchronous 
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circuits that use one of the three possible Caltech QDI templates: WCHB, PCHB, or 

PCFB as discussed in the preceding section.  

Transformation 2: Hand Shaking Expansion  

This transformation process implements a communication channel between 

processes using signal wires. The channel (C, D) can be implemented using a pair of 

wires (co w di) and (do w ci). After implementing the communication channel, a 

communication protocol must be established to exchange data using handshaking signals. 

The communication action between the processes is replaced by the four-phase 

handshaking protocol. A technique called HSE reshuffling is used to rearrange the non-

data dependent portion of the four-phase communication. Reshuffling improves the speed 

and size by reducing the number of sequencing and the state variables required to 

implement the HSE. There are three types of reshufflings: weak-conditioned half-buffer 

(WCHB), precharge-logic half buffer (PCHB), and precharge-logic full buffer (PCFB). 

The WCHB, PCHB and PCFB gates described in the previous section are the result of 

different types of reshuffling.   

A simple one-bit buffer circuit example adopted from [5] is used to outline the three 

types of reshuffling. The buffer circuit receives the data x on channel L and sends it on 

channel R without any computation. The CHP notation for this buffer is given by *[L?x; 

R!x]. The handshaking expansion of the communication action between the two channels 

L and R is represented as: 

*[ [L0 Ø x0Æ [] L1 Ø x1Æ];  Le∞; [ŸL0⁄ ŸL1]; LeÆ;  

    [x0 Ø R0Æ [] x1 Ø R1Æ];  [ŸRe]; R0∞, R1∞;[ŸRe];] 
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The three types of reshufflings for the buffer circuit are shown below.  

WCHB ª *[[Re]; [L0 Ø R0Æ [] L1 Ø R1Æ]; Le∞; 

             [ŸRe]; [ŸL0⁄ ŸL1]; R0∞, R1∞; LeÆ; ] 

As can be seen from the above WCHB reshuffling, the gate waits for the 

neutrality of the output before resetting the outputs. To eliminate this dependency of 

output reset on the input neutrality, precharge logic reshufflings are used, which postpone 

the neutrality of inputs [ŸL0⁄ ŸL1]. The PCHB reshuffling of buffer circuit is: 

PCHB ª *[[Re]; [L0 Ø R0Æ [] L1 Ø R1Æ]; Le∞; 

             [ŸRe]; R0∞, R1∞; [ŸL0⁄ ŸL1]; LeÆ; ] 

In circuits where speed is critical, PCFB reshuffling can be used as it allows the 

reset phases of the input and output to execute concurrently. Although this requires an 

additional state variable en resulting in an increase in gate size, it also produces a faster 

CMOS implementation by removing a few transitions in the handshake cycle. So the 

PCFB reshufflings are primarily used in circuits that trade area for speed.  

PCFB ª *[[Re]; [L0 Ø R0Æ [] L1 Ø R1Æ]; Le∞; en∞ 

             ([ŸRe]; R0∞, R1∞), ([ŸL0⁄ ŸL1]; LeÆ); enÆ] 

Transformation 3: Production Rules Expansion 

Hand shaking expansions obtained from the second transformation process is 

converted into a set of production rules (PR) that eliminates explicit sequencing. The 

production rule G Ø xÆ suggests that the node x goes high after the guard (G) becomes 

true. The guard function ensures that the PRs are fired as specified by the hand shaking 

expansion. The guard function G is said to be stable if it holds the value until the 
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production rule executes. In this step, the PRs that match operator semantics are 

identified to form a network of operators. Examples of primary operators are and, or, C-

element, wire, and fork. Table 3.2 obtained from [27] shows the production rule sets for 

these primary operators.  

Table 3.2 Operators and the production rules 
 

Operator Production Rules 

C-element (x,y) C z ª x ⁄ yØ zÆ 
                 Ÿx ⁄ ŸyØ z∞ 

AND (x,y) ⁄ z ª x ⁄ yØ zÆ 
                 Ÿx ¤ ŸyØ z∞ 

OR (x,y) ¤ z ª x ¤ y Ø  zÆ 
                 Ÿx ⁄ ŸyØ z∞ 

Wire (x,y) w z ª x Ø yÆ 
                 Ÿx Ø y∞ 

Fork x f (y,z) ª x Ø  yÆ,  zÆ 
                 Ÿx Ø  y∞,  z∞ 

 
Note Adopted from [27] 

Transformation 4: Operator Reduction 

In the final transformation process, production rule sets in the program and the 

production rule sets of operators are matched to represent the program as a network of 

operators. If the production rules cannot be mapped into the set of operators, the guards 

of the production rules are transformed to that of a guard of operators. A complex guard 

with a large number of variables is broken down into smaller production rules using new 

internal variables. This stage maps PRs to standard hardware components and state 

variables. 
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3.3 Summary 

This chapter introduced two methods of implementing asynchronous circuits: the 

phased logic methodology and Caltech’s asynchronous design methodology. The Phased 

logic methodology converts synchronous circuits into delay insensitive circuits. Since the 

PL methodology uses a clocked netlist as an input and automatically converts it into an 

asynchronous netlist, it does not require an expert to produce asynchronous circuits. 

Anyone with solid foundation in synchronous design can use the PL methodology to 

produce delay insensitive asynchronous circuits. This eliminates the arduous and lengthy 

learning period required in designing asynchronous circuits using other asynchronous 

methodologies.  

The Caltech’s asynchronous methodology described in this chapter produces QDI 

circuits starting from a behavioral description of the design in CHP notation. The 

advantages of Caltech’s asynchronous QDI circuits are that they have fast forward 

latency when compared to synchronous domino logic, as they do not require output latch. 

They are also energy efficient and smaller in size when compared to non-pipelined QDI 

circuits [12]. The disadvantages of Caltech’s asynchronous QDI methodology are the use 

of  the CHP language and the systematic, semantics-preserving transformations that 

requires a skilled designer for creating an efficient asynchronous QDI implementation. 

As will be seen later, this research combines the PL methodology and Caltech’s 

QDI gates with their fast forward latency to produce QDI asynchronous circuits, thus 

using the best parts of each methodology. 
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CHAPTER IV  
  

PHASED LOGIC FOR QUASI-DELAY INSENSITIVE CIRCUITS 
 
 
 

This research extends the concept of phased logic and marked graphs to quasi-

delay insensitive circuits. QDI systems with PL features are termed PL-QDI systems. The 

first step of extending PL concepts to QDI circuits is to extend the concept of token 

abstraction to QDI gates. 

4.1 A Cell Design for PL-QDI systems 

The first step of PL-QDI research is to decide which QDI cell design will be used 

for PL-QDI systems. A comparison of the performance of Caltech’s QDI gates is helpful 

in selecting one of the three QDI design cells (WCHB, PCHB, PCFB).  

4.1.1 Performance of Caltech’s QDI Design Cells 

The WCHB gate has the lowest cycle time of all the three Caltech’s QDI design 

cells with 10 transition counts, but the use of WCHB gate increases the forward latency 

of the circuit. The PCFB gate has a cycle time of 12 transitions and a PCHB gate has a 

cycle time of 14 transitions, so obviously the PCFB gate is faster, but not by a large 

factor. This speed is achieved at the cost of larger gate size of PCFB gates because they 

require more logic for the generation of an extra state variable and extra completion 
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detection [5, 12]. Due to the larger size of PCFB gates, they are used only in design of 

circuits where speed is critical. The PCHB gates are considered the “work horses” for 

most applications since they have comparatively faster throughput, smaller in size and are 

easy to design [5, 12, 6].  

 

 

Note Adopted from [7] 
 
Figure 4.1 PL-QDI gate template 
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4.1.2 PL-QDI Template Gate 

 In this research, the Caltech’s QDI PCHB gate is used as the PL-QDI gate due to 

its smaller size, substantial speed, and ease of design when compared to the WCHB and 

PCFB gates. The QDI gates used in the PL-QDI systems are called PL-QDI gates. The 

PCHB gate’s compute blocks are restricted to having a maximum of two inputs in this 

work, but can be increased with additional logic at a speed cost due to the extra 

complexity of the pulldown network and input completion detection logic. The PL-QDI 

gate template is shown in Figure 4.1. 

4.2 Token Abstraction for Quasi-Delay Insensitive Gates 

This section gives a brief review of the four-phase handshaking protocol in QDI 

gates and explains how it is translated into a token abstraction.  

 

 

Figure 4.2 Four-phase handshaking in PL-QDI gate 
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Figure 4.2 illustrates the four-phase handshaking for a single input QDI gate. In 

Figure 4.2, Le and Re represents active low input feedback and output feedback signals, 

and the signal pairs (Af, At) and (Yf, Yt) represents dual-rail input and output respectively. 

At time 1, the QDI gate is in its initial state where the gate is waiting for the arrival of 

new dual-rail input. Dual-rail input (Af, At) arrives at time 2. Output computation takes 

place between time 2 and 3, and the dual-rail output (Yf, Yt) is ready at time 3. Active low 

input feedback signal Le is asserted at time 4 indicating that the input is consumed and the 

output computation is done. Output feedback signal Re goes low at time 5 indicating the 

output consumption by the destination gate. At time 6 Re is deasserted to request for new 

output. Le is deasserted at time 7 indicating that the gate has been precharged and ready 

for new input. This cycle repeats continuously to facilitate data communication among 

the QDI gates. 

Let us now translate the four-phase handshaking protocol of QDI gates into a 

token abstraction. A QDI gate with token abstraction is referred to as a PL-QDI gate. To 

describe the token abstraction, a PL-QDI gate is represented as a marked graph as shown 

in Figure 4.3. In Figure 4.3, the compute node represents the compute block, LCD and 

RCD nodes represent input arrival and output completion detection circuits, and the C 

node represents the block used to generate the input feedback Le and compute block 

enable en. The signals in Figure 4.3 are compute node input in1, LCD node input in1_lcd, 

output feedback Re, input valid signal Lv, output valid signal Rv, compute block output 

ready s3, and PL-QDI gate outputs s1 and s2 going to a destination gate's compute node 

and LCD node. 
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Figure 4.3 Token flow in PL-QDI gate, steps 1-3  
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Figure 4.4 Token flow in PL-QDI gate, steps 4-5 
 
 

Figure 4.3 and Figure 4.4 describes the token flow in the PL-QDI gate. At time 1, 

the PL-QDI gate is waiting for the arrival of dual-rail input. In this condition, there is no 

valid dual-rail data on the input, and Le and Re are deasserted. In terms of token 

abstraction, this is represented by no token on the input and tokens on Le and Re 

indicating that the gate will fire once it receives tokens on all of its inputs. At time 2, 

dual-rail inputs arrive. This places a token on the input in1, in1_lcd and consumes the 
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token on Le because in order for the preceding gate to fire, it must consume the Le token. 

Now the compute node and the LCD node have tokens on all their inputs and are ready to 

fire. At time 3, the compute and LCD nodes fire. Firing of the compute node consumes 

the token on its inputs (in1, en, Re) and places the token on signal s3 and PL-QDI gate 

outputs s1 and s2. Firing of the input completion detection node LCD consumes the token 

on its input in1_lcd and places a token on Lv. The output completion detection node RCD 

fires at time 4 by consuming the token on s3 and placing a token on Rv. At time 5, a 

token arrives on Re indicating the output consumption by the destination blocks. Node C 

also fires by consuming the tokens on Lv and Rv, and placing new tokens on signals en 

and Le. A token on the input feedback signal Le indicates that the PL-QDI gate is ready 

for new data.   

4.3 Mapping of a Clocked Netlist to a PL-QDI Netlist 

The fine grain mapping [8, 19] methodology is used to convert a clocked netlist to 

an asynchronous PL-QDI netlist. In fine grain mapping, a one to one mapping of the 

gates in the clocked netlist to PL-QDI gates is done followed by feedback insertion to 

make the circuit live and safe.  

PL-QDI circuits must satisfy the liveness property, safety property and initial 

token marking rules of a PL system and must also follow the four-phase handshaking 

protocol of QDI gates. The PL-QDI PCHB gates must be divided into through gates and 

barrier gates for the purpose of initial token marking [18]. Combinational gates such as 

AND, OR, NAND gates are mapped as through gates, and sequential gates such as DFFs, 

are mapped as barrier gates. As discussed in Chapter III, PL initial token marking places 
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a token on all barrier gate outputs. The initial token marking also requires that through 

gate to barrier gate feedback signals should not have an initial token to satisfy the safety 

property.  But at the same time, the initial condition of the QDI gates at time 1 in Figure 

4.3 suggests that Le and Re signals should contain a token at reset. A resolution for this 

problem is discussed in the next section. 

If there is a directed circuit of PL-QDI gates, then there must be at least three PL-

QDI gates to satisfy the four-way handshaking protocol. PL-QDI gates with a logical 

buffer function must be inserted into any directed circuit that does not fulfill this 

requirement. At least one of the gates in the directed circuit must be a barrier gate. There 

cannot be any directed circuit of only through gates in the netlist, as this would imply a 

combinational loop in the original clocked netlist, which is not allowed.  

PL system rules also does not allow direct barrier gate to barrier gate connection. 

Splitter gates are inserted to break any barrier gate to barrier gate paths. 

4.4 PL-QDI Gate Interaction 

 At this point the PL-QDI gate identified in section 4.1, the PL-QDI token 

abstraction from section 4.2 and the initial token marking from section 4.3 are used to 

examine PL-QDI gate interaction within a netlist. Consider an example PL-QDI directed 

circuit containing a barrier gate and two through gates as shown in Figure 4.5. 
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Figure 4.5 An example PL-QDI circuit 
 
 
 Figure 4.6 shows the token marking of the PL-QDI system during reset. As per 

the initial token requirement for QDI gates, input and output feedbacks (Re1, Re2, Re3), 

and compute node enables (en1, en2, en3) have initial tokens. 

 The release of reset must place tokens on the barrier gate outputs s1, s2 as shown 

in Figure 4.7. Placing tokens at the barrier gate outputs makes the circuit unsafe as the 

directed circuits (s2, Lv2, Re1) and (s1, s8, Rv2, Re1) contains two tokens, which is a 

violation of the safety rule. The unsafe signals are designated with a * besides them. 

Furthermore, the feedback Re1 from the through gate n2 to the barrier gate n1 contains a 

token, which is a violation of the initial token marking rule. 

Removal of the initial token on the output feedback signal Re1 will fix the safety 

violation and satisfy the initial token marking rules stated earlier. Figure 4.8 shows the 

initial token marking of the circuit at the release of reset and without the token on signal 

Re1. This initial token marking is live, safe, and satisfies both PL and QDI system 
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properties. A live and safe initial token marking as in Figure 4.8 ensures that the system 

does not enter a deadlock condition. 

The PL-QDI template gate shown in Figure 4.1 can be used as a through gate but 

not as barrier gate as it cannot generate the initial output token after reset. Also, it must 

somehow remove the initial token on its output feedback signal. So, in order to have a 

PL-QDI system that satisfies both PL and QDI gate properties, the PL-QDI template gate 

must be modified to be used as a PL-QDI barrier gate. 
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Figure 4.6 Token marking in PL-QDI system during reset 
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Figure 4.7 Initial token marking after the release of reset showing safety violation 
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Figure 4.8 Live and safe initial token marking of PL-QDI circuit 
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4.5 Modifications to the PL-QDI Gate Template for Barrier Gates 

The PL-QDI barrier gate must place an initial token at its outputs and must not 

have an initial token on its output feedback signal. Extra logic is added to the PL-QDI 

template gate to implement this functionality. 

4.5.1 Forced Token at the Barrier Gate Output 

The logic used to force a token at the output of the barrier gate after the release of 

reset is shown in the shaded region #1 of Figure 4.9a. The signals R0 and R1 are the false 

and true outputs of the PCHB gate. The logic indicated in the shaded region #1 pulls R0 

to high for a short period of time until the output feedback signal Re, is asserted for the 

first time. The waveform shown in Figure 4.9b explains how a forced token is produced 

at the barrier gate output after the release of reset. At the release of reset# the SR latch 

output x goes high, pulling the NAND gate output y down to zero. A low y causes the PL-

QDI output R0 to go high while the output R1 is still low. In terms of the token 

abstraction this places a token at the barrier gate output to trigger initial gate firing with 

in the system. When the destination gate consumes the output, it asserts the active low 

output feedback signal Re.  Once Re is asserted, x goes low negating y. After this, the 

normal PL-QDI system operation continues until the next assertion of the reset# signal.  
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Figure 4.9 PL-QDI barrier gate and waveforms explaining its working 
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4.5.2 Initial Token Removal on the Barrier Gate Output Feedback 

As discussed earlier, the presence of an initial token on the barrier gate output 

feedback signal at the release of reset causes an initial token marking rule violation. This 

problem can be solved by removing the initial token on the barrier gate output feedback 

signal Re. The shaded region #2 in Figure 4.9 shows the logic used to remove the initial 

token on the feedback originating from a through gate. The waveform shown in Figure 

4.9d explains the functionality of the extra logic. The AND gate is driven low during 

reset and until the output feedback signal Re is asserted for the first time. The low value 

on the AND gate output disconnects the compute block from the pulldown tree and 

prevents the gate from evaluating until the first assertion of the output feedback signal. 

Thus, it removes the initial token on the output feedback signal until the initial tokens on 

the barrier gate outputs are consumed by the destination gates. When the output feedback 

signal is asserted, the SR latch output becomes ‘1’, connecting the output feedback signal 

Re to the pull down circuit of the compute block. This restores the normal operation of the 

PL-QDI gate.  

The modified PL-QDI gate template shown in Figure 4.9 is used as the PL-QDI 

barrier gate. The initial token marking of the PL-QDI system (shown in Figure 4.5) using 

a PL-QDI barrier gate is the same as the initial token marking shown in Figure 4.8, 

resulting in a live and safe PL-QDI system. 
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CHAPTER V 
 

CAD SUPPORT FOR PL-QDI CIRCUIT DESIGN 
 
 
 

The advent of computer aided design (CAD) tools in the semiconductor industry 

has revolutionized the integrated circuits (IC) design process [29]. This chapter explains 

the CAD tool flow for designing PL-QDI circuits starting from clocked circuits. Section 1 

discusses the evolution and advantages of synchronous CAD tools. Section 2 gives a brief 

explanation of the CAD tool flow used in a synchronous logic design.  Section 3 provides 

an overview of the state of currently available asynchronous CAD tools. Section 4 

discusses the synthesis algorithm used to map clocked system topology to asynchronous 

PL-QDI systems. Section 5 explains how synchronous CAD tools can be used for 

asynchronous PL-QDI circuit design and lists the commercial CAD tools used in each 

stage of the CAD flow. A brief overview of the PL-QDI gate library and the test bench 

approach used to simulate PL-QDI systems is also included in this section.  

5.1 Introduction to Synchronous CAD Tools 

The first commercial digital IC was developed by Texas Instruments in the early 

1960s [30]. Since then, the IC industry has experienced a rapid growth from small scale 

integration (SSI) circuits with less than one hundred transistors to very large scale 

integration (VLSI) circuits or ultra large scale integration (ULSI) systems with millions 

of transistors.  During the period of SSI circuits, the IC masks used in fabrication of ICs 
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were generated by hand drawn mask patterns [29]. As the semiconductor industry entered 

the age of VLSI/ULSI chips, it became increasingly difficult to design and fabricate 

integrated chips manually. To handle the increasing number of transistors and growing 

complexity of integrated chip design, IC designers started to make use of CAD tools. By 

the early 1980s, CAD tools were used in the functional design, physical implementation 

and verification of integrated circuits. Circuit designs are now described at the register 

transfer level (RTL) using hardware description languages (HDL) such as VHDL and 

Verilog,  Logic synthesis from RTL to a gate level netlist and system level modeling are 

a few examples where CAD tools are used in digital circuit design. CAD tools are also 

used in the physical design of ICs and aid designers in layout generation, mask-pattern 

generation, and IC floor planning. In the verification of integrated circuits, CAD tools 

find applications in RTL, gate, and transistor level simulations, as well as in layout 

design rule checking. Furthermore, CAD tools have also found application in CAD tool 

management, which has helped CAD engineers to implement centralized maintenance 

and support for a corporate CAD flow. This has given the flexibility of adding new 

features and state- of-the-art off-the shelf CAD tools for continued product improvement. 

A corporate CAD tool flow refers to the general methodology used in the semiconductor 

industry for IC design [40]. The long-term use of CAD tools for IC design has enabled 

synchronous CAD tools to become reliable and efficient. The use of CAD tools means 

reduced design time to market, efficient use of resources, increased productivity, 

decreased cost due to mass production, reduced chances of human error, and has made it 
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easier to adopt to new technology or toolset. All these advantages in using CAD tools in 

IC designs have made it clear that CAD tools are essential to the modern designer.  

5.2 An RTL Flow for Synchronous Circuits 

A synchronous circuit processes its inputs depending on either the clock edge 

(edge-triggered circuits) or the high/low level of the clock signal (level based circuits). 

For synchronous digital circuits, part of the CAD flow methodology is the transformation 

of an RTL code description of the circuit to a synthesized gate level netlist that passes 

functional verification. Functional design verification of synchronous circuits means that 

the circuit is tested for correct functionality by simulation with different input test cases. 

A synchronous circuit described using either RTL code or a gate netlist is functionally 

correct if the circuit yields the desired output during simulation of the RTL code or gate 

netlist.  

Figure 5.1 adopted from [40] gives the RTL flow used in synchronous circuit 

design. A complete CAD flow for synchronous IC design is given in [40]. The first stage 

in the RTL flow is the design specification of the circuit under construction, which 

describes the functional behavior of the circuit, I/O interface, timing constraints, and the 

available resources. For example, assume the circuit to be designed is a rising edge 

triggered, synchronous 2-bit counter with count enable. “Synchronous” means that the 

counter changes state on the rising edge of the clock and only if the count enable is 

asserted. This design specification must be converted into the next level of abstraction 

called the RTL description of the design by using hardware description languages such as 

VHDL or Verilog. 
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The RTL code is simulated using circuit simulators to test the functionality of the 

design. If the functionality check fails, the RTL code has to be redefined until the design 

passes the functionality test.  There are large numbers of circuit simulators available in 

the market for different operating systems. Mentor Graphics Modelsim [55] and MSIM 

[56] are examples of RTL simulators.  

After successful completion of functional verification, the RTL code is 

synthesized to a gate level netlist using HDL synthesis tools. A synthesis tool maps RTL 

code to a gate netlist using a target gate library. The gate library contains gate definitions 

for all available gates that can be used in the design. Commercially available HDL 

synthesis tools include Synopsys Design compiler [59], Altera [57], and Xilinx [58].  

The synthesized gate netlist is simulated to verify its functionality. If the gate 

level netlist produces the desired output, then the gate level circuit is functionally correct. 

If the gate netlist fails the functionality check, the RTL code must be modified, re-

synthesized, and simulated until the synthesized netlist produces the correct output. 

Mentor Graphics Modelsim [55] is an example of a gate netlist simulator.  
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Note Adopted from [40] 
 
Figure 5.1 RTL Flow 
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5.3 CAD Tools and Asynchronous Integrated Circuit Design 

As mentioned previously, the number of transistors inside a chip and circuit 

complexity has increased dramatically over the last two decades. This has posed new 

design challenges like clock skew, increased power consumption, and increased EMI as 

described in Chapter I. These increasing challenges to synchronous design have 

encouraged researchers [27, 24, 1, 9, 41] to explore an alternative area of IC design – 

Asynchronous design.  

Asynchronous design techniques are still in the research stage, and do not have 

the support of mature CAD tools that has aided the rapid growth of synchronous IC 

designs. Asynchronous designers make use of proprietary tools [41, 42] or custom design 

styles [12, 27] to build asynchronous circuits. The use of custom tools and design styles 

has several disadvantages when compared to the synchronous IC design process. The 

custom built tools demand considerable expertise in the corresponding asynchronous 

design methodology to produce efficient circuits. Furthermore, the majority of engineers 

are trained in synchronous techniques, not asynchronous techniques. As such, there are 

very few asynchronous design engineers when compared to the synchronous community. 

This deficiency of skilled manpower make an asynchronous design methodology cost 

ineffective for use by the IC industry. Training of manpower to design asynchronous 

circuits increases the production cost [41] of asynchronous systems. Asynchronous 

designs also suffer from the lack or limited availability [24] of CAD tools. The available 

asynchronous tools have very limited features relative to commercial synchronous CAD 

tools [41]. This increases time to market for asynchronous ICs. The production time of 
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asynchronous designs is further increased due to the additional time spent by 

asynchronous designers for developing custom tools to aid them in asynchronous circuit 

design. All the above drawbacks of the asynchronous methodology have caused the IC 

design industry to resist the use of asynchronous design techniques for IC design.  

To counter these drawbacks, the PL methodology introduced by Linder and 

Harden [9] allows asynchronous designs to be produced from clocked networks. This 

research adopts the PL methodology for use with QDI circuits to produce a combined 

methodology termed PL-QDI. 

5.4 PL-QDI Synthesis 

This section formally defines a synchronous system and describes a synthesis 

algorithm adopted from the PL methodology for converting a synchronous system to an 

asynchronous PL-QDI system. The formal definitions of synchronous systems that follow 

are adopted from [9].  

Definition 1: Synchronous gate: A synchronous gate G is a three-tuple (I, O, F) where, 

I = {i1, i2, i3, …} is a non-empty set representing input terminals of gate G, 

O = {o1, o2, o3, …} is a non-empty set representing output terminals of gate G  

F is the logical behavior of the gate.  

If gate G is a combinational gate, then the outputs is a function of current input 

values and are assigned as soon as there is a change in input values. If gate G is a 

sequential gate, it represents a finite state machine and its output is a function of the 

current inputs and the previous state output.  



    

75 

Definition 2: Synchronous Signal: A synchronous signal is a three-tuple (Gi, Go, C) 

where Gi is the driving gate, Go is destination gate and C represents the connection 

between driving gate and destination gate. C is a two-tuple (I, O); where I represent an 

output of Gi and O represents an input of Go. 

Definition 3: Synchronous system: A synchronous system is a two-tuple (G, S), where G 

represents synchronous gates and S represents synchronous signals.  

There are a few restrictions on synchronous systems that are required for 

successful mapping of clocked systems to PL-QDI systems. A synchronous system 

should have only one clock signal driving all the sequential gates. The synchronous 

system cannot have directed graphs constituting of only combinational gates, i.e, each 

directed graph in the synchronous system should have at least one sequential gate.  

5.4.1 PL-QDI Synthesis Algorithm  

The synthesis algorithm takes a synchronous system topology and converts it into 

its asynchronous PL-QDI equivalent circuit. The resulting asynchronous PL-QDI system 

exhibits the same functionality as that of the original clocked system.  The algorithm 

ensures that the PL-QDI system is live, safe, and satisfies the initial token marking rules 

as described in Chapter 2. The algorithm also guarantees that PL-QDI gates can 

communicate between each other using a four-phase handshaking protocol without any 

deadlock.   The pseudo code of the algorithm used in the synthesis of a PL-QDI system is 

given in Figure 5.2. The synthesis algorithm involves three steps: one-to-one mapping of 

synchronous gates to PL-QDI gates, splitter gate insertion, and feedback insertion. 
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Figure 5.2 PL-QDI synthesis pseudo code 
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Step 1: One-to-One Mapping of Synchronous Gates to PL-QDI Gates 

In the first stage of the synthesis process, a one-to-one mapping of clocked gates 

to PL-QDI gates is performed. Gates in the clocked system have single-rail inputs and 

outputs, while the PL-QDI gates have dual-rail inputs and outputs. During this stage, the 

global clock network is removed and all single rail signals are converted to dual-rail 

signals. All combinational gates in the clocked system are replaced by logically 

equivalent PL-QDI gates.  

 

 

 
Figure 5.3 One-to-one mapping of AND2 gate to PL-QDI AND2 gate 

 

Figure 5.3 shows the one-to-one mapping of a 2-input AND2 gate to a PL-QDI 

AND2 gate. Sequential gates such as a DFF are replaced by barrier gates in the PL-QDI 

netlist. Barrier gates do not perform any logical operation but only transport the input to 

its output. All barrier gate outputs have an initial token on them at the release of reset. 

The resulting gate topology at the end of step 1 is termed as a “PL-QDI network”. Figure 
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5.4 shows an example clocked system and its equivalent PL-QDI network at the end of 

step 1 of the synthesis algorithm. 

 

 

Figure 5.4 Clocked circuit and equivalent PL-QDI network  
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Step 2: Splitter Gate Insertion  

As described in Chapter 3, to ensure a live and safe PL-QDI circuit there should 

not be any direct barrier gate to barrier gate path. If there is any barrier gate to barrier 

gate connection, a splitter gate is inserted between them to break this path. Figure 5.5 

shows splitter gate insertion to break a barrier gate to barrier gate path. Splitter gates are 

through gates that act as buffers when inserted in PL-QDI circuits. 

Furthermore, to guarantee correct four-phase communication between PL-QDI 

gates, the PL-QDI network topology should not have directed graphs with less than three 

PL-QDI gates. If there are less than three PL-QDI gates in a directed graph, it will lead to 

a deadlock. Deadlock is a condition where PL-QDI gates stops communicating with each 

other. This can be prevented by adding a through (buffer logic function) gate in the loop 

that has less than three PL-QDI gates as shown in Figure 5.6. These loops can be detected 

in a network by doing a depth-first search until depth 2 of the network is reached. 

Consider a barrier gate B0 as the root of a tree, and through gates T1 and T2 are its child 

nodes. Assume that through gate T1 is connected to the input of B0. If we do a depth-first 

search with B0 as the root it will first lead to T1, then by continuing the depth first tree at 

level 1 node T1, it will point to the root B0 of the tree. This detects the existence of a loop 

with only two PL-QDI gates. A through gate has to be inserted between B0 and B1 to 

ensure a live PL-QDI system. 
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Note a) Forbidden continuous barrier gate to barrier gate path  
 b) Direct barrier gate to barrier gate path broken by splitter gate insertion 
 
Figure 5.5 Splitter gate insertion to break continuous barrier gate to barrier gate path  
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Note a) Forbidden directed path with less than 3 PL-QDI gates  
 b) Through gate (buffer function) inserted to allow communication using 4-phase 
 handshaking  protocol 
 
Figure 5.6 Buffer function insertion  
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Step 3: Feedback Concentrator Insertion 

The QDI handshaking protocols require a feedback from each of a source gate’s 

destinations. At the end of steps 1 and 2 there may still be some unsafe signals in the PL-

QDI systems. There can be cases where a gate (e.g. G1) drives multiple gates (G2, G3); in 

this case gate G1 must receive feedback signals from gates G2, G3. The algorithm adds a 

feedback concentrator to receive feedbacks from all the destination gates as shown in 

Figure 5.7a. A Muller C-element is used as a feedback concentrator if a gate receives 

multiple feedbacks. If a gate (e.g. G1) is driven by multiple gates (G2 G3), then the gate 

(G1) should send feedback to its source gates (G2, G3) as shown in Figure 5.7b. Trees of 

C-gates are used to concentrate feedback signals if more than a 4-input C-gate is 

required. Figure 5.8 shows the PL-QDI circuit equivalent of the clocked 2-bit counter 

with count enable, first transformed in Figure 5.4. 

 

 

Figure 5.7 Feedback in a PL-QDI circuit  
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Figure 5.8 PL-QDI 2-bit counter with count enable 
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5.5 CAD Tool Flow of PL-QDI Methodology 

This research implements the PL-QDI synthesis algorithm by using commercially 

available CAD tools. The PL-QDI CAD flow closely follows the synchronous RTL CAD 

flow explained earlier in this chapter. A PL-QDI mapping tool written in the C language 

is added to the synchronous RTL CAD flow to automatically convert a clocked netlist to 

an asynchronous PL-QDI netlist. The mapping tool outputs the PL-QDI netlist and a 

testbench for simulating the design. Figure 5.9 shows the complete PL-QDI CAD flow 

used to map clocked RTL to a PL-QDI gate netlist. The PL-QDI mapping tool is 

indicated in the shaded area. The steps of the synthesis algorithm described earlier are 

also shown in Figure 5.9.  

The input to the PL-QDI CAD flow is an RTL description of a synchronous 

circuit written using VHDL or Verilog. For example, consider the RTL description of a 

2-bit counter with count enable as shown in Figure 5.10 used as an input to the PL-QDI 

CAD flow. The clocked design is first simulated using a simulator to verify the circuit 

functionality. 
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Figure 5.9 PL-QDI CAD flow 
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Figure 5.10 RTL Code of 2-bit counter with count enable 
 
 

After the successful verification of the RTL design, logic synthesis is performed 

using a two-input static CMOS gate library to produce a gate-level netlist. The logic 

synthesis is done by using Synopsys Design Complier. The gate level netlist is then 
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simulated to check the functionality of the synthesized design. The clocked gate-level 

netlist of the 2-bit counter with count enable in VHDL format is shown in Figure 5.11. 

 

 
 
Figure 5.11 Synthesized gate netlist of 2-bit counter with count enable 

 

The clocked netlist in EDIF format is used as the input for the PL-QDI mapping 

tool. The mapping tool reads the clocked netlist and does a fine grain mapping to a PL-
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QDI netlist as previously described. The PL-QDI system generated by the mapping tool 

is a VHDL netlist of PL-QDI gates and C-gates. The VHDL netlist of the PL-QDI 2-bit 

counter with count enable is shown in Figure 5.12. The signal declarations and temporary 

signal instantiation are excluded from Figure 5.12 for length reasons. The mapping tool 

also outputs a template VHDL testbench for simulating the PL-QDI system. The PL-QDI 

testbench is explained in detail in Chapter 6. 

The PL-QDI system is simulated using a library of PL-QDI gates defined in 

Verilog. The Mentor Graphics Modelsim simulator that was used for simulation of 

clocked RTL and gate netlist is also used for PL-QDI circuit simulation. Thus, the entire 

conversion of clocked RTL design to asynchronous PL-QDI is done using commercially 

available synchronous CAD tools and a custom PL-QDI mapping tool. 
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Figure 5.12 PL-QDI system produced from the PL-QDI CAD flow 
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5.6 PL-QDI Gate Library 

 

 

Note Adopted from [7] 
 
Figure 5.13 PL-QDI through gate  
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The PL-QDI gate library consists of 2-input gates with dual rail inputs and 

outputs. Figure 5.13 gives a through gate block diagram. The through gate’s pull down 

tree is used to realize basic logic functions such as AND, NAND, XOR, XNOR, OR and 

NOR. The circuit used to generate control signals required for the communication of data 

between PL-QDI gates is shown by dotted region in Figure 5.13. The detailed 

explanation of through gate operation is given in Chapter 4. 

The PL-QDI gate library has a second gate type for barrier gates as previously 

explained for replacing sequential gates. A PL-QDI barrier gate is shown in Figure 5.14. 

The PL-QDI barrier gate operation is explained in detail in Chapter 4. There are two 

types of barrier gates. The first type is a barrier gate whose initial output after reset 

represents dual-rail logic high (“10”) and the other one is a barrier gate whose initial 

output after reset is a dual-rail logic low (“01”). Figure 5.14 shows a barrier gate whose 

initial output after reset is logic low. 

Designers often assign some signal values to constant high or low values in clocked 

circuit design (ex: output_ready = 1). To implement this functionality in PL-QDI designs, 

a modified through gate is used to generate dual-rail constant values. PL-QDI constant 

generators should alternate between evaluate phase and precharge phase depending on 

the output feedback signal received from the destination gate. This is necessary for other 

PL-QDI gates to continue communicating with each other using the four-phase 

handshaking protocol. Figure 5.15 shows a modified PL-QDI gate used for generating the 

logical high equivalent in dual-rail encoding (“10”). If output feedback Re of a destination 

PL-QDI gate is high, the constant generator output is a valid dual-rail logic high (“10”) 
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value. When Re goes low, the constant generator output is a null code  or spacer code ( 

“00”). Similarly, a PL-QDI logic low constant generator is shown in Figure 5.16 and is 

also implemented using a through gate. 

 

 

Figure 5.14 PL-QDI barrier gate 
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Figure 5.15 PL-QDI logic high constant generator 
 
 

 

Figure 5.16 PL-QDI logic low constant generator 
 

5.7 Summary 

This chapter has described the synthesis algorithm used to design PL-QDI 

systems starting from a clocked netlist. It has also introduced a PL-QDI CAD flow that 

uses commercially available synchronous CAD tools for the design of PL-QDI systems. 

The use of commercial synchronous CAD tools in the design of PL-QDI systems reduces 

time to market and production cost. Designing a PL-QDI system starting from a clocked 
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netlist and using synchronous CAD tools makes it possible for anyone with design 

knowledge of clocked circuits to create asynchronous circuits. 
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CHAPTER VI 
 

PL-QDI DESIGN EXAMPLES 
 

 

The PL-QDI CAD flow was introduced in Chapter 5. This chapter describes 

circuits that were generated using the PL-QDI methodology. Section 1 explains PL-QDI 

circuit features. Section 2 describes the template testbench used to simulate a PL-QDI 

system. Section 3 gives PL-QDI design examples varying from a simple counter to a 

complex 64-bit floating point unit.  

6.1 PL-QDI System Features 

6.1.1 PL-QDI Systems Maintain The  Synchronous Property 

The word synchronous is associated with logic designs that have one or more 

clock signals. Clock signals are used to determine when data values are stable in clocked 

circuits. The clock period is the time taken for one complete clock cycle. Digital 

designers adjust the clock period depending on the largest delay path in the clocked 

system. Clocked systems are made up of two types of gates, namely, sequential and 

combinational gates. Combinational gates are placed between sequential gates. 

Sequential gates in the clocked system are evaluated once per clock cycle. This ensures 

that the sequential gate evaluating for the nth time uses the (n-1)th output of itself or other 
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sequential gates that has passed through the combinational gates. The level or edge of 

clock signal is used to determine whether the data values are stable or undergoing 

intermediate transitions. This concept is used to synchronize logic computations in 

clocked systems. The number of clock cycles used for an output computation is 

multiplied by the clock period to determine the output computation time.  

Before discussing the PL-QDI system’s synchronous property, it is important to 

briefly describe how asynchronous PL systems maintain the synchronous property [9]. In 

PL systems, the cycle number of a gate gives the number of times the gate has fired since 

the release of reset. A fully functional PL system is live, safe and satisfies initial token 

marking rules and feedback insertion rules as discussed previously. This means that the 

nth firing of a barrier gate uses the (n-1)th evaluation output of itself or other barrier gates. 

This is analogous to a clocked system’s characteristic that the sequential gate evaluating 

for the nth time uses the (n-1)th output of itself or other sequential gates that have passed 

through the combinational gates. Thus, the PL system maintains the synchronous 

paradigm. 

Because PL-QDI systems are formed by extending the concepts of PL systems to 

QDI gates, a fully functional PL-QDI system is live safe and satisfies initial token 

marking rules and feedback insertion rules. As such, a PL-QDI system also maintains the 

synchronous paradigm.  

6.1.2 PL-QDI Gates Exhibit Fast Forward Latency 

PL-QDI gates generate dual-rail outputs by using a pulldown compute block, so 

PL-QDI gates can fire early, that is produce an output before all inputs have arrived. The 
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parallel NFET tree in the PL-QDI gate compute block can compute the output at the 

arrival of an early input, but the input feedback signal is generated only after the arrival 

of all the input values. Thus, PL-QDI gates have fast forward latency and slow backward 

latency. This is the same functionality as produced by early evaluation PL gates in a static 

CMOS PL system, without the need for additional logic. An example pull-down block of 

PL-QDI compute block is shown in Figure 6.4.   

In Figure 6.4, if input A is assumed to be early arrival input and input B is the late 

input, the PL-QDI gate computes the output at the arrival of A, but it only sends the input 

feedback after the arrival of input B.  

 

 
 

Figure 6.1 PL-QDI gate compute block 
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6.2 PL-QDI Testbench 

Figure 6.2 gives a block diagram representation of the VHDL testbench generated 

by the PL-QDI mapping tool. The testbench instantiates the device under test (DUT), 

provides dual-rail input test vectors to the DUT and traces dual-rail output values of the 

PL-QDI system. The testbench receives feedbacks fbin1, fbin2, …fbinN  (where N is the 

number of inputs)  from the DUT inputs and generates input feedback tb_fbin by using 

the C-gate cg_fbin. The testbench also detects individual output completions by XORing 

the dual-rail outputs and computes an overall output completion signal tb_fbout. Signal 

ext_re, a delayed version of tb_fbout is used as feedback for the DUT outputs. VHDL 

processes input_gen and ouput_gen are used to generate dual-rail input values and trace 

output values.  

The Input_gen process is triggered if there is an event on the tb_fbin signal. A low 

tb_fbin value indicates that the input values have been consumed and that the input PL-

QDI gates are ready to precharge. At this point the input_gen process drives the dual-rail 

inputs with the null code to cause the input PL-QDI gates to precharge. If tb_fbin is high, 

this indicates that the input PL-QDI gates have been precharged and are ready to accept 

dual-rail inputs. This also means that input_gen process should provide valid dual-rail 

inputs but not necessarily new dual-rail inputs. In many digital systems handshaking 

output signals are used to differentiate valid outputs from temporary output values. They 

also indicate when the circuit is ready for new input values. Similarly, in PL-QDI 

circuits, handshaking output signals are used to indicate when the PL-QDI system is 
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ready to accept new dual-rail inputs. In cases where the PL-QDI DUT requires new dual-

rail inputs each time tb_fbin is driven high, then new dual-rail inputs are provided by the 

input_gen process. This case is analogous to a clocked design that accepts new inputs 

each clock cycle.  

The Output_gen process is used to trace PL-QDI DUT outputs. This process is 

instantiated by an event on tb_fbout. XOR gates A1, A2, ….. An are used to detect 

individual output completion signals. A high on the output on any of these XOR gates 

indicate a valid output for that corresponding dual-rail output. All of the individual output 

completion signals are fed to a C-gate cg_fbout to generate an overall output completion 

signal tb_ fbout. A low tb_ fbout indicates valid dual-rail outputs on all of the outputs and 

indicates that the output PL-QDI gates can be precharged after output consumption. 

Signal ext_re is a delayed version of tb_fbout and is used to indicate output consumption. 

Signal ext_re is used as a feedback input to the DUT outputs. A low ext_re enables 

precharge of the output PL-QDI gates. A high tb_fbout means the output PL-QDI gates 

have been precharged and are waiting for signal  ext_re to request new outputs. Thus, the 

tb_fbin, tb_fbout signals are used to sequence the input and output PL-QDI gates between 

the evaluation and precharge states. 
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Note Adopted from [60] 
 
Figure 6.2 Block diagram of PL-QDI testbench 
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The marked graph representation for the testbench generated by the PL-QDI 

mapping tool is shown in Figure 6.3. It shows the interface between the testbench and the 

DUT as a marked graph. Figure 6.3 shows that the initial token marking for the marked 

graph is live and safe, ensuring correct operation. 

 

 

Figure 6.3 Marked graph representation of PL-QDI testbench 
 

6.3 Design Examples 

This section describes example designs developed using the PL-QDI CAD flow. 

Clocked RTL designs were used as the input to the PL-QDI CAD flow. These PL-QDI 

circuits produced from the PL-QDI CAD flow were simulated to verify that their 

functionality matched their clocked counter parts. 

6.3.1 Counter Designs 

For initial testing, four different clocked counters were used to exercise the PL-

QDI methodology as shown below: 

• 2-bit counter 

• 2-bit counter with count enable  
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• 4-bit counter 

• 4-bit counter with count enable 

The RTL for the counters were synthesized to clocked gate level netlists in EDIF 

format.  The PL-QDI mapper tool was used to map the clocked netlists to PL-QDI gate 

netlists. Each PL-QDI netlist was simulated using PL-QDI testbench. The block diagram 

representation and the marked graph representation of the testbench used for simulation 

of the 2-bit PL-QDI counter with count enable are shown in Figure 6.4a and Figure 6.4b.  

Similar testbenches were used for simulating the other PL-QDI counters.  

Table 6.1 compares the number of gates in the synthesized clock design and the 

PL-QDI gate netlists. The increase in the number of gates in the PL-QDI gate netlists are 

due to the insertion of splitter gates and buffer gates.  

Table 6.2 Comparison of number of gates in clocked and PL-QDI designs 
 

Designs Clocked PL-QDI 
 Total gates Total gates 

2-bit counter 3 6 
2-bit counter with enable 5 7 

4-bit counter 9 14 
4-bit counter with enable 11 15 
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Note (Adopted from [60]) (a) Block diagram (b) Marked graph representation 
 
Figure 6.4 PL-QDI counter testbench  
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6.3.2 64-bit Floating Point Clipper Circuit 

The 64-bit floating point clipper designs used in this example are adopted from 

[60]. A clipper circuit passes an input stream to the output constraining the output to lie 

between user-specified lower and upper bound values. A high level abstraction of the 

logic used in the non-pipelined clipper circuit is shown in Figure 6.5. The VHDL RTL 

design implementation has a four-state finite state machine (FSM) and a datapath. The 

datapath and control used for the clipper circuit is shown in Figure 6.6. Two states were 

used to load the upper and lower bound values into the clipper circuit, and the remaining 

two states were used to compute clipped output values.  

 

 

Note Adopted from [60] 
 
Figure 6.5 Clipper circuit high level abstraction  
 

 

The 64-bit clocked netlist was converted to a 64-bit PL-QDI netlist using the PL-

QDI CAD flow. The PL-QDI design was simulated using 1000 randomly generated input 
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test vectors between +15 and -15, with -5 and +5 used as the upper and lower bound 

values for the clipper circuits. The block diagram and marked graph of the testbench used 

for PL-QDI simulation is shown in Figure 6.7. Table 2 gives the comparison of the 

number of gates in the clocked and PL-QDI designs. Simulation results verified that the 

PL-QDI output computations matched those of the clocked system. 
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Note Adopted from [60] 
 
Figure 6.6 Datapath and control of clipper circuit 
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A pipelined variation of the 64-bit clipper circuit [60] was also tested. The 

pipeline contains three stages. The first pipeline stage is used to load upper/lower bound 

values and input test vector values for the clipper circuit. The second stage is used to 

compare the input value with the lower bound value and the third stage for comparing the 

input value with the higher bound value. Table 6.2 shows the number of gates for the 

clocked and PL-QDI design. The same test vectors used for the non-pipelined designs 

were also used for this design, and the PL-QDI simulation results matched the clocked 

simulation results. 

 

 

Note Adopted from [60] (a) Block diagram (b) Marked graph representation 
 
Figure 6.7 PL-QDI 64-bit clipper testbench 
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Table 6.3 Gate count for 64-bit clipper circuits 
 

Designs Clocked PL-QDI 
 Total gates Total gates 

Non-pipelined 64-bit clipper 1964 1964 
3-stage pipelined 64-bit clipper 9180 9308 

 

6.3.3 picoJava-II Floating Point Unit 

This mapping was done to illustrate that the PL-QDI methodology can also work 

for complex IP cores implemented by others. A floating point unit from Sun 

Microsystem’s [59] picoJavaII CPU that performs both single and double precision 

floating point operations in IEEE 754 format was used to test the PL-QDI methodology. 

Verilog RTL of the FPU is available from Sun Microsystems. The FPU is a microcoded 

design with a 32-bit datapath and that uses two 160 X 54 bit ROMs to store the 

microcode. This test case is different from previous cases, as the FPU RTL is specified in 

Verilog and the design uses a microcoded architecture. The FPU Verilog RTL was 

restructured to separate the microcode ROMs from the rest of the synthesizable datapath. 

This was needed so that a PL-QDI wrapper could be placed around the microcoded 

ROMs. The Verilog FPU RTL was synthesized to a clocked gate netlist, and then mapped 

to a PL-QDI gate netlist using the PL-QDI mapper tool.  
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Figure 6.8 PL-QDI wrapper used around microcode ROM 
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A PL-QDI wrapper was created around the microcoded ROM to make it function 

as a PL-QDI ROM. The block diagram of the PL-QDI wrapper around the microded 

ROM is shown in Figure 6.8. The PL-QDI ROM was interfaced with the PL-QDI gate 

netlist obtained from the PL-QDI mapper tool. The wrapper functionality is twofold: it 

behaves as a PL-QDI gate when interacting with the PL-QDI design and as a regular 

clocked I/O interface for the internal clocked microcoded ROM. The wrapper reads dual-

rail outputs and input feedback from the PL-QDI design, generates output feedback, 

converts single-rail outputs of the microcode ROM to dual-rail outputs, and places an 

initial token after the release of reset at its output. The wrapper supplies inputs from the 

PL-QDI design to the clocked ROM, converts single-rail ROM output to dual-rail output 

required for PL-QDI design, and generates a local clock signal required for the clocked 

ROM triggered by the arrival of all input signals. 

The PL-QDI FPU was simulated by using 20 randomly generated test vectors to 

test each of the single, double precision arithmetic operations and conversion operations 

listed in Table 6.3 and Table 6.4. Simulation results of the PL-QDI system matched those 

of the clocked system. The block diagram and marked graph representation of the 

testbench used to simulate PL-QDI FPU is shown in Figure 6.9 and Figure 6.10. Table 

6.5 shows the comparison of the number of gates used in clocked picoJava-II FPU and 

PL-QDI FPU unit. 
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Table 6.4 Floating point unit arithmetic operations 
 

No Floating Point Arithmetic Operations Description 
1 Single precision addition 
2 Single precision subtraction 
3 Single precision multiplication 
4 Single precision division 
5 Single precision reminder 
6 Single precision less than comparison 
7 Single precision greater than comparison 
8 Double precision addition 
9 Double precision subtraction 
10 Double precision multiplication 
11 Double precision division 
12 Double precision reminder 
13 Double precision less than comparison 
14 Double precision greater than comparison 

 
 

Table 6.5 Floating point unit data type conversion operations 
 

No Floating Point Unit Conversion Operations Description 
1 IEEE 754 single precision floating point number to double precision number 
2 IEEE 754 single precision floating point number to integer number 
3 IEEE 754 single precision floating point number to long number 
4 IEEE 754 double precision floating point number to single precision number 
5 IEEE 754 double precision floating point number to integer number 
6 IEEE 754 double precision floating point number to long number 
7 Integer number to IEEE 754 single precision floating point number 
8 Integer number to IEEE 754 double precision floating point number 
9 Long number to IEEE 754 single precision floating point number 
10 Long number to IEEE 754 double precision floating point number 

 

Table 6.6 Gate count of picoJava-II FPU designs 
 

Designs Clocked PL-QDI 
 Total gates Total gates 

picoJava-II FPU 17561 17571 
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Figure 6.9 PL-QDI 64-bit FPU block diagram  
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Figure 6.10 PL-QDI 64-bit FPU marked graph representation 
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CHAPTER VII 
 

CONCLUSION AND FUTURE WORK 
 

This research presented an asynchronous PL-QDI synthesis algorithm and CAD 

flow to counter the growing problems of synchronous circuits and to address the 

drawbacks of current asynchronous methodologies. This chapter summarizes the results 

and future work involving the PL-QDI methodology.   

7.1 Summary of Results 

 The concept of marked graphs and token abstraction were extended to QDI 

circuits. PL-QDI gates for PL-QDI design were built by modifying Caltech’s 

PCHB gate design. The final PL-QDI systems obtained are live, safe, satisfy 

initial token marking rules, maintain the synchronous paradigm, and use four-

phase handshaking protocol for communication between PL-QDI gates. 

 A PL-QDI CAD tool flow was developed using commercial synchronous CAD 

tools. The use of PL-QDI CAD tool flow aims to decrease design time to market 

of asynchronous PL-QDI systems and reduces production cost by reducing the 

need for proprietary tools.  

 Because the PL-QDI methodology begins with a clocked netlist, it does not 

require any special skills to use this methodology. Anyone with synchronous RTL 

design skills can use this tool for designing asynchronous PL-QDI systems. This 
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encourages people outside the asynchronous community to experiment with an 

asynchronous methodology and increases the manpower available to the IC 

industry for implementing asynchronous designs.   

 PL-QDI systems take natural advantage of the early evaluation capability of the 

PL-QDI gate without the need for extra logic as required for the static CMOS EE 

gates used in [18].  

 PL-QDI gates do not have output latches, thus reducing the forward latency 

compared to original static CMOS PL systems.  

 The PL-QDI sample designs in Chapter VI showed that clocked RTL designs, 

including IP cores, can be used to generate asynchronous PL-QDI systems. 

In short, the PL-QDI methodology and PL-QDI CAD flow encourage designers to 

explore PL-QDI asynchronous design as an alternative design technique for logic design. 

7.2 Future Work 

7.2.1 Modified PL-QDI Gate Library 

The PL-QDI gate library should be expanded to include PL-QDI gates with three 

or four inputs to take advantage of the parallel structure in the pulldown compute block.  

7.2.2 Physical Design 

PL-QDI systems should be physically implemented and compared to other 

asynchronous and synchronous designs. This will help to evaluate area, power, and speed 

of PL-QDI systems, allowing comparisons to other asynchronous implementations. 
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