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A Buffer management algorithm plays an important role in determining the 

packet loss ratio in a computer network. Two types of packet buffer management 

algorithms, static and dynamic, can be used in a Network Interface Card (NIC) of a 

network terminal. In general, dynamic algorithms have better efficiency than the static 

algorithms. However, once the allocated buffer space is filled for an application, further 

incoming packets for that application get rejected. We propose a history-based scheme 

called History Based Dynamic Algorithm (HBDA), which reduces packet loss ratio by 

monitoring whether or not the application is active. 

For average network traffic loads [5], the HBDA improves the packet loss ratio by 

15.9% and 11% (for load = 0.7) compared to DA and DADT, respectively. For heavy 



traffic load, improvement is 16.2% and 11.7% (for load = 0.7) and for actual traffic load 

improvement is 12.7% and 7.1% (for load = 0.7) over DA and DADT respectively. 

We also developed a new architecture named Multiprocessor Architecture for the 

Network Interface Card. The new architecture will support the multi-processor system 

and gives more consideration to the application with the highest priority. It has two 

control units for processing the incoming packets in parallel. For the traffic mix with 

average network traffic loads [5], the new architecture improves the packet loss ratio for 

priority application by a significant amount. 
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CHAPTER I 

INTRODUCTION 

Packets are the basic medium of communication in computer networks [1]. Each 

packet consists of necessary data for an application associated with headers. Processing 

of packets, based upon their host application, is done by a protocol processor in a wired 

or wireless network terminal [2]. Processed packets (payload data) are stored in a packet 

buffer until they are accessed by the host application. In a packet buffer, packets reside in 

FIFO queues, each of which is associated with an application [3]. A Network Interface 

Card (NIC) is used for receiving the packets, processing the packet, passing the packet to 

the host processor, and sending the packet to other computers in a network. To increase 

the efficiency of an NIC, embedded processor is used in parallel to the host processor [2]. 

A Packet buffer is a large shared, dual-ported memory [6]. Packets for each 

application are multiplexed into a single stream. Packet buffer management algorithm 

determines whether to accept or reject a packet. The accepted packets are then placed into 

logical FIFO queues; each application has its own queue in a packet buffer. [2, 4]. The 

accepted packet remains in the buffer until the application retrieves it from the buffer. 

Once the buffer gets full further incoming packets are rejected. 

Figure 1.1 explains a packet buffer with an example. As seen from figure 1.1, port 

1 has a space for four packets with two packets already buffered; therefore, packet buffer 
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can accept only two more packets for application 1. Application 4 has a space for 5 

packets and all the packets are buffered; therefore, if a packet for the application 4 comes, 

it will be dropped since no buffer space is available. 

Buffer Space 

Output Port 1 

Buffer Management 
Algorithm Output Port 2 

Output Port 3 

Output Port 4 

Output Port 5 

Output Port N 

Input Port 1 

Input Port 2 

Input Port 3 

Input Port N 

Figure 1.1: Packet Buffer 

When the packet buffer is full, further incoming packets are dropped. This is 

called “packet loss.” To achieve efficient end-to-end communication, reduction of packet 

loss is very important [5, 6]. Hence, to alleviate the ratio of packet loss, an efficient 

packet buffer management algorithm is needed. Efficient buffer space management can 

reduce the packet loss ratio. A buffer management algorithm determines how buffer 

space is distributed among different applications. 
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Therefore, a network processor, in general, should provide these basic functions: 

1) Packet header parsing 

2) Classification 

3) Route Look Up 

4) Packet header editing 

5) Packet fragmentation 

6) Packet storage 

7) Packet scheduling and dequeue 

The speed at which NIC can handle incoming data is a factor of number of 

packets that can be taken out (dequeued) of the buffer space at any time. If multiple 

packets can be dequeued from buffer space at the same time, then the number of packets 

in the buffer space will be reduced. Thus, NIC will be able to accept more number of 

packets in a given span of time, resulting in increase in the data rate that NIC can handle.

 Most of the popular architectures for a NIC like traditional architecture and 

protocol processor architecture [2] support only uni-processor system, that is, the packet 

buffer in a NIC has a single output port. Hence, only one packet can be taken out of the 

packet buffer at any instant of time. Also, different applications may have different 

priorities. It becomes essential to further minimize the packet losses for priority 

applications. Of all the popular architectures for NIC (including traditional architecture 

and protocol processor architecture), none of them has special consideration for priority 

application packets. 
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1.1 Problem Statement and Motivation 

Until now, research has primarily concentrated on making fast switches and 

routers, and less attention has been given to network terminals [3, 4]. It is essential to 

have an efficient buffer management algorithm that can reduce packet losses [16]. The 

buffer management algorithm should take application state (application is active or not) 

into consideration while allocating buffer space to different applications. 

There have two types of packet buffer management algorithms appeared in the 

literature: Static Algorithms; Dynamic Algorithms [16]. 

In static algorithms, the limitation on the queue length always remains the same, 

while in dynamic algorithms; it can change according to the occupied buffer space. It has 

been shown that dynamic algorithms are more robust than static algorithms for uniform 

loads [14]. Therefore, in this thesis, we implemented two dynamic algorithms, DA 

(Dynamic Algorithm) and DADT (Dynamic Algorithm with Dynamic Threshold). 

Two popular static algorithms are Completely Partitioned Algorithm (CP) and 

Completely Shared Algorithm (CS). 

CP allows equal distribution of a buffer space on all queues in a packet buffer 

[23]. It is easy to implement CP in hardware [8], however, its adaptability to changing 

traffic is not good since CP can lead to an incomplete use of the buffer space; if a queue 

is active and space allocated to it is full, then it will not accept incoming packets even 

though there is unoccupied space in the packet buffer. 
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CS allows output queues to completely share all available space in a buffer. 

Implementation of CS in hardware is also easy [8]. However, each queue can occupy the 

whole buffer space since the limitation on the queue is the buffer space. 

In DA, a threshold value is computed and used to determine the acceptance of 

incoming packets and is directly proportional to the unoccupied buffer space [8, 16]. DA 

proves to be effective in adapting to the changing traffic conditions and is also easy to be 

implemented in hardware. 

DADT is similar to DA, but it has different threshold values for different queues 

[24]. If the length of a queue is smaller than its corresponding threshold value, an 

incoming packet is accepted. Otherwise it is dropped [24]. 

None of the above algorithms take application state into consideration while 

allocating buffer space to different applications. For example, suppose we have two 

applications say application 1 and application 2. Suppose application 1 is active from 

time ‘t’ to time ‘t+t'’. During this time packets for application 2 are coming at much 

slower rate than application1. Hence, if the state of the application is monitored then 

more buffer space can be allocated to application 1 from time ‘t’ to time ‘t+t'’. 

This leads us to propose an efficient buffer management algorithm for Network 

Interface Card. All the popular architectures for an NIC support uni-processor systems 

[2]. Therefore, only one packet can be processed at any instant of time. As mentioned 

earlier, processing the packet to determine whether to accept it or reject it is the slowest 

process, hence this provides a bottleneck for further increase in input data rate in network 

terminals [5]. Also, data is transmitted at a very high rate across the network but the 
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speed of the processors on the computer limits the data speed. To overcome this, we 

proposed a new architecture named multiprocessor architecture in which a packet buffer 

on a NIC supports multiple processors. 

This thesis proposes an efficient architecture which gives special consideration to 

priority packets and is capable of taking out multiple packets at any given instant of time 

from the packet buffer. 

The main purpose of this research is to address the following issues: 

1) Develop and simulate buffer management algorithm that can reduce the overall 

packet losses in network terminals, can take application state into consideration 

while allocating buffer space to any application. 

2) Propose a new architecture for a NIC to reduce number of interrupts required to 

be sent to the host processor. The proposed architecture also considers priority 

application and multiple ports for a packet buffer. 

3) Write a tutorial for power analysis of any circuit using Xilinx Xpower tool. 

1.2 Summary of Main Contributions 

The main contributions of this thesis work are as follows: 

1) Proposal of a new buffer management algorithm called History Based Dynamic 

Algorithm (HBDA) for protocol processors in a NIC. HBDA takes applications 

state into consideration while allocation buffer space to different applications. 

2) Development of a simulation model for the packet buffer in a protocol processor 

and performance comparison of the different algorithms. 

6 



 

3) Propose a new architecture for NIC that can support multiple processors and can 

minimize the packet losses for priority application. 

4) Compute power consumption for comparing the traditional architecture with the 

proposed architecture. 

5) Develop a tutorial which explains step by step procedure to do power analysis of 

any circuit using Xilinx Xpower tool. 

1.3  Organization 

The remainder of the thesis is organized as follows. Chapter II gives the 

background on existing architectures and popular buffer management algorithms. Chapter 

III introduces new algorithm History Based Dynamic Algorithm in detail. Chapter IV 

describes the new architecture (Multiprocessor Architecture) for a NIC in detail. Chapter 

V explains the simulation model used to compare the performances of different 

algorithms and different architectures. After that, Chapter VI shows and analyses the 

simulation results. Finally, Chapter VII concludes the thesis and discusses future work. 
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CHAPTER II 

BACKGROUND 

2.1 Traditional Architecture for Packet Reception 

Packets coming in from the network are received on the NIC. The physical layer 

and the MAC layer present on the NIC process the packet for layer 1 and layer 2 

protocols [1-4]. It is then buffered in the packet buffer before being sent to the main 

memory. 

Once the packet is in the main memory, the host processor processes the TCP/IP 

or the UDP headers (layers 3-4 protocols) [1, 2]. Figure 2.1 gives the block diagram of 

packet reception in a network terminal [2]. Once the headers (layer 3-4 protocols) are 

processed by the host processor/OS, the necessary data (payload) is delivered to the 

corresponding applications [2, 6, and 7]. Since the amount of processing power spent by 

the host processor is around 20% - 60% when it is connected to a gigabit Ethernet [1, 5-

7], Henrikkson et al [2] proposed the protocol processor to offload the host processor. 
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Ethernet PHY 

Ethernet MAC 

DMA Controller 

Packet Buffer 

IP processing 

TCP/UCP processing, 
including copy 
to user memory 

Application processing 

Kernel Memory 
Area 

User Memory Area 

Host Processor 

Network Interface 
Card 

Figure 2.1: Traditional packet reception on the NIC and Host Processor [2] 

2.2 Protocol Processor Architecture 

Figure 2.2 shows the packet reception using a protocol processor. The new packet 

reception shown in figure 2.2 moves layer 3 and layer 4 processing onto the NIC [1, 5-7]. 

Packets coming in from the network are received on the NIC and are processed for layer 

1-2 protocols. Instead of sending the packet over to the host processor for further 

processing, the protocol processor on the NIC handles the processing of layer 3 and layer 
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Incoming Packets 

Packet Buffer Memory 
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4 protocols. The main task of a protocol processor is to handle protocol processing at a 

wire speed [1, 7]. 

As shown in figure 2.2, packets coming in will stream through the protocol 

processor and the payload (application) data will be stored in the packet buffer until the 

host application retrieves it [7]. Packets are classified based on the application is they are 

destined for (per-flow). Once the packet is classified, it is stored in an output queue in the 

buffer. Each application has an output queue in the buffer. In general, the packet buffer 

has FIFO-based output queues for each application to store its application data [7]. 

Figure 2.2: New architecture for packet reception using Protocol Processor [2]. 
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2.3 Buffer Management Algorithms 

Most of the network interface card architectures that have been proposed in the 

literature, use some buffering to accommodate packets whose service has been delayed 

due to contention. The buffer management algorithm directly affects the performance of a 

NIC. However, output-queued shared-memory packet switches with no buffer 

management procedures may not perform well under overload conditions [4]. The 

problem is that a single output port can take over most of the memory, preventing packets 

destined for less utilized ports from gaining access. This causes the total switch 

throughput to drop. One solution to this problem is to place restrictions on the amount of 

buffering a port can use. This makes buffers available to the less utilized ports and 

increases the total switch throughput. 

Two styles of buffer sharing restrictions appear in the literature. One type places 

limits on the maximum or minimum amount of buffering that should be available to any 

individual queue. This is called the Static Threshold (ST) scheme. In this method, an 

arriving cell is admitted only if the queue length at its destination output port is smaller 

than a given threshold value. The ST strategy is very simple to implement in hardware. It 

requires only queue length counters, which are likely to be needed for network 

management purposes anyway, and a comparator. When so many queues are active at 

once such that the sum of their threshold values exceeds the buffer capacity, it is possible 

for the buffer to fill up completely even though all queues are obeying their threshold 

constraints. This allows some queues to become starved for space, which can lead to 

underutilization of the switch. At other times, when very few output queues are active; 
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these queues are needlessly denied access to the idle buffer space beyond the sum of their 

thresholds. This creates higher cell-loss rates and lower throughputs for these active 

queues than they would experience if they had access to extra buffer space. 

The other style is called the Dynamic Threshold (DT) Scheme. In DT, threshold 

value for any application at an instant ‘t’ is a function of unused buffer space. In DT, 

packets for any application are accepted as long as queue length for the application is less 

than the threshold value for that application. 

2.4 Popular Buffer Management Algorithms 

Buffer management algorithms determine how the packet buffer is shared among 

the various output queues. Four popular buffer management algorithms are reported in 

literature [8, 10-11, 13, 15]. They are

 1) Completely Partitioned Algorithm (CP).

 2) Completely Shared Algorithm (CS).

 3) Dynamic Algorithm.

 4) Dynamic Algorithm with Dynamic Threshold (DADT)

  CP and CS come under ST scheme while the DA and DADT come under DT scheme. 

2.5 Completely Partitioned Algorithm (CP) 

Kamoun and Kleinrock [11] proposed Completely Partitioned algorithm. In this 

algorithm, the total buffer space ‘M’ is equally divided among all the applications. Packet 

loss for any application occurs when the buffer space allocated to it becomes full. If ‘M’ 
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is the total buffer space, ‘n’ is number of applications and ki,, i= 1….n, represents the size 

of queues i=1….n then: 

k1 + k2 + …. + kn = M (2.1)

 N 
∑ ki = M ( 2.2) 
i=1 

The advantage of this algorithm is that it works well when all the applications are 

active [6], that is, packets for all the applications are coming. In addition, CP is easy to 

implement in hardware. However, the algorithm has a disadvantage in that if one of the 

applications is not active, then the space allocated to it will be never utilized. Hence, CP 

is not adaptive to changes in traffic conditions. 

2.5.1 Example of Completely Partitioned Algorithm 

If the total buffer space is 400 packets, and if the number of output queues is 4, 

then each queue has 100 packets for it. When the queue length of any given queue 

exceeds 100 packets, it stops accepting further incoming packets. Now if packets are not 

coming for one of the queues then the space allocated to it is not utilized. This means that 

space for 100 packets is wasted in CP. 

2.6 Completely Shared Algorithm (CS) 

Unlike the Completely Partitioned algorithm, the individual queues do not have 

any static thresholds placed on them in CS. The incoming packet is accepted as long as 

there is space in the memory to accommodate it. Packet loss for an application occurs 
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only when there is no space in the buffer. If ‘M’ is the total buffer space, ‘n’ is the 

number of applications and ki,, i= 1….n, represents the size of queues i=1….n then: 

ki = M, i =1, 2,.…, N (2.3) 

CS works well under balanced load conditions. In balanced load conditions, the 

incoming packets are almost equally distributed among all the applications; hence, this 

algorithm can provide fairness to all the applications under balanced load conditions. In 

addition, CS is easy to implement in hardware. 

The drawback of this algorithm is that if only one application is active at any 

instant ‘t’, it can fill the whole buffer space. Once the buffer is filled with this active 

application, the incoming packets for other applications are rejected. Hence, it does not 

guarantee the fairness to all the applications. 

2.6.1 Example of Completely Shared Algorithm 

If the total buffer space is 400 packets and there are 4 output queues, then any one 

queue can occupy the entire buffer space, leaving other output queues with no buffer 

space at all. Any of the given queues can occupy as much buffer space as possible. The 

only condition is that the cumulative sum of all the queues should not exceed the total 

buffer space [8]. Therefore, if initially only application1 is active then it may occupy 

whole space. Hence, by the time packets for other application arrive; whole buffer space 

might be occupied. Also, if one application has higher packet size than another then it 

gets more space for same number of packets. 
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2.7  Dynamic Algorithm (DA) 

DA is more adaptive to changes in traffic conditions than CS and CP. In DA, 

threshold value for any application at an instant ‘t’ is a function of unused buffer space. 

In DA, packets for any application are accepted as long as queue length for the 

application is less than the threshold value. Packet loss occurs only when queue length of 

an application exceeds its threshold value. If at any time ‘t’, let T(t) be the controlling 

threshold and let Qi (t) be the length of queue ‘i’. Let Q (t) be the sum of all the queue 

lengths. Then if ‘M’ is the total buffer space 

T(t)=  (M-Q(t)) (2.4) 

Where ‘’ is some constant, which is taken as a power of two, so that shift 

registers can be used to implement in hardware. This algorithm is robust to changes in 

traffic conditions. In addition, it is easy to implement in the hardware. 

In ATM switches, packet size is the same for all the applications. Hence, DA 

works efficiently in ATM switches. However, in network terminals, different applications 

may have different packet sizes, thus reducing the efficiency of DA. 

2.8  Dynamic Algorithm with Dynamic Threshold (DADT) 

The DADT [16] works similar to DA. In DADT, packet sizes are also considered 

while calculating the threshold value for different applications. In DADT the threshold 

value is calculated as shown in equation 2.5. 

T(t)= i  (M-Q(t)) (2.5) 
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Where ‘I ’ is the proportionality constant and varies for each queue. Optimum 

‘’ value for each queue is calculated through simulations. By varying the threshold 

value, DADT does not allow queues with large packet sizes to fill the buffer at a faster 

rate. 

It has been shown that dynamic threshold scheme (DT) is more efficient than 

static threshold scheme (ST) [16]. Among the dynamic algorithms, DADT achieves the 

lowest packet loss ratio in network terminals. However, it has a disadvantage that it is 

difficult to determine the optimum alpha value for each application [16]. In addition, 

simulation results of DADT have shown that the optimum alpha value for each 

application comes out to be different from the power of 2, which makes its hardware 

implementation difficult [16]. 

As mentioned above, in DA and DADT, threshold value for any application at an 

instant ‘t’ is a function of unused buffer space. DA and DADT do not take application 

state, that is whether the application is active or not, into consideration while determining 

the threshold value for an application. Therefore, we propose a novel scheme called 

History Based Dynamic Algorithm (HBDA) which will take all the factors into 

consideration while calculating the threshold value for each application: 

1) Unused buffer space. 

2) Packet size.

 3) Application state. 
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CHAPTER III 

HISTORY BASED DYNAMIC ALGORITHM 

The existing Dynamic algorithms do not consider application state (application is 

active or not) while calculating threshold value for any application [16]. The only 

consideration while calculating the threshold value is the amount of unused buffer space 

in the current existing algorithms. So, we proposed a History-Based Dynamic Algorithm 

(HBDA), which takes all the three factors into consideration: the amount of unused buffer 

space, packet size and the application state. If at any time ‘t’, let T (t) and T’(t) be the 

controlling thresholds and Qi (t) be the length of queue ‘i’. If ‘M’ is the total buffer space, 

the algorithm works as shown in figure 3.1. 

The idea for the HBDA is to optimize the use of buffer space by taking 

application state into consideration while calculating threshold value for the application. 

3.1 Example for HBDA 

The following example explains the working of HBDA in more detail. Let us 

consider three applications for our example. Say at any instant ‘t’, application 1 has filled 

its allocated buffer space such that the queue length of application 1 is greater than the 

threshold value for that application. Application 2 at this instant is inactive such that 

queue length of application 2 is less than the threshold value for that application. 

Application 3 at this instant ‘t’ has filled almost half of its allocated buffer space such 
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that queue length of application 3 is almost half of the threshold value for that 

application. 

Now if the incoming packet is for application 3, it will be accepted since queue 

length for application 3 is less than the threshold value for application 3. On the other 

hand, if an incoming packet is for application 1, it will be rejected since queue length for 

application 1 is greater that its threshold value, though there is still free space available in 

the buffer. 

Incoming Packet 

Q(i)<T(t) 

Accept packet Q(i)<T’(t) 

Reject Packet 

Yes No 

Yes 

No 

Any of last two 
packets rejected? 

Yes 

No 

Figure 3.1: Algorithm for the History-Based Dynamic algorithm (HBDA). 
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Where 

T (t) = ( / psizei)  (M-Q(t)) (3.1) 

T’ (t) = ( / psizei) (M-Q(t)) +Historyi(1)  M/2 + Historyi(2)  M/4 (3.2) 

History(1) is ‘1’ if the last packet of ‘i’th application is rejected and ‘0’ if accepted; 

History(2) is ‘1’ if the second last packet of ‘i’th application is rejected and ‘0’ if 

Accepted; 

and ‘M’ is the total buffer space.

 Our simulation studies have shown that when an application fills the buffer space 

allocated to it, then the probability of being rejected for further few incoming packets for 

that application is high. In other words, by the time the packets for that application 

dequeue [6] themselves and increase the threshold value for that application above the 

queue length for that application, some packets have already been rejected for that 

application. Therefore, to minimize this packet loss, we keep track of last two packets for 

each application. If any of the last two packets has been rejected for an application which 

has queue length greater than the threshold value (calculated by equation 3.1), then the 

threshold value for that application is determined by equation 3.2. By increasing the 

threshold value for such an application, packet loss for that application can be minimized. 

Though, by tracking the last three packets for an application, we can further 

increase the efficiency of buffer management algorithm, but increase in efficiency is not 

as significant as compared to increase in the hardware cost. Our simulation results have 

shown that increase in efficiency is only about 0.01% as compared to when we keep track 

of last two packets for an application. 
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3.2  Threshold Value Computation in HBDA 

In DADT, the threshold value for an application is calculated as shown in 

equation 3.3. 

Ti(t)=i (M-Q(t)) (3.3)

 Different applications have different ‘’ values in DADT. In general, the 

optimum alpha value comes out to be different than the power of two in DADT [16]. 

Also, in DADT, determining the optimum alpha value for each application is difficult. 

Therefore, equation for calculating the threshold value for an application has been 

modified as shown in equation 3.4.

 T (t) = ( / psizei) (M-Q(t))  (3.4) 

In equation 3.4, ‘’ value is same for all the applications and since different 

applications will have different packet size, factor of ‘ / psizei ’ in equation 3.4, achieves 

the same effect as different alpha values for different applications, in DADT. This 

eliminates the need to determine the optimum ‘’ value for each application. 

As mentioned above, if an application has a queue length greater than the 

threshold value, then the threshold value for such an application is determined using 

equation 3.5.

 T’ (t) = ( / psizei)M-Q(t)) + Historyi(1)M/a + Historyi(2)M/b (3.5) 

where ‘psize’ represents the packet size of the application with ‘i’ varying from 1 

to n, ‘a’ and ‘b’ are constants which are determined through simulations . The ‘α’ value is 

generally taken as a power of two (either positive or negative), so that threshold 

computation is easy to implement in hardware. 
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Our simulation results as shown in table 3.1 shows that optimum value of ‘a’ and 

‘b’ comes out to be 2 and 4 respectively. For our simulations, we have used six 

applications, bursty uniform traffic model, alpha value as 128 (from table 6.3), average 

traffic mix, average dequeue time of 14 clock cycles for the burst of 10 packets, buffer 

size as 600 packets and load of 70% on each of the queue. For simulations, the values 

of ‘a’ and ‘b’ are taken as power of 2 so that shift registers can be used to implement it 

in hardware. 

Table 3.1 

Optimum value of factors, ‘a’ and ‚‘b’ 

Variation of (a, b) Packets Rejected / Total number of incoming 

2,2 0.093 

2,4 0.081 

2,8 0.085 

4,4  0.088 

4,8 0.090 

3.3 Advantages of HBDA 

The HBDA, DA and DADT have one major advantage over static threshold 

schemes; they are adaptive to changes in traffic conditions [14]. The HBDA has one 

distinct advantage over DA and DADT that it continuously monitors the state of the 

application and controls the threshold value dynamically. Another advantage of HBDA 
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over DADT is that, there is no need to determine the optimum ‘’ value for each 

application. 
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CHAPTER IV 

PROPOSED ARCHITECTURE 

4.1 Need for New Architecture 

Processing the packet on the Network Interface card (NIC) is the slowest process 

[5]. Whenever a packet is accepted and placed in the packet buffer, an interrupt is sent to 

the host processor by the NIC. It takes approximately 50 µs to process a single interrupt. 

If one interrupt per packet is sent, the result is one interrupt every 12µs. Hence, this 

results in slowing down the overall packet processing time in a NIC.

 With multi-processor systems becoming so popular for high-speed networks, it 

becomes essential to design a new architecture for an NIC, which can support multi-

processor systems. In general, the packet buffer in an NIC has a single output port, thus 

only one processor can communicate with the NIC at any given time. Hence, only one 

packet can be taken out (dequeue) of the packet buffer at any instant of time. To support 

multi-processor systems, the packet buffer must have multiple output ports. 

Therefore, large number of interrupts and large dequeue time of packets provide 

a bottleneck for further increase of the capacity in the networks. Thus, processing 

multiple packets in parallel, supporting multi-processors systems and reducing the 

number of interrupts become essential to overcome the bottleneck. So, we propose a 
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new architecture which can process more than one packet at the same time and also 

reduce the number of interrupts sent to the host processors in multi-processors systems. 

4.1.1  Priority applications 

Different applications in a network may have different priorities. An application 

with the highest priority should have the minimum packet loss to avoid loosing important 

data. One way to reduce the packet losses of the priority application could be to use Push-

Out algorithm as a buffer management algorithm [14]. In Push-Out algorithm, incoming 

packets are accepted as long as there is space in the buffer. Once the buffer is full, further 

incoming packets are allowed to enter by selectively pushing out another packet that is 

already in the queue. So, a high priority application packet can push out a low priority 

application packet. Push-Out algorithm pushes out a packet at the head of the longest 

queue. 

This algorithm is highly adaptive to changing traffic conditions [14], as there is 

competition among the queues to keep their queue lengths short when all the queues are 

competing for buffer space. This algorithm is difficult to implement in hardware [16] as it 

involves keeping track of the longest queue, pushing out a cell from the longest queue 

and then finally writing a cell into a new queue. Also, the source will get no information 

of those packets that are pushed out. Hence, source will assume that the packets have 

been accepted by the receiver. Thus, better way of reducing the priority application 

packets could be to design a new architecture that is capable of reducing packet loss of 

high priority applications. 
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4.2  Proposed Architecture for a NIC 

Figure 4.1 shows the diagram of the proposed architecture for a NIC. As seen in 

figure 4.1, an incoming packet in stored in an input buffer. The packet is then processed 

and the control unit uses a buffer management algorithm to determine whether to accept 

the packet or reject the packet. The buffer management algorithm compares the queue 

length of an application for which the packet is destined, with the threshold value of that 

application. The detailed working of the control unit is explained in section 4.4. The 

packet is rejected if the queue length of an application is greater than the threshold value 

for that application, otherwise the packet is accepted. The accepted packets are then, 

placed in the packet buffer. Each application has its own queue in the packet buffer. 

Different applications may have different priorities. Therefore, it becomes important to 

minimize the packet loss for the highest priority application. To achieve this, a small 

priority-based buffer (Section 4.3) has been placed in front of the packet buffer. If the 

incoming packet is for the highest priority application and the controller rejects that 

packet, as there is no space in the packet buffer for that application, then this high priority 

application packet is placed in the priority-based buffer. So, instead of rejecting this 

highest priority application packet, the packet is stored in the priority-based buffer and is 

injected into the packet buffer when there is enough space for this packet in application 

queue in the packet buffer. The priority controller is responsible for determining when the 

packet can be moved from the priority-based buffer to the packet buffer. To achieve this, 

the priority controller sets the signal ‘WritetoBuffer’ high. 
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As seen from figure 4.1, the packet buffer has multiple output ports. Thus, the 

processor1 and processor2 can take the packets out of packet buffer at the same time [11], 

which means more than one packet can be dequeued at one time. This leads to increase in 

the buffer space and hence more packets will be accepted. 

Packet Buffer 

Priority   
Controller 

Input 
Buffer 

Processor1 Accept 

Is Highest 
Priority 

Application 
packet? 

Yes 

Reject 

No 

Reject the packet 

Processor2 

Queue 0 

Queue 1 

Control Unit 

Incoming 
Packet 

Figure 4.1: Proposed Architecture for a NIC. 

Figure 4.2 shows the flowchart describing functionality of the proposed 

architecture. As seen from figure 4.2, the packets for the application with highest priority 

are rejected only if there is no space for that packet in the packet buffer as well as in the 

priority-based buffer. This way, packet loss for the highest priority application can be 

reduced. 
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Input Buffer 

Qi(t)<Ti(t) 

Accept and Place 
in packet Buffer 

Is highest 
Priority packet? 

Is space in 
priority buffer? 

Accept and Place 
in priority Buffer 

Reject the packet 

Incoming Packet 

Yes No 

Yes 

No 

Yes No 

Figure 4.2: Flowchart for Multiprocessor Architecture. 

4.3 Working of the Priority Controller 

Figure 4.3 explains the working of the priority controller in the proposed 

architecture. As seen from figure 4.3, if the packet for the highest priority application is 

rejected by the controller, that is, the queue length for that application is greater than the 

threshold value of that application; the control is passed from the controller to the priority 

controller. The priority controller checks for the available space in the priority-based 

buffer. In case, there is space in the priority-based buffer, then the packet is accepted and 

placed in the priority-based buffer, otherwise, the packet is rejected. 
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Controller rejects the packet Priority Controller 

Handles Control to 

PRIORITY CONTROLLER 

No 

Space in Priority Buffer? 

Yes 

Accept and Place 
the Packet 

in Priority Buffer 

Reject the Packet 

Sends Signal to Controller 

 The priority controller continuously monitors the packet buffer for the available 

space for the highest priority application. In case, there is sufficient space in the packet 

buffer for the highest priority application packet, then the ‘WritetoBuffer’ signal is set 

high and the packet is moved from the priority-based buffer to the packet buffer. The 

priority controller also sends a signal to controller to indicate the number of packets 

moved from the priority-based buffer to the packet buffer, so that controller can update 

its counters accordingly. The controller responds with ‘DONE’ bit to indicate that it has 

updated the counters and priority controller can now proceed with further moving of 

packets from the priority-based buffer to the packet buffer. 

Working of Priority Controller While Placing the Packet in Priority Buffer 

Figure 4.3: Working of Priority Controller. 
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Researchers have shown that interrupts are very costly, and generating an 

interrupt for each packet arrival can severely throttle a system [12]. If one interrupt per 

packet is received, the result is one interrupt every 12µs. It takes approximately 50 µs to 

process a single interrupt [13]. In the proposed architecture, multiple packets can be 

dequeued at the same time, thus, only one interrupt has to be send to the CPU for 

dequeue of multiple packets. Thus, the number of interrupts in the proposed architecture 

would be drastically reduced as the host processor would no longer need to be informed 

of the arrival of individual packets. 

4.4 Working of the Control Unit 

Figure 4.4 shows the inner details of the control unit. Incoming packets are placed 

in the input buffer. In figure 4.4, we have assumed that the first two packets in the input 

buffer are ‘p1’ and ‘p2’ respectively. ‘Control unit 1’ starts processing of the first packet 

in the input buffer which is packet ‘p1’ in our case. 

Now, if we have only one control unit say ‘control unit 1’, then processing of 

packet ‘p2’ can start only after the processing of packet ‘p1’ is finished. Generally, 

processing the packet to determine whether to accept or reject is the slowest process [10].  

To overcome this limitation, we have placed another control unit ‘control unit 2’ in 

parallel with ‘control unit 1.’ ‘Control unit 2’ takes the advantage of fact that more than 

90% of the incoming packets are accepted by the NIC. After ‘control unit 1’ starts 

processing of packet ‘p1’, ‘control unit 2’ updates its variables like “Queue Length”, 

“Threshold Values” assuming that the packet ‘p1’ will be accepted by the NIC. Then, 
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‘control unit 2’ starts processing of packet ‘p2’. This way, by processing multiple packets 

at the same time, the overall processing time of packets will be reduced significantly. 

p2 p1 

Control Unit 1 

Control Unit 2 

Control Unit 2 starts 
processing ‘p2’ assuming 

‘p1’ is accepted 

Input Buffer 

Control units interact 
with each other and 

update variables 

CONTROL UNIT 

Control Unit 1 
starts processing of 

packet ‘p1’ 

Figure 4.4: Working of Control Unit. 

Figure 4.5 shows the flowchart describing working of the control unit. As 

discussed earlier, ‘control unit 1’ starts processing packet ‘p1’ and ‘control unit 2’ will 

start processing next packet ‘p2’, assuming that the packet ‘p1’ will be accepted. Now, 

there are can be two cases depending upon whether the packet ‘p1’ is accepted or 

rejected. 

Case 1: If the packet ‘p1’ is accepted by ‘control unit 1’ and packet ‘p2’ is accepted by 

‘control unit 2’, then ‘control unit 2’ updates the variables (Queue lengths, Number of 

30 



 

 

Control unit 1 starts 
Processing packet p1 

Control unit 2 updates its 
variables assuming p1 

is accepted 

Control unit 2 starts 
processing packet p2 

Is p1 accepted ? 

After processing packet p2 
Control unit 2 updates 

variables of control unit 1 

Control unit 1 updates 
variables of control unit 2 

Control unit 1 starts 
Processing packet p2 

NoYes 

Control unit 1 starts 
Processing next packet 

Control unit 2 starts 
processing next packet 
assuming p2 is accepted 

Packets accepted etc) of ‘control unit 1’ with the updated values. The ‘control unit 1’, 

then, starts the processing of next packet in the input buffer. 

Case 2: In case, the packet ‘p1’ is rejected by ‘control unit 1’, then, ‘control unit 1’ 

updates the variables of ‘control unit 2’ with its values. This has to be done as ‘control 

unit 2’ updated its variables assuming that packet ‘p1’ will be accepted by the ‘control 

unit 1’. Then, ‘control unit 1’ starts processing of packet ‘p2’ again as we have to flush 

all the processing done by the ‘control unit 2’. Then, the ‘control unit 2’ starts the 

processing of next packet from the input buffer. 

Figure 4.5: Flowchart explaining the working of Control Unit. 
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This way, by processing packets in parallel, the slowest path can be made to work 

faster, thus increasing the number of packets processed per unit time. 
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CHAPTER V 

SIMULATION ENVIRONMENT 

The entire simulation model is developed using a Hardware Description Language (HDL) 

simulator in MODELSIM [2]. VHDL, a Hardware Description Language was chosen to 

code the entire simulator. 

5.1 Simulation model for the packet buffer 

Figure 5.1 shows the diagram of Simulation model for the packet buffer in a NIC. 

Traffic 
Generator: 
Config file, 

SIM simulator, 
Converter 

Packet Buffer 

Controller 

headers 

RA/WA 

FIFO 

FIFO 

FIFO 

FIFO 

1 

2 

i 

n 

Output 
Links 

packets 

M 

traffic 
model 

load 
on 
each 
port 

M: Buffer Space 
RA: read address 
WA: write address 

Figure5.1: Simulation model for the packet buffer. 
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The input parameters to the Simulation model are: 

1) Traffic parameters: Traffic parameters define the incoming packet size of the 

traffic, nature of the traffic that is coming in (ex: bursty uniform), the inter-

arrival time between each packet and the load on the input ports. 

2) Memory (Buffer size): Buffer size defines the size of memory in terms of 

number of packets that can be placed in the memory [8]. 

3) Service time or Dequeue time: It is the amount of time spent by each packet in 

the memory. 

The individual blocks works as follows: 

5.1.1 Traffic Generator 

A fixed length packet simulator called ‘SIM’ [17]; developed by Sundar Iyer 

et al generates the trace of serial packets. The packets produced by the ‘SIM’ 

simulator are destined randomly between all the output queues. The packets are 

produced with a specified mean inter-arrival time and mean burst length. 

The traffic generator reads from the configuration file. This file contains 

packets whose output-destination requests are randomly distributed on all of the 

output queues. This file acts as an input to the ‘SIM’ simulator [17] and specifies the 

number of input and output destination ports, the traffic model to be used and the load 

for each of the ports. 

There are three kinds of traffic model that are available [16]. These are: 
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 Bursty Uniform Traffic Model: Burst of packets in busy-idle periods with 

destinations uniformly distributed packet-by-packet or burst-by-burst over all the 

output ports. The number of packets in the busy and idle periods can be specified; 

and 

  Bursty Non-Uniform Traffic Model: Burst of packets in busy-idle periods with 

destinations non-uniformly distributed packet-by-packet or burst-by-burst over all 

the output ports; and 

 Bernoulli Uniform Traffic Model: Incoming packets are in the form of Bernoulli 

arrivals and distributions on all output ports 

The “load on each port ()” is determined by the ratio of the number of 

packets in the busy-idle periods [14] and is given by the equation: 

L b  
L b  (5.1)L idle 

where Lb = mean burst length and Lidle= mean idle length. 

A part of the configuration file is shown below in figure 5.2. This 

configuration file shows that there are 6 input and 6 output ports. It also mentions the 

traffic model connected to each of the input ports and the corresponding load on each 

of the port. The various mean burst lengths of each of the input port are also 

specified. 
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(port)  0 bursty -u 0.70 –b 240 #bursty traffic-load 70%, burst length=240 
(port)  1 bursty -u 0.80 –b 240 #bursty traffic-load 80%, burst length=240 
(port) 2 bursty -u 0.70 –b 120 #bursty traffic-load 70%, burst length=120 
(port) 3 bursty -u 0.60 –b 120  #bursty traffic-load 60%, burst length=120 
(port) 4 bursty -u 0.90 –b 120   #bursty traffic-load 90%, burst length=120 
(port) 5 bursty -u 0.75 –b 160  #bursty traffic-load 75%, burst length=160 

Figure 5.2: Part of the configuration file 

5.1.2 Controller 

This is a key part of the simulator written in VHDL, which decides acceptance 

and rejection of a packet, depending upon the type of the packet buffer management 

algorithm used. This component is responsible for generating all signals for proper 

functioning of the simulator. The VHDL simulator reads the packets from the file 

generated by the traffic generator. The controller then decides whether to accept the 

packet based on buffer management algorithm used. If the packet is accepted then the 

controller specifies the write address (WA) based on the output queue to which the 

packet is destined. Irrespective of whether the packet is accepted or dropped, the 

controller updates its state variables like “packetaccepted”, “tpacket”. Figure 5.3 

shows the sample waveforms and state variables for the simulation model developed 

for NIC. 
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Figure 5.3: Sample Waveform for the simulation model developed for NIC. 

As seen from the figure 5.3, ‘psize’ represents the size of the packets of 

different applications. ‘Memsize’ represent the size of the buffer memory in terms of 

packets. Variable ‘pout’ represents the destination of current incoming packet. 

5.1.3 Packet Buffer 

A packet buffer is a large shared dual-ported memory [6]. It has an 

arrangement in which a buffer space is distributed on output queues based on the total 

buffer size and the total number of queues. Packets for each application are 

multiplexed into a single stream. The accepted packet remains in a buffer until the 

application retrieves it from the buffer. The size of the memory is specified in terms 
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of the number of packets. The size can be varied and performances of different buffer 

management algorithms can be compared. 

5.1.4 Reading and writing from memory 

If the packet is accepted by the controller then controller enables a signal 

called ‘memwrite’ and specifies the write address (WA) based on the output queue 

for which the packet is destined. The packet is written into the memory at the 

negative edge of the clock. In addition, the queue length for that application is 

incremented. Once a packet is written to the memory, the controller signals the output 

link that a packet is received and is stored in a particular output queue. This initiates 

the “dequeue” process for the packet. Dequeue time has been taken as a Poisson 

random variable with a fixed mean. 

5.1.5 Converter 

The converter is a simple program written in C. The purpose of the converter 

is to converts the output of ‘SIM’ simulator to a format, which is compatible to the 

VHDL Simulator. Converter extracts the output destination for all the packets from 

the output of ‘SIM’ simulator. A sample output file from the converter is shown in 

figure 5.4. 
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Figure 5.4: Input file after conversion 

5.2 Model for Power Analysis 

For power analysis of traditional and Multiprocessor Architecture 

architecture, we have used Xilinx Xpower tool. The Xilinx Xpower toll takes design 

file and the simulation file as an input and calculates the power consumption by that 

design. The design file is generated using Xilinx ISE and the simulation file is 

generated using ModelSim simulator. The detail of doing power analysis is explained 

in Appendix A. 
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CHAPTER VI 

SIMULATION RESULTS AND ANALYSIS 

The primary objective of this thesis is to reduce the packet loss ratio in 

network interface card. To prove the above hypothesis, simulations were done on 

three different traffic loads: 

1) Average network traffic load 

2) Heavy network traffic load 

3) Actual network traffic load. 

The simulations described in this chapter compare the performance of HBDA 

and DADT, DA for all the three traffic loads with varying loads and varying buffer 

size. It has been proved that dynamic threshold schemes are better than static 

threshold schemes. So, we have compared our proposed algorithm HBDA with DA 

and DADT. In the section 6.5, we have compared Multiprocessor Architecture results 

with the traditional architecture. We have also compared power consumption of 

proposed architecture with the traditional architecture. For all comparisons of 

proposed architecture with the traditional architecture, we have used HBDA as our 

buffer management algorithm. 
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6.1 Simulation results for HBDA 

Three different network traffic loads are considered for our simulations as 

described above: average network traffic load, heavy network traffic load, and actual 

network traffic load. We have used Bursty Uniform Traffic Model for our simulations 

since this is the most commonly used model [16, 19]. For each traffic load, the 

following steps have been followed: 

1) Optimum alpha value is determined for DA for different network traffic load. 

2) Optimum combination of alpha values for different queues is determined for 

DADT. Optimum alpha values are the combination of alpha for different queues 

for which DADT gives minimum packet loss ratio. 

3) Optimum alpha value is determined for HBDA for different network traffic load. 

4) Packet loss ratio is plotted for DA, DADT and HBDA as the load is varied, 

keeping the buffer size constant. 

5) Packet loss ratio is plotted for DA, DADT and HBDA as the buffer size is 

varied, keeping the load constant. 

6) Improvement ratio is calculated for different values of load for the 

corresponding traffic mix. Improvement ratio is defined as the difference of packet 

loss in HBDA and the compared algorithm (DA or DADT) divided by packet loss 

in HBDA.

 Section 6.2, 6.3 and 6.4 discusses our simulation results for average network 

traffic loads, heavy network traffic load and actual network traffic load 

respectively. 
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For all simulations, we have used the number of the applications as six, bursty 

uniform traffic model and average dequeue time of 14 clock cycles for the burst of 

10 packets. 

6.2 Simulation Results for average traffic load 

We implemented a traffic mix with average network traffic load according to 

[5]. With this traffic mix, first, we determine the optimum ‘’ (alpha) value for DA. 

6.2.1 Optimum alpha value for DA 

Table 6.1 shows the packet sizes of different applications in bytes based on 

the average network traffic load flow in [5]. For our simulation purpose, we have 

used these packet sizes for different applications. 

Table 6.1 

Queue properties for average traffic load 

Q0 Q1 Q2 Q3 Q4 Q5 
Size in 
Bytes 

256 64 256 32 128 512 

packet unit # 
(32 
bytes/unit) 

8 2 8 1 4 16 

Figure 6.1 shows the variation of packet loss ratio (number of dropped 

packets/ number of received packets) with alpha value varying from 4 to 20 for DA. 

In figure 6.1, size of buffer is 600 packets, and load on each queue is 70%. In figure 

6.1, we can see that packet loss ratio decreases till =14 and after that the packet loss 

ratio starts increasing because larger alpha values can increase the control threshold 
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of the queues with large packet sizes. This increase in control threshold for large 

packet size prevents them from being dropped even though they have taken 

significantly large space in the buffer. Therefore, we determine the optimum alpha 

value to be 14 for DA. 
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Figure 6.1: Packet loss ratio vs. Alpha for DA for the average traffic load. 

6.2.2 Optimum alpha value for DADT 

For DADT, each queue has different alpha value, hence, different threshold 

value. We will determine the optimum alpha values for different queues so that 

packet loss ratio is minimum for DADT. Table 6.2 shows the different combinations 
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of alpha that we have taken for our simulations and figure 6.2 shows the packet loss 

ratio corresponding to them. 

Table 6.2 

Variation of alpha for DADT for the average traffic load 

Variation Q0 Q1 Q2 Q3 Q4 Q5 
1 12 10 12 10 10 8 

2 14 10 14 10 10 7 

3 14 12 14 12 12 8 

4 16 14 16 14 14 6 

5 16 14 16 14 16 8 
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Figure 6.2: Packet loss ratio vs. Alpha for DADT for the average traffic load 
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6.2.3 Optimum alpha value for HBDA 

Table 6.3 shows the packet loss ratio for HBDA as alpha value is varied 

between 16 and 256. As shown from table 6.3, optimum alpha value comes out to be 

128. We will use alpha value as 128 for HBDA. 

Table 6.3 

Variation of alpha for HBDA for the average traffic load 

Value of alpha Packet Loss Ratio 
16 0.095 
32 0.093 
64 0.087 
128 0.081 
256 0.083 

6.2.4 Comparison of HBDA, DA, DADT with varying load 

Figure 6.3 shows the performance of the three algorithms (HBDA, DA and 

DADT) for different loads, with buffer size of 600 packets. Load has been varied 

from 0.5 to 0.9. As seen in figure 6.3, HBDA has least packet loss ratio for all loads. 

As seen from the figure, DADT has less packet loss ratio as compared to DA since it 

takes packet size into consideration.  Also we can see that HBDA outperforms DADT 

as it takes packet size as well as application state into consideration while allocating 

buffer space to different applications. 
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Figure 6.3: Packet Loss Ratio Vs Load for HBDA, DA, and DADT for the average 
traffic load. 

6.2.5 Comparison of HBDA, DA, DADT with varying buffer size 

Figure 6.4 shows the performance of the three algorithms (HBDA, DA and 

DADT) for different buffer size, with load of 70 percent on each queue. The buffer 

size has been varied from 500 packet size to 800 packet size. As seen from the figure 

6.4, as the buffer size increases, packet loss ratio decreases for all the algorithms. This 

is due to the fact that all applications get more buffer space. 
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Figure 6.4: Packet Loss Ratio Vs Buffer size for HBDA, DA, and DADT for the 
average traffic load 

6.2.6 Improvement ratio of HBDA over DA and DADT

 Table 6.4 shows the improvement in packet loss ratio for HBDA, for different 

loads when compared with DA and DADT. The improvement ratio is defined as the 

difference of packet loss in HBDA and the compared algorithm (DA and DADT) 

divided by packet loss in HBDA. 
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Table 6.4

 Improvement ratio of HBDA over DA and DADT for average traffic load 

Load Improvement ratio (%) 
(HBDA /DA) 

Improvement ratio (%) 
(HBDA/DADT) 

0.5 20 10.89 
0.6 18.4 11.29 
0.7 15.9 11.02 
0.8 14.4 10.77 
0.9 13 9.52 

6.3 Simulation Results for Heavy traffic load 

Table 6.5 shows the packet sizes of different applications in bytes based on the 

heavy network traffic load flow in [5]. For our simulation purpose of heavy traffic, 

we have used these packet sizes for different applications. 

Table 6.5 

Queue properties for Heavy traffic load 

Q0 Q1 Q2 Q3 Q4 Q5 
Size in Bytes 128 64 128 32 256 512 

packet unit # 
(32 bytes/unit) 4 2 4 1 8 16 

6.3.1 Optimum alpha value for DA 

Figure 6.5 shows packet loss ratio for DA as alpha value is varied from 4 to 

20. In figure 6.5, the size of the buffer is 600 packets, the number of applications is 

six, bursty uniform traffic model is used with a load of 70% on each of the queues; 

and average dequeue time of 14 clock cycles for the burst of 10 packets. As seen 

from the figure 6.5, the optimum alpha value comes out to be 16. 
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Figure 6.5: Packet loss ratio vs. Alpha for DA for the heavy traffic load 

6.3.2 Optimum alpha value for DADT 

Now we will determine the optimum values of alpha for DADT. Table 6.6 

shows the different combinations of alpha that we have taken for our simulations and 

figure 6.6 shows the packet loss ratio corresponding to them. In figure 6.6, size of 

buffer is 600 packets, and load on each queue is 70%. Figure 6.6 shows that the 

optimum combination of alpha values comes out to be for variation 3. 
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Table 6.6 

Variation of alpha for DADT for the heavy traffic load 

Variation Q0 Q1 Q2 Q3 Q4 Q5 
1  18 18 18 18 18 6 
2 14 10 14 10 10 7 
3 14 12 14 12 12 8 
4 16 14 16 14 14 6 
5 16 14 16 14 16 8 
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Figure 6.6: Packet loss ratio vs. Alpha for DADT for the heavy traffic load 
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6.3.3 Optimum alpha value for HBDA

 Table 6.7 shows the packet loss ratio for HBDA as alpha value is varied 

between 16 and 256. As shown from table 6.7 optimum alpha vale comes out be 128. 

We will use alpha as 128 for HBDA for our comparison purpose. 

Table 6.7 

Variation of alpha for HBDA for the heavy traffic load 

Value of alpha Packet Loss Ratio 
16 0.067 
32 0.065 
64 0.061 
128 0.059 
256 0.058 

6.3.4 Comparison of HBDA, DA, DADT with varying load 

Figure 6.7 shows the performance of the three algorithms (HBDA, DA and 

DADT) for heavy traffic loads with buffer size of 600 packets. Load has been varied 

from 0.5 to 0.9. 
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Figure 6.7: Packet Loss Ratio Vs Load for HBDA, DA, and DADT for the heavy 
traffic load 

6.3.5 Comparison of HBDA, DA, DADT with varying buffer size 

Figure 6.8 shows performance of three algorithms HBDA, DA, and DADT as 

the buffer size is varied from 500 packets to 800 packets. By monitoring the 

application state, HBDA reduces the overall packet loss ratio. 
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Figure 6.8: Packet Loss Ratio Vs Buffer size for HBDA, DA, and DADT for the 
heavy traffic load 

6.3.6 Improvement ratio of HBDA over DA and DADT 

Table 6.8 shows the improvement in packet loss ratio for HBDA, for different 

loads when compared with DA and DADT. For a load of 0.7 the improvement ratio is 

16.2% over DA and 11.7% over DADT. 

Table 6.8 

Improvement ratio of HBDA over DA and DADT for heavy traffic load 

Load Improvement ratio (%) 
(HBDA /DA) 

Improvement ratio (%) 
(HBDA /DADT) 

0.5 15.2 8.5 
0.6 15.8 9.8 
0.7 16.2 11.7 
0.8 15.4 13.0 
0.9 13.2 11.4 
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6.4 Simulation Results for actual traffic load 

Table 6.9 shows the packet sizes of different applications in bytes based on 

the actual network traffic load flow in [18]. 

Table 6.9 

Queue properties for actual traffic load 

Q0 Q1 Q2 Q3 Q4 Q5 
Size in Bytes 32 32 32 64 512 1472 

packet unit # 
(32 bytes/unit) 1 1 1 2 16 46 

6.4.1 Optimum alpha value for DA 

Figure 6.9 shows packet loss variation using DA as alpha value is varied from 

4 to 16 for actual network traffic load. As seen from Figure 6.9 the optimum alpha 

value comes out to be 4. As the value of alpha is increased the packet loss ratio 

increases. This is due to the fact that packet size of queue5 (46 bytes) is very large. 
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Figure 6.9: Packet loss ratio vs. Alpha for DA for the actual traffic load 

6.4.2 Optimum alpha value for DADT 

Table 6.10 shows the different combinations of alpha values that we have 

taken for our simulations and figure 6.10 shows the packet loss ratio corresponding to 

them. From figure 6.10, optimum value of alpha comes out to be for variation 5. 

. 
Table 6.10 

Variation of alpha for DADT for the actual traffic load 

Variation Q0 Q1 Q2 Q3 Q4 Q5 
1  16 16 16 16 6 4 
2  16 16 16 16 6 6 
3  18 18 18 18 6 4 
4  16 16 16 16 16 6 
5  16 16 16 16 16 4 
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Figure 6.10: Packet loss ratio vs. Alpha for DADT for the actual traffic load 

6.4.3 Optimum alpha value for HBDA

 Table 6.11 shows the packet loss ratio for HBDA as alpha value is varied is 

between 16 and 256. As shown from table 6.10 optimum alpha value comes out to be 

64. We will use alpha as 64 for our comparison purpose for HBDA. 

Table 6.11 

Variation of alpha for HBDA for the actual traffic load 

Value of alpha Packet Loss Ratio 
16 0.167 
32 0.165 
64 0.162 
128 0.168 
256 0.171 
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6.4.4 Comparison of HBDA, DA, DADT with varying load 

Figure 6.11 shows the performance of the three algorithms (HBDA, DA and 

DADT) for actual traffic loads with buffer size of 600 packets. Load has been varied 

from 0.5 to 0.9. As seen in figure 6.11, HBDA has least packet loss ratio for all loads. 
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Figure 6.11: Packet Loss Ratio Vs Load for HBDA, DA, and DADT for the actual 
traffic load 

6.4.5 Comparison of HBDA, DA, DADT with varying buffer size 

Figure 6.12 shows performance of three algorithms HBDA, DA, and DADT 

as the buffer size is varied from 500 packets to 800 packets. 
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Figure 6.12: Packet Loss Ratio Vs Buffer size for HBDA, DA, and DADT for the 
heavy traffic load 

6.4.6 Improvement ratio of HBDA over DA and DADT 

Table 6.12 shows the improvement in packet loss ratio for HBDA, for 

different loads when compared with DA and DADT. 

Table 6.12 

Improvement ratio of HBDA over DA and DADT for actual traffic load 

Load Improvement ratio (%) 
(HBDA /DA) 

Improvement ratio (%) 
(HBDA /DADT) 

0.5 11.7 4.6 
0.6 12.5 6.0 
0.7 12.7 7.1 
0.8 22 17.1 
0.9 11.9 7.6 
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6.5 Proposed Architecture for NIC

 Table 6.13 shows the packet sizes of different applications in bytes based on 

the average network traffic load flow [10]. For our simulation of the average traffic 

load, we used these packet sizes for different applications. For our simulations we 

have taken application 2 as application with highest priority. So, packets for 

application 2 will be placed in the priority controller in case they are rejected by the 

buffer management algorithm. 

Table 6.13. 

Queue properties for average traffic load 

Q0 Q1  Q2 

Priority 
Application 

Q3  Q4  Q5

 Size in bytes 256 64 256 32 128 512 

packet unit # 
(32 bytes/unit) 8 2 8 1 4 16

       Figure 6.13 compares the packet loss ratio of the HBDA for different loads for 

the traditional architecture and the proposed architecture. Load has been varied from 

0.5 to 0.9. As seen from figure 6.13, the overall packet loss ratio has been reduced 

significantly. Table 6.14 show the packet loss ratio for priority application 

(Application 2) for traditional architecture and the proposed architecture. As seen 

from the table 6.14, packet loss ratio for application 2 has been reduced significantly. 
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Figure 6.13: Packet loss ratio vs. Load for HBDA for the average traffic load in 
traditional architecture and the Multiprocessor architecture. 

Table 6.14 

Packet loss ratio of priority application 
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 Though, the main idea behind the new architecture is to reduce the number of 

interrupts needed to be sent to the host processor and also to process multiple packets 

at the same time. But, as shown above packet losses will also be reduced. 

6.5.1  Power Analysis of Proposed Architecture

 Table 6.15 shows the power comparison of transitional architecture and 

proposed architecture. In the proposed architecture, we have two control units for 

processing the incoming packets. This increase in the hardware increases the overall 

the dynamic power consumption. 

Increase in power is calculated as: 

Dynamic power (new architecture) - Dynamic power (traditional architecture)

 Dynamic power (traditional architecture) 

Figure 6.14: Snapshot from Logic Diagram for Multiprocessor Architecture 

For calculating dynamic power for traditional and Multiprocessor architecture 

following steps were followed: Simulation code was first converted to synthesizable 

code. After converting the code, the design was then synthesized and implemented. 
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After implementation, Post-route simulation is done to generate the VCD file 

(Appendix A.1).

 Figure 6.14 shows the logic diagram of the Multiprocessor architecture. Then VCD 

file was given as input to Xilinx Xpower tool to calculate power consumption. 

Appendix A describes all the steps involved in determining the power with the help of 

an example. 

For our performance comparison, load has been varied from 0.5 to 0.9 for the 

average traffic load and buffer size is 600 packets. 

Table 6.15 

Power Comparison of traditional and proposed architecture 

Load Dynamic Power Increase (%) 
0.5 27.7% 
0.6 29.1% 
0.7 29.9% 
0.8 31.3% 
0.9 32.6% 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

This thesis proposes the History Based Dynamic Algorithm (HBDA) to 

reduce the number of packets being dropped at the packet buffer. The HBDA reduces 

that packet loss ratio by considering application state, packet sizes of applications 

while determining the threshold value for each application. Thus, an application 

which is active at any instant gets more threshold value than any other application 

which is not active at the same instant. 

The buffer management algorithm decides the amount of space for each 

output queue in the packet buffer. Three buffer management algorithms Dynamic 

Algorithm (DA), Dynamic Algorithm with Dynamic Threshold (DADT) and History 

Based Dynamic Algorithm (HBDA) are implemented in this thesis. DA does not take 

packet sizes into consideration while allocation buffer space to any application. 

DADT outperforms DA by taking packet size into consideration. HBDA keep tracks 

of last two packets of any application. This way, HBDA determines whether the 

application is active or not at any given instant of time. 

Of all the popular architectures including traditional and protocol processor 

architecture for NIC, none of them is designed for multi processors system and also 

none of the architecture takes priority packets into consideration. 
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 So we also propose a new architecture that can work in multi-processors system and 

also reduce the packet losses of priority applications. 

This chapter summarizes the advantages of HBDA algorithm over the 

conventional algorithms. This chapter also summarizes the benefits of new 

architecture for an NIC over the existing architectures for the NIC and discusses 

future research possibilities. Section 7.1 summarizes the results of the previous 

chapters and section 7.2 discusses the future work. 

7.1 Summary of Results 

7.1.1 HBDA 

The Dynamic algorithm (DA) works well for ATM switches where packet 

size is same for all the applications. However in network terminals, different 

applications may have different packet sizes. So, if we use DA, application with large 

packet size tends to occupy more buffer space resulting in increase in packet loss of 

other applications. The Dynamic Algorithm with Dynamic Threshold (DADT) takes 

only the packet size into consideration and not the application state while calculating 

the threshold values. Also, it is difficult to determine the optimum alpha value for 

each application in DADT. 

So we proposed a HBDA algorithm that takes both the application state and 

packet size into consideration. Also, it eliminates the need to calculate the optimum 

alpha value for each application. By taking alpha as power of two, hardware 

implementation has been made easier. 
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The simulations considered 6 output queues (0-5), bursty uniform traffic 

model, dequeue time of 14 clock cycles for a burst of 10 packets, and uniform load 

for all the output queues. 

1) For the traffic mix with average network traffic loads [5], the HBDA 

improves the packet loss ratio by 15.9% and 11% (for load = 0.7) compared to 

DA and DADT, respectively. 

2)  For heavy traffic load improvement is 16.2% and 11.7% (for load = 0.7) 

compared to DA and DADT, respectively. 

3) For actual traffic load improvement is 12.7% and 7.1% (for load = 0.7) over 

DA and DADT respectively. 

7.1.2 A New Architecture for a NIC 

Multi-processors systems are most commonly used now days. Data is 

transmitted at a very high rate across the network but the speed of the processors on 

the computer limits the data speed. To overcome this, we proposed a new architecture 

in which a packet buffer on a NIC supports multiple processors. A packet buffer has 

multiple output ports and thus multiple processors can demand for packets at the 

same time. A priority-based buffer has also been placed in front of packet buffer to 

minimize the packet loss ratio for the priority packets. Priority packets rejected by the 

controller are placed in the priority-based buffer. Packets in priority-based buffer are 

moved to the packet buffer when there is space for them in the packet buffer. Priority 

Controller determines when the packet can be moved from the priority-based buffer 

to the packet buffer and also informs the controller about the number of packets 
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moved. The controller updates its counters accordingly. The proposed architecture 

results in minimizing the overall packet loss ratio and increasing the capacity in the 

networks. 

7.2  Future Work 

The HBDA algorithm proposed in this thesis does not take ‘time’ factor into 

consideration while determining whether the application is active or not. It would be 

interesting to see how HBDA behaves if ‘time’ factor is taken into consideration. 

Thus, an application which has been inactive for a longer period of time should have 

‘History(1)’ and ‘History(2)’ flags set to zero again. 
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APPENDIX 

XPOWER ANALYSIS 
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 Power consumption is critical in the designing process of a mobile device. With 

the rapidly advanced technology and the greatly increased integration density and 

clock frequency, power consumption is becoming more and more important. Higher 

power consumption has a negative effect on battery life, packaging, cooling costs, 

and reliability. There are many tools that can perform power analysis. However, the 

popular one is Xpower tool provided with Xilinx ISE. XPower tool is a post-route 

and post-fit analysis tool that enables to interactively and automatically analyze 

power consumption for Xilinx FPGAs and CPLDs. 

VHDL, or VHSIC Hardware Description Language, is commonly used as a 

design-entry language for field-programmable gate arrays and application-specific 

integrated circuits in electronic design automation of embedded network digital 

circuits. Therefore, we have used VHDL for describing our design while performing 

the power analysis. There are four factors that determine the power dissipation in a 

circuit: 1) magnitude of supply voltage; 2) switching activity in the circuit; 3) 

switching capacitive loads; and 4) clock frequency. There are two main components 

to power consumption: 

• Dynamic power, which is determined by the switching power of the core and the 

switching speed of the I/O. Dynamic power is affected by capacitive load, supply 

voltage, and switching frequency. 

• Quiescent power, which is dominated by transistor leakage current and by DC 

current from a few specialized FPGA circuits. 
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A.1 Power Analysis 

Figure A.1 show the steps involved in performing the power analysis. The 

behavioral code, written in VHDL, is simulated using Modelsim to test the 

functionality of the code. If required, necessary changes are made in the behavioral 

code to achieve the desired functionality. After simulating the behavioral code, the 

next step involved in power analysis is synthesis. 

Behavioral code 

Synthesizable code 

Synthesize and 
Implement 

Post Route 
Simulation 

Power Analysis 

Figure A.1: Steps involved in Power Analysis 

Behavioral code cannot be synthesized directly. It has to be converted to 

synthesizable code. After converting the code, the design is then synthesized and 

implemented. After implementation, Post-route simulation is done to generate the 

VCD file. 
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A.2 Converting Behavioral Code to Synthesizable Code 

Directly synthesizing the behavioral code can result in errors and warnings. 

Synthesis tool does not understand all the statements that might have been used in 

behavioral code for behavioral simulation. Following are some points that should be 

taken into consideration while converting the behavioral code to the synthesizable 

code. 

 Avoid using any of the signal attributes 'active, 'stable, 'quiet, 'last_value, 

'last_event, 'delayed. Standard expressions clk'event and clk='1' or 

rising_edge(clk) can be used . This is the way to construct positively clocked 

flipflops . 

 With clk'event, always add clk=‘1’. It is not possible to synthesize flip flops 

that are clocked on both the positive and negative clock edge . 

 Combinational processes must have “complete sensitivity lists”. That is, all 

signals that are read in the process must be listed in the sensitivity list.  

 Don't use any arithmetic operations, like division or modulus division. 

Though, addition and multiplication can be done . 

 Use std_logic_vector instead of integers. Though some synthesize tool can 

implicitly convert integers to 32 bit std_logic_vector, it is a better practice to 

convert them explicitly. 

 Different synthesis tools may require certain programming “styles” to 

recognize, for example, state machines. Follow these rules to be on the safe 

side . 

72 



 Synthesis Tool does not support Operation on files. 

 Synthesis Tool does not support “after statements”. 

 Do not assign signals and variables initial values because initial values are 

ignored by most synthesis tools. 

 All outputs should be defined in all branches of an If statement to prevent 

latches in the circuit. 

 Synthesis Tool does not support “Transport statements”. 

 Synthesizers infer latches from incomplete conditional expressions, such as: 

an If statement without an Else clause and an intended register without a 

rising edge or falling edge construct.

 After converting the behavioral code to synthesizable code, the next step is to 

synthesize and implement the design. 

A.3 Synthesizing and Implementing the Design 

Once a design is entered and simulated, the next step in the design flow is 

synthesis. Synthesis is the process of converting behavioral HDL descriptions into a 

network of logic gates . The synthesis engine takes as input the HDL design files and 

a library of primitives. Primitives are not necessarily just simple logic gates like 

AND, OR gates and D-registers, but can also include more complicated things such 

as shift registers and arithmetic units. Xilinx Synthesis tool XST takes VHDL file as 

input and generates ‘.ngc’ file. A synthesis report file is also generated, which 
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describes the logic inferred for each part of the HDL file, and often includes helpful 

warning messages .

 After synthesis, the next step is implementing the design. Figure A.2 show 

the steps (Translate  Map  Place and Route) involved in implementing the 

design. In the translate process, the design is cut into small pieces which are 

implemented in look-up tables (LUTs). The output of translate process is ‘.ngd’ file. 

Translate 

Map 

Place and Route 

Figure A.2:  Steps in implementing the design. 

The .ngd file is a netlist of primitive gates, which could be implemented on 

any one of a number of types of FPGA devices Xilinx manufacturers. The next step is 

to map the primitives onto the types of resources (logic cells, I/O cells, etc.) available 

in the specific FPGA being targeted . The output of the Xilinx map process tool is an 

‘.ncd’ file. 
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The design is then placed and routed, meaning that the resources described in 

the ‘.ncd’ file are assigned specific locations on the FPGA, and the connections 

between the resources are mapped into the FPGAs interconnect network . The delays 

associated with interconnect on a large FPGA can be quite significant, so the place 

and route process has a large impact on the speed of the design. The output of the 

place and route engine is an updated ‘.ncd’ file, which contains all the information 

necessary to implement the design on the chosen FPGA . 

6.5 Writing a Testbench 

The entity/test-bench pair can form the basis for executable specifications and 

documentation in a top-down design methodology . In other words, the test-bench 

will generate the input signals for the design and, if necessary, it will also give the 

appropriate response from an output signal of the design. Figure A.3 below shows 

sample test bench code for 4-input multiplexer for a case with select line 

“=00”.Similarly input test vectors can be applied for different select lines to check the 

functionality of multiplexer. Note, that the entity declaration is empty. 
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Figure A.3: Testbench for Multiplexer 

A.5 Generating the VCD File 

Using ModelSim, we can create a VCD file containing transition data noted 

during the simulation. This VCD file is imported into XPower which then converts 

the data to activity rate data and is matched to the appropriate net. It is important to 

note that a simulation must be of sufficient length that is all signals should toggle in 

that simulation period. . Otherwise, signals that change states very infrequently will 
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be misrepresented in the VCD file. The following paragraph describes how to 

generate a VCD file using XILINX ISE. 

Create a new project or open an existing project. Add the test bench, project 

files in the project. Synthesize and implement the project. Then, select post route 

simulation from the “Source for” combo box above project files as shown in figure 

A.4. Then, select the testbench in the sources window and expand Modelsim-

Simulator in processes window and right click on Simulate Post-place & Route 

Model and click properties. This is shown in figure A.5 below. Then, check the 

Generate VCD file checkbox to generate VCD file and specify the Simulation run 

time. The simulation time should be such that most of the signal should toggle. 

Figure A.4: Selecting Post Route Simulation. 
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Figure A.5: Selecting Simulation Properties. 

After setting the simulation time, click the apply button shown in figure A.5 

above. Then, right click on Simulate Post-place & Route and click run. This will open 

the Modelsim and run it till the time specified in the simulation run time. This will 

also generate VCD file. This VCD file will be used by Xpower tool. The signals that 

are changing on clock must be there to get accurate power. 

A.6  VCD FILE Format 

The format of generated VCD files adheres to IEEE Std 1364–2001 . The 

following table describes the format 
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Table A.1 

VCD File Format 

File Content Description 

$date 
23-Sep-2003 
14:38:11 
$end 

Data and time the file was generated. 

$version Link for 
ModelSim version 
1.0 $ end 

Version of the VCD block that generated the file. 

$timescale 1 ns $ end The time scale that was used during the simulation. 

$scope module 
manchestermodel 
$end 

The scope of the module being dumped. 

$var wire 1 ! Original 
Data [0] $end 
$var wire 1 " 
Recovered Clock [0] 
$end 
$var wire 1 # 
Recovered Data [0] 
$end 
$var wire 1 $ Data 
Validity [0] $end 

Variable definitions. Each definition associates a signal with 
character identification code (symbol). The symbols are 
derived from printable characters in the ASCII character set 
from ! to ~. Variable definitions also include the variable type 
(wire) and size in bits. 

$upscope $end Marks a change to the next higher level in the HDL design 
hierarchy. 

$enddefinitions $end Marks the end of the header and definitions section. 

#0 Simulation start time. 

$dumpvars
 0!
 0"
 0#
 0$ 
$end 

Lists the values of all defined variables at time equals 0. 
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Table A.1 (continued) 

#630 The starting point of logged value changes. Variable values are checked at 
1! each simulation time increment and are logged if a change occurs. This 

entry indicates that at 63 nanoseconds, the value of signal Original Data 
changed from 0 to 1. 

. 

. 

. 
#1160
 1#
 1$ 

At 116 nanoseconds the values of signals Recovered Data and Data 
Validity changed from 0 to 1. 

$dumpoff
 x!
 x"
 x#
 x$ 
$end 

Marks the end of the file by dumping the values of all variables as 

Figure A.6 below shows the part of sample VCD file for multiplexer. 
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$date 
Sat Jul 22 23:57:54 2006 

$end 
$version 

ModelSim Version 6.1e 
$end 
$timescale 

1ps 
$end 
$scope module mux_tb $end 
$scope module u_mux $end 

$var wire 1 ! i0 [2] $end 
$var wire 1 " i0 [1] $end 
$upscope $end 
$upscope $end 
$enddefinitions $end 
#0 
$dumpvars 
1! 

Figure A.6: Part of VCD file for Multiplexer. 

A.7 Xpower tool 

XPower is the first power-analysis software available for programmable logic 

design. The designer supplies estimates of parameters like logic, memory, and I/O 

utilization, clock frequencies, toggle rates, and operating temperatures to the XPower 

tool. The Xpower tool then produces an estimate of power consumption for those 

conditions. XPower calculates the power as a summation of the power consumed by 

each element in the design. XPower calculates an estimate of power to within +/-

10% . Inputs to this tool are : 

1.  Placed and Routed NCD file (output of PAR) 

2.  Physical constraints file (PCF) (output of Map) 
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3.  Simulation file (VCD file) 

A.7.1 Running the Xpower tool 

After synthesizing, implementing the design and doing post route simulation, 

the last step in determining the estimated power consumption is running the Xilinx 

XPower tool. Following are the steps for running the XPower tool and determining 

power: 

1) Go to Start  programs and run xpower.exe 

Figure A.7: Running the Xpower tool 

2) This will open Xpower tool. Go to file  open. 

3) Enter the design file, Constraint file and Simulation file as shown in figure A.8. 

Click ‘ok’ to run the tool. This will generate power report as shown in figure A.9 

and figure A.10. 
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Figure A.8: Input files for XPower tool 

Figure A.9: Power summary for the design 
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Figure A.10: XPower Report 
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