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Large eddy simulation (LES) suffers from two primary sources of error: the numerical

discretization scheme and the subgrid stress model (SGS). An attempt has been made

to determine optimum combinations of SGS models and numerical schemes for use in

performing practical LES for engineering-relevant problems.

A formal quantification of numerical error present in finite-volume/finite-difference

simulations was conducted. The effect of this error was explicitly added to a pseudospec-

tral LES solver, and the modified pseudospectral solver was used to compute LES of de-

caying turbulence. In this way SGS modeling error and numerical error could be separately

assessed.

Verification of results was carried out using a commercially available finite-volume

solver (FLUENT R©). Results showed that some combinations of SGS model and dis-

cretization scheme are more suitable for performing LES than others. Favorable combi-



nations from the above findings were tested for an axisymmetric jet at Mach number 0.2.

Results indicate good agreement with prior findings.
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CHAPTER 1

INTRODUCTION

1.1 Background

Around the early nineteenth century the common approach to solving fluid dynamics

problems, as adopted by Prandtl and others, was the pencil-and-paper method. Today,

this method is no longer sufficient. The steady rise in computer processing power has

fostered the development of a wide range of investigations in fluid dynamics. New tools

are constantly being developed and have led to the emergence of a modern approach to

tackling fluid dynamics problems, computational fluid dynamics (CFD). With CFD, a wide

range of engineering problems can be resolved numerically. As most flows of engineering

importance are turbulent, large eddy simulation (LES) is becoming a common approach to

tackling turbulent flow fields. Reasons for this can be attributed to the computational and

theoretical advantages of LES over other methods.

Direct numerical simulation (DNS) remains computationally infeasible for most flows

of engineering interest. Conceptually, DNS of the Navier-Stokes (NS) equations is the

simplest approach. It consists of numerically representing the instantaneous NS equations,

resolving all scales of motion, and proceeding in time for a given set of initial and boundary
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conditions. For DNS, the level of description of a single realization of the flow remains

unmatched. However, the implications of such a high fidelity solution are enormous.

Performing DNS on a simple cubic domain Ω with sides of length L involves a res-

olution of scales of motion ranging from the integral (`) to the Kolmogorov microscale

(η). The Kolmogorov microscale approximates as η = Re−3/4`, where Re represents

the Reynolds number. Numerically, a prescribed grid size such as ∆x ≈ η = Re−3/4`,

is required to capture the smallest scales of motion. Consequently, for a three dimen-

sional simulation the number of data points required every iteration approximates as Ni ≈

(L/∆x)3 ≈ (L/`)3Re9/4. Further, it can be determined that the minimum time step suf-

ficient to simulate a particle movement within one grid cell is ∆t ≈ ∆x/u or ∆t ≈

η/u. For a total iteration time T, the number of time steps required is Nj ≈ T/∆t ≈

Tu/η = Tu/(Re−3/4`). Total computational time therefore scales as CPUt ≈ NiNj ≈

(L/`)3(uT/`)Re3. From this, it is apparent that the required CPU time is strictly depen-

dent on powers of Reynolds number. Therefore, for flows of practical engineering interest

(which typically have large Reynolds numbers) DNS remains a prohibitively expensive

tool for computing turbulent dynamics.

A seemingly suitable alternative is computing a turbulent flow field using the Reynolds-

averaged Navier-Stokes (RANS) equations. RANS involves projecting a turbulent flow

field into its mean ensemble averaged or time averaged component. In this case, the un-

knowns are the Reynolds stresses, modeled either by the turbulent viscosity hypothesis or

the Reynolds-stress transport equations. As a result of its computational efficiency, the

RANS technique is widely used. However, disadvantages of RANS include poor accuracy
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due to modeling of the inherent empiricism required for Reynolds stresses. Also details of

the flow field are lost due to the averaging process.

Large eddy simulation (LES), whereby the large energy containing eddies of a turbu-

lent flowfield are resolved, is quickly becoming a feasible option for understanding the

dynamics of turbulent flow. LES has grown in popularity with researchers and scientist

over the past three decades. It is less expensive computationally than DNS. In addition, the

results are usually of an acceptable degree of accuracy for engineering flows. Favorable

theoretical bases that support LES include the observation that the dynamics of turbulent

flow is dominated by large scale motions. This permits the assumption that large eddies

determine the direction and amount of momentum and energy transfer. For simplicity, LES

follows the assumption that kinetic energy transfer is from large to small scales of motion.

LES involves resolving the large eddies and modeling the smaller ones by an eddy dissi-

pation parameter. Another theoretical support for LES follows from the observation that

small scale eddies appear nearly isotropic in nature, implying that the small scales are less

cumbersome to model than the entire range of turbulent motion, as required in RANS.

The growing adoption of LES for engineering problems has led to a substantial de-

velopment in the literature on its application to turbulent flow. Most research in LES has

been focused in two directions. The first direction of research concerns itself with the

more fundamental issues in LES; modeling of the residual (i.e. small-scale) motion and

development of accurate numerical schemes for structured and unstructured grids. Testing

is usually performed for simple canonical flows. These kind of studies usually focus on

assessment of a higher order scheme or development of an accurate subgrid stress model.
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The second direction of research is usually geared towards validating results from per-

forming large eddy simulations on flows of practical engineering significance. Validation

usually proceeds by comparing results to experimental data and/or a RANS simulation.

The focus is usually on obtaining good results using an available general-purpose CFD

solver.

This research effort represents a bridge between these two types of study. This work

proceeds by presenting a detailed analysis of error sources present in large eddy simula-

tion using a general-purpose CFD solver. The primary sources of error in LES are the

prescribed numerical and physical parameters: the subgrid stress model and the numerical

discretization scheme. For finite-volume/finite-difference simulations, these error sources

are distinct though inseparable and act together in a nonlinear manner. Therefore, there

is need to be able to assess the coupled interactions and further to determine optimum

combinations of closure model and discretization schemes for use in performing LES in

complex engineering environments. Specific to the study presented here is LES of high-

Reynolds-number decaying isotropic turbulence implemented using second order accurate

schemes and common subgrid stress models. The simulations were designed following the

experimental test case of Kang et al. [15]. Simulations were first performed using a pseu-

dospectral solver previously validated for prediction of isotropic decaying turbulence [3].

With the pseudospectral method, subgrid stress modeling error can be isolated from dis-

cretization error, which is not possible for finite-difference/finite-volume LES. Following

this, numerical error present in finite-volume/finite-difference large eddy simulations was

explicitly incorporated into the pseudospectral LES solver. Verification of the pseudospec-
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tral results was carried out using a commercially available finite-volume/finite-difference

solver (FLUENT R©). From there, suitable combinations of subgrid stress model and nu-

merical discretization scheme were determined. Several combinations were then tested for

large eddy simulation of a high-Reynolds-number, momentum conserving, axisymmetric

turbulent jet at Mach number 0.2, and compared to the experimental data of Hussein et al.

[14].
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CHAPTER 2

LITERATURE REVIEW

2.1 Literature Review

The concept and practical implementation of large eddy simulation has developed due

to the need to be able to compute and understand the dynamics of three dimensional un-

steady turbulent motions without resorting to computationally expensive DNS [8, 24]. For

most engineering applications, large eddies are primarily responsible for mass, momen-

tum, and energy transport. The success of large eddy simulation as a tool lies in the fact

that most quantities of interest and rate-controlling processes are primarily controlled by

the resolved large scales of motion [25]. Conceptually, large eddy simulation constitutes

resolving the large energy containing eddies and modeling the small (unresolved) ones.

The mathematical implication of this is the application of a low-pass filter to the Navier

-Stokes equations [13]. In this way, the dominant flow structures can be exclusively ac-

counted for. The filtering operation is expressed mathematically as:

f̄i(x) =
∫

G(x, x́)fi(x́)dx́ (2.1)
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As shown in 2.1, the resulting field is a convolution of the velocity field with a filter func-

tion, G(x, x́), that filters out higher wavenumber structures. Applying the filter function,

G(x, x́), to the governing equation for an incompressible flow in divergence form gives:

∂ūj

∂xj

= 0 (2.2)

∂ūi

∂t
+

∂ūiūj

∂xj

= − ∂p̄

∂xi

+
∂

∂xj

(
ν

∂ūi

∂xj

)
− ∂τij

∂xj

(2.3)

τi,j = uiuj − ūiūj (2.4)

where 2.4 represents the subgrid stress tensor which must be modeled in order to close

the equation set. The resulting equation is the filtered Navier-Stokes equation commonly

solved using either finite-volume/finite-difference methods or spectral techniques. For

finite-volume/finite-difference methods, the governing equations are solved in real (phys-

ical) space, while for spectral techniques the equation are transformed and resolved in

wavenumber (spectral) space.

Considered here is homogeneous turbulence for which application of a sharp cutoff fil-

ter is possible in spectral space, i.e. all wavenumber modes less than a cutoff wavenumber

are completely resolved, and all wavenumber modes greater than the cutoff wavenumber

are completely unresolved. For simplicity, a filter to grid width ratio of unity is assumed.

Traditionally, large eddy simulation filters are embedded implicitly though several explicit

methods have also been developed [27]. Of concern here is finite-volume numerical meth-

ods, where a volume average corresponds to convolution of the velocity field with a box

filter and sharp cutoff of all scales of motion beyond the cutoff wavenumber which is dic-

tated by the grid size. The effect of volume averaging is a smooth filter in spectral space.
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In that case, there is a subfilter component associated with all scales of motion including

those larger than the grid size (i.e. resolved scales). Following [29], the filtered field is

simulated here without consideration of a formal separation of scale. Therefore, the sub-

grid stress tensor (2.4) in this work represents the total effect of the unresolved velocity

field on the resolved part, as shown in Figure 2.1.

Figure 2.1

See appendix for details

Using finite-volume/finite-difference methods, numerical discretization error in large

eddy simulation of turbulent flow is inherent. It can be categorized into two types: trunca-

tion and aliasing error. Truncation error is due to numerical evaluation of derivatives in 2.2
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and 2.3. Aliasing error is as a result of numerically evaluating the nonlinear momentum

convective term in equation 2.3.

∂ (ūiūj)

∂xj

(2.5)

In spectral space, aliasing error is due to the interaction of coefficients of wavenumber

modes outside the resolution subrange. Several spectral blocking methods have being

prescribed for eradicating aliased modes [5]. Adopted here is the the 3
2

rule, previously

validated in [3] and explained in chapter three. Formal methods of error analysis, as those

performed with linear partial differential equations (i.e Laplace equation), suffice to be

insightful tools in constructing SGS models. However, they are incapable of accurately

quantifying highly nonlinear turbulent fields [4].

Ghosal [12] pursued a rigorous approach to analyzing error present in large eddy sim-

ulation. He considered isotropic turbulence in a cubic domain, with periodic boundary

conditions. His formulation of the flow equations adopted the divergence form of the non-

linear term (2.5). In his work, he proceeded by utilizing the joint-normal approximation

to derive analytical expressions for the power spectra of errors present in simulating tur-

bulent fields. In this way, he was able to create qualitative bounds on the magnitude of the

numerical error. His results show that second order schemes are least desirable for turbu-

lent simulations. Specifically, he mentions that finite-difference error appears to be much

larger than the subgrid stress contribution for most wavenumbers. The goal of a subgrid

stress model is to closely predict the influence of unresolved scales on resolved scales.

According to Ghosal [12], the subgrid model will not function as intended if it is being

masked out by numerical error. His findings also show that aliasing error is most dominant

9



for higher order schemes. His suggestion for performing turbulent simulations is to use a

higher order scheme with a filter to grid width ratio of ∆f

∆g
= 2, for higher accuracy.

Ghosal’s [12] technique is widely acknowledged in literature. It is often categorized

as a static approach to error analysis. It sufficed to be an insightful tool, however, it does

not address the time dependent nature of non-linear interactions between SGS force and

numerical error. Park et al. [22] formulated a dynamic approach to error quantification

in LES of decaying turbulence. In order to model temporal interactions, they derived a

transport equation for the energy spectrum. Upon derivation, a quadruple nonlinear term

appears on the right-hand-side, which they then closed by introducing the quasi-normal as-

sumption (quasi-normal ⇒ joint-normal hypothesis). Further, they add an eddy damping

rate to the E(κ) transport equation. They then apply ”Markovianization” to the result-

ing equation to ensure positive definiteness. The resulting equation is a one-dimensional

(1D) differential equation solvable using any accurate numerical method. This statistical

theory is known as the ”Eddy Damped Quasi-Normal Markovian” (EDQNM). With this,

the energy spectrum of the Navier-Stokes equations can be simulated without performing

the actual domain evolution and in that case it is denoted as EDQNM-DNS. Similarly, the

energy spectrum of the LES equations can be simulated if an additional term is added onto

the EDQNM equation accounting for subgrid activity. In defending a dynamic approach as

opposed to a static error analysis technique, Park et al. [22], mention that the divergence

form of the nonlinear term in the NS equation should not be used, (as used by Ghosal

[12]), because it violates kinetic energy conservation [16]. Park et. al [22] further show

that the resulting EDQNM-LES system predicts the actual NS-LES system to an accept-
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able degree, at consecutively later time realizations. They proceed by pursuing a dynamic

analysis of all error contributions including the viscous terms and the numerical error. Op-

posed to the conclusion of Ghosal [12], Park et al. [22] assert that the contribution of

the SGS model to the LES solution is more pronounced than the truncation and aliasing

error associated with a second order finite-differencing scheme. The results also show

that numerical errors lead to dispersion of energy at intermediate wavemumbers while the

contribution of the SGS model shows a significant removal of energy at all wavenumbers

and a maximum at the cutoff-wavenumber (kc). Park et al.’s [22] conclusions imply that

useful LES can be performed using lower order schemes.

In a prior publication, Park et al. [23], investigated the suitability of central and

upwind-biased schemes for performing LES of turbulent flow. They proceeded in their

investigations by performing a static error analysis following [12] as well as performing

simulations with an actual domain evolution. They also addressed the performance differ-

ences in implementing different forms of the nonlinear term. Their results show that for

the static error analysis, finite-differencing error increased as well as aliasing error with

an decrease in numerical dissipation. Contrary to this, their simulation results show that

finite-differencing error decreased with an increase in numerical dissipation. In this way,

aliasing error completely outweighs finite-difference error. From this they concluded that

a static error analysis does not properly chacterize discretization influence and that a dy-
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namic approach is necessary. The results from testing different forms of the nonlinear term

showed that the skew symmetric form of the nonlinear term, (2.6),

1

2

[
∂ (ūiūj)

∂xj

+
ūj∂ (ūi)

∂xj

]
(2.6)

ūj∂ (ūi)

∂xj

(2.7)

yields better results compared to the divergent form 2.5 or the convective form 2.7. It

minimizes the finite-difference and aliasing error relative to the other forms. In addition,

Park et al. [23] discovered that there exist an optimum degree of upwinding that minimizes

total discretization errors implying that a scheme that combines the effects of a central

differencing and an upwind scheme will be most suitable for performing LES of decaying

turbulence.

On the subtopic of the appropriate form for the nonlinear term, Fedioun et al. [9]

propose a modified approach to error analysis in spectral space. They show that prior in-

vestigation on error analysis using dealiased spectral codes may lead to erroneous results.

Further, they show that aliased pseudospectral results are equivalents of physical space

calculations. They propose a modified-wavenumber approach to static error analysis in

spectral space for use in physical space simulation. They performed simulations of de-

caying isotropic turbulence using second order and sixth order compact finite-differencing

schemes combined with all forms of the non-linear term. They concluded that for lower

(i.e. second) order schemes, truncation error is the dominant form of numerical error for

all forms of the nonlinear term. These conclusions are critical, particularly because an im-

portant element in this study is numerical error (i.e. truncation error) generated from 2nd

12



order discretization schemes and their interactivity with SGS models in the pseudospectral

simulations. Further, they demonstrated that the convective form 2.7 yield better results

than other forms of the nonlinear term. It is important to note, however that general-

purpose CFD solvers commonly adopt the divergence form, (2.5), of the nonlinear term in

order to satisfy conservation properties.

2.1.1 Thesis statement

This paper extends the prior findings outlined above in order to perform error analysis

on LES for use in physical space simulations. The investigation proceeded in two parts.

A pseudospectral solver was used to compute LES of decaying isotropic turbulence on

both 323 and 643 grid resolutions. In this way, the SGS modeling error can be isolated.

Following this, a formal quantification of error present in finite-volume/finite-difference

simulations was conducted. The effect of this error was then explicitly incorporated into

the pseudospectral LES solver.

The solution set from this procedure creates a forum for understanding the interaction

between SGS models and discretization schemes in large eddy modeling. Comparisons

are made in terms of energy spectra corresponding to different downstream positions in the

wind tunnel used in the experimental test case. Verification of results is then carried out

using a commercially available finite-volume/finite-difference flow solver (FLUENT R©).

Numerical discretization schemes investigated include second order Central Differencing

(CD), QUICK (Q), second order Upwind (2U), Bounded Central differencing (BCD) and

first order upwind (1U). Turbulence closure models implemented include Smagorinsky
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(SM), dynamic Smagorinsky (DSM) and Multiscale (MSM). Also implemented is the nu-

merical LES technique Monotonically Integrated LES (MILES).

Results highlight the nonlinear interactions between different combinations of SGS

closure models and discretization schemes. Further, results show that some combinations

are more suitable than others. Favorable combinations identified as a result of the above

were then tested for a high-Reynolds-number, momentum conserving, axisymmetric tur-

bulent jet at Mach number 0.2. The results are compared in terms of mean velocity and

turbulent shear stresses for different combinations. Also, comparisons are made in terms

of the axial, radial and azimuthal components of turbulent (Reynolds) stress. Results indi-

cate good agreement with the findings from the decaying turbulence simulations.
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CHAPTER 3

PSEUDOSPECTRAL SIMULATION

3.1 Pseudospectral Simulations

3.1.1 Brief

In general, spectral methods can be classified as ”interpolating” or ”non-interpolating”

types. Historically, the non-interpolating method was developed first. The difference be-

tween the two techniques lies in the method of evaluation of the coefficients of a given

function. The interpolating method, i.e. Galerkin’s method, is generally tedious to imple-

ment though results are of slightly higher fidelity. In using the non-interpolating type, the

coefficients of a known function, f(x), are multiplied by a given basis function and then

numerically integrated.

Pseudospectral techniques are classified under the interpolating subgroup. Interpo-

lating implies mathematically that a solver designed to perform a simulation of freely

decaying turbulence on a domain Ω (consisting of a set of points) there is an association

with a basis set. It follows that at each collocation (i.e. point) the differential equation is

satisfied. By this, the coefficients of a known function f(x) are calculated by forcing the

truncated series f(xi) to agree with f(x) at each point on Ω. Therefore as the number of

points increases the truncated solution approaches the analytical solution [4].
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Pseudospectral techniques are much simpler to implement and are also computation-

ally more efficient than spectral (i.e. non-interpolating). For these reasons psedospectral

methods have being adopted in this study. They are commonly used as a reliable alternative

to performing higher fidelity non interpolating simulations of freely decaying turbulence.

They are adopted here primarily because they enable isolation of SGS model error. That

is, results from a pseudospectral simulation are in theory free of numerical error resulting

from finite difference approximation of derivative.

3.1.2 Formulation

In this section the methodology is described for a simulation of decaying turbulence

on a periodic box of size L and volume Ω. A three-dimensional infinite Fourier series

representing pressure or velocity fluctuations can be written as:

fi(x) =
∑

f̂i(κ) exp [ı (2πκx/L)] (3.1)

where the summation is on wavevector κ = {k1, k2, k3}T and ı =
√−1. For reasons such

as memory limitations or cutoff wavenumber (kc) requirements, the infinite Fourier series

is truncated at the smallest scale of interest. For a homogeneous flow in three directions,

defined on a domain Ω, the fluctuations must satisfy the incompressible equations:

∂ui

∂xi

= 0, (3.2)

∂ui

∂t
+

∂uiuj

∂xj

= − ∂p

∂xi

+
∂

∂xj

(
ν

∂ui

∂xj

)
(3.3)

with periodic boundary conditions (BC) defined as:

ui(x + Lei, t) = ui(x, t) (3.4)
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where ei is the unit direction vector. Initial conditions (IC) are defined as as:

ui(x, t0) = gi(x) (3.5)

Substituting the truncated Fourier series into 3.3 gives the Fourier-Galerkin approximation

to the NS equations:

(
d/dt + νκ2

)
ûi(κ) = −ıkip̂(κ)− ̂[ujui,j](κ) (3.6)

ıκjûj(κ) = 0 (3.7)

The term on the rightmost end of 3.6 can be represented as:

f̂i(κ) = − ̂[ujui,j](κ) (3.8)

which is the Fourier series approximation of the convection term. Mathematically, 3.6

represents a convolution sum in Fourier space. It requires special treatment as discussed

in a later section. By performing a contraction of 3.6, we can get a closed form solution to

the Poisson equation for pressure in Fourier space:

p̂(κ) = −ıkif̂i/k
2 (3.9)

Utilizing the continuity condition and substituting 3.9 into the momentum equation we

have:

dûi(κ)/dt = −kikj f̂j/k
2 − ̂[ujui,j](κ) + νκ2ûi(κ) (3.10)

Performing a large eddy simulation involves restricting 3.10 to account exclusively for

large eddies. Mathematically this implies that a large eddy filter designed in a manner

such as:

ū(x) =
∫

Ω

Ḡ(x, x́)u(x́)dΩ (3.11)
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is applied to 3.10. Ḡ(x) is a filter typically specified as either Box, Gaussian or Sharp

spectral. The modified equation, the filtered Navier Stokes equation including the subgrid

stress (SGS) contribution to the flow field is:

dˆ̄ui(κ)/dt = −kikj f̂i/k
2 − ̂[ūiūi,j](κ) + νκ2ûi(κ) + τ̂ij,j (3.12)

where the subgrid stress term:

τij = ūiūj − uiuj (3.13)

In practice, 3.12 is evolved in time on Ω using a suitable scheme. Here, 3.12 was

evolved in time using the 2nd order Runge-Kutta scheme with a time step determined to be

sufficiently small that time discretization errors were negligible. A number of researchers

have proposed different methods for evaluating the SGS contribution to the large eddy

flow field. In the pseudospectral simulation method the SGS term is evaluated in physical

space, then Fast Fourier transformed to yield its spectral representation. The SGS models

considered here are Smagorinsky (SM) [28], Dynamic Smagorinsky (DSM) [11], Multi-

scale (MSM) [30] and the numerical LES method Monotonically Integrated LES (MILES)

[10].

The least complex to formulate is the MILES model. In conventional SGS modeling,

SGS models are formulated and explicitly incorporated into the Navier-Stokes equation

for closure. Also, they serve as a route for which kinetic energy may be dissipated at

high wavenumbers. Alternative to this is the MILES approach proposed by Fureby et

al. [10], who argue that, conceptually, a model is accurate if it can properly route the

kinetic energy out of the resolved eddies, preventing artificial energy pile up. In that case,
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dissipation accounted for by the numerical flux formulation is sufficient. As implemented

here, this implies that the eddy viscosity coefficient Cs is zero.

3.1.3 Error Analysis: On Numerical Error in Physical Space

As acknowledged by a number of researchers, the two major error sources present in

performing LES of decaying turbulence using a finite volume solver are the SGS model

and the discretization scheme. Discretization error can be subdivided into two categories,

namely aliasing and numerical (i.e. truncation) error. The latter is a result of the order of

accuracy of the discretization scheme. Kravchenko and Moin [16] assert that the principal

source of numerical error in LES is error as a result of differentiation of the nonlinear

(convective) term. Based on this, numerical error representation in physical space using

the convective form of the nonlinear term, 2.7, can be formulated as follows. Given 2.7,

first specify an operator defined as:

δ

δxj

=

(
∂

∂xj

)

EXACT

−
(

∂

∂xj

)

DISCRETIZED

(3.14)

The numerical error in physical space is then simply expressed as:

ei = ūj
δūi

δxj

(3.15)

For a structured mesh we define a one dimensional (1D) control volume as shown

in Figure 3.1. Let φe and φw represent a convected variable on the east and west face

19



Figure 3.1

See appendix for details
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surrounding point P, respectively. For a flow moving from west to east, the convected

variable on the east and west faces can be represented by a general formulation:

φe = θ
[

∆x4

∆x3 + ∆x4

φP +
∆x3

∆x3 + ∆x4

φE

]
+(1−θ)

[
∆x2 + 2∆x3

∆x2 + ∆x3

φP − ∆x3

∆x2 + ∆x3

φW

]

(3.16)

φw = θ
[

∆x3

∆x2 + ∆x3

φW +
∆x2

∆x2 + ∆x3

φP

]
+(1−θ)

[
∆x1 + 2∆x2

∆x1 + ∆x2

φW − ∆x2

∆x1 + ∆x2

φV

]

(3.17)

where φV , φW , φP and φE are known values of the function at their respective nodal points.

This formulation describes a family of 2nd order discretization schemes, each specified by

a particular value of θ, which determines the degree of upwinding. For example, a value

of θ = 1 yields the central difference scheme, and a value of θ = 0 yields the second-order

upwind scheme [1]. If a uniform grid spacing is assumed then ∆x1 = ∆x2 = ∆x3 =

∆x4 = ∆xi. Considering the central difference scheme as an example, then θ = 1 and for

any value of ∆xi, the derivative at point P is approximated as:

dφ

dx
=

φe − φw

∆xi

(3.18)

where the convected variable on the faces are:

φe =
1

2
φP +

1

2
φE (3.19)

and:

φw =
1

2
φW +

1

2
φP (3.20)
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Deriving a Taylor series expansion for function values φP φE and φW noting that φW ,

φP , φE are at the j-1, j, and j+1 positions, respectively, as depicted on Figure 3.1, yield the

following:

φW = uj + ux∆x + uxx
∆x2

2
+ uxxx

∆x3

6
+ uxxxx

∆x4

24
+

uxxxxx
∆x5

120
+ uxxxxxx

∆x6

720
+ uxxxxxxx

∆x7

5040
+ . . . + (3.21)

φP = uj (3.22)

φE = uj − ux∆x + uxx
∆x2

2
− uxxx

∆x3

6
+ uxxxx

∆x4

24
−

uxxxxx
∆x5

120
+ uxxxxxx

∆x6

720
− uxxxxxxx

∆x7

5040
+ . . . + (3.23)

Substituting 3.21-3.23 into 3.19 and 3.20:

φw = uj + ux
∆x

2
+ uxx

∆x2

4
+ uxxx

∆x3

12
+ uxxxx

∆x4

48
+

uxxxxx
∆x5

240
+ uxxxxxx

∆x6

1440
+ uxxxxxxx

∆x7

10080
+ . . . + (3.24)

and:

φe = uj − ux
∆x

2
+ uxx

∆x2

4
− uxxx

∆x3

12
+ uxxxx

∆x4

48
−

uxxxxx
∆x5

240
+ uxxxxxx

∆x6

1440
− uxxxxxxx

∆x7

10080
+ . . . + (3.25)

respectively . To develop an expression for the numerical error as a result of implementing

the central differencing scheme, it follows from substitution of 3.24 and 3.25 into 3.18

that:

dφ

dx
= ux + uxxx

∆x2

6
+ uxxxxx

∆x4

120
+ uxxxxxxx

∆x6

5040
+ . . . + (3.26)
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Rewriting 3.26 we have:

dφ

dx
− ux = uxxx

∆x2

6
+ uxxxxx

∆x4

120
+ uxxxxxxx

∆x6

5040
+ . . . + (3.27)

The truncation error is defined in terms of the difference between the continuous derivative

and the discrete (numerical) approximation of the derivative dφ
dx

. Employing the operator

defined in 3.14, the following result is obtained:

δCD

δx
= uxxx

∆x2

6
+ uxxxxx

∆x4

120
+ uxxxxxxx

∆x6

5040
+ . . . + (3.28)

The error operator associated with the resolved (filtered) velocity field is expressed as:

δCD

δx
= ūxxx

∆x2

6
+ ūxxxxx

∆x4

120
+ ūxxxxxxx

∆x6

5040
+ . . . + (3.29)

Similarly, for θ = 0, 1/8 corresponding to the second order Upwind (2U) [2, 32] and

QUICK (Q) [17] schemes, the numerical error operator is equal to:

δ2U

δx
= ūxxx

∆x2

3
+ ūxxxx

∆x3

4
+ ūxxxxx

7∆x4

60
+ . . . + (3.30)

δQ

δx
= ūxxx

13∆x2

48
+ ūxxxx

7∆x4

32
+ ūxxxxx

97∆x4

760
+ . . . + (3.31)

The Fourier-Galerkin approximation to the NS equations is modified to include the effects

of finite-difference error by adding the error term defined by 3.15:

dˆ̄ui(κ)/dt = −kikj f̂i/k
2 − ̂[ūiūi,j](κ) + νκ2ûi(κ) + τ̂ij,j + êi(κ) (3.32)

The operator δ
δxj

for any particular scheme is obtained using expressions of the form 3.29-

3.31. The derivatives appearing in these terms are computed directly from the Fourier rep-

resentation of the velocity field at each time step. For the pseudospectral approach adopted
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here, the error terms are evaluated similar to the SGS modeling terms. The velocity field

is first transformed to physical space using the Inverse Fourier Fast Transform. The error

terms êi are then evaluated at each grid point in physical space, and transformed back to

wavenumber space using the Fast Fourier Transform. It should also be noted that for the

case of second order upwind and QUICK shemes, their upwinding nature was preserved

in the simulations by multiplying the even components of 3.30 and 3.31 by the absolute

value of the filtered velocities, when computing the error term êi. In practice, the infinite

Fourier series representation of the numerical error is truncated to a finite number of terms.

Numerical experiments were performed to determine the appropriate number of terms for

accurate representation of the numerical error, and are discussed further in chapter V.

3.2 Considerations

3.2.1 Initial and Boundary Conditions

Constructing initial conditions for simulating freely decaying isotropic turbulence re-

quires that on the given domain Ω the velocity field satisfy these basic criteria:

1. The velocity field must satisfy conservation of mass

2. The velocity field must be physically meaningful

3. The energy spectrum of the velocity field must be realistic

To address these three criteria, we first define three random phase angles, (e.g. with the

rand() function on a Fortran platform) θ1(κ), θ2(κ) and φ(κ) for κ =
√

kiki, specifying

κ12 =
√

k2
1 + k2

2. Using the representative energy spectrum:

E(κ) = Ckε
2/3k−5/3(k`(k`α2 + α1)

1/α2)5/3+α3 exp(−α4kη)
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(1 + α5(1/π arctan(α6log(kη) + α7) + 0.5)) (3.33)

prescribed by Kang et al. [15], we define a piecewise continuous three dimensional veloc-

ity field in Fourier space following the suggestions of Rogallo [26]:

û1(κ) =





α(κ) if k12 = 0

(α(κ)kk2 + β(κ)k1k3)/(kk12) otherwise

(3.34)

û2(κ) =





β(κ) if k12 = 0

(β(κ)k2k3 − α(κ)kk1)/(kk12) otherwise

(3.35)

û3(κ) =





0 if k12 = 0 and k3 = 0

β(κ)k12/k if k12 6= 0 and k3 = 0

−(k1û1 + k2û2)/k3 otherwise

(3.36)

using the quantities:

α(κ) =
√

E(k)/2πk2 exp(ı2πθ1(κ)) cos(2πφ(κ)) (3.37)

β(κ) =
√

E(k)/2πk2 exp(ı2πθ2(κ)) sin(2πφ(κ)) (3.38)

The following symmetry condition was utilized so that the simulation required computa-

tion of only fifty percent of the entire velocity field.

ûi(κ) = û∗i (−κ) (3.39)

The above described initial velocity field is an approximation of a turbulent flow but with

random phases for each wavenumber mode. In practice, this leads to an initial transient

behavior during which the phases adjust and the velocity field becomes representative of a

turbulent flowfield.
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3.2.2 Aliasing Error

Issues regarding aliasing account for most of the computational difficulties encoun-

tered in evolving the filtered Navier Stokes equations in spectral space. Aliasing error in

spectral space arises as a result of the nonlinear term representing a convolution sum for a

quadratic non-linearity. The nonlinear term is expressed as:

f̂i(κ) =
∑

κ=κ′+κ′′
−ık′′j ûi(κ

′)ûi(κ
′′) (3.40)

Consider a quadratic non-linearity defined on a discretized domain xj ∈ [0, 2π). The

discrete transforms:

Uj =
N/2−1∑

k=N/2

ûke
ıkxj (3.41)

Vj =
N/2−1∑

k=N/2

v̂ke
ıkxj (3.42)

where the product gives:

Wj = UjVj (3.43)

for index j defined on [0, 1, . . . , N − 1] where xj = 2πj/N . The Fourier transform of

product 3.43 is:

Ŵk =
1

N

N−1∑

j=0

Wje
ıkxj (3.44)

Using the orthogonality relation:

1

N

N−1∑

j=0

eıkxj =





1 if p = Nm for m = ±1,±2, . . .

0 otherwise

(3.45)

We can rewrite 3.44 as:

Ŵk =
∑

m+n=k

ûmv̂n +
∑

m+n=k±N

ûmv̂n = ŵk +
∑

m+n=k±N

ûmv̂n (3.46)
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The first term of 3.46 is simply the term that results from truncating the infinite Fourier

series of the convolution sum. The second term is responsible for aliasing coefficients of

wavenumber modes outside of the truncated range |k| ≤ N
2

, leading to aliasing error. Since

aliasing error can quickly contaminate a solution several techniques have being developed

to address aliased modes [5]. A common technique, as that implemented here, is the

3
2
−Rule. It requires 150 percent more grid points in each coordinate direction. It involves

extending the domain from N to M = 3
2
N , implying that −M

2
≤ k ≤ M

2
− 1. It follows

that the new discrete transforms defined by:

Uj =
M/2−1∑

k=M/2

ũke
ıkxj





ũk = ûk if |k| ≤ N
2

0 otherwise

(3.47)

Vj =
M/2−1∑

k=M/2

ṽke
ıkxj





ṽk = v̂k if |k| ≤ N
2

0 otherwise

(3.48)

will completely addresses aliasing error as a result the convolution sum of the quadratic

nonlinearity. Zero padding modes outside the subrange ensures an aliased-free solution.

3.3 Test Case

3.3.1 Experimental Parameters

LES of freely decaying isotropic turbulence owes its principal point of reference to

the classical experimental data of Comte-Bellot and Corrsin [7] (CBC). However, as high-

lighted by several experimentalists in the area of decaying turbulence, the limitations of

the investigations of CBC include a low-Reynolds-number, (Reλ ≈ 150) and a lack of

higher order statistics. These limitations have inspired subsequent investigation and sev-
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eral have been pursued. The experimental data set considered here is the investigation of

Kang et al. [15] which serves as an update of the CBC investigations.

Kang et al. [15] document an experimental study of high-Reynolds number, 630 ≤

Reλ ≤ 720, isotropic turbulence. They were able to circumvent the Reynolds number

limitations by incorporating active grid systems following ”in-plane orientation” of Makita

[18], and Mydlarski and Warhaft [20, 21]. Though not of interest in the current study,

higher-order statistics were obtained following the implementation of Cerutti et al. [6]

using an array of X-wire probes.

Measurements were taken at four downstream locations in the wind tunnel. Far behind

the active grid, they measured a streamwise to transverse velocity ratio of approximately

1.15. Indicating that the turbulence was nearly isotropic. Dissipation rate, ε, at successive

positions was measured from the decay rate of kinetic energy. Following the suggestion

of Pope [24], since the three-dimensional and longitudinal spectra are related by:

E11(κ1) =
∫ ∞

1

x2 − 1

x3
E(κx)dx (3.49)

E22(κ1) = 0.5
∫ ∞

1

x2 + 1

x3
E(κx)dx (3.50)

where x = κ
κ1

, the three-dimensional spectra was found by a trial and error method, ac-

counting for limiting conditions and bypassing differentiation. It was found to agree with

a fitting function of the form:

E(κ) = Ckε
2/3k−5/3

[
k`

(k`)α2 + α1)1/α2

]5/3+α3

exp(−α4kη)

[
1 + α5(

1

π
arctan(α6log(kη) + α7) +

1

2
)
]

(3.51)
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where the integral and Kolmogrov length scale are denoted as ` and η. For i = 1, ..., 7,

αi = 0.39, 1.2, 4.0, 2.1, 0.522, 10.0, 12.58, respectively, and Ck = 1.613. Table 3.1 shows

measured flow properties, at successive measurement locations, used for developing the

numerical parameters for the simulations corresponding to this test case.

Table 3.1

Experimental Parameters from Kang et al. [15]

x1
M 20 30 40 48

〈u1〉 (ms−1) 12.0 11.2 11.0 10.8
u1r.m.s(ms−1) 1.85 1.43 1.19 1.08
u2r.m.s(ms−1) 1.64 1.25 1.04 0.932

I = u1r.m.s/u2r.m.s 1.13 1.14 1.14 1.16
ε(m2s−3) 22.8 9.13 4.72 3.14

`(m) 0.250 0.288 0.321 0.322
η(mm) 0.11 0.14 0.16 0.18

ReM = 〈u1〉M/ν 1.21E5 1.13E5 1.11E5 1.09E5
Reλ = u1r.m.sλ/ν 716 676 650 626
Re` = u1r.m.s`/ν 30,600 27300 25300 23700

3.3.2 Numerical Parameters

LES of isotropic turbulence was performed following the experiments of Kang et

al. [15]. Numerical simulation parameters were developed from the experimental data

collected at four downstream positions; x
M

= 20, 30, 40, 48. Taylor’s hypothesis:

t =
∫ x

0

dx

〈u1〉 (x)
(3.52)

3.52, was invoked to convert spatial decay in the experimental wind tunnel to temporal

decay in the computational domain Ω. Numerical simulations were initialized using the
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energy spectrum fitting function corresponding to data collected at non-dimensional dis-

tance x1

M
= 20 where M = 0.152. The the non-dimensional quantities used were scaled

according to the numerical simulation parameters implemented by Kang et al. [15] in

comparison with their experimental data. The non-dimensional length was:

l∗ =
LEXP

SΩ

= 0.8148733 (3.53)

where the numerical periodic box used is of size SΩ = 2π(m) and LEXP = 5.12(m). The

velocity scale chosen for non-dimentionalization is 〈uref〉r.m.s = 2(m/s). By inspection

of Table 3.1 it is apparent that the choice of 〈uref〉r.m.s is appropriate for an upper bound

of longitudinal velocity. It follows that:

u∗ =
max 〈u1〉r.m.s

〈uref〉r.m.s

= 0.925 (3.54)

From this, the computational Reynolds number is found to be:

ReCMP =
ReEXP

u∗l∗
=

u1r.m.sM

νu∗l∗
= 2.47E4 (3.55)

where M = 0.152 is the grid size of the experimental mesh rods. Non-dimensional time

scale is found to be:

t∗ =
l∗

u∗
= 0.881 (3.56)

from which a turbulent time scale can be calculated also using Table 3.1. This is:

τturb,EXP =
u2

1r.m.s

ε
= 0.15011 (3.57)

From there, the corresponding numerical turbulent time scale can be computed which is:

τturb,NUM =
τturb,EXP

t∗
= 0.17026 (3.58)
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From Kang et al. [15], the experimental timestep size is ∆tEXP = .000163(s). Since the

computational domain evolved in time is of sizes 323 and 643, we have a numerical time

step size of:

∆tNUM,323 =
∆tEXP ∗ τturb,EXP

τturb,NUM

= .00074 (3.59)

and:

∆tNUM,643 =
∆tEXP ∗ τturb,EXP

τturb,NUM

= 0.00037 (3.60)

respectively. Table 3.2 shows other numerical parameters obtained for the pseudospectral

LES of isotropic decaying turbulence.

Table 3.2

Simulation Parameters for LES of Isotropic Decaying Turbulence

x1
M 20 30 40 48

〈u1〉 (ms−1) 12.0 11.6 11.1 10.9
Run Time T = ∆x1/ 〈u1〉 τturb,EXP 0 0.1491 0.3049 .4318
Number of iteration, N = T/∆t Start 403 824 1167

Integral scale, ` = `EXP /`∗ 0.3068 0.3534 0.39393 0.4074
η = ηEXP /`∗ 1.35E-4 1.72E-4 1.9635E-4 2.209E-4

ε 23.4747 9.40017 4.8597 3.511
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CHAPTER 4

FINITE VOLUME SIMULATIONS

4.1 Methodology

The purpose of the finite volume simulations is to verify that the observations made

using the modified psuedospectral code as a tool for determining favorable combinations

of closure models with numerical schemes hold for simulations in physical space. There-

fore, the finite volume simulations were performed with equivalent specification as those

of the pseudospectral simulations. Details are discussed in the following sections. Simu-

lations were conducted using a commercially available finite volume solver, FLUENT R©

(Fluent, Inc., Lebanon, NH).

4.2 Simulation Details

A cube size of 2.56m discretized into 643 uniform finite volumes was used for the

computational domain. A fully implicit solution algorithm was implemented with time

advancement achieved using a 2nd order backward differencing approximation. Non-

dimensional time stepsize (equation 3.60) used is that determined following Kang et al.

[15], and is identical to that applied in the pseudospectral simulations. Simulations were

also performed using a smaller (by one half) step size to confirm that the chosen time step

was sufficiently small that it had negligible effects on the results. The governing equations
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for finite-volume LES were solved using a segregated solver: continuity and momentum

were solved in a decoupled manner during each outer iteration. Because of its computa-

tional efficiency, the non-iterative time advancement (NITA) technique was used instead of

an iterative method. The fractional step method was used for pressure-velocity coupling.

Figure 4.1 is a plot of the evolution of turbulent kinetic energy versus time, comparing the

iterative and non-iterative methods. It demonstrates that the non iterative technique gives

comparable results to that of an iterative method using the SIMPLE scheme for pressure-

velocity coupling. The NITA technique was found to require approximately one order of

magnitude less computational time than the SIMPLE scheme.

Pressure at the control volume faces was computed using a second order extrapolation

method. The convective fluxes were evaluated using second order spatial discretization

schemes. Discretization schemes used include the 2nd order upwind (2U), central differ-

encing (CD) and QUICK (Q) schemes. In addition, the second order bounded central

differencing (BCD), available exclusively in FLUENT R©, as well as the 1st order upwind

(1U) schemes were investigated. The BCD scheme is a piecewise adaptive scheme which

is 1U in regions where the convective boundedness criteria is violated and combined CD

and 2U otherwise. It has been proposed that the BCD scheme offers satisfactory results

at high wavenumber regions, unlike the unbounded non physical energy concentration in

simulations implemented using CD scheme [23].

Subgrid stress modeling was achieved using the Smagorinsky (SM) [28], dynamic

Smagorinsky (DSM) [11], Monotonically Integrated LES (MILES) [10] and the Multi-

scale (MSM) [30] techniques. In FLUENT R©, the MILES technique was implemented
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simply by specifying a zero eddy viscosity coefficient, Cs = 0. The initial velocity field

was generated using techniques described by [31] with the energy spectrum specified by

equation 3.51, using 30 discrete wavenumbers ranging from the Kolmogrov scale, η, to 10

times the integral scale, `, logarithmically equispaced with a ratio of 1.122. Also, since

volume averaging corresponds to convolution of the velocity field with a box filter, the box

filtering was accounted for by prescribing an energy spectrum corresponding to:

Efilt(κ) = G2(κ)E(κ) =

[
sin(κ∆)

κ∆

]2

E(κ) (4.1)

Figure 4.1

See appendix for details

where E(κ) is the energy spectrum defined by 3.51 and G(κ) is the box filter kernel.
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CHAPTER 5

RESULTS

5.1 Results

5.1.1 Brief

The goal of this research effort is to determine best practice guidelines for perform-

ing finite-volume LES of flows in configurations of engineering interest. The approach

taken to achieve this research goal is as follows. The two sources of error present in per-

forming finite-volume large eddy simulation (FV-LES) are SGS modeling and numerical

error. SGS modeling error can be isolated by performing LES using pseudospectral tech-

niques. As established by Kravchenko and Moin [16], the bulk of numerical error present

in performing FV-LES is due to numerical differentiation of the non-linear term. It should

be noted that, for reasons such as implementation difficulties in complex geometries etc,

pseudospectal techniques are not commonly tailored into general-purpose or commercial

CFD solvers. This study proceeds by deriving a Taylor series expansion of numerical error

present in FV-LES codes for CD, 2U and Q schemes. Following this, the spectral repre-

sentation of numerical error in physical space is explicitly incorporated into a previously

validated dialiased pseudospectral code [3]. Using the modified pseudospectral code, LES

of isotropic turbulence is carried out on domain sizes 323 and 643. For verification, finite
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volume simulations are also carried out with similar specifications as those of the pseu-

dospectral simulations.

5.2 Pseudospectral Simulation Results

For the pseudospectral simulations, it was first necessary to determine the appropriate

number of terms needed to be retained in the Taylor series expansion of the numerical error

term (Equations 3.29-3.31). To do this, simulations were conducted using a successively

larger number of terms to represent the numerical differentiation error. Figures 5.1 and 5.2

show that after the third truncation error term there is no significant change in the computed

energy density spectrum using the 2U and CD schemes. Although not shown, similar

results were obtained for the QUICK scheme. As a result of these findings, equation 3.29

was truncated after the seventh derivative term and further denoted as SM-CD.

A similar approach was taken for equations 3.30 and 3.31, i.e. they were truncated

after the fifth derivative term, which is the third non-zero term in the series. The naming

convection used in the remainder of this section is as follows. A label such as DSM im-

plies pure pseudospectral LES with dynamic Smagorinsky SGS model. DSM-CD implies

LES pseudospectral simulation of dynamic Smagorinsky SGS model with (truncated) er-

ror contribution from the CD numerical flux formulation.

Figure 5.3 shows results from LES on the 323 grid using the Smagorinsky SGS model

in conjunction with numerical error from three numerical flux formulations. The results

highlight the dissipative nature of the upwind biased schemes.This effect is most apparent

at higher wavenumbers where the result clearly indicate that there is an excessive removal
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Figure 5.1

See appendix for details
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Figure 5.2

See appendix for details
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of energy indicated by the underprediction of the experimental data. The SM-CD gives

results contrary to this. It shows an eccessive pile up of energy at high wavenumbers. A

similar phenomenon occurs on a much refined grid, Figure 5.4. For this case, the disper-

sion effect of the central difference scheme clearly dominates the dissipation influence of

the SGS model, leading to significant overprediction of energy at high wavenumbers.

Figure 5.3

See appendix for details

The dynamic Smagorinsky SGS model in conjunction with numerical error from the

upwind biased schemes, Figures 5.5 and 5.6, likewise shows a similar trend to the results

obtained using the Smagorisky model, Figures 5.3 and 5.4. It is important to note that
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Figure 5.4

See appendix for details
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the solution diverged for the combination of dynamic Smagorinsky SGS model with cen-

tral differencing, DSM-CD. This can be attributed to excess dispersion and non-physical

energy at high wavenumbers from the numerical scheme. This occurrence clearly demon-

strates the nonlinear interaction between SGS models and numerical flux formulations.

The eddy viscosity coefficient in the dynamic model is dependent on the resolved strain-

rate rather than on a fixed coefficient as in the case of the Smagorinsky model and the

dissipative influence of this model is not sufficient to stabilize the dispersive effect of the

CD scheme.

Figure 5.5

See appendix for details
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Figure 5.6

See appendix for details
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The multiscale model, Figure 5.7, in combination with the three flux formulations also

shows similar trends as the dynamic Smagorisky and Smagorinsky cases. As shown in

Figure 5.8, the multiscale model results are almost identical to the Smagorinsky model

results. This is expected since the MSM model was calibrated to give similar results as the

SM model for decaying isotropic turbulence [30].

Figure 5.7

See appendix for details

The MILES approach in conjunction with numerical error from the upwind biased

schemes, Figure 5.9, likewise shows a similar trend to the results obtained using the

Smagorisky model. Similar to the dynamic Smagorisky cases, Figures 5.5 and 5.6, the so-
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Figure 5.8

See appendix for details
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lution diverged for the combination of MILES technique with central differencing, MILES-

CD. This can also be attributed to excess dispersion and non-physical energy at high

wavenumbers from the numerical scheme. This reinforces the nonlinear interaction be-

tween SGS models and numerical flux formulations. The eddy viscosity coefficient for the

MILES approach is set to zero. This approach is not sufficient to stabilize the dispersive

effect of the CD scheme since it has a zero dissipative influence.

Figure 5.9

See appendix for details
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5.3 Finite-Volume Simulation Results

Finite-volume simulation results showed similar behavior to the pseudospectral sim-

ulations, including the dissipative nature of the upwind biased schemes and the addition

of energy in the high wavenumbers when using the central difference scheme. The de-

cay of turbulent kinetic energy is shown for the Smagorinsky model, dynamic model, and

MILES cases in Figures 5.10-5.12, respectively. In each case, the relative dissipation of

the different numerical schemes is apparent (note that BCD and 1U refer to the bounded

central difference and 1st order upwind schemes).

Figure 5.10

See appendix for details
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Figure 5.11

See appendix for details
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Figure 5.12

See appendix for details
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Evaluation of the decay rates is complicated by the presence of an initial transient

behavior in the results in which the initially random velocity modes organize into coherent

structures with interscale dynamical behavior indicative of turbulent flow. Regardless, it

is apparent that some combinations are either far too dissipative (SM-1U) or not nearly

dissipative enough (MILES-CD). Note that, as with the pseudospectral simulations, both

of the upwind biased second order schemes (2U and Q) show very similar behavior.

Figure 5.13

See appendix for details

Figure 5.13 shows the estimated contribution of the different dissipation mechanisms

in the simulation with the Smagorinsky model and the bounded central difference scheme.
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The total dissipation was estimated based on the time derivative of turbulent kinetic energy

at each time step, and the SGS and viscous dissipation were estimated based on their vol-

ume averages. It is apparent that initially the dissipation is due almost entirely to the SGS

model, but as the simulation proceeds a nearly constant ratio of SGS to total dissipation

develops. The contribution of viscous dissipation is negligible for this high-Reynolds-

number case.

Figure 5.14

See appendix for details

The relative contribution of the numerical error for four of the schemes and the Smagorin-

sky model is shown in Figure 5.14. Not surprisingly, the more dissipative the scheme, the
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higher the percentage of numerical dissipation. What is most relevant is the fact that two

of the schemes, CD and BCD, have a larger contribution of the SGS stress than the nu-

merical error, suggesting that these schemes may in general allow realistic results to be

obtained with finite-volume LES. This observation is consistent with the assertion of Park

et al. [23].

Energy spectra corresponding to the downstream-most measurement station are shown

in Figures 5.15-5.16 for the Smagorinsky and dynamic Smagorinsky simulations. The

Smagorinsky and dynamic results are similar and show good agreement with experiments

for the low wavenumbers when using either the BCD or CD schemes. Results with the

2U, Q, and 1U schemes show too much dissipation, as expected.

Figure 5.17 shows the energy spectra obtained using the MILES approach and the var-

ious discretization schemes. The MILES results show good agreement with experiments

when using either the BCD or Q schemes, although there is a slight overprediction of the

energy in the lower wavenumbers. The MILES-Q result is arguably as good as the DSM-

BCD result in terms of energy spectrum, although its formulation is much simpler in terms

of both numerical method and SGS model. Interestingly, the MILES-BCD results shows

the best agreement with experiments for the entire energy spectrum. The MILES-CD re-

sult, not surprisingly, is nonphysical.

The results suggest that a combination of CD or BCD scheme with either a Smagorin-

sky model or dynamic model may be sufficiently accurate for engineering simulations,

with the BCD perhaps showing superior performance since there is no nonphysical pileup

of energy in the high wavenumbers. All cases of SGS models with QUICK or second
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Figure 5.15

See appendix for details
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Figure 5.16

See appendix for details
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Figure 5.17

See appendix for details
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order upwind show similar trends, and indicate that this combination is least desired since

it tends to be overly dissipative. The results also suggest that a combination of BCD,

QUICK or 2U scheme with the MILES approach may be sufficiently accurate for engi-

neering problems.

Figure 5.18

See appendix for details

Finally, the global combined influence of dissipative and dispersive effects due to SGS

model and numerical scheme can be quantified based on the power law decay rate. Turbu-

lent kinetic energy is traditionally to follow a (temporal) decay at high Re of the form:

k = ko

(
t

to

)−n

(5.1)
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Values of the decay exponent n reported in the literature lie between 1.15 and 1.45 [24],

but Mohamed and LaRue [19] assert that n = 1.3 best collapses all available data. For

the current the case, Kang et al. [15] report the decay exponent to by n = 1.25. In

an attempt to evaluate the decay rates to a reasonable degree of accuracy, the numerical

simulation was initialized with a velocity field whose phases are assumed to have adjusted

to appropriate values and then rescaled to the correct filtered energy spectrum. Figure 5.18

shows the filtered kinetic energy as a function of time on a logarithmic scale for the MILES

with QUICK numerical scheme. The region of interest is the locally linear region at the

later times. Table 5.1 shows the calculated decay coefficient for several combinations of

SGS models and numerical schemes. The decay coefficients for MILES with QUICK and

for Smagorinsky with QUICK and 2U give the closest results to the experiments. The

SM-BCD results lies at the upper limit of reported values while all others (except for

the case with 1st order discretization) overpredict decay rate significantly. Interestingly,

the MILES-BCD combination, which showed the best energy spectrum, shows the worst

prediction of decay rates.

Table 5.1

See appendix for details

MILES DSM SM
BCD 1.81 1.68 1.46
CD 1.78 1.66

QUICK 1.29 1.38 1.23
2U 1.32
1U 0.93
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CHAPTER 6

ENGINEERING APPLICATION: ROUND JET FLOW

6.1 Brief

The axisymmetric jet experiment of Hussein et al. [14] serves as an application prob-

lem used to verify the behavior documented in earlier sections of different combinations of

SGS model and discretization schemes for use in large eddy simulation of turbulent flow.

The motivation of the experimental work [14] was to determine the source of discrepancy

in high velocity data from previous axisymmetric jet flow experiments. One source of

discrepancy was found to be a result of enclosure. Therefore, Hussein et al. [14] ensured

that the experimental facility was large enough to be considered as an infinite environ-

ment. Also, the paper validated burst mode laser dopper anemometer (LDA) and flying

hot wire data (FHW) data by showing that the results obtained together with the governing

equations and boundary conditions for the axisymmetric jet were satisfied.

6.2 Simulation Setup

The experimental setup of Hussein et al. [14] served as a guide for performing large

eddy simulation of a high-Reynolds-number (Re = 105) turbulent jet simulation. The

experiment was performed in an environment large enough to be approximated as infinite
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comparable to the span of the jet exit diameter, D = 1in. In this way, disturbances due to

entrained recirculation flow were avoided.

Figure 6.1

See appendix for details

With this requirement in mind, the computational domain as shown in Figure 6.1 was

built with a diameter 5 times larger than the jet exit diameter at the jet exit and growing

at a rate of 0.5 inches per inch in the streamwise direction. The maximum streamwise

domain extent was 115D downstream of the jet exit with a maximum outer diameter of

120D. The domain size was estimated to be sufficiently large to completely contain all of

the jet mixing behavior, and this was subsequently borne out by the results.

Figure 6.1 also shows the boundary conditions specified in the flow solver. A uniform

velocity was applied at the jet inlet as indicated. All of the outer boundary external to the
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jet was specified as constant (ambient) pressure. This choice of boundary condition allows

low velocity entrainment of ambient fluid into the jet and most accurately reproduces the

effects of an infinite domain.

From [14], the jet exit velocity was found to follow close to a top-hat profile with a

laminar boundary layer thickness of δ95 = 0.7mm close to the jet lip. In the numerical

experiment, a boundary layer thickness of δ95 = 0.7mm was achieved by including an

inlet supply pipe as shown. The length of the supply pipe was estimated by solving the flat

plate laminar boundary layer equation for the x distance needed. The flat plate boundary

layer equation yields:

δ

x
=

5

Re
1
2

(6.1)

where Re is the Reynolds number equal to:

Re =
Ux

ν
(6.2)

Given the experimentally determined jet exit velocity U = 56.2m/s, the above equation

may be solved to find the x distance:

x = 2.9134inches (6.3)

From this, a distance of 3 inches was determined to be the sufficient pipe length required

to allow for a boundary layer thickness of δ95 = 0.7mm at the jet lip. Figure 6.2 shows a

closeup view of the mesh around the pipe inlet. Closer to the wall the cells were designed

to be of a higher density. In that way that the boundary layer was accurately resolved. The

timestep size used in the simulations was determined by computing the time required for a

fluid particle traveling at the jet exit velocity to traverse one grid cell, based on the smallest
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streamwise extent in the mesh. This corresponds to a maximum (convective) CFL number

of one. The time step size was determined to be ∆t ≈ 1E − 6.

Figure 6.2

See appendix for details

Figure 6.3 shows a plan view of an isosurface cutting plane through the computational

domain. The domain was made up of approximately three million grid cells. From the

jet inlet as shown on Figure 6.3 to the pressure outlet region, the domain was constructed

with 345 nodal points. Figure 6.4 shows the axial, radial and azimuthal distribution of

grid points which are in constant ratio throughout the domain. The computational domain

was constructed in such a way that 100 points lie in the radial direction from the center of

Figure 6.4 to the outer edge.
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Figure 6.3

See appendix for details
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Figure 6.4

See appendix for details
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6.3 Results

In an attempt to test the conclusions made in earlier chapters on favorable com-

binations of SGS models and discretization schemes, large eddy simulation of a high-

Reynolds-number, momentum conserving, axisymmetric turbulent jet at Mach number 0.2

was performed. The combinations simulated were Smagorinsky and dynamic Smagorin-

sky with bounded central differencing (SM-BCD, DSM-BCD) and monotonically inte-

grated large eddy simulation with second order upwind scheme (MILES-2U). Numerical

simulations were constructed following the experimental setup of Hussein et al. [14].

Simulations were performed on 24 processors of a SGI ORIGIN 3800, 128 processors

(400MHz R12000), 128 Gigabytes of RAM.

Figure 6.6 shows the convergence history for a combination of SM with BCD for the

running-time-averaged streamwise velocity component at a position 10 diameters down-

stream of the jet exit. As expected, with a grid of approximately three million cells, a fully

converged solution set requires an extensive amount of computational time, perhaps on the

order of one month. Common to all of the round jet simulations performed, the maximum

number of timesteps attained per day was approximately one thousand. After 40000 iter-

ations the simulations were determined to have converged to a reasonable degree, though

for DSM-BCD the simulation was judged converged at a number of iterations closer to

50000.

An illustration of the instantaneous streamwise velocity distribution in the jet is shown

in Figure 6.5. The contours highlight the fundamental aspect of LES, namely that the

large turbulent flow structures are resolved in the simulation. Also apparent in the Figure
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Figure 6.5

See appendix for details

is the entrainment of ambient fluid into the jet, made possible by the use of pressure inlet

boundary conditions.

Figure 6.7 shows a plot of the inverse of centerline velocity versus downstream dis-

tance for each of the combinations of SGS model and numerical discretization scheme

plotted with the stationary hotwire data of Hussein at al. [14]. The virtual origin for all

the simulations was determined to be within 4.9D ± 0.6D, upstream of the jet exit. As

shown, the decay rate for the MILES-2U case compares very well with experimental data

while the SM-BCD and DSM-BCD cases underpredict the rate of decay of the normalized

centerline velocity. Similar to the findings of [14], a locally linear region exists between

40D and 100D which implies that the jet spreading rate is approximately locally constant
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Figure 6.6

See appendix for details

at positions far from the jet exit. Therefore data was collected from the simulations at

several positions downstream of the jet exit: at 50D, 70D and 90D.

Figure 6.8-6.10 shows the running-time-averaged normalized streamwise velocity ver-

sus the nondimentional radial distance η = r
x−xo

at the three downstream positions. All

combinations of SGS model and discretization scheme are in good agreement with exper-

imental data. The normalized simulation results show little dependency on downstream

position (x/D) indicating a self similar profile in the region from 50D through 90D.

Second order moments of velocity are plotted in Figures 6.11-6.19 at several down-

stream locations. Figure 6.11-6.13 shows a plot of the axial component of the Reynolds

stress term non-dimensionalized by the square of centerline velocity versus non-dimensionalized

radial distance η. The result emphasizes self similarity further downstream. All cases un-
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Figure 6.7

See appendix for details
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Figure 6.8

See appendix for details
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Figure 6.9

See appendix for details
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Figure 6.10

See appendix for details
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derpredict the experimental data on average, but the MILES-2U case seems to do it the

least.
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Figure 6.11

See appendix for details
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Figure 6.12

See appendix for details
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Figure 6.13

See appendix for details
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Figure 6.14

See appendix for details
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Figure 6.15

See appendix for details
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Figure 6.16

See appendix for details
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Figure 6.17

See appendix for details
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Figure 6.18

See appendix for details
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Figure 6.19

See appendix for details
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CHAPTER 7

CONCLUSIONS

The goal of this research effort was to determine optimum combinations of closure

model and discretization schemes for use in performing LES in complex engineering

environments using readily available CFD flow solvers. The investigation proceeded in

two parts. A formal quantification of discretization error present in finite-volume/finite-

difference simulations was conducted. The effect of these errors was then explicitly incor-

porated into the pseudospectral LES solver and used to compute LES of decaying isotropic

turbulence on both 323 and 643 grid resolutions. This was accomplished based on a trun-

cated Taylor series representation of numerical error in physical space, transformed via the

Fast Fourier Transforms to wavenumber space. To this author’s knowledge, this is the first

documented use of such an approach. Comparisons were made in terms of energy spectra

at different downstream positions and used to characterize the influence of different SGS

models and discretization schemes on the simulation.

Verification of results was carried out using a commercially available finite-volume/

finite-difference solver (FLUENT R©). The purpose of the finite volume simulations was

to verify that the observations made using the modified psuedospectral code as a tool

for determining favorable combinations of closure models with numerical schemes hold

for simulations in physical space. Therefore the finite volume simulations were per-

80



formed with equivalent specification as those of the pseudospectral simulations. Numeri-

cal discretization schemes experimented with included second order Central Differencing

(CD), QUICK (Q), Upwind (2U), Bounded Central differencing (BCD) and first order

upwind (1U). Turbulence closure models implemented included Smagorinsky (SM), dy-

namic Smagorinsky (DSM) and Multiscale(MSM). Also implemented was the numerical

LES technique Monotonically Integrated LES (MILES).

For the pseudospectral simulations, it was first necessary to determine the appropriate

number of terms needed to be retained in the Taylor series expansion of the numerical

error term. To do this, simulations were conducted using a successively larger number

of terms to represent the numerical differentiation error. The result showed that after the

third truncation error term there is no significant change in the computed energy density

spectrum using the 2U, QUICK, and CD schemes.

The study proceeded by performing simulation of the aforementioned SGS models

with discretization schemes. In general, the results from the pseudospectral simulation

highlight the dissipative nature of the upwind biased schemes. The effect was most ap-

parent at higher wavenumber where the results clearly indicate that there is an excessive

removal of energy indicated by the underprediction of the experimental data. Similarly,

the central differencing cases showed an excess dispersion and non-physical energy at

high wavenumbers. The results showed that the eddy viscosity SGS models investigated

(SM, DSM, MSM) added significant dissipation especially at higher wavenumbers. These

suggested that an optimum combination of SGS model and discretization scheme should

allow zero dispersion error (eliminating CD as a preferred scheme) and should provide an
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adequate but not excessive level of dissipation, in order to correct representative energy

transfer from the resolved to the unresolved scales of motion. This level of dissipation

should be due to the combined effect of the numerical scheme and or the SGS model.

Finite-volume simulation results showed similar behavior to the pseudospectral simu-

lations, including the dissipative nature of the upwind biased schemes and the addition of

energy in the high wavenumbers when using the central difference scheme. In addition, the

BCD scheme which combines the effect of a central differencing and an upwind scheme

was investigated. Of the combinations investigated, those that seemed most likely to sat-

isfy chacteristics suggested by the pseudospectral results were the BCD model with either

the SM or DSM eddy viscosity model or the MILES method with either 2U or QUICK

discretization scheme. These combinations should introduce zero dispersion error. Fur-

ther, the BCD scheme provides (relatively) small numerical dissipation, so combining it

with a dissipative eddy viscosity model might lead to an appropriate level of combined

dissipation. Alternatively, the MILES method with the more dissipative QUICK or 2U

scheme may provide sufficient dissipation through the discretization scheme alone. The

energy spectra from the finite-volume simulations confirmed the behavior predicted by the

pseudospectral simulations, supporting the contention by Fedioun et al. [9] that numerical

error is dominated by the finite-differencing (i.e. truncation) error rather than the aliasing

error when performing LES with 2nd order schemes. The result from the pseudospectral

simulations were further reinforced by examination of the ratio of numerical dissipation

to total dissipation in the finite-volume results, which showed that the Q and 2U schemes

introduced less dissipation than the Smagorinsky SGS model. It was also noted that the

82



combination MILES-BCD yielded the best prediction of the energy spectrum, especially

for high wavenumbers, due to the minimal amount of dissipation for this combination.

To further highlight the differences in the finite-volume simulations, the asymptotic

decay rates were evaluated. The numerical simulations were initialized with a velocity

field whose phases are assumed to have adjusted to appropriate values (i.e. a rescaled

velocity field). The decay rates predicted with the BCD scheme and the eddy viscosity

models overpredicted the experimental value significantly, although the results with the

SM model was at the upper limit of values reported in the literature. Although the MILES-

BCD combination showed excellent agreement with the experimental data in terms of the

energy spectrum, it yielded the worst prediction of decay rate, overpredicting experiments

by 45%. The decay coefficients for MILES and the Smagorinsky model with QUICK gave

the closest results to the reported experimental data, and suggest that for accurate results

in engineering simulations the combination of MILES with QUICK or 2nd order upwind

may yield the best results in an overall sense.

Following this, an axisymmetric jet flow following the investigation of Hussein et al.

[14] was simulated. It served as an application problem used to verify the results from

prior finding of favorable combinations of SGS model and discretization schemes for use

in large eddy simulation of turbulent flow. The three combinations examined in the jet

flow case were SM-BCD, DSM-BCD and MILES-2U. All of the jet flow cases showed

reasonable agreement with experimental data in terms of the spatial decay of centerline

velocity. However, the results using MILES-2U were noticeably more accurate than the

other two combinations, matching the data almost exactly. Likewise, all three showed
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good agreement with experiments in terms of radial distributions of mean velocity and

Reynolds stresses with MILES-2U slightly outperforming the other two. The relevance of

these results is that the findings from prior sections are reinforced.

Taken in their entirety, the results from this study suggest that useful results may be

obtained from LES of engineering flows using commonly available discretization schemes

(i.e. 2nd order) and SGS models (i.e. eddy-viscosity). Important guiding principles are

that the discretization scheme should be non-dispersive, and that the combined effects of

the discretization scheme and SGS model should provide a sufficient but not overly large

level of dissipation. Satisfying these criteria has been found to result in good prediction

of the large-scale flow behavior, including the energy spectrum (except near the cutoff

wavenumber), turbulent energy decay, and turbulent mixing dynamics. The four combina-

tions investigated here that most closely meet this requirement are SM-BCD, DSM-BCD,

MILES-2U, and MILES-Q. Perhaps surprisingly, it is the latter two, which rely on no

explicit SGS model and on strongly upwinded discretization schemes, that yield the best

results overall for the test cases considered here.

84



REFERENCES

[1] “FLUENT R© Users Guide version 6.2.16,” FLUENT R© INC., Lebanon, NH, USA.

[2] T. J. Barth and D. Jesperson, “The Design and Application of Upwind Schemes on
Unstructured Meshes,” AIAA Paper, , no. AIAA-89-0366, 1989, p. 273.

[3] S. Bhushan and Z. U. A. Warsi, “Large eddy simulation of turbulent channel flow
using an algebraic model,” International Journal for Numerical Methods in Fluids,
vol. 49, no. 6, 2005, pp. 489–519.

[4] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edition, Dover Publica-
tions, Inc, 31 East 2nd Street Mineola, New York 11501, 2000.

[5] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fliud
Dynamics, Springer-Verlag, New York Inc., New York, 1998.

[6] S. Cerutti, C. Meneveau, and O. M. Knio, “Spectral and Hyper eddy viscosity in
high-Reynolds-number turbulence,” Journal of Fluid Mechanics, vol. 421, 2000, pp.
307–338.

[7] G. Comte-Bellot and S. Corrsin, “Simple Eulerian time correlation of full-and-band
velocity signals in grid-generated isotropic turbulence,” Journal of Fluid Mechanics,
vol. 48, 1971, p. 273.

[8] P. A. Davidson, Turbulence An Introduction For Scientist and Engineers, 1st edition,
Oxford University Press, Great Clarendon Street, Oxford ox2 6DP, 2004.

[9] I. Fedioun, N. Lardjane, and I. Gokalp, “Revisiting Numerical Errors in Direct and
Large Eddy Simulations of Turbulence: Physical and Spectral Spaces Analysis,”
Journal of Computational Physics, vol. 174, Dec. 2001, pp. 816–551.

[10] C. Fureby and F. F. Grinstein, “Large Eddy simulation of high-Reynolds-number
free and wall-bounded flows,” Journal of Computational Physics, vol. 181, no. 1,
2002, pp. 68–97.

[11] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A Dynamic subgrid-scale
eddy viscosity model,” Physics of Fluids, vol. 3, July 1991, pp. 071760–06.

[12] S. Ghosal, “An Analysis of Numerical Error in Large-Eddy Simulation of Turbu-
lence,” Journal of Computational Physics, vol. 125, Jan. 1996, pp. 187–206.

85



[13] J. Gullbrand and F. K. Chow, “The effect of numerical errors and turbulence models
in large-eddy simulation of channel flow, with and without explicit filtering,” Journal
of Fluid Mechanics, vol. 495, June 2003, pp. 323–341.

[14] H. J. Hussein, S. P. Capp, and W. K. George, “Velocity measurements in a high-
Reynolds-number, momentum-conserving, axisymmetric, turbulent jet,” Journal of
Fluid Mechanics, vol. 258, Jan. 1994, pp. 31–75.

[15] H. S. Kang, S. Chester, and C. Meneveau, “Decaying turbulence in an active-grid-
generated flow and comparisons with large-eddy simulation,” Journal of Fluid Me-
chanics, vol. 480, no. 480, April 2003, pp. 129 – 160.

[16] A. G. Kravchenko and P. Moin, “On the effects of numerical errors in large eddy
simulation of turbulent flow,” Journal of Computational Physics, vol. 131, 1997, pp.
310–322.

[17] B. P. Leonard, “A Stable and Accurate Convective Modelling Procedure Based on
Quadratic Upstream Interpolation,” Computer Methods in Applied Mechanics and
Engineering, vol. 19, 1979, pp. 59–98.

[18] H. Makita, “Realization of large-scale turbulence field in a small wind tunnel,” Fluid
Dynamics Res., vol. 8, 1991, pp. 53–64.

[19] M. S. Mohamed and J. C. LaRue, “The Decay Power Law in Grid-Generated Turbu-
lence,” Journal of Fluid Mechanics, 1990.

[20] L. Mydlarski and Z. Warhaft, “On the onset of high-Reynolds-number grid-generated
wind tunnel turbulence,” Journal of Fluid Mechanics, vol. 320, 1996, pp. 331–368.

[21] L. Mydlarski and Z. Warhaft, “Passive scalar statistics in high Peclet number grid
turbulence,” Journal of Fluid Mechanics, vol. 358, 1998, pp. 135–175.

[22] N. Park and K. Mahesh, “Analysis of numerical errors in large eddy simulation using
statistical closure theory,” Journal of Computational Physics, vol. 222, no. 1, 2007,
pp. 194–216.

[23] N. Park, J. Y. Yoo, and H. Choi, “Discretization errors in large eddy simulation: on
the suitability of centered and upwind-biased compact difference schemes,” Journal
of Computational Physics, vol. 198, 2004.

[24] S. B. Pope, Turbulent Flows, 1st edition, Cambridge University Press, The Edinburgh
Building, Cambridge, CB2 2RU, UK, 2000.

[25] S. B. Pope, “Ten questions concerning the large-eddy simulation of turbulent flows,”
New Journal of Physics, vol. 6, Mar 2004, p. 35.

[26] R. S. Rogallo, “Numerical Experiments in Homogeneous Turbulence,” NASA TM
73202, 1981.

86



[27] F. Sarghini, U. Piomelli, and E. Balaras, “Scale-similar models for large-eddy simu-
lations,” Physics of Fluids, vol. 11, no. 6, June 1999, pp. 1596–1607.

[28] J. Smagorinsky, “General circulation experiment with the primitive equations,”
Monthly Weather Review, vol. 91, Mar 1963, pp. 99–194.

[29] G. D. Stefano and O. V. Vasilyev, “Sharp cutoff versus smooth filtering in large eddy
simulation,” Physics of Fluids, vol. 14, no. 1, Jan. 2002, pp. 362–369.

[30] D. K. Walters and S. Bhushan, “A note on spectral energy transfer for multiscale
eddy viscosity models in large-eddy simulation,” Physics of Fluids, vol. 17, Nov.
2005, pp. 118102–118106.

[31] D. K. Walters and S. Bhushan, “Specification of Time-Dependent Inlet Boundary
Conditions for LES, VLES, and DES of Turbulent Flow,” AIAA, , no. AIAA-2005-
1284, 2005.

[32] R. F. Warming and R. M. Beam, “Upwind Second-Order Difference Schemes and
Application in Aerodynamics Flows,” AIAA Journal, vol. 14, no. 9, 1976, pp. 1241–
1249.

87



APPENDIX

FIGURE DETAILS

88



Table 5.1: Kinetic energy decay coefficient in finite volume simulations. Experimental

Value: 1.25.

Figure 2.1: Implicit filtering due to volume averaging, indicating resolved and modeled

(SGS) portions of the energy spectrum. The cutoff wavenumber dictated by the grid size

is indicated by Kc.

Figure 3.1: A 1D control volume with nodal values at V, W, P, E. Faces are indicated

as e and w. Derivations are performed with reference position labeled as the point j.

Figure 4.1: Comparison of iterative and non-iterative (NITA) time advancement schemes

in the finite-volume LES simulations, showing the temporal decay of turbulent kinetic

energy. Results were obtained using the Smagorinsky SGS model and bounded central

differencing.

Figure 5.1: Experimental and pseudospectral results with successively higher order

approximations of the numerical error term for 323 case, using the Smagorinsky (SM)

SGS model and second order Upwind scheme (2U).

Figure 5.2: Experimental and pseudospectral results with successively higher order

approximations of the numerical error term for 323 case, using the Smagorinsky SGS

model and Central Difference scheme.

Figure 5.3: Experimental and pseudospectral results with numerical error from QUICK,

2nd Order Upwind and Central Differencing schemes for 323 case and the Smagorisky

SGS model.
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Figure 5.4: Experimental and pseudospectral results with numerical error from QUICK,

2nd Order Upwind and Central Differencing schemes for 643 case and the Smagorisky

SGS model.

Figure 5.5: Experimental and pseudospectral results with numerical error from QUICK

and 2nd Order Upwind schemes for 643 case and the dynamic SGS model.

Figure 5.6: Experimental and pseudospectral results with numerical error from QUICK

and 2nd Order Upwind schemes for 323 case and the dynamic SGS model.

Figure 5.7: Experimental and pseudospectral results with numerical error from QUICK

and 2nd Order Upwind schemes for 643 case and the multiscale SGS model.

Figure 5.8: Experimental, MSM and SM pseudospectral results with numerical error

from Central Difference scheme for the 323 case.

Figure 5.9: Experimental and pseudospectral results with numerical error from QUICK

and 2nd Order Upwind and schemes for 643 case and the MILES approach.

5.10: Decay of turbulent kinetic energy in finite-volume simulations for several nu-

merical schemes and the Smagorinsky SGS model.

Figure 5.11: Decay of turbulent kinetic energy in finite-volume simulations for several

numerical schemes and the dynamic smagorinsky SGS model.

Figure 5.12: Decay of turbulent kinetic energy in finite-volume MILES simulations

for several numerical schemes.

Figure 5.13: Estimated total, SGS, and viscous dissipation for simulation with bounded

central difference scheme and Smagorinsky model.
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5.14: Relative contribution of numerical error to total dissipation for different numeri-

cal schemes and Smagorinsky model.

Figure 5.15: Energy spectra at downstream-most measurement plane for finite-volume

simulations with Smagorinsky model, compared to experimental data.

Figure 5.16: Energy spectra at downstream-most measurement plane for finite-volume

simulations with dynamic model, compared to experimental data.

Figure 5.17: Energy spectra at downstream-most measurement plane for MILES finite-

volume simulations, compared to experimental data.

Figure 5.18: Kinetic energy decay coefficient in finite volume simulation of the MILES

SGS models with QUICK numerical schemes. Experimental value for decay coefficient

from Kang et al. [15] is 1.25.

Figure 6.1: A 2D schematic of the round jet numerical grid following Hussein et al.

[14]. Dimensions are shown with respect to the exit Diameter D = 1inch. Boundary

conditions are also shown as specified in the flow solver FLUENT R©.

Figure 6.2: Detailed view of the jet exit showing the grid point distribution in the

boundary layer direction.

Figure 6.3: Axisymmetric jet Computational grid. Plan view of an isosurface through

the jet axis.

Figure 6.4: Pressure outlet surface showing axial, azimuthal and radial distribution of

grid points maintained throughout the domain.

Figure 6.5: Instantaneous streamwise velocity distribution in the jet.

Figure 6.6: Convergence history of the streamwise velocity component for SM-BCD.
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Figure 6.7: Comparison of centerline velocity variation with distance from the jet exit

for experimental data (SHW Data Hussein et al. 1994) and large eddy simulation data for

a combination of MILES-2U, DSM-BCD and SM-BCD.

Figure 6.8: Comparison of mean velocity profile for experimental data (FHW, SHW

and LDA Data Hussein et al. 1994) and large eddy simulation data for a combination of

MILES-2U, DSM-BCD and SM-BCD at downstream distance 50D.

Figure 6.9: Comparison of mean velocity profile for experimental data (FHW, SHW

and LDA Data Hussein et al. 1994) and large eddy simulation data for a combination of

MILES-2U, DSM-BCD and SM-BCD at downstream distance 70D.

Figure 6.10: Comparison of mean velocity profile for experimental data (FHW, SHW

and LDA Data Hussein et al. 1994) and large eddy simulation data for a combination of

MILES-2U, DSM-BCD and SM-BCD at downstream distance 90D.

Figure 6.11: Comparison of axial component of turbulent kinetic energy for experi-

mental data (LDA and FHW Data Hussein et al. 1994) and large eddy simulation data for

a combination of MILES-2U, DSM-BCD and SM-BCD at downstream distance 50D.

Figure 6.12: Comparison of axial component of turbulent kinetic energy for experi-

mental data (LDA and FHW Data Hussein et al. 1994) and large eddy simulation data for

a combination of MILES-2U, DSM-BCD and SM-BCD at downstream distance 70D.

Figure 6.13: Comparison of axial component of turbulent kinetic energy for experi-

mental data (LDA and FHW Data Hussein et al. 1994) and large eddy simulation data for

a combination of MILES-2U, DSM-BCD and SM-BCD at downstream distance 90D.
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Figure 6.14: Comparison of radial component of turbulent kinetic energy for experi-

mental data (LDA and FHW Data Hussein et al. 1994) and large eddy simulation data for

a combination of MILES-2U, DSM-BCD and SM-BCD at downstream distance 50D.

Figure 6.15: Comparison of radial component of turbulent kinetic energy for experi-

mental data (LDA and FHW Data Hussein et al. 1994) and large eddy simulation data for

a combination of MILES-2U, DSM-BCD and SM-BCD at downstream distance 70D.

Figure 6.16: Comparison of radial component of turbulent kinetic energy for experi-

mental data (LDA and FHW Data Hussein et al. 1994) and large eddy simulation data for

a combination of MILES-2U, DSM-BCD and SM-BCD at downstream distance 90D.

Figure 6.17: Comparison of azimuthal component of turbulent kinetic energy for ex-

perimental data (LDA and FHW Data Hussein et al. 1994) and large eddy simulation data

for a combination of MILES-2U, DSM-BCD and SM-BCD at downstream distance 50D.

Figure 6.18: Comparison of azimuthal component of turbulent kinetic energy for ex-

perimental data (LDA and FHW Data Hussein et al. 1994) and large eddy simulation data

for a combination of MILES-2U, DSM-BCD and SM-BCD at downstream distance 70D.

Figure 6.19: Comparison of azimuthal component of turbulent kinetic energy for ex-

perimental data (LDA and FHW Data Hussein et al. 1994) and large eddy simulation data

for a combination of MILES-2U, DSM-BCD and SM-BCD at downstream distance 90D.

93


	Determination of best practice guidelines for performing large eddy simulation of flows in configurations of engineering interest
	Recommended Citation

	tmp.1625165283.pdf.hqV_q

