
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-15-2007

Increasing the efficiency of network interface card Increasing the efficiency of network interface card

Amit Uppal

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Uppal, Amit, "Increasing the efficiency of network interface card" (2007). Theses and Dissertations. 2689.
https://scholarsjunction.msstate.edu/td/2689

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2689?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

INCREASING THE EFFICIENCY OF NETWORK INTERFACE CARD

By

Amit Uppal

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

December 2007

INCREASING THE EFFICIENCY OF NETWORK INTERFACE CARD

By

Amit Uppal

APPROVED:

Yul Chu Raymond S. Winton
Assistant Professor of Electrical Professor of Electrical
and Computer Engineering and Computer Engineering
(Director of Thesis) (Committee Member)

YaroSlav Koshka Nicholas H. Younan
Assistant Professor of Electrical Professor of Electrical and Computer
and Computer Engineering Engineering
(Committee Member) (Graduate Program Director)

Roger King
Associate Dean of
College of Engineering

Name: Amit Uppal

Date of Degree: 15th December 2007

Institution: Mississippi State University

Major Field: Electrical Engineering

Major Professor: Dr. Yul Chu

Title of Study: INCREASING EFFICIENCY OF NETWORK INTERFACE CARD

Pages in Study: 75

Candidate for Degree of Master of Science

A Network Interface Card (NIC) is used for receiving the packets, processing the

packets, passing the packets to the host processor. NIC uses the buffer management

algorithm to distribute the buffer space among different applications.

This thesis proposes two buffer management algorithms: 1) Fairly Shared

Dynamic Algorithm (FSDA) for UDP-based applications; 2) Evenly Based Dynamic

Algorithm (EBDA) for both UDP and TCP-based applications

. For the average network traffic load, the FSDA improves the packet loss

ratio by 18.5 % over the dynamic algorithm (DA) and by 13.5% over the DADT, while

EBDA improves by 16.7 % over the DA and by 11.8% over the DADT. For the heavy

network traffic load, the FSDA improves the packet loss ratio by 16.8 % over the DA and

by 12.5% over the DADT while EBDA improves the packet loss ratio by 16.8 % over the

DA and by 12.6% over the DADT.

ii

DEDICATION

I would like to dedicate this research to my beloved family.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my academic advisor, Dr. Yul

Chu, who has given direction and support throughout my graduate program and for his

constant help and support both technically and emotionally during my studies. I would

also like to thank my committee members, Dr. Raymond S. Winton and Dr. Yaroslav

Koshka, for their invaluable suggestions and guidance during my research and course

work.

Finally, I would like to thank all of my friends at MSU for their constant support

away from home.

iv

TABLE OF CONTENTS

 Page

DEDICATION... ii

ACKNOWLEDGEMENTS... iii

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

CHAPTER

I. INTRODUCTION ... 1

1.1 Problem Statement and Motivation ... 3
1.2 Summary of Main Contributions ... 5
1.3 Organization... 6

II. ARCHITECTURES FOR NETWORK INTERFACE CARD................ 7

2.1 Traditional Architecture for Network Interface Card 8
 2.2 Protocol Processor Architecture for Network Interface Card.......... 9
 2.3 Memory Organization using a Protocol Processor 12

III. BUFFER MANAGEMENT ALGORITHMS ... 14

3.1 Role of a Buffer Management Algorithm.. 14
3.2 Difference between Buffer Management Algorithms for an NIC and a

Switch .. 16
3.3 Design of a Buffer Management Algorithm 16
3.4 Popular Buffer Management Algorithms... 17
 3.4.1 Completely Partitioned Algorithm (CP) 17
 3.4.2 Completely Shared Algorithm (CS).. 18
 3.4.3 Dynamic Algorithm (DA)... 19
 3.4.4 Dynamic Algorithm with Dynamic Threshold (DADT) 20

IV. FAIRLY SHARED DYNAMIC ALGORITHM..................................... 22

4.1 Working of FSDA.. 22

v

4.2 Advantages of FSDA ... 27
4.3 FSDA for UDP... 27

V. EVENLY BASED DYNAMIC ALGORITHM 28

5.1 Working of EBDA ... 29

VI. SIMULATION ENVIRONMENT .. 32

6.1 Simulation Model for the Packet Buffer .. 33

VII. SIMULATION RESULTS AND ANALYSIS.. 37

7.1 Simulation Results for FSDA .. 37
7.2 Simulation Results for Average Network Traffic load 39
 7.2.1 Optimum value of alpha for DA ... 39
 7.2.2 Optimum value of alphas for DADT 40
 7.2.3 Comparison of FSDA, DA and DADT for different loads... 42
 7.2.4 Comparison of FSDA, DA and DADT for different buffer size 44
 7.2.5 Improvement ratio of FSDA over DA and DADT 45
7.3 Simulation Results for Heavy Network Traffic load 45
 7.3.1 Optimum Value of alpha for DA .. 46
 7.3.2 Optimum Value of alphas for DADT 47
 7.3.3 Comparison of FSDA, DA and DADT for different loads... 48
 7.3.4 Comparison of FSDA, DA and DADT for different buffer size 49
 7.3.5 Improvement ratio of FSDA over DA and DADT 50
7.4 Simulation Results for Actual Network Traffic load....................... 50
 7.4.1 Optimum Value of alpha for DA .. 51
 7.4.2 Optimum Value of alphas for DADT 52
 7.4.3 Comparison of FSDA, DA and DADT for different loads... 54
 7.4.4 Comparison of FSDA, DA and DADT for different buffer size 54
 7.4.5 Improvement ratio of FSDA over DA and DADT 55
7.5 FSDA designed for UDP ... 56
7.6 Simulation Results of EBDA... 58
7.7 Simulation Results for Average Network Traffic load 59
 7.7.1 Optimum Value of alpha for DA .. 59
 7.7.2 Optimum Value of alphas for DADT 59
 7.7.3 Optimum Values for alpha1, alpha2, gamma1,
 gamma2 for EBDA .. 59
 7.7.4 Comparison of EBDA, DA and DADT for different loads .. 60
 7.7.5 Comparison of EBDA, DA and DADT for different buffer size 61

vi

 7.7.6 Improvement ratio of EBDA over DA and DADT............... 62
7.8 Simulation Results for Heavy Network Traffic load 63
 7.8.1 Optimum Value of alpha for DA .. 63
 7.8.2 Optimum Value of alphas for DADT 63
 7.8.3 Optimum Values for alpha1, alpha2, gamma1,
 gamma2 for EBDA .. 63
 7.8.4 Comparison of EBDA, DA and DADT for different loads .. 64
 7.8.5 Comparison of EBDA, DA and DADT for different buffer size 65
 7.8.6 Improvement ratio of EBDA over DA and DADT............... 65
7.9 Simulation Results for Actual Network Traffic load....................... 66
 7.9.1 Optimum Value of alpha for DA .. 66
 7.9.2 Optimum Value of alphas for DADT 66
 7.9.3 Optimum Values for alpha1, alpha2, gamma1,
 gamma2 for EBDA .. 66
 7.9.4 Comparison of EBDA, DA and DADT for different loads .. 67
 7.9.5 Comparison of EBDA, DA and DADT for different buffer size 68
 7.9.6 Improvement ratio of EBDA over DA and DADT............... 69

VIII. CONCLUSION AND FUTURE WORK ... 70

 8.1 Summary of the Achievements.. 70
8.1.1 FSDA ... 71
8.1.2 Improvement in efficiency for FSDA.................................. 72
8.1.3 EBDA... 72
8.1.4 Improvement in efficiency for EBDA 72

8.2 Future Work ... 73

REFERENCES .. 74

vii

LIST OF TABLES

TABLE Page

5.1 Comparison of DA and DADT...28

7.1 Packet distribution for average traffic flow average network traffic load39

7.2 Variation of alpha for DADT for the average traffic load41

7.3 Improvement ratio of FSDA over DA and DADT for the
 average traffic load ..45

7.4 Packet distribution for heavy traffic flow average network traffic load.........46

7.5 Variation of alpha for DADT for the heavy traffic load.................................47

7.6 Improvement ratio of FSDA over DA and DADT for the
 heavy traffic load ...50

7.7 Packet size distribution for an actual network traffic load51

7.8 Packet distribution for Actual flow actual network traffic load51

7.9 Variation of alpha for DADT for the actual traffic load.................................53

7.10 Improvement ratio of FSDA over DA and DADT for the
 actual traffic load ...56

7.11 Ratio of the replaced packets in FSDA...57

7.12 Variation of (alpha1, alpha2, gamma1, and gamma2) vs. total
 packet loss for EBDA ..60

viii

7.13 Improvement ratio of EBDA over DA and DADT
 for the average traffic load...63

7.14 Variation of (alpha1, alpha2, gamma1, and gamma2) vs.
 total packet loss for EBDA ...64

7.15 Improvement ratio of EBDA over DA and DADT for the
 heavy traffic load ...66

7.16 Variation of (alpha1, alpha2, gamma1, and gamma2) vs.
 total packet loss for EBDA ..67

7.17 Improvement ratio of EBDA over DA and DADT for the
 actual traffic load ...69

ix

LIST OF FIGURES

FIGURE Page

2.1 Traditional Architecture for Network Interface Card [2]8

2.2 Protocol Processor Architecture for Network Interface Card [2]10

2.3 Core Overview of Protocol Processor Architecture [2]...................................11

2.4 Simplified packet buffer memory organization with the protocol processor[2]13

3.1 Role of Buffer management Algorithm in NIC ...15

4.1 Flowchart for FSDA ..23

4.2 Working Example for FSDA ...25

4.3 Working Example Continued ..25

5.1 Flowchart for EBDA..30

6.1 Simulation model for the packet buffer ...33

6.2 Sample Waveform for the simulation model ...35

7.1 Steps performed for comparing DA and DADT with FSDA38

7.2 Packet loss ratio vs. Alpha for DA for the average traffic load.......................40

7.3 Packet loss ratio vs. Alpha Variation for DADT for the average
 traffic load...42

x

7.4 Packet loss ratio vs. Load for FSDA, DADT, and DA for the average
 traffic load ...43

7.5 Packet loss ratio vs. Buffer Size for FSDA, DADT, and DA for the average
 traffic load..44

7.6 Packet loss ratio vs. Alpha for DA for the heavy traffic load...........................46

7.7 Packet loss ratio vs. Alpha Variation for DADT for the heavy traffic load47

7.8 Packet loss ratio vs. Load for FSDA, DADT, and DA for the
 heavy traffic load ...48

7.9 Packet loss ratio vs. buffer size for FSDA, DADT, and DA for the heavy
 traffic load..49

7.10 Packet loss ratio vs. Alpha for DA for the actual traffic load...........................52

7.11 Packet loss ratio vs. Alpha Variation for DADT for the actual traffic load53

7.12 Packet loss ratio vs. Load for FSDA, DADT, and DA for
 the actual traffic load ...54

7.13 Packet loss ratio vs. Buffer size for FSDA, DADT, and DA for the actual
 traffic load..55

7.14 Steps performed for comparing DA and DADT with EBDA...........................58

7.15 Packet loss ratio vs. Load for EBDA, DADT, and DA for the
 average traffic load ..61

7.16 Packet loss ratio vs. Buffer Size for EBDA, DADT, and DA for
 the average traffic load...62

7.17 Packet loss ratio vs. Load for EBDA, DADT, and DA for
 the heavy traffic load ...64

7.18 Packet loss ratio vs. Buffer Size for EBDA, DADT, and DA for the
 heavy traffic load ...65

xi

7.19 Packet loss ratio vs. Load for EBDA, DADT, and DA for the
 actual traffic load ...68

7.20 Packet loss ratio vs. Buffer size for EBDA, DADT, and DA for the
 actual traffic load ..69

1

CHAPTER I

INTRODUCTION

Data is transmitted from one application to another in the form of packets in a

computer network [1]. A packet is the unit of data that is routed between an origin and a

destination on the Internet. In a typical end to end communication scenario the client will

make a request to the server for some information. The server will respond to the client

by sending the requested information. All the information sent to and from the client and

the server is in the form of packets. A packet consists of the necessary data for an

application program associated with headers, such as TCP header, IP header, etc. The

receiver in a network terminal processes and places a packet in a buffer until the

application requests the packet. The processing of a packet may involve calculation of the

checksums, removal of the headers, and determination of the destination application [2].

After processing, the packets are placed in a packet buffer in a network interface card

(NIC), which connects a computer to an Ethernet network. A Network Interface Card is

used for receiving the packets, processing the packets, passing the packets to the host

processor, and sending the packets to other computers in a network.

A packet buffer is a large shared dual-ported memory [6]. Packets for each

application are multiplexed into a single stream. Packet buffer management algorithm

2

determines whether to accept or reject each packet. The number of total packets accepted

divided by the total number of incoming packets is called ‘Packet Loss Ratio.’ Hence,

Packet Loss Ratio is equal to:

 Packet Loss Ratio = Total Number of Packet Accepted (1.1)

 Total Number of Incoming Packets

 The accepted packet is placed into a logical FIFO (First In, First Out) queue; each

application has its own queue in a packet buffer [2-4]. The accepted packet remains in a

buffer until the application retrieves it from the buffer. Determining whether to reject the

packet or accept the packet is a slow process [5].

In general, incoming packets for different applications at different data rates are

placed in a buffer. These accumulated packets in the buffer can reduce the available

buffer space for the next incoming packet. Once the buffer is full, further incoming

packets will be dropped. Therefore, it is important to reduce packet loss ratio to support

any end-to-end applications in a computer network [5] [6]. The Buffer Management

algorithm plays a vital role in reducing the packet losses in network terminals. An

efficient buffer management algorithm should not only minimize packet losses but also

distribute packet losses among different applications evenly. For example, if there are

three applications say ‘application1,’ ‘application2’ and ‘application3’ with packet sizes

of 128, 128, and 256 Bytes respectively. For packet losses to be evenly distributed,

‘application1’ should have almost same packet loss ratio as those of ‘application2’ since

their packet sizes are equal (each 128 Bytes). However, for the ‘application3’, packet loss

ratio can be greater than the packet loss ratio for ‘application1’ or ‘application2’. This is

3

due to the fact that the packet size of ‘application3’ is greater than the packet sizes for

‘application1’ and ‘application2.’

1.1 Problem Statement and Motivation

It is essential to have a buffer management algorithm that can utilize maximum

memory of the packet buffer and also be able to distribute packet losses among different

applications more evenly. An application may use TCP or UDP, depending upon the type

of application. TCP (Transmission Control Protocol) is the most commonly used protocol

on the Internet. The reason for this is because TCP offers error correction. For TCP

applications the sender first sends small number of packets and then waits for the

response from client [22]. The client will respond when it receives those packets. At the

time of waiting, no packets would be sent to client. Data critical applications should use

TCP [1]. On the other hand, for applications that use UDP, there is no wait period. The

sender does not wait for any response for client. There may be loss of some packets but

that has no effect on the system. Time-critical applications like multi-media applications

use UDP. UDP is faster than TCP because there is no form of flow control or error

correction. TCP ensures that the data that the reader gets exactly what was sent, in the

right order [22]. UDP offers no such guarantees [22]. So, the buffer management

algorithm for UDP applications needs not to care even if there is some loss of packets

which the sender is not aware of. Hence, this thesis compares the algorithm designed for

UDP in a different section than the algorithm designed for TCP.

There are many algorithms reported in the architecture [16]. Popular algorithms

include Completely Shared algorithm, Completely Partitioned algorithm, Dynamic

4

algorithm and Dynamic Algorithm with Dynamic Threshold [16]. None of the algorithms

except for Completely Shared algorithm makes full utilization of the packet buffer

memory. That is, packets are rejected even if there is some space left in the packet buffer.

However, Completely Shared algorithm is not adaptive to changing traffic conditions.

Any active application can fill the entire buffer, thus rejecting the packets of other

applications (Section 3.4.2). Hence, Completely Shared algorithm is not fair to all the

applications since it does not distribute packet losses evenly among the different

applications.

In Complete Partitioned algorithm, each application gets a fixed amount of space

in the buffer. Thus, if any application becomes inactive, the space allocated to it is not

utilized. Completely Shared algorithm and Completely Partitioned algorithm are called

static threshold schemes since they are not adaptive to changing traffic conditions. These

algorithms are simple to implement in the hardware.

The third popular algorithm is the Dynamic algorithm [8] [16]. In Dynamic

algorithm, packet buffer space allocated to each application is dynamic and it depends on

the amount of space left in the packet buffer. Dynamic algorithm is adaptive to changes

in traffic conditions (Section 3.4.3). However, Dynamic algorithm does not take packet

sizes into consideration. Also, a packet can be rejected even if there is some space left in

the buffer.

 The fourth algorithm is Dynamic Algorithm with Dynamic Threshold (DADT)

[16]. This algorithm is very similar to Dynamic algorithm. Unlike Dynamic algorithm,

5

Dynamic Algorithm with Dynamic Threshold takes packet size of applications into

consideration.

Of all the above algorithms, DADT has minimum packet loss ratio. DADT

minimizes packet losses by increasing the packet losses of application with largest packet

size and decreasing the packet losses of applications with less packet size. Hence, it is not

fair to all the applications since the packet losses are not evenly distributed. So, we need

an algorithm which can reduce packet loss ratio by utilizing maximum buffer memory

and at the same time distributing the packet losses more evenly.

The main purpose of this research is to address the following issues:

1) Develop and simulate buffer management algorithm specifically for UDP-based

applications that can reduce the overall packet losses in network terminals and

utilize maximum packet buffer memory.

2) Develop and simulate buffer management algorithm that can be used in both UDP

as well as TCP-based applications ands which can reduce the overall packet losses

in network terminals and utilize maximum packet buffer memory.

1.2 Summary of Main Contributions

The main contributions of this thesis work are as follows:

1) Proposal of a new buffer management algorithm called Fairly Shared Dynamic

Algorithm (FSDA) for protocol processors in an NIC. FSDA utilizes whole

packet buffer memory and reduce overall packet losses significantly. This

algorithm is primarily designed for multimedia applications and all other

applications that use User Datagram Protocol (UDP) (Section 7.5).

6

2) Proposal of a new buffer management algorithm called Evenly Based Dynamic

Algorithm (EBDA) that distributes the packet losses evenly among different

applications and also reduces the overall packet losses significantly. This

algorithm can be used both in TCP and UDP- based applications.

3) Development of a simulation model for the packet buffer in a protocol processor

and performance comparison of the different algorithms.

1.3 Organization

The remainder of the thesis is organized as follows. In Chapter II we briefly

describe the existing architectures for network interface card. Chapter III explains the

popular buffer management algorithms. After that, Chapter IV introduces new algorithm

Fairly Shared Dynamic Algorithm. The working of the algorithm is discussed in detail.

Chapter V introduces new algorithm Evenly Based Dynamic Algorithm. Chapter VI

explains the simulation environment which we have used to measure and compare the

performances of different algorithms. Chapter VII gives the simulation results and

analyzes them. Finally, Chapter VIII concludes the thesis and discusses the future work.

7

CHAPTER II

ARCHITECTURES FOR NETWORK INTERFACE CARD

 Network Interface Card is used for receiving the packets and sending the packets

to other computers in a network. There are three generations for NIC card reported in the

literature [20]:

1) First Generation NIC

2) Second Generation NIC

3) Third Generation NIC

In the first generation NIC, a packet is received by the NIC and the data link layer

processing is done by the NIC. After processing, the packet is passed on to the host

processor. Hence, first generation NIC handles layer 1 and layer 2 of TCP-IP model.

Section 2.1 explains the first generation NIC in detail.

 Second generation NIC handles most of the layers 1-3 of TCP-IP model. This

results in off-loading the host processor to some extent [20].

In the third generation NIC, additional hardware has been added on the NIC.
Third generation systems use an embedded processor to handle layer 4 functionality and

exception packets that cannot be forwarded across the fast path. Embedded processor

architecture is chosen because ease of implementation and amenability to change are

8

more important than speed [20]. The algorithms designed and developed in this thesis

are for third generation NIC.

2.1 Traditional Architecture for Network Interface Card

Figure 2.1 explains the working of a traditional architecture for an NIC.

Traditionally a computer has received packets through an NIC, the Ethernet packet layer

is processed on the NIC and the packet is buffered on the NIC, before it is transferred to

the main memory [2].

Ethernet PHY

Ethernet MAC

DMA Controller

Packet Buffer

IP processing

TCP/UCP processing,
including copy
to user memory

Application processing

Kernel Memory
Area

User Memory Area

Host Processor

Network Interface
Card

 Figure 2.1: Traditional Architecture for Network Interface Card [2].

9

Then, the IP header and the TCP or UDP header is processed by the OS. Since

this implies calculating the checksum over the whole packet, the whole packet has to be

read from memory. The OS can also have the memory area divided into one kernel part

for the OS and one user part for the applications. This implies a consecutive write

operation of the whole packet as well [2].

2.2 Protocol Processor Architecture for Network Interface Card

In the traditional architecture for an NIC, the physical layer and MAC layer

processing is done on an NIC [2]. In general, 20%-60% of the processing power of OS is

used for protocol handling. Therefore, the traditional packet reception architecture cannot

work efficiently for a high-speed network, more than 10 Gb/sec [2].

 Tomas Henriksson, et al. [2] proposed protocol processor architecture (third

generation NIC) to offload the packet processing from the operating system. The new

packet reception shown in Figure 2.2, moves layer 3 and layer 4 processing to an NIC

[2]. Packets coming in from the network are received on the NIC and are processed for

layer 1-2 protocols. Instead of sending the packet over to the host processor for further

processing, the protocol processor on the NIC handles the processing of layer 3 and layer

4 protocols. The main task of a protocol processor is to handle protocol processing at a

wire speed [2].

As shown in Figure 2.2, the incoming packets will stream through the protocol

processor and the payload (application) data will be stored in the packet buffer until the

host application retrieves it. Incoming packets are classified based on the application.

Once the packet is classified, it is stored in an output queue for that application in the

10

buffer. The supporting microcontroller is used for sending acknowledgment to the sender

and receiving the next packet.

Ethernet PHY

Protocol Processor

DMA Controller
Supporting

Micro-controller

Application processing

User Memory Area

Host Processor

Network Interface
Card

 Figure 2.2: Protocol Processor Architecture for Network Interface Card [2].

Figure 2.3 shows the protocol processor core overview. The protocol processor

contains accelerators for checksum calculations. The packet is received through the

dynamic buffer, which normally holds only one word of data [2]. The dynamic buffer can

hold several words of data if that is required. It is controlled from the instruction.

Attached to the dynamic buffer is a field extraction unit, which extracts field from the

11

buffer content. The field is then forwarded to compare units (CU). CU is an array of ‘n’

comparators. CU gets reference values from parameter code book (PCB) [2]. PCB is a

lookup table, with k lines of each n words. A pointer from the instruction decoder (ID)

selects which line to forward to the output.

Dynamic Buffer

with Field

Extraction Unit

Compare Units

Control Code Book

(CCB)

Next Program

Counter Generation

(NPCG)

Parameter Code
Book (PCB)

Instruction Table (IT)

Program Counter

(PC)

Instruction Decoder
(ID)

Input Port

 Figure 2.3: Core Overview of Protocol Processor Architecture [2].

The output from the compare units is a vector of n bits, in which each bit

represents a match or a non-match [2]. These n bits are used to select an output from the

control code book (CCB). The CCB is another lookup table that contains relative jump

12

addresses. CCB consists of k lines of each n addresses [2]. CCB uses the same pointer as

PCB in order to select one of the k lines. The n output bits from the compare units select

which address to forward to the next program counter generation (NPCG). The NPCG

calculates the next program counter value, which is used by the program counter (PC).

The PC is a simple register, which is updated every clock cycle [2]. The output is used to

select an instruction from the instruction table (IT). The IT is a lookup table, which

contains the instructions for the protocol processor [2].

2.3 Memory Organization Using a Protocol Processor

The simplified packet buffer memory organization is shown in Figure 2.4. As

shown in Figure 2.4, incoming packets will stream through the protocol processor and the

payload (application) data will be stored in the packet buffer until the host application

retrieves it.

13

PPP

μC

Packet
Buffer DMA

CPU

Cache

Protocol
Processor

Host
Processor

Figure 2.4: Simplified packet buffer memory organization with the protocol processor [2]

First the packets are classified based on the application they are destined for and

then they are stored in the output queue for that application in the packet buffer. Each

application has an output queue in the buffer. In general, the packet buffer has FIFO

based output queues for each application to store its application data [7].

14

CHAPTER III

BUFFER MANAGEMENT ALGORITHMS

3.1 Role of a Buffer Management Algorithm

 After processing of layer 3 and layer 4 protocols, packets are placed in a packet

buffer in a network interface card (NIC). Buffer management algorithm determines

whether to accept or reject each packet. Figure 3.1 shows the role of a buffer

management algorithm in an NIC.

 The accepted packet is placed into a logical FIFO queue; each application has its

own queue in a packet buffer. In general, incoming packets for different applications at

different data rates are placed in a buffer. These accumulated packets in the buffer can

reduce the available buffer space for a next incoming packet. Once the buffer is full,

further incoming packets will be dropped. Therefore, it is important to reduce packet loss

ratio to support any end-to-end application in a computer network [5] [6]. Efficient buffer

space management can reduce the packet loss ratio. Buffer management algorithms in an

NIC determine how the buffer space is distributed among different applications.

15

Processing of
Layer 3

and Layer 4
Headers

Accepted
Packets

are placed in
Packet Buffer

Application
layer

retrieves
the packets

Buffer Management
algorithm

Accept or Reject
the Packet

 Figure 3.1: Role of Buffer management Algorithm in NIC.

 The size of the buffer needed is determined by the packet loss rate. The buffer

size must be large enough such that the packet loss ratio does not exceed a certain limit.

The required size of the buffer is a function of the incoming traffic rate, the offered load

‘ρ’, the traffic pattern and also the way the buffer is shared among various output queues

[10].

Buffer size = f (traffic rate, offered load ρ , traffic model, buffer management algorithm)

16

3.2 Difference between Buffer Management Algorithms for an NIC and a
Switch

Buffer management algorithms in an NIC must be adaptive and intelligent to any

changes in traffic conditions. These algorithms are different from what we require in a

switch and a hub of the layer 2 (MAC Layer). A switch stores all the incoming packets in

a common memory buffer that all the switch ports (input/output connections) share. A

switch reads the MAC address and sends the packet out to the correct port of the

destination node. Hence, the role of a switch is to store and forward a packet to a correct

destination [17]. However, in an NIC, a buffer memory must be intelligently shared so

that all the applications get fair amount of the buffer space. The aim of the buffer

management algorithm should be to minimize the packet loss ratio and simultaneously,

be fair to all the applications.

3.3 Design of a Buffer Management Algorithm

 The design of a buffer management algorithm needs to consider the following

three factors [2]:

1) Packet loss ratio - It is defined as the ratio of the number of dropped packets to the

total number of received packets [8].

2) Hardware complexity - The amount of hardware required to implement a given

buffer management algorithm.

3) Fair to all the applications – Packet losses should be evenly distributed among

different applications.

17

 Buffer space can be managed using either a static threshold scheme or a dynamic

threshold scheme among various applications. The static threshold scheme involves

establishing the maximum and minimum limits for a buffer space available for each

application [16]. In this scheme, a packet is accepted only if the queue length for an

application is smaller than the static threshold for the application. The static threshold

scheme requires only queue length counters and a comparator [14]. The static threshold

scheme is easy to implement in hardware, but it is not adaptive to any changes in traffic

conditions. On the other hand, the threshold value of the dynamic scheme is determined

by the total amount of unused buffer space at any instant of time. Therefore, the dynamic

threshold scheme is adaptive to changes in traffic conditions. In general, the dynamic

threshold scheme has less packet loss ratio than the static threshold scheme.

3.4 Popular Buffer Management Algorithms

Four popular buffer management algorithms are reported in literature [16]. They are

 Completely Partitioned Algorithm (CP).
 Completely Shared Algorithm (CS).
 Dynamic Algorithm (DA) and
 Dynamic Algorithm with Dynamic Threshold (DADT).

CP and CS are static threshold schemes, static thresholds; on the other hand, DA and

DADT are dynamic threshold schemes, dynamic thresholds.

3.4.1 Completely Partitioned Algorithm (CP)

 Kamoun and Kleinrock [11] proposed CP. In CP, the total buffer space ‘M’ is

equally divided among all the applications (N). Hence, CP does not provide any sharing

18

of a buffer space among different applications. Packet loss for any application occurs

when the buffer space allocated to that application becomes full. If ‘M’ is the total buffer

space, ‘n’ is the number of applications and ki,, i= 1….n, represents the size of queues

i=1….n then:

 N

 ∑ ki = M (3.1)
 i=1

For example, if the total buffer space is 500 packets, and if the number of applications

are 5, then each application gets space for 100 packets. Packet loss for an application

occurs when the queue length for an application exceeds 100 packets.

The advantage of this algorithm is that it works well if all the output queues are

competing for a buffer space [6]. In addition, it is easy to implement in hardware.

However, if all the applications are not competing for the buffer space, then it can reject

the incoming packets even though there is some space left in the buffer. Its ability to

adapt to the changing traffic conditions is poor because the buffer space allocated to an

output queue is not utilized if its corresponding input port becomes inactive.

3.4.2 Completely Shared Algorithm(CS)

 In CS [11], packets are accepted as long as there is some space left in a buffer,

independent of the application to which a packet is directed. This algorithm utilizes the

whole buffer space. Packet loss occurs only when the buffer is full. If ‘M’ is the total

buffer space, ‘n’ is the number of applications and ki, i= 1….n, represents the size of

queues i=1….n then:

19

 ki = M, i =1, 2,.…, N (3.2)

For example, if the total buffer space is 500 packets and there are 5 applications,

then any one application packets can occupy the entire buffer space, leaving other

applications with no buffer space at all. Packets of any application can occupy as much

buffer space as possible. The only condition is that accumulative sum of all the queues

should not exceed the total buffer space [8].

 The algorithm works well under the balanced load conditions. In the balanced

load conditions, incoming packets are almost equally distributed among all the

applications; hence, this algorithm can provide the fairness to all the applications under

the balanced load conditions [16]. In addition, it is easy to implement in hardware. The

major drawback of this algorithm is that a single application can occupy the whole buffer

space if the load of the application is high. Therefore, it does not guarantee fairness to all

the applications.

3.4.3 Dynamic algorithm(DA)

When only one application is active, we would like to allocate the maximum

buffer space to it. When there are many active applications, we want to divide the

memory fairly among them [14]. Dynamic algorithm achieves this by changing the

threshold value dynamically, based on the traffic conditions. The threshold value is

determined by monitoring the total amount of an unused buffer space

20

 In DA, packets for any application are accepted as long as the queue length for the

application is less than the threshold value of that application. Packet loss occurs only

when the queue length of an application exceeds its threshold value. If at any instant ‘t’,

T (t) be the control threshold and let Qi
 (t) be the length of queue ‘i.’ Q (t) is the sum of

all the queue lengths [14], then, if ‘M’ is the total buffer space, the controlling threshold

will be

 T(t)=α* (M-Q(t)) (3.3)

where ‘α’ is some constant. The ‘α’ value is generally taken as a power of two (either

positive or negative), so that threshold computation is easy to implement in hardware

[14]. This algorithm is robust to changing load conditions in traffic and it is also easy to

implement in hardware. However, it has a drawback that it rejects packets when the

queue length for an application exceeds the threshold value, though there is some space

available in the buffer memory. Also, DA works well for ATM switches since packet size

for different application is same in ATM switches. However, in an NIC, different

applications may have different packet sizes. Hence, DA does not work that efficiently in

an NIC.

3.4.4 Dynamic Algorithm with Dynamic Threshold (DADT)

 The DADT [16] works like DA. In this algorithm, the alpha ‘α’ value is different

for different applications and is dependent on the packet size of an application. Unlike

DA, different applications do not have the same threshold value. By varying the threshold

21

value, DADT does not allow queues with the largest packet size to fill the buffer at a

faster rate. In DADT, we have

 T(t)= αi* (M-Q(t)) (3.4)

where ‘αi’ is the proportionality constant and varies for each queue. This algorithm

achieves the least packet loss ratio among all the algorithms described above [16].

 However, it has a drawback that it does not use the whole buffer space. Therefore,

when the queue length for an application exceeds the threshold value of that application,

packets are rejected even if there is some space left in a buffer. Also, it is difficult to

determine the optimum alpha ‘α’ value for each application. The optimum alpha values

can come out to be different from power of two. In this case, shift registers cannot be

used for implementing it in hardware.

22

CHAPTER IV

FAIRLY SHARED DYNAMIC ALGORITHM

As we discussed, CS utilizes the buffer memory at full. The algorithm, however,

is not fair to all the applications and also not adaptive to changing traffic conditions. On

the other hand, DA and DADT are adaptive to changing conditions, but they do not

utilize buffer memory at full. Thus, packets can be rejected even if there is space left in

the buffer. So, to utilize the full memory space in the buffer, to reduce the overall packet

loss ratio and to be fair to all the applications, we need one algorithm that will take care

of all the three factors.

Therefore, we propose Fairly Shared Dynamic algorithm (FSDA) that will satisfy

three factors:

1) Fairness to all the applications.

2) Full utilization of a buffer space.

3) Reduce overall packet loss ratio.

4.1 Working of FSDA

To achieve fairness and full utilization of buffer space, FSDA maintains a flag for

each application. This flag will indicate whether or not the application has taken more

23

space than its threshold value. The threshold value is determined by monitoring the total

amount of an unused buffer space.

Figure 4.1 shows the flowchart of FSDA. The following example explains the

working of FSDA in more detail. Let us assume that there are two applications:

application one and application two. Total buffer space ‘M’ is 50 bytes. For simplicity,

let us take alpha value as 2 for two applications, packet size for application one as 4 bytes

and for application two as 8 bytes.

Incoming Packet

Q(i) < T(t)

Y

(M − ΣQ(i)) ≥ psize(i) (M − Σ Q(i)) ≥ psize(i)

N

Replace a packet
of application
whose flag = 1
with incoming

packet

Accept
Accept and
set flag = 1

for application (i)

Y YN N

Reject

M: total buffer space
Q(I): queue length of application (i)
T(t): threshold at instant ‘t’
psize(i): packet size of application (i)
I: 1 to n, n: number of applications

 Figure 4.1: Flowchart for FSDA

24

Say at any instant ‘t’, we have queue lengths (in bytes) as 24 and 16 for

application one and application two, respectively. Figure 4.2 shows the threshold values

and buffer state at any instant ‘t.’ Now, if a packet for application one comes, then it will

be rejected in DA since its queue length (Q(t)=24) exceeds its threshold value (T (t) =

20). On the other hand, FSDA will accept this incoming packet for application one and

will set the flag for application one to ‘1.’

In FSDA, the set flag for application one indicates that application one has taken

more space than its threshold value. Further incoming packets for application one will be

accepted as long as there is sufficient space in the buffer memory, keeping its flag set to

‘1.’ Figure 4.3 shows the value of flags after the packet for application one is accepted.

Similarly, for application two, packets will be accepted as long as there is some space in

the buffer. We will keep the flag of application two set to ‘0’ until it takes less space than

its threshold value.

25

24 Bytes

16 Bytes

Queue 1

Queue 2

Total Buffer Size=50 Bytes
Flag for “application1” : 0
Flag for “application2” : 0

Counter1 Counter2

24 24

16 16

Packet Buffer

Threshold
values

20

20

 Figure 4.2: Working Example for FSDA.

28 Bytes

16 Bytes

Queue 1

Queue 2

Total Buffer Size=50 Bytes
Flag for “application1” : 1
Flag for “application2” : 0

Counter1 Counter2

24 28

16 16

Packet Buffer

 Figure 4.3: Working Example Continued.

26

Now, there can be two cases when the memory is full:

1) Flag for application two is ‘0’ (space occupied by application two is less than its

threshold value).

 2) Flag for application two is ‘1.’

For the case 1, if the current incoming packet is for the application two, then we

will accept it and replace the packet of the application one (since flag for the application

one is ‘1’) by this incoming packet of the application two. This way, we are giving

fairness to all the applications and utilizing the whole buffer space simultaneously.

For the case 2, if the incoming packet is for the application two, then it will be

rejected since there is no space left in the buffer. In FSDA, packets are replaced only

when the memory is full and the incoming packet is for an application whose flag is still

‘0’ and there exists an application with its flag as ‘1’.

 As shown in Figure 4.2, in FSDA, we are maintaining two counters, counter one

and counter two, for each application. We will increment counter one for an application

until the flag for the application is ‘0.’ However, counter two for the application will

always be incremented whenever the packet for the application is accepted. The value of

counter two for an application controls the setting and resetting of the flag for the

application. The flag for any application will be reset to ‘0’ when the value of counter

two for that application is less than the threshold value, which is calculated by using

counter one.

27

4.2 Advantages of FSDA

 The FSDA, DA, and DADT have one major advantage over the static threshold

schemes: they are adaptive to changes in traffic conditions [14]. FSDA works similar to

DA and DADT. In addition, FSDA utilizes buffer space efficiently. Another advantage of

FSDA is that it is more adaptive to changes in traffic conditions. If one application is

active, then FSDA will provide the whole buffer space to it, functioning like CS. If many

applications are active, then FSDA will work like DA and DADT except for the fact that

it will utilize the whole buffer space. Like DA, we keep the ‘α’ value as a power of 2,

which makes its hardware implementation easier. This gives FSDA a distinct advantage

over DADT. All the advantages provided by FSDA will come at the cost of more

hardware. For example, to implement FSDA more number of counters will be required.

4.3 FSDA for UDP

 Though detailed discussion will be done in Section 7.5, FSDA works more

efficiently for applications that use UDP. This is due to that fact that information

regarding the replaced packets will be lost and the sender will not be aware of the fact

that packets have been replaced thus rejected. Hence, FSDA cannot be used for data

critical applications or TCP-based applications.

28

CHAPTER V

EVENLY BASED DYNAMIC ALGORITHM

DADT reduces the overall packet loss ratio by giving less threshold value to the

applications with larger packet sizes. This results in an increase in packet losses for

applications with larger packet sizes, thus resulting in reducing fairness for applications

with large packet sizes.

 Table 5.1 compares the packet losses for different queues in DA and DADT. For

comparison purposes, we have used six applications, average traffic network load

(Chapter 7), buffer size 600 packets, bursty uniform traffic model, and average dequeue

time of 14 clock cycles for the burst of 10 packets (Chapter 7).

Table 5.1

Comparison of DA and DADT

Queue
Packet

Size
(Packets)

Packets rejected
in DA Packets rejected in DADT

0 8 550486 337482
1 2 46901 15841
2 8 547978 335285
3 1 16796 4549
4 4 163126 79563
5 16 1421350 1858333

Total
packet loss

 2746637 2631053

29

 As seen from Table 5.1, DADT reduces packet losses for applications 0, 1, 2, 3, 4,

by decreasing the amount of threshold value for application 5 [16], which has the largest

packet size. Low value of threshold for application 5 results in a reduction of packet

losses for applications 0, 1, 2, 3, and 4; though packet losses for application 5 increase

significantly. The net result is a decrease in overall packet loss in DADT when compared

to DA.

 As seen from Table 5.1, by increasing the packet losses for application 5, which

already has more packet losses than other applications, degree of fairness has been

reduced. Therefore, we proposed Evenly Based Dynamic Algorithm (EBDA) that will

take fairness among applications and packet sizes of applications into consideration while

allocating buffer space to each application.

5.1 Working of EBDA

Figure 5.1 shows the flowchart of EBDA. For any application with packet size

‘P’, the value of threshold for this application will depend on packet sizes of other

applications also. For example, suppose there are six applications with packet size as 256,

256, 512, 128, 64, 128 bytes or 8, 8, 16, 4, 2, 4 packets respectively. The average packet

size for these six applications is:

Average Packet size = (8+8+16+4+2+4/6) =7

Now there can be two cases:

1) ‘P’ is less than Average Packet Size: For such applications the threshold value

will be calculated using the equation shown in 5.1.

30

2) ‘P’ is greater than Average Packet Size: For such applications the threshold value

will be calculated using the equation shown in 5.2.

Incoming Packet

Psize(i) <=∑Psize(i)/n

Y

α1.(M -Q(t))+γ1*psize(i) >=Q(i) α2.(M-Q(t))+γ2*psize(i) >=Q(i)

N

Reject Accept Accept

Y YN N

Reject

M: total buffer space
Q(i): queue length of application (i)
T(t): threshold at instant ‘t’
psize(i): packet size of application (i)
i: 1 to n, n: number of applications

 Figure 5.1: Flowchart for EBDA

The idea behind these threshold value computation equations is to distribute the

packet losses more evenly among the different applications. Our simulation results have

shown that by taking packet size factor in the summation as in equation 5.1 and equation

5.2, instead of multiplication as in DADT for determining the threshold value for the

application, we can reduce the overall packet loss ratio as well as distribute the packet

losses more evenly among the different applications.

31

 T(t)=α1*(M-Q(t))+γ1*psize(i) (5.1)

 T(t)=α2*(M-Q(t))+γ2*psize(i) (5.2)

 The optimum alpha1 (α1), alpha2 (α2), gamma1 (γ1), and gamma2 (γ2) values as

shown in equation 5.1 and 5.2 are determined through simulations.

32

CHAPTER VI

SIMULATION ENVIRONMENT

We developed our own simulation model instead of using already existing

simulators like network simulator (NS) since NS (version 2) [23] is an object-oriented,

discrete event driven network simulator developed at UC Berkely written in C++ and

OTcl. NS is primarily useful for simulating local and wide area networks. It implements

network protocols such as TCP and UPD, traffic source behavior such as FTP, Telnet,

routing algorithms such as Dijkstra, and more. NS also implements multicasting and

some of the MAC layer protocols for LAN simulations [23].

For our simulations, we have to study the packet loss for different algorithms like

DA, DADT, FSDA and DADT. So, we have to write a simulation program for simulating

incoming packets for different algorithms. So we have to use a tool in which we could get

event driven environment and we could write our own logic. So we used VHDL for our

simulations.

The entire simulation model is developed using a Hardware Description Language

(HDL) simulator in MODELSIM [1]. VHDL, a Hardware Description Language was

chosen to code the entire simulator. We used VHDL since VHDL is a parallel language

while C/C++ is a sequential language. Each statement occurring in VHDL is executed

33

concurrently, that is, all statements run simultaneously. In C/C++ each statement is

executed in sequential order.

6.1 Simulation Model for the Packet Buffer

Figure 6.1 shows the diagram of Simulation model for the packet buffer in an NIC.

Traffic
Generator:
Config file,

SIM simulator,
Converter

Packet Buffer

Controller
headers

RA/WA

FIFO

FIFO

FIFO

FIFO

1

2

i

n

Output
Links

packets

M

traffic
model

load
on
each
port

M: Buffer Space
RA: read address
WA: write address

 Figure 6.1: Simulation model for the packet buffer.

The Traffic Generator block produces output (packets) according to two inputs (Traffic

Model and Load on each port).

For the first input, there are three kinds of Traffic Model that are available for

selection. Those are [6][16]:

34

• Bursty Uniform Traffic Model: Burst of packets in busy-idle periods with

destinations uniformly distributed packet-by-packet or burst-by-burst over all the

output ports. The number of packets in the busy and idle periods can be specified; and

• Bursty Non-Uniform Traffic Model: Burst of packets in busy-idle periods with

destinations non-uniformly distributed packet-by-packet or burst-by-burst over all the

output ports; and

• Bernoulli Uniform Traffic Model: Bernoulli arrivals, destinations uniformly

distributed over all the output ports.

The second input, Load on each port (ρ), is determined by the ratio of the number of

packets in the busy-idle periods [15] and is given by the equation:

 (6.1)

where Lb = mean burst length and Lidle= mean idle length.

For example: For a given load of ρ= 0.7 and a mean burst length of 20 packets,

the mean idle length is 10 packets such as ⎟
⎠
⎞

⎜
⎝
⎛ =

+
7.0

1020
20 .Based on the two inputs, Traffic

Generator produces packets (trace file) in a serial fashion with a randomly distributed

output destination request. The packets are produced with a mean inter-arrival time and

mean burst length [6]. The ‘SIM’ simulator in [15] is used for producing the trace of

packets. In Figure 6.1, once the packet is generated and arrives at the packet buffer, the

headers from the Traffic Generator activate the Controller. The Controller then decides to

accept or drop the packet based on the buffer management algorithm used. If the packet is

idleLbL
bL

+
=ρ

35

accepted into the buffer, the Controller specifies the write address (WA) based on the

output queue to which the packet is destined. Irrespective of whether the packet is

accepted or dropped, the Controller updates its state variables (number of packets

received, dropped, etc.).

.

 Figure 6.2: Sample Waveform for the simulation model

Figure 6.2 shows the sample waveforms and state variables for the simulation

model developed for NIC. As seen from the figure 6.2 ‘psize’ represents the size of the

36

packets of different applications. ‘Memsize’ represent the size of the buffer memory in

terms of packets. Variable ‘pout’ represents the destination of current incoming packet.

37

CHAPTER VII

SIMULATION RESULTS AND ANALYSIS

 It has been shown that dynamic threshold schemes are more robust than static

threshold schemes for uniform loads [14] [16]. Hence, the dynamic threshold schemes

can perform better than the static threshold schemes. Therefore, for our analysis, we will

compare our proposed algorithms FSDA and EBDA with the dynamic threshold schemes,

DA and DADT.

7.1 Simulation Results for FSDA

Three different network traffic loads are considered for our simulations and

comparisons of algorithms: average network traffic load, heavy network traffic load, and

actual network traffic load. We have used the “bursty uniform traffic model” for our

simulations of all the network traffic loads since it is the most commonly used model.

Figure 7.1 shows the steps performed for performance comparisons of different

buffer management algorithms. For each traffic load, first, the optimum alpha ‘α’ value is

determined for DA. After this, the best combination of the alpha values for DADT is

determined. This is followed by the performance comparison of DA, DADT, and FSDA

when the load and the buffer size are varied. Finally, improvement ratio is determined for

each network traffic load. Improvement ratio is defined as the difference of the number of

38

packet losses in FSDA and the compared algorithm (DA or DADT) divided by the

number of packet losses in FSDA. While calculating the improvement ratio and

performance analysis, the replaced packets have been taken into consideration for FSDA.

For all simulations, we have used six applications, bursty uniform traffic model, and

average dequeue time of 14 clock cycles for the burst of 10 packets.

Average Network
Traffic Load

Optimum alpha value is determined for DA

Optimum alpha values are determined for DADT

Heavy Network
Traffic Load

Actual Network
Traffic Load

Performance comparison
for Buffer size variations

Performance comparison
for Traffic load variations

 Figure 7.1: Steps performed for comparing DA and DADT with FSDA

39

7.2 Simulation results for Average Network Traffic load

 Table 7.1 shows the packet sizes of different applications in bytes based on the

average network traffic load flow in [5]. For our simulation of the average traffic load,

we have used these packet sizes for different applications.

Table 7.1

Packet distribution for average traffic flow average network traffic load.

Queue0

Queue1 Queue2 Queue3 Queue4 Queue5

 Size in bytes 256

64

256

32

128

512

Packet unit #
 (32 bytes/unit)

8

2 8 1 4 16

7.2.1 Optimum Value of alpha for DA

 Optimum alpha is considered as the alpha value for which DA gives the minimum

packet loss ratio. Figure 7.2 shows the packet loss ratio for DA as the alpha value is

varied from 4 to 20. In Figure 7.2, the size of the buffer is 600 packets, and “load on each

queue” is 70%. From Figure 7.2, we can see that initially, as the alpha value is increased,

packet loss ratio decreases until alpha=14. After then, the packet loss ratio starts

increasing because the larger alpha values can increase the control threshold of the

queues with large packet sizes. For ‘alpha=14’ and ‘alpha=16’, the packet loss ratio is

very similar. From a hardware implementation point of view, we will take ‘alpha =16

40

(24)’ as the optimum value. The reason behind this is that if alpha is a power of 2, shift

registers can be used to implement the algorithm in hardware.

0.093
0.095
0.097
0.099
0.101
0.103
0.105
0.107
0.109

4 6 8 10 12 14 16 18 20
Alpha

Pa
ck

et
 L

os
s R

at
io

 Figure 7.2: Packet loss ratio vs. Alpha for DA for the average traffic load

7.2.2 Optimum Value of alphas for DADT

For DADT, each queue has a different alpha and different threshold value. For

DADT, first we determined the optimum ‘α’ (alpha) values. Optimum alpha values for

DADT is the combination of alpha for different queues for which DADT gives the

minimum packet loss ratio for the same load and the same buffer size.

41

 Table 7.2 shows the different combinations of alpha that we have taken and

Figure 7.3 shows the packet loss ratio corresponding to them. As seen from figure 7.3,

packet losses for variation 5 are less than packet losses for other variations. Note that

optimum alpha for application 1 and application 3 for variation 5 comes out to be other

than multiple of two. Hence, implementing it in hardware will be more difficult as

compared to it would have been in case alpha is multiple of two.

Table7.2

 Variation of alpha for DADT for the average traffic load

Variation Q0 Q1 Q2 Q3 Q4 Q5

1 12 10 12 10 10 8
2 14 10 14 10 10 7
3 14 12 14 12 12 8
4 16 14 16 14 14 6
5 16 14 16 14 16 8

So, for our comparison purpose, we will use ‘alpha=16’ for DA and the variation 5

(from table 7.3) as alpha values for DADT. In FSDA, changing the alpha value will have

little impact on the performance since FSDA utilizes full memory most of the time.

Therefore, ‘alpha =4’ will be used for FSDA. Since 4 is a power of 2; it will make

hardware implementation for the FSDA easier.

42

0.09

0.0905

0.091

0.0915

0.092

1 2 3 4 5
Variation

Pa
ck

et
 L

os
s R

at
io

Figure 7.3: Packet loss ratio vs. Alpha Variation for DADT for the average traffic load

7.2.3 Comparison of FSDA, DA and DADT for different loads

 Figure 7.4 shows the performance of the three algorithms (FSDA, DA and

DADT) for different load. Load has been varied from 0.5 to 0.9.

43

0

0.05

0.1

0.15

0.5 0.6 0.7 0.8 0.9
Load

Pa
ck

et
 L

os
s R

at
io

DA
DADT
FSDA

 Figure 7.4: Packet loss ratio vs. Load for FSDA, DADT, and DA for the average
 traffic load

 Buffer size has been taken as 600 packets. As seen in Figure 7.4, FSDA has the

least packet loss ratio for all of loads. The packet loss ratio increases for all the

algorithms with increasing “load on the queues”. Notice that the performance difference

increases more at higher loads. As the load is increased, most applications tend to

increase their queue length greater than their threshold values frequently. Since, FSDA

utilizes the whole buffer space; FSDA can reduce packet loss ratio efficiently.

44

7.2.4 Comparison of FSDA, DA and DADT for different buffer size

 Figure 7.5 shows the performance of the three algorithms FSDA, DA, and DADT

as the buffer size is varied from 500 to 800 packets.

0

0.05

0.1

0.15

0.2

500 600 700 800
Buffer Size

Pa
ck

et
 L

os
s R

at
io

DA

DADT

FSDA

Figure 7.5: Packet loss ratio vs. Buffer Size for FSDA, DADT, and DA for the average
 traffic load

 With an increase of buffer size, packet loss ratio decreases for all the three

algorithms. This is due to the fact that each queue gets more space to accommodate

packets. As seen from figure 7.5, FSDA has least packet loss ratio as compared to other

algorithms.

45

7.2.5 Improvement ratio of FSDA over DA and DADT

 Table 7.3 shows the improvement in packet loss ratio for ‘FSDA over DA’ and

‘FSDA over DADT’ according to different loads, from 0.5 to 0.9. Buffer size has been

taken as 600 packets and the traffic model is “bursty uniform”. As the load is increased

the improvement ratio decreases. This is due to the fact that as the buffer size is increased

packet losses are reduced.

Table 7.3

Improvement ratio of FSDA over DA and DADT for the average traffic load.

 Load Improvement ratio (%)
(FSDA/DA)

Improvement ratio (%)
(FSDA/DADT)

0.5 23.2 13.8
0.6 21.2 14.0
0.7 18.5 13.5
0.8 15.9 12.2
0.9 13.8 10.2

7.3 Simulation Results for Heavy Network Traffic load

Table 7.4 shows the packet sizes of different applications in bytes based on the heavy

network traffic load in [5]. For our simulation of the heavy traffic load, we have used

these packet sizes for different applications.

46

Table 7.4

Packet distribution for heavy traffic flow average network traffic load.

Queue0

Queue1 Queue2 Queue3 Queue4 Queue5

 Size in bytes 128

64

128

32

256

512

Packet unit #
 (32 bytes/unit)

4

2 4 1 8 16

7.3.1 Optimum Value of alpha for DA

 Figure 7.6 shows the packet loss ratio for DA as the alpha value is varied from 4

to 20 for the heavy network traffic load. In Figure 7.6, the size of the buffer is 600

packets, and the “load on each queue” is 70%. The optimum alpha value for DA comes

out to be 16.

0.068
0.07

0.072
0.074
0.076
0.078
0.08

0.082

4 6 8 10 12 14 16 18 20
Alpha

Pa
ck

et
 L

os
s R

at
io

 Figure 7.6: Packet loss ratio vs. Alpha for DA for the heavy traffic load

47

7.3.2 Optimum Value of alphas for DADT

Now we will determine the optimum values of alpha for DADT. Table 7.5 shows

the different combinations of alpha that we have taken.

Table 7.5

 Variation of alpha for DADT for the heavy traffic load

Variation Q0 Q1 Q2 Q3 Q4 Q5

1 18 18 18 18 18 6
2 14 10 14 10 10 7
3 14 12 14 12 12 8
4 16 14 16 14 14 6
5 16 14 16 14 16 8

0.066
0.0662
0.0664
0.0666
0.0668
0.067

0.0672

1 2 3 4
Variation

Pa
ck

et
 L

os
s R

at
io

Figure 7.7: Packet loss ratio vs. Alpha Variation for DADT for the heavy traffic
 load

48

Figure 7.7 shows the packet loss ratio corresponding to them. From Figure 7.7,

we can see that optimum combination of alpha comes out of the variation 3.

7.3.3 Comparison of FSDA, DA and DADT for different loads

 Figure 7.8 shows the performance of the three algorithms (FSDA, DA and

DADT) for different loads. Load has been varied from 0.5 to 0.9. Buffer size is taken as

600 packets. As seen from figure 7.8, FSDA outperforms DA and DADT.

0
0.02
0.04
0.06
0.08
0.1

0.12

0.5 0.6 0.7 0.8 0.9
Load

Pa
ck

et
 L

os
s R

at
io

DA
DADT
FSDA

Figure 7.8: Packet loss ratio vs. Load for FSDA, DADT, and DA for the heavy traffic
 load

 As the load is increased the performance difference increases. This is due to the

fact that as the load is increased, more number of packets is coming and since FSDA

49

make better utilization of whole memory, the packet losses increase more for DA and

DADT as compared to FSDA.

7.3.4 Comparison of FSDA, DA and DADT for different buffer size

 Figure 7.9 shows the performance of the three algorithms, FSDA, DA, and DADT

as the buffer size is varied from 500 to 800 packets. As seen from figure 7.9, FSDA has

least packet loss ratio.

0

0.02

0.04

0.06

0.08

0.1

0.12

500 600 700 800
Buffer Size

Pa
ck

et
 L

os
s R

at
io

DA
DADT
FSDA

Figure 7.9: Packet loss ratio vs. buffer size for FSDA, DADT, and DA for the heavy
 traffic load

50

7.3.5 Improvement ratio of FSDA over DA and DADT

Table 7.6 shows the improvement in packet loss ratio for ‘FSDA over DA’ and ‘FSDA

over DADT’ according to different loads, from 0.5 to 0.9. As we can see that for a load of

‘0.7’ improvements ratio is 16.8 when compared with DA and 12.5 when compared with

DADT.

Table 7.6

Improvement ratio of FSDA over DA and DADT for the heavy traffic load.

Load Improvement ratio (%)
(FSDA/DA)

Improvement ratio (%)
(FSDA/DADT)

0.5 16.6 10.2
0.6 17.1 11.1
0.7 16.8 12.5
0.8 15.7 13.3
0.9 13.9 12.0

7.4 Simulation Results for Actual Network Traffic load

Table 7.7 shows the packet sizes of the different applications in bytes based on

the actual network traffic load flow in [18]. The characteristics of the actual network

traffic load presented in this section is based on the data collected by the NAI project

from May 1999 to March 2000 at the NASA Ames Internet Exchange [19]. The packet

size distribution for the Internet traffic load is as shown in Table 7.7.

51

Table 7.7

Packet size distribution for an actual network traffic load [19].

Packet Size

< 44

50-500

500-600

>1500

Percentage (%)

50

14 18 18

The packet sizes assumed for each queue for simulation purposes are shown in

Table 7.8. The packet size distribution resembles the one shown in Table 7.7.

Table 7.8

Packet distribution for Actual flow actual network traffic load.

Queue0

Queue1 Queue2 Queue3 Queue4 Queue5

Size in bytes 32

32

32

64

512

1472

Packet unit #

(32 bytes/unit)

1

1 1 2 16 46

7.4.1 Optimum Value of alpha for DA

 Figure 7.10 shows the packet loss ratio for DA as the alpha value is varied from 4

to 20 for the actual network traffic load. Figure 7.10 shows that the optimum alpha value

for DA comes out to be 4. As we can see that as the value of alpha is increased the packet

loss ratio is also increased. This is due to the fact that queue 5 has a size of 46 bytes and

52

any increase in its threshold value will result in great increase in packet losses of other

applications.

0.18

0.182

0.184

0.186

0.188

0.19

4 6 8 10 12 14 16
Alpha

Pa
ck

et
 L

os
s R

at
io

Figure 7.10: Packet loss ratio vs. Alpha for DA for the actual traffic load

7.4.2 Optimum Value of alphas for DADT

Table 7.9 shows the different combinations of alpha for DADT and figure 7.11

shows the packet loss ratio corresponding to them. From figure 7.11 we can see that the

optimum alpha values come out of the variation 5.

53

Table 7.9

 Variation of alpha for DADT for the actual traffic load

Variation Q0 Q1 Q2 Q3 Q4 Q5

1 16 16 16 16 6 4
2 16 16 16 16 6 6
3 18 18 18 18 6 4
4 16 16 16 16 16 6
5 16 16 16 16 16 4

.

0.17
0.171
0.172
0.173
0.174
0.175
0.176
0.177

1 2 3 4 5
Variation

Pa
ck

et
 L

os
s R

at
io

 Figure 7.11: Packet loss ratio vs. Alpha Variation for DADT for the actual traffic
 load

 For application 5, optimum value of alpha is 4. As we can see for variation two,

packet loss ratio is greater than all other combinations. This is due to the fact that in

54

variation two value of alpha for application 5 is 6 which is high considering its packet

size. Also for application 4, value of alpha is 6 which gives it less threshold and thus

results in increase packet loss ratio. For variation 4, though value of alpha for application

5 is 6 but high value of alpha for application 4 results in overall less packet loss ratio.

7.4.3 Comparison of FSDA, DA and DADT for different loads

 Figure 7.12 shows the performance of the three algorithms (FSDA, DA and

DADT) for buffer size of 600 packets. Load has been varied from 0.5 to 0.9.

0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.5 0.6 0.7 0.8 0.9
Load

Pa
ck

et
 L

os
s R

at
io

DA
DADT
FSDA

Figure 7.12: Packet loss ratio vs. Load for FSDA, DADT, and DA for the actual traffic

 load

55

7.4.4 Comparison of FSDA, DA and DADT for different buffer size

Figure 7.13 shows performance of three algorithms FSDA, DA, and DADT as the

buffer size is varied from 500 to 800 packets. The performance of DA and DADT

becomes very similar for buffer size =800 packets while FSDA has better packet loss

ratio than DA and DADT.

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24

500 600 700 800

Buffer Size

Pa
ck

et
 L

os
s

R
at

io

DA

DADT

FSDA

Figure 7.13: Packet loss ratio vs. Buffer size for FSDA, DADT, and DA for the
 actual traffic load.

7.4.5 Improvement ratio of FSDA over DA and DADT

 Table 7.10 shows the improvement in packet loss ratio for ‘FSDA over DA’ and

‘FSDA over DADT’ according to different loads, from 0.5 to 0.9. For a load for ‘0.7’,

improvement ratio of FSDA over DA is 13.6% and over DADT is 7.5%.

56

Table 7.10

Improvement ratio of FSDA over DA and DADT for the actual traffic load.

Load Improvement ratio (%)
(FSDA/DA)

Improvement ratio (%)
(FSDA/DADT)

0.5 12.5 5.2
0.6 13.5 6.6
0.7 13.6 7.5
0.8 26 20.1
0.9 12.9 8.1

7.5 FSDA Designed for UDP

In the TCP protocol, a source gets an acknowledgement from a receiver when a

packet is accepted by a buffer management algorithm. On the other hand, in the UDP

protocol, packets are not acknowledged by a receiver.

As explained in the previous section, in FSDA, packets are replaced when a

buffer memory is full and an incoming packet is for an application whose flag is still ‘0.’

For the replaced packet, a source will not get an information that the packet has been

replaced, thus rejected, by a receiver. Hence, FSDA works more efficiently for the

UDP/IP than the TCP/IP.

 Table 7.11 shows the ratio of the number of replaced packets to the total number

of incoming packets as load varies from 0.5 to 0.9 for the average traffic load and busty

uniform model. Buffer size is taken as 600 packets.

57

 Table 7.11

Ratio of the replaced packets in FSDA

Load Total number of the replaced packets / Total Incoming
packets

0.5 0.009822 (0.98%)
0.6 0.013807 (1.38%)
0.7 0.017489 (1.74%)
0.8 0.018585 (1.85%)
0.9 0.018808 (1.88%)

Though, the percentage of replaced packets is very low but in data critical applications

even this low percentage of loss in undesirable. Hence, using FSDA for TCP-based

applications may result in loss of data.

58

7.6 Simulation Results for EBDA

Three different network traffic loads are considered for our simulations and

comparisons of algorithms: average network traffic load, heavy network traffic load, and

actual network traffic load. We have used the “bursty uniform traffic model” for our

simulations of all the network traffic loads since it is the most commonly used model.

Figure 7.14 shows the steps performed for performance comparisons of different

algorithms

Average Network
Traffic Load

Optimum alpha value is determined for DA

Optimum alpha values are determined for DADT

Heavy Network
Traffic Load

Actual Network
Traffic Load

Performance comparison
for Buffer size variations

Performance comparison
for Traffic load variations

Optimum alpha values are determined for EBDA

Figure 7.14: Steps performed for comparing DA and DADT with EBDA.

59

 First, the optimum value of alpha is calculated for DA. Then, optimum values of

alpha are calculated for DADT. Then, optimum values of alpha1, alpha2, gamma1 and

gamma2 are determined for EBDA. This is followed by the performance comparison of

DA, DADT, and EBDA when the load and the buffer size are varied. Finally,

improvement ratio is determined for each network traffic load.

7.7 Simulation Results for Average Network Traffic load

 Packet sizes for different applications based on the average network traffic load

flow are given in table 7.1.

7.7.1 Optimum Value of alpha for DA

In Section 7.2.1 we have already calculated the optimum value of alpha for DA

for average traffic load. The value of alpha comes out to be 16. So, we are going to use

optimum value of alpha as 16 for DA.

7.7.2 Optimum Value of alphas for DADT

For DADT optimum values of alpha are calculated in section 7.2.2. The optimum

values comes out to be 16 for queue0, 14 for queue1, 16 for queue2, 14 for queue3, 16 for

queue 4 and 8 for queue5. We are going to use these alpha values for different

applications.

7.7.3 Optimum Value of alpha1, alpha2, gamma1 and gamma2 for EBDA

 Table 7.12 shows the packet losses for different variations of alpha and gamma

values for EBDA, for a buffer size of 600 packets and load of 70% on each of queue. All

60

combinations that we have taken to find out values of alpha1, alpha2, gamma1 and

gamma2 are powers of two. From Table 7.12, optimum values of (alpha1, gamma1,

alpha2, and gamma2) come out to be for variation 1. For our comparison purpose, we

will use values of alpha1, alpha2, gamma1, and gamma2 as 16, 4, 64, and 64 (from

variation 1) respectively.

 Table 7.12

Variation of (alpha1, alpha2, gamma1 and gamma2) vs. total packet loss for EBDA

Variation of alpha1, alpha2, gamma1,
gamma2 Total Packet Loss

16,4,64,64 2353720
16,2,64,64 2356962
4,16,64,32 2360745
16,8,8,16 2422177
16,8,16,32 2376250
16,8,8,64 2385378
16,8,32,64 2361126
16,8,64,64 2353922

7.7.4 Comparison of EBDA, DA and DADT for different loads

 Figure 7.15 shows the performance of the three algorithms (EBDA, DA, and

DADT) for different loads. Load has been varied from 0.5 to 0.9. Buffer size is taken as

600 packets. As seen in Figure 7.15, EBDA has the least packet loss ratio for all of loads.

The packet loss ratio increases for all the algorithms with increasing “load on the

queues”. Notice that the performance difference increases more at higher loads. As the

load is increased, applications with larger packet size tend to increase their queue length

to values greater than their threshold values frequently. Since, EBDA utilizes the buffer

61

space more efficiently, providing fairness to all the applications; EBDA can reduce the

packet loss ratio significantly.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

0.5 0.6 0.7 0.8 0.9
Load

Pa
ck

et
 L

os
s R

at
io

DA
DADT
EBDA

Figure 7.15: Packet loss ratio vs. Load for EBDA, DADT and DA for the average
 traffic load

7.7.5 Comparison of EBDA, DA and DADT for different buffer size

 Figure 7.16 shows the performance of the three algorithms DA, DADT and

EBDA as the buffer size varies from 500 to 800 packets. With an increase of buffer size,

packet loss ratio decreases for all three algorithms. This is due to the fact that each queue

gets more space to accommodate packets.

62

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Packet Loss
Ratio

500 600 700 800

Buffer Size

EBDA
DADT
DA

Figure 7.16: Packet loss ratio vs. Buffer Size for EBDA, DADT, and DA for the
 average traffic load

7.7.6 Improvement ratio of EBDA over DA and DADT

 Table 7.13 shows the improvement in packet loss ratio for ‘EBDA over DA’ and

‘EBDA over DADT’ as the load varies from 0.5 to 0.9. For a load of 0.7 improvement

ratio is 16.7 over DA and 11.8 over DADT. When compared with FSDA, EBDA has less

improvement ratio. This is due to the fact that FSDA utilizes whole buffer memory. In

FSDA, packets are accepted as long as there is enough space for them in the buffer

memory while in EBDA, there is a controlling threshold. The advantage that EBDA has

over FSDA is that there is no need to replace packets in EBDA. This means that EBDA

can work more efficiently for applications that use TCP.

63

 Table 7.13

 Improvement ratio of EBDA over DA and DADT for the average traffic load

Load Improvement ratio (%)
(EBDA /DA)

Improvement ratio (%)
(EBDA /DADT)

0.5 15.3 6.57
0.6 16.6 9.59
0.7 16.7 11.8
0.8 15.9 12.2
0.9 15.1 11.6

7.8 Simulation Results for Heavy Network Traffic load

 Packet sizes for different applications based on the average network traffic load

flow are given in table 7.4.

7.8.1 Optimum Value of alpha for DA

 Optimum value of alpha for DA for heavy traffic load comes out to be 16. This is

shown in section 7.3.1.

7.8.2 Optimum Value of alphas for DADT

From section 7.3.2, we can see that Optimum Value of alphas for DADT comes

out be for variation 3 of table 7.5. The optimum alpha values are 14, 12, 14, 12, 12, and 8

for queue0 to queue5 respectively.

7.8.3 Optimum Value of alpha1, alpha2, Gamma1 and Gamma2 for EBDA

 Table 7.14 shows the packet losses for different variations of alpha and gamma

values for EBDA, for a buffer size of 600 packets, and a load of 70% on each of the

64

queue. From Table 7.14 optimum values of (alpha1, gamma1, alpha2, and gamma2)

come out to be for variation 1.

 Table 7.14

Variation of (alpha1, alpha2, gamma1 and gamma2) vs. total packet loss for EBDA

Variation of alpha1, alpha2, gamma1,
gamma2 Total Packet Loss

16,4,64,64 1727801
16,2,64,64 1747305
4,16,64,32 1789091
4,16,32,32 1824368

7.8.4 Comparison of EBDA, DA and DADT for different load

 Figure 7.17 shows the performance of the three algorithms (EBDA, DA, and

DADT) for buffer size of 600 packets. Load has been varied from 0.5 to 0.9.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

Packet Loss
Ratio

0.5 0.6 0.7 0.8 0.9
Load

EBDA
DADT
DA

Figure 7.17: Packet loss ratio vs. Load for EBDA, DADT, and DA for the heavy
 traffic load

65

7.8.5 Comparison of EBDA, DA and DADT for different buffer size

 Figure 7.18 shows the performance of the three algorithms, EBDA, DA, and

DADT as the buffer size varies from 500 packets to 800 packets.

0

0.02

0.04

0.06

0.08

0.1

0.12

Packet Loss
Ratio

500 600 700 800
Buffer Size

EBDA
DADT
DA

Figure 7.18: Packet loss ratio vs. Buffer Size for EBDA, DADT, and DA for the
 heavy traffic load

7.8.6 Improvement ratio of EBDA over DA and DADT

 Table 7.15 shows the improvement in packet loss ratio for ‘EBDA over DA’ and

‘EBDA over DADT’ as the load varies from 0.5 to 0.9. For a load of 0.7 the

improvement ratio is 16.8% over DA and 12.6% over DADT.

66

 Table 7.15

 Improvement ratio of EBDA over DA and DADT for the heavy traffic load

Load Improvement ratio (%)
(EBDA /DA)

Improvement ratio (%)
(EBDA /DADT)

0.5 13.5 7.39
0.6 16.0 10.0
0.7 16.8 12.6
0.8 16.8 14.4
0.9 16.2 14.3

7.9 Simulation Results for Actual Network Traffic load

 Packet sizes for different applications based on the actual network traffic load

flow are given in table 7.8.

7.9.1 Optimum Value of alpha for DA

 Optimum value of alpha for DA for actual traffic load comes out to be 4. This is

shown in section 7.4.1.

7.9.2 Optimum Value of alphas for DADT

In section 7.4.2 we have already determined the optimum values of alpha for

DADT for actual traffic load. The optimum values come out to be for variation 5 in table

7.8. The values are 16, 16, 16, 16, 16, and 4 for queue0 to queue5 respectively.

7.9.3 Optimum Value of alpha1, alpha2, gamma1 and gamma2 for EBDA

 Table 7.16 shows the packet losses for different variations of alpha and gamma

values for EBDA, for a buffer size of 600 packets, and a load of 70% on each of the

67

queue. From Table 7.16 optimum values of (alpha1, gamma1, alpha2, and gamma2)

come out to be for variation 1.

Table 7.16

Variation of (alpha1, alpha2, gamma1, and gamma2) vs. total packet loss for EBDA

Variation of alpha1, alpha2,
gamma1, gamma2 Total Packet Loss

16,4,64,64 4880774
8,4,16,16 4957822
8,4,32,32 4890188
8,4,32,64 4890423
8,4,64,64 4886391

7.9.4 Comparison of EBDA, DA and DADT for different load

 Figure 7.19 shows the performance of the three algorithms (EBDA, DA and

DADT) for different loads. Load has been varied from 0.5 to 0.9. Buffer size has been

taken 600 packets.

68

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Packet Loss
Ratio

0.5 0.6 0.7 0.8 0.9

Load

EBDA
DADT
DA

 Figure 7.19: Packet loss ratio vs. Load for EBDA, DADT, and DA for the
 actual traffic load

7.9.5 Comparison of EBDA, DA and DADT for different buffer size

 Figure 7.20 shows performance of three algorithms EBDA, DA, and DADT as the

buffer size varies from 500 to 800 packets. As the size of the buffer goes up, the packet

loss ratio decreases at a fast rate.

69

0

0.05

0.1

0.15

0.2

0.25

Packet Loss
Ratio

500 600 700 800
Buffer Size

EBDA
DADT
DA

 Figure 7.20: Packet loss ratio vs. Buffer Size for EBDA, DADT, and DA for the
 actual traffic load

7.9.6 Improvement ratio of EBDA over DA and DADT

 Table 7.17 shows the improvement in packet loss ratio for ‘EBDA over DA’ and

‘EBDA over DADT’ according to different loads, from 0.5 to 0.9.

 Table 7.17

Improvement ratio of EBDA over DA and DADT for
 the actual traffic load

Load Improvement ratio (%)
(EBDA /DA)

Improvement ratio (%)
(EBDA /DADT)

0.5 0.072406 0.002982
0.6 0.072734 0.007699
0.7 0.076505 0.019389
0.8 0.076193 0.02627
0.9 0.074594 0.029234

70

CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1 Summary of the Achievements

In this thesis, we developed two buffer management algorithms: Fairly Shared

Dynamic Algorithm and Evenly Based Dynamic Algorithm to reduce packet losses in

Network terminals and also to distribute packet losses among different applications more

evenly. We also implemented four buffer management algorithms:

1) Dynamic Algorithm (DA): In DA, packets for any application are accepted as

long as the queue length for the application is less than its threshold value. The

threshold value depends on amount of the unused buffer space. It does not take

packets sizes into consideration.

2) Dynamic Algorithm with Dynamic Threshold (DADT): It works like DA except

for the fact that it takes packet sizes into consideration.

3) Fairly Shared Dynamic Algorithm (FSDA): FSDA utilizes whole buffer memory.

If single application is active it works like CS. If multiple applications are there

then it works like DA except for the fact that packets are not rejected unless the

buffer is completely filled. Flags are used to maintain fairness among

applications. Packets can be replaced in FSDA.

71

4) Evenly Based Dynamic Algorithm (EBDA): EBDA reduces packet losses by

taking packet size into summation instead of multiplication. This helps in

maintaining fairness among all applications.

The performances of Fairly Shared Dynamic Algorithm and Evenly Based Dynamic

Algorithm are compared with all other algorithms.

8.1.1 FSDA

Fairly Shared Dynamic Algorithm utilizes full memory. Packets are accepted as

long as there is enough space for them in the packet buffer. Flags are maintained to keep

track of applications which have taken more space than what they would have taken in

Dynamic algorithm. Flags help in maintaining fairness among different applications.

FSDA works very efficiently for applications that use UDP, since information about

replaced packets is lost in FSDA. For the replaced packet, a source will not get an

information that the packet has been replaced, thus rejected, by a receiver. Hence, FSDA

works more efficiently for the UDP/IP than the TCP/IP. If used for TCP/IP, FSDA may

result in loss of some data.

The simulations considered a buffer of size as 600 cells (packets), 6 output queues

(0-5), bursty uniform traffic model, dequeue time (packet processing time) of 14 clock

cycles for a burst of 10 cells and uniform load for all output queues. For our simulation

model, three traffic mixes were considered.

72

8.1.2 Improvement in efficiency for FSDA

 For the average network traffic load, the FSDA improves the packet loss ratio by

18.5% over the dynamic algorithm and by 13.5% over the DADT. For the heavy network

traffic load, the FSDA improves the packet loss ratio by 16.8% over the dynamic

algorithm and by 12.5% over the DADT. While for the actual traffic load the

improvement is 13.6% over DA and 7.5% over DADT.

8.1.3 EBDA

EBDA takes fairness among applications and packet sizes of applications into

consideration while allocating buffer space to each application. The idea behind EBDA is

to eliminate the need to calculate optimum alpha value for each application as in DADT

and also distribute the packet losses more evenly among the different applications.

8.1.4 Improvement in efficiency for EBDA

 For the average network traffic load, the EBDA improves the packet loss ratio by

16.7% over the dynamic algorithm and by 11.8% over the DADT. For the heavy network

traffic load, the EBDA improves the packet loss ratio by 16.8% over the dynamic

algorithm and by 12.6% over the DADT. While for the actual traffic load the

improvement is 7.6% over DA and 1.9% over DADT.

73

8.2 Future Work

One of the areas of future research could be to incorporate priority applications in

the buffer management algorithms. Packets with higher priority should be give preference

over packets with lower priority.

74

REFERENCES

 [1] A. Tanenbaum, Computer Networks, 4th ed., Prentice Hall, 2002.

[2] T. Henriksson, U. Nordqvist, D. Liu, “Embedded Protocol Processor for fast and
efficient packet reception”, IEEE Proceedings on Computer Design: VLSI in Computers
and Processors, vol. 2, pp. 414-419, September 2002.

[3] V. Paxson, “End-to-End internet packet dynamics”, Proceedings of ACM SIG-COM,
vol. 27, pp. 13-52, October 1997.

[4] Tomas Henriksson, “Intra-Packet Data-Flow Protocol Processor”, PhD Dissertation,
Linkopings universitet, 2003.

[5] U. Nordqvist, D. Liu, “Power optimized packet buffering in a protocol processor”,
Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits and
Systems, vol. 3, pp. 1026-1029, December 2003.

[6] M. Arpaci, J.A. Copeland, “Buffer Management for Shared Memory ATM Switches”,
IEEE Communication Surveys, First Quarter 2000.

[7] T. Henriksson, U. Nordqvist, D. Liu, “Specification of a configurable general-purpose
protocol processor”, IEEE Proceedings on Circuits, Devices and Systems, vol. 149, issue:
3, pp. 198-202, June 2002.

[8] A. Tobagi, “Fast Packet Switch Architectures for Broadband Integrated Services
Digial Networks”, Proceedings of IEEE, vol. 78, pp. 133-167, January 1990.

[9] M. Irland, “Buffer Management in a Packet Switch”, IEEE Transactions on
Communications, COM-26, no. 3, pp. 328-337, March 1978.

[10] G. J. Foschini, B. Gopinath, “Sharing Memory Optimally”, IEEE Transactions on
Communications, vol. COM-31, no. 3, pp. 352-360, March 1983.

[11] F. Kamoun, L. Kleinrock, “Analysis of Shared Finite Storage in a Computer
Network Node Environment under General Traffic Conditions”, IEEE Transactions on
Communications, vol., COM-28, pp. 992-1003, July 1980.

75

[12] S. X. Wei, E.J. Coyle, M.T. Hsiao, “An Optimal Buffer Management Policy for
High-Performance Packet Switching”, Proceedings of IEEE GLOBECOM’91, vol. 2, pp.
924-928, December 1991.

[13] A. K. Thareja, A.K. Agarwal, “On the Design of Optimal Policy for Sharing Finite
Buffers”, IEEE Transactions on Communications, vol. COM—32, no. 6, pp 737-780,
June 1984.

[14] A. K. Choudhury, E.L. Hahne, “Dynamic Queue Length Thresholds for Shared-
Memory Packet Switches”, IEEE/ACM Transactions on Communications, vol. 6, no. 2,
pp. 130-140, April 1998.

[15] Sundar Iyer, “ SIM: A Fixed Length Packet Simulator”,
http://klamath.stanford.edu/tools/SIM

[16] Yul Chu, Vinod Rajan “An Enhanced Dynamic Packet Buffer Management”, In the
proceedings of the 10th IEEE Symposium on Computers and Communications
(ISCC'05), Cartagena, Spain, June 2005

[17]Cisco Systems: http://www.cisco.com/warp/public/473/lan-switch-
cisco.shtml.(Accessed : 2nd March ,2006)

[18] S. McCreary and K. Claffy, “Trends in Wide Area IP Traffic Patterns: A View from
Ames Internet Exchange,” In ITC Specialist Seminar on IP Traffic Measurement,
Modeling, and Management, Manterey, California, September 2000.

[19] Sam Manthorpe: http://lrcwww.epfl.ch/people/sam/research_protlevels.html.
(Accessed : 2nd October ,2005).

[20] Intel Corporation :
http://www.intel.com/education/highered/Networking/lectures/lesson11.ppt#282,27,Summary
(Accessed : 2nd December ,2006).

[21] http://en.wikipedia.org/wiki/Network_card.
(Accessed : 17th March 2007).

[22] http://www.cs.utah.edu/~swalton/Documents/Articles/Multicasting-1.pdf
(Accessed: 10th Sptember 2007).

[23] http://nile.wpi.edu/NS/
 (Accessed: 10th Sptember 2007).

	Increasing the efficiency of network interface card
	Recommended Citation

	Microsoft Word - UppalA.doc

