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A Network Interface Card (NIC) is used for receiving the packets, processing the 

packets, passing the packets to the host processor. NIC uses the buffer management 

algorithm to distribute the buffer space among different applications.   

This thesis proposes two buffer management algorithms: 1) Fairly Shared 

Dynamic Algorithm (FSDA) for UDP-based applications; 2) Evenly Based Dynamic 

Algorithm (EBDA) for both UDP and TCP-based applications 

.   For the average network traffic load, the FSDA improves the packet loss 

ratio by 18.5 % over the dynamic algorithm (DA) and by 13.5% over the DADT, while 

EBDA improves by 16.7 % over the DA and by 11.8% over the DADT. For the heavy 

network traffic load, the FSDA improves the packet loss ratio by 16.8 % over the DA and 



 

 

by 12.5% over the DADT while EBDA improves the packet loss ratio by 16.8 % over the 

DA and by 12.6% over the DADT. 
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CHAPTER I 
 

INTRODUCTION 

 
Data is transmitted from one application to another in the form of packets in a 

computer network [1]. A packet is the unit of data that is routed between an origin and a 

destination on the Internet. In a typical end to end communication scenario the client will 

make a request to the server for some information.  The server will respond to the client 

by sending the requested information. All the information sent to and from the client and 

the server is in the form of packets. A packet consists of the necessary data for an 

application program associated with headers, such as TCP header, IP header, etc. The 

receiver in a network terminal processes and places a packet in a buffer until the 

application requests the packet. The processing of a packet may involve calculation of the 

checksums, removal of the headers, and determination of the destination application [2]. 

After processing, the packets are placed in a packet buffer in a network interface card 

(NIC), which connects a computer to an Ethernet network. A Network Interface Card is 

used for receiving the packets, processing the packets, passing the packets to the host 

processor, and sending the packets to other computers in a network.  

A packet buffer is a large shared dual-ported memory [6]. Packets for each 

application are multiplexed into a single stream. Packet buffer management algorithm 



 

2 

determines whether to accept or reject each packet. The number of total packets accepted 

divided by the total number of incoming packets is called ‘Packet Loss Ratio.’ Hence, 

Packet Loss Ratio is equal to: 

      Packet Loss Ratio   =         Total Number of Packet Accepted                            (1.1)                        

                                                  Total Number of Incoming Packets  

 The accepted packet is placed into a logical FIFO (First In, First Out) queue; each 

application has its own queue in a packet buffer [2-4]. The accepted packet remains in a 

buffer until the application retrieves it from the buffer. Determining whether to reject the 

packet or accept the packet is a slow process [5]. 

In general, incoming packets for different applications at different data rates are 

placed in a buffer. These accumulated packets in the buffer can reduce the available 

buffer space for the next incoming packet. Once the buffer is full, further incoming 

packets will be dropped. Therefore, it is important to reduce packet loss ratio to support 

any end-to-end applications in a computer network [5] [6]. The Buffer Management 

algorithm plays a vital role in reducing the packet losses in network terminals. An 

efficient buffer management algorithm should not only minimize packet losses but also 

distribute packet losses among different applications evenly. For example, if there are 

three applications say ‘application1,’ ‘application2’ and ‘application3’ with packet sizes 

of 128, 128, and 256 Bytes respectively. For packet losses to be evenly distributed, 

‘application1’ should have almost same packet loss ratio as those of ‘application2’ since 

their packet sizes are equal (each 128 Bytes). However, for the ‘application3’, packet loss 

ratio can be greater than the packet loss ratio for ‘application1’ or ‘application2’. This is 
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due to the fact that the packet size of ‘application3’ is greater than the packet sizes for 

‘application1’ and ‘application2.’ 

 
1.1 Problem Statement and Motivation 
 

It is essential to have a buffer management algorithm that can utilize maximum 

memory of the packet buffer and also be able to distribute packet losses among different 

applications more evenly. An application may use TCP or UDP, depending upon the type 

of application. TCP (Transmission Control Protocol) is the most commonly used protocol 

on the Internet. The reason for this is because TCP offers error correction. For TCP 

applications the sender first sends small number of packets and then waits for the 

response from client [22]. The client will respond when it receives those packets. At the 

time of waiting, no packets would be sent to client. Data critical applications should use 

TCP [1]. On the other hand, for applications that use UDP, there is no wait period. The 

sender does not wait for any response for client.  There may be loss of some packets but 

that has no effect on the system. Time-critical applications like multi-media applications 

use UDP.  UDP is faster than TCP because there is no form of flow control or error 

correction. TCP ensures that the data that the reader gets exactly what was sent, in the 

right order [22].  UDP offers no such guarantees [22]. So, the buffer management 

algorithm for UDP applications needs not to care even if there is some loss of packets 

which the sender is not aware of. Hence, this thesis compares the algorithm designed for 

UDP in a different section than the algorithm designed for TCP. 

There are many algorithms reported in the architecture [16]. Popular algorithms 

include Completely Shared algorithm, Completely Partitioned algorithm, Dynamic 
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algorithm and Dynamic Algorithm with Dynamic Threshold [16]. None of the algorithms 

except for Completely Shared algorithm makes full utilization of the packet buffer 

memory. That is, packets are rejected even if there is some space left in the packet buffer. 

However, Completely Shared algorithm is not adaptive to changing traffic conditions. 

Any active application can fill the entire buffer, thus rejecting the packets of other 

applications (Section 3.4.2). Hence, Completely Shared algorithm is not fair to all the 

applications since it does not distribute packet losses evenly among the different 

applications. 

In Complete Partitioned algorithm, each application gets a fixed amount of space 

in the buffer. Thus, if any application becomes inactive, the space allocated to it is not 

utilized. Completely Shared algorithm and Completely Partitioned algorithm are called 

static threshold schemes since they are not adaptive to changing traffic conditions. These 

algorithms are simple to implement in the hardware. 

The third popular algorithm is the Dynamic algorithm [8] [16]. In Dynamic 

algorithm, packet buffer space allocated to each application is dynamic and it depends on 

the amount of space left in the packet buffer. Dynamic algorithm is adaptive to changes 

in traffic conditions (Section 3.4.3). However, Dynamic algorithm does not take packet 

sizes into consideration. Also, a packet can be rejected even if there is some space left in 

the buffer. 

 The fourth algorithm is Dynamic Algorithm with Dynamic Threshold (DADT) 

[16]. This algorithm is very similar to Dynamic algorithm. Unlike Dynamic algorithm, 
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Dynamic Algorithm with Dynamic Threshold takes packet size of applications into 

consideration.  

Of all the above algorithms, DADT has minimum packet loss ratio. DADT 

minimizes packet losses by increasing the packet losses of application with largest packet 

size and decreasing the packet losses of applications with less packet size. Hence, it is not 

fair to all the applications since the packet losses are not evenly distributed. So, we need 

an algorithm which can reduce packet loss ratio by utilizing maximum buffer memory 

and at the same time distributing the packet losses more evenly.   

The main purpose of this research is to address the following issues: 

1) Develop and simulate buffer management algorithm specifically for UDP-based 

applications that can reduce the overall packet losses in network terminals and 

utilize maximum packet buffer memory. 

2) Develop and simulate buffer management algorithm that can be used in both UDP 

as well as TCP-based applications ands which can reduce the overall packet losses 

in network terminals and utilize maximum packet buffer memory. 

 
1.2 Summary of Main Contributions 
 

The main contributions of this thesis work are as follows: 
 

1) Proposal of a new buffer management algorithm called Fairly Shared Dynamic 

Algorithm (FSDA) for protocol processors in an NIC. FSDA utilizes whole 

packet buffer memory and reduce overall packet losses significantly. This 

algorithm is primarily designed for multimedia applications and all other 

applications that use User Datagram Protocol (UDP) (Section 7.5).  
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2)  Proposal of a new buffer management algorithm called Evenly Based Dynamic 

Algorithm (EBDA) that distributes the packet losses evenly among different 

applications and also reduces the overall packet losses significantly. This 

algorithm can be used both in TCP and UDP- based applications. 

3) Development of a simulation model for the packet buffer in a protocol processor      

and performance comparison of the different algorithms. 

   
 

1.3  Organization 
 

The remainder of the thesis is organized as follows. In Chapter II we briefly 

describe the existing architectures for network interface card. Chapter III explains the 

popular buffer management algorithms. After that, Chapter IV introduces new algorithm 

Fairly Shared Dynamic Algorithm. The working of the algorithm is discussed in detail. 

Chapter V introduces new algorithm Evenly Based Dynamic Algorithm. Chapter VI 

explains the simulation environment which we have used to measure and compare the 

performances of different algorithms. Chapter VII gives the simulation results and 

analyzes them. Finally, Chapter VIII concludes the thesis and discusses the future work. 
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CHAPTER II 
 

ARCHITECTURES FOR NETWORK INTERFACE CARD 

 
 Network Interface Card is used for receiving the packets and sending the packets 

to other computers in a network. There are three generations for NIC card reported in the 

literature [20]: 

1) First Generation NIC 

2) Second Generation NIC 

3) Third Generation NIC  

In the first generation NIC, a packet is received by the NIC and the data link layer 

processing is done by the NIC. After processing, the packet is passed on to the host 

processor. Hence, first generation NIC handles layer 1 and layer 2 of TCP-IP model. 

Section 2.1 explains the first generation NIC in detail. 

    Second generation NIC handles most of the layers 1-3 of TCP-IP model. This 

results in off-loading the host processor to some extent [20].  

In the third generation NIC, additional hardware has been added on the NIC. 
Third generation systems use an embedded processor to handle layer 4 functionality and 

exception packets that cannot be forwarded across the fast path. Embedded processor 

architecture is chosen because ease of implementation and amenability to change are 
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more important than speed [20].  The algorithms designed and developed in this thesis 

are for third generation NIC. 

 
2.1 Traditional Architecture for Network Interface Card 
 

Figure 2.1 explains the working of a traditional architecture for an NIC. 

Traditionally a computer has received packets through an NIC, the Ethernet packet layer 

is processed on the NIC and the packet is buffered on the NIC, before it is transferred to 

the main memory [2].  

 

Ethernet PHY

Ethernet MAC

DMA Controller

Packet Buffer

IP processing

TCP/UCP processing,
including copy
to user memory

Application processing

Kernel Memory
Area

User Memory Area

Host Processor

Network Interface
Card

 

   Figure 2.1: Traditional Architecture for Network Interface Card [2]. 
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Then, the IP header and the TCP or UDP header is processed by the OS. Since 

this implies calculating the checksum over the whole packet, the whole packet has to be 

read from memory. The OS can also have the memory area divided into one kernel part 

for the OS and one user part for the applications. This implies a consecutive write 

operation of the whole packet as well [2].   

 
2.2 Protocol Processor Architecture for Network Interface Card 

In the traditional architecture for an NIC, the physical layer and MAC layer 

processing is done on an NIC [2]. In general, 20%-60% of the processing power of OS is 

used for protocol handling. Therefore, the traditional packet reception architecture cannot 

work efficiently for a high-speed network, more than 10 Gb/sec [2].                          

  Tomas Henriksson, et al. [2] proposed protocol processor architecture (third 

generation NIC) to offload the packet processing from the operating system. The new 

packet reception shown in Figure 2.2, moves layer 3 and layer 4 processing to an NIC 

[2]. Packets coming in from the network are received on the NIC and are processed for 

layer 1-2 protocols. Instead of sending the packet over to the host processor for further 

processing, the protocol processor on the NIC handles the processing of layer 3 and layer 

4 protocols. The main task of a protocol processor is to handle protocol processing at a 

wire speed [2]. 

As shown in Figure 2.2, the incoming packets will stream through the protocol 

processor and the payload (application) data will be stored in the packet buffer until the 

host application retrieves it. Incoming packets are classified based on the application. 

Once the packet is classified, it is stored in an output queue for that application in the 
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buffer. The supporting microcontroller is used for sending acknowledgment to the sender 

and receiving the next packet. 

 

Ethernet PHY

Protocol Processor

DMA Controller
Supporting 

Micro-controller

Application processing

User Memory Area

Host Processor

Network Interface
Card

 

        Figure 2.2: Protocol Processor Architecture for Network Interface Card [2]. 

 

Figure 2.3 shows the protocol processor core overview. The protocol processor 

contains accelerators for checksum calculations. The packet is received through the 

dynamic buffer, which normally holds only one word of data [2]. The dynamic buffer can 

hold several words of data if that is required. It is controlled from the instruction. 

Attached to the dynamic buffer is a field extraction unit, which extracts field from the 
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buffer content. The field is then forwarded to compare units (CU). CU is an array of ‘n’ 

comparators. CU gets reference values from parameter code book (PCB) [2]. PCB is a 

lookup table, with k lines of each n words. A pointer from the instruction decoder (ID) 

selects which line to forward to the output.  

 

Dynamic Buffer

with Field

Extraction Unit

Compare Units

Control Code Book

(CCB)

Next Program

Counter Generation

(NPCG)

Parameter Code
Book (PCB)

Instruction Table (IT)

Program Counter

(PC)

Instruction Decoder 
(ID)

Input Port

 
     Figure 2.3: Core Overview of Protocol Processor Architecture [2]. 
 
 
 

The output from the compare units is a vector of n bits, in which each bit 

represents a match or a non-match [2]. These n bits are used to select an output from the 

control code book (CCB). The CCB is another lookup table that contains relative jump 
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addresses. CCB consists of k lines of each n addresses [2]. CCB uses the same pointer as 

PCB in order to select one of the k lines. The n output bits from the compare units select 

which address to forward to the next program counter generation (NPCG). The NPCG 

calculates the next program counter value, which is used by the program counter (PC). 

The PC is a simple register, which is updated every clock cycle [2]. The output is used to 

select an instruction from the instruction table (IT). The IT is a lookup table, which 

contains the instructions for the protocol processor [2]. 

 
2.3 Memory Organization Using a Protocol Processor 

The simplified packet buffer memory organization is shown in Figure 2.4. As 

shown in Figure 2.4, incoming packets will stream through the protocol processor and the 

payload (application) data will be stored in the packet buffer until the host application 

retrieves it. 
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PPP

μC

Packet 
Buffer DMA

CPU

Cache

Protocol 
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Processor

 

Figure 2.4: Simplified packet buffer memory organization with the protocol processor [2] 

 

First the packets are classified based on the application they are destined for and 

then they are stored in the output queue for that application in the packet buffer. Each 

application has an output queue in the buffer. In general, the packet buffer has FIFO 

based output queues for each application to store its application data [7]. 
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CHAPTER III 
 

BUFFER MANAGEMENT ALGORITHMS 

 
3.1 Role of  a Buffer Management Algorithm 

  After processing of layer 3 and layer 4 protocols, packets are placed in a packet 

buffer in a network interface card (NIC). Buffer management algorithm determines 

whether to accept or reject each packet. Figure 3.1 shows the role of a buffer 

management algorithm in an NIC.  

  The accepted packet is placed into a logical FIFO queue; each application has its 

own queue in a packet buffer. In general, incoming packets for different applications at 

different data rates are placed in a buffer. These accumulated packets in the buffer can 

reduce the available buffer space for a next incoming packet.  Once the buffer is full, 

further incoming packets will be dropped. Therefore, it is important to reduce packet loss 

ratio to support any end-to-end application in a computer network [5] [6]. Efficient buffer 

space management can reduce the packet loss ratio. Buffer management algorithms in an 

NIC determine how the buffer space is distributed among different applications. 
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            Figure 3.1: Role of Buffer management Algorithm in NIC. 

 
   

 The size of the buffer needed is determined by the packet loss rate. The buffer 

size must be large enough such that the packet loss ratio does not exceed a certain limit. 

The required size of the buffer is a function of the incoming traffic rate, the offered load 

‘ρ’, the traffic pattern and also the way the buffer is shared among various output queues 

[10]. 

Buffer size = f (traffic rate, offered load ρ , traffic model, buffer management algorithm) 
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3.2  Difference between Buffer Management Algorithms for an NIC and a 
Switch 
 

Buffer management algorithms in an NIC must be adaptive and intelligent to any 

changes in traffic conditions. These algorithms are different from what we require in a 

switch and a hub of the layer 2 (MAC Layer). A switch stores all the incoming packets in 

a common memory buffer that all the switch ports (input/output connections) share. A 

switch reads the MAC address and sends the packet out to the correct port of the 

destination node. Hence, the role of a switch is to store and forward a packet to a correct 

destination [17]. However, in an NIC, a buffer memory must be intelligently shared so 

that all the applications get fair amount of the buffer space. The aim of the buffer 

management algorithm should be to minimize the packet loss ratio and simultaneously, 

be fair to all the applications. 

 
3.3        Design of a Buffer Management Algorithm 

  The design of a buffer management algorithm needs to consider the following 

three factors [2]:  

1) Packet loss ratio - It is defined as the ratio of the number of dropped packets to the 

total number of received packets [8]. 

2) Hardware complexity - The amount of hardware required to implement a given 

buffer management algorithm. 

3) Fair to all the applications – Packet losses should be evenly distributed among 

different applications. 
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 Buffer space can be managed using either a static threshold scheme or a dynamic 

threshold scheme among various applications. The static threshold scheme involves 

establishing the maximum and minimum limits for a buffer space available for each 

application [16]. In this scheme, a packet is accepted only if the queue length for an 

application is smaller than the static threshold for the application. The static threshold 

scheme requires only queue length counters and a comparator [14]. The static threshold 

scheme is easy to implement in hardware, but it is not adaptive to any changes in traffic 

conditions. On the other hand, the threshold value of the dynamic scheme is determined 

by the total amount of unused buffer space at any instant of time. Therefore, the dynamic 

threshold scheme is adaptive to changes in traffic conditions. In general, the dynamic 

threshold scheme has less packet loss ratio than the static threshold scheme.  

 
3.4        Popular Buffer Management Algorithms 

Four popular buffer management algorithms are reported in literature [16]. They are 
 

 Completely Partitioned Algorithm (CP). 
 Completely Shared Algorithm (CS). 
 Dynamic Algorithm (DA) and 
 Dynamic Algorithm with Dynamic Threshold (DADT). 

 
CP and CS are static threshold schemes, static thresholds; on the other hand, DA and 

DADT are dynamic threshold schemes, dynamic thresholds.  

 
3.4.1  Completely Partitioned Algorithm (CP) 

 
  Kamoun and Kleinrock [11] proposed CP.  In CP, the total buffer space ‘M’ is 

equally divided among all the applications (N). Hence, CP does not provide any sharing 
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of a buffer space among different applications. Packet loss for any application occurs 

when the buffer space allocated to that application becomes full. If ‘M’ is the total buffer 

space, ‘n’ is the number of applications and ki,, i= 1….n, represents the size of queues 

i=1….n then:   

                                                                                      
       N  

                        ∑  ki  = M                              ( 3.1) 
                                       i=1 

 

For example, if the total buffer space is 500 packets, and if the number of applications 

are 5, then each application gets space for 100 packets. Packet loss for an application 

occurs when the queue length for an application exceeds 100 packets. 

The advantage of this algorithm is that it works well if all the output queues are 

competing for a buffer space [6]. In addition, it is easy to implement in hardware. 

However, if all the applications are not competing for the buffer space, then it can reject 

the incoming packets even though there is some space left in the buffer.  Its ability to 

adapt to the changing traffic conditions is poor because the buffer space allocated to an 

output queue is not utilized if its corresponding input port becomes inactive. 

 
3.4.2 Completely Shared Algorithm(CS) 

 In CS [11], packets are accepted as long as there is some space left in a buffer, 

independent of the application to which a packet is directed. This algorithm utilizes the 

whole buffer space. Packet loss occurs only when the buffer is full. If ‘M’ is the total 

buffer space, ‘n’ is the number of applications and ki, i= 1….n, represents the size of 

queues i=1….n then:  
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                                         ki = M, i =1, 2,.…, N                                               (3.2) 
 

 
For example, if the total buffer space is 500 packets and there are 5 applications, 

then any one application packets can occupy the entire buffer space, leaving other 

applications with no buffer space at all. Packets of any application can occupy as much 

buffer space as possible. The only condition is that accumulative sum of all the queues 

should not exceed the total buffer space [8]. 

 The algorithm works well under the balanced load conditions. In the balanced 

load conditions, incoming packets are almost equally distributed among all the 

applications; hence, this algorithm can provide the fairness to all the applications under 

the balanced load conditions [16].  In addition, it is easy to implement in hardware. The 

major drawback of this algorithm is that a single application can occupy the whole buffer 

space if the load of the application is high. Therefore, it does not guarantee fairness to all 

the applications.  

 
3.4.3 Dynamic algorithm(DA) 

When only one application is active, we would like to allocate the maximum 

buffer space to it. When there are many active applications, we want to divide the 

memory fairly among them [14]. Dynamic algorithm achieves this by changing the 

threshold value dynamically, based on the traffic conditions. The threshold value is 

determined by monitoring the total amount of an unused buffer space 
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 In DA, packets for any application are accepted as long as the queue length for the 

application is less than the threshold value of that application. Packet loss occurs only 

when the queue length of an application exceeds its threshold value. If at any instant ‘t’, 

T (t) be the control threshold and let Qi
 (t) be the length of queue ‘i.’ Q (t) is the sum of 

all the queue lengths [14], then, if ‘M’ is the total buffer space, the controlling threshold 

will be 

  

                                   T(t)=α* (M-Q(t))                                                           (3.3) 

 

where ‘α’ is some constant. The ‘α’ value is generally taken as a power of two (either 

positive or negative), so that threshold computation is easy to implement in hardware 

[14]. This algorithm is robust to changing load conditions in traffic and it is also easy to 

implement in hardware. However, it has a drawback that it rejects packets when the 

queue length for an application exceeds the threshold value, though there is some space 

available in the buffer memory. Also, DA works well for ATM switches since packet size 

for different application is same in ATM switches. However, in an NIC, different 

applications may have different packet sizes. Hence, DA does not work that efficiently in 

an NIC. 

 
3.4.4 Dynamic Algorithm with Dynamic Threshold (DADT) 

  The DADT [16] works like DA. In this algorithm, the alpha ‘α’ value is different 

for different applications and is dependent on the packet size of an application. Unlike 

DA, different applications do not have the same threshold value. By varying the threshold 
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value, DADT does not allow queues with the largest packet size to fill the buffer at a 

faster rate. In DADT, we have  

                  

                T(t)= αi* (M-Q(t))                                (3.4) 

 

where ‘αi’ is the proportionality constant and varies for each queue. This algorithm 

achieves the least packet loss ratio among all the algorithms described above [16].   

 However, it has a drawback that it does not use the whole buffer space. Therefore, 

when the queue length for an application exceeds the threshold value of that application, 

packets are rejected even if there is some space left in a buffer. Also, it is difficult to 

determine the optimum alpha ‘α’ value for each application.  The optimum alpha values 

can come out to be different from power of two. In this case, shift registers cannot be 

used for implementing it in hardware. 
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CHAPTER IV 
 

FAIRLY SHARED DYNAMIC ALGORITHM 

 
As we discussed, CS utilizes the buffer memory at full. The algorithm, however, 

is not fair to all the applications and also not adaptive to changing traffic conditions. On 

the other hand, DA and DADT are adaptive to changing conditions, but they do not 

utilize buffer memory at full. Thus, packets can be rejected even if there is space left in 

the buffer. So, to utilize the full memory space in the buffer, to reduce the overall packet 

loss ratio and to be fair to all the applications, we need one algorithm that will take care 

of all the three factors. 

Therefore, we propose Fairly Shared Dynamic algorithm (FSDA) that will satisfy 

three factors:  

1) Fairness to all the applications. 

2) Full utilization of a buffer space.  

3) Reduce overall packet loss ratio. 

 
4.1 Working of FSDA 

To achieve fairness and full utilization of buffer space, FSDA maintains a flag for 

each application. This flag will indicate whether or not the application has taken more 
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space than its threshold value. The threshold value is determined by monitoring the total 

amount of an unused buffer space.  

Figure 4.1 shows the flowchart of FSDA. The following example explains the 

working of FSDA in more detail. Let us assume that there are two applications: 

application one and application two. Total buffer space ‘M’ is 50 bytes. For simplicity, 

let us take alpha value as 2 for two applications, packet size for application one as 4 bytes 

and for application two as 8 bytes. 

 

Incoming Packet

Q(i) < T(t)

Y

(M − ΣQ(i)) ≥ psize(i) (M − Σ Q(i)) ≥ psize(i)

N

Replace a packet 
of application 
whose flag = 1 
with incoming 

packet

Accept
Accept  and 
set flag = 1 

for application (i)

Y YN N

Reject

M: total buffer space
Q(I): queue length of application (i)
T(t): threshold at instant ‘t’
psize(i): packet size of application (i)
I: 1 to n, n: number of applications

 

    Figure 4.1: Flowchart for FSDA 
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Say at any instant ‘t’, we have queue lengths (in bytes) as 24 and 16 for 

application one and application two, respectively. Figure 4.2 shows the threshold values 

and buffer state at any instant ‘t.’ Now, if a packet for application one comes, then it will 

be rejected in DA since its queue length (Q(t)=24) exceeds its threshold value (T (t) = 

20). On the other hand, FSDA will accept this incoming packet for application one and 

will set the flag for application one to ‘1.’   

In FSDA, the set flag for application one indicates that application one has taken 

more space than its threshold value. Further incoming packets for application one will be 

accepted as long as there is sufficient space in the buffer memory, keeping its flag set to 

‘1.’ Figure 4.3 shows the value of flags after the packet for application one is accepted. 

Similarly, for application two, packets will be accepted as long as there is some space in 

the buffer. We will keep the flag of application two set to ‘0’ until it takes less space than 

its threshold value.  
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         Figure 4.2:  Working Example for FSDA. 
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     Figure 4.3:  Working Example Continued. 
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Now, there can be two cases when the memory is full:  

1) Flag for application two is ‘0’ (space occupied by application two is less than its 

threshold value). 

 2) Flag for application two is ‘1.’  

For the case 1, if the current incoming packet is for the application two, then we 

will accept it and replace the packet of the application one (since flag for the application 

one is ‘1’) by this incoming packet of the application two. This way, we are giving 

fairness to all the applications and utilizing the whole buffer space simultaneously.  

For the case 2, if the incoming packet is for the application two, then it will be 

rejected since there is no space left in the buffer. In FSDA, packets are replaced only 

when the memory is full and the incoming packet is for an application whose flag is still 

‘0’ and there exists an application with its flag as ‘1’. 

  As shown in Figure 4.2, in FSDA, we are maintaining two counters, counter one 

and counter two, for each application. We will increment counter one for an application 

until the flag for the application is ‘0.’ However, counter two for the application will 

always be incremented whenever the packet for the application is accepted. The value of 

counter two for an application controls the setting and resetting of the flag for the 

application. The flag for any application will be reset to ‘0’ when the value of counter 

two for that application is less than the threshold value, which is calculated by using 

counter one.  
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4.2 Advantages of FSDA 

  The FSDA, DA, and DADT have one major advantage over the static threshold 

schemes: they are adaptive to changes in traffic conditions [14]. FSDA works similar to 

DA and DADT. In addition, FSDA utilizes buffer space efficiently. Another advantage of 

FSDA is that it is more adaptive to changes in traffic conditions. If one application is 

active, then FSDA will provide the whole buffer space to it, functioning like CS. If many 

applications are active, then FSDA will work like DA and DADT except for the fact that 

it will utilize the whole buffer space. Like DA, we keep the ‘α’ value as a power of 2, 

which makes its hardware implementation easier. This gives FSDA a distinct advantage 

over DADT. All the advantages provided by FSDA will come at the cost of more 

hardware. For example, to implement FSDA more number of counters will be required. 

 
4.3 FSDA for UDP 

  Though detailed discussion will be done in Section 7.5, FSDA works more 

efficiently for applications that use UDP. This is due to that fact that information 

regarding the replaced packets will be lost and the sender will not be aware of the fact 

that packets have been replaced thus rejected. Hence, FSDA cannot be used for data 

critical applications or TCP-based applications. 
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CHAPTER V 
 

EVENLY BASED DYNAMIC ALGORITHM 

 
DADT reduces the overall packet loss ratio by giving less threshold value to the 

applications with larger packet sizes. This results in an increase in packet losses for 

applications with larger packet sizes, thus resulting in reducing fairness for applications 

with large packet sizes.   

 Table 5.1 compares the packet losses for different queues in DA and DADT. For 

comparison purposes, we have used six applications, average traffic network load 

(Chapter 7), buffer size 600 packets, bursty uniform traffic model, and average dequeue 

time of 14 clock cycles for the burst of 10 packets (Chapter 7).  

 
Table 5.1 

 
Comparison of DA and DADT 

 

Queue 
Packet 

Size 
(Packets) 

Packets rejected 
in DA Packets rejected in  DADT 

0 8 550486 337482 
1 2 46901 15841 
2 8 547978 335285 
3 1 16796 4549 
4 4 163126 79563 
5 16 1421350 1858333 

Total 
packet loss 

 2746637 2631053 
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  As seen from Table 5.1, DADT reduces packet losses for applications 0, 1, 2, 3, 4, 

by decreasing the amount of threshold value for application 5 [16], which has the largest 

packet size. Low value of threshold for application 5 results in a reduction of packet 

losses for applications 0, 1, 2, 3, and 4; though packet losses for application 5 increase 

significantly. The net result is a decrease in overall packet loss in DADT when compared 

to DA. 

  As seen from Table 5.1, by increasing the packet losses for application 5, which 

already has more packet losses than other applications, degree of fairness has been 

reduced. Therefore, we proposed Evenly Based Dynamic Algorithm (EBDA) that will 

take fairness among applications and packet sizes of applications into consideration while 

allocating buffer space to each application. 

 
5.1 Working of EBDA 

Figure 5.1 shows the flowchart of EBDA. For any application with packet size 

‘P’, the value of threshold for this application will depend on packet sizes of other 

applications also. For example, suppose there are six applications with packet size as 256, 

256, 512, 128, 64, 128 bytes or 8, 8, 16, 4, 2, 4 packets respectively. The average packet 

size for these six applications is: 

Average Packet size = (8+8+16+4+2+4/6) =7 

Now there can be two cases: 

1) ‘P’ is less than Average Packet Size: For such applications the threshold value 

will be calculated using the equation shown in 5.1. 
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2) ‘P’ is greater than Average Packet Size: For such applications the threshold value 

will be calculated using the equation shown in 5.2. 

  

Incoming Packet

Psize(i) <=∑Psize(i)/n

Y

α1.(M -Q(t))+γ1*psize(i ) >=Q(i) α2.(M-Q(t))+γ2*psize(i) >=Q(i)

N

Reject Accept Accept

Y YN N

Reject

M: total buffer space
Q(i): queue length of application (i)
T(t): threshold at instant ‘t’
psize(i ): packet size of application (i)
i: 1 to n, n: number of applications

 

       Figure 5.1: Flowchart for EBDA 

 

The idea behind these threshold value computation equations is to distribute the 

packet losses more evenly among the different applications. Our simulation results have 

shown that by taking packet size factor in the summation as in equation 5.1 and equation 

5.2, instead of multiplication as in DADT for determining the threshold value for the 

application, we can reduce the overall packet loss ratio as well as distribute the packet 

losses more evenly among the different applications. 
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                                            T(t)=α1*(M-Q(t))+γ1*psize(i)                                            (5.1) 

 

                                              T(t)=α2*(M-Q(t))+γ2*psize(i)                                          (5.2) 

 

  The optimum alpha1 (α1), alpha2 (α2), gamma1 (γ1), and gamma2 (γ2) values as 

shown in equation 5.1 and 5.2 are determined through simulations. 
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CHAPTER VI 
 

SIMULATION ENVIRONMENT 

 
We developed our own simulation model instead of using already existing 

simulators like network simulator (NS) since NS (version 2) [23] is an object-oriented, 

discrete event driven network simulator developed at UC Berkely written in C++ and 

OTcl. NS is primarily useful for simulating local and wide area networks. It implements 

network protocols such as TCP and UPD, traffic source behavior such as FTP, Telnet, 

routing algorithms such as Dijkstra, and more. NS also implements multicasting and 

some of the MAC layer protocols for LAN simulations [23].  

For our simulations, we have to study the packet loss for different algorithms like 

DA, DADT, FSDA and DADT. So, we have to write a simulation program for simulating 

incoming packets for different algorithms. So we have to use a tool in which we could get 

event driven environment and we could write our own logic.  So we used VHDL for our 

simulations. 

The entire simulation model is developed using a Hardware Description Language 

(HDL) simulator in MODELSIM [1]. VHDL, a Hardware Description Language was 

chosen to code the entire simulator. We used VHDL since VHDL is a parallel language 

while C/C++ is a sequential language. Each statement occurring in VHDL is executed 
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concurrently, that is, all statements run simultaneously. In C/C++ each statement is 

executed in sequential order.   

 
6.1 Simulation Model for the Packet Buffer 

Figure 6.1 shows the diagram of Simulation model for the packet buffer in an NIC.  
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Links
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on 
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port

M: Buffer Space
RA: read address
WA: write address

 

        Figure 6.1: Simulation model for the packet buffer. 
 
  
 
The Traffic Generator block produces output (packets) according to two inputs (Traffic 

Model and Load on each port). 

For the first input, there are three kinds of Traffic Model that are available for 

selection. Those are [6][16]:  
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• Bursty Uniform Traffic Model: Burst of packets in busy-idle periods with 

destinations uniformly distributed packet-by-packet or burst-by-burst over all the 

output ports. The number of packets in the busy and idle periods can be specified; and 

•    Bursty Non-Uniform Traffic Model: Burst of packets in busy-idle periods with 

destinations non-uniformly distributed packet-by-packet or burst-by-burst over all the 

output ports; and 

• Bernoulli Uniform Traffic Model: Bernoulli arrivals, destinations uniformly 

distributed over all the output ports. 

The second input, Load on each port (ρ), is determined by the ratio of the number of 

packets in the busy-idle periods [15] and is given by the equation: 

          

                                                                      (6.1) 

 

where Lb = mean burst length and Lidle= mean idle length. 

For example: For a given load of ρ= 0.7 and a mean burst length of 20 packets, 

the mean idle length is 10 packets such as ⎟
⎠
⎞

⎜
⎝
⎛ =

+
7.0

1020
20 .Based on the two inputs, Traffic 

Generator produces packets (trace file) in a serial fashion with a randomly distributed 

output destination request. The packets are produced with a mean inter-arrival time and 

mean burst length [6]. The ‘SIM’ simulator in [15] is used for producing the trace of 

packets. In Figure 6.1, once the packet is generated and arrives at the packet buffer, the 

headers from the Traffic Generator activate the Controller. The Controller then decides to 

accept or drop the packet based on the buffer management algorithm used. If the packet is 

idleLbL
bL

+
=ρ
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accepted into the buffer, the Controller specifies the write address (WA) based on the 

output queue to which the packet is destined. Irrespective of whether the packet is 

accepted or dropped, the Controller updates its state variables (number of packets 

received, dropped, etc.).  

 

 

.  

   Figure 6.2: Sample Waveform for the simulation model 

 

Figure 6.2 shows the sample waveforms and state variables for the simulation 

model developed for NIC. As seen from the figure 6.2 ‘psize’ represents the size of the 
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packets of different applications. ‘Memsize’ represent the size of the buffer memory in 

terms of packets. Variable ‘pout’ represents the destination of current incoming packet. 
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CHAPTER VII 
 

SIMULATION RESULTS AND ANALYSIS 

 
           It has been shown that dynamic threshold schemes are more robust than static 

threshold schemes for uniform loads [14] [16]. Hence, the dynamic threshold schemes 

can perform better than the static threshold schemes. Therefore, for our analysis, we will 

compare our proposed algorithms FSDA and EBDA with the dynamic threshold schemes, 

DA and DADT. 

 
7.1 Simulation Results for FSDA 

Three different network traffic loads are considered for our simulations and 

comparisons of algorithms:  average network traffic load, heavy network traffic load, and 

actual network traffic load. We have used the “bursty uniform traffic model” for our 

simulations of all the network traffic loads since it is the most commonly used model. 

Figure 7.1 shows the steps performed for performance comparisons of different 

buffer management algorithms. For each traffic load, first, the optimum alpha ‘α’ value is 

determined for DA. After this, the best combination of the alpha values for DADT is 

determined. This is followed by the performance comparison of DA, DADT, and FSDA 

when the load and the buffer size are varied. Finally, improvement ratio is determined for 

each network traffic load. Improvement ratio is defined as the difference of the number of 
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packet losses in FSDA and the compared algorithm (DA or DADT) divided by the 

number of packet losses in FSDA. While calculating the improvement ratio and 

performance analysis, the replaced packets have been taken into consideration for FSDA. 

For all simulations, we have used six applications, bursty uniform traffic model, and 

average dequeue time of 14 clock cycles for the burst of 10 packets. 

 

Average Network 
Traffic Load

Optimum alpha value is determined for DA 

Optimum alpha values are determined for DADT 

Heavy Network 
Traffic Load

Actual Network 
Traffic Load

Performance comparison 
for Buffer size variations

Performance comparison 
for Traffic load variations

 
 
      Figure 7.1: Steps performed for comparing DA and DADT with FSDA 
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7.2 Simulation results for Average Network Traffic load 

 Table 7.1 shows the packet sizes of different applications in bytes based on the 

average network traffic load flow in [5]. For our simulation of the average traffic load, 

we have used these packet sizes for different applications.  

 
Table 7.1 

 
Packet distribution for average traffic flow average network traffic load. 
 

 
 

Queue0 
 

Queue1 Queue2 Queue3 Queue4 Queue5

 
     Size in bytes 256 

 
64 
 

 
256 

 

 
32 
 

 
128 

 

 
512 

 
Packet   unit # 
     (32 bytes/unit) 

 

 
8 
 

2 8 1 4 16 

 
 
 

7.2.1 Optimum Value of alpha for DA 

  Optimum alpha is considered as the alpha value for which DA gives the minimum 

packet loss ratio. Figure 7.2 shows the packet loss ratio for DA as the alpha value is 

varied from 4 to 20. In Figure 7.2, the size of the buffer is 600 packets, and “load on each 

queue” is 70%. From Figure 7.2, we can see that initially, as the alpha value is increased, 

packet loss ratio decreases until alpha=14. After then, the packet loss ratio starts 

increasing because the larger alpha values can increase the control threshold of the 

queues with large packet sizes. For ‘alpha=14’ and ‘alpha=16’, the packet loss ratio is 

very similar. From a hardware implementation point of view, we will take ‘alpha =16 
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(24)’ as the optimum value. The reason behind this is that if alpha is a power of 2, shift 

registers can be used to implement the algorithm in hardware. 
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   Figure 7.2: Packet loss ratio vs. Alpha for DA for the average traffic load 

 

7.2.2  Optimum Value of alphas for DADT 

For DADT, each queue has a different alpha and different threshold value. For 

DADT, first we determined the optimum ‘α’ (alpha) values. Optimum alpha values for 

DADT is the combination of alpha for different queues for which DADT gives the 

minimum packet loss ratio for the same load and the same buffer size. 
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 Table 7.2 shows the different combinations of alpha that we have taken and 

Figure 7.3 shows the packet loss ratio corresponding to them. As seen from figure 7.3, 

packet losses for variation 5 are less than packet losses for other variations. Note that 

optimum alpha for application 1 and application 3 for variation 5 comes out to be other 

than multiple of two. Hence, implementing it in hardware will be more difficult as 

compared to it would have been in case alpha is multiple of two. 

 
Table7.2 

 
      Variation of alpha for DADT for the average traffic load 
 
Variation Q0 Q1 Q2 Q3 Q4 Q5 

1 12 10 12 10 10 8 
2 14 10 14 10 10 7 
3 14 12 14 12 12 8 
4 16 14 16 14 14 6 
5 16 14 16 14 16 8 

 
 
 

So, for our comparison purpose, we will use ‘alpha=16’ for DA and the variation 5 

(from table 7.3) as alpha values for DADT. In FSDA, changing the alpha value will have 

little impact on the performance since FSDA utilizes full memory most of the time. 

Therefore, ‘alpha =4’ will be used for FSDA. Since 4 is a power of 2; it will make 

hardware implementation for the FSDA easier.  
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Figure 7.3: Packet loss ratio vs. Alpha Variation for DADT for the average traffic load 

 

7.2.3 Comparison of FSDA, DA and DADT for different loads 

 Figure 7.4 shows the performance of the three algorithms (FSDA, DA and 

DADT) for different load. Load has been varied from 0.5 to 0.9.  
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 Figure 7.4: Packet loss ratio vs. Load for FSDA, DADT, and DA for the average   
                   traffic load 
 

 

  Buffer size has been taken as 600 packets. As seen in Figure 7.4, FSDA has the 

least packet loss ratio for all of loads.  The packet loss ratio increases for all the 

algorithms with increasing “load on the queues”. Notice that the performance difference 

increases more at higher loads. As the load is increased, most applications tend to 

increase their queue length greater than their threshold values frequently. Since, FSDA 

utilizes the whole buffer space; FSDA can reduce packet loss ratio efficiently. 
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7.2.4 Comparison of FSDA, DA and DADT for different buffer size 

 
  Figure 7.5 shows the performance of the three algorithms FSDA, DA, and DADT 

as the buffer size is varied from 500 to 800 packets.  
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Figure 7.5: Packet loss ratio vs. Buffer Size for FSDA, DADT, and DA for the average  
                  traffic load 
 
 

  With an increase of buffer size, packet loss ratio decreases for all the three 

algorithms. This is due to the fact that each queue gets more space to accommodate 

packets. As seen from figure 7.5, FSDA has least packet loss ratio as compared to other 

algorithms.  
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7.2.5 Improvement ratio of FSDA over DA and DADT  

 Table 7.3 shows the improvement in packet loss ratio for ‘FSDA over DA’ and 

‘FSDA over DADT’ according to different loads, from 0.5 to 0.9. Buffer size has been 

taken as 600 packets and the traffic model is “bursty uniform”. As the load is increased 

the improvement ratio decreases. This is due to the fact that as the buffer size is increased 

packet losses are reduced.  

 
Table 7.3 

 
Improvement ratio of FSDA over DA and DADT for the average traffic load. 

 

       Load Improvement ratio (%) 
(FSDA/DA) 

Improvement ratio (%) 
(FSDA/DADT) 

0.5 23.2 13.8 
0.6 21.2 14.0 
0.7 18.5 13.5 
0.8 15.9 12.2 
0.9 13.8 10.2 

 
 
 
7.3 Simulation Results for Heavy Network Traffic load 

Table 7.4 shows the packet sizes of different applications in bytes based on the heavy 

network traffic load in [5].  For our simulation of the heavy traffic load, we have used 

these packet sizes for different applications. 
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Table 7.4 
 

Packet distribution for heavy traffic flow average network traffic load. 
 

 
 

Queue0 
 

Queue1 Queue2 Queue3 Queue4 Queue5

 
    Size in bytes 128 

 
64 
 

 
128 

 

 
32 
 

 
256 

 

 
512 

 
Packet   unit # 
    (32 bytes/unit) 

 

 
4 
 

2 4 1 8 16 

 
 
 
7.3.1 Optimum Value of alpha for DA 

  Figure 7.6 shows the packet loss ratio for DA as the alpha value is varied from 4 

to 20 for the heavy network traffic load.  In Figure 7.6, the size of the buffer is 600 

packets, and the “load on each queue” is 70%. The optimum alpha value for DA comes 

out to be 16. 
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 Figure 7.6: Packet loss ratio vs. Alpha for DA for the heavy traffic load 



 

47 

 
 
7.3.2 Optimum Value of alphas for DADT 

Now we will determine the optimum values of alpha for DADT. Table 7.5 shows 

the different combinations of alpha that we have taken.  

 
Table 7.5 

 
      Variation of alpha for DADT for the heavy traffic load 
 
Variation Q0 Q1 Q2 Q3 Q4 Q5 

1   18 18 18 18 18 6 
2 14 10 14 10 10 7 
3 14 12 14 12 12 8 
4 16 14 16 14 14 6 
5 16 14 16 14 16 8 
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Figure 7.7: Packet loss ratio vs. Alpha Variation for DADT for the heavy traffic  
                  load 
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Figure 7.7 shows the packet loss ratio corresponding to them. From Figure 7.7, 

we can see that optimum combination of alpha comes out of the variation 3. 

 
7.3.3 Comparison of FSDA, DA and DADT for different loads 

     Figure 7.8 shows the performance of the three algorithms (FSDA, DA and 

DADT) for different loads. Load has been varied from 0.5 to 0.9. Buffer size is taken as 

600 packets. As seen from figure 7.8, FSDA outperforms DA and DADT.  
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Figure 7.8: Packet loss ratio vs. Load for FSDA, DADT, and DA for the heavy traffic  
                  load 

 
 

       As the load is increased the performance difference increases. This is due to the 

fact that as the load is increased, more number of packets is coming and since FSDA 



 

49 

make better utilization of whole memory, the packet losses increase more for DA and 

DADT as compared to FSDA. 

 
7.3.4 Comparison of FSDA, DA and DADT for different buffer size 

      Figure 7.9 shows the performance of the three algorithms, FSDA, DA, and DADT 

as the buffer size is varied from 500 to 800 packets. As seen from figure 7.9, FSDA has 

least packet loss ratio. 
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Figure 7.9: Packet loss ratio vs. buffer size for FSDA, DADT, and DA for the heavy  
                  traffic load 
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7.3.5 Improvement ratio of FSDA over DA and DADT  

Table 7.6 shows the improvement in packet loss ratio for ‘FSDA over DA’ and ‘FSDA 

over DADT’ according to different loads, from 0.5 to 0.9. As we can see that for a load of 

‘0.7’ improvements ratio is 16.8 when compared with DA and 12.5 when compared with 

DADT. 

 
Table 7.6 

 
Improvement ratio of FSDA over DA and DADT for the heavy traffic load. 

 

Load Improvement ratio (%) 
(FSDA/DA) 

Improvement ratio (%) 
(FSDA/DADT) 

0.5 16.6 10.2 
0.6 17.1 11.1 
0.7 16.8 12.5 
0.8 15.7 13.3 
0.9 13.9 12.0 

 

 
7.4 Simulation Results for Actual Network Traffic load 
 

Table 7.7 shows the packet sizes of the different applications in bytes based on 

the actual network traffic load flow in [18].  The characteristics of the actual network 

traffic load presented in this section is based on the data collected by the NAI project 

from May 1999 to March 2000 at the NASA Ames Internet Exchange [19]. The packet 

size distribution for the Internet traffic load is as shown in Table 7.7. 
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Table 7.7 
 

Packet size distribution for an actual network traffic load [19]. 
 

 
Packet Size 

 

 
< 44 

 

 
50-500 

 

 
500-600 

 

 
>1500 

 

Percentage (%) 
 

 
50 
 

14 18 18 

 
 
 

The packet sizes assumed for each queue for simulation purposes are shown in 

Table 7.8. The packet size distribution resembles the one shown in Table 7.7. 

 
Table 7.8 

 
Packet distribution for Actual flow actual network traffic load. 
 

 
 

Queue0 
 

Queue1 Queue2 Queue3 Queue4 Queue5

 
Size in bytes 32 

 
32 
 

 
32 
 

 
64 
 

 
512 

 

 
1472 

 
Packet   unit # 

(32 bytes/unit) 
 

 
1 
 

1 1 2 16 46 

 
 
 
7.4.1 Optimum Value of alpha for DA 
 
  Figure 7.10 shows the packet loss ratio for DA as the alpha value is varied from 4 

to 20 for the actual network traffic load. Figure 7.10 shows that the optimum alpha value 

for DA comes out to be 4. As we can see that as the value of alpha is increased the packet 

loss ratio is also increased. This is due to the fact that queue 5 has a size of 46 bytes and 
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any increase in its threshold value will result in great increase in packet losses of other 

applications. 
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Figure 7.10: Packet loss ratio vs. Alpha for DA for the actual traffic load 

 
7.4.2 Optimum Value of alphas for DADT 

Table 7.9 shows the different combinations of alpha for DADT and figure 7.11 

shows the packet loss ratio corresponding to them.  From figure 7.11 we can see that the 

optimum alpha values come out of the variation 5.  
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Table 7.9 
 

      Variation of alpha for DADT for the actual traffic load 
 
Variation Q0 Q1 Q2 Q3 Q4 Q5 

1   16 16 16 16 6 4 
2   16 16 16 16 6 6 
3   18 18 18 18 6 4 
4   16 16 16 16 16 6 
5   16 16 16 16 16 4 
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             Figure 7.11: Packet loss ratio vs. Alpha Variation for DADT for the actual traffic  
                    load 

 

 

          For application 5, optimum value of alpha is 4. As we can see for variation two, 

packet loss ratio is greater than all other combinations. This is due to the fact that in 
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variation two value of alpha for application 5 is 6 which is high considering its packet 

size. Also for application 4, value of alpha is 6 which gives it less threshold and thus 

results in increase packet loss ratio. For variation 4, though value of alpha for application 

5 is 6 but high value of alpha for application 4 results in overall less packet loss ratio. 

 
7.4.3 Comparison of FSDA, DA and DADT for different loads 

       Figure 7.12 shows the performance of the three algorithms (FSDA, DA and 

DADT) for buffer size of 600 packets. Load has been varied from 0.5 to 0.9.  
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Figure 7.12: Packet loss ratio vs. Load for FSDA, DADT, and DA for the actual traffic  

                load 
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7.4.4 Comparison of FSDA, DA and DADT for different buffer size 

Figure 7.13 shows performance of three algorithms FSDA, DA, and DADT as the 

buffer size is varied from 500 to 800 packets. The performance of DA and DADT 

becomes very similar for buffer size =800 packets while FSDA has better packet loss 

ratio than DA and DADT. 
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Figure 7.13: Packet loss ratio vs. Buffer size for FSDA, DADT, and DA for the  
                     actual traffic load. 
 

 
7.4.5 Improvement ratio of FSDA over DA and DADT 

  Table 7.10 shows the improvement in packet loss ratio for ‘FSDA over DA’ and 

‘FSDA over DADT’ according to different loads, from 0.5 to 0.9. For a load for ‘0.7’, 

improvement ratio of FSDA over DA is 13.6% and over DADT is 7.5%. 
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Table 7.10 
 

Improvement ratio of FSDA over DA and DADT for the actual traffic load. 
 

Load Improvement ratio (%) 
(FSDA/DA) 

Improvement ratio (%) 
(FSDA/DADT) 

0.5 12.5                        5.2 
0.6 13.5 6.6 
0.7 13.6 7.5 
0.8 26 20.1 
0.9 12.9 8.1 

 
 
 
7.5      FSDA Designed for UDP 

In the TCP protocol, a source gets an acknowledgement from a receiver when a 

packet is accepted by a buffer management algorithm. On the other hand, in the UDP 

protocol, packets are not acknowledged by a receiver. 

As explained in the previous section, in FSDA, packets are replaced when a 

buffer memory is full and an incoming packet is for an application whose flag is still ‘0.’ 

For the replaced packet, a source will not get an information that the packet has been 

replaced, thus rejected, by a receiver. Hence, FSDA works more efficiently for the 

UDP/IP than the TCP/IP.  

 
       Table 7.11 shows the ratio of the number of replaced packets to the total number 

of incoming packets as load varies from 0.5 to 0.9 for the average traffic load and busty 

uniform model. Buffer size is taken as 600 packets. 
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     Table 7.11 
 

Ratio of the replaced packets in FSDA 
 

Load Total number of the replaced packets / Total Incoming  
packets 

0.5 0.009822 (0.98%) 
0.6 0.013807 (1.38%) 
0.7 0.017489 (1.74%) 
0.8 0.018585 (1.85%) 
0.9 0.018808 (1.88%) 

 
  

Though, the percentage of replaced packets is very low but in data critical applications 

even this low percentage of loss in undesirable. Hence, using FSDA for TCP-based 

applications may result in loss of data. 
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7.6      Simulation Results for EBDA 
 
 

Three different network traffic loads are considered for our simulations and 

comparisons of algorithms:  average network traffic load, heavy network traffic load, and 

actual network traffic load. We have used the “bursty uniform traffic model” for our 

simulations of all the network traffic loads since it is the most commonly used model. 

Figure 7.14 shows the steps performed for performance comparisons of different 

algorithms 

Average Network 
Traffic Load

Optimum alpha value is determined for DA 

Optimum alpha values are determined for DADT 

Heavy Network 
Traffic Load

Actual Network 
Traffic Load

Performance comparison 
for Buffer size variations

Performance comparison 
for Traffic load variations

Optimum alpha values are determined for EBDA 

    
Figure 7.14: Steps performed for comparing DA and DADT with EBDA. 
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 First, the optimum value of alpha is calculated for DA. Then, optimum values of 

alpha are calculated for DADT. Then, optimum values of alpha1, alpha2, gamma1 and 

gamma2 are determined for EBDA. This is followed by the performance comparison of 

DA, DADT, and EBDA when the load and the buffer size are varied. Finally, 

improvement ratio is determined for each network traffic load. 

 
7.7       Simulation Results for Average Network Traffic load 

 Packet sizes for different applications based on the average network traffic load 

flow are given in table 7.1. 

 
7.7.1  Optimum Value of alpha for DA 
 

In Section 7.2.1 we have already calculated the optimum value of alpha for DA 

for average traffic load. The value of alpha comes out to be 16. So, we are going to use 

optimum value of alpha as 16 for DA. 

 
7.7.2 Optimum Value of alphas for DADT 
 

For DADT optimum values of alpha are calculated in section 7.2.2. The optimum 

values comes out to be 16 for queue0, 14 for queue1, 16 for queue2, 14 for queue3, 16 for 

queue 4 and 8 for queue5. We are going to use these alpha values for different 

applications. 

 
7.7.3 Optimum Value of alpha1, alpha2, gamma1  and gamma2  for EBDA 
 
  Table 7.12 shows the packet losses for different variations of alpha and gamma 

values for EBDA, for a buffer size of 600 packets and load of 70% on each of queue. All 
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combinations that we have taken to find out values of alpha1, alpha2, gamma1 and 

gamma2 are powers of two. From Table 7.12, optimum values of (alpha1, gamma1, 

alpha2, and gamma2) come out to be for variation 1. For our comparison purpose, we 

will use values of alpha1, alpha2, gamma1, and gamma2 as 16, 4, 64, and 64 (from 

variation 1) respectively. 

 
  Table 7.12 
 

Variation of (alpha1, alpha2, gamma1 and   gamma2) vs. total packet loss for EBDA 
 

Variation of alpha1, alpha2, gamma1, 
gamma2 Total Packet Loss 

16,4,64,64 2353720 
16,2,64,64 2356962 
4,16,64,32 2360745 
16,8,8,16 2422177 
16,8,16,32 2376250 
16,8,8,64 2385378 
16,8,32,64 2361126 
16,8,64,64 2353922 

 
 
 
7.7.4 Comparison of EBDA, DA and DADT for different loads 

  Figure 7.15 shows the performance of the three algorithms (EBDA, DA, and 

DADT) for different loads. Load has been varied from 0.5 to 0.9. Buffer size is taken as 

600 packets. As seen in Figure 7.15, EBDA has the least packet loss ratio for all of loads.  

The packet loss ratio increases for all the algorithms with increasing “load on the 

queues”. Notice that the performance difference increases more at higher loads. As the 

load is increased, applications with larger packet size tend to increase their queue length 

to values greater than their threshold values frequently. Since, EBDA utilizes the buffer 
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space more efficiently, providing fairness to all the applications; EBDA can reduce the 

packet loss ratio significantly.  
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Figure 7.15: Packet loss ratio vs. Load for EBDA, DADT and DA for the average  
                    traffic load 

 
 
 

7.7.5 Comparison of EBDA, DA and DADT for different buffer size 

  Figure 7.16 shows the performance of the three algorithms DA, DADT and 

EBDA as the buffer size varies from 500 to 800 packets. With an increase of buffer size, 

packet loss ratio decreases for all three algorithms. This is due to the fact that each queue 

gets more space to accommodate packets.  
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Figure 7.16: Packet loss ratio vs. Buffer Size for EBDA, DADT, and DA for the  
                     average traffic load 

 
 
 

7.7.6 Improvement ratio  of EBDA over DA and DADT  

 Table 7.13 shows the improvement in packet loss ratio for ‘EBDA over DA’ and 

‘EBDA over DADT’ as the load varies from 0.5 to 0.9.  For a load of 0.7 improvement 

ratio is 16.7 over DA and 11.8 over DADT. When compared with FSDA, EBDA has less 

improvement ratio. This is due to the fact that FSDA utilizes whole buffer memory. In 

FSDA, packets are accepted as long as there is enough space for them in the buffer 

memory while in EBDA, there is a controlling threshold. The advantage that EBDA has 

over FSDA is that there is no need to replace packets in EBDA. This means that EBDA 

can work more efficiently for applications that use TCP.  
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       Table 7.13 
 

    Improvement ratio of EBDA over DA and DADT for the average traffic load 
 

Load Improvement ratio (%) 
(EBDA /DA) 

Improvement ratio (%) 
(EBDA /DADT) 

0.5 15.3 6.57 
0.6 16.6 9.59 
0.7 16.7 11.8 
0.8 15.9 12.2 
0.9 15.1 11.6 

 

 
7.8       Simulation Results for Heavy Network Traffic load 

 Packet sizes for different applications based on the average network traffic load 

flow are given in table 7.4.  

 
7.8.1  Optimum Value of alpha for DA 
 

 Optimum value of alpha for DA for heavy traffic load comes out to be 16. This is 

shown in section 7.3.1. 

 
7.8.2 Optimum Value of alphas for DADT 
 

From section 7.3.2, we can see that Optimum Value of alphas for DADT comes 

out be for variation 3 of table 7.5. The optimum alpha values are 14, 12, 14, 12, 12, and 8 

for queue0 to queue5 respectively. 

 
7.8.3 Optimum Value of alpha1, alpha2, Gamma1  and Gamma2  for EBDA 
 
  Table 7.14 shows the packet losses for different variations of alpha and gamma 

values for EBDA, for a buffer size of 600 packets, and a load of 70% on each of the 
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queue. From Table 7.14 optimum values of (alpha1, gamma1, alpha2, and gamma2) 

come out to be for variation 1. 

 
  Table 7.14 
 

Variation of (alpha1, alpha2, gamma1 and gamma2) vs. total packet loss for EBDA 
 

Variation of alpha1, alpha2, gamma1, 
gamma2 Total Packet Loss 

16,4,64,64 1727801 
16,2,64,64 1747305 
4,16,64,32 1789091 
4,16,32,32 1824368 

 
 
 
7.8.4 Comparison of EBDA, DA and DADT for different load 

       Figure 7.17 shows the performance of the three algorithms (EBDA, DA, and 

DADT) for buffer size of 600 packets. Load has been varied from 0.5 to 0.9.  
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Figure 7.17: Packet loss ratio vs. Load for EBDA, DADT, and DA for the heavy  
                    traffic load 
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7.8.5 Comparison of EBDA, DA and DADT for different buffer size 

      Figure 7.18 shows the performance of the three algorithms, EBDA, DA, and 

DADT as the buffer size varies from 500 packets to 800 packets. 
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Figure 7.18: Packet loss ratio vs. Buffer Size for EBDA, DADT, and DA for the  
                    heavy traffic load 

 
 
 

7.8.6 Improvement ratio  of EBDA over DA and DADT  

 Table 7.15 shows the improvement in packet loss ratio for ‘EBDA over DA’ and 

‘EBDA over DADT’ as the load varies from 0.5 to 0.9.  For a load of 0.7 the 

improvement ratio is 16.8% over DA and 12.6% over DADT. 
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  Table 7.15 
 

         Improvement ratio of EBDA over DA and DADT for the heavy traffic load 
 

Load Improvement ratio (%) 
(EBDA /DA) 

Improvement ratio (%) 
(EBDA /DADT) 

0.5 13.5 7.39 
0.6 16.0 10.0 
0.7 16.8 12.6 
0.8 16.8 14.4 
0.9 16.2 14.3 

 
 
 
7.9 Simulation Results for Actual Network Traffic load 

 Packet sizes for different applications based on the actual network traffic load 

flow are given in table 7.8.  

 
7.9.1 Optimum Value of alpha for DA 
 

 Optimum value of alpha for DA for actual traffic load comes out to be 4. This is 

shown in section 7.4.1. 

 
7.9.2 Optimum Value of alphas for DADT 

In section 7.4.2 we have already determined the optimum values of alpha for 

DADT for actual traffic load. The optimum values come out to be for variation 5 in table 

7.8. The values are 16, 16, 16, 16, 16, and 4 for queue0 to queue5 respectively. 

 
7.9.3 Optimum Value of alpha1, alpha2, gamma1  and gamma2  for EBDA 

  Table 7.16 shows the packet losses for different variations of alpha and gamma 

values for EBDA, for a buffer size of 600 packets, and a load of 70% on each of the 
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queue. From Table 7.16 optimum values of (alpha1, gamma1, alpha2, and gamma2) 

come out to be for variation 1. 

 
Table 7.16 
 

Variation of (alpha1, alpha2, gamma1, and gamma2) vs. total packet loss for EBDA 
 

Variation of alpha1, alpha2, 
gamma1, gamma2 Total Packet Loss 

16,4,64,64 4880774 
8,4,16,16 4957822 
8,4,32,32 4890188 
8,4,32,64 4890423 
8,4,64,64 4886391 

 

 
7.9.4 Comparison of EBDA, DA and DADT for different load 

      Figure 7.19 shows the performance of the three algorithms (EBDA, DA and 

DADT) for different loads. Load has been varied from 0.5 to 0.9. Buffer size has been 

taken 600 packets. 
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      Figure 7.19: Packet loss ratio vs. Load for EBDA, DADT, and DA for the  
                          actual traffic load 

 

 
7.9.5 Comparison of EBDA, DA and DADT for different buffer size 

 Figure 7.20 shows performance of three algorithms EBDA, DA, and DADT as the 

buffer size varies from 500 to 800 packets. As the size of the buffer goes up, the packet 

loss ratio decreases at a fast rate. 
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   Figure 7.20: Packet loss ratio vs. Buffer Size for EBDA, DADT, and DA for the  
                        actual traffic load 

 
 
 

7.9.6 Improvement ratio  of EBDA over  DA and DADT  

          Table 7.17 shows the improvement in packet loss ratio for ‘EBDA over DA’ and 

‘EBDA over DADT’ according to different loads, from 0.5 to 0.9.  

 
           Table 7.17 

 
Improvement ratio of EBDA over DA and DADT for  
                           the actual traffic load 
 

Load Improvement ratio (%) 
(EBDA /DA) 

Improvement ratio (%)  
(EBDA /DADT) 

0.5 0.072406 0.002982 
0.6 0.072734 0.007699 
0.7 0.076505 0.019389 
0.8 0.076193 0.02627 
0.9 0.074594 0.029234 
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CHAPTER VIII 
 

CONCLUSION AND FUTURE WORK 

 
8.1 Summary of the Achievements 
 

In this thesis, we developed two buffer management algorithms: Fairly Shared 

Dynamic Algorithm and Evenly Based Dynamic Algorithm to reduce packet losses in 

Network terminals and also to distribute packet losses among different applications more 

evenly. We also implemented four buffer management algorithms:  

1) Dynamic Algorithm (DA): In DA, packets for any application are accepted as 

long as the queue length for the application is less than its threshold value. The 

threshold value depends on amount of the unused buffer space. It does not take 

packets sizes into consideration. 

2) Dynamic Algorithm with Dynamic Threshold (DADT): It works like DA except 

for the fact that it takes packet sizes into consideration. 

3) Fairly Shared Dynamic Algorithm (FSDA): FSDA utilizes whole buffer memory. 

If single application is active it works like CS. If multiple applications are there 

then it works like DA except for the fact that packets are not rejected unless the 

buffer is completely filled. Flags are used to maintain fairness among 

applications. Packets can be replaced in FSDA. 
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4) Evenly Based Dynamic Algorithm (EBDA): EBDA reduces packet losses by 

taking packet size into summation instead of multiplication. This helps in 

maintaining fairness among all applications. 

The performances of Fairly Shared Dynamic Algorithm and Evenly Based Dynamic 

Algorithm are compared with all other algorithms. 

 
8.1.1 FSDA 

Fairly Shared Dynamic Algorithm utilizes full memory. Packets are accepted as 

long as there is enough space for them in the packet buffer. Flags are maintained to keep 

track of applications which have taken more space than what they would have taken in 

Dynamic algorithm. Flags help in maintaining fairness among different applications. 

FSDA works very efficiently for applications that use UDP, since information about 

replaced packets is lost in FSDA. For the replaced packet, a source will not get an 

information that the packet has been replaced, thus rejected, by a receiver. Hence, FSDA 

works more efficiently for the UDP/IP than the TCP/IP. If used for TCP/IP, FSDA may 

result in loss of some data. 

The simulations considered a buffer of size as 600 cells (packets), 6 output queues 

(0-5), bursty uniform traffic model, dequeue time (packet processing time) of 14 clock 

cycles for a burst of 10 cells and uniform load for all output queues. For our simulation 

model, three traffic mixes were considered. 
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8.1.2 Improvement in efficiency for FSDA 

           For the average network traffic load, the FSDA improves the packet loss ratio by 

18.5% over the dynamic algorithm and by 13.5% over the DADT. For the heavy network 

traffic load, the FSDA improves the packet loss ratio by 16.8% over the dynamic 

algorithm and by 12.5% over the DADT. While for the actual traffic load the 

improvement is 13.6% over DA and 7.5% over DADT. 

 
8.1.3 EBDA 

EBDA takes fairness among applications and packet sizes of applications into 

consideration while allocating buffer space to each application. The idea behind EBDA is 

to eliminate the need to calculate optimum alpha value for each application as in DADT 

and also distribute the packet losses more evenly among the different applications. 

 
8.1.4 Improvement in efficiency for EBDA 

            For the average network traffic load, the EBDA improves the packet loss ratio by 

16.7% over the dynamic algorithm and by 11.8% over the DADT. For the heavy network 

traffic load, the EBDA improves the packet loss ratio by 16.8% over the dynamic 

algorithm and by 12.6% over the DADT. While for the actual traffic load the 

improvement is 7.6% over DA and 1.9% over DADT. 
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8.2  Future Work 

One of the areas of future research could be to incorporate priority applications in 

the buffer management algorithms. Packets with higher priority should be give preference 

over packets with lower priority. 
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