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Biodiesel is a renewable, biodegradable, clean burning fuel, produced from 

vegetable oils and animal fat. It is a mixture of fatty acid alkyl esters, products that result 

from the catalytic transesterification of lipids. 

The first part of this research describes the development of a new and direct 

method used to rapidly and quantitatively determine the amount of free methanol in 

biodiesel samples. The analytical method developed is different from the current 

standards for methanol determination, and it is the first headspace-SPME method used to 

extract methanol from biodiesel as matrix. 

The second part of this research describes the direct analysis of acetic acid and 2-

furaldehyde in an aqueous mixture using headspace SPME. The direct and accurate 

determination and quantitation of these two analytes is very important, as they can be 

inhibitors or food sources for microorganisms capable of producing lipids or ethanol.
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CHAPTER I 
 
 

INTRODUCTION 
 
 

The goal of this research was to develop new, direct, and quantitative analytical 

methods for analyzing methanol in biodiesel and acetic acid and 2-furaldehyde in 

aqueous samples. Methanol is one of the reagents used in the transesterification reaction 

and is also a contaminant of the final product, biodiesel. Residual methanol in biodiesel 

decreases the flash point and damages the rubber components of the vehicle’s fuel 

system1, so an accurate, fast, and direct method to determine the free methanol in 

biodiesel was desired. Similar goals were set for the analysis of acetic acid and  

2-furaldehyde. These two compounds are among the products of acid hydrolysis of 

lignocellulosic biomass.2 The aqueous mixture obtained from the acid hydrolysis of 

switchgrass may be fed to oleaginous microorganisms. The oil produced by these 

microorganisms can be converted to biodiesel. The acetic acid and 2-furaldehyde present 

in the aqueous mixture can act as inhibitors or food sources for the oleaginous 

microorganisms, so their direct analysis and quantitation is important. The methods 

developed employed headspace solid-phase microextraction and gas chromatography 

with flame ionization detection. 

Solid-phase microextraction (SPME) was developed by J. Pawliszyn and co-

workers in 1989.3 SPME uses a polymer coated fused silica fiber on which the analytes 
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are adsorbed. The fiber is then directly inserted into the injector of a gas chromatograph 

where the analytes are thermally desorbed and then the fiber can be reused. This 

technique has multiple advantages: no solvent is required, it is simple and fast, and there 

are two possible modes of analyte extraction, headspace and direct immersion. Also, 

SPME can be automated and can be coupled with GC or HPLC. 

 One disadvantage is the limited lifetime of the fiber, which degrades with usage 

and can cause analyte peak tailing and co-elution.4 Headspace extraction is preferred over 

direct immersion because it prolongs the lifetime of the fiber due to the absence of 

contact between fiber and solution. A valuable feature of SPME is that different fiber 

coatings provide selective extraction of analytes from a mixture based on matching the 

properties of the fiber coating relative to the analyte polarity. 4 The importance and use of 

this technique is increasing daily in many fields. SPME has been applied to analysis of 

environmental samples, flavor and food products, surfactants, forensic, and toxicological 

analysis.5 - 10 
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CHAPTER II 
 
 

HEADSPACE SPME DETERMINATION OF METHANOL IN BIODIESEL 
 
 

2.1 Literature review 
 

Biodiesel is a renewable, biodegradable, clean burning fuel, produced from 

vegetable oils and animal fat. It is non-toxic, it produces less carbon and sulfur oxides 

than petroleum diesel and it is non-flammable. Biodiesel is a mixture of fatty acid alkyl 

esters, products resulting from the transesterification of saponifiable lipids. This process 

can be performed with acidic, basic or enzymatic catalysis (see Figure 2.1), and under 

supercritical conditions.11 Sodium methoxide, one of the most widely used basic 

catalysts, is very efficient in transesterifying glyceride-bound fatty acids. The base-

catalyzed transesterification takes place quickly (few minutes) and at room temperature. 

Anhydrous reaction conditions are required in order to avoid saponification as a side 

reaction.12 If the lipid sample to be transesterified contains a considerable amount (more 

than 1%) of free fatty acids, then the acid catalysis route must be chosen. The most 

frequently used reagents for acid-catalyzed transesterification are sulfuric acid in 

methanol and boron trifluoride in methanol. This reaction requires a longer time (2-3 

hours) and higher temperatures (100 °C).12 
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Badings13 proposed a mixed transesterification procedure, the first step being a 

base catalyzed transesterification of the lipid-bound fatty acids and the second one being 

the methanolic sulfuric acid treatment of the remaining free fatty acids. 

The most important experimental factors in the transesterification process are: 

molar ratio of alcohol to lipid, type of catalyst, temperature, and time.1 The stoichiometry 

of the transesterification reaction requires a 3:1 molar ratio of alcohol (usually methanol) 

to lipid, but in practice a higher amount of methanol is used.  The optimum molar ratio of 

methanol to glycerides for base-catalyzed transesterification is considered to be 6:1 and at 

this value a 98% conversion to fatty acid alkyl ester is observed.14 With molar ratios 

lower than 6:1 the conversion to alkyl ester decreases to 82% and the amount of mono-, 

di- and triglycerides increases, and ratios higher than 6:1 do not improve the alkyl ester 

yield, complicate ester and glycerol separation, and increase the cost of methanol 

recovery.14 The transesterification reaction is reversible and takes place stepwise. The 

initial triglycerides are transformed into diglycerides, then monoglycerides, and lastly 

glycerol. The excess of alcohol helps shift the equilibrium towards formation of fatty acid 

alkyl esters and glycerol.1 The final reaction mixture contains fatty acid alkyl esters 

(biodiesel), tri-, di- and monoglycerides, glycerol, residual alcohol, and catalyst. Most of 

these contaminants of the biodiesel need to be removed in order for the biodiesel to meet 

the specifications.15  
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Figure 2.1   General transesterification reaction.1 

 

Acid catalyzed transesterifications require larger quantities of methanol, with 

molar ratio of alcohol to vegetable oil as high as 30:1.14 The methyl ester formation can 

be enhanced by increasing the methanol to oil ratio, increasing the amount of acid 

catalyst used, decreasing the amount of water present in the vegetable oil mixture, and 

using alcohols with high boiling temperatures.16,17 Zheng et al.17 used methanol: oil molar 

ratios from 50:1 to 250:1, 1.5 to 3.5 mol% sulfuric acid and high temperatures, 70 °C and  

80 °C. They reported quantitative oil to FAME conversion (99±1%).17  

 Enzyme catalyzed transesterifications are not yet commercially feasible, mainly 

due to the low reaction yields and long reaction times.11 Lipase was reported18 as a 

suitable biocatalyst for the synthesis of biodiesel from vegetable oils. 

 Another type of transesterification is the one in supercritical methanol. The 

advantages of this method are the fact that it does not require any kind of catalyst, the 

reaction time is shorter, the energy consumption is lower and it is environmentally 

friendly.19 The supercritical methanol transesterification requires high temperatures  

(250 – 400 °C) and pressures (100 – 350 atm)19– see Table 2.1. Water present in the 

reaction mixture does not have negative effects on the fatty acid alkyl ester yield.11  
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Table 2.1 Catalytic versus supercritical transesterification of vegetable oils.19 

 

 catalytic methanol method supercritical 
methanol method 

methylating agent methanol methanol 
catalyst alkali or acid none 

reaction temperature (°C) 30 - 70 250 - 400 
reaction pressure (atm) 1 100 - 350 

reaction time (min) 60 - 360 7 - 15 
methyl ester yield (wt %) 97 98 

to be removed for 
purification 

methanol, catalyst, glycerol, 
soaps 

methanol 

free fatty acids saponified products methyl esters, water 
 
 
 
Methanol is the most used alcohol for the transesterification reaction due to its 

low cost and ability to allow glycerin separation. Ethanol can also be used but water 

should be removed as much as possible from the oil and alcohol. The disadvantage of 

using methanol is that it is very flammable and in the presence of more than 2% water, 

methanol is corrosive towards aluminum alloys. Even if ethanol is more environmentally 

friendly and is obtained from renewable and biodegradable agricultural products, it 

contains some acetic acid traces, so it also corrodes aluminum alloys.11 

 The quality of biodiesel depends on numerous factors, flash point being one of 

them. The flash point is directly affected by the quantity of alcohol in the biodiesel. 

Residual methanol in biodiesel can cause a lower flash point and can also induce a rapid 

deterioration of the rubber components of the vehicle’s fuel system.1 The amount of 

methanol that can be present in biodiesel is regulated by the European Biodiesel 

Standards EN 14214 (test method EN-14110), the limit being 0.2 % mass/mass15, and by 
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the ASTM D6751-07a (test method D93 or EN-14110), the limit being at least 130 °C 

(flash point method) or 0.2 % by volume.20 

The unique feature of this research is the fact that it provides a direct method to 

rapidly and quantitatively determine the amount of free methanol in biodiesel samples.21 

The analytical method developed is different from the current US standard for methanol 

determination, ASTM D6751 which uses the Flash Point (closed cup) measurement (test 

method D93)22 and from the European standard which uses the headspace GC method 

(test method EN-14110).23 

One research group24 reported the determination of methanol in biodiesel by 

derivatizing it with N,O-bis-trimethylsilyl-trifluoroacetamide (BSTFA). They directly 

injected a mixture of rape-seed oil methyl esters and BSTFA in N,N-Dimethylformamide 

into a gas chromatograph fitted with a DuraBond-5 capillary column and flame ionization 

and mass spectrometric detection. Other groups have used headspace solid phase 

microextraction (SPME) to determine the amount of methanol in other matrices, such as: 

pectin5, plant polysaccharides6, aspartame sweeteners7, body fluids8,9, and air10. While 

most of the headspace SPME analyses of methanol were performed with a Carboxen-

Polydimethylsiloxane (CAR-PDMS) fiber assembly5,8,10, one research group20 used 

pencil lead and reported good overall recoveries. 
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2.2 Experimental 
 
 
2.2.1 Chemicals and Reagents 

Optima-grade methanol was purchased from Fisher (Fair Lawn, NJ), 4A activated 

molecular sieves were acquired from Sigma-Aldrich (St. Louis, MO), anhydrous sodium 

sulfate (Na2SO4) was obtained from Merck (Darmstadt, Germany), and the biodiesel 

(B100) was supplied by the Petroleum Products Laboratory (Mississippi State, MS). The 

10 mL SPME vials, fiber assembly, 75-µm carboxen-polydimethylsiloxane  

(CAR-PDMS), 70-µm carbowax-divinylbenzene (CAR-DVB), 100-µm 

polydimethylsiloxane (PDMS), 85-µm polyacrylate (PA), and 60-µm polyethylene glycol 

(PEG) fibers, were purchased from Supelco (Bellefonte, PA). 

 

2.2.2 Instrumental Analysis 

The analyte was adsorbed onto the SPME fiber and then thermally desorbed in the 

inlet of a Hewlett-Packard (HP) 6890N gas chromatograph (Palo Alto, CA) equipped 

with a split/splitless injection port and flame ionization detection (FID) system. The 

injector and detector temperatures were held constant during the analysis (200 °C and 

300 °C, respectively). The fused silica capillary column used for separation was a 30-m, 

0.32-mm i.d., 0.25-µm film thickness Hewlett-Packard HP-5 (5%-phenyl)-

methylpolysiloxane. The GC oven was programmed as follows:  the initial temperature of 

40 °C was held for 4.0 min, increased to 120 °C at 10 °C/min, and then increased to 200 

°C at 20 °C/min and held at 200 °C for 1 min. Helium was used as carrier gas at a 
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constant flow rate of 1.5 mL/min. The injector was operated in split mode (20:1 split 

ratio). The data were acquired using a HP-CORE ChemStation system. 

 

2.2.3 Solid-Phase Microextraction 

An automated SPME system (CombiPAL, LEAP Technologies) was used with 

the 75-µm CAR-PDMS fiber assembly. CAR-PDMS is recommended for gases and low 

molecular weight compounds (MW 30-225).  When new SPME fibers were installed they 

were conditioned in the gas chromatograph (GC) injection port at 300 °C for 2 hours, 

according to the manufacturer’s recommendations.  

 The biodiesel (B100) used for calibration was washed three times with distilled 

water and dried with anhydrous sodium sulfate (Na2SO4) and molecular sieves. This 

procedure insured a practically complete elimination of methanol present in the initial 

biodiesel (B100). Standard solutions for calibration were prepared by spiking different 

amounts of methanol into the washed and dried biodiesel. 

The 10 mL SPME vials each containing 1 mL of biodiesel solution were capped 

with Teflon lined septum caps and heated at 50 °C for 20 min, with constant stirring (500 

rpm). The SPME fiber was then exposed to the headspace of the vial and the volatile 

compounds were adsorbed onto the fiber for 20 min at 50 °C, at constant temperature and 

stirring. Then the fiber was exposed for 2 min at 200 ºC in the GC injection port for 

complete desorption and GC analysis of the analytes.  
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2.3 Results and Discussion 

The optimization of the SPME extraction conditions was performed to achieve the 

highest adsorption in the shortest amount of time. Five different types of SPME fibers 

were investigated to determine the one that yields the highest methanol adsorption. These 

fibers were: 75-µm carboxen-polydimethylsiloxane (CAR-PDMS), 70-µm carbowax-

divinylbenzene (CAR-DVB), 100-µm polydimethylsiloxane (PDMS), 85-µm 

polyacrylate (PA), and the newly released 60-µm polyethylene glycol (PEG). Three 

methanol in biodiesel solutions were used (see Table 2.2 and Figure 2.2) and each 

analysis was run in triplicate and the results were averaged. 

 
 

Table 2.2 SPME fibers - experimental data. 

 

 CAR-PDMS 
75-µm 

CW-DVB 
70-µm 

PDMS 
100-µm 

PA 
85-µm 

PEG 
60-µm 

conc. 
(% mass) 

avg. (n=3) 
area (pA · s) 

avg. (n=3) 
area (pA · s)

avg. (n=3) 
area (pA · s)

avg. (n=3) 
area (pA · s) 

avg. (n=3) 
area (pA · s)

0.0165 121.8 50.1 19.3 46.5 79.7 
0.021 162.8 64.8 22.7 58.2 94.6 
0.033 211.1 99.9 36.0 85.5 157.1 
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Figure 2.2   Comparison of extraction efficiency of different SPME fibers. 

 
 
The experimental data indicate that the best extraction of methanol in biodiesel was 

achieved with the 75-µm CAR-PDMS SPME fiber. A second order polynomial 

calibration curve was obtained for each of the SPME fibers tested.  

The next step in the optimization procedure was to vary the extraction 

temperature and time, using the 75-µm CAR-PDMS SPME fiber and the 0.19 mg/mL 

(0.02 % mass/mass) methanol in biodiesel concentration. Three extraction temperatures 

were investigated: 35 ºC, 50 ºC and 65 ºC and three extraction times: 10 min, 20 min and 

30 min. The sample volume used for the optimization studies was 1.0 mL. The 

experimental results are listed in Table 2.3 and Figure 2.3. 
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Table 2.3 Variation of extraction temperature with time – experimental data. 

 

 35 ºC 50 ºC 65 ºC 
time (min) avg.(n=6) area (pA · s) avg.(n=6) area (pA · s) avg.(n=6) area (pA · s)

10 123.8 145.2 84.4 
20 155.0 182.8 96.8 
30 134.4 122.3 75.7 

 
 
 

0

50

100

150

200

250

0 5 10 15 20 25 30 35

extraction time (min)

av
er

ag
e 

( n
=6

) a
re

a 
(p

A
 • 

s)

35 ºC
50 ºC
65 ºC

 

Figure 2.3   Response versus time at 35 ºC, 50 ºC, and 65 ºC. 
 
 
 

Based on the optimization studies, the following parameters were chosen for all 

subsequent experiments: a 75-µm CAR-PDMS fiber assembly, 50 °C extraction 

temperature, and 20 minutes extraction time. It appears that at higher temperatures and 
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longer extraction times, the analyte vapors leaks from the SPME vial and a lower amount 

is absorbed by the fiber (see Figure 2.3).  

The retention time of methanol (Rt = 2.15 min) was determined by direct injection 

of neat methanol. Washing the biodiesel (B100) three times with distilled water and 

drying it over anhydrous Na2SO4 and activated molecular sieves removed more than 99% 

of the initial methanol. The actual amount of methanol present in biodiesel after this 

procedure was 2.2x10-4 % mass/mass. This determination was performed using the above 

described headspace SPME and GC conditions. This washed and dried biodiesel was 

considered methanol–free and will be referred to as “reference biodiesel”. 

Calibration curves were constructed by using reference biodiesel spiked with 

methanol. The concentration of these standard solutions is expressed in mass percent  

(% mass/mass). Solutions were prepared by mass/volume and then converted to 

mass/mass units. One mg/mL methanol/biodiesel corresponds to 0.11 % mass/mass 

(European standards). The average density of the biodiesel (B100) employed in this study 

(6 replicates, relative standard deviation 0.12 %) was determined to be 0.880 g/mL. The 

responses for calibration concentrations (shown in Table 2.4) were made with six 

replicates and the reproducibility was expressed as relative standard deviation (RSD). 

The range of RSD for these calibration points was from 3.41 % to 10.36 % and the 

average RSD was 7.06 %. 
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Table 2.4 Average (n=6) values of RSD for calibration concentrations. 

 

methanol in biodiesel 
concentration 
(% mass/mass) 

average RSD* 
(%) 

0.0057 9.94 
0.011 9.64 
0.023 9.92 
0.034 10.36 
0.045 10.33 
0.057 5.52 
0.11 4.42 
0.23 3.41 
0.57 3.43 
1.14 3.67 
1.70 6.67 
2.27 7.47 

 
  *The replicates were acquired over a period of five days. 
 
 
In the concentration range from 0.0057 to 0.23 mass percent, the results fit a 

second order polynomial curve (y = 1x10-6x2 – 1x10-4x + 0.0121) (see Figure 2.4). For 

higher methanol concentrations, a third order polynomial curve should be used. (see 

Figure 2.5). 
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Figure 2.4   Calibration curve for methanol in reference biodiesel – 0.0057 % to 0.23 % 
mass/mass. 
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Figure 2.5   Calibration curve for methanol in reference biodiesel– average of six series. 

 
 

Three spiked samples with different concentrations of methanol in reference 

biodiesel were used to check the reproducibility of this headspace SPME method. The 

concentrations were 0.057, 0.11, and 0.23 mass percent. For each concentration, a set of 

six replicates was recorded and the relative standard deviation was 1.00 % for the 0.057 

mass percent solution, 1.52 % for the 0.11 mass percent solution, and 2.01 % for the 0.23 

mass percent solution. The recovery was also excellent, ranging from 97.43 % to 101.55 

% with an average of 100.20 % and a relative standard deviation of 1.60 % (n=6). 

 This headspace SPME method was used to analyze 13 actual biodiesel (B100) 

samples obtained from the Petroleum Products Laboratory (Mississippi State, MS). The 
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results are summarized in Table 2.5. According to the headspace SPME method, all the 

samples in this table, except number 10, 11 and 13 would pass the European EN-14110 

standard. The European EN-14110 test method uses biodiesel (B100), which is heated at 

80 °C in a hermetically sealed vial for 45 minutes and then a defined amount of gas phase 

is injected into the GC/FID by means of a preheated syringe. This headspace method can 

be manual or automated and it uses 2-propanol as internal standard. An external 

calibration can also be used if the headspace procedure is automated.23 

 
 
Table 2.5 Methanol concentration in biodiesel samples from Petroleum Products Lab. 

 

sample 
no. 

sample 
name 

methanol 
concentration 

(% mass/mass) 
1 2006-93A 0.0085 
2 2006-93H 0.12 
3 2006-95A 0.015 
4 2006-107A 0.081 
5 2006-108A 0.043 
6 2006-108B 0.0022 
7 2006-108C 0.073 
8 2006-108D 0.16 
9 2006-108E 0.095 
10 2006-109B 0.61 
11 2006-111A 0.72 
12 2006-111B 0.15 
13 2006-111C 0.25 

 

 

The following alcohols in biodiesel were analyzed by headspace SPME, using the 

previously described optimum SPME and GC conditions: ethanol, 1-propanol,  
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2-propanol, 1-butanol, 2-butanol, iso-butanol, and tert-butanol. They were spiked in 

reference biodiesel at five different concentrations: 0.01, 0.05, 0.11, 0.2, and 0.4 mass 

percent. For each of the alcohols, the results fit a second order polynomial curve and are 

summarized in Table 2.6. Six replicates were run for the 0.2 mass percent concentration 

for each of the above alcohols and the relative standard deviation (%) is also reported in 

the table below. 

 
 
Table 2.6 C2-C4 alcohols in biodiesel. 

 

alcohol Rt (min) R2 RSD (%) for 0.2 %  m/m 
ethanol 2.25 0.9999 1.431 

2-propanol 2.35 0.9998 2.028 
tert-butanol 2.45 0.9999 1.056 
1-propanol 2.61 0.9977 2.931 
2-butanol 2.88 0.996 0.672 

iso-butanol 3.13 1.000 1.542 
1-butanol 3.58 0.9994 0.630 
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2.4 Conclusions 

A new and direct method for determining the amount of methanol in biodiesel 

was developed.21 Headspace SPME proved to be reproducible and sensitive, allowing 

analysis for concentrations of methanol in biodiesel well below those imposed by the 

standard specification. There is no need for using an internal standard and derivatization. 

This method was used for analyzing biodiesel samples from various producers. The 

sample volume used was 1.00 mL as compared to the flashpoint method that requires at 

least 70.00 mL. 

The new analytical method developed is a simple, direct and reliable alternative to 

the two standard methods for methanol determination in biodiesel, and is the first 

headspace SPME method used to extract methanol from biodiesel as substrate.  

The range of the relative standard deviation for this work was 3.4 to 10.4 %. The 

reproducibility of an interlaboratory study of the European EN-14110 test method was 

between 12-18 %.23 
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CHAPTER III 

 

HEADSPACE SPME DETERMINATION OF ACETIC ACID AND  

2-FURALDEHYDE IN AQUEOUS SAMPLES 

 

3.1 Literature review 

 Acetic acid and 2-furaldehyde have been frequently analyzed by solid-phase 

microextraction (SPME), a technique developed and patented in 1989 by J. Pawliszyn 

and his co-workers.3 These two compounds have been found present in various 

substrates, such as raw cane and sugar beets,26 palm sugar,27 cheese,28 wine,29, 30, 31 beer,32 

bread,33 whisky,34 air,35 water,36, 37, 38 and other matrices.39, 40 2-Furaldehyde was detected 

as a volatile component of oak,41 wine bouquet,29 beer,32 and Italian vinegars,42 and is 

responsible for the characteristic flavor and aroma (caramel like) of the above mentioned 

materials. Some groups analyzed acetic acid and 2-furaldehyde directly by using 

headspace SPME,26, 41, 42, 44 others derivatized them and extracted them from the aqueous 

samples by direct immersion.36, 37, 38 The extraction of acetic acid and 2-furaldehyde was 

achieved with different SPME fibers, among the most used being the 75-µm CAR-PDMS 

(carboxen-polydimethylsiloxane),32-35, 38, 44 the 85-µm PA (polyacrylate),28, 29, 36-39 and the 

65-µm CW-DVB (carbowax-divinylbenzene).30,43 Most of the chromatography 
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involved SPME-GC/MS or SPME-GC/FID, DB-5 (5%-phenyl-methylsiloxane) or DB-

Wax (Innowax) capillary column. Sodium chloride was also added to enhance the acetic 

acid and 2-furaldehyde extraction, a practice called the “salting out effect”.29-34, 36-38, 41-44 

The salt solvates the water molecules to a higher extent than the analytes and allows the 

fiber to better extract the analyte molecule in its neutral form. It was observed that the 

peak area increases as the salt concentration increases.31 Derivatization decreases the 

polarity of the analyte and the derivative has a better chromatographic behavior and is 

easier to detect.36-39 

The direct analysis of acetic acid and 2-furaldehyde in an aqueous mixture is 

important because they are among the products of acid hydrolysis of lignocellulosic 

biomass such as switchgrass, alfalfa, and wood.2, 45 The accurate determination and 

quantitation of these two analytes is very important, as they can be inhibitors or food 

sources for oleaginous microorganisms. The oil produced by these microorganisms can 

be converted to biodiesel by catalytic transesterification. 
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3.2 Experimental 
 
 
3.2.1 Chemicals and Reagents  

Optima-grade water, glacial acetic acid, and sulfuric acid were purchased from 

Fisher Scientific (Fair Lawn, NJ), 2-furaldehyde, 2,4-dinitrophenylhydrazine, 

hydroxylamine hydrochloride, and sodium bisulfite were acquired from Sigma-Aldrich 

(St. Louis, MO), and sodium chloride was supplied by Chempure (Houston, TX). The 10 

mL SPME vials, fiber assembly, 75-µm carboxen-polydimethylsiloxane (CAR-PDMS), 

and 60-µm polyethylene glycol (PEG) fibers, were purchased from Supelco (Bellefonte, 

PA).  

 

3.2.2 Instrumental Analysis  

The analytes were adsorbed onto the SPME fiber and then thermally desorbed in 

the inlet of a Hewlett-Packard (HP) 6890N gas chromatograph (Palo Alto, CA) equipped 

with a split/splitless injection port and flame ionization detection (FID) system. The 

injector and detector temperatures were held constant during the analysis (200 °C and 

300 °C, respectively). The capillary column used for separation was a 30-m, 0.32-mm 

i.d., 0.25-µm film thickness Hewlett-Packard HP-5 (5%-phenyl-methylpolysiloxane) 

fused silica. The GC oven was programmed as follows:  the initial temperature of 40 °C 

was held for 4.0 min, increased to 120 °C at 10 °C/min, and then increased to 200 °C at 

20 °C/min and held at 200 °C for 1 min. Helium was used as carrier gas at a constant 

flow rate of 1.5 mL/min. The injector was operated in split mode (20:1 split ratio). The 

data were acquired using a HP-CORE ChemStation system. 
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3.2.3 Solid-Phase Microextraction 

An automated SPME system (CombiPAL, LEAP Technologies) was initially used 

with a 75-µm CAR-PDMS fiber assembly. CAR-PDMS is recommended for gases and 

low molecular weight compounds (MW 30-225). New SPME fibers were conditioned in 

the gas chromatograph (GC) injection port at 300 °C for 2 hours, according to the 

manufacturer’s recommendations. The 75-µm CAR-PDMS fiber was used for the 

determination of alcohols in biodiesel, and it proved to be very efficient towards 

extracting polar analytes. Also, literature44 reports the successful use of CAR-PDMS for 

the determination of free volatile fatty acids in wastewater. 

 The 10 mL SPME vials each containing 1 mL of solution were capped with 

Teflon lined septum caps and heated at 50 °C for 20 min, under constant stirring (500 

rpm). The SPME fiber was then exposed to the headspace of the vial and the volatile 

compounds were adsorbed onto the fiber for 20 min at 50 °C, at constant temperature and 

stirring. Then the fiber was exposed for 2 min at 200 ºC in the GC injection port for 

complete desorption and GC analysis of the analytes.  
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3.3 Results and Discussion 

The retention time of acetic acid (Rt = 3.10 min) and of furfural (Rt = 7.10 min) 

were determined by spiking 5 mg/mL of pure compounds in water.  

The goal of this research was to be able to directly detect both acetic acid and 2-

furaldehyde in an aqueous mixture, because this method will be used to analyze the 

products of the acid hydrolysis of lignocellulosic biomass.2, 45 

A calibration curve for acetic acid in distilled water was obtained, using the above 

mentioned headspace SPME and GC conditions and a second order polynomial fit was 

calculated. The reproducibility was expressed as relative standard deviation RSD = 

2.80% (n = 5). The same experiments and calculations were performed for acetic acid in 

a 30% sodium chloride aqueous solution (30 g NaCl / 100 g distilled water). A second 

order polynomial calibration curve was also obtained (see Figure 3.1) and the relative 

standard deviation RSD = 3.21% (5 replicates, n = 5). A 57% increase in the peak area 

was observed for acetic acid when the 30% sodium chloride aqueous solution was used 

instead of distilled water.  
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Figure 3.1   Calibration curve for acetic acid in 30% sodium chloride aqueous solution. 

 
 

2-Furaldehyde was analyzed by spiking different amounts in 30% sodium 

chloride aqueous solution and a second order calibration curve was also obtained (see 

Figure 3.2). The reproducibility was expressed as relative standard deviation RSD = 

1.34% (n = 5). It was observed that under the same experimental conditions and for the 

same concentration values, 2-furaldehyde gives a much larger peak area than acetic acid 

does.  
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Figure 3.2   Calibration curve for 2-furaldehyde in 30% sodium chloride aqueous 
solution. 

 
 

When analyzing a mixture of acetic acid and 2-furaldehyde in 30% sodium 

chloride aqueous solution, it was observed that even though the concentration of  

2-furaldehyde was 10 times lower than the concentration of acetic acid, at one point the 

response (peak area) for acetic acid was relatively constant and the peak area for  

2-furaldehyde was increasing, as can be seen from Table 3.1. 
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Table 3.1 Acetic acid - 2-furaldehyde mixture in 30% sodium chloride aqueous solution. 

 

acetic acid acetic acid 2-furaldehyde 2-furaldehyde 
area (pA · s) concentration (µg/mL) area (pA · s) concentration (µg/mL) 

1.3 50 164.2 5 
9.3 100 316.0 10 
41.8 500 1346.5 50 
45.7 1000 1903.8 100 

 
 
 

This matter was further investigated by analyzing a mixture of acetic acid and  

2-furaldehyde in 30% NaCl aqueous solution, in which the 2-furaldehyde concentration 

was kept constant and the acetic acid concentration was varied. In the first set of 

experiments the concentration of 2-furaldehyde was kept constant at 50 µg/mL and the 

acetic acid concentration was varied from 100 µg/mL to 5000 µg/mL. In the second set of 

experiments the 2-furaldehyde concentration was kept constant at 100 µg/mL and the 

acetic acid concentration was varied from 100 µg/mL to 5000 µg/mL. It was observed 

that the peak area of the acetic acid decreases as the concentration of 2-furaldehyde 

increases. The response for acetic acid was lower in the second set of experiments than it 

was in the first set. As it can be seen from Table 3.2, 2-furaldehyde influences greatly the 

acetic acid absorption. 
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Table 3.2 The effect of 2-furaldehyde concentration on the acetic acid response. 

 

acetic acid 
concentration 

acetic acid  
area (pA · s) 

acetic acid  
area (pA · s) 

acetic acid  
area (pA · s) 

(µg/mL) (0 µg/mL  
2-furaldehyde) 

(in the presence of 
50 µg/mL  

2-furaldehyde) 

(in the presence of 
100 µg/mL  

2-furaldehyde) 
100 16.7 4.6 4.2 
500 68.6 43.6 23.4 
1000 139.8 75.5 45.4 
2000 239.9 132.4 89.0 
5000 480.4 259.0 187.8 

 
 
 

The influence of high acetic acid concentration on the absorption of 2-furaldehyde 

on the SPME fiber was also investigated. For this experiment the concentration of  

2-furaldehyde was varied from 5 µg/mL to 1000 µg/mL and the concentration of acetic 

acid was kept constant at 5000 µg/mL. It was observed that even though the 

concentration of acetic acid was kept constant, its peak area decreased as the 

concentration of 2-furaldehyde increased (see Table 3.3). It can be concluded that the 75-

µm CAR-PDMS fiber has a much higher affinity for 2-furaldehyde than for acetic acid 

and that the affinity for acetic acid is strongly affected by the presence of 2-furaldehyde. 
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Table 3.3 The effect of acetic acid concentration on the 2-furaldehyde response. 

 

2-furaldehyde 
concentration 

2-furaldehyde  
area (pA · s) 

2-furaldehyde 
area (pA · s) 

acetic acid area 
(pA · s) 

(µg/mL) (0 µg/mL acetic acid) (in the presence of  
5000 µg/mL acetic acid) 

5000 µg/mL 

5 171.7 157.7 459.5 
10 337.5 329.8 433.0 
50 1380.2 1359.4 280.5 
100 1979.5 1922.0 191.0 
500 4075.2 4019.9 103.8 

 
 
 

 2-Furaldehyde concentrations higher than 50 µg/mL interfere with acetic acid 

absorption on the CAR-PDMS fiber, so different ways to inhibit 2-furaldehyde 

absorption were pursued. The first experiment was the reaction of 2-furaldehyde in 30% 

NaCl aqueous solution with an equivalent amount of sodium bisulfite. Sodium bisulfite 

forms an addition complex with aldehydes and ketones.46 This approach did not work 

because 2-furaldehyde was still detected by headspace SPME. The next experiment was 

the reaction of 2-furaldehyde with 2,4-dinitrophenylhydrazine.46 A saturated solution of  

2,4-dinitrophenylhydrazine in 5% aqueous sulfuric acid was prepared and added to a  

5 µg/mL solution of 2-furaldehyde in 30% NaCl aqueous solution. Even though an 

orange precipitate appeared, meaning a reaction occurred with 2-furaldehyde and the 

corresponding hydrazone formed, 2-furaldehyde can still be detected in the reaction 

mixture by headspace SPME. The last experiment was the reaction of 2-furaldehyde in 

30% NaCl aqueous solution with hydroxylamine hydrochloride.46 The corresponding 

reaction product (oxime) that was formed was strongly absorbed by the SPME fiber 

(large peak observed at 11.4 min). None of these reactions (see Figure 3.3) could 
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completely inhibit the 2-furaldehyde absorption on the SPME fiber, so other alternatives 

were considered. 
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Figure 3.3   Specific reactions of aldehydes. Possible ways of inhibiting the absorption of 
 2-furaldehyde. 

 
 
 

A different approach was considered, namely changing the SPME fiber. Literature 

reports that CW-DVB fiber has a high extraction capacity towards acetic acid, but has a 

very poor mechanical stability.30, 36, 43 Its replacement, the 60-µm PEG fiber is more 

durable due to bonding of the fiber coating to a strong and inert metal core. It is 

recommended for alcohols and polar compounds with MW 40 – 275.47 The following sets 

of experiments were performed with the newly released 60-µm PEG SPME fiber. Using 
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the same GC and SPME conditions described above, a set of calibration curves were run 

for acetic acid in the presence of 3000 µg/mL 2-furaldehyde (see Figure 3.4) and for  

2-furaldehyde in the presence of 5000 µg/mL acetic acid in 30% NaCl aqueous solution 

(see Figure 3.5). A linear fit was obtained in both cases, with excellent correlation 

coefficients, R2 = 0.9993 in the case of acetic acid and R2 = 0.9997 in the case of  

2-furaldehyde. 
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Figure 3.4   Calibration curve for acetic acid in the presence of 3000 µg/mL  
 2-furaldehyde in 30% NaCl aqueous solution, using the 60-µm PEG fiber. 
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Figure 3.5   Calibration curve for 2-furaldehyde in the presence of 5000 µg/mL acetic 
 acid in 30% NaCl aqueous solution, using the 60-µm PEG fiber. 

 
 
 

A set of calibration curves was also run for the individual compounds, acetic acid 

in 30% NaCl aqueous solution (see Figure 3.6) and 2-furaldehyde in 30% NaCl aqueous 

solution (see Figure 3.7). Linear fit was obtained in both cases with good correlation 

coefficients, R2 = 0.9986 in the case of acetic acid and R2 = 0.9998 in the case of  

2-furaldehyde. 
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Figure 3.6   Calibration curve for acetic acid in 30% NaCl aqueous solution using the  
 60-µm PEG fiber. 
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Figure 3.7   Calibration curve for 2-furaldehyde in 30% NaCl aqueous solution using the 
60-µm PEG fiber. 

 
 

These sets of experiments showed that the 60-µm PEG SPME fiber exhibits the 

expected behavior for both analytes and does not selectively extract 2-furldehyde. Linear 

calibration curve and good reproducibility were obtained when acetic acid was analyzed 

in the presence of high concentrations (3000 µg/mL and 1000 µg/mL) of 2-furaldehyde 

(see Table 3.4). The influence of acetic acid on the 2-furaldehyde absorption was also 

studied (experimental data showed in Table 3.5).  The 60-µm PEG SPME fiber will be 

used for the detection of acetic acid and 2-furaldehyde in aqueous mixtures, and for the 

optimization of extraction conditions. 
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Table 3.4 The effect of 2-furaldehyde concentration on the acetic acid response using the 
60-µm PEG fiber. 

 
 
 

acetic acid 
concentration 

acetic acid  
area (pA · s) 

acetic acid  
area (pA · s) 

acetic acid  
area (pA · s) 

(µg/mL) (0 µg/mL  
2-furaldehyde) 

(in the presence of 
1000 µg/mL  

2-furaldehyde) 

(in the presence of  
3000 µg/mL 

2-furaldehyde) 
50 3.0 2.1 2.8 
100 4.9 4.0 4.6 
500 56.1 56.8 56.0 
1000 133.0 135.0 132.8 
5000 775.6 780.9 771.9 

 
 
 
Table 3.5 The effect of acetic acid concentration on the 2-furaldehyde response using the 

60-µm PEG fiber. 
 
 
 

2-furaldehyde 
concentration 

2-furaldehyde 
area (pA · s) 

2-furaldehyde 
area (pA · s) 

acetic acid  
area (pA · s) 

(µg/mL) (0 µg/mL  
acetic acid) 

(in the presence of  
5000 µg/mL acetic acid 

(5000 µg/mL) 

10 17.0 17.2 710.0 
50 99.4 93.2 716.6 
100 193.7 200.0 730.9 
500 1029.1 1011.0 723.3 
1000 1983.5 1962.7 730.4 

 
 
 

A reproducibility study was also performed for both acetic acid and 2-

furaldehyde, using 5 replicate solutions of 1000 µg/mL concentration. The relative 

standard deviation (RSD %, n=5) was 0.76% for acetic acid and 0.33% for 2-furaldehyde.  

 To study the “salting out” effect often reported in literature,29-34, 36-38, 41-44 two 

more aqueous solutions were considered, a 10% NaCl and a 0% NaCl. The results 
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obtained for acetic acid and 2-furaldehyde with these two solutions were compared with 

the ones obtained using the 30% NaCl aqueous solution. As it can be seen from the 

corresponding charts (see Figure 3.8 and Figure 3.9), using a 30% sodium chloride 

aqueous solution improved the extraction of both acetic acid and 2-furaldehyde. This 

phenomenon is due to the fact that water would rather solvate the salt ions than the 

analyte, so NaCl reduces the solubility of the analytes in water and they are readily 

extracted by the fiber.31, 42  
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Figure 3.8   Effect of sodium chloride addition on the extraction of acetic acid using a  
 60-µm PEG fiber. 
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Figure 3.9   Effect of sodium chloride addition on the extraction of 2-furaldehyde using a 
60-µm PEG fiber. 

 
 
 
 The optimization of the extraction temperature and time was performed in order 

to achieve the highest absorption (response) in the shortest amount of time. Four 

extraction temperatures (35 ºC, 50 ºC, 60 ºC, and 80 ºC) and three extraction times (10, 

20, and 30 min) were investigated. The concentration of acetic acid and of 2-furaldehyde 

was 1000 µg/mL and each experimental point was analyzed in triplicate and averaged. 

The experimental data showed that the best extraction conditions for both analytes are  
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65 ºC and 20 minutes, as it can be seen from Figure 3.10 and Figure 3.11. The same 

phenomenon is observed here, there appears to be a leakage of analyte vapors from the 

SPME vials at higher temperatures and longer extraction times, as it can be seen in  

Figure 3.10). 

 

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35

time (minutes)

av
er

ag
e 

( n
=3

) a
re

a 
(p

A
 • 

s)

35 C
50 C
65 C
80 C

 
 
 
 
Figure 3.10   Optimization of SPME extraction conditions for acetic acid. 
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Figure 3.11   Optimization of SPME extraction conditions for 2-furaldehyde. 
 
 
 

 Linear calibration curves and good correlation coefficients were obtained under 

optimum conditions for acetic acid in the presence of 3000 µg/mL 2-furaldehyde (see 

Figure 3.12) and for each of the two analytes individually (see Figure 3.13 and Figure 

3.14). The reproducibility (6 replicates) of a 5000 µg/mL acetic acid and 3000 µg/mL 2-

furaldehyde mixture in 30 % NaCl aqueous solution was also investigated and the results 

are: 3.1% for acetic acid and 1.7% for 2-furaldehyde. Future tests and experiments will 

be conducted using the PEG fiber at the optimum extraction conditions. 
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Figure 3.12   Calibration curve for acetic acid in the presence of 2-furaldehyde  
(3000 µg/mL) under optimum conditions. 
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Figure 3.13   Calibration curve for acetic acid under optimum conditions. 
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Figure 3.14   Calibration curve for 2-furaldehyde under optimum conditions. 
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3.4 Conclusions 

Attempts to perform the direct analysis of both acetic acid and 2-furaldehyde in 

an aqueous mixture with the 75-µm CAR-PDMS SPME fiber showed that 2-furaldehyde 

concentrations higher than 50 µg/mL interfere with the acetic acid absorption. The 

accurate determination and quantitation of these two analytes was performed with the 

newly released 60-µm PEG fiber, which yielded linear calibration curves and good 

reproducibility. PEG fiber is a polar SPME fiber and it mainly extracts the polar analytes 

from the mixture. This simplifies the chromatographic analysis because there is no need 

for derivatization. Literature reports the determination of acetic acid and 2-furaldehyde in 

a complex mixture29-34 or as individual components42, 44 but no report studied their 

behavior as a mixture. The headspace SPME method developed can be used to determine 

directly and quantitatively both acetic acid and 2-furaldehyde in an aqueous mixture. This 

method ensures a shorter analysis time compared to the laborious HPLC45 and GC2 

methods currently used. The analytes are directly analyzed and there is no need to extract 

them from the reaction mixture or to derivatize them, thus solvent expense, preparation 

time, and analysis time are minimized.  
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