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In this research, we focus on a two-stage supply chain with alternative supply sources.

We deal with a problem in which the buyers do not trust sellers and ask for timely shipments.

In the problem, buyers are located in two regions and each region consists of a single

distribution center (DC) and multiple retailers. Retailers place orders to DCs whereas

DCs replenish their inventory from outside suppliers. As retailers place orders to DCs,

DCs do not send items immediately to retailers. As a consequence, retailers might have

to endure a long and uncertain wait. Two reasons for late deliveries from DCs to retailers

are shipment consolidation and being out of stock.

We approach to the problem from two different perspectives; retailers’ perspective and

supply chain perspective. When we approac the problem from a retailer’s point of view,,

we model the problem as a DC selection problem. When a retailer is ready to replenish its

inventory, that retailer must decide whether it should replenish from the first or second DC.

We develop a decision rule that minimizes the expected cost for the retailer that is about



to replenish its inventory; then retailers repeatedly use this decision rule as a heuristic.

The decision rule forms the basis of our proposed ordering policy. A simulation study,

which compares the proposed policy to three traditional ordering policies illustrates how

the proposed policy performs under different conditions. Overall, the numerical analysis

shows, over a large set of scenarios, that the proposed policy performs better than the

other three policies. The results of parametric analysis indicates that the performance of

the proposed policy can be further improved by adjusting the batch sizes and the reorder

points.

When we approach the problem from the supply chain perspective, we focus on a

shipment consolidation problem together with the alternative sourcing problem. To develop

two models, we introduce a “promised latest delivery time” concept that is as follows:

The promised latest delivery time is the end of shipment consolidation time that the DC

provides to retailers at the time of order placement. Numerical experiments suggest that

a shipment consolidation policy is more beneficial when cost of transportation high and

backlog cost is per unit time is relatively low. In addition, using an alternative supply

source is especially beneficial for the supply chain when the cost of serving to both regions

is not very high compared to serving to a single region.

Key words: inventory transportation coordination, shipment consolidation, alternative

sourcing
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encouragement and insightful comments throughout my graduate study and dissertation

research.

I acknowledge my dissertation committee members, Sandra D. Ekşioğlu, Joseph Geunes,
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brother, İbrahim, and sister, İnsaf, for their love, trust, and continuous support throughout

my life.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Coordination of Inventory and Transportation Decisions . . . . . . . 1

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2.1 A Decision Rule for Coordination of Inventory and
Transportation Decision in a Two-Stage Supply Chain
with Alternative Supply Sources . . . . . . . . . . . 3

1.1.2.2 Analysis of Ordering Policies in a Two-Stage Supply
Chain with Alternative Supply Sources . . . . . . . 3

1.1.2.3 Coordination of Inventory and Transportation Deci-
sions via Shipment Consolidation . . . . . . . . . . 4

1.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. A DECISION RULE FOR COORDINATION OF INVENTORY AND TRANS-
PORTATION DECISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 The ordering policy used by the auto manufacturer - OP1 . . . 7
2.1.2 The second ordering policy - OP2 . . . . . . . . . . . . . . . 8
2.1.3 The third ordering policy - OP3 . . . . . . . . . . . . . . . . 9
2.1.4 The proposed ordering policy - OP4 . . . . . . . . . . . . . . 9

2.2 Review of Related Literature . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Problem Description and Formulation . . . . . . . . . . . . . . . . . 14
2.4 Derivation of the Decision Rule . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Cost calculations when IL ≥ 0 . . . . . . . . . . . . . . . . 18
2.4.2 Cost calculations when IL < 0 . . . . . . . . . . . . . . . . 19

2.5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



2.5.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Parametric Analysis . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Conclusions and Research Directions . . . . . . . . . . . . . . . . . 31

3. ANALYSIS OF ORDERING POLICIES IN A TWO-STAGE SUPPLY CHAIN
WITH ALTERNATIVE SUPPLY SOURCES . . . . . . . . . . . . . . . . 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4. COORDINATION OF INVENTORY AND TRANSPORTATION DECI-
SIONS VIA SHIPMENT CONSOLIDATION . . . . . . . . . . . . . . . 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Problem Description and Formulation . . . . . . . . . . . . . . . . . 49

4.2.1 No Consolidation - CP1 . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Time Based Consolidation - CP2 . . . . . . . . . . . . . . . 51
4.2.3 Single Source Consolidation - CP3 . . . . . . . . . . . . . . 52

4.2.3.1 Expected Cost at Retailer . . . . . . . . . . . . . . . 58
4.2.3.2 Expected Cost at Distribution Center . . . . . . . . 63
4.2.3.3 Expected Cost of Supply Chain . . . . . . . . . . . 65

4.2.4 Dual Source Consolidation - CP4 . . . . . . . . . . . . . . . 66
4.2.4.1 Expected Cost at Retailers . . . . . . . . . . . . . . 67
4.2.4.2 Expected Cost at Distribution Center . . . . . . . . 72
4.2.4.3 Expected Cost at the other Distribution Center . . . 74
4.2.4.4 Expected Cost of Supply Chain . . . . . . . . . . . 74

4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Conclusions and Research Directions . . . . . . . . . . . . . . . . . 80

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

APPENDIX

A. DERIVATION OF GI(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B. CALCULATION OF ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

v



LIST OF TABLES

2.1 The low and high values for the parameters . . . . . . . . . . . . . . . . . . 21

2.2 Paired t-tests performed to compare OP4 to OP1, OP2, and OP3 . . . . . . . 23

2.3 Summary results of the paired t-tests (% times H0 could not be rejected) . . . 24

2.4 Average percent improvement achieved using OP4 . . . . . . . . . . . . . . 25

2.5 Parameter values for the selected problems . . . . . . . . . . . . . . . . . . . 26

2.6 Average percent improvement achieved before and after parametric analysis . 27

3.1 Parameters and respective values of each test problems . . . . . . . . . . . . 36

3.2 Change in Normalized Average Costs . . . . . . . . . . . . . . . . . . . . . 40

3.3 Change in Normalized Delivery Performance . . . . . . . . . . . . . . . . . 43

4.1 Percent improvements in total cost with respect to the parameters . . . . . . . 77

4.2 Delivery performance of consolidation policies . . . . . . . . . . . . . . . . 78

vi



LIST OF FIGURES

2.1 Structure of the supply chain under OP1 . . . . . . . . . . . . . . . . . . . . 8

2.2 Structure of the supply chain under OP2 . . . . . . . . . . . . . . . . . . . . 9

2.3 Structure of the supply chain under OP3 and OP4 . . . . . . . . . . . . . . . 10

2.4 Comparison of dual/alternative sourcing to lateral transshipment . . . . . . . 14

2.5 Batch arrivals at R1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Percent improvement achieved as the arrival rate changes . . . . . . . . . . . 28

2.7 Percent improvement achieved as the batch size changes . . . . . . . . . . . 29

2.8 Percent improvement achieved as the reorder point changes . . . . . . . . . . 30

2.9 Percent improvement achieved as the lead time changes . . . . . . . . . . . . 31

3.1 Normalized cost and delivery performance of four policies . . . . . . . . . . 37

3.2 Normalized cost and delivery performance of four policies . . . . . . . . . . 41

4.1 Structure of the supply chain . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The scheduled shipments and arrival of orders to the DC and the DC’s dis-

patching decision at time 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Arrival of the sixth order to the DC and corresponding events at the DC . . . 57

4.4 Arrival of the seventh order to the DC and corresponding events at the DC . . 57

4.5 Normalized cost and delivery performance of the policies . . . . . . . . . . . 76

vii



CHAPTER 1

INTRODUCTION

1.1 Coordination of Inventory and Transportation Decisions

In today’s competitive business world, companies face the crucial task of delivering goods

on time. In order to benefit from high volumes, distributors (suppliers) try to consolidate

deliveries while maintaining a high percentage of on time delivery. Increasing delivery

frequencies typically increases suppliers’ performance, but it also increases the transporta-

tion costs. Finding a suitable middle ground is a challenge confronting many companies

throughout various supply chains. This dissertation is a study about the coordination of

inventory and transportation decisions in a two-stage supply chain.

1.1.1 Motivation

The problem of coordinating inventory and transportation decisions is observed in many

supply chains but our particular experience is with an automotive spare parts distribution

company. The company has divided the service area into two regions. Each region has

a distribution center (DC) and several retailers scattered throughout the region. Retailers

place orders to the regional DC, who in turn replenish their inventory from outside sup-

pliers. DCs do not dispatch orders placed by retailers immediately. As a consequence,

1



retailers might have to endure a long and uncertain wait. Two reasons for late deliveries

are consolidating shipments and being out of stock.

Currently shipment dispatching decisions are based on experience and lack a struc-

tured approach to determine a consolidation period. This gives rise to situations in which

DCs are unable to provide firm delivery dates leading to difficult inventory management

problems for retailers. We analyze such an environment in which there are two DCs and

two retailers, and provide models to improve the decision making and enhance overall

performance in terms of both cost and timely delivery.

Our objective is twofold. Firstly, to evaluate a two stage supply chain with alternative

supply sources from retailers’ point of view and to develop a tool that can be easily em-

ployed by retailers to achieve cost and waiting time reduction. Secondly, to analyze the

overall supply chain and to develop models that consider dual source of supply opportu-

nity and shipment consolidation simultaneously to coordinate transportation and inventory

decisions.

1.1.2 Overview

We approach the problem from two different perspectives. Firstly, we analyze the situation

from retailers’ point of view. Based on these findings, we focus on the overall supply chain.

We assume there is a fixed lead time from DCs to retailers and model the problem as a DC

selection problem. Secondly, we analyze the problem from a supply chain perspective and

calculate a consolidation time that minimizes the expected cost per unit time for the whole

supply chain. Each chapter can be read on its own and includes motivation, problem

2



definition, assumptions, and a review of literature where necessary. We conclude each

chapter with a discussion of possible future work. The following subsections provide an

overview of the chapters.

1.1.2.1 A Decision Rule for Coordination of Inventory and Transportation Decision

in a Two-Stage Supply Chain with Alternative Supply Sources

Chapter 2 focuses on the problem from retailers’ point of view. We develop a decision rule

that minimizes the expected cost for retailers wishing to replenish their inventory. Retail-

ers repeatedly use this decision rule as a heuristic which forms the basis of our proposed

ordering policy. Our simulation study illustrates how the proposed policy performs un-

der different conditions. Overall, the numerical analysis shows that the proposed policy

performs better than the others over a large set of scenarios.

1.1.2.2 Analysis of Ordering Policies in a Two-Stage Supply Chain with Alternative

Supply Sources

Numerical analysis in the previous chapter illustrates that the decision rule based ordering

policy outperforms traditional ordering policies. This however, is not the best policy un-

der all circumstances. In chapter 3, we present additional analysis to determine settings in

which the decision rule based ordering policy is most beneficial to retailers. By changing

parameters such as inventory holding cost, backlog cost, end customer arrival rate, order-

ing cost, and lead time from distribution centers to retailers; we identify the supply chain

settings to employ the proposed decision rule based ordering policy.

3



1.1.2.3 Coordination of Inventory and Transportation Decisions via Shipment Con-

solidation

Chapter 4 focuses on the overall supply chain. We suggest two models to coordinate in-

ventory and transportation decisions via shipment consolidation. Each model considers

the total expected cost of supply chain and determines the delivery time of shipments from

DCs to retailers. The first model assumes that a retailer is assigned to a DC and can

be served by only the assigned DC. The second model places no such constraints. Nu-

merical experiments present how the proposed models perform under different conditions

compared to two other policies from the literature.

1.1.3 Contribution

Dual or alternative sourcing and shipment consolidation have been studied for decades.

Thus, many aspects of these topics have already been covered by earlier work. We outline

our contribution in the following paragraphs.

We introduce a decision rule based ordering policy for a retailer which aims to decrease

its cost by comparing the expected cost of replenishing from two distribution centers. We

analyze a two stage supply chain and derive a decision rule which takes into consider-

ation lead time from distribution centers to retailers. Existing literature either assumes

transportation to be instant or chooses single stage supply chain for analysis.

Unlike existing literature, we focus on overall supply chain performance rather than

just the distributor side or the retailer side. Recent shipment consolidation publications

assume that transportation from outside supplier to distributors takes no time to come up

4



with tractable algorithms ([4], [11], [13]). We propose a model which handles the lead

time issue. Finally, to the best of our knowledge, the problem of shipment consolidation

in connection with dual sourcing has not been addressed earlier. By considering both

approaches we extend the current knowledge.
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CHAPTER 2

A DECISION RULE FOR COORDINATION OF INVENTORY AND

TRANSPORTATION DECISIONS

2.1 Introduction

Coordinating inventory and transportation decisions is a challenging problem faced by

many companies throughout various supply chains. In this paper, we study the coordina-

tion of inventory and transportation decisions in a two-stage supply chain. The primary

motivation for this research comes from a real-life problem. One of the authors worked for

an automobile manufacturer as a “Logistics Project Engineer,” and he analyzed the existing

processes for spare parts distribution. The spare parts were supplied from two distribution

centers (DCs) to multiple “service stations.” The company uses the term “service stations”

to designate retailers in the supply chain; then the company divided the country into two

regions, and service stations in each region were assigned to a specific DC which served

only that area. The service stations were not allowed to receive parts from the DC in the

other region. Consequently, service stations commonly complained because in some cases

they had to wait for their orders for a long time even if the other DC had the items in stock.

As a result, the service stations requested the opportunity to place their orders not only

6



from the DC they were assigned to, but also from the other DC. They were claiming that

this process of “order switching” would potentially lower their costs.

We investigate the DC selection problem described above to analyze whether or not

order switching is a good decision to improve supply chain performance in the long run.

Specifically, we consider a two-stage supply chain with two retailers and two DCs. Each

supply chain member uses a (Q, R) inventory policy, and the retailers face independent

Poisson end customer demand. Each DC is able to serve all retailers on a first-come-first-

served basis, but the transportation cost is smaller if the retailer to be served lies within

the DC’s service area. Our goal is to provide an ordering policy for the retailers and to

compare the effectiveness of our policy to the current policy used by the company. Our

computational results also provides comparisons of our policy to two other traditional

ordering policies. The current ordering policy used by the above-mentioned automotive

manufacturer will be called OP1, and the new, proposed policy will be referred to as OP4.

We will use OP2 and OP3 to represent the other two ordering policies discussed in the

literature. The structure of the supply chain and the four ordering policies are described

below in more detail.

2.1.1 The ordering policy used by the auto manufacturer - OP1

Based on the simple rule currently implemented by the above-mentioned auto manufac-

turer, the retailers cannot make any DC selection decisions. The retailers are assigned to a

DC and must replenish their inventories from that DC. This policy of dedicated DCs will

be referred to as OP1. For the sake of simplicity, assume that two retailers and two DCs

7



exist and that R1 is assigned to DC1 and R2 to DC2 as shown in Figure 2.1. This assign-

ment is based on the assumption that the lead time and the transportation cost from DC1

to R1 are smaller than the corresponding time and cost from DC2 to R1. Similarly, the

lead time and the transportation cost from DC2 to R2 are smaller than the corresponding

time and cost from DC1 to R2.

 

DC1 

DC2 R2 

R1 

S 

λλλλ    

λλλλ    

Figure 2.1

Structure of the supply chain under OP1

2.1.2 The second ordering policy - OP2

Under the second ordering policy, each retailer is assigned to a DC, like in the first case.

However, unlike OP1, under OP2 retailers may switch their orders from one DC to the

other. Figure 2.2 shows the structure of the supply chain under the second ordering policy.

For example, if DC1 is out of stock, then R1 replenishes its inventory from DC2, provided

that DC2 has inventory on hand. If DC2 is also out of stock, then R1 waits for DC1 to

deliver the products.
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Figure 2.2

Structure of the supply chain under OP2

2.1.3 The third ordering policy - OP3

Under the third ordering policy, the retailers are not necessarily assigned to specific DCs.

Figure 2.3 shows the structure of the supply chain under the third ordering policy. The re-

tailers make their DC selection decisions based on the earliest delivery time. For example,

if R1 is ready to place an order it will contact both DC1 and DC2 and purchase the items

from the DC that can deliver earlier. The following example illustrates how OP3 differs

from OP2: Assume that when R1 is ready to place an order, DC1 out of stock and DC2

has inventory on hand. In such a situation, R1 would purchase the items from DC2 un-

der OP2. However, under OP3, if DC1 can deliver the items earlier than DC2, R1 would

purchase the items from DC1 although DC1 is out of stock.

2.1.4 The proposed ordering policy - OP4

The proposed ordering policy is similar to the third ordering policy discussed above, in

the sense that the retailers are not assigned to specific DCs. Therefore the structure of the

supply chain can be represented as in Figure 2.3. However, under OP4, the retailers make

their DC selection decisions based on expected total cost. In other words, the decision

rule used by the retailers that select a DC under OP4 demands a simple comparison of the

9



expected costs of ordering from DC1 versus DC2. The total cost includes the expected

holding cost, the expected backlog cost, the fixed ordering cost, and the transportation cost.

The derivation of the expected costs and details of the decision rule appear in Section 2.4.

 

DC1 

DC2 R2 

R1 

S 

λλλλ    

λλλλ    

Figure 2.3

Structure of the supply chain under OP3 and OP4

2.2 Review of Related Literature

Literature related to this work can be divided into three main sub-categories: i) research

related to (Q,R) continuous review inventory policies, ii) research related to lateral trans-

shipments among members of the same echelon within a supply chain, and iii) research

related to dual/alternative sourcing. The focus of this study falls under the dual/alternative

sourcing category, even tough, as discussed later, similarities between lateral transship-

ment and dual/alternative sourcing research studies do exist.

One of the challenging tasks in continuous review inventory problems is to find the

order quantity Q and the reorder point R that minimizes cost, subject to some constraints.

Although they are all the same, many different representations of this inventory model

exist. For example, [9] use (Q, r), [23] use (Q,R), [2, 3] and [29] use (R, Q) to represent

10



the same inventory model. Some research studies, such as the one by [14], use (R, nQ)

because of the assumption that the order quantity (nQ) is a multiple of the minimum batch

size (Q), where n is the minimum integer required to increase the inventory position to a

level above R. Two of the most distinctive attributes of (Q, R) models are as follows:

1. Types of supply chains: While some studies only consider one entity that uses a
(Q,R) policy (e.g. [1, 9, 23]), others consider a multi-echelon inventory system
(e.g. [2, 3, 14, 29]).

2. Exact or near-optimal evaluations: The (Q,R) inventory problems are not necessar-
ily easy to solve. Thus, many of the research papers either provide approximate so-
lution approaches or try to find bounds on the optimal solution (e.g. [1, 2, 7, 9, 31]).
On the other hand, only a small number of articles give an exact evaluation of a
problem specific (Q,R) inventory system (e.g.[3, 17, 33]).

Although the focus of our study is not to find the best Q and R values for the supply

chain; our numerical analysis, for a small subset of the problem set, determines the best Q

and R values for the retailers via a simulation study.

Research papers that study lateral transshipments among members of the same eche-

lon typically assume that retailers replenish their inventory from a single DC while DCs

can procure products either from an outside source or from other DCs located within the

supply chain’s same stage. The reasons for allowing lateral transshipments include main-

taining high service levels, decreasing backlog costs, and reducing lost sales in case of

stockouts. [32] studied a periodic inventory system and analyzed the effect of emergency

lateral transshipments between two retailers, not DCs, when different inventory pooling

policies are used. [19] also analyzed emergency lateral transshipments between retailers

in a model with more than two retailers that use the (S − 1, S) inventory policy. They de-

veloped a heuristic method to find a near-optimal control parameter S for the model and

11



then performed a simulation study to verify the results. Like [19], [5] also evaluated a

new decision rule for lateral transshipments. Axsater’s decision rule minimizes the ex-

pected cost, which includes the lateral transshipment cost and future cost differences and

uses the assumptions that each player uses a (Q,R) inventory policy and no further lateral

transshipments will take place.

The research studies related to the dual/alternative sourcing category have focused on

order splitting quantities, lead time reduction opportunities, and alternative sourcing ver-

sus single sourcing comparisons. [30] studied a two-stage supply chain with two retailers

and two warehouses and assumed that each facility uses a (Q,R) inventory policy. They

analyzed three ordering policies, and via a simulation study, they determined, based on

total cost, the best Q and R parameters for each supply chain entity. [28, 27] and [15] ana-

lyzed alternative sourcing strategies both with dual sources and a single source to compare

respective costs. Following these studies, [7] analyzed a (Q,R) inventory system with

lead time and an expediting factor to decrease the lead time. [31] worked on topics sim-

ilar to [7], but they included an order splitting proportion to the problem. [26] analyzed

another supply chain environment where only one supplier with alternative transportation

modes is available. Based on inventory and transportation costs, [26] proposed a model

that helps with transportation mode selection after order placement.

As mentioned above, our study falls under the alternative sourcing category. How-

ever, there are similarities between dual/alternative sourcing and lateral transshipments.

For example, in the supply chain shown in Figure 2.4.a, R1 faces an alternative sourcing

problem. In other words, every time R1 needs to replenish its inventory, it decides which

12



DC to select. On the other hand, Figure 2.4.b reveals that R1 always replenishes its inven-

tory from DC1, but here DC1 faces a lateral transshipment problem. From a managerial

and operational point of view, alternative sourcing and lateral transshipment problems are

quite different because of the questions of, “who pays the additional cost?” and “who ful-

fills the order?” In Figure 2.4.a it is reasonable to assume that R1 pays the additional cost

because it decides if the order will come from DC1 or DC2. Also in Figure 2.4.a, an up-

stream supply chain member fulfills the order. In Figure 2.4.b, however, it is reasonable to

assume that DC1 pays the additional cost because it receives a lateral transshipment from

DC2; i.e. the order is fulfilled from another source within the same stage of the supply

chain. From a modeling and overall supply chain point of view, though, alternative sourc-

ing and lateral transshipment problems are very similar because ultimately the demand of

R1 in Figure 2.4 will be satisfied either directly from DC1 or from DC2 in the form of a

lateral transshipment or a direct transshipment.

This paper analyzes four different ordering policies: OP1, OP2, OP3, and OP4, as de-

scribed in Section 4.1. [30] also analyzed three of these policies: OP1, OP2, and OP3.

Their study compared the costs of OP1, OP2, and OP3 based on a simulation study, and

they showed that none of the policies dominated the others. Our study derives a decision

rule that can easily be used in practice, and we propose a new policy, OP4, based on this

decision rule. Our study is also similar to the study by [5] in the sense that he also provided

a decision rule, but the two studies have some major differences. For example, [5] consid-

ered a single stage supply chain and assumed that lateral transshipments between DCs are
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instant. However, this paper analyzes a two-stage supply chain where transportation times

are not zero.
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Figure 2.4

Comparison of dual/alternative sourcing to lateral transshipment

The rest of the paper is organized as follows: Section 2.3 presents the details of the

problem description and formulation; Section 2.4 provides the derivation of the decision

rule; Section 4.3 presents the results of our extensive numerical study; and finally, Section

4.4 gives some concluding remarks and directions for further research.

2.3 Problem Description and Formulation

The supply chain analyzed is a two-stage supply chain with two distribution centers (DCs)

and two retailers, as shown in Figure 2.3. The DCs replenish their inventory from an

outside supplier that has infinite capacity. The supplier delivers the items after L time

units. When the inventory position, i.e. inventory on hand plus outstanding orders minus

backorders, at a DC declines to or below R, the DC orders a batch of Q items such that

the resulting inventory position is larger than R and not larger than R + Q. The retailers

are identical and face independent Poisson end customer arrivals. Each customer arrives
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with a unit demand. Every time the inventory position at a retailer declines to or below r,

the retailer orders a batch of q items, such that the resulting inventory position is between

[r+1, r+q]. The retailer must decide whether the items will be ordered from DC1 or DC2.

Note that under OP1, as described in Section 2.1.1, the retailer does not have to make a

decision. In other words, R1 always orders from DC1 and R2 from DC2. Under OP2, R1

always orders from DC1 as long as DC1 has inventory on hand. The only time R1 would

order from DC2 is when DC1 is out of stock and DC2 has inventory on hand. Under OP3,

the retailers will order from the DC that promises an earlier delivery time. Based on the

assumption made by the auto manufacturer mentioned above, the lead time from DC1 to

R1 is shorter than the lead time from DC2 to R1. However, the actual delivery time from

DC1 to R1 could be longer if DC1 is out of stock.

Our goal is to develop a new ordering policy, named OP4, based on a decision rule in

which expected costs of ordering from DC1 and DC2 are calculated respectively. Since

the new policy will be used by the retailers, the supply chain is analyzed from the view

point of R1. The analysis is analogous for R2. Under OP4, every time that R1 needs to

order a new batch of items, it calls both DCs to find out when each one will be able to

deliver the items, and makes a DC selection. In our problem formulation, e will be used

to denote the early delivery option and l will be used for the late delivery option. For

example, DCe (DCl) will denote the distribution center that promises the earlier (later)

delivery time. Assume that R1 needs to make a DC selection decision at time t. Also

assume, without loss of generality, that t = 0. Based on this information and using the
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following notation, the expected cost of ordering the items from DCe is calculated and

compared to the expected cost of ordering the items from DCl.

q = batch quantity at R1,
r = reorder point at R1,
λ = customer arrival rate at R1,
h = inventory holding cost per item per unit time at R1,
b = backlog cost per item per unit time at R1,

Te = arrival time of the new batch to R1 if ordered from DCe,
Tl = arrival time of the new batch to R1 if ordered from DCl,
Tj = arrival times of the previously ordered batches to R1,
m = number of previously ordered batches that will arrive to R1

at or before Te,
n = number of previously ordered batches that will arrive to R1

at or before Tl but after Te,
IL = inventory level (inventory on hand minus backorders) at R1

at the time R1 is ready to place an order,
se = fixed cost of ordering and transporting a batch of q items

from DCe to R1,
sl = fixed cost of ordering and transporting a batch of q items

from DCl to R1,
inve(tei) = expected inventory holding cost associated with an item

that reaches R1 at time tei to satisfy the ith customer
demand when the early delivery option is chosen,

backe(tei) = expected backlog cost associated with an item that reaches
R1 at time tei to satisfy ith customer demand when the
early delivery option is chosen,

invl(tli) = expected inventory holding cost associated with an item
that reaches R1 at time tli to satisfy the ith customer
demand when the late delivery option is chosen,

backl(tli) = expected backlog cost associated with an item that reaches
R1 at time tli to satisfy ith customer demand when the
late delivery option is chosen.
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2.4 Derivation of the Decision Rule

Our decision rule makes an informed DC selection decision using the available informa-

tion. Since our analysis uses the viewpoint of R1, Figure 2.5 shows the batch arrival times

at R1. When R1 is ready to order a new batch of items, it knows the arrival times of all

previously ordered items, as well as the arrival time of the new batch that will be ordered

either from DCe or DCl. Clearly, all previously ordered items must arrive at or before Tl.

 

Time T1 T2 Tm Tm+1 Tm+n 0 Te 

Batch Arrivals 

Tl 

Figure 2.5

Batch arrivals at R1

Using the batch arrival information and equations (2.1) and (2.2) below, R1 can calcu-

late the expected inventory holding and backlog costs associated with all the items that are

either on hand or will arrive at or before Tl:

inve(tei) = h
[∫ ∞

tei

(u− tei)f
i(u)du

]
, (2.1)

backe(tei) = b
[∫ tei

0
(tei − u)f i(u)du

]
, (2.2)
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where u is the arrival time of the ith customer to R1 and f i(u) is the corresponding

probability density function. Similar equations can be developed to calculate invl(tli) and

backl(tli). Since customer arrivals to R1 follow a Poisson distribution, the time when the

ith customer arrives at R1 has an Erlang(λ, i) distribution with the following density and

cumulative distribution functions, respectively:

f i(t) =
λiti−1e−λt

(i− 1)!
, (2.3)

F i(t) =
∫ t

0
f i(u)du = 1−

i−1∑

k=0

(λt)ke−λt

k!
. (2.4)

It is also convenient at this point to introduce the following equation that will be used

in expected cost calculations. The equation’s derivation appears in the Appendix A.

Gi(t) =
∫ t

0
uf i(u)du =

i

λ
F i+1(t). (2.5)

Cost calculations will change depending on the sign of IL. If IL ≥ 0 then R1 has

inventory on hand, and if IL < 0 then R1 has backorders. Therefore, these two cases will

be analyzed separately.

2.4.1 Cost calculations when IL ≥ 0

If IL ≥ 0, then R1 has inventory that can be used to satisfy the demands of the first IL

customers that will arrive at R1. Thus, items already at R1 will have no backlog costs
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associated with them. However, the q items that R1 will order at time t = 0 and the

(m + n)q previously ordered items will either have backlog or holding costs associated

with them depending on when the item and its corresponding demand arrive at R1. Let ∆

be the difference in the expected inventory and backlog costs of ordering the new batch of

q items from DCl versus DCe where

∆ =
IL∑

i=1

[invl(tli)− inve(tei)] +
IL+(m+n+1)q∑

i=IL+1

[invl(tli)− inve(tei)]

+
IL+(m+n+1)q∑

i=IL+1

[backl(tli)− backe(tei)]. (2.6)

The expression for ∆ can be simplified to the following equation in which Te = T ′
0,

Tm+1 = T ′
1, Tm+2 = T ′

2, . . . , Tm+n = T ′
n, and Tl = T ′

n+1. The details are provided in the

Appendix B.

∆ = qhT ′
0 − qhT ′

n+1 + (h + b)
n∑

j=0

IL+mq+jq+q∑

i=IL+mq+jq+1

(
i

λ
F i+1(T ′

j)

− i

λ
F i+1(T ′

j+1) + T ′
j+1F

i(T ′
j+1)− T ′

jF
i(T ′

j)). (2.7)

2.4.2 Cost calculations when IL < 0

If IL < 0, then R1 has backorders which means that the first |IL| items R1 will receive

will satisfy the demand that has occurred prior to the current time, t = 0. Thus, there will

be backlog costs associated with the first |IL| items. If |IL| ≥ (m + n + 1)q, then the

previously ordered items, as well as the new items that will be ordered by R1, will all be

used to satisfy past demand. Otherwise, either backlog or holding costs may be associated
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with previously ordered items and the new items that R1 will order. The equation for ∆ in

this case will be as follows:

∆ =
|IL|∑

k=1

[btl′k − bte′k] +
IL+(m+n+1)q∑

i=1

[invl(tli)− inve(tei)]

+
IL+(m+n+1)q∑

i=1

[backl(tli)− backe(tei)], (2.8)

where tl′k and te′k respectively show the arrival times of item k to R1 in relation the

“late” and “early” options. As also shown in the appendix, equation 2.8 can be rewritten

as follows:

∆ = b
|IL|∑

k=1

[tl′k − te′k] +
IL+(m+n+1)q∑

i=1

[h
i

λ
− h

i

λ
F i+1(tli)− htli + htliF

i(tli)]

−
IL+(m+n+1)q∑

i=1

[h
i

λ
− h

i

λ
F i+1(tei)− htei + hteiF

i(tei)]

+
IL+(m+n+1)q∑

i=1

[btliF
i(tli)− b

i

λ
F i+1(tli)]

−
IL+(m+n+1)q∑

i=1

[bteiF
i(tei)− b

i

λ
F i+1(tei)]. (2.9)

The expression for ∆ given by (2.9) can be further simplified and is provided in the

appendix. However, this simplification depends on the value of IL.

DECISION RULE: If (sl−se+∆) < 0, then order the new batch from DCl; otherwise

order it from DCe.

In the proposed ordering policy, OP4, the above decision rule is used repeatedly as a

heuristic every time a retailer has to select a DC to replenish inventory.
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2.5 Numerical Analysis

Our ordering policy, OP4, has been evaluated and compared to OP1, OP2, and OP3 in a

simulation study. The supply chain system represented in Figure 2.3 has been simulated

for 10,000 time units using two sets of parameters as shown in Table 2.1. Most of these

values are similar to the ones used previously in the literature (e.g. NLC01, Axs03).

Table 2.1

The low and high values for the parameters

q r λ h b s1 s2 L1 L2 Q R H B L O
Low 4 2 1 3 6 30 50 2 5 8 0 1.2 3.5 12 50
High 8 6 5 5 10 45 80 4 9 24 16 2.8 5.9 24 100

The definitions for q, r, λ, h, b, s1, and s2 appeared in Section 2.3. Note, however,

that in our analysis, R1 and R2 are identical. Also, definitions for se and sl were provided

in Section 2.3, but se and sl are essentially the same as s1 and s2. For example, if DC1

promises an early delivery, then se = s1, otherwise se = s2. The rest of the parameters in

Table 2.1 are defined as follows:

L1 = lead time from DC1 to R1 (and from DC2 to R2),
L2 = lead time from DC2 to R1 (and from DC1 to R2),
Q = batch quantity at the DCs,
R = reorder point at the DCs,
H = inventory holding cost per item per unit time at the DCs,
B = backlog cost per item per unit time at the DCs,
L = lead time from the outside supplier to the DCs,
O = fixed cost of ordering and transporting a batch of q items

from the outside supplier, S, to DC1 (and from S to DC2).
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By keeping track of the events throughout the simulation, the costs incurred by DC1,

DC2, R1, and R2 are individually calculated . Events such as arrival of a customer to

R1 or R2, arrival of a retailer order to DC1 or DC2, and arrival of a batch of items to a

DC or a retailer will change the state of the system. For each entity in the supply chain,

all costs are initialized to zero and each time the state of the system changes, holding,

backlog, ordering, and transportation costs are updated. For example, if the last two events

occurred at times t0 and t1, then the inventory holding cost of R1, HCR1(.) can be updated

by HCR1(t1) = HCR1(t0) + ILR1(t0) ∗ (t1 − t0)h if ILR1(t0) ≥ 0, where ILR1(t0) is

the inventory level at R1 at time t0. If on the other hand, ILR1(t0) < 0, then the backlog

cost of R1, BCR1(.) can be updated by BCR1(t1) = BCR1(t0) − ILR1(t0) ∗ (t1 − t0)b.

The ordering and transportation cost of R1, OTCR1(.) will also be updated as follows if

the event that occurred at time t1 triggered a replenishment: OTCR1(t1) = OTCR1(t0) +

s1 if R1 replenishes its inventory from DC1, and OTCR1(t1) = OTCR1(t0) + s2 if R1

replenishes its inventory from DC2. Once all costs are calculated, then the inventory level

is updated. If the last event is a customer arrival to R1, then ILR1(t1) = ILR1(t0)− 1. On

the other hand, if the last event is the arrival of a batch to R1, then ILR1(t1) = ILR1(t0)+q.

The cost and inventory level calculations for R2, DC1, and DC2 are analogous to those of

R1.

2.5.1 Performance Analysis

To evaluate the performance of the proposed ordering policy, OP4, a large number of

scenarios have been generated. As given in Table 2.1, 15 parameters affect the total cost
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of the analyzed supply chain. Using the low and high values identified we generated

215 = 32, 768 scenarios. Some of the combinations among the 32,768 scenarios may

not be realistic but, they provide a large set of problems to compare OP4 to OP1, OP2,

and OP3. Each scenario has been replicated 30 times, and within each replication the

same sequence of random numbers have been used to calculate the total costs of each

studied policy. Since the retailers are identical, the average retailer cost under OP4 has

been compared to average retailer costs under the remaining three policies. Similarly,

since the DCs are identical, average DC cost under OP4 has been compared to average

DC cost under OP1, OP2, and OP3. More specifically, paired t-tests have been performed

to test the hypotheses given in Table 2.2. In Table 2.2, µip under columns TC, RET , and

DC respectively denote the mean total cost for the supply chain, the mean total cost for

the retailers, and the mean total cost for the DCs in scenario i that use policy p where

i = 1, . . . 32, 768 and p = 1, . . . 4.

Table 2.2

Paired t-tests performed to compare OP4 to OP1, OP2, and OP3

TC RET DC
OP1 H0 : µi1 ≥ µi4 H0 : µi1 ≥ µi4 H0 : µi1 ≥ µi4

H1 : µi1 < µi4 H1 : µi1 < µi4 H1 : µi1 < µi4

OP2 H0 : µi2 ≥ µi4 H0 : µi2 ≥ µi4 H0 : µi2 ≥ µi4

H1 : µi2 < µi4 H1 : µi2 < µi4 H1 : µi2 < µi4

OP3 H0 : µi3 ≥ µi4 H0 : µi3 ≥ µi4 H0 : µi3 ≥ µi4

H1 : µi3 < µi4 H1 : µi3 < µi4 H1 : µi3 < µi4

23



The results of the paired t-tests are summarized in Table 2.3. All tests were performed

at the 5% level of significance. From Table 2.3, in most of the scenarios the proposed

policy, OP4, performed statistically better than the other three policies. For example, with

respect to total cost, OP4 was better than or equal to OP1 in 69.18% of the 32,768 scenarios

. In other words, the null hypothesis shown in Table 2.2 could not be rejected in 69.18%

of the cases. When compared to OP3 with respect to retailer cost, OP4 had better or equal

performance in 91.36% of the scenarios.

Table 2.3

Summary results of the paired t-tests (% times H0 could not be rejected)

TC RET DC
OP1 69.18 63.21 81.82
OP2 67.77 66.88 71.37
OP3 76.12 91.36 64.72

In addition to the paired t-tests, average percent improvements have been calculated as

reported in Table 2.4. The values in Table 2.4 under columns TC, RET , and DC show

the average improvement achieved in total cost, retailer cost, and DC cost respectively;

they are calculated using the following equation:

% cost improvement = 1
215

∑215

i=1
µip−µi4

µip
x100.

As can be seen from Table 2.4, the proposed ordering policy leads to reductions in the

total supply chain cost and the average retailer cost. For example, using OP4 instead of

OP1 reduced the supply chain cost by an average of 3.11%, the retailer cost by 3.42%, and
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the DC cost by 2.61%. When OP4 is compared to OP3 with respect to DC cost, on average,

OP3 actually performed better, which is not surprising because under OP4, retailers make

DC selections by trying to minimize their expected total cost. On the other hand, under

OP3, retailers make their DC selections based on earliest delivery times. This indicates

that a retailer under OP4 can order a batch of items from a DC that will not necessarily

have the earliest delivery time. Thus, the longer waiting time for a retailer indicates a

higher backlog cost for the DC.

Table 2.4

Average percent improvement achieved using OP4

TC RET DC
OP1 3.11 3.42 2.61
OP2 3.02 4.53 0.89
OP3 0.11 2.64 -3.76

Although OP4 generally performed better than OP1, OP2, and OP3, we performed

more detailed analyses to see if further improvements could be achieved.

2.5.2 Parametric Analysis

By parametrically changing the batch size q and the reorder point r at the retailers, we

tried to find q and r values that would lead to better results. We also tried to identify the

parameters that have a relatively larger impact on the expected cost.

Adjusting the retailers’ q and r values: Based on Table 2.3, OP4 performs statistically

better than OP1, OP2, and OP3 in most of the 32,768 scenarios. However, in a number of
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scenarios, OP4 performs relatively poorly. Among the scenarios in which OP4 performed

considerably poorly, four of them were seleted. Table 2.5 shows the parameters for the

selected problems.

Table 2.5

Parameter values for the selected problems

Prob. q r λ h b s1 s2 L1 L2 Q R H B L O
1 8 6 5 5 6 45 50 4 5 24 0 2.8 3.5 12 100
2 4 2 5 3 10 45 50 4 5 24 16 2.8 3.5 12 50
3 4 6 5 5 10 45 50 4 5 24 16 1.2 5.9 12 50
4 4 6 1 5 6 30 50 4 5 8 16 2.8 5.9 24 50

For the problems given in Table 2.5, in an effort to minimize costs, q and r have been

parametrically changed over a large set of values while keeping other parameter values

constant. This has been done separately for each ordering policy because the q and r

values that minimize the costs under OP4 are not necessarily the same for OP1, OP2, or

OP3. The first half of Table 2.6 shows the average percent improvement achieved for the

four selected problems using OP4 and using the original values given in Table 2.5. For

example, the average DC cost for the selected problems was 15.03% worse when OP4

was used instead of OP3. However, when the same comparison is made after parametric

analysis, using OP4 led to an improvement of 2.51% in DC costs. Thus, by comparing

the left half of Table 2.6 to the right half, we can see that the performance of the proposed

ordering policy can be improved via a parametric analysis. Note that in the left half of

Table 2.6, OP4 is compared to OP1,OP2, and OP3 using the same parameters (i.e. those
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given in Table 2.5), but in the right half, the best of OP4 is compared to the bests of OP1,

OP2, and OP3.

Table 2.6

Average percent improvement achieved before and after parametric analysis

Before Parametric Analysis After Parametric Analysis
TC RET DC TC RET DC

OP1 -4.52 -3.12 -4.85 5.94 1.96 10.91
OP2 -5.69 -1.61 -9.25 7.58 5.21 9.57
OP3 -6.32 0.88 -15.03 10.20 11.60 2.51

Identifying higher impact parameters: Based on the initial set of 32,768 scenarios, we

observed that Q, R, L, and λ had higher impacts on the expected costs of the retailers, the

DCs, and the overall supply chain. Note that Q is DCs’ batch size, R is DCs’ reorder point,

L is the lead time from the outside supplier to the DCs, and λ is the customer arrival rate

at the retailers. Percent improvement achieved in costs using OP4 at the low level of all 15

parameters were compared to the corresponding improvement values at the high level, and

based on this comparison Q, R, L, and λ have been identified as having the most impact

on costs. Further analysis have been performed on these four parameters to examine how

the performance of the proposed ordering policy OP4 changes.

Figure 2.6 depicts how the performance of OP4 changes with respect to the other three

ordering policies as the customer arrival rate changes. The vertical axis shows the percent

improvement achieved in retailer costs by using OP4 rather than using OP1, OP2, or OP3.

As can be seen from Figure 2.6, the proposed policy, OP4, performed better for smaller
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values of λ. For larger λ values the performance of all four ordering policies seem to be

equivalent. Intuitively, as λ increases the retailers are simply trying to keep up with the

high demand, so regardless of which ordering policy they use the performance is expected

to be the same. In general, spare parts are relatively slow moving items. Thus, the λ value

will typically be low for auto spare parts. Hence, the decision rule developed may be a

useful tool for the auto manufacturer discussed earlier.
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Figure 2.6

Percent improvement achieved as the arrival rate changes

Figure 2.7 summarizes the results of 6 ∗ 214 scenarios and shows that the performance

of the proposed policy, OP4, was better for those scenarios in which Q was larger. The

observation that OP4 performs better as Q increases can be explained by the fact that OP4

considers only the retailers’ information in making a decision. This may have a negative
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impact on the DC costs. Thus, if Q is large, then the DCs will have enough cushion to

offset any negative impact on their inventory levels. In other words, when Q is small R1’s

DC selection decision may have a higher negative impact on R2’s DC selection decision

and consequently increase the cost.
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Figure 2.7

Percent improvement achieved as the batch size changes

Figure 2.8 shows the effect of R on the performance of OP4. For example, when

compared to OP3, the benefit of using OP4 increased for scenarios in which R was larger.

When R is large, like with large Q, retailers will have more flexibility in the sense that R1’s

DC selection decision will typically have a smaller impact on R2’s future DC selection

decisions. However, when compared to OP1 and OP2, the performance of OP4 decreased

slightly with increasing R. This decrease was more evident in total cost. This is perhaps

due to the fact that as R increases the chances that a DC will be out of stock decreases.
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Thus, using OP4 will more frequently result in R1 choosing DC1 and R2 choosing DC2.

In other words, the DC selection decisions in OP4 and OP1 will be the same in most cases

because the auto manufacturer mentioned earlier made the DC-retailer assignments based

on the assumptions that L1 < L2 and s1 < s2.
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Figure 2.8

Percent improvement achieved as the reorder point changes

Based on Figure 2.9 as L increases the benefit of using OP4 seems to slightly increase

first but then starts to decrease. When L is too large the DCs are out of stock for longer

periods of time which means the backlog costs is the dominant cost component. Therefore,

the benefit of order switching diminishes in the long run. So, OP2, OP3, and OP4 all tend

to become like OP1.
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Figure 2.9

Percent improvement achieved as the lead time changes

2.6 Conclusions and Research Directions

We have derived and evaluated a decision rule for DC selection in a two-stage supply

chain with two retailers and two DCs, and the decision rule has been developed for the

retailers to use each time they need to replenish inventory. This decision rule minimizes

the expected total cost for the retailer. The decision rule has been evaluated in a simulation

study, and the results support that the rule performs well. The retailers repeatedly use the

decision rule as a heuristic which is the basis of our proposed ordering policy, OP4. Our

policy is compared to three other policies, OP1, OP2, and OP3, in which DC selection

decisions are respectively: i) always select the same DC, ii) select the DC with inventory

on hand, and iii) select the DC that promises an earlier delivery. From a managerial point

of view, OP1, OP2, and OP3 may seem to be easier to use and implement; however, OP4
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is also easy to use. Although OP4 may be complicated to derive mathematically, it can

very easily be incorporated into a decision support system.

For the automobile manufacturer discussed in Section 4.1, the service stations, i.e.

the retailers, currently use OP1 as their ordering policy, and their request from the head-

quarters was to be allowed to use OP3 to improve their performance. By deriving a new

decision rule and developing an ordering policy based on this rule, we show through our

numerical study that the retailers’ performance can be improved more by OP4 than by

OP3. The proposed ordering policy, OP4, also improved the performance of the whole

supply chain for most of the scenarios considered. For the scenarios in which OP4 per-

formed poorly, we demonstrated that the performance could be improved via a parametric

analysis. Using these results, the retailers may convince the headquarters to allow them to

begin “order switching.” Based on our analysis, OP4 performs particularly well for sup-

ply chains with slow moving items and high inventories at the DCs. In other words, if λ is

small and Q and R are large OP4 performs better than OP1, OP2, and OP3 with respect

to both retailer and DC costs.

There are many possible future research directions related to this study. In this study,

we assume that if one of the retailers is using the proposed decision rule, then the other is

doing the same. An interesting extension would be to look at the case when the retailers

compete to minimize their costs by using different ordering policies. Analyzing a supply

chain with more than two DCs and two retailers could also be another research study. Fi-

nally, developing decision rules for the DCs and/or the system as a whole would contribute

to the literature.
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CHAPTER 3

ANALYSIS OF ORDERING POLICIES IN A TWO-STAGE SUPPLY CHAIN WITH

ALTERNATIVE SUPPLY SOURCES

3.1 Introduction

In the previous chapter, we introduced a decision rule based ordering policy for a DC

selection problem. Numerical experiments have shown that the decision rule outperforms

the traditional ordering policies in terms of retailers cost. However, the decision rule

based policy is not necessarily the best for the supply chain in all cases. In this chapter, we

present additional analysis to determine settings where OP4 is most beneficial to retailers.

In our experiment design we have decreased the number of problem instances from

32.768 to 21. The small number of experiments has allowed us to gain more insight about

OP4 and identify the combination of parameters under which OP4 can outperform the

other three policies.

The rest of the chapter is organized as follows. Section 4.3 presents the results of

numerical analysis and we conclude the chapter in section 3.3.

3.2 Numerical Analysis

Performance of the four ordering policies (OP1, OP2, OP3, and OP4) are tested on a

relatively small number of cases compared to the previous chapter. In total, we consider 21
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problem instances to evaluate the performance of the decision rule based ordering policy

compared to the other policies. For each problem instance a simulation study for 20.000

time units is run and each instance is replicated 10 times. Data related to average total cost

at retailers and DCs together with average waiting time of retailers to receive a shipment

from DCs is collected.

We used following set of parameters to create problem instances:

h=1 L1 = 2 H=0.8
B=5 L =24 O=200
λ∈ {0.5, 1, 1.5, 2.0, 2.5} L2

L1
∈ {1.1, 1.3, 1.5, 1.7, 1.9} h

b
∈ {1, 0.2, 0.05, 0.0125, 0.01}

s1

b
∈ {1, 3, 5, 7, 9} s2

s1
∈ {1.1, 1.3, 1.5, 1.7, 1.9}

λ=1.5, L2=3, b=20,s1=100, and s2=150 were chosen to create the base scenario. We

changed each parameter in the base scenario to find out the effect of the parameters on

costs and average waiting time.

To determine reorder points and order quantities, we assumed that DCs determine

the best Q and R. This is a meaningful assumption. In the automotive industry under

consideration, DCs are authorized by the automotive manufacturer to set order batch sizes

for retailers. We found values of Q and R by selecting the parameter pair that minimizes

DCs’ cost through a simulation study. Once DCs establish their Q and R values and

order batch size for retailers, retailers pick the reorder point that minimizes their average

cost assuming all other information is known. Table 3.1 shows the parameters and their

respective values for 21 problem instances.
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When all retailers use the same ordering policy, their costs and the average waiting

time does not vary significantly from each other because the retailers are assumed to be

identical. The same observation is valid for the DCs (i.e. the costs of the two DCs are

close to each other), since they are assumed to be identical. The objective of the analysis is

to determine how the cost and the average waiting time vary with respect to the parameters.

Figure 4.38 depicts the normalized cost and delivery performance of the four policies.

To normalize the values, we assume that performance of OP1 is 100%. The following

formula is then used to determine normalized performance of the other policies:

NTCp =
TCp

TC1

∗ 100. (3.1)

In the above formula, NTCp stands for normalized total cost of ordering policy p. We

normalize average cost at retailer and DC together with the average waiting time for re-

tailers to fulfill their inventory from a DC. We denote normalized average cost of retailers

and DCs by NRCp and NDCCp respectively for a policy p. Normalized average waiting

time of retailers is shown by NWTp .

Based on our numerical experiments, OP2 performs poorly compared to OP1 with

respect to total cost of supply chain, retailers’ cost, and average retailers order waiting

time. This is beneficial from a DCs’ perspective. Choosing a DC with inventory will

decrease backlog and inventory holding costs. It might seem considering inventory instead

of delivery time might appear to increase average waiting time for retailers.
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Table 3.1

Parameters and respective values of each test problems

Prob. # q r λ h b s1 s2 L1 L2 Q R H B L O
1 14 4 1.5 1 20 100 150 2 3 28 28 0.8 5 24 200
2 14 3 1.5 1 20 100 110 2 3 28 28 0.8 5 24 200
3 14 3 1.5 1 20 100 130 2 3 28 28 0.8 5 24 200
4 14 3 1.5 1 20 100 170 2 3 28 28 0.8 5 24 200
5 14 3 1.5 1 20 100 190 2 3 28 28 0.8 5 24 200
6 14 3 1.5 1 20 20 30 2 3 28 28 0.8 5 24 200
7 14 4 1.5 1 20 60 90 2 3 28 28 0.8 5 24 200
8 14 3 1.5 1 20 140 210 2 3 28 28 0.8 5 24 200
9 14 2 1.5 1 20 180 270 2 3 28 28 0.8 5 24 200

10 14 4 1.5 1 20 100 150 2 2.2 28 28 0.8 5 24 200
11 14 3 1.5 1 20 100 150 2 2.6 28 28 0.8 5 24 200
12 14 3 1.5 1 20 100 150 2 3.4 28 28 0.8 5 24 200
13 14 3 1.5 1 20 100 150 2 3.8 28 28 0.8 5 24 200
14 14 -4 1.5 1 1 100 150 2 3 28 28 0.8 5 24 200
15 14 0 1.5 1 5 100 150 2 3 28 28 0.8 5 24 200
16 14 7 1.5 1 80 100 150 2 3 28 28 0.8 5 24 200
17 14 7 1.5 1 100 100 150 2 3 28 28 0.8 5 24 200
18 18 0 0.5 1 20 100 150 2 3 18 0 0.8 5 24 200
19 25 3 1 1 20 100 150 2 3 25 0 0.8 5 24 200
20 17 5 2 1 20 100 150 2 3 34 34 0.8 5 24 200
21 19 9 2.5 1 20 100 150 2 3 38 38 0.8 5 24 200
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Figure 3.1

Normalized cost and delivery performance of four policies

For example, R1 needs to place an order. DC1 does not have inventory, but DC2 does.

The retailer places an order with DC2 under OP2. Selecting DC2 does not necessarily

mean that retailer will receive the shipment earlier from DC2. It is possible for DC1 to

replenish inventory and deliver the item to R1 before DC2 (knowing that L1 < L2).

In addition, numerical analysis shows that on average OP3 is better than OP1 with

respect to cost and delivery performance. It is easy to show that OP3 will always yield

lower cost at DCs because of the fact that selecting a DC that delivers an order earlier

means less backlog cost and less inventory holding cost at DCs. Luckily, retailers’ greedy

approach in terms of early delivery benefited themselves on average as well. As detailed

analysis depicts OP3 may not be a good policy for retailers under every circumstance in

terms of average cost of retailers. Nevertheless, it is the best policy to decrease average

waiting time for retailers as well as decreasing DCs’ cost.
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OP4 is designed to decrease retailers cost. Based on numerical experiments we can

say that for all problem instances we achieved improvement in retailers’ average cost. Al-

though OP4 does not consider any information related to DCs other than delivery times

from DCs, similar to OP2 and OP3 being able to select the DC in the other region de-

creased DCs’ cost by allowing less backlog and inventory holding cost at DCs. Delivery

performance of OP4 is slightly less than OP3, however, using OP4 decreased retailers cost

more than OP3 on average.

It may be difficult to catch a trend in total cost since it is the sum of DCs’ and retailers’

average costs. Thus, we focused on costs at retailers and DCs separately. Table 3.2

presents normalized cost of retailers and DCs as well as total cost supply chain. Based on

our observation, performances of OP2 and OP3 with respect to DCs’ average cost do not

get affected from parameters except from end customer arrival rate, λ. This has an intuitive

explanation, as long as the number of arrivals does not change, retailers’ decisions will

not be affected since OP2 and OP3 do not consider any information regarding inventory

holding, backlog, and ordering costs. On the other hand, when λ increases, there will be

more opportunities for retailers to replenish their inventory from the alternative DC, DC

located in the other region. Hence, DCs will gain more benefits when customer arrival

rate gets higher. On the other hand, unlike OP2 and OP3, OP4 is sensitive to any parameter

change at retailers.

When λ becomes larger both OP3 and OP4 create more cost reduction opportunities

for retailers and DCs. In addition, being able to replenish their inventory from both DCs

is important for retailers especially when replenishing from the alternative DC is not very
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expensive compared to replenishing from the assigned DC, the one located in the same

region. For example when s2/s1 ratio is 1.1 (not very expensive case) retailers benefit is

2.17%. However, when the ratio is 1.9 (very expensive case) using OP3 increases retailers

cost by 1.44%. Similar observations hold as backlog cost increases. While backlog cost

per unit time increases, the opportunity of replenishing from alternative supply source

becomes more critical for retailers. As a consequence, advantage of using OP3 and OP4

increase as backlog cost increases (i.e. h/b ratio decreases).

When cost of ordering from both DCs is relatively cheap (i.e. s1/b ratio is small)

retailers will have more opportunity by being able to use both DCs as their supplier. It is

clear that as s1/b ratio increases (note that s2/s1 ratio is fixed) alternative sourcing becomes

less attractive since the gap between replenishing from DCs increases as well (s2−s1 gets

larger).

As costs of replenishing from DCs increase, at a certain point, using OP3 increases

retailers’ cost opposite to retailers’ expectation to decrease their cost by reducing the back-

log cost. On the other hand, using an expected cost based approach will allow retailers to

gain benefit from alternative sourcing as much as possible without increasing their cost.

For example, when s1/b ratio is equal to 9 (s1=180 and s2=270) using OP3 increases re-

tailers cost by 0.69% compared to 4.14% cost decrease when s1=20. For a similar change

in s1, even though benefit decreases from 5.23% to 0.58% OP4 still continued to decrease

the average cost of retailers. Meanwhile, when s2/s1 ratio gets larger, allowing retailers

to replenish from both DCs under OP4 bring less benefit to DCs. Because of the high

cost of alternative sourcing retailers prefer replenishing from the assigned DC. It is easy
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Table 3.2

Change in Normalized Average Costs

NTC2 NRC2 NDCC2 NTC3 NRC3 NDCC3 NTC4 NRC4 NDCC4
0.5 102.63 103.49 101.69 99.51 100.29 98.63 99.05 98.99 99.12
1.0 103.02 104.97 100.89 98.96 102.17 95.45 98.58 99.42 97.67

λ 1.5∗ 100.91 102.84 99.20 98.73 100.21 97.43 98.20 98.25 98.14
2.0 101.51 106.01 97.24 95.38 98.14 92.76 95.20 96.12 94.33
2.5 104.57 117.38 92.12 85.53 93.85 77.45 88.95 92.55 85.46
1.1 100.81 102.63 99.20 99.19 100.78 97.78 98.03 97.99 98.06

L2/L1 1.3 100.55 102.18 99.13 98.50 99.66 97.48 97.73 97.65 97.79
ratio 1.7 101.44 103.78 99.40 98.68 99.95 97.57 98.08 98.18 97.99

1.9 101.72 104.59 99.20 98.79 100.04 97.69 98.27 98.40 98.16
1.0000 101.08 104.18 99.10 99.51 102.81 97.40 99.49 99.03 99.79

h/b 0.2000 101.05 103.39 99.25 99.24 101.51 97.49 98.73 99.00 98.52
ratio 0.0125 101.30 103.31 99.26 98.13 98.77 97.47 97.54 96.92 98.17

0.0010 101.43 103.55 99.25 97.63 97.80 97.46 97.08 96.12 98.06
1 99.51 100.16 99.18 96.87 95.86 97.37 96.52 94.77 97.39

s1/b 3 100.26 101.83 99.16 98.14 99.06 97.49 97.75 97.49 97.92
ratio 7 101.35 103.36 99.21 98.97 100.43 97.41 98.15 98.25 98.04

9 101.68 103.58 99.26 99.37 100.69 97.69 98.85 99.42 98.13
1.1 99.51 99.92 99.15 97.61 97.83 97.42 97.15 96.79 97.47

s2/s1 1.3 100.28 101.55 99.17 98.04 98.79 97.39 97.47 97.40 97.54
ratio 1.7 101.41 104.02 99.13 98.81 100.49 97.35 98.06 98.10 98.02

1.9 101.85 105.02 99.08 99.29 101.44 97.41 98.32 98.42 98.23

to show that decrease in performances of OP2 and OP3 will continue as s2/s1 gets larger.

The reason is both OP2 and OP3 do not take cost into account. In contrast, OP4 will al-

ways balances the conflicting objectives of replenishing early and replenishing with less

cost. Figure 3.2 illustrates how much a retailer should pay additionally (s2− s1) to receive

the early shipment over selecting the DC that delivers later.

As can be seen from the Figure 3.2, a retailer, i.e. R1, considers paying more for a

very early delivery (time close to zero) to avoid high backlog cost. In other words, as

delivery times get closer to each other, the benefit of receiving an early delivery decreases

for the retailer. For example in Figure 3.2, we assume that late delivery is at time 10

and there is no scheduled shipment to the retailer when problem number 1 is run. Under
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Figure 3.2

Normalized cost and delivery performance of four policies

these assumptions, the retailer can pay up to 853.22 monetary units more for an early

delivery that is going to arrive at time 0.1. The retailer considers paying up to 839.21,

656.69, 206.72, and 21.80 for a shipment that will be delivered to the retailer at times 3,

6, 9, and 9.9. For instance, the retailer chooses early delivery, employing the decision rule

based ordering policy, if DCe delivers the shipment before time 9.7689201 (sl − se=50),

otherwise, it select DCl. On the other hand under OP3, for the same example, the retailer

selects DCe even when the early delivery time is 9.99 which has the expected benefit of

2.19 monetary units while its additional cost is 50.

So far we have only analyzed the performance of ordering policies with respect to cost

savings opportunities. In the following paragraphs, we evaluate the performance of the

policies in terms of retailers’ average waiting time to replenish their inventory from DCs.

Table 3.3 presents result of average waiting time for the test problems. As seen earlier

with respect to cost evaluation, OP2’s performance is not better than OP1 in most cases.
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Even though retailers choose the DC that has inventory, the DC may not be able to re-

plenish retailers’ inventory earlier than the other DC because of the lead time difference.

Whereas employing OP3 and OP4 shorten the average waiting time as λ increases, uti-

lizing OP2 causes longer waiting time for the retailers. Increase in the average waiting

time is also observed when L2/L1 ratio becomes larger. The performance of OP2 does not

seem to be affected by other parameters.

As mentioned earlier, OP3 is the best policy to decrease the retailers’ average waiting

time. Similar to OP2, OP3 is not also very sensitive to changes in parameters other than

λ and L2/L1 ratio. While the more frequent customer arrivals reveals more opportunity

for retailers, higher L2/L1 ratio decreases the chances of average waiting time reduction.

This is due to the fact that longer lead time from the alternative DC decreases the number

of occasions that the alternative DC can replenish earlier than the assigned DC. The

similar observations hold when we examine the time reduction opportunities when OP4 is

employed in lieu of OP1.

3.3 Conclusion

A two-stage supply chain with two retailers and two distribution centers has been analyzed

with respect to the average costs at DC and retailers, and the average waiting time for

retailers to receive a shipment from DCs.

When the policies are compared, numerical analysis indicates that OP4 has improved

the retailers’ cost in all instances whereas utilizing OP2 and OP3 have increased the cost

of retailers in some problem instances. Based on numerical experiments, an inventory
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Table 3.3

Change in Normalized Delivery Performance

NWT2 NWT3 NWT4

0.5 105.26 99.21 99.59
1.0 104.11 99.03 99.42

λ 1.5∗ 100.77 98.27 98.35
2.0 100.84 96.12 96.35
2.5 99.37 87.83 91.74
1.1 96.47 94.72 96.93

L2/L1 1.3 98.57 96.68 97.19
ratio 1.7 103.14 99.40 98.89

1.9 105.13 99.22 99.65
1.0000 100.61 98.19 99.76

h/b 0.2000 100.81 98.25 98.61
ratio 0.0125 100.88 98.26 98.35

0.0010 100.87 98.28 98.28
1 100.82 98.21 98.05

s1/b 5 100.70 98.32 98.24
ratio 7 100.81 98.16 98.24

9 100.67 98.29 98.26
1.1 100.66 98.22 98.06

s2/s1 1.3 100.72 98.16 97.95
ratio 1.7 100.77 98.12 98.26

1.9 100.56 98.17 98.36
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based policy, OP2, will most likely increase the cost of retailers and the average time of

replenishment. Moreover, except for the change in replenishment lead times, it is not clear

that under which parameter setting OP2 will be more cost effective strategy than OP1. If

replenishment lead times from DCs are close to each other, employing OP2 will create an

opportunity for retailers to receive the orders earlier than the case of employing OP1.

Utilizing OP3 and OP4 brings an improvement chance to retailers with respect to both

the average cost and the average waiting time. OP3 is the best ordering policy to reduce

the average waiting time whereas OP4 is the best ordering policy in terms retailers average

cost.

An interesting result is that allowing retailers to use an alternative supplier does not in-

crease the average cost at DCs and actually helps DCs to decrease their inventory holding

and backlog costs as well as improving their delivery performance. Based on our numer-

ical experiments, in a supply chain with an alternative supply source, alternative sourcing

improves the supply chain performance both in regard to cost and delivery performance.

In addition, employing a cost based DC selection approach brings mutual benefits to re-

tailers and DCs.

Some future extensions of research can be as follows, in this supply chain we assume

that there are only two retailers, it could be an interesting extension to look at a supply

chain with more than two retailers. Moreover, considering a compound Poisson distribu-

tion could be important since in some situation each customer arrival may results more

than one unit of demand. Finally, solving the problem from supply chain perspective will

contribute to the related literature.
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CHAPTER 4

COORDINATION OF INVENTORY AND TRANSPORTATION DECISIONS VIA

SHIPMENT CONSOLIDATION

4.1 Introduction

In today’s very competitive business environment, timely delivery of items to the cus-

tomers is a crucial task that many companies face. In order to benefit from the economies

of scale, distributors (suppliers) typically prefer to consolidate deliveries while trying to

maintain a high percentage of on time delivery. These conflicting objectives make sup-

pliers’ job extremely difficult since finding a good delivery time while considering both

objectives is quite challenging. For example, increasing the delivery frequency increases

suppliers’ performance in general, but it also raises the transportation costs.

Coordination of inventory and transportation decisions using shipment consolidation

has been studied intensively. Shipment consolidation (also referred to as freight consoli-

dation) allows companies to combine many small customer orders to achieve economies

of scale in transportation costs as well as reduce inventory holding costs ([6], [10], [18],

and [25]).

Shipment consolidation has been studied under many different settings such as con-

solidation schemes, demand characteristics, and vehicle attributes. The most distinctive
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attribute of shipment consolidation is the dispatching scheme employed. One of the first

papers in this area, [25], discusses three dispatching schemes used in industry to decide

when a shipment is to be dispatched; quantity based, time based, and hybrid practices. Un-

der the time based practice, all consolidated orders are dispatched at a predetermined time

at once, whereas under the quantity based scheme a shipment is dispatched whenever a

threshold quantity is reached. A hybrid policy is a combination of quantity and time based

policies such that a shipment is dispatched either when a threshold quantity or preset time

is reached. Many researchers have compared performances of dispatching policies to find

out how different consolidation policies perform under different settings ([12], [13], [16],

[22], [24], and [25]).

Although interest in integrated inventory replenishment and shipment dispatching de-

cisions has increased over the last decade, researchers (such as [4], [8], [11], and [12] )

still follow an approach that only considers the distributor’s side of the problem.

In addition, in order to decrease operations regarding management of inventories on

the buyer’s side and to use the economies of scale on the supplier’s side, many different

approaches have been employed, such as vendor managed inventory (VMI). Under a VMI

agreement, supplier has control of the buyer’s inventory. By being able to control the

buyer’s inventory, the supplier enjoys the opportunity to control the delivery quantities and

time. Due to its easy applicability, researchers have considered shipment consolidation in

connection with VMI to increase the benefit of VMI ([4], [11], and [20]).

On the other hand, implementing VMI may not always be possible especially if there is

a trust issue between the supplier and the buyer. In the absence of trust, buyer avoids giving
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control of inventory assuming that the supplier will push its inventory to the buyer’s facil-

ities instead of keeping inventory at the best possible location in terms of supply chain’s

overall performance. The primary motivation of this research is a product of such an en-

vironment of mistrust where the buyer does not want to give the control of inventory,

however, demands higher on-time delivery performance to decrease its cost and planning

efforts due to late deliveries.

In the following paragraphs, we introduce a problem that we observed in an automotive

spare parts distribution setting in which the buyer does not trust the seller and asks for

timely shipments. In the problem we observe, customers are located in two regions and

each region consists of a single distribution center (DC) and multiple service stations. The

company uses the term “service stations” to denote authorized repair shops. Throughout

this chapter, we will use the term retailers to indicate service stations. Retailers and DCs

use a (Q,R) continuous review inventory policy. Retailers place orders to DCs whereas

DCs replenish their inventory from outside suppliers. As retailers place orders to DCs,

DCs do not send items to retailers immediately. As a consequence, retailers might have

to endure a long and uncertain wait. Two reasons for late deliveries from DCs to retailers

are shipment consolidation and being out of stock.

Shipment consolidation is used as a tool to decrease transportation cost at DCs. Cur-

rently, shipment consolidation decisions at the company are made based on experience

without a structured approach about how long the order consolidation period should be.

Thus, this gives rise to situations in which DCs are unable to provide firm delivery dates

and consequently retailers have difficulties managing their inventories.
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Although shipment consolidation is one of the main reasons for delays, there are cases

in which DCs delay shipments to retailers because they are out of stock due to the ex-

tended lead time from outside suppliers. For example, some items comes from outside

suppliers that are located in other countries and the lead time from these suppliers to DCs

can exceed a month. These give rise to the following question. When a retailer places

and order is it possible to give him/her an accurate shipment or delivery time consider-

ing the future demand, the lead time from the outside suppliers, and the inventory holding,

backlog, and transportation costs?

We provide two models that partially answer the above question and to improve whole

supply chain performance in terms of both total cost and timely delivery. In our models,

we assume that DCs and retailers are in an agreement. Such that the retailers will share

their demand and inventory information with the DC that provides information regarding

shipment dispatching time at the time of order placement. Although this approach could

lead to certain contractual issues such as sharing the monetary benefit, these issues are not

included in the present study. To come up with a solution to our research question, we

introduce a “promised latest delivery time” concept that is as follows: The promised latest

delivery time is the end of shipment consolidation time that the DC provides to retailers

at the time of order placement. It is to be noted that a DC’s promised latest delivery

time is the latest time that the DC will dispatch the orders, but, may actually dispatch the

shipment earlier.

Our approach to the consolidation problem can be considered as a hybrid policy which

has been found to be very promising, [12]. We also use a reevaluation approach that is
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employed repeatedly to determine a promised latest delivery time whenever a DC needs

to calculate a new promised latest delivery time. The reevaluation approach allows DCs to

calculate a more precise shipment consolidation time by taking into consideration the latest

information available. This approach is similar to the recurrent approach proposed by [21].

While [21] evaluates the decision when a customer arrives, we evaluate the situation only

at the beginning of shipment consolidation. However, it is easy to reevaluate the decision

as new orders are placed to DCs as well.

The rest of the paper is organized as follows. Section 4.2 presents the problem descrip-

tion, details related to four consolidation policies, and derivation of the models. Section

4.3 presents the numerical analysis. Lastly, section 4.4 provides some concluding remarks

and presents directions for future research.

4.2 Problem Description and Formulation

Consider a two-stage supply chain with two distribution centers (DC) and two retailers.

Figure 4.1 shows the structure of the supply chain. Each supply chain member uses a

(Q,R) continuous review inventory policy. When the inventory position at a facility drops

down to the reorder point that facility places an order of size Q. It is assumed that DCs’

order quantity, Q, and reorder point, R, are multiples of retailers’ order quantity q. Re-

tailers face independent Poisson end customer demand. It is also assumed that there is a

fixed transportation cost of serving retailers. When a DC serves only one retailer a trans-

portation cost of F1 is incurred. If a DC serves both retailers in a single shipment, a fixed

transportation cost of F2 is incurred. It is assumed that serving a single retailer is less
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costly than serving both retailers at the same time (F1 < F2). Furthermore, there is a fixed

lead time, L, from the outside supplier to DCs. Transportation from DCs to retailers

takes no time. The other notation used in the formulation are given below:

q = order quantity at retailers,
r = reorder point at retailers,
λ = customer arrival rate at retailers,
h = inventory holding cost per item per unit time at retailers,
b = backlog cost per item per unit time at retailers,

ILR
j = inventory level (inventory on hand - backorders) at retailer j,

IPR
j = inventory position (inventory on hand - backorders +

outstanding orders) at retailer j,
invi

j = expected inventory holding cost per unit time associated with the ith

customer demand at retailer j,
backi

j = expected backlog cost per unit time associated with the ith

customer demand at retailer j,
Q = order quantity at DCs,
R = reorder point at DCs,
H = inventory holding cost per item per unit time at DCs,
B = backlog cost per item per unit time at DCs,

ILD
l = inventory level at DCl,

IPD
l = inventory position at DCl,

Inl = expected inventory holding cost per unit time at DCl,
Bak

l = expected backlog cost per unit time associated with the kth

retailer order at DCl.

We propose two new consolidation policies; single source consolidation, CP3, and

dual source consolidation, CP4. In order to compare the performances of proposed con-

solidation policies, we consider two other policies from the literature: no consolidation,

(CP1), and time based consolidation, (CP2). More details are given about these policies

in the following subsections. For all consolidation policies, we assume that retailers share

demand and inventory information with DCs.
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Figure 4.1

Structure of the supply chain

4.2.1 No Consolidation - CP1

Under the first policy, (CP1), we assume that there is no shipment consolidation. That

is, either a DC has inventory on hand and the DC dispatches the shipment as soon as

it receives an order from the retailer, or the DC is out of stock so it replenishes its own

inventory first then dispatches the shipment. CP1 is studied by many researchers, ([14]

and [30]), so we do not present any details in this study.

4.2.2 Time Based Consolidation - CP2

Under the second consolidation policy, (CP2), we consider the model proposed by [13].

According to this model, the authors calculate the optimum consolidation time for a ware-

house under the assumption that the shipment from the outside supplier is instant and

that the warehouse faces the end customer demand directly (no retailers in the system).

Therefore, CP2 does not consider cost at retailers and lead time issues. We choose [13]

for comparison because, the authors assume that the distributor uses a (Q, R) continuous

review inventory policy which is similar to our problem setting. We find the optimal ship-

ment consolidation time assuming that there is no lead time from outside supplier to DCs

using the formula given by [13]. However, in the simulation study, we measure CP2’s per-
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formance in a supply chain with a positive lead time from the outside supplier to DCs

together with costs at retailers. In order to improve the performance of the model, we in-

troduce retailer cost to the model under the assumption that DCs backlog cost is the sum

of backlog costs at DCs and retailers.

4.2.3 Single Source Consolidation - CP3

Under the proposed single source consolidation policy, CP3, DCs utilize a hybrid consol-

idation scheme to determine the promised latest delivery time, T . The time period between

the declaration of the promised latest delivery time and the actual time of shipment is used

as an order consolidation interval. However, a DC can ship product earlier if the num-

ber of consolidated order reaches to the number of items that the DC has secured for the

retailer.

We assume that the promised latest delivery time cannot be longer than the lead time

from outside supplier to DCs (T ≤ L), as this might result in retailers enduring a longer

wait and loosing their trust in DCs. If T > L, a retailer would wait longer to receive a

shipment from a DC, and the DC would have the incentive to keep no inventories, but

replenish its inventory based on actual orders received from the retailer.

The main idea behind CP3 is to investigate and coordinate demand arrival and item

arrival to retailers and DCs. For this purpose, a DC may evaluate different number of

batches to find the option with the least expected cost per unit time. Let m be the number

of batches available for consolidation just after the order that triggers the consolidation at

the DC. m is defined as follows:
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m=





(ILD
l + sQ)/q, ILD

l > 0;

sQ/q-1, ILD
l ≤ 0.

In the above formulation let s be the index of the scheduled shipment that arrives the

DC at time ts .

Suppose DC1 has ILD
1 /q batches in inventory just after the order that triggers the con-

solidation at the DC and the DC is scheduled to receive a shipment of size Q from the out-

side supplier at time t1. In this case, DC1 can calculate the expected costs associated with

m = ILD
1 /q batches that are ready for consolidation at time zero and m = (ILD

1 + Q)/q

batches that would be available for consolidation at time t1. Note that the number of

scheduled shipments could be more than one. For example, if there is a second shipment

scheduled to arrive at the DC, the DC considers m = (ILD
1 + 2Q)/q batches for consoli-

dation as well. After computing the expected costs of supply chain and the corresponding

latest delivery times for different number of batches, DC1 makes a decision based on the

expected cost per unit time and uses the corresponding latest delivery time as the promised

latest delivery time, T .

For example, assume at time 0, R1 receives a customer demand and its inventory po-

sition, IPR
1 , drops down to or below the reorder point r thus R1 requests an order of size

q from DC1. Upon receipt of information regarding ILR
1 , DC1 considers the overall ex-

pected supply chain cost which includes inventory holding and backlog costs at R1 and

DC1; and transportation cost.
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Suppose the expected costs of the supply chain are U ILD
1 /q and U (ILD

1 +Q)/q when

m = ILD
1 /q and m = (ILD

1 + Q)/q batches are considered for consolidation. In ad-

dition, assume that T ILD
1 /q and T (ILD

1 +Q)/q are the respective latest delivery times. If

U ILD
1 /q < U (ILD

1 +Q)/q, DC1 chooses to consider only ILD
1 /q batches and the promised lat-

est delivery time, T , is equal to T ILD
1 /q. Otherwise, DC1 considers (ILD

1 + Q)/q batches

for consolidation (T = T (ILD
1 +Q)/q). Note that under the second alternative, DC1 cannot

dispatch the shipment before time t1, whereas it is possible to ship earlier when ILD
1 /q

batches are considered for shipment consolidation. The next paragraph explains the details

regarding the time of the actual dispatch.

When R1 places an order which initiates the shipment consolidation at DC1, DC1

allocates one of the batches for this new order leaving the remaining batches for future

orders of R1. Let t be the earliest time that DC1 can dispatch a shipment. For the example

given in the previous paragraphs, t will be equal to zero or t1, depending on whether

ILD
1 /q or (ILD

1 + Q)/q batches are considered for the next shipment consolidation cycle.

Suppose, R1 chooses to consider (ILD
1 + Q)/q batches during the consolidation cycle,

hence, t will be equal to t1. Considering the promised latest delivery time T , there can be

three different cases with respect to the actual shipment dispatching time: i) DC1 receives

less than m batch requests from R1 within time T , so DC1 dispatches the shipment at

time T ; ii) DC1 receives the mth order before time T and after t, so the shipment is

dispatched upon receipt of the mth order; iii) DC1 receives the mth order before time t, so

the shipment is dispatched at time t.
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Following example is used to clarify the information given above. Assume ILD
1 =8,

q=2, R=6, L=10, and Q=4 just after the order (at time zero) that triggers the shipment

consolidation at DC1. Assume that after the expected cost calculation, T is determined

as 7. In addition, assume there are no scheduled shipments to DC1. In this case, DC1

dispatch the shipment either at time T or earlier. If DC1 receives m = ILD
1 /q = 4

orders before time T , then DC1 dispatches a shipment. Suppose the retailer places its 10

future orders at times 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2. As a response

to the retailer’s order, DC1 places orders to the outside supplier and those orders will be

delivered at times 10.3 (0.3+10), 10.5, 10.7, 10.9, and 11.1. Based on this example and our

assumptions, DC1 dispatches a shipment at time 0.6. Figure 4.2 presents the information

available to the DC at time 0.6.

Figure 4.2

The scheduled shipments and arrival of orders to the DC and the DC’s dispatching
decision at time 0.6.
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When DC1 receives the next order from the retailer, i.e. the fifth order, it needs to

calculate the promised latest delivery time again. Note that DC1 receives the fifth order

from the retailer at time 0.7. At this time there are three previously scheduled shipments

that will be received at times 10.3, 10.5, and 10.7 respectively. Therefore, s will be 1, 2, or

3 which indicates that m will be 1, 3, or 5. At time 0.7 when the retailers places its order,

we re-initialize the time index to zero. In other words, when the fifth order is received

at time 0.7, we set the clock back to zero. Since ILD
1 = −2 at time zero and there are

three outstanding orders we calculate three T values; one corresponding to each m value.

In the calculation of the first T , t=9.6. In the calculation of the second T , t=9.8. In the

calculation of the third T , t=10. The promised latest delivery time will be in one of these

three [t, L] intervals that gives the minimum expected cost per unit time. Assume that

when m = 1, T=9.7 corresponds to the minimum expected cost per unit time. In this case

a shipment will be dispatched at time 9.6, due to the fact that the DC is going to receive

the sixth order at time 0.1. Figure 4.3 depicts the arrival of the sixth order from the retailer

and time of dispatch together with the promised latest delivery time, T .

The process will restart by resetting the clock back to zero when the next order is

received which will be the seventh order in our example. Figure 4.4 shows the situation at

the DC when the retailer places the seventh order. The DC will match the demand with

the scheduled shipments that will arrive at time 9.6 or later, since the scheduled shipment

at time 9.4 is already matched with the retailer’s previous orders.
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Figure 4.3

Arrival of the sixth order to the DC and corresponding events at the DC

Figure 4.4

Arrival of the seventh order to the DC and corresponding events at the DC
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When customer arrivals to retailer follow a Poisson distribution, the time when the

ith customer arrives at Rj has an Erlang(λ, i) distribution with the following density and

cumulative distribution functions, respectively:

f i
j(t) =

λiti−1e−λt

(i− 1)!
. (4.1)

F i
j (t) =

∫ t

0
f i

j(u)du = 1−
i−1∑

k=0

(λt)ke−λt

k!
. (4.2)

It is also convenient at this point to introduce the following equation which will be

required in expected cost calculations.

∫ t

0
uf i

1(u)du =
i

λ
F i+1

1 (t). (4.3)

We analyze the system in two parts; the expected cost per unit time at retailers and

the expected cost per unit time at DCs. Then, we combine the expected costs to compute

the total expected cost per time unit. To present formulation more clearly, we show the

formulation for DC1 - R1 pair. It will be the same for DC2 - R2 pair.

4.2.3.1 Expected Cost at Retailer

If a demand arrives after the corresponding item, there will be an associated inventory

holding cost. If a demand arrives before the corresponding item there will be an associated

backlog cost.
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Inventory Holding Cost:

If ILR
1 > 0 then there is an inventory holding cost associated with the first ILR

1 items.

Initial Inventory Holding Cost When ILR
1 > 0:

In this case, the initial ILR
1 demand could be satisfied from inventory on hand. For

a promised latest delivery time T , if demand arrives before time T then there will be an

inventory holding cost until demand arrival. First integral in (4.4) presents the mode of

calculation of the expected inventory cost when demand arrives before time T . When the

demand arrives after time T , there is a need to retain the item in the inventory until time T

and this calculation is shown in the second integral in (4.4).

ILR
1∑

i=1

invi
1 =

h

T

ILR
1∑

i=1

[
∫ T

0
uf i

1(u)du + T
∫ ∞

T
f i

1(u)du]. (4.4)

Using the information provided regarding Erlang Distribution and equation (4.3), the

expected cost calculation per unit time given by (4.4) can be re-written as:

ILR
1∑

i=1

invi
1 = hILR

1 −
h

T

ILR
1∑

i=1

[TF i
1(T )− i

λ
F i+1

1 (T )]. (4.5)

Future Inventory Holding Cost When ILR
1 > 0:

In addition to initial inventory holding cost, if R1 receives the shipment before time T ,

there will be an associated inventory holding cost for the items received before time T .

(m+1)q+ILR
1∑

i=max{mq,ILR
1 }+1

invi
1 =

h(ILR
1 + q)

T
[
∫ t

0
(T − t)fmq

1 (u)du +
∫ T

t
(T − u)fmq

1 (u)du]
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− h

T

(m+1)q+ILR
1∑

i=max{mq,ILR
1 }+1

[
∫ t

0
(T − t)f i

1(u)du +
∫ T

t
(T − u)f i

1(u)du]. (4.6)

Above formula can be represented as follows after necessary calculations.

(m+1)q+ILR
1∑

i=max{mq,ILR
1 }+1

invi
1 =

h(ILR
1 + q)
T

[(T − 2t)Fmq
1 (t) + TFmq

1 (T )− mq

λ
(Fmq+1

1 (T )− Fmq+1
1 (t))]

− h

T

(m+1)q+ILR
1∑

i=max{mq,ILR
1 }+1

[(T − 2t)F i
1(t) + TF i

1(T )− i

λ
(F i+1

1 (T )− F i+1
1 (t))]. (4.7)

Backlog Cost:

There is no backlog cost if ILR
1 > 0 during the consolidation cycle at the retailer for

the first ILR
1 demand. However, if ILR

1 < 0, there will be an initial backlog cost associated

with the order placed by the retailer which triggers the consolidation period at the DC.

Initial Backlog Cost When ILR
1 < 0:

In this case there is a backlog associated with the already realized demand (because

of the order that triggers the consolidation period) and these demands will be backlogged

until the shipment is dispatched. The expected backlog cost associated with them will be:

q∑

i=1

backi
1 = b ∗min{q,−ILR

1 }. (4.8)

In addition to the initial backlog cost, there would also be a backlog cost associated

with future demand, if the demand exceeds the number of items that the retailer has. We

60



describe the method to calculate the associated backlog cost at the retailer in the following

paragraphs.

Future Backlog Cost:

There is a backlog cost associated with demand between ILR
1 +1 and mq, if 0 ≤ ILR

1 <

mq. The duration of backlog time will vary based on the arrival time of mth order placed

by R1. If mth order arrives before time t, then there will be a backlog cost associated with

the end customer demands between ILR
1 + 1 and mq − 1 until the time t.

backi
1 =

b

t

∫ t

0
(
∫ v

0
(t− u)f i

1(u)du)fmq
1 (v)dv. (4.9)

If mth order arrives before time T and after time t, then there will be a backlog cost

associated with the end customer demands between ILR
1 + 1 and mq − 1 until the arrival

time of the mth order to DC1. The corresponding expected backlog cost per unit time for

an end customer demand realized at R1 will be:

backi
1 = b

∫ T

0
(
∫ v

0
f i

1(u)du)
1

v
fmq

1 (v)dv. (4.10)

However, if mth order is not placed until time T , then all previously placed orders will

only arrive at time T to the retailer. This will result in a backlog of each realized end

customer demand until time T . The following formula is used to calculate the associated

backlog cost:

backi
1 =

b

T

∫ ∞

T
(
∫ T

0
f i

1(u)du)fmq
1 (v)dv. (4.11)
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After combining (4.10) and (4.11), we arrive at the following formula by calculating

the integrals to find the associated expected backlog cost per unit time.

mq−1∑

i=max{1,ILR
1 +1}

backi
1 =

b(1− Fmq
1 (T ))

T

mq−1∑

i=max{1,ILR
1 +1}

[TF i
1(T )− i

λ
F i+1

1 (T )]

+b
mq−1∑

i=max{1,ILR
1 +1}

[Fmq
1 (T )− i

mq − 1
Fmq−1

1 (T ) +
i∑

j=0

i(mq + j − 2)!Fmq+j−1
1 (2T )

2mq+j−1j!(mq − 1)!

+
i−1∑

j=0

(mq + j − 1)!Fmq+j
1 (2T )

2mq+jj!(mq − 1)!
] +

bFmq
1 (t)

t

mq−1∑

i=max{1,ILR
1 +1}

[tF i
1(t)−

i

λ
F i+1

1 (t)]. (4.12)

If the retailer receives more than max{mq, ILR
1 }+1 and less than (m+1)q+ILR

1 end

customer demand before time t, these demands will be backlogged until time t. If these

demands are realized after time t, then there will be only inventory cost associated with

these demands and inventory holding cost is already calculated using (4.7).

(m+1)q+ILR
1∑

i=max{mq,ILR
1 }+1

backi
1 =

b

t

(m+1)q+ILR
1∑

i=max{mq,ILR
1 }+1

[
∫ t

0
(t− u)f i

1(u)du]. (4.13)

After necessary calculations (4.13) will be simplified to:

(m+1)q+ILR
1∑

i=max{mq,ILR
1 }+1

backi
1 =

b

t

(m+1)q+ILR
1∑

i=max{mq,ILR
1 }+1

[tF i
1(t)−

i

λ
F i+1

1 (t)]. (4.14)

In addition, we know that if the total demand at R1 exceeds (m + 1)q + ILR
1 , then all

the exceeding demand will be backlogged until time T as DC1 will not be left with any

items to fulfill R1’s demand before time T .
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∞∑

i=max{1,ILR
1 +(m+1)q+1}

backi
1 =

b

T

∞∑

i=max{1,ILR
1 +(m+1)q+1}

[
∫ T

0
(T − u)f i

1(u)du]. (4.15)

(4.15) can be simplified to

∞∑

i=max{1,ILR
1 +(m+1)q+1}

backi
1 =

b

T

∞∑

i=max{1,ILR
1 +(m+1)q+1}

[TF i
1(T )− i

λ
F i+1

1 (T )]. (4.16)

The expected cost of R1 per unit time will be as follows:

UR
1 =

∞∑

i=1

invi
1 + backi

1. (4.17)

4.2.3.2 Expected Cost at Distribution Center

The expected cost calculation at DC1 will be similar to the one in the retailer’s case.

Inventory Holding Cost:

The inventory holding cost rate will be H.ILD
1 , if DC1 does not have a scheduled

shipment arrival and ILD
1 > 0. However, if there is a scheduled shipment arrival at DC1

which is before the time of shipment dispatch, then there is a need to determine the average

inventory holding cost per unit time.

Assuming DC1 will receive the shipment at time t and the latest dispatching time is T ,

the average inventory on hand will be:

ILa
1 = (TILD

1 + (T − t)[(1− Fmq
1 (T ))Q +

Qmq

λ
(Fmq+1

1 (T )− Fmq+1
1 (t))]). (4.18)
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In the formula above if ILD
1 < 0, the first part of the summation is equal to zero.

Expected inventory holding cost per unit time will be:

In1 = H.ILa
1. (4.19)

Backlog Cost:

In addition to the inventory holding cost, there will be a backlog cost associated with

each order placed by R1. To calculate the expected backlog cost of DC1, we match the

items at the DC with R1’s orders. By considering the fact that every q many end customer

demands will result in a new retailer order, (4.12) is used (with some modifications) to

calculate the expected backlog cost per unit time at DC1. The final formula is given

below:

m∑

k=1

bak
1 =

Bq(1− Fmq
1 (T ))

T

m−1∑

k=1

[TF kq
1 (T )− kq

λ
F kq+1

1 (T )]

+Bq
m−1∑

k=1

[Fmq
1 (T )− kq

mq − 1
Fmq−1

1 (T ) +
k∑

j=0

kq(mq + j − 2)!Fmq+j−1
1 (2T )

2mq+j−1j!(mq − 1)!

+
k−1∑

j=0

(mq + j − 1)!Fmq+j
1 (2T )

2mq+jj!(mq − 1)!
] +

BqFmq
1 (t)

t

m−1∑

k=1

[tF kq
1 (t)− kq

λ
F kq+1

1 (t)]. (4.20)

Finally, if the number of orders placed by R1 is greater than m, there is no chance

for DC1 to replenish R1’s additional requests until time T . Thus, all those orders that are

placed after the mth order will be backlogged until time T .
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∞∑

k=m+1

bak
1 =

Bq

T

∞∑

k=m+1

[TF kq
1 (T )− kq

λ
F kq+1

1 (T )]. (4.21)

The total expected cost of DC1 per unit time will be:

UD
1 = [[

∞∑

k=0

Bak
1] + In1] +

F1

T
. (4.22)

4.2.3.3 Expected Cost of Supply Chain

The total expected cost of supply chain per unit time will simply be the sum of the expected

costs per unit time at DC1 and R1.

USC
1 = UR

1 + UD
1 . (4.23)

Now the problem reduces to:

Min USC
1

s.t.
T ≥ t

T ≤ L

As mentioned earlier, in the above formula t could either be zero or the arrival time of

shipment to the DC. If the DC chooses to consider m = ILD
1 /q batches then t=0. If DC1

considers m = (ILD
1 + sQ)/q batches then t = ts.
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Since we have not been able to prove that USC
1 is a convex function of time for all

possible parameters, we search the interval between t and T . We choose the value of T

which minimizes the total expected cost of DC - retailer pair per unit time.

4.2.4 Dual Source Consolidation - CP4

So far, under the three previous consolidation policies, we assume that each retailer is

assigned to a single DC that is located in the same region and compute the consolidation

time for a supply chain for the DC-retailer pair. When we derive the model for dual source

consolidation, we relax the assumption that a retailer can only be served by a single DC

located in the same region. Hence, under CP4, a retailer can be served by two DCs. A DC

can serve two retailers at the same time or one at a time. To find the best alternative with

the lowest cost, we compare three alternative DC-retailer assignments. We then follow a

similar approach to CP3 to compute the expected cost of alternatives.

Argmin





DSC
1 , Assign R1 to DC1 and R2 to DC2;

DSC
2 , Assign R1 and R2 to DC1;

DSC
3 , Assign R1 and R2 to DC2.

DSC
z denotes the expected unit cost of supply chain when option z is chosen under the

dual source consolidation policy, CP4.

We have already derived the formula required for DSC
1 . Under CP3, calculation is

performed for a single DC-retailer pair. Under CP4, we calculate the expected cost of

DC1 −R1 and DC2 −R2 assignments, and then find the total expected cost of DSC
1 .
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Calculations will be exactly the same for DSC
2 and DSC

3 . The only difference is the

number of batches available for consolidation at DC1 and DC2 and the time t at which

those batches will be available for consolidation. If there are two or three options that

have the exact expected cost value, we choose one of them randomly. For example, if

DSC
2 = DSC

3 and DSC
1 > DSC

2 , we randomly select DC1 or DC2, and assign both retailers’

orders to that DC.

In the following section, we present cost calculation when both retailers are assigned

to DC1, DSC
2 . As mentioned earlier, the same calculation steps will be used for DC2,

DSC
3 .

In a manner parallel to the cost calculation adopted in CP3, we compute the expected

cost at retailers and DCs and then combine them to obtain the total expected cost of the

system under CP4. Note that all formulas presented for cost calculation of R1, need to be

repeated for R2 under subsection 4.2.4.1.

4.2.4.1 Expected Cost at Retailers

The formula is applicable when both retailers are assigned to DC1, DSC
2 . The analysis is

analogous for DSC
3 . We assume that, at time 0, just after receiving a new order from one of

the retailers, DC1 has m batches left for consolidation. In addition, retailers have kj many

outstanding orders including the order that initiated the shipment consolidation at DC1.

Each retailer may get a certain number of batches from the remaining m batches avail-

able at DC1. The number of batches that Rj can be promised, mj , by DC1 is between 0

and m. There can be two situations that need to be considered. Firstly, Rj may not receive

67



enough end customer demand to place more than mj orders before time T . Secondly, al-

though Rj places more than mj orders of size q before time T , DC1 cannot deliver them

due to the constraint that all the remaining batches have been promised to the other re-

tailer. In the first case, Rj may receive the shipment at time T or earlier depending on

the number of orders placed by the other retailer. If the total number of orders placed by

both retailers is greater than or equal to m, shipment will arrive before time T . Else the

retailers will have to wait until time T to receive the shipment. Finally, if the number of or-

ders exceeds the number of available batches, the mth order received by DC1 will trigger

the decision on shipment dispatch. Thus, the mth order is important for the expected cost

calculation. Based on the above scenario, we calculate the expected cost of the retailers.

We assume that R1 will place a new order after it receives y1 many end customer

demand (current IPR
1 = r + y1). If ILR

1 < 0 then there is a backlog cost associated with

the backordered demand at a rate of b.ILR
1 .

back0
1 = bILR

1 . (4.24)

Dispatch shipment at time T :

The total number of orders received by DC1 should be less than the total number of

batches available, m. For a given m1, R2 can place a maximum of m2 = m − m1 − 1

orders during (0, T ) time interval. For this condition to be realized, R2 should receive less

than y2 + (m −m1 − 1)q end customer demand. Note that, the probability that an event

occurs a certain number of times within a fixed period of time (T ) will follow Poisson
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distribution with parameter λT . Poisson distribution has the following probability density

function:

P (X = x) =
eλT (λT )x

x!
. (4.25)

Let n1 denote the number of end customer demand that R1 will receive during the time

interval (0, T ). n1 is the upper limit of n1, and n1 is the lower limit of n1. For the expected

cost calculation of R1, lower and upper bounds are n1 = y1+m1q−1, n1 = y1+(m1−1)q,

n2 = y2 + (m2)q − 1, and n2 = 0

Moreover, the probability that R1 will receive at most n1 units of demand during the

time interval (0, T ) can be calculated by using (4.25) as follows:

P (X ≤ n1) =
n1∑

x=0

P (X = x). (4.26)

If R1 places an order for only m1 batches, the number of end customer arrivals to R1

should be between y1 + (m1 − 1)q and y1 + m1q − 1.

For ILR
1 ≥ n1, (similar to ILR

1 ≥ mq case for R1 under CP3), there will only be an

inventory holding cost at R1. The expected inventory holding cost can be computed using

(4.27). On the other hand, if 0 ≤ ILR
1 < n1, inventory holding and backlog costs will

occur at R1. While the expected cost of inventory can be computed after modifying the

formula given in (4.5), (4.28) is needed to evaluate the expected backlog cost at R1.

n1∑

i=1

invi
1 = P (X ≤ n2)[hILR

1 −
h

T

n1∑

i=1

[TF i
1(T )− i

λ
F i+1

1 (T )]]. (4.27)
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n1∑

i=max{1,ILR
1 +1}

backi
1 =

P (X < n2)b

T

n1∑

i=max{1,ILR
1 +1}

[TF i
1(T )− i

λ
F i+1

1 (T )]. (4.28)

Dispatch shipment before time T :

The shipment is dispatched when the total number of orders placed by R1 and R2

is equal to the number of batches available at DC1, (m1 + m2 = m). The order that

triggers dispatching decision can be released by either one of the retailers. In the following

subsections, we present how cost calculations change at R1 based on the order that triggers

the shipment dispatching decision.

R1 initiates the shipment:

We assume that R1 places his mth
1 order (R1 receives n1 = y1 + (m1 − 1)q many end

customer demand) which is the mth order received by DC1. Under previous assumptions,

R2 has already placed m2 (m2 = m − m1) many orders before R1’s mth
1 order. If R2

has only placed m2 many orders before R1’s mth
1 order then n2 = y2 + m2q − 1 and

n2 = y2 + (m2 − 1)q.

At first, we find the probability that R1 receives nth
1 end customer demand before R2

receives (n2 + 1)th demand but after R2 receives n2
th end customer demand. Probability

that R1 will receive nth
1 demand after n2 is:

Z(X
n2

2 < Xn1
1 ) =

∫ T

0
(
∫ v

0
f

n2

2 (u)du)fn1
1 (v)dv. (4.29)

Likewise, the probability that R1 receives the nth
1 end customer demand before R1

receives (n2+1)th demand can be found by applying (4.29). Consequently, the probability
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that DC1 will receive R1’s mth
1 order after R2’s mth

2 order but before R2’s (m2 +1)th order

will be:

Z(X
n2

2 < Xn1
1 &Xn1

1 < Xn2
2 ) = Z(X

n2

2 < Xn1
1 ) ∗ Z(Xn1

1 < Xn2
2 ). (4.30)

After finding the associated probability, Z(.), using (4.30), to calculate the expected

cost the formulae (4.12) through (4.7) should be multiplied with probabilities.

m1q−1∑

i=max{1,ILR
1 +1}

backi
1 =

Z(.)b(1− Fm1q
1 (T ))

T

m1q+−1∑

i=max{1,ILR
1 +1}

[TF i
1(T )− i

λ
F i+1

1 (T )]

+Z(.)
m1q−1∑

i=max{1,ILR
1 +1}

[Fm1q
1 (T )− i

m1q − 1
Fm1q−1

1 (T ) +
i∑

j=0

i(m1q + j − 2)!Fm1q+j−1
1 (2T )

2m1q+j−1j!(m1q − 1)!

+
i−1∑

j=0

(m1q + j − 1)!Fm1q+j
1 (2T )

2m1q+jj!(m1q − 1)!
] +

Z(.)bFm1q
1 (t)
t

m1q−1∑

i=max{1,ILR
1 +1}

[tF i
1(t)−

i

λ
F i+1

1 (t)]. (4.31)

In addition, the expected inventory holding cost that will incur is calculated in a similar

manner to (4.7) :

m1q+k1+ILR
1∑

i=(m1−1)q+k1+ILR
1 +1

invi
1 =

Z(.)h(ILR
1 + k1 + q)

T
[(T − 2t)Fm1q

1 (t)

+TFm1q
1 (T )− m1q

λ
(Fm1q+1

1 (T )− Fm1q+1
1 (t))]
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−Z(.)h

T

m1q+k1+ILR
1∑

i=(m1−1)q+k1+ILR
1 +1

[(T − 2t)F i
1(t) + TF i

1(T )− i

λ
(F i+1

1 (T )− F i+1
1 (t))]. (4.32)

R2 initiates the shipment:

R2 places the order which triggers the shipment dispatching decision at DC1. Sub-

sequent to calculation of Z(X
n1

1 < Xn2
2 &Xn2

2 < Xn1
1 ), (4.32) and (4.31) are used again

after replacing Fm1q
1 with F n2

2 . The reason for the replacement is that nth
2 demand at R2

triggers the dispatching decision instead of m1q
th demand at R1. Calculation of inventory

cost is similar. Final expected cost at R1 will be:

UR
1 =

∞∑

i=1

invi
1 + backi

1. (4.33)

4.2.4.2 Expected Cost at Distribution Center

We calculate the expected inventory holding cost at DC1 by using (4.19). Initial backlog

cost is calculated by considering the total rate of backlog as a result of currently consoli-

dated orders at DC1.

Ba0 = (k1 + k2)qB. (4.34)

To calculate the expected backlog cost associated with future demand, we follow the

same steps given above for R1.

Dispatch shipment at time T :
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As stated earlier, sum of m1 plus m2 has to be less than m. We consider each retailer

separately and calculate the associated expected cost at DC1 by matching retailers’ orders

with the items at DC1.

R1 either may not place any order during the time interval (0, T ) or may have to place

m-1 orders to DC1. For a given m1, R2 can place at most m−m1− 1 orders. So, the total

expected backlog cost as a result of R1’s orders can be found by:

m−1∑

m1=1

bam1
1 =

Bq

T

m−1∑

m1=1

P (X ≤ n2)[TFm1q
1 (T )− m1q

λ
Fm1q+1

1 (T )]. (4.35)

Dispatch shipment before time T :

After calculating Z(.) and changing m with m1 or m2 depending on which order ini-

tiates the dispatching decision, (4.20) is used together with corresponding probability to

compute the expected backlog cost at DC1.

Finally, if the number of orders placed by R1 is more than m there is no chance for

DC1 to replenish R1’s inventory before time T , and (4.21) will be used to calculate corre-

sponding backlog cost until time T .

The total expected cost of DC1 will be:

UD
1 = [[

2∑

i=1

∞∑

k=0

Bak
1] + In1] +

F2

T
. (4.36)
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4.2.4.3 Expected Cost at the other Distribution Center

In the previous subsections, we presented the expected cost calculation at the retailers and

DC1. The last component of the expected total supply chain cost is the expected cost at

DC2. With the shipment consolidation taking place at DC1, it is clear that the only cost at

DC2 will be the inventory holding cost during the shipment consolidation period at DC1.

Similar to DC1 case, the initial expected inventory cost at DC2 will be calculated by

using (4.19).

4.2.4.4 Expected Cost of Supply Chain

The total expected cost of the supply chain will be the sum of the DCs’ cost and the

retailers’ cost.

DSC
2 =

2∑

i=1

UD
i + UR

i . (4.37)

Although plot of the total expected cost of supply chain versus time is very similar to

plot drawn under CP3 , we were not able to prove that the expected cost function is convex

under CP4 as well. Therefore, in the numerical experiments, we search the range of [t, L]

irrespective of the increase in cost rate.

4.3 Numerical Experiments

In this section, we investigate the performances of the four consolidation policies via a

numerical experiment. This experiment is used to identify the ideal settings under which
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the proposed consolidation policies, CP3 and CP4, significantly improve the total cost and

average delivery time compared to the other two policies.

We use the following set of parameters to come up with instances:

h = 1 H = 0.8 λ = 1
h
b
∈ {0.2, 0.05, 0.01} F1

b
∈ {9, 49, 99} F2

F1
∈{1.1, 1.5, 1.9}

L ∈ {8, 16, 24}

Initial analysis has shown that, for arbitrary order quantities and reorder points at the

retailers and the DCs, the performance of CP1 is significantly less than the other policies.

Hence, by performing a simulation study, we change Q, R, q, and r values parametrically

and determine the best set of reorder points and order quantities that minimizes the total

cost of supply chain when CP1 is used. Later, during the performance comparison, the

same Q, R, q, and r values are used for all consolidation policies.

We consider 81 problem instances in total. For each problem instance, we run a simu-

lation study for 20.000 time units and each instance is replicated 10 times. Data related to

average inventory holding and backlog costs at the retailers and the DCs together with to-

tal transportation cost at the DCs, and the average retailers waiting time to receive an order

from DCs is collected. All results are normalized before comparison. In order to normal-

ize a performance measure, we used the following formula presented for the average total

cost.

NTCp =
TCp

TC1

100. (4.38)
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TCp denotes the average total cost of consolidation policy p and NTCp denotes the nor-

malized total cost performance of consolidation policy p. For all performance measures,

lower normalized value means higher performance. Figure 4.5 shows the normalized costs

and delivery performance of four policies.

Figure 4.5

Normalized cost and delivery performance of the policies

Based on the numerical experiment, although CP1 decreases the average waiting time

of the retailers to receive their orders from the DCs, CP1 is the most expensive alternative

for the supply chain. Employing CP2 decreases the overall cost of supply chain by 27%.

CP2 has a delivery performance between CP3 and CP4.

Figure 4.5 shows that the difference in average total cost of supply chain under CP3

and CP4 is negligible. Utilizing a dual source consolidation allows DCs to reduce the

average waiting time for the retailers without having a negative affect on the total cost, as

seen in most of the problem instances.
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The following examples elucidate how a dual source can increase the supply chain

Performance. Based on the information given in Figure 4.5, CP2 has a better delivery per-

formance than CP3. However,by introducing CP4, the average waiting time is decreased

by 5% compared to CP2 and there is no significant increase in the total cost of supply

chain.

We present Table 4.1 to depict the improvement in average costs as a consequence of

using CP2, CP3, CP4 over CP1. We use (4.39) to compute the percentage improvement

of policy p with respect to total cost, PITCp . The results related to delivery performance

are present in Table 4.2.

PITCp =
TC1 − TCp

TC1

100. (4.39)

Table 4.1

Percent improvements in total cost with respect to the parameters

CP2 vs. CP1 CP3 vs. CP1 CP4 vs. CP1

8 37.71 38.39 40.80
L 16 22.53 35.08 34.42

24 22.55 33.97 31.19
0.2 22.25 26.58 28.27

h/b 0.05 26.80 34.31 37.34
0.01 33.74 46.54 40.81
9 13.64 17.51 23.32

F1

b
49 30.86 40.40 37.12
99 38.29 49.52 45.98
1.1 28.201 36.11 40.40

F2

F1
1.5 27.985 36.21 35.29
1.9 26.600 35.11 30.73
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In the following paragraphs, we examine in detail, the effect of using CP1, CP2, CP3,

and CP4 at the DCs, and their impact on the total cost and average waiting time.

The average waiting time of the retailers’ is the least when CP1 is employed for all

cases. This could be due to the fact that the DCs do not consolidate the retailers’ orders

under CP1 but rather ship immediately. On the other hand, even a short waiting time could

increase the total cost of supply chain enormously.

Table 4.2

Delivery performance of consolidation policies

CP1 CP2 CP3 CP4

8 0.10 3.97 3.59 3.05
L 16 0.54 4.08 4.59 3.96

24 0.47 4.08 5.08 4.50
0.2 0.49 4.28 4.84 4.17

h/b 0.05 0.37 4.08 4.36 3.75
0.01 0.25 3.77 4.06 3.59
9 0.28 1.92 3.09 2.84

F1

b
49 0.41 4.24 4.69 4.10
99 0.43 5.96 5.49 4.57
1.1 0.36 4.03 4.39 3.50

F2

F1
1.5 0.39 4.05 4.38 3.60
1.9 0.36 4.05 4.49 4.41

An increase in lead time from the outside supplier to the DCs, diminishes the benefits

of shipment consolidation. Due to the delay in receiving shipment from the outside sup-

plier and overdue consolidated orders pending distribution, the DCs are forced to deliver

the items to the retailers at the earliest.
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Long lead time has more adverse effects on CP2 than CP3 and CP4 with respect to

total cost. However, unlike the decrease in delivery performances observed in CP3 and

CP4, the performance of CP2 is not significantly affected by the change in lead time.

Increase in backlog cost as compared to inventory holding cost at the retailers, in-

creases the performances of CP2, CP3 and CP4 in terms of total cost of supply chain.

CP2 does not take inventory holding cost into consideration. Thus as backlog cost

becomes the dominant cost factor CP2 performance gets better. Since F1/b ratio is fixed,

as backlog cost increases, so does transportation cost . Hence, consolidation brings more

opportunities to supply chain with higher cost of transportation. There is an additional

issue for CP4’s performance, as backlog cost gets higher (F1/b and F2/F2 are fixed), cost

of serving both retailers by a DC gets expensive. Thus, alternative supply option becomes

less attractive to improve the supply chain’s performance.

It is clear that a consolidation program may not bring a lot of cost reduction chances to

supply chains that have very expensive backlog cost or relatively less transportation cost

(i.e. F1/b ratio is lower). For example, when F1/b = 9 all three consolidation policies

are able to reduce total cost of supply chain less than 19% on average, whereas when

F1/b = 99 cost reductions are 38.29%, 49.52% and 45.98% respectively under the policies

CP2, CP3 and CP4. The numerical experiments also confirm that when transportation cost

is less, the DCs tend to dispatch shipments more frequently. Consequently, retailers wait

for a shorter period of time.

When transportation cost ratio of serving both retailers at the same time versus serv-

ing a single retailer is investigated, it is clear that both CP2 and CP3 do not get adversely
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affected by the high cost of serving both regions. However, as F2 gets expensive, perfor-

mance of CP4 approaches CP3 in terms of average waiting time of retailers to replenish

their inventory. Even though it is a big opportunity for a supply chain to have alterative

supplier in the shipment consolidation settings, the benefit diminishes very fast as F2/F1

ratio gets larger.

4.4 Conclusions and Research Directions

In this research, we focused on a two-stage supply chain with two retailers and two dis-

tribution centers with four possible shipment consolidation policies available for imple-

mentation. We proposed two new consolidation schemes which consider overall supply

chain performance rather than taking only distribution centers into account. We found the

promised latest delivery time which is used as consolidation time by taking the available

information into consideration. We then repeatedly used this approach to improve two

performance metrics: Total cost of supply chain and average waiting time of retailers to

receive a shipment from a distribution center. We compared the suggested consolidation

policies, CP3 and CP4 with two other policies from the literature. Based on our numerical

experiments, we can say that policy that is proven to be optimal in the long run under the

assumption that instant shipment from the outside supplier to distributor (i.e. CP2), CP2

may not be a good approximation in a supply chain oriented environment with a positive

lead time.

By utilizing CP3 and CP4, we were able to reduce the total cost of supply chain more

than 10% compared to CP2 and more than 35% compared to CP1. Although utilizing
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an immediate shipment policy decreases the average waiting time of retailer, the high

percentage of cost improvements compared to CP1 shows that immediate shipment may

not be the best way of serving retailers in terms of overall supply chain performance.

In the future, it may be meaningful to evaluate supply chain with compound poisson

end customer arrivals. In addition, during the numerical experiments we used q and r

values found via simulation. It would contribute to the existing literature if we determine

the optimal inventory control parameters under CP3 and CP4 for supply chains. Currently,

we assume that there is no vehicle capacity constraint. Adding a vehicle capacity to the

problem would be an interesting extension of this research.
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APPENDIX A

DERIVATION OF GI(T )
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Gi(t) =
∫ t

0
uf i(u)du =

∫ t

0

λiuie−λu

(i− 1)!
du

Let y = e−λu and x = −λi−1ui

(i−1)!
then dy = −λe−λudu and dx = − iλi−1ui−1

(i−1)!
du.

Gi(t) =
∫ t

0

λiuie−λu

(i− 1)!
du =

∫ t

0
xdy = xy −

∫ t

0
ydx

= −λi−1uie−λu

(i− 1)!
+

∫ t

0

iλi−1ui−1e−λu

(i− 1)!
du

= −λi−1uie−λu

(i− 1)!
+

i

(i− 1)

∫ t

0

λi−1ui−1e−λu

(i− 2)!
du

= −λi−1uie−λu

(i− 1)!
+

i

(i− 1)

[
−λi−2ui−1e−λu

(i− 2)!
+

i− 1

(i− 2)

∫ t

0

λi−2ui−2e−λu

(i− 3)!
du

]

...

= [− i

(i)

λi−1uie−λu

(i− 1)!
− i

(i− 1)

λi−2ui−1e−λu

(i− 2)!
· · · − i

(1)

λ0u1e−λu

(0)!

−i
λ−1u0e−λu

1
+

i

λ
]t0

=
i

λ

[
1− λ0t0e−λt

(0)!
− λ1t1e−λt

(1)!
· · · − λi−1ti−1e−λt

(i− 1)!
− λitie−λt

(i)!

]

=
i

λ

[
1−

i∑

k=0

(λt)ke−λt

k!

]
=

i

λ
F i+1(t)
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APPENDIX B

CALCULATION OF ∆
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Calculation of ∆ when IL ≥ 0

To simplify the expression for ∆, given by equation (2.6), equations (2.1) and (2.2)

from Section 2.4 will be used. So, let us calculate equations (2.1) and (2.2) first.

inve(tei) = h
[∫ ∞

tei

(u− tei)f
i(u)du

]
= h

∫ ∞

tei

uf i(u)du− htei

∫ ∞

tei

f i(u)du

Since
∫∞
0 f i(u)du = 1 and

∫∞
0 uf i(u)du = i/λ (mean for Erlang(λ, i)) then

inve(tei) = h
[
i

λ
−

∫ tei

0
uf i(u)du

]
− htei

[
1−

∫ tei

0
f i(u)du

]

Now using equations (4.2) and (2.5) from Section 2.4 we have

inve(tei) = h
i

λ
− h

i

λ
F i+1(tei)− htei + hteiF

i(tei) (B.1)

Similarly, backe(tei) can be calculated as follows:

backe(tei) = b
[∫ tei

0
(tei − u)f i(u)du

]
= btei

∫ tei

0
f i(u)du− b

∫ tei

0
uf i(u)du

backe(tei) = bteiF
i(tei)− b

i

λ
F i+1(tei) (B.2)

The calculations are analogous for invl(tli) and backl(tli), so substituting (B.1) and

(B.2) into (2.6) we get

∆ =
IL∑

i=1

[h
i

λ
− h

i

λ
F i+1(tli)− htli + htliF

i(tli)]
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−
IL∑

i=1

[h
i

λ
− h

i

λ
F i+1(tei)− htei + hteiF

i(tei)]

+
IL+(m+n+1)q∑

i=IL+1

[h
i

λ
− h

i

λ
F i+1(tli)− htli + htliF

i(tli)]

−
IL+(m+n+1)q∑

i=IL+1

[h
i

λ
− h

i

λ
F i+1(tei)− htei + hteiF

i(tei)]

+
IL+(m+n+1)q∑

i=IL+1

[btliF
i(tli)− b

i

λ
F i+1(tli)− bteiF

i(tei) + b
i

λ
F i+1(tei)] (B.3)

Since the first IL items are already at R1, by definition tei = tli = 0 for i =

1, 2, . . . , IL. Thus, (B.3) reduces to

∆ =
IL+(m+n+1)q∑

i=IL+1

[−h
i

λ
F i+1(tli)− htli + htliF

i(tli)]

−
IL+(m+n+1)q∑

i=IL+1

[−h
i

λ
F i+1(tei)− htei + hteiF

i(tei)]

+
IL+(m+n+1)q∑

i=IL+1

[btliF
i(tli)− b

i

λ
F i+1(tli)− bteiF

i(tei) + b
i

λ
F i+1(tei)] (B.4)

From Figure 2.5 we can see that tei = tli for i = IL + 1, IL + 2, . . . , IL + mq. So,

(B.4) simplifies to

∆ =
IL+(m+n+1)q∑

i=IL+mq+1

[−h
i

λ
F i+1(tli)− htli + htliF

i(tli)]

−
IL+(m+n+1)q∑

i=IL+mq+1

[−h
i

λ
F i+1(tei)− htei + hteiF

i(tei)]

+
IL+(m+n+1)q∑

i=IL+mq+1

[btliF
i(tli)− b

i

λ
F i+1(tli)− bteiF

i(tei) + b
i

λ
F i+1(tei)] (B.5)

From Figure 2.5 we can also see that
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tei =





Te if IL + mq + 1 ≤ i ≤ IL + mq + q

Tm+1 if IL + mq + q + 1 ≤ i ≤ IL + mq + 2q

...

Tm+n if IL + mq + nq + 1 ≤ i ≤ IL + mq + nq + q

and

tli =





Tm+1 if IL + mq + 1 ≤ i ≤ IL + mq + q

Tm+2 if IL + mq + q + 1 ≤ i ≤ IL + mq + 2q

...

Tl if IL + mq + nq + 1 ≤ i ≤ IL + mq + nq + q

Let Te = T ′
0, Tm+1 = T ′

1, Tm+2 = T ′
2, . . . , Tm+n = T ′

n, Tl = T ′
n+1, and

∆ =
∑n

j=0 ∆j where

∆j =
IL+mq+jq+q∑

i=IL+mq+jq+1

(−h
i

λ
F i+1(T ′

j+1)− hT ′
j+1 + hT ′

j+1F
i(T ′

j+1)

+h
i

λ
F i+1(T ′

j) + hT ′
j − hT ′

jF
i(T ′

j)

+bT ′
j+1F

i(T ′
j+1)− b

i

λ
F i+1(T ′

j+1)

−bT ′
jF

i(T ′
j) + b

i

λ
F i+1(T ′

j)) (B.6)

By rearranging the terms (B.6) can be written as

∆j = qhT ′
j − qhT ′

j+1 +
IL+mq+jq+q∑

i=IL+mq+jq+1

(
i

λ
F i+1(T ′

j)(h + b)

− i

λ
F i+1(T ′

j+1)(h + b) + T ′
j+1F

i(T ′
j+1)(h + b)− T ′

jF
i(T ′

j)(h + b)) (B.7)

Using (B.7), the expression for ∆ can be simplified to
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∆ = qhT ′
0 − qhT ′

n+1 + (h + b)
n∑

j=0

IL+mq+jq+q∑

i=IL+mq+jq+1

(
i

λ
F i+1(T ′

j)

− i

λ
F i+1(T ′

j+1) + T ′
j+1F

i(T ′
j+1)− T ′

jF
i(T ′

j)) (B.8)

Calculation of ∆ when IL < 0

Substituting (B.1) and (B.2) into (2.8) will give

∆ = b
|IL|∑

k=1

[tl′k − te′k] +
IL+(m+n+1)q∑

i=1

[h
i

λ
− h

i

λ
F i+1(tli)− htli + htliF

i(tli)]

−
IL+(m+n+1)q∑

i=1

[h
i

λ
− h

i

λ
F i+1(tei)− htei + hteiF

i(tei)]

+
IL+(m+n+1)q∑

i=1

[btliF
i(tli)− b

i

λ
F i+1(tli)]

−
IL+(m+n+1)q∑

i=1

[bteiF
i(tei)− b

i

λ
F i+1(tei)] (B.9)

Equation (B.9) can be further simplified. However, unlike (B.3), the simplification

of (B.9) depends on the size of IL. To simplify the notation let z be the number of full

batches that will be used for backorders; i.e. IL + zq ≤ 0 and IL + zq + q > 0.

Case 1: z < m

If z < m then the first customer demand that R1 receives will be satisfied by an item

that gets to R1 at or before Tm. Therefore, tl′k = te′k for k = 1, . . . , |IL|. Also, tli = tei

for i = 1, . . . , IL + mq. Thus, (B.9) reduces to

∆ =
IL+(m+n+1)q∑

i=IL+mq+1

[−h
i

λ
F i+1(tli)− htli + htliF

i(tli)]
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−
IL+(m+n+1)q∑

i=IL+mq+1

[−h
i

λ
F i+1(tei)− htei + hteiF

i(tei)]

+
IL+(m+n+1)q∑

i=IL+mq+1

[btliF
i(tli)− b

i

λ
F i+1(tli)− bteiF

i(tei) + b
i

λ
F i+1(tei)] (B.10)

Note that (B.10) is identical to (B.5). Therefore, following the same steps shown above

the expression for ∆ will become as given in (B.8).

Case 2: z = m

If z = m then the first customer demand that R1 receives will be satisfied by an item

that reaches R1 either at time Te if the early delivery option is selected or at time Tm+1 if

the late delivery option is selected.

tei =





Te if 1 ≤ i ≤ IL + zq + q

Tz+1 if IL + zq + q + 1 ≤ i ≤ IL + zq + 2q

...

Tm+n if IL + mq + nq + 1 ≤ i ≤ IL + mq + nq + q

and

tli =





Tz+1 if 1 ≤ i ≤ IL + zq + q

Tz+2 if IL + zq + q + 1 ≤ i ≤ IL + zq + 2q

...

Tl if IL + mq + nq + 1 ≤ i ≤ IL + mq + nq + q

Note that tl′k = te′k for k = 1, . . . , mq, te′k = Te for k = mq + 1, . . . , |IL|, and

tl′k = Tm+1 for k = mq + 1, . . . , |IL|

Given the above definitions for tei, tli, te′k, and tl′k, (B.9) can be written as

∆ = b
|IL|∑

k=zq+1

[Tz+1 − Te]
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+(h + b)
IL+zq+q∑

i=1

(
i

λ
F i+1(Tz)− i

λ
F i+1(Tz+1) + Tz+1F

i(Tz+1)− TzF
i(Tz))

+(h + b)
m+n∑

j=z+1

IL+jq+q∑

i=IL+jq+1

(
i

λ
F i+1(T ′

j−m)− i

λ
F i+1(T ′

j−m+1)

+T ′
j−m+1F

i(T ′
j−m+1)− T ′

j−mF i(T ′
j−m)) (B.11)

Case 3: m < z < m + n

If m < z < m + n then the first customer demand that R1 receives will be satisfied by

an item from the (z + 1)th batch. Therefore,

tei =





Tz if 1 ≤ i ≤ IL + zq + q

Tz+1 if IL + zq + q + 1 ≤ i ≤ IL + zq + 2q

...

Tm+n if IL + mq + nq + 1 ≤ i ≤ IL + mq + nq + q

and

tli =





Tz+1 if 1 ≤ i ≤ IL + zq + q

Tz+2 if IL + zq + q + 1 ≤ i ≤ IL + zq + 2q

...

Tl if IL + mq + nq + 1 ≤ i ≤ IL + mq + nq + q

In the above equation for tli when z = m + n − 1 then Tz+2 = Tm+n+1 = Tl. Also

tl′k = te′k for k = 1, . . . , mq and

te′k =





Te if mq + 1 ≤ k ≤ mq + q

Tm+1 if mq + q + 1 ≤ k ≤ mq + 2q

...

Tz if zq + 1 ≤ k ≤ |IL|
and
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tl′k =





Tm+1 if mq + 1 ≤ k ≤ mq + q

Tm+2 if mq + q + 1 ≤ k ≤ mq + 2q

...

Tz+1 if zq + 1 ≤ k ≤ |IL|
Given the above definitions for tei, tli, te′k, and tl′k, (B.9) can be written as

∆ = b
z−1∑

j=m

jq+q∑

k=jq+1

[T ′
j−m+1 − T ′

j−m] + b
|IL|∑

k=zq+1

[Tz+1 − Tz]

+(h + b)
IL+zq+q∑

i=1

(
i

λ
F i+1(Tz)− i

λ
F i+1(Tz+1) + Tz+1F

i(Tz+1)− TzF
i(Tz))

+(h + b)
m+n∑

j=z+1

IL+jq+q∑

i=IL+jq+1

(
i

λ
F i+1(T ′

j−m)− i

λ
F i+1(T ′

j−m+1)

+T ′
j−m+1F

i(T ′
j−m+1)− T ′

j−mF i(T ′
j−m)) (B.12)

Case 4: z = m + n

If z = m + n then z = m + n then the first customer demand that R1 receives will be

satisfied by an item from the (m + n)th batch if early option is selected or at time Tl if the

late delivery option is chosen.

tei =

{
Tm+n 1 ≤ i ≤ IL + (m + n)q + q

and

tli =

{
Tl 1 ≤ i ≤ IL + (m + n)q + q

∆ = b
|IL+(m+n)q|∑

k=1

[tl′k − te′k] +
IL+(m+n+1)q∑

i=1

[h
i

λ
− h

i

λ
F i+1(tli)− htli + htliF

i(tli)]

−
IL+(m+n+1)q∑

i=1

[h
i

λ
− h

i

λ
F i+1(tei)− htei + hteiF

i(tei)]
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+
IL+(m+n+1)q∑

i=1

[btliF
i(tli)− b

i

λ
F i+1(tli)]

−
IL+(m+n+1)q∑

i=1

[bteiF
i(tei)− b

i

λ
F i+1(tei)] (B.13)

Case 5: z > m + n

If this is the case then neither the shipment from DCe nor DCl to Rl will be used to

fulfill customer demand during this order cycle. Thus, ∆ will simply be as follows:

∆ = b
∑q

k=1[Tl − Te] = bq[Tl − Te].
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