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This dissertation examines the Split Delivery Vehicle Routing Problem (SDVRP), 

a relaxed version of classical capacitated vehicle routing problem (CVRP) in which 

the demand of any client can be split among the vehicles that visit it. 

We study both scenarios of the SDVRP in this dissertation. For the SDVRP with 

a fixed number of the vehicles, we provide a Two-Stage algorithm. This approach is a 

cutting-plane based exact method called Two-Stage algorithm in which the SDVRP is 

decomposed into two stages of clustering and routing. At the first stage, an 

assignment problem is solved to obtain some clusters that cover all demand points and 

get the lower bound for the whole problem; at the second stage, the minimal travel 

distance of each cluster is calculated as a traditional Traveling Salesman Problem 

(TSP), and the upper bound is obtained. Adding the information obtained from the 

second stage as new cuts into the first stage, we solve the first one again. This 



  

 

    

   

procedure stops when there are no new cuts to be created from the second stage. 

Several valid inequalities have been developed for the first stage to increase the 

computational speed. A valid inequality is developed to completely solve the problem 

caused by the index of vehicles. Another strong valid inequality is created to provide a 

valid distance lower bound for each set of demand points. This algorithm can 

significantly outperform other exact approaches for the SDVRP in the literature. 

If the number of the vehicles in the SDVRP is a variable, we present a column 

generation based branch and price algorithm. First, a restricted master problem (RMP) 

is presented, which is composed of a finite set of feasible routes. Solving the linear 

relaxation of the RMP, values of dual variables are thus obtained and passed to the 

sub-problem, the pricing problem, to generate a new column to enter the base of the 

RMP and solve the new RMP again. This procedure repeats until the objective 

function value of the pricing problem is greater than or equal to zero (for minimum 

problem). In order to get the integer feasible (optimal) solution, a branch and bound 

algorithm is then performed. Since after branching, it is not guaranteed that the 

possible favorable column will appear in the master problem. Therefore, the column 

generation is performed again in each node after branching. The computational results 

indicate this approach is promising in solving the SDVRP in which the number of the 

vehicles is not fixed. 
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CHAPTER I 

INTRODUCTION 

This chapter consists of four sections. In Section 1.1, we introduce the 

definition of the Vehicle Routing Problem (VRP) and the Split Delivery Vehicle 

Routing Problem (SDVRP). In Section 1.2, we illustrate the significance and 

objective of this research. In Section 1.3, we present the methodology of this study. 

Finally, we propose the organization of this dissertation in Section 1.4. 

1.1 Introduction 

The Vehicle Routing Problem (VRP) is a famous problem in the field of 

combinatorial optimization. It is defined on a graph characterized by G=(V, E), 

where V = {0, 1,…, N} is a set of vertices corresponding to locations, such as cities, 

suppliers, customers, etc., and E  {(i, j) : i, j V , i  j} is the edge set. Vertex 0 

represents a depot at which a fleet of m vehicles are based. Generally, m can be a 

  
fixed number or a variable that is defined on an interval[m,m], where1 m  m  N , 

  

and vehicles may have equal or different capacities. In this dissertation, the vehicles 

are assumed to have a same capacity of Q. Every vertex i of V\{0} has a positive 

demand di  Q , and every edge (i, j) has a positive distance or travel cost cij . The 

VRP tries to minimize the total cost with a set of vehicle routes. The routes should 

1 
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satisfy the following conditions: 

(1) all vehicles should start and end at the depot; 

(2) every demand point is visited exactly once; and 

(3) the total demand of any route does not exceed the capacity of the 

vehicle assigned to the route. 

The VRP is known to be NP-hard [1], and there is abundant literature on the 

VRP and related topics [2, 3, 4, 5, 6, 7]. In this dissertation, we propose to study the 

Split Delivery Vehicle Routing Problem (SDVRP), which is introduced by Dror and 

Trudeau [8, 9]. The SDVRP is a relaxation of the VRP without condition (2). In 

other words, the demand of a point can be split among several vehicles. Furthermore, 

the assumption of di  Q is not necessary for the SDVRP. Dror and Trudeau [8] 

demonstrate allowing split delivery can result in significant savings both in the total 

travel distance and the number of used vehicles. In general, when a customer 

demand point’s demand exceeds 10% of the vehicle capacity, the cost of the optimal 

solution for an SDVRP is considerably lower than that of the optimal solution for its 

corresponding VRP. The SDVRP is still NP-hard [8]. Figure 1.1 and 1.2 illustrate 

examples for the VRP and the SDVRP. 
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Figure 1.1: An example of VRP routes 

Figure 1.2: An example of SDVRP routes. 

Various mathematical formulations of the SDVRP exist in the literature. Dror 

and Trudeau [8] present the following model: 

Notation: 
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C : The distance ("cost") between demand points i and j.ij 

di :  the demand at point i. 

Qk :The capacity of  the kth vehicle. 

xij
k :1if  the kth vehicle travels directly from point i to j; 0 otherwise. 

yik :The fraction of  the ith point demand delivered by the kth vehicle. 

U :The number of  vehicles in the fleet. 

S :The set of all cycles on the set V  which include the depot. 

N N U 
kP1: min z C xij ij 

i0 j 0 v1 

s.t. 
U N 

k xij  1, j  0,..., N (1-1) 
k 1 i0 

 
N 

 
N 

xip
k  xk

pi  0 p  0,..., N ;k  1,...,U (1- 2) 
i0 j 0 

U 

 yik  1 i  1,..., N (1-3) 
k 1 

N 

di yik  Qk k  1,...,U (1- 4) 
i1 

 
N 

yik  xk
ji i  1,..., N ;k 1,...,U (1-5) 

j 0 

X  S (1- 6) 

Constraints (1-1) guarantee that each demand point is at least visited once. 

Constraints (1-2) are the flow conservation constraints. Constraints (1-3) insure that 

each point will receive its full demand. Constraints (1-4) are vehicle capacity 

constraints. Constraints (1-5) enforce that demand point i can be serviced only by a 

vehicle visiting it. The final constraints (1-6) are general sub-tour elimination 

constraints. 
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We make the following assumptions for the study: 

1) The distances are symmetric, i.e., C  C for all i, j , and satisfy the basicij ji 

triangular inequality. 

2) The vehicles are identical with the same capacity of Q. 

3) The number of the vehicles in the fleet is sufficient to satisfy the total 

demand of the clients. 

1.2 Objective and significance of the study 

This research will focus on (1) developing a new exact method for the split 

delivery vehicle routing problem; and (2) applying the branch -and-price approach to 

obtain a good feasible integer (optimal) solution to the SDVRP. A 

limited-search-tree-with-bound algorithm is developed to solve the sub-problem of 

the column generation based formulation of the SDVRP. 

Though plenty of papers have made contribution to solving the SDVRP, the 

research on the SDVRP is significantly behind that on the VRP. The existing 

algorithms cannot even solve medium-size problems well. The proposed research 

tries to develop new methodologies to solve the SDVRP. Based on the numerical 

experiments, these two proposed approaches are computationally competitive to the 

existing algorithms. 

1.3 Research Methodology 

The following steps are proposed to accomplish the objectives of this research: 
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1) Model construction: Two mathematical programming formulations of the 

SDVRP are presented in this dissertation. The first formulation assumes the number 

of used vehicles is fixed, while the second one relaxes this assumption. Different 

models have a large impact on the algorithm development. 

2) Algorithm development: An algorithm can be defined as a precise rule (or a 

set of rules) specifying how to solve a problem. Modern computation depends 

heavily on computer tools (hardware and software) to solve large and complicated 

problems. Algorithms are developed to provide computers instructions to solve the 

problem step by step. Both the computational time and the solution quality are 

critical in algorithm development. Sometimes, some tradeoff must be made. 

3) Data generation: Testing data can be collected from the practice or be 

generated randomly. In this dissertation, all data are borrowed from published papers 

in which the SDVRP data are generated randomly in order to make the numerical 

experiment result comparable. 

4) Coding: In this dissertation, all algorithms are realized in C. The callable 

library of CPLEX 9.0 is used to solve linear programming models and simple 

sub-problems. 

5) Result comparison and analysis: Numerical experiment results will be 

compared to the published papers regarding the solution quality and the 

computational time. Examples with optimal solutions in the published papers can 

help verify the proposed models and algorithms. Only computational speed is the 
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concern for these examples. 

1.4 Organization of Dissertation 

The structure of this dissertation is as follows. Chapter II introduces the literature 

review on the Split Delivery Vehicle Routing Problem and the column generation 

technique. Chapter III presents a Two-Stage exact approach to the SDVRP with 

efficient valid inequalities. In Chapter IV, we propose a column generation based 

branch-and-price method to the SDVRP when the number of vehicles in the fleet is a 

variable. Chapter V states the conclusion of this research and possible future 

extension. 



                                                                                                   

 

CHAPTER II 

LITERATURE REVIEW 

This chapter includes two sections. In Section 2.1, we provide the literature 

review on the Split Delivery Vehicle Routing Problem with some variation. In 

Section 2.2, we present the literature review on the column generation technique and 

the branch-and-price method. 

2.1 Review on the Split Delivery Vehicle Routing Problem 

Dror and Trudeau introduce the SDVRP [8], where they relax one of the 

conditions of the Vehicle Routing Problem (VRP) and allow more than one vehicle 

to visit one demand point. They claim that allowing split delivery can result in 

significant savings both in the total travel distance and the number of vehicles 

required. In general, when a customer’s demand exceeds 10% of the vehicle capacity, 

the cost of the optimal solution for an SDVRP is considerably lower than that of the 

optimal solution for its corresponding VRP. 

Since then, the SDVRP has received more attention for the last decade both in 

theoretical analysis and practical application. The theoretical work includes the 

concept development and the optimality property analysis for the SDVRP [1, 8, 9]. 

8 
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Dror and Trudeau first present the concept of the Split Delivery Vehicle Routing 

Problem, and propose algorithms to solve this problem. They also develop some 

valid efficient inequalities based on their formulation of the SDVRP, and study the 

properties of optimal solution for the Split Delivery Vehicle Routing Problem. 

2.1.1 Properties of the optimal SDVRP solutions 

Theorem 2.1: If the { Cij } matrix satisfy the triangular inequality then no two routes 

in the optimal solution of the SDVRP can have more than one split demand point in 

common. 

Definition 2.1: Given k demand points v1, v2,…,vk and k routes. Route 1 includes the 

points v1, v2; route 2 includes points v2, v3; … ; route k-1 includes points vk-1, vk, and 

route k includes points vk, v1 (this implies that the points v1, v2,…, vk receive split 

deliveries by the k respective routes and other routes as possible). This subset of 

demand points {vi} (i=1,…,k) is called a k-split cycle. 

Thus, a generalization of Theorem 2.1 can be presented as follows: 

Lemma 2.1: if the {Cij} matrix satisfies the triangular inequality then there is no 

k-split cycle (for any k) in the optimal solution to problem. 

2.1.2 Formulations and algorithms for the SDVRP 

In the literature, several formulations and algorithms for the Split Delivery 

Vehicle Routing Problem are proposed. Dror and Trudeau present an integer linear 

programming formulation including new families of valid inequalities, as well as an 
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exact constraint relaxation algorithm for the SDVRP. The formulation is given in 

Chapter I, and here we restate the valid inequalities and the algorithm without proof. 

Proposition 2.1 (Sub-tour elimination inequalities) 

U 

The constraints   xijk   di V (S ) (S  N \{0};| S | 2) (2-1) 
k 1i , jS iS 

are equivalent to constrains (1-6) and are therefore valid inequalities for the SDVRP. 

Proposition 2.2 If C  {cij } satisfies the triangle inequality, the constraints 

U 

  xij
k | S | 1 (S  N \{0};| S | 2) (2-2) 

k 1i , jS 

are valid inequalities for the SDVRP. 

Proposition 2.3 There always exists an optimal SDVRP solution in which the 

number of positive k variables is at most equal to n+2m-1. (In the case of strictxij 

triangle inequality, the number of positive variables is at most n+2m-1 in any optimal 

solution.) 

Proposition 2.4 (Variable fixing) When all vehicles have the same capacity, it is valid 

to have the following constraint: 

  1 (2-3)xi* j1 
j0 

Proposition 2.5 (Fractional cycle elimination constraints I) The constraints 

 xk  (  xk ) /(| S | 1) (S  N \{0};| S | 2;k  1,...,U ) (2-4)ij ij
iS , jS i, jS 

are valid inequalities for the SDVRP. 

Proposition 2.6 (Fractional cycle elimination constraints II) The constraints 

xk   xk (i, j  N \{0};k 1,...,U ) (2-5)ij lj
li 

are valid inequalities for the SDVRP. 
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The scheme of the algorithm is that: using heuristics to obtain one upper bound 

of the problem, and solving the LP relaxation of the problem with the valid 

inequalities except the sub-tour elimination constraints to attain the lower bound. If 

the solution to the lower bound is feasible, then the optimum is reached. If it is 

infeasible, we check for the constraint violations. If some violations are identified, 

we introduce a subset of all violated constraints to the original LP relaxation of the 

problem, and solve it again. When no violated constraints are identified, the 

optimum of the relaxation has been reached. Therefore, we turn to the procedure of 

branch and bound to obtain the optimal integer solution. 

Since the authors mainly focus on the efficiency of the valid inequality for the 

LP relaxation problem, the instances of the SDVRP provided by them are not solved 

completely. Thus, the computational experiments only display the results of the root 

of the search tree. They claim that the various constraints developed for this problem 

are quite successful in reducing the gap between the lower and upper bounds at the 

root of the search according to the computational results. 

Belenguer, Martinez and Mota provide a different formulation from Dror’s 

since the number of vehicle in the fleet of the SDVRP they study is fixed [10]. They 

conduct research of the polyhedral property in their paper, and develop some valid 

inequalities for their cutting-plane algorithm as well. The formulation proposed by 

them is as follows: 
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Min  c xij ij 
i j, E 

s.t. x( (0)  2K and even, 

x( i( ))  2 and even, i V \ {0}, (2-7) 

 d S( )  
x( S( ))  2 Q  

S  V \ {0}


2 | S | n 1, 
xij  0 and integer  i( , j)  E 

: the number of  times that edge (i, j) is used in a feasible solutionxij

 to the SDVRP. 

K :  the number of  the vehicles in the fleet, equals to d (V ) / Q. 
E :  the set of edges in the Graph. 

d (V ) : total demand in V . 

They prove that every incidence vector of a feasible solution to the SDVRP 

satisfied the above formulation, RSDVRP, but the reciprocal is not true. Therefore, they 

develop a cutting-plane algorithm to obtain the optimal solution to the RSDVRP, which 

is the lower bound of the corresponding SDVRP. The principle of the algorithm is 

similar as that presented by Dror and Trudeau. The detail of the algorithm is listed 

below: 

Step 1: Init. Let j:=0 and let PLj be the following linear problem: 

Min ct x 

d (V ) 
s.t. x( (0))  2 , Q (2-8)  

x( (i))  2, i  1,...,n, 

xe  0, e  E. 

Step 2: Solving PLj. Solving problem PLj using a linear programming code. Let 

xj be the optimal solution. 

Step 3: Identification of violated constraints. 

Step 3.1 If any violated constraint, among those in RSDVRP, can be found 
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on G(xj), the graph induced by the edges such that xj>0, go to 

Step 4. 

Step 3.2 If no violated generalized capacity constraints can be found on 

G(xj), STOP. 

Step 4: Updating PLj. Add to the set of constraints of PLj the constraints found 

in the previous step. Let PLj+1 be the resulting problem and let j:=j+1. 

Go to Step 2. 

The authors use five procedures to identify the violated constraints. First three 

procedures are heuristic algorithms to identify the sub-tour, connected components 

and capacity constraints respectively. When they all fail to find a violated constraint, 

exact algorithms of identification are applied in procedure four and five. 

Their method obtains good lower bounds and even optimal solutions to some 

instances. However, it cannot guarantee to obtain an optimal solution even with an 

infinite amount of time. 

Lee et al. develop a dynamic programming (DP) algorithm for the SDVRP 

[11]. The DP has an infinite number of states and actions. They show that there is an 

equivalent finite action spaces DP for any given initial condition. They use a 

best-first shortest path search procedure in the direct network associated with the 

finite state DP to solve the SDVRP. 

Their dynamic programming based formulation for the SDVRP is as follows: 
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N :  the number of demand point; 

:  the demand at the demand point i,i  1,..., N ;di 

d  (d ,..., d ) R N : the demand vector;1 N  

r {0,1}N : the route in the solution. 

ri  1if and only if  the vehicle following this 

route visits the ith demand point. 

c(r) : total cost of executing route r. 

R : the set of all feasible routes. 

z : R  
N  R  : the function mapping each demand vector d  R  

N

 to the cost of optimal routing, z(d ). 

(E , I ) :decison space, where E  {1,..., N} is the set of demand point 

visited and emptied, and I is the set of demand point visited, but 

not emptied, by the vehicle. 

wj  R N : load vector for vehicle j. 

r(w) {0,1}N such that ri (w)  1( 0) if and only if wi  0( 0) 

The finite action space for a given state n is: 

A(n)  {(E, I ) : nE 1, I  or | I | 1,nEI 1,r(E, I ) R} (2-9) 

The recursive equation for the DP is: 

z(n)  min {c(E, I )  z(n'(n, (E, I )))}, n  Z N ,n  0(E ,I )A(n)  (2-10) 
z(0)  0 

The state n' is a successor of state n if and only if the state n' can be attained 

by executing a feasible action at state n. 

They choose a forward-search shortest path algorithm to solve the DP problem, 

since this approach can avoid considering states that are not reachable from the 

initial state n(d). The algorithm utilizes a guidance function f(.) to select which of the 

nodes generated to explore at the next step of the search and hence to direct the 

search to the most promising alternative to find a good solution in its early stage. 
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The definition function for node n is: 

f (n)  g(n)  h(n) (2-11) 

where g(n) is the best currently known path from the start node s to the node n, with 

g(s)=0, and h(n) is an estimate of the cost of the optimal path from the candidate 

node n to the destination with h(t)=0. The set of all nodes that have been generated 

but not yet explored is referred to as “OPEN”, and the set of nodes have been 

expanded as “CLOSED”. 

The outline of the algorithm is as follows: 

1. Put the start node s into OPEN; set g(s)=0; 

2. If OPEN is empty, exit with failure. 

3. Remove from OPEN a node n for which f is minimized, and place it in 

CLOSED. 

4. If n is the end node, exit successfully with the solution obtained by tracing 

back the pointers from n to s. 

5. Otherwise expand n, generating all its successors, and attach to them 

pointers back to n. For every successor n’ of n: 

(a) If n’ is not already in OPEN or CLOSED, compute the estimate h(n’), 

and calculate f(n’)=g(n’)+h(n’) with g(n’)=g(n)+c(n,n’), where c(n,n’) is 

the cost of the arc from n to n’. 

(b) If n’ is already in OPEN or CLOSED, direct its pointers along the path 

yielding the lowest g(n’). 
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(c) If n’ required pointer adjustment and was found in CLOSED, reopen it. 

6. Go to Step 2. 

The main goal of Lee et al.’s work is to provide the basic idea of the a DP-based 

approach for solving the SDVRP to optimality, and its main contribution is the 

theoretical foundation of this approach, since current implementation of the 

algorithm is unable to handle realistic, large instances of the SDVRP. (The largest 

problem that they solved in a reasonable amount of time has 9 demand points and 6 

vehicles.) 

Frizzell and Giffin study an extension of the Split Delivery Vehicle Routing 

Problem where customers may have a time windows for their delivery [12, 13]. They 

develop a construction heuristic that uses a look-ahead approach to solve the SDVRP 

with time windows. The main objective of the construction heuristic is to minimize 

total time taken, with the possibility of a relatively large number of customers 

receiving split deliveries. In order to improve the performance of the heuristic, two 

other heuristics are applied as well. One attempts to move customers within routes, 

while the other exchanges customers between routes. 

2.1.3 Applications on the Split Delivery Vehicle Routing Problem 

In the application of the SDVRP, Mullaseril et al. use a heuristic algorithm for a 

livestock feed distribution problem encountered on a cattle ranch in Arizona [14]. 

The problem is a collection of split-delivery capacitated rural postman problem with 
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time windows on arcs, and is described as follows: 

The livestock ranch is represented as a connected mixed graph G=(V,A) where 

the set of edges and arcs A corresponds to road segments in front of the pens( used 

for delivery feed) and service road segments( for non-delivery travel), and the nodes 

V represent intersection/turning points in the service roads or boundaries between 

adjacent pens. For each type of feed, there is a subset of arcs R that requires traversal, 

corresponding to the pens that require delivery of that particular feed. The required 

set of arcs R is directed because of the design of the delivery trucks. The arcs and 

edges representing service roads may be undirected, allowing two-way traffic, or 

directed one-way traffic only. Other direct arcs may represent the alleys in front of 

the rows of pens when traversed in the opposite direction to feed delivery. 

When there is a non-negative demand associated with the required arcs R, and a 

upper bound on the sum of demands delivered on a route (that is, a cycle in the graph 

containing the depot node), the problem of finding collection of routes that covers 

the demand on the required arcs R and meets the capacity bounds for each route is 

called a Capacitated Rural Postman Problem (CRPP). 

In their study, they allow each required arc to be serviced more than one route. 

The solution strategy they adopt is an adaptation of the heuristics proposed for split 

delivery for node routing problems explored by Dror and Trudeau. First, they 

generate feasible solutions for the corresponding routing problem where split 

deliveries are not allowed, and then apply heuristics to produce and improve split 



                                                                                                 

 

  

      

  

18 

delivery solutions. 

The overall solution approach includes four modules: 

(i) Generating a non-split feasible solution. 

In this module, two heuristics, the extended path-scan heuristic and 

the modified augment-merge heuristic, are used to generate a set of 

feasible routes. These two heuristic algorithms are first tests on the 

CRPP with time windows without split delivery by Dror, Leung and 

Mullaseril. The first heuristic algorithm constructs a feasible route 

one at a time until the demands of all arcs in the set of required arcs 

are met. In the extended augment-merge heuristic, possible merging 

of routes that is feasible in both capacity and time and also results in 

net overall savings are searched. This process stops when no merge 

steps are possible. 

(ii) Improving the solution by arc interchange. 

The arc-swapping improvement procedure is an adaptation to that for 

the CRPP to include time windows and is run on all feasible solutions 

obtained, both with and without split deliveries. 

(iii) Generating split-delivery routes by k-split generation. 

In this module, the authors check to see whether the delivery made to 

an arc can be split across k other candidate routes in such a way that 

the highest savings is obtained. First, 2-split generation is analyzed, 



                                                                                                 

  

 

 

    

     

19 

and they generalize to k-split (k>2) candidate routes. One thing needs 

to be concerned in this procedure is where to insert the delivery to arc 

(i, j) in the sequence of required arcs that make up the routes. The 

authors choose the position for insertion to be the one that obtains the 

highest savings in distance. 

(iv) Modifying the solution by route addition. 

They investigate arcs whose demand is split among several routes to 

see if consolidating them into one new route will realize a net savings 

in distance traversed. A k-route addition, which means taking an arc 

that has a split deliveries out of the various routes it is on and creating 

a separate route to make this delivery, is performed. In their 

implementation of this procedure, k=2 or 3. 

The authors test this heuristic algorithm on the data from practice and achieve 

improvement over 10% of total distance. They also conclude that better results are 

obtained without time window constraints than that with time window constraints. 

Another application of the SDVRP in literature is proposed by Sierksma and 

Tijssen [15]. The problem they deal with is to determine a fight schedule for 

helicopters to off-shore platform locations for exchanging crew people employed on 

these platforms. The helicopters carrying new people fly from the airport to the 

platforms for gas production in the North Sea and leaving the platforms or return to 

the airport with the leaving people. The only difference between their problem and 
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the SDVRP is that there is a range limit for the helicopters due to the quantity of fuel 

they carry, and no such constraint is applied to the vehicles in the SDVRP. There are 

51 platforms and 27 seats in the helicopter. The authors provide the coordinate of 

each platform, but they do not mention the number of people at each platform for 

exchanging in their paper. 

They form a linear integer programming model for their problem. The 

following notation is used in the model: 

N  the numberof platforms 

i  platformlocationindex,with i 1,...,N; 

P  platformwithindex ;i i 

NF  the numberof feasiblehelicopterflight; 

f  theflightindex,with f 1,...,N f ; 

x f  thenumberof timesflight f is executed; 

Di  the numberof demandedcrewexchangefor platformPi ; 

aif  the numberof crewexchangeson platformPi duringflight f ; 

d f  thecost of executingflight f once; 

C  the numberof availableseats,calledthecapacity,of thehelicopters. 

The model they present is as follows: 

N 

(FF) min 
F 

d f x f 
f 1 

N 

s.t. 
F

a x  D for i  1,..., N , (2-12)if f i 
f 1 

x f  0, and integer for f  1,..., N F . 

In the present model, the decision variables correspond to feasible flights, so 

they do not include explicit flight feasible constraints into this model. Since NF is 

generally very large, the usual Simplex Method cannot be applied on the relaxation 

of model (FF) in which the variables do not need to be integers. Finding an entering 
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column for the current basis of the finite set of feasible routes will utilize the 

technique called “column generation” (We will illustrate this concept in section 2.2 

in detail.). The authors use the following formulation to generate the entering 

column: 

N 

(CG) min (d  y a )f i i 
i1 

N 

s.t. ai  C, 
i1 

0  ai  Di , for i  1,..., N. (2-13) 

d f  R, d f being the length of a shortest route of

 the flight f  visiting the platforms Pi  with ai  0 

Model CG is a nonlinear model, because the variable d f is dependent on the 

nonzero values of ai . In fact, d f is defined as the total traveled distance of a 

shortest flight from the airport to all platforms within the route and back to the 

airport. In order to solve the model (CG), they distinguish the following procedures: 

(1) Formulate and solve a Traveling Salesman Problem and a Knapsack Problem 

for a fixed platform subset S; 

(2) Generate subsets S of the set of all platforms for which (1) has to be solved, 

and discard those subsets that cannot produce an optimal solution. 

Given a subset S of the set of all platforms, the objective function of model (CG) 

is rewritten as follows: 

c(S)  d  (max a y ), (2-14)f (S ) i i 
iS 

With d is the length of a shortest flight visiting all platforms in S and isf (S ) 
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solved through procedure (1). For those variables ai in (CG), they are obtained by 

solving the following Knapsack Problem (KPs): 

(KPs) max  yiai 
iS 

s.t. ai  C, (2-15) 
iS 

0  ai  Di for i  S 

They utilize classic “greedy” algorithm to solve the KPs. 

In summary, Model (CG) is solved by considering, successively all possible 

subsets S, and solving each S the Knapsack Problem (KPs). If number of platforms 

in S small, this procedure works fast. If it is large, the procedure is time consuming. 

They present an advanced algorithm that excludes a large amount of subsets S from 

consideration. 

First, they introduce a concept of lex-superset. A subset S2 is called a 

lex-superset of a platform subset S1, if S  S with S  S and the platform1 2 1 2 

labels of S2\S1 are larger than the largest platform label in S1; S2 is generated after S1, 

by adding one or more platforms to S1 with lower dual values. For example, {P1, P2, 

P3} is a lex-superset of {P1}, but not of {P2}. 

Then the following steps are taken to generate “clever” subsets of platforms. 

1) All platforms are sorted according to non-increasing yi and relabeled 

accordingly. 

2) Exceeding the range. If a platform subset S satisfies d )  R , then S and f (S 

all its lex-supersets are discarded from consideration for Traveling 
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Salesman Tour. 

3) Exceeding the capacity. If the current S is a proper subset of P, S  P , and 

 
D  C , then all lex-supersets of S are excluded form consideration ii S 

for (KPs). 

4) Exceeding a lower bound. To find out whether any of the lex-supersets of 

S will give a better solution to (CG) than the best solution found so far, a 

lower bound for (CG) is calculated for all lex-supersets of S. 

The result obtained through the models and algorithms above is a lower bound 

for the original problem. In order to have a feasible solution (upper bound) to the 

problem, the authors propose several methods. The first one is a rounding procedure: 

they enforce fractional number of the variables to be one or zero in accordance with 

some rules to keep feasibility of the solution. The other algorithms they provide in 

the paper are heuristics including Cluster-and-Route algorithm and Free-Tree 

Heuristics. Computational experiments are based on these algorithms with the sweep 

algorithm and Clark-Wright algorithm as well. The results show that no algorithm 

outperforms others in all instances of the problem. 

2.2 Review on the Column Generation technique 

2.2.1 Outline of the Column Generation technique 

Since Ford and Fulkerson [16] first suggested deal only implicitly with the 

variables of a multi-commodity flow problem over four decades ago, great progress 
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has been made in this research field. Dantzig and Wolfe [17] utilized this 

fundamental idea to develop a strategy to extend a linear program column-wise as 

needed in the solution process. It is Gilmore and Gomory first to put this technique 

to actual use as part of an efficient heuristic algorithm for solving the cutting stock 

problem in 1960’s [18, 19]. Nowadays, column generation is becoming a prominent 

method to cope with problems with a huge number of variables. Furthermore, in 

order to obtain the integer feasible (optimal) solution, Desrosiers, Sourmis and 

Desrochers design an approach to embed column generation techniques within a 

linear programming based branch-and-bound framework [20]. They use this method 

to solve a vehicle routing problem with time windows for the first time. 

Besides the milestone-like work mentioned above, numerous integer 

programming column generation applications are also described in the literature, as 

shown in Table 2.1 [21]. In this review on the column generation technique, we 

focus on not only its algorithmic side but also the application side, which are mainly 

the applications of column generation in some routing problems. 



                                                                                                 

                            

  

 

 

 

 

                     

                        

  

                       

 

                         

                

                      

  

                

                  

                          

                         

                          

                         

                         

           

                      

                

                      

                       

                      

                  

                        

Reference(s) Application(s) 

Agarwal et al. (1989); Desaulnier et al.(2001); 

Desrochers et al. (1992); Lobel (1997 1998); 

Riberio and Soumis (1994). 

Borndorfer and lobel (2001); Desaulnier et al.; 

Desrochers and Soumis (1989). 

Desrosiers et al. (1984) 

Krumke et al. (2002) 

Lubbecke (2001); Lubbecke and Zimmermann 

(2003); Sol (1994) 

various vehicle routing problems 

crew scheduling; 

multiple traveling salesman problem with 

time windows 

real-time dispatching of automobile 

service units 

multiple pickup and delivery problem 

with time windows 

Anbil et al. (1998); Crainic and Rousseau(1987); airline crew pairing 

Vance et al. (1997) 

Barnhart and Schneur (1996) 

Erdmann et al. (2001) 

Barnhart et al. (1998); Desaulnier et al. (1997) 

Crama and Oerlemans(1994) 

Eben-Chaime et al. (1996) 

Park et al. (1996) 

Ribeiro et al. (1998) 

Sankaran (1995) 

Vanderbeck(1994) 

Vanderbeck(1994) 

Hurkens et al.(1997); Vance (1998); 

Vanderbeck (1999) 

Alvelos and Carvalho (2000) 

Bourjolly et al.(1997) 

Hansen et al. (1998) 

Johnson et al. (1993) 

Mehrotra and Trick (1996) 

Savelsbergh (1997) 

air network design for express shipment 

service 

airline schedule generation 

fleet assignment and aircraft routing and 

scheduling 

job grouping for flexible manufacturing 

systems 

grouping and packaging of electronic 

circuits 

bandwidth packing in the 

telecommunication networks 

traffic assignment in satellite 

communication systems 

course registration at a business school 

graph partitioning e.g., in VLSI, compiler 

design 

single-machine multi-item lot-sizing 

bin-pack and cutting stock problems 

integer multi-commodity flows 

maximum stable set problems 

probabilistic maximum satisfiability 

problem 

minimum cut clustering 

graph coloring 

generalized assignment problem 
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Table 2.1: Some application of integer programming column generation 



                                                                                                 

      
             

       

             

         

    

                                      

 

                                 

 

 

 

 

                                    

 

  

26 

Given a linear program as follows which we call the master problem (MP): 

min z c j  j 
jJ 

s.t. a j  j  b (2-16) 
jJ 

 j  0, j  J 

When using simplex method to obtain the optimal solution to the problem 

iteratively, we look for a non-basic variable to price out and enter the basis. In other 

words, given the non-negative vector u of dual variables, we try to find 

 
arg min{c  c  uT a | j  J}. (2-17)j j j 

Since the complexity of this pricing step is O(|J|), it is costly when |J| is large. In 

other scenarios, sometimes we cannot express the set J explicitly. Therefore, we 

resort a reasonably small subset J ' J of columns, resulting in the customary 

notion of restricted master problem (RMP). Let λ and u be the primal and dual 

optimal solutions of RMP respectively. We use the following sub-problem to 

generate the new columns to enter the basis and the respective cost coefficient cj as 

well. 

c *  min{c(a)  uT a | a  A} (2-18) 

Where a j , j  J are elements of a set A. This sub-problem is feasible, for otherwise 

the master problem would be empty as well. If the solution to the sub-problem is 

non-negative, which means no reduced cost coefficient c j is greater than or equal 

to zero, λ optimally solves the master problem. Otherwise, we extend the RMP by a 

column derived from the optimal solution to the sub-problem, and repeat to 
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re-optimize the restricted master problem. For its role in the algorithm, (2-18) is also 

called the generation problem, or the column generator. 

2.2.2 Formulations of the Master Problem 

In applications, constraint matrices of linear programming have some features 

like sparse or structure in the form of large sub-matrices of zeros. This is due to the 

fact that activities associated with variables connect directly to only a few of 

conditions represented by the constraints. Hierarchical, geographical or logical 

segmentation of a problem can be reflected in the formulation. Therefore, we group 

non-zeros in such a way that independent subsystems of variables and constraints 

appear, possibly linked by a distinct set of constraints and/or variables. Such 

properties are often seen in the multi-commodity flow formulations for vehicle 

routing and crew scheduling problems. 

The function of decomposing the original problem is to treat the linking structure 

at a superior, coordinating, level and to independently address the subsystem(s) at a 

subordinated level, exploiting any special structure at the algorithm level. In order to 

take advantage of the structure of the problems, it is common to combine column 

generation with the well-known Dantzig-Wolfe decomposition to solve the problem 

efficiently. 

We briefly refresh the classical decomposition principle in linear programming, 

which is developed by Dantzig and Wolfe. It has become part of the mathematical 
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programming standard library. Let us consider a linear program: 

min z  cT x 

s.t. Ax  b (2-19) 
Dx  d 

x  0 

which is named the original or compact formulation. 

nLet P  {x R | Dx  d,x  0}   . Minkowski and Weyl Theorems enable us to 

represent each x  P as convex combination of extreme points {P }  plusq q Q 

non-negative combination of extreme rays { Pr }rR of P, e. g., 

|Q||R|x pq λq p r λr , q 1, λ  R  (2-20) 
qQ rR qQ 

where the index sets Q and R are finite. Replacing x in (2-19) and applying the linear 

transformations c j  cT p j and a j  Ap j , j Q  R we obtain an equivalent 

extensive formulation 

min z c  c q q r r 
qQ rR 

s.t. aq q ar r  b 
qQ rR (2-21) 

 1q 
qQ 

λ  0 

It typically has a tremendous number |Q|+|R| of variables, but possibly substantially 

fewer rows than (2-19). The equation q  1 is the convexity constraint. If 
qQ 

x  0 is feasible for P in (2-21) without any cost, it may be omitted in Q and hence 

the convexity constraint becomes q  1 in the model. One thing should be 
qQ 

noticed here is that although the compact and the extensive formulations are 

equivalent in that they have the same optimal objective function value z, the 
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respective polyhedra are not combinatorially equivalent. Since in (2-20), x  is 

uniquely represented by a given λ , but not vice versa. 

    So far we reformulate the model (2-19) as (2-21), which is a special master 

problem. In (2-21), the objective function is linear, and the set of columns is 

implicitly defined by the extreme points and extreme rays of a convex polyhedron P. 

It is efficient to utilize column generation to solve this problem. The corresponding 

RMP with current subsets Q' Q,   R' R  in (2-21) has a dual optimal solution u,v , 

where variable v  corresponds to the convexity constraint. The pricing problem in 

Dantzig-Wolfe decomposition now is to determine 

      c*  min{(cT  uT A)x  v | Dx  d,x  0}                                       (2-22)    

    (2-22) is a linear program again. When c*  0 , no negative reduced cost column 

can be found, and the algorithm terminates. When c*  0 , the optimal solution to 

(2-22) is an extreme point Pq of P, and we add the column [cT p T
q , (Apq ) ,1] T to the 

RMP. When c*   , an extreme ray Pr of P  as a homogeneous solution to (2-21) 

and we add the new column [cT p T ] Tq , (Apq ) ,0  to the RMP. Note that the algorithm 

is finite as long as finiteness is ensured in optimizing the RMP. Dantzig-Wolfe type 

approximation algorithms with guaranteed convergence rates have been proposed for 

certain linear programs, readers can see the reference given therein. 

    One application of combining Dantzig-Wolfe decomposition with column 

generation in the literature is proposed by Savelsbergh for solving the generalized 

assignment problem (GAP) [22]. 
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Another common formulation of Master Problem is based on set-partitioning. 

This is due to the properties of one-one mapping relationship between different items. 

This kind of model is easy to form since it reflects the relationship between variables 

naturally and often can be seen in various vehicle routing problems. We will 

introduce two applications of set-partitioning based column generation method in 

different domains. 

First, we will give a combinatorial description of set partitioning problem. Let M be 

a non-empty and finite set. Let F be a family of acceptable or feasible subsets of M. 

Associated with each family j of F is a cost cj. The problem is to find a collection of 

members of F, which is a partition of M, where the cost sum of these members is 

minimal. 

An integer programming formulation of the set-partitioning problem reads 

(SPP) min z  cT x 

s.t. Ax  1 
(2-23) 

x  1 

n mnWhere x is a solution vector, 0  c  R a cost vector, and A[0,1] a 

zero-one matrix. M corresponds to the m rows of matrix A and the subsets of M 

correspond to the columns of this matrix in such a way that aij = 1 if i  j and aij = 0 

if i  j . The stipulation that each member of M has to be covered once corresponds to 

the constraint set of (1.1), which defines F. The SPP is a well-known NP-hard problem. 
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Now we discuss the first one application of column generation based on set 

partitioning, which is presented by Lorena and Senne. They use this approach to solve 

the Capacitated p-Median Problems (CPMP). The Capacitated p-Median Problem 

refers to a set I  {1,...,n} of potential locations for p facilities, a set J={1,..., m}of 

customers, and nX m matrix (gij) of transportations costs for satisfying the demands of 

the customers from the facilities. The capacity of each possible median is Q. The 

capacitated p-median problem is to locate the p facilities at locations of I in order to 

minimize the total transportation cost for satisfying the demand of the customers. 

Each customer is supplied from the closest open facility. Lorena and Senne apply the 

column generation method to the problem. 

The master problem is thus rewritten as: 

(CPMP) min z  
m 

ck mk 
k 1 

s.t.  
m 

Ak xk 1 
k 1 (2-24) 

 
m 

xk  p 
k 1 

xk [0,1], k  1,...,m. 

Where 

S  {S ,S ,..., S }, is a set of subsets of N;1 2 m 

1, if i  SkA  [aik ]mn , is a matrix with aik   ,satisfies qiaik  Q;
0, otherwise i N 

and ck  min( dij ), considering Sk 
1  {i  Sk | aik 1} 

iS1 
k j 1Sk 

The other set-partitioning based master problem of column generation we will 

introduce next is a formulation for the Vehicle Routing Problem proposed by Agarwal 
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et al. [23]. 

The master problem they provide is: 

(SP1) min z c j x j 
j 

s.t. a j x j  e (2-25) 
j 

xi {0,1} 

In this SP formulation,  is the possible feasible route set, and each vehicle 

route is represented by a binary n-vector aj. The element aij of vector aj is 1 if demand 

point I is visited on route aj, otherwise 0. A cost cj represents the total distance 

traveled on the route aj. 

2.2.3 Discussion on the pricing problem 

One difficulty in the column generation lies in how the sub-problem is formed 

to search virtually all non-basic columns. In fact, those vectors a  A in master 

problem usually represent combinatorial objects like paths, feasible crew schedules 

or sets. Therefore, we can define A and the interpretation of cost on these structures 

and have a valuable information about what the appearance of the possible columns 

are. Taking the classic stock cutting problem for instance, one-dimensional cutting 

stock problem is defined by the following data: (m, L,l  (l ,...,l ),b  (b ,...,bm )) ,1 m 1 

where L denotes the length of each stock piece, m denotes the number of smaller 

piece types and each type i=1,…,m, li is the piece length, and bi is the order demand. 

In a cutting plan we must obtain the required set of pieces from the available stock 

length. The objective is to minimize the number of used stock length. Gilmore and 
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Gomory develop a mathematical model utilizing the column generation to solve this 

problem for the first time [18, 19]. The formulation is as follows: 

RMP min Yj 
jJ 

s.t.  aijYj  bi i  1,..., m; (2-26) 
jJ 

Yj  0, j  J 

Yj : number of  times pattern j is used; 

aij : number of  times item i is cut in pattern j; 

J :set of cutting pattern. 

The pricing problem is: 

max  iai 
iI 

s.t. liai  L; 
(2-27)iI 

ai  0, integer, i  I . 

 i :dual variable from the RMP. 

In one-dimension cutting stock problem, the sub-problem is a typical Knapsack 

Problem, which generates new columns to enter the restricted master problem 

iteratively until its objective function value is less than or equal to zero (since it is a 

maximum problem). 

The role of the pricing problem is to provide a column that prices out profitably 

or prove that no such column exists. It is important to note that any column with 

negative reduced cost helps achieve this aim. Especially, we do not need to solve the 

sub-problem (2-17) exactly, an approximation is sufficient until the last iteration. We 

may add many negative reduced cost columns from a sub-problem, and sometimes 

even positive ones are used. Desrochers et al. solve a temporary of the sub-problem, 
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or relaxation when they cope with the vehicle routing problem with time windows 

[24]. 

One important concept in column generation is dominance and redundancy of 

columns. A column with reduced cost c is dominated if there exists another column 

with reduced cost not greater than c for all dual variables ranging within their 

respective domains. A column as is called redundant if the corresponding 

constraint is redundant for the dual problem. That is, 

r s r S 

 

Sol [25] discloses a characterization of redundant columns in the case of 

identical sub-problems and a proof that there is no redundant column if all 


 

sub-problems are distinct. For set partitioning problems with identical sub-problems, 

we can use an alternative pricing rule to avoid generating the redundant columns. 

These rules include Steepest-edge pricing, the practical Devex variant and the 

lambda pricing rule [26, 27, 28]. 

Pricing rules are sensitive to the dual variable values when there exist 

non-unique dual solutions. For large set partitioning problems, which are usually 

highly primal degenerate, the value of dual variables are not so efficient in producing 

new column to adjoin to the RMP. Therefore, the key issue for that kind of problem 

is to overcome the degeneracy. 

 and (2-28)a a cr c cs r s r r 
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2.2.4 Tailing-Off effect 

One of the drawbacks of the column generation technique is its poor 

convergence, especially in some degenerated problems, i.e., the Vehicle Routing 

Problem. While sometimes a near optimal solution is approached very quickly, in 

general only little progress can be obtained per iteration. Graphically speaking, the 

solution process exhibits a long tail (Gilmore and Gomory) [18] before the optimal 

solution is obtained. This phenomenon is called the tailing off effect. Several 

approaches called column generation stabilization are proposed in the literature to 

overcome this inherent drawback of column generation technique. Agarwal et al. [23] 

present a simple idea to specify bounds of the dual variable values by using a 

heuristic solution to the VRP, such as the one obtained by the Clarke and Wright 

algorithm [29]. A statistical model is proposed to estimate good starting values for 

the dual variables. Marstern et al. [30] introduce a Boxstep method to have a more 

sophisticated control of the dual variables. The principle of their method can be 

stated as follows: let u represent an optimal solution to the current restricted dual 

Restricted Master Problem (RMP). Dual variables can be constrained to stay in a 

“box around u ” if lower and upper bounds are imposed respectively. Then, the 

RMP is re-optimized. If the new dual optimum is attained on the boundary of the box, 

we have a direction where a box should be relocated. Otherwise, the optimum is 

obtained in the interior of the box, which produces the sought global optimum. du 
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Merle et al. [31] provide a stabilization approach that includes a more flexible, linear 

programming concept based box, together with an -perturbation of the right hand 

side of the constraints. All numerical results of these methods show that the 

stabilized approaches can be used to improve the solution time. 

2.2.5 Integer Programs and column generation 

Column generation technique has been successful in solving large-scale linear 

programming. For mixed integer programs, a good method requires formulations 

whose linear programming relaxation gives a good approximation to the convex hull 

of feasible solutions. In the past twenty years, the “branch-and-cut” method has been 

paid a great deal attention to and quite a few outcomes have been achieved (Hoffman 

and Padberg, Nemhauser and Wolsey) [32, 33]. 

The idea behind the branch-and-cut is as follows. In order to handle the LP 

relaxation of the original MIP efficiently, we leave out some classes of valid 

inequalities from the problem because it has too many constraints. This will yield 

infeasible solutions to the problems. Therefore, a sub-problem called the separation 

problem is solved to try to identify violated inequalities in a class. If violated 

inequalities are found, some of them are added to the LP to cut off the infeasible 

solution. Then the LP is re-optimized. If we cannot find violated inequalities, 

branching is performed. Branch-and-cut is a generalization of branch-and-bound 

with LP relaxations and allows separation and cutting to be applied throughout the 
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branch-and-bound tree. 

In the last decade, a new method to the MIP called “branch-and-price” is 

presented by Desroscher et al. when they solve the vehicle routing problem with 

time windows for the first time. The principle of branch-and-price is similar to that 

of branch-and-cut except that the procedure focuses on column generation rather 

than row generation. Actually, these two are complementary procedures for 

tightening an LP relaxation. 

The branch-and-bound algorithm is based on the column generation technique. 

When column generation procedure cannot find negative reduced cost, the LP 

relaxation obtains its optimal solution. Branching occurs when the LP solution does 

not satisfy the integrality conditions. Like branch-and-cut, branch-and-price is also a 

generalization of branch-and-bound with LP relaxation, allowing column generation 

applied all through the branch-and-bound tree. 

Some important issues need to be concerned in branch-and-price method include 

lower bound and early termination, and the branching strategy. In each node of a 

branch-and-bound tree, we derive lower bounds on the best possible integer solution 

in the respective branch from solving the RMP linear relaxation by column 

generation. It is naturally to expect that the tailing off effect should be amplified 

when the size of linear programs is very large. We have a simple amendment for the 

need of integer solutions: Stop generating columns when tailing off effect happens 

and perform a branch decision. This early terminating is based on the following. 
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Assuming c j  Z , j  J , which for rational data is no loss of generality, column 

generation can be stopped as soon as LB  z . Due to this purpose they have 

been widely used in the literature, i.e., Sol [34]; Vanderbeck [35]; Vanderbeck and 

Wolsey [36]. 

Early termination makes the algorithm effective for integer programs in contrast 

to linear programs. We can even terminate heuristically early than LB  z . 

Therefore, a tradeoff should be considered between computational efforts and the 

quality of the obtained lower bound upon premature termination. 

As to the branching strategy, a valid branch scheme divides the solution space 

in such a way that the current fractional solution is excluded, integer solutions stay 

intact, and finiteness of the algorithm is ensured. Furthermore, some general rules of 

thumb prove useful, i.e. producing branch of possibly equal size, which is referred to 

as balancing the search tree. Important decision should be made early in the tree. In 

particular, when the master problem has to be solved integrally, a compatible 

branching scheme is sought which prevents columns that have been branched on 

from being regenerated without a significant complication of the pricing problem 

[37]. This would generally lead to finding the kth best sub-problem solution instead 

of the optimal one [38]. 

As to general branching scheme in case that the master problem has to be 

solved integrally, Barnhart et al. and Vanderbeck have made important work. The 

most common strategy in conjunction with column generation is Ryan and Foster’s 
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designed for set partitioning problems, which is included in the following 

proposition. 

m|J '|Proposition 2.8 Given A{0,1} and a fractional basic solution to Aλ  1, λ  0 . 

Then there exist, r, s {1,...,m} such that 0  J 
arj asj  j 1. 

j ' 

This proposition shows that when such two rows are identified, we obtain one 

branch in which these rows must be covered by the same column, e.g., 

 J ' 
arjasj  j 1, and one branch where they must be covered by two distinct 

j 

columns, e.g., arj asj  j  0. This information can be transferred to and obeyed  J 'j 

by the pricing problem without any difficulty. 

Besides the pioneer work above, Barnhart et al. and Vanderbeck [38, 39] present 

the principles and guidelines of the branch and price approach in different scenarios. 

The principle for the branch and price approach can be summarized as follows: first, 

if necessary, use Dantzig-Wolfe decomposition to rewrite the original formulation in 

accordance with the property of the problem into two sub-problems, namely, the 

master problem and the pricing problem. Next, the column generation approach is 

performed to obtain the optimal solution to the LP relaxed master problem. Then, 

different branching schemes may be adopted and carried out to find the integer 

solutions. Generally speaking, for integer column generation method, three 

branching schemes are given in [39]. Rule A is: enforce q {0,1} k, i, v. q is 
kqQ(k ):q vi 

the combinatorial coefficient in Dantzig-Wolfe decomposition. Q(k) is the integer 

polyhedron of the kth supproblem, i is the index of the strip width, and v is the 
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number of strips of the width wi . Rule B is: enforce q integer i, v. , while rule 
qQ:q vi 

C is: enforce q integer l {1,..., n'}. Rule C can be illustrated as follows 
' qQ:qq '&ql 1 

[39]: given a fractional solution , we search for a index l, i.e., a component of the 

0-1 form of columns q, such that the number of columns with entry one in that 

component, q is fractional and thus is enforced to be integer. For the general 
' qQ:q q '&ql 

assignment problem, the branch scheme is [38]: enforce k {0,1} . r and s are 
k : y 1, ysk 1rk 

the row numbers in the master problem, k is the column number in the master 

problem. 

This pioneer work also generates a powerful insight which is used already in 

standard branch-and-bound, that is, to branch on meaningful variable sets. The most 

valuable source of information is those original variables of the compact formulation. 

They must be integer, and they are what we branch and cut on. Branching and 

cutting decisions both involve the addition of constraints. We may require integrality 

of x at any node of a branch-and-bound tree, but it is not efficient. Hurkens et al. 

propose a problem specific penalty function method [40]. Alternatively, given an 

added set Hx  h of constraints, these restrictions on the compact formulation can 

be incorporated in Ax  b, in x  X , or partially in both structures. In any scenario, 

the new problem is of the general form of the compact formulation. The new RMP is 

still a linear program, and the earlier the sub-problem structure is tractable, the less 

severe complication we will face. 

It is important to be aware that even if a new decision set goes into the master 



                                                                                                 

    

    

41 

problem structure, the pricing problem may change. Some examples are given in the 

routing and scheduling area. Ioachim et al. have found that linear combinations of 

time variables appear in the master problem structure which results in the 

consequence that these time variables also appear in the objective function of the 

sub-problem together with the flow variables. This changes the way to solve the 

constrained shortest path problem. 

Another issue is the implementation of a column generation based integer 

programming code. All strategies from standard branch-and-bound apply, including 

depth first search for early integer solutions, heuristic fathoming of nodes, rounding 

and fixing of variables, and many more [41]. New columns are generated at any 

node of the tree. 

Concluding, no efficient way of handling the difficulty of finding an optimal 

integer solution to a problem solved using a column generation scheme is available 

two decades ago. Today, it is no longer true when we obtain the compact formulation 

of the problem and generate columns at each node the search tree. This fundamental 

and simple approach has been in use for nearly twenty years and is being refined 

ever since. The price we have to pay for this simplicity is that besides RMP, 

sub-problem, and branch-and-bound also the compact formulation has to be 

represented in order to recover a solution in terms of the original variable x. 



                                                                                                  

 

    

 

CHAPTER III 

A TWO-STAGE EXACT ALGORITHM TO THE SPLIT 

DELIVERY VEHICLE ROUTING PROBLEM 

WITH VALID INEQUALITIES 

In this chapter, we present an exact approach to the Split Delivery Vehicle 

Routing Problem when the number of the vehicle in the fleet is fixed, namely, the 

smallest one that satisfies the total demand. In Section 3.1, we provide the 

formulation of the new method. In Section 3.2, a class of efficient valid inequalities 

for the model and the complete algorithm are illustrated; we display the 

computational experiment results in Section 3.3. Finally, discussion on the possible 

future work in this problem is included in Section 3.4. 

3.1 A Two-Stage Formulation for the SDVRP 

Like the CVRP, the SDVRP is also an NP-hard problem [1]. Thus, most work in 

this field handles with some simplified sub problems rather than the whole original 

formulation. Dror et al.’s [8, 9] cutting-plane algorithm can be used to solve a 

relaxation of the SDVRP without considering the sub-tour elimination constraints 

firstly. Then they include routes that have sub-tours in them and other efficient 

42 
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inequalities in the first sub problem to solve it again. These steps repeat until no 

violated constraints are identified. Finally, a branch-and-bound algorithm is applied 

to the problem to obtain the integer solution. Belenguer et al. [10] first deal with a 

reduced SDVRP (RSDVRP) that ignores the index of the vehicle and the sub-tour 

elimination constraints as well, and used several heuristics algorithms to identify the 

violated constraints. In this paper, we will develop valid inequality to finally solve 

the problem of the index of the vehicles. 

To reduce the size of models, we propose a two-stage algorithm for the SDVRP 

in this paper. We assume the number of the fleet of the vehicles is fixed, equaling to 

the minimum required number of the vehicles to fulfill all demands, and the demand 

at each point is allowed to be larger than the capacity Q of a vehicle. 

The first stage model C1 is a clustering problem to assign the demands to 

vehicles without considering travel distance costs. 

U 

C1: min Vk 
k1 

s.t. w  a y , i 1,...,N,k 1,...,U (3-1)ik i ik 

U 

wik  ai , i 1,...,N (3- 2) 
k1 

N 

wik 1, k 1,...,U (3-3) 
i1 

yik : binary, wik ,Vk  0 

From now, we normalize the demand and capacity without loss of the generality, 

here ai=di/Q. 
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1, if supplier i is visited by truck k; 
yik  0, otherwise; 
wik  normalized load picked up at supplier i by vehicle k. 

Vk: distance lower bound of vehicle k. 

U: the minimum number of the vehicles that satisfies the total demand of the 

points. 

N: number of the points. 

C1 is an assignment problem, and it yields a feasible clustering solution 

meeting all demands under capacity constraints. Without any constraints on Vk, they 

are all zeros in the first iteration and their sum provides a lower bound for the overall 

SDVRP. The second stage problem T is a typical Traveling Salesman Problem (TSP) 

for each vehicle and provides the cost for each cluster. Assume Kl is the set of the 

routes used in the solution to the first stage at the lth iteration and yik
l is the 

solution to the first stage at the lth iteration. We define 

I k
l  {i yik

l  1} for vehicle k  Kl at iteration l 

For each I k
l obtained from C1, sovle the TSP below : 

T : min z l   c xk 
k ij ij 

iI jIkk 

s.t.  xij
k  1,  j  I l (3 - 4 )k 

iIk
l 

 xij
k  1  i  Ik

l (3 - 5) 
jIk 

k k k l l l   j  Nk xij  I 1(for i  j; i  I k \ {0}; j  I \ {0}) (3 - 6)i k k 

xij
k  0 or 1, u k

j  0 



                                                                                               

                    

                                             

                                             

l 
wk 

l I 
 w 

lI 

l  l 

  w 1 w  1,...,U, k 1,...,Uyik 
i 

z  w  V 1,...,U ; k 1,2,...,U wk kw 
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where 

Ik
l : the number of suppliers served by vehicle k at iteration l; 

1:if  truck 

0 : otherwise 



 

k visits demand point j just after demand point i 
xk :ij ; 

i
k : variables to prevent subtour. 

zk
l is the travel distance cost for cluster Ik

l and lzk 
k Kl 


 

SDVRP. Although the TSP itself is an NP-hard problem, model T is typically a small 

problem in practice, and we can use commercial optimization software like CPLEX 

9.0 to obtain the solution very quickly (much less than 1 second). Therefore, this 

paper will focus on the interaction between the two stages and the more efficient 

way to solve the first stage model. 

Unlike other clustering-first, routing-second constructive heuristics, this 

algorithm considers the feedbacks from the second stage and adds them as new 

constraints (cuts) to the first stage if there are new clusters. A new lower bound can 

be obtained by solving the first stage problems with the added cuts. For each set Ik
l , 

we create the following cuts: 

yields an upper bound for the 

(3-7)

(3-8)

When vehicle w visits all demand points in set Ik
l, then the total travel distance 

l lof the vehicle should exceed zk . Although wk , indicating whether vehicle w visits 

all demand points in set Ik
l , should be a binary variable physically, we can relax it to 
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a continuous variable because yik is a binary variable and Iw
l 1 is an integer. In 

fact, we can even combine (3-7) and (3-8) into a single constraint: 

Vk  zw
l ( yik  Iw

l 

iI l 
w 

Because  yik  I w
l 

 1) w  1,2,...,U ; k  1,2,...,U (3 - 9) 

1  1, and Vk are defined as nonnegative variables. 
iI l 

w 

Since the cuts are characterized by the set Ik
l, the set of all cuts at current iteration h 

is defined as Ω  {Ik
l k  Kl ,l  1..h} . With added constraints (3-9), the first stage 

model C1 is solved again to get a new lower bound. In each iteration, the lower 

bound always decreases or keeps the same because of more constraints. To avoid 

some computational repetition, we redefine Kl as the set of routes that are used in the 

solution to problem C1 in the current iteration, but are not included in . 

Kl  {Ik
l I k

l } 

We implement the algorithm with CPLEX 9.0 and find the convergence rate is 

low with the algorithm. In the early iterations, some demand points that are far away 

from each other are grouped in the same cluster. To reduce the number of iterations, 

triangular inequalities mentioned above are introduced in the first stage problem C1 

in the first iteration. 

Vk  C0i yik  C0 j y jk  Cij ( yik  y jk 1), i, j, k; (3-10) 

When the problem size increases, the number of triangular inequalities 

significantly increases because the number of the inequalities is N(N-1)/2. In fact, 

triangular inequalities are only introduced to avoid the clusters with the suppliers far 
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away from each other. 

Therefore, instead of using all the triangular inequalities, we rank the perimeter 

of these triangles in a descending order and only select the first half of these 

inequalities. Numerical experiment shows a significant improvement of the speed of 

the algorithm. 

3.2 Valid inequalities for Two-Stage algorithm to the SDVRP 

We use commercial optimization software CPLEX9.0 to solve both stage 

models. CPLEX basically uses branch-and-bound to solve integer program models 

with some general fractional cuts. We observe many node explorations for the first 

stage model in each round. The lower bound provided by linear relaxation is so loose 

that numerous branches are required. Therefore, in addition to the triangular 

inequalities, the following classes of constraints are also valid for the first stage 

model. We find constraint (3-1) w  a y ,i,k can yield small yik in theik i ik 

SDVRP (though it is not a problem for the CVRP) when we relax the integer 

requirement on yik and splits occur. For example, if both vehicle 1 and 2 visit demand 

1 and each picks up one half of the demand, both y11 and y12 will be 0.5. Then the 

related triangular cuts and the cuts obtained from the second stage will not work 

under linear relaxation because of too loose lower bound for Vk. The problem will 

become worse, when the demand at one point is larger than the capacity of a vehicle, 

because wik will be much smaller than ai. In fact, no matter how large the demand at 



                                                                                               

  

   

                                     

                                               

48 

v 

k 

1 

point i is, will always be 1 in the linear relaxed model. Based on thisyik 

observation, we develop the following two valid inequalities. 

1) Required Number of Vehicles Valid Inequality for points with large demand 

According to the definition of the SDVRP, each demand point should be 

satisfied. Therefore, it is valid to include the following inequalities in the model: 

v 

a 
k 1 


 

  for i 1,..., N (3-11) yik i 

When the demand of a point is larger than the capacity Q, this inequality can 

improve the lower bound. For example when ai =1.2, then a valid inequality 

v 

k 1 

 

2 can be added into the first stage.yik 

2) Non-idleness of the vehicle inequality 

Since each vehicle must visit at least one demand point, the following 

inequalities are valid: 

N 


i 1 

In the next part, we will develop some more powerful valid inequalities. The 

following inequality derives from Theorem 2.1. 

3) Optimal Solution property inequality: 

According to Theorem 2.1, inequalities (3-13) are valid: 

 1 for k 1,...,U (3-12) yik 
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y  y  y  y  3, i, j  1,..., N ; w,v 1,...,U , w  v,i  j (3-13)iw iv jw jv 

4) Vehicle index assignment valid equality/inequality 

When all vehicles are identical in the fleet, an SDVRP model has numerous 

equivalent solutions with the same routes and pickup but different vehicle indexes. 

N 

Dror and Trudeau [1] give a valid inequality of  x1 
j  1 to make sure the first1 

j1 

vehicle visits the first demand point. We can have equivalent valid inequality y11  1 

to let the first vehicle cover the first demand point. The first possible extension could 

be 

 
k 

y  1 k  2,..., min(U,N ) with y  1 (3-14)i k 11 
i1 

Intuitively, demand point 2 could be visited by the first vehicle, which visits 

demand point 1 or not. If not, we can assign demand point 2 to vehicle 2. Though 

(3-14) is a pretty strong valid inequality, we can even develop a stronger one. If it is 

assumed that a1=0.6 and a2=0.6, more than one vehicle are required to visit demand 

point 1 and demand point 2. We can set y11=1 and also set y22=1. 

Lemma 3.1: If a1+ a2>1, y11=1 and y22=1 are two valid equalities. 

Proof: For a feasible integer solution, at least two vehicles visit demand point 1 and 

2 when a1+ a2>1. There are totally four cases: 1) If one vehicle just visits demand 

point 1, and the other one just visits demand point 2, we can assign the first vehicle 

visiting demand point 1 as vehicle 1 and the other vehicle as vehicle 2. 2) If one 
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vehicle both visits point 1 and 2, and the other vehicle just visits point 2, the first 

vehicle is assigned as vehicle 1 and the other vehicle is set vehicle 2. 3) If one 

vehicle both visits point 1 and 2 and the other vehicle just visits point 1, the first 

vehicle is assigned as vehicle 2 and the other vehicle is set as vehicle 1. 4) If both 

vehicles visit both demand points, we can arbitrarily choose one vehicle as vehicle 1 

and the other as vehicle 2. We can find one of these four cases for two vehicles in 

any feasible integer solution. Under any cases, y11=1 and y22=1 are valid. □ 

We can further extend Lemma 3.1 to theorem 3.1 about valid inequality for the 

vehicle index assignment. Without loss of generality, from now on the demand 

points are assumed to be ranked with descending demands: a1a2a3…an. 

 
m 

Theorem 3.1: If ai  m  o, o  1,...,m-1 , ymm=1 is a valid equality. 
io 

Proof: Lemma 3.1 is a special case of theorem 3.1 with m=2. If we assume m=2,…,t 

t1 

is valid, now we need to prove m=t+1 is valid. Because ai  t 1 o, o  1,...,t 
io 

t 

and ai is in a descending sequence, ai  t  o, o 1,...,t 1 . Furthermore, the 
io 

condition holds for m=2,…,t, so we have yii=1, i=1,…,t. In other words, we assign 

one vehicle for each demand point from 1 to t. In a feasible integer solution to the 

SDVRP, if demand point t+1 is visited by another vehicle not belonging to the first t 

vehicles, this vehicle can be assigned as t+1 so yt+1,t+1=1 is true. If demand point t+1 

is only visited by the first t vehicles based on the previous index assignment, at least 



                                                                                               

  

   

   

 

    

   

   

    

   

 

51 

one of the remaining vehicle visits one or more than one of the first t demand points, 

t1 

since ai  t . Assuming one vehicle visiting demand point r (r  t) doesn’t belong 
i1 

to the first assigned t vehicles, we reassign the new vehicle as the rth vehicle. After 

t1 

removing demand point r, the condition ai  t  o, o  1,...,r 1 and 
io,ir 

t1 

ai  t 1 o, o  r 1,...,t still hold and the condition is equivalent as m=t case, 
io 

so we can have one vehicle for each demand node among 1,…, r-1 and r+1,…, t+1 

and number them as vehicle 1,…, r-1 and r+1,…, t+1. □ 

For instance, if we have an SDVRP like (a1=1.3, a2=1.2, a3=0.9, a4=0.6, a5=0.3, 

a6=0.2), then 4.5  5 vehicles are required. We can have the following valid 

equalities, y11=1, y22=1, y33=1 and y44=1 based on theorem 3. If we have an SDVRP 

like (a1=1.3, a2=0.65, a3=0.6, a4=0.5, a5=a6 =0.3), 3.65  4 vehicles are 

required and we can have the following valid equalities, y11=1, y22=1 and y33=1. 

Here, y44=1 is not true because a2+a3+a4=1.75  2 though a3+a4>1. In both 

examples, one remaining vehicle has not been assigned. In the first example of 

(a1=1.3, a2=1.2, a3=0.9, a4=0.6, a5=0.3, a6=0.2), if we consider demand points 5 

and 6 as one point with a5’=0.5, the fifth vehicle must visit this new combo point 

because condition  
m 

ai  m  o, o  1,...,m-1 is true now for m=5. In other words, 
io 

truck 5 must visit one or both of points 5 and 6. Therefore, y  y 1 is a valid55 65 

https://a2+a3+a4=1.75
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m 

a  m  o o  
i o 

 

m=3, but not for m=4. We combine and Since =0.8 which is larger +can a a a a4 5. 4 5 , 

than a2 and a3, need re-rank the (a1, (a4+a5), a2, a3, a6).towe sequence as 

Therefore, the valid inequalities =1, y 1, y =1 and =1, because the +yare y y11 42 52 23 34 

condition in theorem 3.1 is for m=4 in the On the opposite side, met new sequence. 

splitting can also be implemented. Look at the example of (a1=2.5, a2=1.6, a3=0.9, 

a4=0.6). 6 vehicles are required, but only four valid inequalities (yii=1, i=1,…,4) can 

be obtained based on theorem 3.1. In fact, at least three vehicles are needed to visit 

demand point 1, and five vehicles are required for demand point 1 and demand point 

2. If we split demand point 1 into three points with a11=1.01, a12=1.01 and a13=0.48 

and split demand point 2 into two points with a21=1.01 and a22=0.59, the new 

sequence will be (a11, a12, a21, a3, a4, a22, a13). Based on theorem 3.1 and the 

combination, we can get valid inequalities like y11=1, y12=1, y23=1, y14+y241, y35=1 

and y46=1, so all six vehicles are assigned with an index. 

Theorem 3.2: With combining and splitting demand points, an assignment valid 

inequality can be created for each vehicle required in an SDVRP. 

Proof: With splitting and combining, finally we can let each slot in the final sequence 

inequality. For the second example, we know 1,...,m-1 is true for ,i 

of demand point with the demand of 1+ and totally there are U= 
 



 

n 

i 1 

ai 


slots, if

 

we let  be a very small positive number. Condition in theorem 3.1 can be met for 

m=U, so all U trucks have an equality if only one demand point in the slot, or an 

https://a22=0.59
https://a21=1.01
https://a13=0.48
https://a12=1.01
https://a11=1.01
https://aaaa45.45
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inequality if there are more than one demand point in the slot. □ 

Valid inequalities created by theorem 3.2 with combination and splitting are 

stronger than the ones defined by (3-14) and they conflict with each other, so only 

the formers are recommended in the final algorithm. By assigning each vehicle to 

one or more demand points, numerous duplicated combinations will be avoided, and 

thus the speed of the whole algorithm can be significantly improved. 

4) Route distance inequalities 

Considering the relationship between the distance of any route Vk (k=1,…,U) 

and those yik (i=1,…N; k=1,…,U), we obtain some propositions. 

Proposition 3.1 The constraints 

V  2c y for i  1,..., N;k  1,...,U (3-15)k i0 ik 

are valid inequalities for the first stage model of the SDVRP. 

Proposition 3.1 is straightforward, since every vehicle should start from and go 

back to the depot, and if point i is visited by the vehicle, the distance of the segment 

between point i and the depot is the shortest. 

Proposition 3.2 The constraints 

V  ci y  c y for i, j  1,..., N ;k  1,...,U (3-16)k 0 ik j 0 jk 

are valid inequalities for the first stage model of the SDVRP. 

Proposition 3.2 can be extended for any S  N with the following construction 

algorithm: 

1. Let’s assume we have already create a valid inequality for a set S  N : 
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Vk  ei
S yik for k  1,...,U , where ei

s is the first |S| lowest cuv, where 
iS 

su,v  S {0}. Define ES as the set of (u,v) with cuv equal to some ei . 

2. Create a set S’ by adding one demand point j which doesn’t belong to S into S. 

Rank cij with ascending order and let ES’ the set of (u,v) with the first |S|+1 

lowest cuv, where u,v  S '{0}. 

3. Let 

eS '  min c , if min c  eS for i  S ,j uj uj i 

otherwise, assign the |S| 1th lowest cuv  to eS
j 

' 

S ' S S S'4. Let e  e if  the edge corresponding to e still belongs to E , otherwise,i i i 

arbitrarily assigning one newly introduced cuv  to ei
S ' . 

The construction starts with any S with |S|=1, Vk  coi  where {i} S. 

Proposition 3.3 For each set S  N , the constraint 

Vk  ei
S yik for k  1,...,U (3-17) 

iS 

created by the construction procedure above are valid inequalities for the first model 

of the SDVRP. 

Proof: The proposition is obviously true for any S with |S|=1. If we assume it is true 

for a set S and iS, we add another demand point j into S to have S’. We can have 

S S ' S ' S S ' S ' V e y  y min c e y  e y , because e  e and min c  e .k i ik jk ij i ik j jk i i ij j
iS { 0 } iS { 0 }

iS iS 

□ 

For instance, assuming we look at two demand points and the distances 
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between two points are c01=2, c02=6, c23=8. The first valid inequalities are 

 2y for k  1,...,U for set S  {1} . With the construction algorithm, afterVk 1 

introducing demand point 2, the second valid inequality is 

 2y  6y for k  1,...,U for set S ' {1,2 } . Readers may wonder why we do notVk 1 2 

create the valid inequalities by arbitrarily assigning the first |S| lowest cuv 

(u,vS{0}) to ei for iS. A counterexample can be given for the previous example 

of the two demand points. The inequalities 

 6y  2y for k  1,...,U for set S ' {1,2 } are not valid when y1=1 and y2=0.Vk 1 2 

Therefore, the recursion is crucial to create these types of valid inequalities. 

3.3 Numerical experiments 

The data of the numerical experiment are from Lee et al. [7]. They use two 

methods to solve the SDVRP with small capacity: dynamic programming and pure 

MIP by directly using CPLEX. They compare the results of these two approaches to 

convince the advantage of their dynamic programming method. We will use the 

same data to do the numerical experiment on the desktop with PIII and 256M 

memory and have their outcome as our benchmark. In order to check the efficiency 

of the additional inequalities, we develop two Two-Stage methods, one (TS1) is only 

with triangular inequalities, and the other method (TS2) is with all inequalities we 

introduce in Section 3.2. 

The capacity Q of the vehicle is assumed to be 1 without loss of generality, and 



                                                                                               

   

   

                

        

           

          

            

         

          

          

        

            

   

Code N Position 

N4L1 4 1(1,-3) 2(-6,-3) 3(-2,-8) 4 (0,-7) 

N4L2 4 1(7,7) 2(-2,0) 3(3,8) 4(-9,1) 

N4L3 4 1(1,-4) 2(3,1) 3(2,6) 4(8,-1) 

N5L1 5 1(2,7) 2(9,2) 3(9,-7) 4(-1,-7) 5(8,-7) 

N5L2 5 1(-10,-6) 2(-10,0) 3(-4,7) 4(1,1) 5(3,-10) 

N5L3 5 1(4,-8) 2(-2,5) 3(2,-6) 4(-4,-3) 5(1,2) 

N7L1 7 1(4,-6) 2(2,6) 3(7,7) 4(5,-5) 5(4,9) 6(-8,0) 7(5,-7) 

N7L2 7 1(-10,-6) 2(-10,0) 3(-4,7) 4(1,1) 5(3,-10) 6(9,-10) 7(-1,4) 

N7L3 7 1(4,-8) 2(-2,5) 3(2,-6) 4(-4,-3) 5(1,2) 6(6,-3) 7(-1,0) 
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the location of the depot is set to be (0, 0). The positions and the demand quantity of 

the demand points are listed in the Table 3.1 and 3.2. 

There are 9 layouts on the whole, and the numbers of demand points are 4, 5, 

and 7 for every 3 layouts respectively. The total demands for each layout were 

generated from 1.2 up to 9.6, with an incremental step of 0.4. The Computational 

results are in the Table 3.4 and 3.5 together with that of other methods. 

Table 3.1: Geographic layouts for the problem instances 

These results shows that in the instances with small number of demand points 

(i.e., 4, 5 demand points and part of the 7 demand points), TS1, TS2 and the 

Dynamic programming based approach are much faster than direct MIP method, and 

the difference between the former three is very small. For larger size of the 

problems, TS2 is much faster than both TS1 and the DP approach. 
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Table 3.2: Demand Vectors 

code M=4 M=5 M=7 

d1 d2 d3 d4 d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 d6 d7 

Q1 0.55 0.4 0.24 0.01 0.02 0.14 0.56 0.23 0.25 0.26 0.07 0.01 0.01 0.22 0.31 0.32 

Q2 0.19 0.76 0.31 0.35 1.01 0.46 0.12 0.01 0.01 0.33 0.34 0.09 0.37 0.25 0.19 0.03 

Q3 1.27 0.57 0.15 0.01 0.28 0.4 0.42 0.45 0.45 0.26 0.34 0.35 0.23 0.13 0.38 0.31 

Q4 0.01 0.61 0.86 0.92 0.24 0.94 0.64 0.5 0.08 0.56 0.54 0.31 0.08 0.27 0.14 0.5 

Q5 0.83 0.83 0.23 0.91 0.56 0.73 0.75 0.48 0.28 0.12 0.45 0.49 0.58 0.58 0.35 0.23 

Q6 0.98 0.77 0.12 1.32 0.7 0.58 0.76 0.74 0.43 0.33 0.37 1.04 0.03 0.47 0.12 0.84 

Q7 1.17 1.2 0.78 0.45 0.27 0.87 0.44 1.62 0.39 0.07 0.01 1.18 0.35 0.35 0.75 0.88 

Q8 1.01 0.83 1.1 1.06 0.74 0.8 0.94 0.95 0.58 0.85 0.74 0.49 0.21 0.76 0.48 0.47 

Q9 1.72 0.45 1.47 0.75 0.95 0.64 0.72 2.03 0.06 1.01 0.79 0.12 0.64 0.41 0.78 0.65 

Q10 1.54 0.37 1.39 1.5 1.49 0.37 2.68 0.22 0.03 0.9 0.57 0.24 0.35 0.67 1.26 0.81 

Q11 1.73 1.73 1.06 0.68 1.74 0.52 0.52 1.11 1.31 1.48 1.13 0.52 0.25 0.99 0.74 0.1 

Q12 1.04 1.17 3.3 0.09 1.56 1.36 0.91 0.38 1.39 0.97 0.7 0.2 1.32 0.2 1.25 0.96 

Q13 1.88 0.46 3.38 0.28 1.03 1.01 2.09 1.64 0.24 0.52 0.74 0.12 1.67 1.18 0.26 1.51 

Q14 0.04 3.98 1.2 1.18 1.32 0.85 1.62 1.34 1.26 1.63 1.16 0.38 0.35 1.62 0.94 0.31 

Q15 1.41 1.65 2 1.74 1.25 0.52 0.78 1.47 2.78 0.87 1.27 0.7 0.48 0.98 1.18 1.31 

Q16 1.84 0.78 2.81 1.77 1.34 2.57 1.95 0.9 0.44 1.69 1.11 0.29 0.86 1.95 0.08 1.21 

Q17 1.54 3.19 2.5 0.36 2.07 1.55 0.2 2.2 1.59 1.27 0.82 0.2 1.82 1.77 1.05 0.66 

Q18 2.06 1.32 2.53 2.09 0.42 2.68 0.4 2.55 1.95 1.01 0.81 1.82 0.68 0.98 0.58 2.11 

Q19 3.67 2.32 0.97 1.44 1.04 1.46 0.24 3.31 2.34 0.66 1.63 1.25 0.43 1.68 1.86 0.88 

Q20 1.37 2.58 1.66 3.19 0.51 2.94 2.75 1.95 0.64 1.24 2.2 0.07 2.45 1.41 0.12 1.31 

Q21 3.59 1.65 0.81 3.14 0.77 3.53 2.05 0.67 2.18 1.11 0.34 2.35 1.89 0.62 2.33 0.56 

Q22 2.68 0.35 3.82 2.75 2.63 1.46 1.01 2.05 2.45 1.84 2.53 0.4 1.48 1.89 0.54 0.92 
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Table 3.3: CPU time and Cost from 4 methods for N=4 

Code(∑di) 

N4L1 N4L2 N4L3 

Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIP 

Q1(1.20) 28.67 <1.00 <1.00 <1.00 <1.00 40.69 <1.00 <1.00 <1.00 <1.00 32.34 <1.00 <1.00 <1.00 <1.00 

Q2(1.61) 31.18 <1.00 <1.00 <1.00 <1.00 40.97 <1.00 <1.00 <1.00 <1.00 33.61 <1.00 <1.00 <1.00 <1.00 

Q3(2.00) 28.96 <1.00 <1.00 <1.00 <1.00 56.79 <1.00 <1.00 <1.00 <1.00 36.79 <1.00 <1.00 <1.00 <1.00 

Q4(2.40) 44.19 <1.00 <1.00 <1.00 1.34 44.68 <1.00 <1.00 <1.00 <1.00 44.68 <1.00 <1.00 <1.00 <1.00 

Q5(2.80) 44.73 <1.00 <1.00 <1.00 2.19 59 <1.00 <1.00 <1.00 1.21 43.34 <1.00 <1.00 <1.00 <1.00 

Q6(3.19) 51.22 <1.00 <1.00 <1.00 15.79 73.4 <1.00 <1.00 <1.00 6.4 54.3 <1.00 <1.00 <1.00 3.27 

Q7(3.60) 55.38 <1.00 <1.00 <1.00 21.52 64.49 <1.00 <1.00 <1.00 0.5 47.51 <1.00 <1.00 <1.00 1.21 

Q8(4.00) 59.45 <1.00 <1.00 <1.00 30.9 91.98 <1.00 <1.00 <1.00 29.1 64.79 <1.00 <1.00 <1.00 21.69 

Q9(4.39) 64.5 <1.00 <1.00 <1.00 42.78 94.77 <1.00 <1.00 <1.00 22.22 59.85 <1.00 <1.00 <1.00 7.61 

Q10(4.80) 71.17 <1.00 <1.00 1 77.71 95.69 <1.00 <1.00 <1.00 14.03 73.3 <1.00 <1.00 <1.00 58.62 

Q11(5.20) 73.46 <1.00 <1.00 <1.00 296.01 85.56 <1.00 <1.00 1 27.24 65.4 <1.00 <1.00 <1.00 215.29 

Q12(5.60) 91.85 <1.00 <1.00 1 709.83 112.05 <1.00 <1.00 <1.00 415.51 81.07 <1.00 <1.00 <1.00 268.06 

Q13(6.00) 90.44 <1.00 <1.00 <1.00 282.3 125.14 <1.00 <1.00 <1.00 78.36 82.96 <1.00 <1.00 <1.00 50.03 

Q14(6.40) 101.93 <1.00 <1.00 1 734.96 88.17 <1.00 <1.00 1 138.97 81.35 <1.00 <1.00 <1.00 563.25 

Q15(6.80) 97.88 <1.00 <1.00 6 2904.6 117.51 <1.00 <1.00 <1.00 1107.67 85.27 <1.00 <1.00 <1.00 337.47 

Q16(7.20) 103.54 <1.00 <1.00 1 N/A 131.08 <1.00 <1.00 <1.00 2027.33 93.01 <1.00 <1.00 <1.00 N/A 

Q17(7.60) 113.91 <1.00 <1.00 1 N/A 120.05 <1.00 <1.00 1 4448.88 86.91 <1.00 <1.00 1 N/A 

Q18(8.00) 109.68 <1.00 <1.00 1 N/A 150.98 <1.00 <1.00 1 N/A 108.13 <1.00 <1.00 <1.00 N/A 

Q19(8.40) 103.54 <1.00 <1.00 <1.00 N/A 140.52 <1.00 <1.00 <1.00 N/A 91.02 <1.00 <1.00 <1.00 N/A 

Q20(8.80) 126 <1.00 <1.00 1 N/A 153.29 <1.00 <1.00 1 N/A 116.79 <1.00 <1.00 2 N/A 

Q21(9.20) 111.61 <1.00 <1.00 <1.00 N/A 172.74 <1.00 <1.00 <1.00 N/A 116.64 <1.00 <1.00 <1.00 N/A 

Q22(9.60) 134.85 <1.00 <1.00 1 N/A 186.08 <1.00 <1.00 1 N/A 130.03 <1.00 <1.00 1 N/A 
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Table 3.4: CPU time and cost from 4 method s for N=5 

Code(∑di) 

N5L1 N5L2 N5L3 

Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIPII 

Q1(1.20) 50.65 <1.00 <1.00 <1.00 <1.00 50.15 <1.00 <1.00 <1.00 <1.00 34.45 <1.00 <1.00 <1.00 <1.00 

Q2(1.61) 56.52 <1.00 <1.00 <1.00 <1.00 71.81 <1.00 <1.00 <1.00 <1.00 51.09 <1.00 <1.00 <1.00 <1.00 

Q3(2.00) 62.28 <1.00 <1.00 <1.00 <1.00 65.81 <1.00 <1.00 <1.00 <1.00 39.96 <1.00 <1.00 <1.00 <1.00 

Q4(2.40) 67.14 <1.00 <1.00 <1.00 <1.00 69.25 <1.00 <1.00 <1.00 <1.00 42.6 <1.00 <1.00 <1.00 <1.00 

Q5(2.80) 82.48 <1.00 <1.00 <1.00 1.31 74.66 <1.00 <1.00 1.00 <1.00 51.37 1.00 1.00 1.00 <1.00 

Q6(3.19) 80.21 <1.00 <1.00 <1.00 5.56 82.32 <1.00 <1.00 1.00 7.58 55.49 1.00 1.00 <1.00 5.43 

Q7(3.60) 83.24 <1.00 <1.00 <1.00 2.6 72.98 <1.00 <1.00 1.00 <1.00 53.34 1.00 1.00 <1.00 1.4 

Q8(4.01) 91.21 <1.00 <1.00 <1.00 21.26 83.16 <1.00 <1.00 <1.00 4.79 55.78 1.00 1.00 <1.00 5.98 

Q9(4.40) 89.76 <1.00 <1.00 <1.00 9.07 83.11 <1.00 <1.00 1.00 18.16 67.79 1.00 1.00 <1.00 7.8 

Q10(4.79) 113.74 <1.00 <1.00 1.00 18.04 112.9 <1.00 <1.00 1.00 12.66 89.04 1.00 1.00 <1.00 43.38 

Q11(5.20) 111.43 <1.00 <1.00 <1.00 460.18 124.02 <1.00 <1.00 2.00 2002.15 80.15 1.00 1.00 1.00 1294.38 

Q12(5.60) 128.87 <1.00 <1.00 1.00 1846.23 131.03 <1.00 <1.00 1.00 1107.84 81.02 1.00 1.00 1.00 n/a 

Q13(6.00) 142.6 <1.00 <1.00 <1.00 n/a 128.55 <1.00 <1.00 3.00 n/a 99.3 1.00 1.00 3.00 n/a 

Q14(6.40) 142.91 <1.00 <1.00 1.00 n/a 136.15 <1.00 <1.00 3.00 n/a 88.18 1.00 1.00 2.00 n/a 

Q15(6.80) 154.53 <1.00 <1.00 6.00 n/a 135.41 <1.00 <1.00 3.00 n/a 88.1 1.00 1.00 3.00 n/a 

Q16(7.20) 154.88 <1.00 <1.00 1.00 n/a 146.94 <1.00 <1.00 2.00 n/a 107.12 1.00 1.00 2.00 n/a 

Q17(7.60) 150.68 <1.00 <1.00 1.00 n/a 151.16 <1.00 <1.00 7.00 n/a 109.74 1.00 1.00 6.00 n/a 

Q18(8.00) 168.08 <1.00 <1.00 1.00 n/a 144.29 1.00 1.00 4.00 n/a 89.35 1.00 1.00 4.00 n/a 

Q19(8.40) 171.52 <1.00 <1.00 <1.00 n/a 150.9 1.00 1.00 9.00 n/a 102.95 3.00 3.00 8.00 n/a 

Q20(8.80) 185.38 <1.00 <1.00 1.00 n/a 158.23 1.00 1.00 3.00 n/a 112.33 2.00 2.00 2.00 n/a 

Q21(9.20) 202 <1.00 <1.00 <1.00 n/a 199.82 2.00 2.00 6.00 n/a 106.51 2.00 2.00 5.00 n/a 

Q22(9.60) 191.02 <1.00 <1.00 1.00 n/a 198.8 2.00 2.00 11.00 n/a 123.49 4.00 2.00 10.00 n/a 



                                                                                               

                                                     

   

    

      

      

      

      

      

      

      

      

      

    

      

      

      

      

      

   

    

    

  

            

                                                                                  

                   

                                                           

                       

Supplier 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(x, y) (7, 7) (-2,0) (3 8) (-9, -1) (-2.3, 3) (3.4, 5) (-4, -1.5) (1.2, -0.8) (9, 3.5) (-6.5, -1.2) (3.4, -5) (-4 –4) (5.3, 3) (-3 –5) (6 –7) 

ai 0.35 0.19 0.42 0.34 0.25 0.31 0.37 0.21 0.55 0.16 0.18 0.24 0.31 0.54 0.32 
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Table 3.5: CPU time and cost from 4 methods for N=7 

Code(∑di) 

N7L1 N7L2 N7L3 

Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIPII 

Q1(1.20) 52.33 <1.00 <1.00 1. 2 59.17 1 1 <1.00 3 38.49 1 1 <1.00 2 

Q2(1.61) 54.47 <1.00 <1.00 1 5  74.88 1. 3 <1.00 8 39.21 5 4 <1.00 12 

Q3(2.00) 57.13 2 1 3 32 73.02 5 4 2 42 42.60 4 3 1 38 

Q4(2.40) 77.27 12 10 5 2310 81.14 7 4 5 2438 48.89 6 5 4 2167 

Q5(2.80) 71.86 7 5 6 5460 77.34 8 5 6 5210 45.95 6 4 7 4876 

Q6(3.19)  88.66 21 20 15 N/A 90.11 12 8 15 N/A 53.14 16 13 14 N/A 

Q7(3.60)  85.80 13 10 25 N/A 99.76 20 15 24 N/A 55.62 16 4 25 N/A 

Q8(4.01)  90.26 25 24 24 N/A 117.74 26 20 21 N/A 62.45 25 10 20 N/A 

Q9(4.40)  93.46 8 5 34 N/A 112.52 13 6 31 N/A 66.21 11 4 30 N/A 

Q10(4.79)  107.60 38 35 39 N/A 116.85 24 8 39 N/A 71.39 63 50 39 N/A 

Q11(5.20)  101.79 12 5 67 N/A 136.10 21 4 68 N/A 83.52 24 4 65 N/A 

Q12(5.60)  120.26 170 100 143 N/A 120.04 50 16 138 N/A 78.59 32 5 137 N/A 

Q13(6.00)  128.50 1340 50 73 N/A 114.39 780 30 77 N/A 61.92 520 10 77 N/A 

Q14(6.40)  128.15 2250 6 71 N/A 158.24 2139 5 69 N/A 91.37 1989 4 69 N/A 

Q15(6.80) 133.13 N/A 8 270 N/A 161.42 N/A 53 255 N/A 86.84 N/A 35 239 N/A 

Q16(7.20) 149.70 N/A 64 200 N/A 161.46 N/A 10 186 N/A 90.37 N/A 48 187 N/A 

Q17(7.60) 144.97 N/A 15 300 N/A 161.91 N/A 13 300 N/A 93.89 N/A 30 296 N/A 

Q18(8.00)  164.07 N/A 127 755 N/A 154.89 N/A 50 755 N/A 95.13 N/A 5 714 N/A 

Q19(8.40)  153.07 N/A 25 635 N/A 193.60 N/A 200 667 N/A 99.02 N/A 10 615 N/A 

Q20(8.80) 159.19 N/A 81 161 N/A 164.49 N/A 100 166 N/A 105.11 N/A 100 159 N/A 

Q21(9.20) 180.87 N/A 211 1331 N/A 188.13 N/A 299 1375 N/A 125.13 N/A 325 1364 N/A 

Q22(9.60)  175.68 N/A 452 2780 N/A 196.13 N/A 378 2888 N/A 116.02 N/A 521 2527 N/A 

Table 3.6: New instance for N=15 

For the biggest size of the problem with 9 suppliers below in Lee et al.’s paper, 



                                                                                               

                                                  

                 

                                        

Supplier 1 2 3 4 5 6 7 8 9 

Position (x, y) (4,-1) (5, 3) (-8, 5) (-3, -2) (5, 5) (2, 2) (9, -10) (8, -10) (-7, 2) 

demand ai 0.3 0.5 1.3 0.5 1.2 0.8 0.5 0.2 0.3 
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their algorithm takes about 4 hrs and 48 minutes to obtain the solution. Our 

algorithm just takes about 2 minutes to achieve the same optimal solution. 

Table 3.7: The case of N=9 

For our algorithm, the largest problem instance solved by TS2 within a 

reasonable time (not more than 3 hours) is 15 demand points by 5 vehicles. (See 

table 3.6), the optimal value is 100.99. 

For almost all algorithms in the literature, the computational time is sensitive to 

the total demand for a given number of demand points because the number of 

vehicle index combination. Our algorithm’s computational time doesn’t explode with 

the number of total required vehicles because of the vehicle index assignment valid 

equalities/inequalities. 

3.4 Remarks on the future work 

The Vehicle Routing Problem with split delivery is an NP-hard problem. It is 

even harder than the classic Vehicle Routing Problem [2] because of more 

combinations in its structure. For the VRP, there are abundant papers in the literature 

to study on the exact algorithms, or the lower bound, or the efficient valid 
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inequalities developed for the polyhedron of the VRP. Sometimes, even those cuts 

from the TSP are borrowed to apply on the VRP due to the internal relationship 

between these two well-known problems. As to the Split Delivery Vehicle Routing 

Problem, the research work is far behind that of the VRP. Dror and Trudeau propose 

a branch-and-cut algorithm based on their work on the VRP with some inequalities, 

but they do not present the complete results of the instances. Belenguer, Martinez 

and Mota provide a cutting-plane method to obtain good lower bound of the Split 

Delivery Vehicle Routing Problem. In fact, both methods above are branch-and-cut, 

namely, they solve a sub-problem of the original one and add the violated constraints 

found to re-solve the problem to make the solution feasible. However, neither of the 

algorithms gives the final optimal integer solution to the problem. Lee et al. try 

another way to utilize dynamic programming to solve the SDVRP. Although they 

prove that they find a finite action space which is equivalent to the infinite action 

space of the SDVRP, the inherited weakness of the dynamic programming will incur 

“the dimension disaster” when the size of the problem increase, recalling the biggest 

size of the instance solved by the Lee et al.’s approach in a reasonable time is 9. 

In this dissertation, we provide a Two-Stage exact algorithm to the Split Delivery 

Vehicle Routing Problem. This approach generalizes the classic cluster-first and 

routing-second heuristic algorithm to be an exact one. The technique we develop in 

this algorithm does make a bridge across the two sub-problems and let the first 

sub-problem have feedback from the second one for the first time. Therefore, due to 



                                                                                               

         

   

    

63 

plenty of the similar models exist; we may apply this technique to such kind of 

problems. 

Another contribution in this research work is the valid inequalities. In particular, 

the index assignment inequalities avoid a lot of replications because of identicalness 

of the vehicle in the fleet when we solve the problem. This scenario can be seen in 

other problems as well, for instance, a group of machines, aircrafts, or ships. Thus, 

we can apply the index fixing method to these problems to save computational time. 

We can also apply those valid inequalities to other type of vehicle routing problems. 

Finally, we still need to focus on looking for more efficient valid inequalities 

for the Two-Stage exact algorithm since there is still distance between the result we 

obtain and our expectation. For example, we may explore to strengthen the triangular 

inequalities to exclude more routes from consideration. 



                                                                                                  

  

 

    

   

 

CHAPTER IV 

A BRANCH-AND-PRICE APPROACH 

TO THE SPLIT DELIVERY VEHICLE 

ROUTING PROBLEM 

In this chapter, we study another type of the Split Delivery Vehicle Routing 

Problem: the number of vehicles in the fleet is a variable. This chapter consists of 

four sections. In Section 4.1, we formulate a column generation based split delivery 

vehicle routing problem. In Section 4.2, we propose a limit-search-tree-with-bound 

approach to the pricing problem. The branching strategy and the complete algorithm 

to the problem are provided in Section 4.3. The computational results and discussion 

on the problem are presented in Section 4.4. 

4.1 Column generation based formulation of the SDVRP 

In the Column Generation based formulation, each vehicle route is represented 

by a vector of a j . The element aij of vector aj is a continuous number and 

represents the demand picked up at demand point i by route aj. Each column aj has 

cost of cj, representing the shortest distance traveled to visit all demand points in the 

route. Since there are numerous feasible routes, only a finite set of feasible routes is 

64 
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chosen at the beginning and the restricted master problem (RMP) is constructed. A 

new route (column) with distance cost is generated by the sub-problem (pricing 

problem). Thus, the Column Generation based formulation of the SDVRP with the 

explicit pricing problem can be written as follows: 

RMP Min c xj j 
j 

s.t. a x  d , i 1,...,N; (4-1)ij j i 
j 

xj  0 or1 (forall j). 

Ω :  the set of fesible routes, 

x j : a binary var iable, 1 if route j is used, 0 otherwise; 

aij : amout picked up at demand point i on route j, 

c j : cost of route j, the shortest distance of  the arcs making 

up the route. 

The Pricing Problem: 

N N N 

Min  cij xij  iai 
i0 j0 i1 

 
N 

 
N 

s.t. x0 j  x j0  1; (4 - 2) 
j0 j0 

N N 

 xij   x ji  yi ; i  1,...N , (4 - 3) 
j1 j1 

a  d y ; i  1,...N , (4 - 4)i i i 

N 

 ai  Q; (4 - 5) 
i1 

u  u  (N  1)x  N ; i, j  1,...N , (4 - 6)i j ij 
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xij :1, if the vehicletravelsto demandpoint j from i directly; 

0, otherwise. i, j 1,...,N. 

yi :1, if the demandpoint is visitedby thevehicle;0, otherwise. 

i 1,...,N. 

ai : load pickedup at demandpoint i by thevehicle;i 1,...,N. 

ui :dummycontinous variablesfor subtour elimination; 

 i : the dual variablefor ith constraintin therestrictedmasterproblem. 

Constraints (4-2) and (4-3) are flow conservation constraints, while constraints 

(4-4) and (4-5) are supplier’s demand constraints and vehicle constraints, 

respectively. Constraints (4-6) are sub-tour elimination constraints. 

The column generation technique is effective to solve LP models with 

numerous variables (columns). Rather than using all variables of the LP model, the 

algorithm uses the pricing sub-problem to find the variables that have the lowest 

negative reduced cost and adds new columns to the master problem. When the 

objective function value of the pricing sub-problem is equal to or larger than 0, no 

new columns is generated, and thus the current solution to the master problem is the 

optimal solution to the LP relaxed RMP. Usually, the pricing problems are mixed 

integer-programming problems, such as knapsack problems in the cutting stock 

problem and the shortest path problem with resource constraints in the vehicle 

routing problem with time windows [18, 19, 24]. The optimal solution to the pricing 

problems may be obtained by certain exact solution methods. However, the pricing 

problem of a CVRP or an SDVRP is a capacitated prize-collecting Traveling 

Salesman Problem, which is an NP-hard problem [24]. Therefore, it is difficult to 
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obtain the optimal solution even for medium size pricing problems. From the view of 

graph theory, the problem is defined on a complete and undirected graph; dynamic 

algorithm for the shortest path problem with resource constraints cannot work well. 

Agarwal et al.[24] use a nonlinear programming that is analogous to a knapsack 

problem to formulate the pricing sub-problem of their capacitated vehicle routing 

problem, and they present a linear function method to obtain a lower bound of the 

nonlinear objective function. Sierksma et al. [10] adopt the similar idea to work on 

their pricing problem for the routing helicopters for crew exchange problem. They 

define a subset S of the total N platforms (demand points) and calculate the TSP and 

the knapsack problem within the subset S separately. Since the number of subsets S 

is 2N-1, they also provide a smart method that excludes a large amount of subsets 

from consideration. 

4.2 A new algorithm to the pricing sub-problem 

A limited-search-tree-with-bound algorithm is presented in this paper to solve 

the pricing problem of the column generation based formulation of the SDVRP. First, 

all demand points with nonzero i are sorted according to the non-increasing dual 

value  i as candidate nodes in the search tree. The depot (point 0) represents the 

root node. Each node has two values: the unit reduced cost for the master problem if 

the associated demands are picked up without changing the basis of the master 

problem and its position. Since the number of demand points in one feasible branch 
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is  t y pi c all y  s m all,  s u c h  as  si x  or  l ess,  a n  e x a ct  s ol uti o n  al g orit h m  f or  t h e  T S P  is 

p erf or m e d. A n o d e is f at h o m e d wit h o ut f urt h er br a n c hi n g w h e n it s atisfi es o n e of t h e 

f oll o wi n g t w o crit eri a: 1) t h e a c c u m ul at e d l o a d pi c k e d u p at t h e c urr e nt n o d e e x c e e ds 

t h e c a p a cit y Q of t h e v e hi cl e; 2) t h e l o w er b o u n d at t h e c urr e nt n o d e is l ar g er t h a n or 

e q u al t o t h e c urr e nt u p p er b o u n d. T h e l o w er b o u n d of a n o d e is c al c ul at e d b as e d o n 

t h e f oll o wi n g l e m m a. 

L e m m a 4. 1: L et k b e t h e c urr e nt n o d e , S ' b e t h e s et of t h e d e m a n d p oi nts s e ar c h e d 

b ef or e n o d e k, S '  S , (S is t h e s et of all n o d es i n t h e s e ar c h tr e e).  If n o d e k d o es 

n ot  vi ol at e  t h e  c a p a cit at e d  c o nstr ai nt  (i. e. 
i   Q ),  its  l o w er  b o u n d  is  ia 

i S ' { k }\ { 0 } 

d    a    (Q   a ) ,  w h er e d is  t h e  dist a n c e  of  t h e  s h ort est  t o ur 
r ( S ' { k })   i i  k 1   i r () 

i S ' { k }\ { 0 } i S ' { k }\ { 0 } 

t o visit t h e s et of d e m a n d p oi nts. 

Pr o of:  Si n c e  i , i   S ar e  s ort e d  o n  a  n o n-i n cr e asi n g  or d er  a n d  visiti n g  m or e 

d e m a n d p oi nts will n ot d e cr e as e t h e l e n gt h of t h e s h ort est t o ur visiti n g t h es e p oi nts, 

t h e  r e d u c e d  c ost  of  n o d e k is   ia i ,  a n d  t h e  hi g h est  p ot e nti al  r e d u c e d  c ost  of 
i S ' { k }\ { 0 } 

i n cl u di n g ot h er d e m a n d p oi nts is   (Q   a ) . �k  1 i 
i S ' { k }\ { 0 } 

A n o d e  is  f at h o m e d  if  its  l o w er  b o u n d  is  n ot  s m all er  t h a n  t h e  c urr e nt  u p p er 

b o u n d. T h e f oll o wi n g e x a m pl e is us e d t o s h o w h o w t h e al g orit h m w or ks. We ass u m e 

t h e  d u al  pri c es  fr o m  s ol vi n g  t h e  r estri ct e d  m ast er  pr o bl e m  i n  o n e  it er ati o n  ar e 

   1. 2,    0,    2. 5    0. 9,    0,  a n d    1. 7,  a n d  ar e  s ort e d  as1 2 3 4 5 6 

(  ,  ,  ,  ) i n a d es c e n di n g or d er, a n d t h eir c orr es p o n di n g d e m a n ds ar e a 3 = 0. 2 4 ,3 6 1 4 

a 6 = 0. 3 5 , a 1 = 0. 1 3 ,  a n d a 4 = 0. 6. T h e  pri ci n g  pr o bl e m  c a n  b e  s ol v e d  f oll o wi n g  t h e 



69 

procedures illustrated in Figure 4.1. 

Node0: 0( the depot) 

dist : 0 

Load picked: 0 

Obj: 0 

Node 1: 3 

dist: dr(0,3) 

Load picked: 0.24 

obj: obj1 

Node 2: 6 

dist: dr(0,3,6) 

Load picked: 0.35 

obj: obj2 

Node 3: 1 ( X ) 

dist: dr(0,3,6,1) 

Load picked: 0.13 

obj: obj3 

Node 4: 4 (X) 

Distance: dr(0,3,6,4) 

Load picked: 0.41 

obj : obj4 

…… 

                                                                                                 

    

   

    

       

 

 

 

Figure 4.1: Limited-search-tree-with-bound procedure 

A node in the search tree can be expressed by the following data structure: 

Typedef struct node{ 

int info; /* the index of this node in the sorted demand point sequence; 

int childinfo; /* the index of the next node generated by this node; 
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Set S’; /* the set of demand points traversed in the branch by this node; 

int cut; /* indicate whether the node below this node will be cut or not; 

double AccumLoad; /* the accumulated load picked up at the this node; 

double obj; /* reduced cost of the current node, which is calculated as 

dr(S '{info})  ai * i 
iS '{info}\{0} 

double dist; /* the distance of the shortest tour within the set S '{info} ; 

double load; /* the load picked up at this node; 

double lb; /* the lower bound of this node, which is calculated as stated in 

lemma 4.1; 

struct node * parlink; /* a pointer points to the node that generates this 

node; 

} NODE; 

At the beginning, the upper bound of the pricing problem is set to , and the 

lower bound of node 0 is set to   . Node 0 is branched to node 1 which represents 

demand point 3. Travel distance d is 2c , because its corresponding route isr (0,3) 03 

from the depot to demand point 3 and then back to the depot. Thus, the reduced cost 

is d  a . Since the reduced cost of node 1 is d  a , which is less than r (0,3) 1 3 r (0,3) 1 3 

 , the upper bound of the searching tree is updated to d (0,3) 1a3 . The lowerr 

bound of node 1 is dr (0,3) 1a3  2 (Q  a3 ) . The cumulated load picked up so far is 

less than the vehicle capacity, because the pickup at this node is a3=0.24. Since 

neither stop criterion satisfies, the search continues. The calculation at node 2 is 
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similar to that at node 1, and the search continues to move to node 3 by adding 

demand point 1. We assume at node 3 the present upper bound is less than the lower 

bound of node 3, node 3 is fathomed and no branches are created from node 3. The 

search is back to node 2 and then creates node 4 by adding demand point 4, which is 

just behind demand point 1 in the sorted sequence. At node 4, only a part of the 

demand of demand point 4 can be picked up since the vehicle is full. Therefore, node 

4 is fathomed, and the search goes back to its parent node (node 2). If there are other 

candidate demand points in the queue, another new node will be created. Otherwise, 

node 2 will be fathomed. This procedure repeats until all the nodes are fathomed. At 

the end, the node providing the optimal solution (the upper bound) provides a new 

column (the loads at demand points in this node) with its cost coefficient of the 

upper bound for the RMP. For instance, if the upper bound is obtained at node 4, the 

optimal value of the pricing problem is 

dr (0,3,6,4)  3a3  6a6  4 (Q  a3  a6 ) with the new column of 

(0,0,a ,Q  a  a ,0,a ) .3 3 6 6 

The limited-search-tree-with-bound algorithm has several advantages over a 

general optimization solver for solving the original pricing problem. First, it 

decomposes the sub-problem into smaller TSP problems to avoid the memory 

overflow problem caused during solving large-size MIP problems. Secondly, this 

method generates not only the column with the highest reduced cost but also some 

other columns with negative reduced value. Adding these columns together with the 
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optimal value column into the master problem may reduce the total number of 

iterations and may be better than only adding one column each time provided by the 

simplex based integer programming solver. Thirdly, using branch-and-price 

algorithm requires the column with nth negative reduced cost at depth n in the 

branch-and-bound tree that is beyond the capability of some algorithms for this 

problem. Finally, this algorithm can avoid columns that are not allowed to produce if 

they are already in the column pool. 

4.3 The branching scheme 

Column generation technique is developed to solve the large size linear 

programming (LP). In order to obtain the feasible (optimal) integer solution, column 

generation should be integrated in a branch and bound framework, and it is called the 

branch-and-price algorithm [36]. This combination of column generation and 

branch-and-bound is not as easy as just solving a column generation problem 

followed by branch and bound to find an integer solution. There are fundamental 

difficulties in applying column generation techniq9ues for linear programming in 

integer programming solution methods [2]. First, conventional integer programming 

branching on variables may not be effective because fixing variables can destroy the 

structure of the pricing problem. Second, solving these LPs to optimality may not be 

efficient, in which case different rules will apply for managing the branch-and-price 

tree. Finally, it might not be possible to construct the optimal integer solution (even a 
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feasible integer solution) with the given columns from column generation steps. 

Therefore, new columns should still be generated after branching in order to obtain 

the integer solutions. 

As M. Savelsbergh [22] has pointed out, branching strategies for 0-1 linear 

programs are based on fixing variables. There are two kinds of methods to perform 

variables fixing, one is a single variable fixing (variable dichotomy), the other is a 

set of variables fixing (GUB dichotomy). Their work indicates that fixing a single 

variable or fixing a set of variables in the standard formulation is equivalent to that 

in the disaggregated formulation, and the resulting branching scheme is compatible 

with the pricing problem. 

For the SDVRP, we adopt the following branching scheme: if fractional number 

of the variables xj for the Restricted Master Problem is obtained, then we set one of 

xj to be zero, which means the corresponding route will not considered in the future. 

Otherwise, fixing x j to 1 will require the route to be one of the candidate routes in 

the integer (optimal) solution, and those demand points whose load are fully picked 

up in this route are not allowed to be visited in the new routes generated by the 

pricing sub-problem. 

The above branching strategy specifies how the current set of feasible solutions 

is to be divided into two smaller subsets. It does not specify how the sub-problem to 

be solved next is to be selected. The selection strategy we use here is depth-first 

search. This search is usually applied to obtain feasible solutions fast. Experience 
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shows that feasible solutions are more likely to be found deep in the tree than at 

nodes near the root. It is necessary to have a good feasible solution to be able to 

prune nodes and thus to reduce the size of the branch-and-bound tree. 

4.4 Implementation and computational experiment 

In this chapter, we propose a branch-and-price algorithm to solve the Split 

Delivery Vehicle Routing Problem. The algorithm is written in c with the CPLEX 

9.0 Callable Library and run on a PC with 2.8GHz CPU, 512 MB of RAM. 

The whole algorithm is as follows: 

Step 1: Determine an initial feasible restricted master problem (RMP). 

Step 2: Initialize a column pool with the existing columns in the RMP. 

Step 3: Solve the current restricted master problem. 

Step 4: Generate one or more columns with negative reduced costs that are 

not in the column pool by calling the limited-search-tree-with-bound 

routine. Add the column(s) to the restricted master problem and to the 

column pool. Go to step 3. If no such column can be generated, go to 

step 5. 

Step 5: Get the optimal solution of the relaxation of the RMP, and initialize 

a root of a branch tree. Perform a proper branch scheme. In each node, 

repeat the procedures of step 1 to step 4 until the whole branch tree 

has been explored. Go to Step 6. 
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Step 6: Output the results. 

This branch-and-price algorithm has been tested on a set of 11 instances from 

the TSPLIB, and a set of 14 randomly generated instances provided by Belenguer et 

al. [10]. The vehicle capacity is always Q=160, and the demands are randomly 

generated within an interval expressed as a function of Q. Computational results are 

reported in Tables 4.1 and 4.2, compared with the results obtained by Belenguer et 

al.’s cutting-plane algorithm. The following columns summarize the results of both 

algorithms: 

LB: the lower bound, 

UB: the upper bound, 

GAP: the percentage of (UB-LB)/UB. 

K, K’, and K’’ represent the number of vehicles needed in the VRP, the instances 

of the SDVRP in the Belenguer et al.’s paper and in our method, respectively. 

As to “Ratio”, it is calculated by d(V)/KQ, where d(V) is the total demand and 

KQ is the total capacity. “Ratio” reflects how difficult an instance is. 

Observed from Table 4.1, about 50% of results obtained by the branch-and-price 

algorithm have a better lower bound. In Table 4.2, 6 out of 8 instances have better 

outcomes both in lower bound and upper bound (feasible integer solution). 

Belenguer et al. argue that the instances in Table 4.1 seem to be more difficult than 

that in Table 4.2. But according to the experience of our algorithm, we have the 

opposite conclusion. 



                                                                                                 

                       

                            

                         

                         

                       

                       

                         

                      

                     

                       

                       

                      

                    

       

                       

                              

                            

                            
                             

                          

                         

                          

                         

Method cutting-plane algorithm branch-and-price algorithm 

Instance K Q Ratio LB UB Gap LB UB Gap 

Eil22 4 6,000 0.94 375.0 375 0.0 373.6 376 0.6 

Eil23 3 4,500 0.75 569.0 569 0.0 564.3 608 7.2 

Eil30 3 4,500 0.94 508.0 510 0.39 507.2 515.3 1.6 

Eil33 4 8,000 0.92 833.0 835 0.24 830.2 873.4 4.9 

Eil51 5 160 0.97 511.6 521 1.81 507.6 558.5 9.1 

EilA76 10 140 0.97 782.7 832 5.92 800.3 900.7 11.1 

EilB76 14 100 0.97 937.5 1,023 8.36 965.7 1163.1 17.0 

EilC76 8 180 0.95 706.0 735 3.94 711.2 809.3 12.1 

EilD76 7 220 0.89 659.4 683 3.45 652.3 768.8 15.2 

EilA101 8 200 0.91 793.5 817 2.88 797.5 910.2 12.4 

EilB101 14 112 0.93 1,005.9 1,077 6.61 1013.9 1174.1 13.6 

Table 4.2: Computational results of the two algorithms on randomly generated instances 

Method cutting-plane algorithm branch-and-price algorithm 

Instance K Ratio K’ LB UB Gap K’’ LB UB Gap 

S51D1 3 0.84 3 454 458 0.87 3 449.9 513.9 12.5 

S51D2 9 0.98 9 676.6 726 6.80 9 556.7 1296.5 57.0 

S51D3 15 0.95 15 905.2 972 6.87 15 956 986 3.14 

S51D4 30 0.99 27 1,521 1,677 9.32 29 1623 1654 1.91 

S51D5 26 0.99 23 1,273 1,440 11.61 25 1416 1434 1.27 

S51D6 50 0.98 41 2,113 2,327 9.20 41 2270 2316 2.03 

S76D4 40 0.97 37 2,012 2,257 10.87 39 2178 2205 1.24 
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Table 4.1: Computational results on some TSPLIB instances 

This contradiction is due to the principle of the two algorithms. Belenguer et 

al.’s algorithm is more inclined to solving the TSP, which means it works well when 

the capacity of vehicle is large and the number of vehicle needed is small (less than 

6). This kind of instances in Table 4.2 is more like the UPS or FedEx routing 

problem. When the number of vehicles needed in the problem is larger than 6, their 

algorithm cannot obtain good results as previous ones. This type of instances is more 
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like truckload routing problems and our algorithm seems to be good at it. Therefore, 

the branch-and-price algorithm is competitive to the cutting-plane algorithm, and is 

promising in the instance where the number of vehicles needed is large. 



                                                                                                  

       

    

    

   

    

CHAPTER V 

CONCLUSION 

This chapter consists of two sections. Section 5.1 proposes the contribution 

of the research work in this dissertation. In Section 5.2, we discuss the future work 

associated with our current study. 

5.1 Contribution 

In this dissertation, we examine the Split Delivery Vehicle Routing Problem 

(SDVRP), which is a relaxed version of the classic Vehicle Routing Problem (VRP). 

This problem was first introduced by Dror and Trudeau over a decade ago. Like its 

parental problem, the SDVRP is an NP-hard problem, even “harder” than the VRP. 

There are two cases in the Split Delivery Vehicle Routing Problem. One is the 

number of vehicles in the fleet is a fixed number as the minimal required number of 

vehicles, while in the other case the vehicle number is a variable. In the literature, 

Dror and Trudeau [1, 8, 9], Sierksma and Tijssen [15] try to solve the SDVRP with a 

various number of vehicles and focus on minimizing the total travel distance, while 

Belenguer et al., Lee et al. cope with the Split Delivery Vehicle Routing Problem 

with the fixed number of vehicles [9, 10]. 

We study both scenarios of the SDVRP in this dissertation. For the SDVRP with 

78 



                                                                                                

    

 

79 

a fixed number of vehicles, we provide a cutting-plane based exact method called 

Two-Stage algorithm where the SDVRP is decomposed into two phases of clustering 

and routing. At the first stage, an assignment problem is resolved to attain clusters 

that cover all demand points and to obtain the initial lower bound for the whole 

problem; at the second stage, the minimal travel distance in each cluster is calculated 

as a classic Traveling Salesman Problem (TSP) to obtain the upper bound. We find a 

way to make these two phases to communicate mutually for the first time. This 

method yields a new exact approach to the Split Delivery Vehicle Routing Problem 

rather than the heuristic one in the literature. Furthermore, we develop a family of 

efficient valid inequalities to improve the performance of the algorithm significantly. 

For instance, in order to avoid the replication in the process of finding the optimal 

solution, we design an index assignment method. This method is a generalization of 

the variable fixing method which is mentioned in Dror and Trudeau’s paper [1]. 

We consider another scenario when the number of the vehicles is a variable in 

this dissertation as well. A column generation based branch-and-price algorithm is 

presented. Although this methodology is applied comprehensively, it is the first time 

to use this approach in this problem. We also develop a limit-search-tree-with-bound 

algorithm to solve the sub-problem in the column generation method. This 

sub-problem itself is an NP-hard problem, which is called capacitated 

prize-collecting traveling salesman problem. The algorithm we provide has several 

advantages over a general optimization solver, e.g., CPLEX. 
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The computational results indicate that both approaches are competitive to 

those in the literature. 

5.2 Future work 

In the future, we may extend the current work by the following two ways. First, 

we can do some research work to deepen and enrich the present algorithms for the 

Split Delivery Vehicle Routing Problem. For instance, for the algorithm provided by 

Belenguer et al., new facet-defining inequalities that can strengthen the formulation 

have not been used. Therefore, the results could be improved if we design 

identification procedures that could be added to the algorithm. 

Moreover, the heuristics in Chapter IV can be improved to produce better lower 

bound as well, and the information provided by such a good lower bound may be 

used to design new heuristic algorithms to obtain better upper bound. In fact, 

exploration on the efficient valid inequalities is also required in our Two-Stage exact 

algorithm. For example, we may try to improve the triangular inequalities to exclude 

more routes from consideration. For the branch-and-price approach, the final success 

of this approach depends heavily on the resolving of the sub-problem efficiently. 

We may also apply the techniques and ideas used in these algorithms to other 

fields. Lee et al. present a dynamic programming based exact algorithm for the Split 

Delivery Vehicle Routing Problem. In their research, they found that although the 

most natural such formulation for the SDVRP contains an uncountable infinite state 
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space, it is possible to modify the formulation to obtain a dynamic programming 

with a finite state space. This technique on the reduction of action space is inspiring, 

and we may apply it to other actual problems. In this dissertation, we develop an 

idea to build a bridge across the two sub-problems and let the first sub-problem have 

feedback from the second one for the first time in our Two-Stage algorithm, which 

makes the approach to be exact rather than heuristic. In fact, there are plenty of 

problems that can be decomposed into several phases. Therefore, we may try to 

apply this technique to these problems. Another technique we present is the index 

assignment inequalities. This class of inequalities avoids a lot of replications due to 

identicalness of the vehicle in the fleet when we solve the problem. The scenario 

occurs in other problems as well, for instance, a group of machines, aircrafts, or 

ships. Thus, we can apply the index fixing method to these problems to save a lot of 

computational time. We may lend those valid inequalities to other type of vehicle 

routing problems as well. 
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