
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-10-2005

A Study On The Split Delivery Vehicle Routing Problem A Study On The Split Delivery Vehicle Routing Problem

Kai Liu

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Liu, Kai, "A Study On The Split Delivery Vehicle Routing Problem" (2005). Theses and Dissertations. 312.
https://scholarsjunction.msstate.edu/td/312

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/312?utm_source=scholarsjunction.msstate.edu%2Ftd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

A STUDY ON THE SPLIT DELIVERY

VEHICLE ROUTING PROBLEM

By

Kai Liu

A Dissertation
Submitted to the Faculty of

Mississippi State University
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy
in Industrial Engineering

in the Department of Industrial Engineering

Mississippi State, Mississippi

December 2005

A STUDY ON THE SPLIT DELIVERY

VEHICLE ROUTING PROBLEM

By

Kai Liu

Approved:

Mingzhou Jin Royce O. Bowden
Assistant Professor of Department Professor and Head of Department
of Industrial Engineering of Industrial Engineering
(Director of Dissertation) (Committee Member)

Stanley F. Bullington Burak Eksioglu
Professor and Graduate Coordinator Assistant Professor of Department
of Department of Industrial of Industrial Engineering
Engineering (Committee Member)
(Committee Member)

Kirk Schulz Murat Erkoc
Dean of the College of Engineering Assistant Professor of Department

of Industrial Engineering
University of Miami
(Committee Member)

Name: Kai Liu

Date of Degree: December 10, 2005

Institution: Mississippi State University

Major Field: Industrial Engineering

Major Professor: Dr. Mingzhou Jin

Title of Study: A STUDY ON THE SPLIT DELIVERY VEHICLE
ROUTING PROBLEM

Pages in Study: 85

Candidate for the Degree of Doctor of Philosophy

This dissertation examines the Split Delivery Vehicle Routing Problem (SDVRP),

a relaxed version of classical capacitated vehicle routing problem (CVRP) in which

the demand of any client can be split among the vehicles that visit it.

We study both scenarios of the SDVRP in this dissertation. For the SDVRP with

a fixed number of the vehicles, we provide a Two-Stage algorithm. This approach is a

cutting-plane based exact method called Two-Stage algorithm in which the SDVRP is

decomposed into two stages of clustering and routing. At the first stage, an

assignment problem is solved to obtain some clusters that cover all demand points and

get the lower bound for the whole problem; at the second stage, the minimal travel

distance of each cluster is calculated as a traditional Traveling Salesman Problem

(TSP), and the upper bound is obtained. Adding the information obtained from the

second stage as new cuts into the first stage, we solve the first one again. This

procedure stops when there are no new cuts to be created from the second stage.

Several valid inequalities have been developed for the first stage to increase the

computational speed. A valid inequality is developed to completely solve the problem

caused by the index of vehicles. Another strong valid inequality is created to provide a

valid distance lower bound for each set of demand points. This algorithm can

significantly outperform other exact approaches for the SDVRP in the literature.

If the number of the vehicles in the SDVRP is a variable, we present a column

generation based branch and price algorithm. First, a restricted master problem (RMP)

is presented, which is composed of a finite set of feasible routes. Solving the linear

relaxation of the RMP, values of dual variables are thus obtained and passed to the

sub-problem, the pricing problem, to generate a new column to enter the base of the

RMP and solve the new RMP again. This procedure repeats until the objective

function value of the pricing problem is greater than or equal to zero (for minimum

problem). In order to get the integer feasible (optimal) solution, a branch and bound

algorithm is then performed. Since after branching, it is not guaranteed that the

possible favorable column will appear in the master problem. Therefore, the column

generation is performed again in each node after branching. The computational results

indicate this approach is promising in solving the SDVRP in which the number of the

vehicles is not fixed.

DEDICATION

I would like to dedicate this research to my parents, and all my friends.

ii

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Dr. Mingzhou Jin, my dissertation

director, for his magnanimity in expending time and effort to guide and assist me

throughout the dissertation progress. Expressed appreciation is also due to the other

members of my dissertation committee, namely, Dr. Royce O. Bowden, Dr. Stanley F.

Bullington, Dr. Burak Eksioglu and Dr. Murat Erkoc, for the invaluable aid and

direction provided by them. Finally, I would like to thank my family and my girlfriend,

Miss Zheng Gu. Their encouragement and support are great power to make me to

accomplish this dissertation.

iii

TABLE OF CONTENTS

Page

DEDICATION..ii

ACKNOWLEDGEMENT....................................... iii
LIST OF TABLES .. vi

LIST OF FIGURES ...vii

CHAPTER

I. INTRODUCTION ..2

1.1 Introduction ..2
1.2 Objective and significance of the study........................5
1.3 Research Methodology...................................5
1.4 Organization of Dissertation7

II. LITERATURE REVIEW.....................................8

2.1 Review on the Split Delivery Vehicle Routing Problem.............8
2.1.1 Properties of the optimal SDVRP solutions9
2.1.2 Formulations and algorithms for the SDVRP9
2.1.3 Applications on the Split Delivery Vehicle Routing Problem..... 16

2.2 Review on the Column Generation technique................... 23
2.2.1 Outline of the Column Generation technique 23
2.2.2 Formulations of the Master Problem 27
2.2.3 Discussion on the pricing problem 32
2.2.4 Tailing-Off effect 35
2.2.5 Integer Programs and column generation 36

III. A TWO-STAGE EXACT ALGORITHM TO THE SPLIT DELIVERY

VEHICLE ROUTING PROBLEM WITH VALID INEQUALITIES ... 43

3.1 A Two-Stage Formulation for the SDVRP 43
3.2 Valid inequalities for Two-Stage algorithm to the SDVRP 47
3.3 Numerical experiments.................................. 55
3.4 Remarks on the future work 61

iv

CHAPTER Page

IV. A BRANCH-AND-PRICE APPROACH TO THE SPLIT DELIVERY
VEHICLE ROUTING PROBLEM 65

4.1 Column generation based formulation of the SDVRP 65
4.2 A new algorithm to the pricing sub-problem 67
4.3 The branching scheme 72
4.4 Implementation and computational experiment 74

V. CONCLUSION .. 78

5.1 Contribution ... 78
5.2 Future work ... 80

REFERENCES... 82

v

LIST OF TABLES

TABLE Page

2.1 Some application of integer programming column generation.......... 25

3.1 Geographic layouts for the problem instances 56

3.2 Demand Vectors .. 57

3.3 CPU time and Cost from 4 methods for N=4 58

3.4 CPU time and cost from 4 method s for N=5 59

3.5 CPU time and cost from 4 methods for N=7...................... 60

3.6 New instance for N=15.................................... 61

3.7 The case of N=9 .. 61

4.1 Computational results on some TSPLIB instances.................. 76

4.2 Computational results of the two algorithms on randomly
generated instances..................................... 76

vi

LIST OF FIGURES

FIGURE Page

1.1 An example of VRP routes3

1.2 An example of SDVRP routes3

4.1 Limited-search-tree-with-bound procedure 69

vii

CHAPTER I

INTRODUCTION

This chapter consists of four sections. In Section 1.1, we introduce the

definition of the Vehicle Routing Problem (VRP) and the Split Delivery Vehicle

Routing Problem (SDVRP). In Section 1.2, we illustrate the significance and

objective of this research. In Section 1.3, we present the methodology of this study.

Finally, we propose the organization of this dissertation in Section 1.4.

1.1 Introduction

The Vehicle Routing Problem (VRP) is a famous problem in the field of

combinatorial optimization. It is defined on a graph characterized by G=(V, E),

where V = {0, 1,…, N} is a set of vertices corresponding to locations, such as cities,

suppliers, customers, etc., and E  {(i, j) : i, j V , i  j} is the edge set. Vertex 0

represents a depot at which a fleet of m vehicles are based. Generally, m can be a

 
fixed number or a variable that is defined on an interval[m,m], where1 m  m  N ,

 

and vehicles may have equal or different capacities. In this dissertation, the vehicles

are assumed to have a same capacity of Q. Every vertex i of V\{0} has a positive

demand di  Q , and every edge (i, j) has a positive distance or travel cost cij . The

VRP tries to minimize the total cost with a set of vehicle routes. The routes should

1

2

satisfy the following conditions:

(1) all vehicles should start and end at the depot;

(2) every demand point is visited exactly once; and

(3) the total demand of any route does not exceed the capacity of the

vehicle assigned to the route.

The VRP is known to be NP-hard [1], and there is abundant literature on the

VRP and related topics [2, 3, 4, 5, 6, 7]. In this dissertation, we propose to study the

Split Delivery Vehicle Routing Problem (SDVRP), which is introduced by Dror and

Trudeau [8, 9]. The SDVRP is a relaxation of the VRP without condition (2). In

other words, the demand of a point can be split among several vehicles. Furthermore,

the assumption of di  Q is not necessary for the SDVRP. Dror and Trudeau [8]

demonstrate allowing split delivery can result in significant savings both in the total

travel distance and the number of used vehicles. In general, when a customer

demand point’s demand exceeds 10% of the vehicle capacity, the cost of the optimal

solution for an SDVRP is considerably lower than that of the optimal solution for its

corresponding VRP. The SDVRP is still NP-hard [8]. Figure 1.1 and 1.2 illustrate

examples for the VRP and the SDVRP.

3

Figure 1.1: An example of VRP routes

Figure 1.2: An example of SDVRP routes.

Various mathematical formulations of the SDVRP exist in the literature. Dror

and Trudeau [8] present the following model:

Notation:

4

C : The distance ("cost") between demand points i and j.ij

di : the demand at point i.

Qk :The capacity of the kth vehicle.

xij
k :1if the kth vehicle travels directly from point i to j; 0 otherwise.

yik :The fraction of the ith point demand delivered by the kth vehicle.

U :The number of vehicles in the fleet.

S :The set of all cycles on the set V which include the depot.

N N U
kP1: min z C xij ij

i0 j 0 v1

s.t.
U N

k xij  1, j  0,..., N (1-1)
k 1 i0


N


N

xip
k  xk

pi  0 p  0,..., N ;k  1,...,U (1- 2)
i0 j 0

U

 yik  1 i  1,..., N (1-3)
k 1

N

di yik  Qk k  1,...,U (1- 4)
i1


N

yik  xk
ji i  1,..., N ;k 1,...,U (1-5)

j 0

X  S (1- 6)

Constraints (1-1) guarantee that each demand point is at least visited once.

Constraints (1-2) are the flow conservation constraints. Constraints (1-3) insure that

each point will receive its full demand. Constraints (1-4) are vehicle capacity

constraints. Constraints (1-5) enforce that demand point i can be serviced only by a

vehicle visiting it. The final constraints (1-6) are general sub-tour elimination

constraints.

5

We make the following assumptions for the study:

1) The distances are symmetric, i.e., C  C for all i, j , and satisfy the basicij ji

triangular inequality.

2) The vehicles are identical with the same capacity of Q.

3) The number of the vehicles in the fleet is sufficient to satisfy the total

demand of the clients.

1.2 Objective and significance of the study

This research will focus on (1) developing a new exact method for the split

delivery vehicle routing problem; and (2) applying the branch -and-price approach to

obtain a good feasible integer (optimal) solution to the SDVRP. A

limited-search-tree-with-bound algorithm is developed to solve the sub-problem of

the column generation based formulation of the SDVRP.

Though plenty of papers have made contribution to solving the SDVRP, the

research on the SDVRP is significantly behind that on the VRP. The existing

algorithms cannot even solve medium-size problems well. The proposed research

tries to develop new methodologies to solve the SDVRP. Based on the numerical

experiments, these two proposed approaches are computationally competitive to the

existing algorithms.

1.3 Research Methodology

The following steps are proposed to accomplish the objectives of this research:

6

1) Model construction: Two mathematical programming formulations of the

SDVRP are presented in this dissertation. The first formulation assumes the number

of used vehicles is fixed, while the second one relaxes this assumption. Different

models have a large impact on the algorithm development.

2) Algorithm development: An algorithm can be defined as a precise rule (or a

set of rules) specifying how to solve a problem. Modern computation depends

heavily on computer tools (hardware and software) to solve large and complicated

problems. Algorithms are developed to provide computers instructions to solve the

problem step by step. Both the computational time and the solution quality are

critical in algorithm development. Sometimes, some tradeoff must be made.

3) Data generation: Testing data can be collected from the practice or be

generated randomly. In this dissertation, all data are borrowed from published papers

in which the SDVRP data are generated randomly in order to make the numerical

experiment result comparable.

4) Coding: In this dissertation, all algorithms are realized in C. The callable

library of CPLEX 9.0 is used to solve linear programming models and simple

sub-problems.

5) Result comparison and analysis: Numerical experiment results will be

compared to the published papers regarding the solution quality and the

computational time. Examples with optimal solutions in the published papers can

help verify the proposed models and algorithms. Only computational speed is the

7

concern for these examples.

1.4 Organization of Dissertation

The structure of this dissertation is as follows. Chapter II introduces the literature

review on the Split Delivery Vehicle Routing Problem and the column generation

technique. Chapter III presents a Two-Stage exact approach to the SDVRP with

efficient valid inequalities. In Chapter IV, we propose a column generation based

branch-and-price method to the SDVRP when the number of vehicles in the fleet is a

variable. Chapter V states the conclusion of this research and possible future

extension.

CHAPTER II

LITERATURE REVIEW

This chapter includes two sections. In Section 2.1, we provide the literature

review on the Split Delivery Vehicle Routing Problem with some variation. In

Section 2.2, we present the literature review on the column generation technique and

the branch-and-price method.

2.1 Review on the Split Delivery Vehicle Routing Problem

Dror and Trudeau introduce the SDVRP [8], where they relax one of the

conditions of the Vehicle Routing Problem (VRP) and allow more than one vehicle

to visit one demand point. They claim that allowing split delivery can result in

significant savings both in the total travel distance and the number of vehicles

required. In general, when a customer’s demand exceeds 10% of the vehicle capacity,

the cost of the optimal solution for an SDVRP is considerably lower than that of the

optimal solution for its corresponding VRP.

Since then, the SDVRP has received more attention for the last decade both in

theoretical analysis and practical application. The theoretical work includes the

concept development and the optimality property analysis for the SDVRP [1, 8, 9].

8

9

Dror and Trudeau first present the concept of the Split Delivery Vehicle Routing

Problem, and propose algorithms to solve this problem. They also develop some

valid efficient inequalities based on their formulation of the SDVRP, and study the

properties of optimal solution for the Split Delivery Vehicle Routing Problem.

2.1.1 Properties of the optimal SDVRP solutions

Theorem 2.1: If the { Cij } matrix satisfy the triangular inequality then no two routes

in the optimal solution of the SDVRP can have more than one split demand point in

common.

Definition 2.1: Given k demand points v1, v2,…,vk and k routes. Route 1 includes the

points v1, v2; route 2 includes points v2, v3; … ; route k-1 includes points vk-1, vk, and

route k includes points vk, v1 (this implies that the points v1, v2,…, vk receive split

deliveries by the k respective routes and other routes as possible). This subset of

demand points {vi} (i=1,…,k) is called a k-split cycle.

Thus, a generalization of Theorem 2.1 can be presented as follows:

Lemma 2.1: if the {Cij} matrix satisfies the triangular inequality then there is no

k-split cycle (for any k) in the optimal solution to problem.

2.1.2 Formulations and algorithms for the SDVRP

In the literature, several formulations and algorithms for the Split Delivery

Vehicle Routing Problem are proposed. Dror and Trudeau present an integer linear

programming formulation including new families of valid inequalities, as well as an

10

exact constraint relaxation algorithm for the SDVRP. The formulation is given in

Chapter I, and here we restate the valid inequalities and the algorithm without proof.

Proposition 2.1 (Sub-tour elimination inequalities)

U

The constraints   xijk   di V (S) (S  N \{0};| S | 2) (2-1)
k 1i , jS iS

are equivalent to constrains (1-6) and are therefore valid inequalities for the SDVRP.

Proposition 2.2 If C  {cij } satisfies the triangle inequality, the constraints

U

  xij
k | S | 1 (S  N \{0};| S | 2) (2-2)

k 1i , jS

are valid inequalities for the SDVRP.

Proposition 2.3 There always exists an optimal SDVRP solution in which the

number of positive k variables is at most equal to n+2m-1. (In the case of strictxij

triangle inequality, the number of positive variables is at most n+2m-1 in any optimal

solution.)

Proposition 2.4 (Variable fixing) When all vehicles have the same capacity, it is valid

to have the following constraint:

  1 (2-3)xi* j1
j0

Proposition 2.5 (Fractional cycle elimination constraints I) The constraints

 xk  ( xk) /(| S | 1) (S  N \{0};| S | 2;k  1,...,U) (2-4)ij ij
iS , jS i, jS

are valid inequalities for the SDVRP.

Proposition 2.6 (Fractional cycle elimination constraints II) The constraints

xk   xk (i, j  N \{0};k 1,...,U) (2-5)ij lj
li

are valid inequalities for the SDVRP.

11

The scheme of the algorithm is that: using heuristics to obtain one upper bound

of the problem, and solving the LP relaxation of the problem with the valid

inequalities except the sub-tour elimination constraints to attain the lower bound. If

the solution to the lower bound is feasible, then the optimum is reached. If it is

infeasible, we check for the constraint violations. If some violations are identified,

we introduce a subset of all violated constraints to the original LP relaxation of the

problem, and solve it again. When no violated constraints are identified, the

optimum of the relaxation has been reached. Therefore, we turn to the procedure of

branch and bound to obtain the optimal integer solution.

Since the authors mainly focus on the efficiency of the valid inequality for the

LP relaxation problem, the instances of the SDVRP provided by them are not solved

completely. Thus, the computational experiments only display the results of the root

of the search tree. They claim that the various constraints developed for this problem

are quite successful in reducing the gap between the lower and upper bounds at the

root of the search according to the computational results.

Belenguer, Martinez and Mota provide a different formulation from Dror’s

since the number of vehicle in the fleet of the SDVRP they study is fixed [10]. They

conduct research of the polyhedral property in their paper, and develop some valid

inequalities for their cutting-plane algorithm as well. The formulation proposed by

them is as follows:

12

Min  c xij ij
i j, E

s.t. x((0)  2K and even,

x( i())  2 and even, i V \ {0}, (2-7)

 d S() 
x( S())  2 Q 

S  V \ {0}


2 | S | n 1,
xij  0 and integer  i(, j)  E

: the number of times that edge (i, j) is used in a feasible solutionxij

 to the SDVRP.

K : the number of the vehicles in the fleet, equals to d (V) / Q.
E : the set of edges in the Graph.

d (V) : total demand in V .

They prove that every incidence vector of a feasible solution to the SDVRP

satisfied the above formulation, RSDVRP, but the reciprocal is not true. Therefore, they

develop a cutting-plane algorithm to obtain the optimal solution to the RSDVRP, which

is the lower bound of the corresponding SDVRP. The principle of the algorithm is

similar as that presented by Dror and Trudeau. The detail of the algorithm is listed

below:

Step 1: Init. Let j:=0 and let PLj be the following linear problem:

Min ct x

d (V)
s.t. x( (0))  2 , Q (2-8) 

x( (i))  2, i  1,...,n,

xe  0, e  E.

Step 2: Solving PLj. Solving problem PLj using a linear programming code. Let

xj be the optimal solution.

Step 3: Identification of violated constraints.

Step 3.1 If any violated constraint, among those in RSDVRP, can be found

13

on G(xj), the graph induced by the edges such that xj>0, go to

Step 4.

Step 3.2 If no violated generalized capacity constraints can be found on

G(xj), STOP.

Step 4: Updating PLj. Add to the set of constraints of PLj the constraints found

in the previous step. Let PLj+1 be the resulting problem and let j:=j+1.

Go to Step 2.

The authors use five procedures to identify the violated constraints. First three

procedures are heuristic algorithms to identify the sub-tour, connected components

and capacity constraints respectively. When they all fail to find a violated constraint,

exact algorithms of identification are applied in procedure four and five.

Their method obtains good lower bounds and even optimal solutions to some

instances. However, it cannot guarantee to obtain an optimal solution even with an

infinite amount of time.

Lee et al. develop a dynamic programming (DP) algorithm for the SDVRP

[11]. The DP has an infinite number of states and actions. They show that there is an

equivalent finite action spaces DP for any given initial condition. They use a

best-first shortest path search procedure in the direct network associated with the

finite state DP to solve the SDVRP.

Their dynamic programming based formulation for the SDVRP is as follows:

14

N : the number of demand point;

: the demand at the demand point i,i  1,..., N ;di

d  (d ,..., d) R N : the demand vector;1 N 

r {0,1}N : the route in the solution.

ri  1if and only if the vehicle following this

route visits the ith demand point.

c(r) : total cost of executing route r.

R : the set of all feasible routes.

z : R 
N  R  : the function mapping each demand vector d  R 

N

 to the cost of optimal routing, z(d).

(E , I) :decison space, where E  {1,..., N} is the set of demand point

visited and emptied, and I is the set of demand point visited, but

not emptied, by the vehicle.

wj  R N : load vector for vehicle j.

r(w) {0,1}N such that ri (w)  1( 0) if and only if wi  0( 0)

The finite action space for a given state n is:

A(n)  {(E, I) : nE 1, I  or | I | 1,nEI 1,r(E, I) R} (2-9)

The recursive equation for the DP is:

z(n)  min {c(E, I)  z(n'(n, (E, I)))}, n  Z N ,n  0(E ,I)A(n)  (2-10)
z(0)  0

The state n' is a successor of state n if and only if the state n' can be attained

by executing a feasible action at state n.

They choose a forward-search shortest path algorithm to solve the DP problem,

since this approach can avoid considering states that are not reachable from the

initial state n(d). The algorithm utilizes a guidance function f(.) to select which of the

nodes generated to explore at the next step of the search and hence to direct the

search to the most promising alternative to find a good solution in its early stage.

15

The definition function for node n is:

f (n)  g(n)  h(n) (2-11)

where g(n) is the best currently known path from the start node s to the node n, with

g(s)=0, and h(n) is an estimate of the cost of the optimal path from the candidate

node n to the destination with h(t)=0. The set of all nodes that have been generated

but not yet explored is referred to as “OPEN”, and the set of nodes have been

expanded as “CLOSED”.

The outline of the algorithm is as follows:

1. Put the start node s into OPEN; set g(s)=0;

2. If OPEN is empty, exit with failure.

3. Remove from OPEN a node n for which f is minimized, and place it in

CLOSED.

4. If n is the end node, exit successfully with the solution obtained by tracing

back the pointers from n to s.

5. Otherwise expand n, generating all its successors, and attach to them

pointers back to n. For every successor n’ of n:

(a) If n’ is not already in OPEN or CLOSED, compute the estimate h(n’),

and calculate f(n’)=g(n’)+h(n’) with g(n’)=g(n)+c(n,n’), where c(n,n’) is

the cost of the arc from n to n’.

(b) If n’ is already in OPEN or CLOSED, direct its pointers along the path

yielding the lowest g(n’).

16

(c) If n’ required pointer adjustment and was found in CLOSED, reopen it.

6. Go to Step 2.

The main goal of Lee et al.’s work is to provide the basic idea of the a DP-based

approach for solving the SDVRP to optimality, and its main contribution is the

theoretical foundation of this approach, since current implementation of the

algorithm is unable to handle realistic, large instances of the SDVRP. (The largest

problem that they solved in a reasonable amount of time has 9 demand points and 6

vehicles.)

Frizzell and Giffin study an extension of the Split Delivery Vehicle Routing

Problem where customers may have a time windows for their delivery [12, 13]. They

develop a construction heuristic that uses a look-ahead approach to solve the SDVRP

with time windows. The main objective of the construction heuristic is to minimize

total time taken, with the possibility of a relatively large number of customers

receiving split deliveries. In order to improve the performance of the heuristic, two

other heuristics are applied as well. One attempts to move customers within routes,

while the other exchanges customers between routes.

2.1.3 Applications on the Split Delivery Vehicle Routing Problem

In the application of the SDVRP, Mullaseril et al. use a heuristic algorithm for a

livestock feed distribution problem encountered on a cattle ranch in Arizona [14].

The problem is a collection of split-delivery capacitated rural postman problem with

17

time windows on arcs, and is described as follows:

The livestock ranch is represented as a connected mixed graph G=(V,A) where

the set of edges and arcs A corresponds to road segments in front of the pens(used

for delivery feed) and service road segments(for non-delivery travel), and the nodes

V represent intersection/turning points in the service roads or boundaries between

adjacent pens. For each type of feed, there is a subset of arcs R that requires traversal,

corresponding to the pens that require delivery of that particular feed. The required

set of arcs R is directed because of the design of the delivery trucks. The arcs and

edges representing service roads may be undirected, allowing two-way traffic, or

directed one-way traffic only. Other direct arcs may represent the alleys in front of

the rows of pens when traversed in the opposite direction to feed delivery.

When there is a non-negative demand associated with the required arcs R, and a

upper bound on the sum of demands delivered on a route (that is, a cycle in the graph

containing the depot node), the problem of finding collection of routes that covers

the demand on the required arcs R and meets the capacity bounds for each route is

called a Capacitated Rural Postman Problem (CRPP).

In their study, they allow each required arc to be serviced more than one route.

The solution strategy they adopt is an adaptation of the heuristics proposed for split

delivery for node routing problems explored by Dror and Trudeau. First, they

generate feasible solutions for the corresponding routing problem where split

deliveries are not allowed, and then apply heuristics to produce and improve split

18

delivery solutions.

The overall solution approach includes four modules:

(i) Generating a non-split feasible solution.

In this module, two heuristics, the extended path-scan heuristic and

the modified augment-merge heuristic, are used to generate a set of

feasible routes. These two heuristic algorithms are first tests on the

CRPP with time windows without split delivery by Dror, Leung and

Mullaseril. The first heuristic algorithm constructs a feasible route

one at a time until the demands of all arcs in the set of required arcs

are met. In the extended augment-merge heuristic, possible merging

of routes that is feasible in both capacity and time and also results in

net overall savings are searched. This process stops when no merge

steps are possible.

(ii) Improving the solution by arc interchange.

The arc-swapping improvement procedure is an adaptation to that for

the CRPP to include time windows and is run on all feasible solutions

obtained, both with and without split deliveries.

(iii) Generating split-delivery routes by k-split generation.

In this module, the authors check to see whether the delivery made to

an arc can be split across k other candidate routes in such a way that

the highest savings is obtained. First, 2-split generation is analyzed,

19

and they generalize to k-split (k>2) candidate routes. One thing needs

to be concerned in this procedure is where to insert the delivery to arc

(i, j) in the sequence of required arcs that make up the routes. The

authors choose the position for insertion to be the one that obtains the

highest savings in distance.

(iv) Modifying the solution by route addition.

They investigate arcs whose demand is split among several routes to

see if consolidating them into one new route will realize a net savings

in distance traversed. A k-route addition, which means taking an arc

that has a split deliveries out of the various routes it is on and creating

a separate route to make this delivery, is performed. In their

implementation of this procedure, k=2 or 3.

The authors test this heuristic algorithm on the data from practice and achieve

improvement over 10% of total distance. They also conclude that better results are

obtained without time window constraints than that with time window constraints.

Another application of the SDVRP in literature is proposed by Sierksma and

Tijssen [15]. The problem they deal with is to determine a fight schedule for

helicopters to off-shore platform locations for exchanging crew people employed on

these platforms. The helicopters carrying new people fly from the airport to the

platforms for gas production in the North Sea and leaving the platforms or return to

the airport with the leaving people. The only difference between their problem and

20

the SDVRP is that there is a range limit for the helicopters due to the quantity of fuel

they carry, and no such constraint is applied to the vehicles in the SDVRP. There are

51 platforms and 27 seats in the helicopter. The authors provide the coordinate of

each platform, but they do not mention the number of people at each platform for

exchanging in their paper.

They form a linear integer programming model for their problem. The

following notation is used in the model:

N  the numberof platforms

i  platformlocationindex,with i 1,...,N;

P  platformwithindex ;i i

NF  the numberof feasiblehelicopterflight;

f  theflightindex,with f 1,...,N f ;

x f  thenumberof timesflight f is executed;

Di  the numberof demandedcrewexchangefor platformPi ;

aif  the numberof crewexchangeson platformPi duringflight f ;

d f  thecost of executingflight f once;

C  the numberof availableseats,calledthecapacity,of thehelicopters.

The model they present is as follows:

N

(FF) min 
F

d f x f
f 1

N

s.t. 
F

a x  D for i  1,..., N , (2-12)if f i
f 1

x f  0, and integer for f  1,..., N F .

In the present model, the decision variables correspond to feasible flights, so

they do not include explicit flight feasible constraints into this model. Since NF is

generally very large, the usual Simplex Method cannot be applied on the relaxation

of model (FF) in which the variables do not need to be integers. Finding an entering

21

column for the current basis of the finite set of feasible routes will utilize the

technique called “column generation” (We will illustrate this concept in section 2.2

in detail.). The authors use the following formulation to generate the entering

column:

N

(CG) min (d  y a)f i i
i1

N

s.t. ai  C,
i1

0  ai  Di , for i  1,..., N. (2-13)

d f  R, d f being the length of a shortest route of

 the flight f visiting the platforms Pi with ai  0

Model CG is a nonlinear model, because the variable d f is dependent on the

nonzero values of ai . In fact, d f is defined as the total traveled distance of a

shortest flight from the airport to all platforms within the route and back to the

airport. In order to solve the model (CG), they distinguish the following procedures:

(1) Formulate and solve a Traveling Salesman Problem and a Knapsack Problem

for a fixed platform subset S;

(2) Generate subsets S of the set of all platforms for which (1) has to be solved,

and discard those subsets that cannot produce an optimal solution.

Given a subset S of the set of all platforms, the objective function of model (CG)

is rewritten as follows:

c(S)  d  (max a y), (2-14)f (S) i i
iS

With d is the length of a shortest flight visiting all platforms in S and isf (S)

22

solved through procedure (1). For those variables ai in (CG), they are obtained by

solving the following Knapsack Problem (KPs):

(KPs) max  yiai
iS

s.t. ai  C, (2-15)
iS

0  ai  Di for i  S

They utilize classic “greedy” algorithm to solve the KPs.

In summary, Model (CG) is solved by considering, successively all possible

subsets S, and solving each S the Knapsack Problem (KPs). If number of platforms

in S small, this procedure works fast. If it is large, the procedure is time consuming.

They present an advanced algorithm that excludes a large amount of subsets S from

consideration.

First, they introduce a concept of lex-superset. A subset S2 is called a

lex-superset of a platform subset S1, if S  S with S  S and the platform1 2 1 2

labels of S2\S1 are larger than the largest platform label in S1; S2 is generated after S1,

by adding one or more platforms to S1 with lower dual values. For example, {P1, P2,

P3} is a lex-superset of {P1}, but not of {P2}.

Then the following steps are taken to generate “clever” subsets of platforms.

1) All platforms are sorted according to non-increasing yi and relabeled

accordingly.

2) Exceeding the range. If a platform subset S satisfies d)  R , then S and f (S

all its lex-supersets are discarded from consideration for Traveling

23

Salesman Tour.

3) Exceeding the capacity. If the current S is a proper subset of P, S  P , and


D  C , then all lex-supersets of S are excluded form consideration ii S

for (KPs).

4) Exceeding a lower bound. To find out whether any of the lex-supersets of

S will give a better solution to (CG) than the best solution found so far, a

lower bound for (CG) is calculated for all lex-supersets of S.

The result obtained through the models and algorithms above is a lower bound

for the original problem. In order to have a feasible solution (upper bound) to the

problem, the authors propose several methods. The first one is a rounding procedure:

they enforce fractional number of the variables to be one or zero in accordance with

some rules to keep feasibility of the solution. The other algorithms they provide in

the paper are heuristics including Cluster-and-Route algorithm and Free-Tree

Heuristics. Computational experiments are based on these algorithms with the sweep

algorithm and Clark-Wright algorithm as well. The results show that no algorithm

outperforms others in all instances of the problem.

2.2 Review on the Column Generation technique

2.2.1 Outline of the Column Generation technique

Since Ford and Fulkerson [16] first suggested deal only implicitly with the

variables of a multi-commodity flow problem over four decades ago, great progress

24

has been made in this research field. Dantzig and Wolfe [17] utilized this

fundamental idea to develop a strategy to extend a linear program column-wise as

needed in the solution process. It is Gilmore and Gomory first to put this technique

to actual use as part of an efficient heuristic algorithm for solving the cutting stock

problem in 1960’s [18, 19]. Nowadays, column generation is becoming a prominent

method to cope with problems with a huge number of variables. Furthermore, in

order to obtain the integer feasible (optimal) solution, Desrosiers, Sourmis and

Desrochers design an approach to embed column generation techniques within a

linear programming based branch-and-bound framework [20]. They use this method

to solve a vehicle routing problem with time windows for the first time.

Besides the milestone-like work mentioned above, numerous integer

programming column generation applications are also described in the literature, as

shown in Table 2.1 [21]. In this review on the column generation technique, we

focus on not only its algorithmic side but also the application side, which are mainly

the applications of column generation in some routing problems.

Reference(s) Application(s)

Agarwal et al. (1989); Desaulnier et al.(2001);

Desrochers et al. (1992); Lobel (1997 1998);

Riberio and Soumis (1994).

Borndorfer and lobel (2001); Desaulnier et al.;

Desrochers and Soumis (1989).

Desrosiers et al. (1984)

Krumke et al. (2002)

Lubbecke (2001); Lubbecke and Zimmermann

(2003); Sol (1994)

various vehicle routing problems

crew scheduling;

multiple traveling salesman problem with

time windows

real-time dispatching of automobile

service units

multiple pickup and delivery problem

with time windows

Anbil et al. (1998); Crainic and Rousseau(1987); airline crew pairing

Vance et al. (1997)

Barnhart and Schneur (1996)

Erdmann et al. (2001)

Barnhart et al. (1998); Desaulnier et al. (1997)

Crama and Oerlemans(1994)

Eben-Chaime et al. (1996)

Park et al. (1996)

Ribeiro et al. (1998)

Sankaran (1995)

Vanderbeck(1994)

Vanderbeck(1994)

Hurkens et al.(1997); Vance (1998);

Vanderbeck (1999)

Alvelos and Carvalho (2000)

Bourjolly et al.(1997)

Hansen et al. (1998)

Johnson et al. (1993)

Mehrotra and Trick (1996)

Savelsbergh (1997)

air network design for express shipment

service

airline schedule generation

fleet assignment and aircraft routing and

scheduling

job grouping for flexible manufacturing

systems

grouping and packaging of electronic

circuits

bandwidth packing in the

telecommunication networks

traffic assignment in satellite

communication systems

course registration at a business school

graph partitioning e.g., in VLSI, compiler

design

single-machine multi-item lot-sizing

bin-pack and cutting stock problems

integer multi-commodity flows

maximum stable set problems

probabilistic maximum satisfiability

problem

minimum cut clustering

graph coloring

generalized assignment problem

25

Table 2.1: Some application of integer programming column generation

26

Given a linear program as follows which we call the master problem (MP):

min z c j  j
jJ

s.t. a j  j  b (2-16)
jJ

 j  0, j  J

When using simplex method to obtain the optimal solution to the problem

iteratively, we look for a non-basic variable to price out and enter the basis. In other

words, given the non-negative vector u of dual variables, we try to find


arg min{c  c  uT a | j  J}. (2-17)j j j

Since the complexity of this pricing step is O(|J|), it is costly when |J| is large. In

other scenarios, sometimes we cannot express the set J explicitly. Therefore, we

resort a reasonably small subset J ' J of columns, resulting in the customary

notion of restricted master problem (RMP). Let λ and u be the primal and dual

optimal solutions of RMP respectively. We use the following sub-problem to

generate the new columns to enter the basis and the respective cost coefficient cj as

well.

c *  min{c(a)  uT a | a  A} (2-18)

Where a j , j  J are elements of a set A. This sub-problem is feasible, for otherwise

the master problem would be empty as well. If the solution to the sub-problem is

non-negative, which means no reduced cost coefficient c j is greater than or equal

to zero, λ optimally solves the master problem. Otherwise, we extend the RMP by a

column derived from the optimal solution to the sub-problem, and repeat to

27

re-optimize the restricted master problem. For its role in the algorithm, (2-18) is also

called the generation problem, or the column generator.

2.2.2 Formulations of the Master Problem

In applications, constraint matrices of linear programming have some features

like sparse or structure in the form of large sub-matrices of zeros. This is due to the

fact that activities associated with variables connect directly to only a few of

conditions represented by the constraints. Hierarchical, geographical or logical

segmentation of a problem can be reflected in the formulation. Therefore, we group

non-zeros in such a way that independent subsystems of variables and constraints

appear, possibly linked by a distinct set of constraints and/or variables. Such

properties are often seen in the multi-commodity flow formulations for vehicle

routing and crew scheduling problems.

The function of decomposing the original problem is to treat the linking structure

at a superior, coordinating, level and to independently address the subsystem(s) at a

subordinated level, exploiting any special structure at the algorithm level. In order to

take advantage of the structure of the problems, it is common to combine column

generation with the well-known Dantzig-Wolfe decomposition to solve the problem

efficiently.

We briefly refresh the classical decomposition principle in linear programming,

which is developed by Dantzig and Wolfe. It has become part of the mathematical

28

programming standard library. Let us consider a linear program:

min z  cT x

s.t. Ax  b (2-19)
Dx  d

x  0

which is named the original or compact formulation.

nLet P  {x R | Dx  d,x  0}   . Minkowski and Weyl Theorems enable us to

represent each x  P as convex combination of extreme points {P }  plusq q Q

non-negative combination of extreme rays { Pr }rR of P, e. g.,

|Q||R|x pq λq p r λr , q 1, λ  R  (2-20)
qQ rR qQ

where the index sets Q and R are finite. Replacing x in (2-19) and applying the linear

transformations c j  cT p j and a j  Ap j , j Q  R we obtain an equivalent

extensive formulation

min z c  c q q r r
qQ rR

s.t. aq q ar r  b
qQ rR (2-21)

 1q
qQ

λ  0

It typically has a tremendous number |Q|+|R| of variables, but possibly substantially

fewer rows than (2-19). The equation q  1 is the convexity constraint. If
qQ

x  0 is feasible for P in (2-21) without any cost, it may be omitted in Q and hence

the convexity constraint becomes q  1 in the model. One thing should be
qQ

noticed here is that although the compact and the extensive formulations are

equivalent in that they have the same optimal objective function value z, the

 29

respective polyhedra are not combinatorially equivalent. Since in (2-20), x is

uniquely represented by a given λ , but not vice versa.

 So far we reformulate the model (2-19) as (2-21), which is a special master

problem. In (2-21), the objective function is linear, and the set of columns is

implicitly defined by the extreme points and extreme rays of a convex polyhedron P.

It is efficient to utilize column generation to solve this problem. The corresponding

RMP with current subsets Q' Q, R' R in (2-21) has a dual optimal solution u,v ,

where variable v corresponds to the convexity constraint. The pricing problem in

Dantzig-Wolfe decomposition now is to determine

 c*  min{(cT  uT A)x  v | Dx  d,x  0} (2-22)

 (2-22) is a linear program again. When c*  0 , no negative reduced cost column

can be found, and the algorithm terminates. When c*  0 , the optimal solution to

(2-22) is an extreme point Pq of P, and we add the column [cT p T
q , (Apq) ,1] T to the

RMP. When c*   , an extreme ray Pr of P as a homogeneous solution to (2-21)

and we add the new column [cT p T] Tq , (Apq) ,0 to the RMP. Note that the algorithm

is finite as long as finiteness is ensured in optimizing the RMP. Dantzig-Wolfe type

approximation algorithms with guaranteed convergence rates have been proposed for

certain linear programs, readers can see the reference given therein.

 One application of combining Dantzig-Wolfe decomposition with column

generation in the literature is proposed by Savelsbergh for solving the generalized

assignment problem (GAP) [22].

30

Another common formulation of Master Problem is based on set-partitioning.

This is due to the properties of one-one mapping relationship between different items.

This kind of model is easy to form since it reflects the relationship between variables

naturally and often can be seen in various vehicle routing problems. We will

introduce two applications of set-partitioning based column generation method in

different domains.

First, we will give a combinatorial description of set partitioning problem. Let M be

a non-empty and finite set. Let F be a family of acceptable or feasible subsets of M.

Associated with each family j of F is a cost cj. The problem is to find a collection of

members of F, which is a partition of M, where the cost sum of these members is

minimal.

An integer programming formulation of the set-partitioning problem reads

(SPP) min z  cT x

s.t. Ax  1
(2-23)

x  1

n mnWhere x is a solution vector, 0  c  R a cost vector, and A[0,1] a

zero-one matrix. M corresponds to the m rows of matrix A and the subsets of M

correspond to the columns of this matrix in such a way that aij = 1 if i  j and aij = 0

if i  j . The stipulation that each member of M has to be covered once corresponds to

the constraint set of (1.1), which defines F. The SPP is a well-known NP-hard problem.

31

Now we discuss the first one application of column generation based on set

partitioning, which is presented by Lorena and Senne. They use this approach to solve

the Capacitated p-Median Problems (CPMP). The Capacitated p-Median Problem

refers to a set I  {1,...,n} of potential locations for p facilities, a set J={1,..., m}of

customers, and nX m matrix (gij) of transportations costs for satisfying the demands of

the customers from the facilities. The capacity of each possible median is Q. The

capacitated p-median problem is to locate the p facilities at locations of I in order to

minimize the total transportation cost for satisfying the demand of the customers.

Each customer is supplied from the closest open facility. Lorena and Senne apply the

column generation method to the problem.

The master problem is thus rewritten as:

(CPMP) min z 
m

ck mk
k 1

s.t. 
m

Ak xk 1
k 1 (2-24)


m

xk  p
k 1

xk [0,1], k  1,...,m.

Where

S  {S ,S ,..., S }, is a set of subsets of N;1 2 m

1, if i  SkA  [aik]mn , is a matrix with aik   ,satisfies qiaik  Q;
0, otherwise i N

and ck  min(dij), considering Sk
1  {i  Sk | aik 1}

iS1
k j 1Sk

The other set-partitioning based master problem of column generation we will

introduce next is a formulation for the Vehicle Routing Problem proposed by Agarwal

32

et al. [23].

The master problem they provide is:

(SP1) min z c j x j
j

s.t. a j x j  e (2-25)
j

xi {0,1}

In this SP formulation,  is the possible feasible route set, and each vehicle

route is represented by a binary n-vector aj. The element aij of vector aj is 1 if demand

point I is visited on route aj, otherwise 0. A cost cj represents the total distance

traveled on the route aj.

2.2.3 Discussion on the pricing problem

One difficulty in the column generation lies in how the sub-problem is formed

to search virtually all non-basic columns. In fact, those vectors a  A in master

problem usually represent combinatorial objects like paths, feasible crew schedules

or sets. Therefore, we can define A and the interpretation of cost on these structures

and have a valuable information about what the appearance of the possible columns

are. Taking the classic stock cutting problem for instance, one-dimensional cutting

stock problem is defined by the following data: (m, L,l  (l ,...,l),b  (b ,...,bm)) ,1 m 1

where L denotes the length of each stock piece, m denotes the number of smaller

piece types and each type i=1,…,m, li is the piece length, and bi is the order demand.

In a cutting plan we must obtain the required set of pieces from the available stock

length. The objective is to minimize the number of used stock length. Gilmore and

33

Gomory develop a mathematical model utilizing the column generation to solve this

problem for the first time [18, 19]. The formulation is as follows:

RMP min Yj
jJ

s.t.  aijYj  bi i  1,..., m; (2-26)
jJ

Yj  0, j  J

Yj : number of times pattern j is used;

aij : number of times item i is cut in pattern j;

J :set of cutting pattern.

The pricing problem is:

max  iai
iI

s.t. liai  L;
(2-27)iI

ai  0, integer, i  I .

 i :dual variable from the RMP.

In one-dimension cutting stock problem, the sub-problem is a typical Knapsack

Problem, which generates new columns to enter the restricted master problem

iteratively until its objective function value is less than or equal to zero (since it is a

maximum problem).

The role of the pricing problem is to provide a column that prices out profitably

or prove that no such column exists. It is important to note that any column with

negative reduced cost helps achieve this aim. Especially, we do not need to solve the

sub-problem (2-17) exactly, an approximation is sufficient until the last iteration. We

may add many negative reduced cost columns from a sub-problem, and sometimes

even positive ones are used. Desrochers et al. solve a temporary of the sub-problem,

34

or relaxation when they cope with the vehicle routing problem with time windows

[24].

One important concept in column generation is dominance and redundancy of

columns. A column with reduced cost c is dominated if there exists another column

with reduced cost not greater than c for all dual variables ranging within their

respective domains. A column as is called redundant if the corresponding

constraint is redundant for the dual problem. That is,

r s r S



Sol [25] discloses a characterization of redundant columns in the case of

identical sub-problems and a proof that there is no redundant column if all




sub-problems are distinct. For set partitioning problems with identical sub-problems,

we can use an alternative pricing rule to avoid generating the redundant columns.

These rules include Steepest-edge pricing, the practical Devex variant and the

lambda pricing rule [26, 27, 28].

Pricing rules are sensitive to the dual variable values when there exist

non-unique dual solutions. For large set partitioning problems, which are usually

highly primal degenerate, the value of dual variables are not so efficient in producing

new column to adjoin to the RMP. Therefore, the key issue for that kind of problem

is to overcome the degeneracy.

 and (2-28)a a cr c cs r s r r

35

2.2.4 Tailing-Off effect

One of the drawbacks of the column generation technique is its poor

convergence, especially in some degenerated problems, i.e., the Vehicle Routing

Problem. While sometimes a near optimal solution is approached very quickly, in

general only little progress can be obtained per iteration. Graphically speaking, the

solution process exhibits a long tail (Gilmore and Gomory) [18] before the optimal

solution is obtained. This phenomenon is called the tailing off effect. Several

approaches called column generation stabilization are proposed in the literature to

overcome this inherent drawback of column generation technique. Agarwal et al. [23]

present a simple idea to specify bounds of the dual variable values by using a

heuristic solution to the VRP, such as the one obtained by the Clarke and Wright

algorithm [29]. A statistical model is proposed to estimate good starting values for

the dual variables. Marstern et al. [30] introduce a Boxstep method to have a more

sophisticated control of the dual variables. The principle of their method can be

stated as follows: let u represent an optimal solution to the current restricted dual

Restricted Master Problem (RMP). Dual variables can be constrained to stay in a

“box around u ” if lower and upper bounds are imposed respectively. Then, the

RMP is re-optimized. If the new dual optimum is attained on the boundary of the box,

we have a direction where a box should be relocated. Otherwise, the optimum is

obtained in the interior of the box, which produces the sought global optimum. du

36

Merle et al. [31] provide a stabilization approach that includes a more flexible, linear

programming concept based box, together with an -perturbation of the right hand

side of the constraints. All numerical results of these methods show that the

stabilized approaches can be used to improve the solution time.

2.2.5 Integer Programs and column generation

Column generation technique has been successful in solving large-scale linear

programming. For mixed integer programs, a good method requires formulations

whose linear programming relaxation gives a good approximation to the convex hull

of feasible solutions. In the past twenty years, the “branch-and-cut” method has been

paid a great deal attention to and quite a few outcomes have been achieved (Hoffman

and Padberg, Nemhauser and Wolsey) [32, 33].

The idea behind the branch-and-cut is as follows. In order to handle the LP

relaxation of the original MIP efficiently, we leave out some classes of valid

inequalities from the problem because it has too many constraints. This will yield

infeasible solutions to the problems. Therefore, a sub-problem called the separation

problem is solved to try to identify violated inequalities in a class. If violated

inequalities are found, some of them are added to the LP to cut off the infeasible

solution. Then the LP is re-optimized. If we cannot find violated inequalities,

branching is performed. Branch-and-cut is a generalization of branch-and-bound

with LP relaxations and allows separation and cutting to be applied throughout the

37

branch-and-bound tree.

In the last decade, a new method to the MIP called “branch-and-price” is

presented by Desroscher et al. when they solve the vehicle routing problem with

time windows for the first time. The principle of branch-and-price is similar to that

of branch-and-cut except that the procedure focuses on column generation rather

than row generation. Actually, these two are complementary procedures for

tightening an LP relaxation.

The branch-and-bound algorithm is based on the column generation technique.

When column generation procedure cannot find negative reduced cost, the LP

relaxation obtains its optimal solution. Branching occurs when the LP solution does

not satisfy the integrality conditions. Like branch-and-cut, branch-and-price is also a

generalization of branch-and-bound with LP relaxation, allowing column generation

applied all through the branch-and-bound tree.

Some important issues need to be concerned in branch-and-price method include

lower bound and early termination, and the branching strategy. In each node of a

branch-and-bound tree, we derive lower bounds on the best possible integer solution

in the respective branch from solving the RMP linear relaxation by column

generation. It is naturally to expect that the tailing off effect should be amplified

when the size of linear programs is very large. We have a simple amendment for the

need of integer solutions: Stop generating columns when tailing off effect happens

and perform a branch decision. This early terminating is based on the following.

38

Assuming c j  Z , j  J , which for rational data is no loss of generality, column

generation can be stopped as soon as LB  z . Due to this purpose they have

been widely used in the literature, i.e., Sol [34]; Vanderbeck [35]; Vanderbeck and

Wolsey [36].

Early termination makes the algorithm effective for integer programs in contrast

to linear programs. We can even terminate heuristically early than LB  z .

Therefore, a tradeoff should be considered between computational efforts and the

quality of the obtained lower bound upon premature termination.

As to the branching strategy, a valid branch scheme divides the solution space

in such a way that the current fractional solution is excluded, integer solutions stay

intact, and finiteness of the algorithm is ensured. Furthermore, some general rules of

thumb prove useful, i.e. producing branch of possibly equal size, which is referred to

as balancing the search tree. Important decision should be made early in the tree. In

particular, when the master problem has to be solved integrally, a compatible

branching scheme is sought which prevents columns that have been branched on

from being regenerated without a significant complication of the pricing problem

[37]. This would generally lead to finding the kth best sub-problem solution instead

of the optimal one [38].

As to general branching scheme in case that the master problem has to be

solved integrally, Barnhart et al. and Vanderbeck have made important work. The

most common strategy in conjunction with column generation is Ryan and Foster’s

39

designed for set partitioning problems, which is included in the following

proposition.

m|J '|Proposition 2.8 Given A{0,1} and a fractional basic solution to Aλ  1, λ  0 .

Then there exist, r, s {1,...,m} such that 0  J
arj asj  j 1.

j '

This proposition shows that when such two rows are identified, we obtain one

branch in which these rows must be covered by the same column, e.g.,

 J '
arjasj  j 1, and one branch where they must be covered by two distinct

j

columns, e.g., arj asj  j  0. This information can be transferred to and obeyed  J 'j

by the pricing problem without any difficulty.

Besides the pioneer work above, Barnhart et al. and Vanderbeck [38, 39] present

the principles and guidelines of the branch and price approach in different scenarios.

The principle for the branch and price approach can be summarized as follows: first,

if necessary, use Dantzig-Wolfe decomposition to rewrite the original formulation in

accordance with the property of the problem into two sub-problems, namely, the

master problem and the pricing problem. Next, the column generation approach is

performed to obtain the optimal solution to the LP relaxed master problem. Then,

different branching schemes may be adopted and carried out to find the integer

solutions. Generally speaking, for integer column generation method, three

branching schemes are given in [39]. Rule A is: enforce q {0,1} k, i, v. q is
kqQ(k):q vi

the combinatorial coefficient in Dantzig-Wolfe decomposition. Q(k) is the integer

polyhedron of the kth supproblem, i is the index of the strip width, and v is the

40

number of strips of the width wi . Rule B is: enforce q integer i, v. , while rule
qQ:q vi

C is: enforce q integer l {1,..., n'}. Rule C can be illustrated as follows
' qQ:qq '&ql 1

[39]: given a fractional solution , we search for a index l, i.e., a component of the

0-1 form of columns q, such that the number of columns with entry one in that

component, q is fractional and thus is enforced to be integer. For the general
' qQ:q q '&ql

assignment problem, the branch scheme is [38]: enforce k {0,1} . r and s are
k : y 1, ysk 1rk

the row numbers in the master problem, k is the column number in the master

problem.

This pioneer work also generates a powerful insight which is used already in

standard branch-and-bound, that is, to branch on meaningful variable sets. The most

valuable source of information is those original variables of the compact formulation.

They must be integer, and they are what we branch and cut on. Branching and

cutting decisions both involve the addition of constraints. We may require integrality

of x at any node of a branch-and-bound tree, but it is not efficient. Hurkens et al.

propose a problem specific penalty function method [40]. Alternatively, given an

added set Hx  h of constraints, these restrictions on the compact formulation can

be incorporated in Ax  b, in x  X , or partially in both structures. In any scenario,

the new problem is of the general form of the compact formulation. The new RMP is

still a linear program, and the earlier the sub-problem structure is tractable, the less

severe complication we will face.

It is important to be aware that even if a new decision set goes into the master

41

problem structure, the pricing problem may change. Some examples are given in the

routing and scheduling area. Ioachim et al. have found that linear combinations of

time variables appear in the master problem structure which results in the

consequence that these time variables also appear in the objective function of the

sub-problem together with the flow variables. This changes the way to solve the

constrained shortest path problem.

Another issue is the implementation of a column generation based integer

programming code. All strategies from standard branch-and-bound apply, including

depth first search for early integer solutions, heuristic fathoming of nodes, rounding

and fixing of variables, and many more [41]. New columns are generated at any

node of the tree.

Concluding, no efficient way of handling the difficulty of finding an optimal

integer solution to a problem solved using a column generation scheme is available

two decades ago. Today, it is no longer true when we obtain the compact formulation

of the problem and generate columns at each node the search tree. This fundamental

and simple approach has been in use for nearly twenty years and is being refined

ever since. The price we have to pay for this simplicity is that besides RMP,

sub-problem, and branch-and-bound also the compact formulation has to be

represented in order to recover a solution in terms of the original variable x.

CHAPTER III

A TWO-STAGE EXACT ALGORITHM TO THE SPLIT

DELIVERY VEHICLE ROUTING PROBLEM

WITH VALID INEQUALITIES

In this chapter, we present an exact approach to the Split Delivery Vehicle

Routing Problem when the number of the vehicle in the fleet is fixed, namely, the

smallest one that satisfies the total demand. In Section 3.1, we provide the

formulation of the new method. In Section 3.2, a class of efficient valid inequalities

for the model and the complete algorithm are illustrated; we display the

computational experiment results in Section 3.3. Finally, discussion on the possible

future work in this problem is included in Section 3.4.

3.1 A Two-Stage Formulation for the SDVRP

Like the CVRP, the SDVRP is also an NP-hard problem [1]. Thus, most work in

this field handles with some simplified sub problems rather than the whole original

formulation. Dror et al.’s [8, 9] cutting-plane algorithm can be used to solve a

relaxation of the SDVRP without considering the sub-tour elimination constraints

firstly. Then they include routes that have sub-tours in them and other efficient

42

43

inequalities in the first sub problem to solve it again. These steps repeat until no

violated constraints are identified. Finally, a branch-and-bound algorithm is applied

to the problem to obtain the integer solution. Belenguer et al. [10] first deal with a

reduced SDVRP (RSDVRP) that ignores the index of the vehicle and the sub-tour

elimination constraints as well, and used several heuristics algorithms to identify the

violated constraints. In this paper, we will develop valid inequality to finally solve

the problem of the index of the vehicles.

To reduce the size of models, we propose a two-stage algorithm for the SDVRP

in this paper. We assume the number of the fleet of the vehicles is fixed, equaling to

the minimum required number of the vehicles to fulfill all demands, and the demand

at each point is allowed to be larger than the capacity Q of a vehicle.

The first stage model C1 is a clustering problem to assign the demands to

vehicles without considering travel distance costs.

U

C1: min Vk
k1

s.t. w  a y , i 1,...,N,k 1,...,U (3-1)ik i ik

U

wik  ai , i 1,...,N (3- 2)
k1

N

wik 1, k 1,...,U (3-3)
i1

yik : binary, wik ,Vk  0

From now, we normalize the demand and capacity without loss of the generality,

here ai=di/Q.

44

1, if supplier i is visited by truck k;
yik  0, otherwise;
wik  normalized load picked up at supplier i by vehicle k.

Vk: distance lower bound of vehicle k.

U: the minimum number of the vehicles that satisfies the total demand of the

points.

N: number of the points.

C1 is an assignment problem, and it yields a feasible clustering solution

meeting all demands under capacity constraints. Without any constraints on Vk, they

are all zeros in the first iteration and their sum provides a lower bound for the overall

SDVRP. The second stage problem T is a typical Traveling Salesman Problem (TSP)

for each vehicle and provides the cost for each cluster. Assume Kl is the set of the

routes used in the solution to the first stage at the lth iteration and yik
l is the

solution to the first stage at the lth iteration. We define

I k
l  {i yik

l  1} for vehicle k  Kl at iteration l

For each I k
l obtained from C1, sovle the TSP below :

T : min z l   c xk
k ij ij

iI jIkk

s.t.  xij
k  1,  j  I l (3 - 4)k

iIk
l

 xij
k  1  i  Ik

l (3 - 5)
jIk

k k k l l l   j  Nk xij  I 1(for i  j; i  I k \ {0}; j  I \ {0}) (3 - 6)i k k

xij
k  0 or 1, u k

j  0

l
wk

l I 
 w

lI

l  l

  w 1 w  1,...,U, k 1,...,Uyik
i

z  w  V 1,...,U ; k 1,2,...,U wk kw

45

where

Ik
l : the number of suppliers served by vehicle k at iteration l;

1:if truck

0 : otherwise





k visits demand point j just after demand point i
xk :ij ;

i
k : variables to prevent subtour.

zk
l is the travel distance cost for cluster Ik

l and lzk
k Kl




SDVRP. Although the TSP itself is an NP-hard problem, model T is typically a small

problem in practice, and we can use commercial optimization software like CPLEX

9.0 to obtain the solution very quickly (much less than 1 second). Therefore, this

paper will focus on the interaction between the two stages and the more efficient

way to solve the first stage model.

Unlike other clustering-first, routing-second constructive heuristics, this

algorithm considers the feedbacks from the second stage and adds them as new

constraints (cuts) to the first stage if there are new clusters. A new lower bound can

be obtained by solving the first stage problems with the added cuts. For each set Ik
l ,

we create the following cuts:

yields an upper bound for the

(3-7)

(3-8)

When vehicle w visits all demand points in set Ik
l, then the total travel distance

l lof the vehicle should exceed zk . Although wk , indicating whether vehicle w visits

all demand points in set Ik
l , should be a binary variable physically, we can relax it to

46

a continuous variable because yik is a binary variable and Iw
l 1 is an integer. In

fact, we can even combine (3-7) and (3-8) into a single constraint:

Vk  zw
l ( yik  Iw

l

iI l
w

Because  yik  I w
l

 1) w  1,2,...,U ; k  1,2,...,U (3 - 9)

1  1, and Vk are defined as nonnegative variables.
iI l

w

Since the cuts are characterized by the set Ik
l, the set of all cuts at current iteration h

is defined as Ω  {Ik
l k  Kl ,l  1..h} . With added constraints (3-9), the first stage

model C1 is solved again to get a new lower bound. In each iteration, the lower

bound always decreases or keeps the same because of more constraints. To avoid

some computational repetition, we redefine Kl as the set of routes that are used in the

solution to problem C1 in the current iteration, but are not included in .

Kl  {Ik
l I k

l }

We implement the algorithm with CPLEX 9.0 and find the convergence rate is

low with the algorithm. In the early iterations, some demand points that are far away

from each other are grouped in the same cluster. To reduce the number of iterations,

triangular inequalities mentioned above are introduced in the first stage problem C1

in the first iteration.

Vk  C0i yik  C0 j y jk  Cij (yik  y jk 1), i, j, k; (3-10)

When the problem size increases, the number of triangular inequalities

significantly increases because the number of the inequalities is N(N-1)/2. In fact,

triangular inequalities are only introduced to avoid the clusters with the suppliers far

47

away from each other.

Therefore, instead of using all the triangular inequalities, we rank the perimeter

of these triangles in a descending order and only select the first half of these

inequalities. Numerical experiment shows a significant improvement of the speed of

the algorithm.

3.2 Valid inequalities for Two-Stage algorithm to the SDVRP

We use commercial optimization software CPLEX9.0 to solve both stage

models. CPLEX basically uses branch-and-bound to solve integer program models

with some general fractional cuts. We observe many node explorations for the first

stage model in each round. The lower bound provided by linear relaxation is so loose

that numerous branches are required. Therefore, in addition to the triangular

inequalities, the following classes of constraints are also valid for the first stage

model. We find constraint (3-1) w  a y ,i,k can yield small yik in theik i ik

SDVRP (though it is not a problem for the CVRP) when we relax the integer

requirement on yik and splits occur. For example, if both vehicle 1 and 2 visit demand

1 and each picks up one half of the demand, both y11 and y12 will be 0.5. Then the

related triangular cuts and the cuts obtained from the second stage will not work

under linear relaxation because of too loose lower bound for Vk. The problem will

become worse, when the demand at one point is larger than the capacity of a vehicle,

because wik will be much smaller than ai. In fact, no matter how large the demand at

48

v

k

1

point i is, will always be 1 in the linear relaxed model. Based on thisyik

observation, we develop the following two valid inequalities.

1) Required Number of Vehicles Valid Inequality for points with large demand

According to the definition of the SDVRP, each demand point should be

satisfied. Therefore, it is valid to include the following inequalities in the model:

v

a
k 1




  for i 1,..., N (3-11) yik i

When the demand of a point is larger than the capacity Q, this inequality can

improve the lower bound. For example when ai =1.2, then a valid inequality

v

k 1



2 can be added into the first stage.yik

2) Non-idleness of the vehicle inequality

Since each vehicle must visit at least one demand point, the following

inequalities are valid:

N


i 1

In the next part, we will develop some more powerful valid inequalities. The

following inequality derives from Theorem 2.1.

3) Optimal Solution property inequality:

According to Theorem 2.1, inequalities (3-13) are valid:

 1 for k 1,...,U (3-12) yik

49

y  y  y  y  3, i, j  1,..., N ; w,v 1,...,U , w  v,i  j (3-13)iw iv jw jv

4) Vehicle index assignment valid equality/inequality

When all vehicles are identical in the fleet, an SDVRP model has numerous

equivalent solutions with the same routes and pickup but different vehicle indexes.

N

Dror and Trudeau [1] give a valid inequality of  x1
j  1 to make sure the first1

j1

vehicle visits the first demand point. We can have equivalent valid inequality y11  1

to let the first vehicle cover the first demand point. The first possible extension could

be


k

y  1 k  2,..., min(U,N) with y  1 (3-14)i k 11
i1

Intuitively, demand point 2 could be visited by the first vehicle, which visits

demand point 1 or not. If not, we can assign demand point 2 to vehicle 2. Though

(3-14) is a pretty strong valid inequality, we can even develop a stronger one. If it is

assumed that a1=0.6 and a2=0.6, more than one vehicle are required to visit demand

point 1 and demand point 2. We can set y11=1 and also set y22=1.

Lemma 3.1: If a1+ a2>1, y11=1 and y22=1 are two valid equalities.

Proof: For a feasible integer solution, at least two vehicles visit demand point 1 and

2 when a1+ a2>1. There are totally four cases: 1) If one vehicle just visits demand

point 1, and the other one just visits demand point 2, we can assign the first vehicle

visiting demand point 1 as vehicle 1 and the other vehicle as vehicle 2. 2) If one

50

vehicle both visits point 1 and 2, and the other vehicle just visits point 2, the first

vehicle is assigned as vehicle 1 and the other vehicle is set vehicle 2. 3) If one

vehicle both visits point 1 and 2 and the other vehicle just visits point 1, the first

vehicle is assigned as vehicle 2 and the other vehicle is set as vehicle 1. 4) If both

vehicles visit both demand points, we can arbitrarily choose one vehicle as vehicle 1

and the other as vehicle 2. We can find one of these four cases for two vehicles in

any feasible integer solution. Under any cases, y11=1 and y22=1 are valid. □

We can further extend Lemma 3.1 to theorem 3.1 about valid inequality for the

vehicle index assignment. Without loss of generality, from now on the demand

points are assumed to be ranked with descending demands: a1a2a3…an.


m

Theorem 3.1: If ai  m  o, o  1,...,m-1 , ymm=1 is a valid equality.
io

Proof: Lemma 3.1 is a special case of theorem 3.1 with m=2. If we assume m=2,…,t

t1

is valid, now we need to prove m=t+1 is valid. Because ai  t 1 o, o  1,...,t
io

t

and ai is in a descending sequence, ai  t  o, o 1,...,t 1 . Furthermore, the
io

condition holds for m=2,…,t, so we have yii=1, i=1,…,t. In other words, we assign

one vehicle for each demand point from 1 to t. In a feasible integer solution to the

SDVRP, if demand point t+1 is visited by another vehicle not belonging to the first t

vehicles, this vehicle can be assigned as t+1 so yt+1,t+1=1 is true. If demand point t+1

is only visited by the first t vehicles based on the previous index assignment, at least

51

one of the remaining vehicle visits one or more than one of the first t demand points,

t1

since ai  t . Assuming one vehicle visiting demand point r (r  t) doesn’t belong
i1

to the first assigned t vehicles, we reassign the new vehicle as the rth vehicle. After

t1

removing demand point r, the condition ai  t  o, o  1,...,r 1 and
io,ir

t1

ai  t 1 o, o  r 1,...,t still hold and the condition is equivalent as m=t case,
io

so we can have one vehicle for each demand node among 1,…, r-1 and r+1,…, t+1

and number them as vehicle 1,…, r-1 and r+1,…, t+1. □

For instance, if we have an SDVRP like (a1=1.3, a2=1.2, a3=0.9, a4=0.6, a5=0.3,

a6=0.2), then 4.5  5 vehicles are required. We can have the following valid

equalities, y11=1, y22=1, y33=1 and y44=1 based on theorem 3. If we have an SDVRP

like (a1=1.3, a2=0.65, a3=0.6, a4=0.5, a5=a6 =0.3), 3.65  4 vehicles are

required and we can have the following valid equalities, y11=1, y22=1 and y33=1.

Here, y44=1 is not true because a2+a3+a4=1.75  2 though a3+a4>1. In both

examples, one remaining vehicle has not been assigned. In the first example of

(a1=1.3, a2=1.2, a3=0.9, a4=0.6, a5=0.3, a6=0.2), if we consider demand points 5

and 6 as one point with a5’=0.5, the fifth vehicle must visit this new combo point

because condition 
m

ai  m  o, o  1,...,m-1 is true now for m=5. In other words,
io

truck 5 must visit one or both of points 5 and 6. Therefore, y  y 1 is a valid55 65

https://a2+a3+a4=1.75

52

m

a  m  o o 
i o



m=3, but not for m=4. We combine and Since =0.8 which is larger +can a a a a4 5. 4 5 ,

than a2 and a3, need re-rank the (a1, (a4+a5), a2, a3, a6).towe sequence as

Therefore, the valid inequalities =1, y 1, y =1 and =1, because the +yare y y11 42 52 23 34

condition in theorem 3.1 is for m=4 in the On the opposite side, met new sequence.

splitting can also be implemented. Look at the example of (a1=2.5, a2=1.6, a3=0.9,

a4=0.6). 6 vehicles are required, but only four valid inequalities (yii=1, i=1,…,4) can

be obtained based on theorem 3.1. In fact, at least three vehicles are needed to visit

demand point 1, and five vehicles are required for demand point 1 and demand point

2. If we split demand point 1 into three points with a11=1.01, a12=1.01 and a13=0.48

and split demand point 2 into two points with a21=1.01 and a22=0.59, the new

sequence will be (a11, a12, a21, a3, a4, a22, a13). Based on theorem 3.1 and the

combination, we can get valid inequalities like y11=1, y12=1, y23=1, y14+y241, y35=1

and y46=1, so all six vehicles are assigned with an index.

Theorem 3.2: With combining and splitting demand points, an assignment valid

inequality can be created for each vehicle required in an SDVRP.

Proof: With splitting and combining, finally we can let each slot in the final sequence

inequality. For the second example, we know 1,...,m-1 is true for ,i

of demand point with the demand of 1+ and totally there are U=






n

i 1

ai


slots, if



we let  be a very small positive number. Condition in theorem 3.1 can be met for

m=U, so all U trucks have an equality if only one demand point in the slot, or an

https://a22=0.59
https://a21=1.01
https://a13=0.48
https://a12=1.01
https://a11=1.01
https://aaaa45.45

53

inequality if there are more than one demand point in the slot. □

Valid inequalities created by theorem 3.2 with combination and splitting are

stronger than the ones defined by (3-14) and they conflict with each other, so only

the formers are recommended in the final algorithm. By assigning each vehicle to

one or more demand points, numerous duplicated combinations will be avoided, and

thus the speed of the whole algorithm can be significantly improved.

4) Route distance inequalities

Considering the relationship between the distance of any route Vk (k=1,…,U)

and those yik (i=1,…N; k=1,…,U), we obtain some propositions.

Proposition 3.1 The constraints

V  2c y for i  1,..., N;k  1,...,U (3-15)k i0 ik

are valid inequalities for the first stage model of the SDVRP.

Proposition 3.1 is straightforward, since every vehicle should start from and go

back to the depot, and if point i is visited by the vehicle, the distance of the segment

between point i and the depot is the shortest.

Proposition 3.2 The constraints

V  ci y  c y for i, j  1,..., N ;k  1,...,U (3-16)k 0 ik j 0 jk

are valid inequalities for the first stage model of the SDVRP.

Proposition 3.2 can be extended for any S  N with the following construction

algorithm:

1. Let’s assume we have already create a valid inequality for a set S  N :

54

Vk  ei
S yik for k  1,...,U , where ei

s is the first |S| lowest cuv, where
iS

su,v  S {0}. Define ES as the set of (u,v) with cuv equal to some ei .

2. Create a set S’ by adding one demand point j which doesn’t belong to S into S.

Rank cij with ascending order and let ES’ the set of (u,v) with the first |S|+1

lowest cuv, where u,v  S '{0}.

3. Let

eS '  min c , if min c  eS for i  S ,j uj uj i

otherwise, assign the |S| 1th lowest cuv to eS
j

'

S ' S S S'4. Let e  e if the edge corresponding to e still belongs to E , otherwise,i i i

arbitrarily assigning one newly introduced cuv to ei
S ' .

The construction starts with any S with |S|=1, Vk  coi where {i} S.

Proposition 3.3 For each set S  N , the constraint

Vk  ei
S yik for k  1,...,U (3-17)

iS

created by the construction procedure above are valid inequalities for the first model

of the SDVRP.

Proof: The proposition is obviously true for any S with |S|=1. If we assume it is true

for a set S and iS, we add another demand point j into S to have S’. We can have

S S ' S ' S S ' S ' V e y  y min c e y  e y , because e  e and min c  e .k i ik jk ij i ik j jk i i ij j
iS { 0 } iS { 0 }

iS iS

□

For instance, assuming we look at two demand points and the distances

55

between two points are c01=2, c02=6, c23=8. The first valid inequalities are

 2y for k  1,...,U for set S  {1} . With the construction algorithm, afterVk 1

introducing demand point 2, the second valid inequality is

 2y  6y for k  1,...,U for set S ' {1,2 } . Readers may wonder why we do notVk 1 2

create the valid inequalities by arbitrarily assigning the first |S| lowest cuv

(u,vS{0}) to ei for iS. A counterexample can be given for the previous example

of the two demand points. The inequalities

 6y  2y for k  1,...,U for set S ' {1,2 } are not valid when y1=1 and y2=0.Vk 1 2

Therefore, the recursion is crucial to create these types of valid inequalities.

3.3 Numerical experiments

The data of the numerical experiment are from Lee et al. [7]. They use two

methods to solve the SDVRP with small capacity: dynamic programming and pure

MIP by directly using CPLEX. They compare the results of these two approaches to

convince the advantage of their dynamic programming method. We will use the

same data to do the numerical experiment on the desktop with PIII and 256M

memory and have their outcome as our benchmark. In order to check the efficiency

of the additional inequalities, we develop two Two-Stage methods, one (TS1) is only

with triangular inequalities, and the other method (TS2) is with all inequalities we

introduce in Section 3.2.

The capacity Q of the vehicle is assumed to be 1 without loss of generality, and

Code N Position

N4L1 4 1(1,-3) 2(-6,-3) 3(-2,-8) 4 (0,-7)

N4L2 4 1(7,7) 2(-2,0) 3(3,8) 4(-9,1)

N4L3 4 1(1,-4) 2(3,1) 3(2,6) 4(8,-1)

N5L1 5 1(2,7) 2(9,2) 3(9,-7) 4(-1,-7) 5(8,-7)

N5L2 5 1(-10,-6) 2(-10,0) 3(-4,7) 4(1,1) 5(3,-10)

N5L3 5 1(4,-8) 2(-2,5) 3(2,-6) 4(-4,-3) 5(1,2)

N7L1 7 1(4,-6) 2(2,6) 3(7,7) 4(5,-5) 5(4,9) 6(-8,0) 7(5,-7)

N7L2 7 1(-10,-6) 2(-10,0) 3(-4,7) 4(1,1) 5(3,-10) 6(9,-10) 7(-1,4)

N7L3 7 1(4,-8) 2(-2,5) 3(2,-6) 4(-4,-3) 5(1,2) 6(6,-3) 7(-1,0)

56

the location of the depot is set to be (0, 0). The positions and the demand quantity of

the demand points are listed in the Table 3.1 and 3.2.

There are 9 layouts on the whole, and the numbers of demand points are 4, 5,

and 7 for every 3 layouts respectively. The total demands for each layout were

generated from 1.2 up to 9.6, with an incremental step of 0.4. The Computational

results are in the Table 3.4 and 3.5 together with that of other methods.

Table 3.1: Geographic layouts for the problem instances

These results shows that in the instances with small number of demand points

(i.e., 4, 5 demand points and part of the 7 demand points), TS1, TS2 and the

Dynamic programming based approach are much faster than direct MIP method, and

the difference between the former three is very small. For larger size of the

problems, TS2 is much faster than both TS1 and the DP approach.

57

Table 3.2: Demand Vectors

code M=4 M=5 M=7

d1 d2 d3 d4 d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 d6 d7

Q1 0.55 0.4 0.24 0.01 0.02 0.14 0.56 0.23 0.25 0.26 0.07 0.01 0.01 0.22 0.31 0.32

Q2 0.19 0.76 0.31 0.35 1.01 0.46 0.12 0.01 0.01 0.33 0.34 0.09 0.37 0.25 0.19 0.03

Q3 1.27 0.57 0.15 0.01 0.28 0.4 0.42 0.45 0.45 0.26 0.34 0.35 0.23 0.13 0.38 0.31

Q4 0.01 0.61 0.86 0.92 0.24 0.94 0.64 0.5 0.08 0.56 0.54 0.31 0.08 0.27 0.14 0.5

Q5 0.83 0.83 0.23 0.91 0.56 0.73 0.75 0.48 0.28 0.12 0.45 0.49 0.58 0.58 0.35 0.23

Q6 0.98 0.77 0.12 1.32 0.7 0.58 0.76 0.74 0.43 0.33 0.37 1.04 0.03 0.47 0.12 0.84

Q7 1.17 1.2 0.78 0.45 0.27 0.87 0.44 1.62 0.39 0.07 0.01 1.18 0.35 0.35 0.75 0.88

Q8 1.01 0.83 1.1 1.06 0.74 0.8 0.94 0.95 0.58 0.85 0.74 0.49 0.21 0.76 0.48 0.47

Q9 1.72 0.45 1.47 0.75 0.95 0.64 0.72 2.03 0.06 1.01 0.79 0.12 0.64 0.41 0.78 0.65

Q10 1.54 0.37 1.39 1.5 1.49 0.37 2.68 0.22 0.03 0.9 0.57 0.24 0.35 0.67 1.26 0.81

Q11 1.73 1.73 1.06 0.68 1.74 0.52 0.52 1.11 1.31 1.48 1.13 0.52 0.25 0.99 0.74 0.1

Q12 1.04 1.17 3.3 0.09 1.56 1.36 0.91 0.38 1.39 0.97 0.7 0.2 1.32 0.2 1.25 0.96

Q13 1.88 0.46 3.38 0.28 1.03 1.01 2.09 1.64 0.24 0.52 0.74 0.12 1.67 1.18 0.26 1.51

Q14 0.04 3.98 1.2 1.18 1.32 0.85 1.62 1.34 1.26 1.63 1.16 0.38 0.35 1.62 0.94 0.31

Q15 1.41 1.65 2 1.74 1.25 0.52 0.78 1.47 2.78 0.87 1.27 0.7 0.48 0.98 1.18 1.31

Q16 1.84 0.78 2.81 1.77 1.34 2.57 1.95 0.9 0.44 1.69 1.11 0.29 0.86 1.95 0.08 1.21

Q17 1.54 3.19 2.5 0.36 2.07 1.55 0.2 2.2 1.59 1.27 0.82 0.2 1.82 1.77 1.05 0.66

Q18 2.06 1.32 2.53 2.09 0.42 2.68 0.4 2.55 1.95 1.01 0.81 1.82 0.68 0.98 0.58 2.11

Q19 3.67 2.32 0.97 1.44 1.04 1.46 0.24 3.31 2.34 0.66 1.63 1.25 0.43 1.68 1.86 0.88

Q20 1.37 2.58 1.66 3.19 0.51 2.94 2.75 1.95 0.64 1.24 2.2 0.07 2.45 1.41 0.12 1.31

Q21 3.59 1.65 0.81 3.14 0.77 3.53 2.05 0.67 2.18 1.11 0.34 2.35 1.89 0.62 2.33 0.56

Q22 2.68 0.35 3.82 2.75 2.63 1.46 1.01 2.05 2.45 1.84 2.53 0.4 1.48 1.89 0.54 0.92

58

Table 3.3: CPU time and Cost from 4 methods for N=4

Code(∑di)

N4L1 N4L2 N4L3

Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIP

Q1(1.20) 28.67 <1.00 <1.00 <1.00 <1.00 40.69 <1.00 <1.00 <1.00 <1.00 32.34 <1.00 <1.00 <1.00 <1.00

Q2(1.61) 31.18 <1.00 <1.00 <1.00 <1.00 40.97 <1.00 <1.00 <1.00 <1.00 33.61 <1.00 <1.00 <1.00 <1.00

Q3(2.00) 28.96 <1.00 <1.00 <1.00 <1.00 56.79 <1.00 <1.00 <1.00 <1.00 36.79 <1.00 <1.00 <1.00 <1.00

Q4(2.40) 44.19 <1.00 <1.00 <1.00 1.34 44.68 <1.00 <1.00 <1.00 <1.00 44.68 <1.00 <1.00 <1.00 <1.00

Q5(2.80) 44.73 <1.00 <1.00 <1.00 2.19 59 <1.00 <1.00 <1.00 1.21 43.34 <1.00 <1.00 <1.00 <1.00

Q6(3.19) 51.22 <1.00 <1.00 <1.00 15.79 73.4 <1.00 <1.00 <1.00 6.4 54.3 <1.00 <1.00 <1.00 3.27

Q7(3.60) 55.38 <1.00 <1.00 <1.00 21.52 64.49 <1.00 <1.00 <1.00 0.5 47.51 <1.00 <1.00 <1.00 1.21

Q8(4.00) 59.45 <1.00 <1.00 <1.00 30.9 91.98 <1.00 <1.00 <1.00 29.1 64.79 <1.00 <1.00 <1.00 21.69

Q9(4.39) 64.5 <1.00 <1.00 <1.00 42.78 94.77 <1.00 <1.00 <1.00 22.22 59.85 <1.00 <1.00 <1.00 7.61

Q10(4.80) 71.17 <1.00 <1.00 1 77.71 95.69 <1.00 <1.00 <1.00 14.03 73.3 <1.00 <1.00 <1.00 58.62

Q11(5.20) 73.46 <1.00 <1.00 <1.00 296.01 85.56 <1.00 <1.00 1 27.24 65.4 <1.00 <1.00 <1.00 215.29

Q12(5.60) 91.85 <1.00 <1.00 1 709.83 112.05 <1.00 <1.00 <1.00 415.51 81.07 <1.00 <1.00 <1.00 268.06

Q13(6.00) 90.44 <1.00 <1.00 <1.00 282.3 125.14 <1.00 <1.00 <1.00 78.36 82.96 <1.00 <1.00 <1.00 50.03

Q14(6.40) 101.93 <1.00 <1.00 1 734.96 88.17 <1.00 <1.00 1 138.97 81.35 <1.00 <1.00 <1.00 563.25

Q15(6.80) 97.88 <1.00 <1.00 6 2904.6 117.51 <1.00 <1.00 <1.00 1107.67 85.27 <1.00 <1.00 <1.00 337.47

Q16(7.20) 103.54 <1.00 <1.00 1 N/A 131.08 <1.00 <1.00 <1.00 2027.33 93.01 <1.00 <1.00 <1.00 N/A

Q17(7.60) 113.91 <1.00 <1.00 1 N/A 120.05 <1.00 <1.00 1 4448.88 86.91 <1.00 <1.00 1 N/A

Q18(8.00) 109.68 <1.00 <1.00 1 N/A 150.98 <1.00 <1.00 1 N/A 108.13 <1.00 <1.00 <1.00 N/A

Q19(8.40) 103.54 <1.00 <1.00 <1.00 N/A 140.52 <1.00 <1.00 <1.00 N/A 91.02 <1.00 <1.00 <1.00 N/A

Q20(8.80) 126 <1.00 <1.00 1 N/A 153.29 <1.00 <1.00 1 N/A 116.79 <1.00 <1.00 2 N/A

Q21(9.20) 111.61 <1.00 <1.00 <1.00 N/A 172.74 <1.00 <1.00 <1.00 N/A 116.64 <1.00 <1.00 <1.00 N/A

Q22(9.60) 134.85 <1.00 <1.00 1 N/A 186.08 <1.00 <1.00 1 N/A 130.03 <1.00 <1.00 1 N/A

59

Table 3.4: CPU time and cost from 4 method s for N=5

Code(∑di)

N5L1 N5L2 N5L3

Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIPII

Q1(1.20) 50.65 <1.00 <1.00 <1.00 <1.00 50.15 <1.00 <1.00 <1.00 <1.00 34.45 <1.00 <1.00 <1.00 <1.00

Q2(1.61) 56.52 <1.00 <1.00 <1.00 <1.00 71.81 <1.00 <1.00 <1.00 <1.00 51.09 <1.00 <1.00 <1.00 <1.00

Q3(2.00) 62.28 <1.00 <1.00 <1.00 <1.00 65.81 <1.00 <1.00 <1.00 <1.00 39.96 <1.00 <1.00 <1.00 <1.00

Q4(2.40) 67.14 <1.00 <1.00 <1.00 <1.00 69.25 <1.00 <1.00 <1.00 <1.00 42.6 <1.00 <1.00 <1.00 <1.00

Q5(2.80) 82.48 <1.00 <1.00 <1.00 1.31 74.66 <1.00 <1.00 1.00 <1.00 51.37 1.00 1.00 1.00 <1.00

Q6(3.19) 80.21 <1.00 <1.00 <1.00 5.56 82.32 <1.00 <1.00 1.00 7.58 55.49 1.00 1.00 <1.00 5.43

Q7(3.60) 83.24 <1.00 <1.00 <1.00 2.6 72.98 <1.00 <1.00 1.00 <1.00 53.34 1.00 1.00 <1.00 1.4

Q8(4.01) 91.21 <1.00 <1.00 <1.00 21.26 83.16 <1.00 <1.00 <1.00 4.79 55.78 1.00 1.00 <1.00 5.98

Q9(4.40) 89.76 <1.00 <1.00 <1.00 9.07 83.11 <1.00 <1.00 1.00 18.16 67.79 1.00 1.00 <1.00 7.8

Q10(4.79) 113.74 <1.00 <1.00 1.00 18.04 112.9 <1.00 <1.00 1.00 12.66 89.04 1.00 1.00 <1.00 43.38

Q11(5.20) 111.43 <1.00 <1.00 <1.00 460.18 124.02 <1.00 <1.00 2.00 2002.15 80.15 1.00 1.00 1.00 1294.38

Q12(5.60) 128.87 <1.00 <1.00 1.00 1846.23 131.03 <1.00 <1.00 1.00 1107.84 81.02 1.00 1.00 1.00 n/a

Q13(6.00) 142.6 <1.00 <1.00 <1.00 n/a 128.55 <1.00 <1.00 3.00 n/a 99.3 1.00 1.00 3.00 n/a

Q14(6.40) 142.91 <1.00 <1.00 1.00 n/a 136.15 <1.00 <1.00 3.00 n/a 88.18 1.00 1.00 2.00 n/a

Q15(6.80) 154.53 <1.00 <1.00 6.00 n/a 135.41 <1.00 <1.00 3.00 n/a 88.1 1.00 1.00 3.00 n/a

Q16(7.20) 154.88 <1.00 <1.00 1.00 n/a 146.94 <1.00 <1.00 2.00 n/a 107.12 1.00 1.00 2.00 n/a

Q17(7.60) 150.68 <1.00 <1.00 1.00 n/a 151.16 <1.00 <1.00 7.00 n/a 109.74 1.00 1.00 6.00 n/a

Q18(8.00) 168.08 <1.00 <1.00 1.00 n/a 144.29 1.00 1.00 4.00 n/a 89.35 1.00 1.00 4.00 n/a

Q19(8.40) 171.52 <1.00 <1.00 <1.00 n/a 150.9 1.00 1.00 9.00 n/a 102.95 3.00 3.00 8.00 n/a

Q20(8.80) 185.38 <1.00 <1.00 1.00 n/a 158.23 1.00 1.00 3.00 n/a 112.33 2.00 2.00 2.00 n/a

Q21(9.20) 202 <1.00 <1.00 <1.00 n/a 199.82 2.00 2.00 6.00 n/a 106.51 2.00 2.00 5.00 n/a

Q22(9.60) 191.02 <1.00 <1.00 1.00 n/a 198.8 2.00 2.00 11.00 n/a 123.49 4.00 2.00 10.00 n/a

Supplier 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(x, y) (7, 7) (-2,0) (3 8) (-9, -1) (-2.3, 3) (3.4, 5) (-4, -1.5) (1.2, -0.8) (9, 3.5) (-6.5, -1.2) (3.4, -5) (-4 –4) (5.3, 3) (-3 –5) (6 –7)

ai 0.35 0.19 0.42 0.34 0.25 0.31 0.37 0.21 0.55 0.16 0.18 0.24 0.31 0.54 0.32

60

Table 3.5: CPU time and cost from 4 methods for N=7

Code(∑di)

N7L1 N7L2 N7L3

Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIP Cost TS1 TS2 SPA MIPII

Q1(1.20) 52.33 <1.00 <1.00 1. 2 59.17 1 1 <1.00 3 38.49 1 1 <1.00 2

Q2(1.61) 54.47 <1.00 <1.00 1 5 74.88 1. 3 <1.00 8 39.21 5 4 <1.00 12

Q3(2.00) 57.13 2 1 3 32 73.02 5 4 2 42 42.60 4 3 1 38

Q4(2.40) 77.27 12 10 5 2310 81.14 7 4 5 2438 48.89 6 5 4 2167

Q5(2.80) 71.86 7 5 6 5460 77.34 8 5 6 5210 45.95 6 4 7 4876

Q6(3.19) 88.66 21 20 15 N/A 90.11 12 8 15 N/A 53.14 16 13 14 N/A

Q7(3.60) 85.80 13 10 25 N/A 99.76 20 15 24 N/A 55.62 16 4 25 N/A

Q8(4.01) 90.26 25 24 24 N/A 117.74 26 20 21 N/A 62.45 25 10 20 N/A

Q9(4.40) 93.46 8 5 34 N/A 112.52 13 6 31 N/A 66.21 11 4 30 N/A

Q10(4.79) 107.60 38 35 39 N/A 116.85 24 8 39 N/A 71.39 63 50 39 N/A

Q11(5.20) 101.79 12 5 67 N/A 136.10 21 4 68 N/A 83.52 24 4 65 N/A

Q12(5.60) 120.26 170 100 143 N/A 120.04 50 16 138 N/A 78.59 32 5 137 N/A

Q13(6.00) 128.50 1340 50 73 N/A 114.39 780 30 77 N/A 61.92 520 10 77 N/A

Q14(6.40) 128.15 2250 6 71 N/A 158.24 2139 5 69 N/A 91.37 1989 4 69 N/A

Q15(6.80) 133.13 N/A 8 270 N/A 161.42 N/A 53 255 N/A 86.84 N/A 35 239 N/A

Q16(7.20) 149.70 N/A 64 200 N/A 161.46 N/A 10 186 N/A 90.37 N/A 48 187 N/A

Q17(7.60) 144.97 N/A 15 300 N/A 161.91 N/A 13 300 N/A 93.89 N/A 30 296 N/A

Q18(8.00) 164.07 N/A 127 755 N/A 154.89 N/A 50 755 N/A 95.13 N/A 5 714 N/A

Q19(8.40) 153.07 N/A 25 635 N/A 193.60 N/A 200 667 N/A 99.02 N/A 10 615 N/A

Q20(8.80) 159.19 N/A 81 161 N/A 164.49 N/A 100 166 N/A 105.11 N/A 100 159 N/A

Q21(9.20) 180.87 N/A 211 1331 N/A 188.13 N/A 299 1375 N/A 125.13 N/A 325 1364 N/A

Q22(9.60) 175.68 N/A 452 2780 N/A 196.13 N/A 378 2888 N/A 116.02 N/A 521 2527 N/A

Table 3.6: New instance for N=15

For the biggest size of the problem with 9 suppliers below in Lee et al.’s paper,

Supplier 1 2 3 4 5 6 7 8 9

Position (x, y) (4,-1) (5, 3) (-8, 5) (-3, -2) (5, 5) (2, 2) (9, -10) (8, -10) (-7, 2)

demand ai 0.3 0.5 1.3 0.5 1.2 0.8 0.5 0.2 0.3

61

their algorithm takes about 4 hrs and 48 minutes to obtain the solution. Our

algorithm just takes about 2 minutes to achieve the same optimal solution.

Table 3.7: The case of N=9

For our algorithm, the largest problem instance solved by TS2 within a

reasonable time (not more than 3 hours) is 15 demand points by 5 vehicles. (See

table 3.6), the optimal value is 100.99.

For almost all algorithms in the literature, the computational time is sensitive to

the total demand for a given number of demand points because the number of

vehicle index combination. Our algorithm’s computational time doesn’t explode with

the number of total required vehicles because of the vehicle index assignment valid

equalities/inequalities.

3.4 Remarks on the future work

The Vehicle Routing Problem with split delivery is an NP-hard problem. It is

even harder than the classic Vehicle Routing Problem [2] because of more

combinations in its structure. For the VRP, there are abundant papers in the literature

to study on the exact algorithms, or the lower bound, or the efficient valid

62

inequalities developed for the polyhedron of the VRP. Sometimes, even those cuts

from the TSP are borrowed to apply on the VRP due to the internal relationship

between these two well-known problems. As to the Split Delivery Vehicle Routing

Problem, the research work is far behind that of the VRP. Dror and Trudeau propose

a branch-and-cut algorithm based on their work on the VRP with some inequalities,

but they do not present the complete results of the instances. Belenguer, Martinez

and Mota provide a cutting-plane method to obtain good lower bound of the Split

Delivery Vehicle Routing Problem. In fact, both methods above are branch-and-cut,

namely, they solve a sub-problem of the original one and add the violated constraints

found to re-solve the problem to make the solution feasible. However, neither of the

algorithms gives the final optimal integer solution to the problem. Lee et al. try

another way to utilize dynamic programming to solve the SDVRP. Although they

prove that they find a finite action space which is equivalent to the infinite action

space of the SDVRP, the inherited weakness of the dynamic programming will incur

“the dimension disaster” when the size of the problem increase, recalling the biggest

size of the instance solved by the Lee et al.’s approach in a reasonable time is 9.

In this dissertation, we provide a Two-Stage exact algorithm to the Split Delivery

Vehicle Routing Problem. This approach generalizes the classic cluster-first and

routing-second heuristic algorithm to be an exact one. The technique we develop in

this algorithm does make a bridge across the two sub-problems and let the first

sub-problem have feedback from the second one for the first time. Therefore, due to

63

plenty of the similar models exist; we may apply this technique to such kind of

problems.

Another contribution in this research work is the valid inequalities. In particular,

the index assignment inequalities avoid a lot of replications because of identicalness

of the vehicle in the fleet when we solve the problem. This scenario can be seen in

other problems as well, for instance, a group of machines, aircrafts, or ships. Thus,

we can apply the index fixing method to these problems to save computational time.

We can also apply those valid inequalities to other type of vehicle routing problems.

Finally, we still need to focus on looking for more efficient valid inequalities

for the Two-Stage exact algorithm since there is still distance between the result we

obtain and our expectation. For example, we may explore to strengthen the triangular

inequalities to exclude more routes from consideration.

CHAPTER IV

A BRANCH-AND-PRICE APPROACH

TO THE SPLIT DELIVERY VEHICLE

ROUTING PROBLEM

In this chapter, we study another type of the Split Delivery Vehicle Routing

Problem: the number of vehicles in the fleet is a variable. This chapter consists of

four sections. In Section 4.1, we formulate a column generation based split delivery

vehicle routing problem. In Section 4.2, we propose a limit-search-tree-with-bound

approach to the pricing problem. The branching strategy and the complete algorithm

to the problem are provided in Section 4.3. The computational results and discussion

on the problem are presented in Section 4.4.

4.1 Column generation based formulation of the SDVRP

In the Column Generation based formulation, each vehicle route is represented

by a vector of a j . The element aij of vector aj is a continuous number and

represents the demand picked up at demand point i by route aj. Each column aj has

cost of cj, representing the shortest distance traveled to visit all demand points in the

route. Since there are numerous feasible routes, only a finite set of feasible routes is

64

65

chosen at the beginning and the restricted master problem (RMP) is constructed. A

new route (column) with distance cost is generated by the sub-problem (pricing

problem). Thus, the Column Generation based formulation of the SDVRP with the

explicit pricing problem can be written as follows:

RMP Min c xj j
j

s.t. a x  d , i 1,...,N; (4-1)ij j i
j

xj  0 or1 (forall j).

Ω : the set of fesible routes,

x j : a binary var iable, 1 if route j is used, 0 otherwise;

aij : amout picked up at demand point i on route j,

c j : cost of route j, the shortest distance of the arcs making

up the route.

The Pricing Problem:

N N N

Min  cij xij  iai
i0 j0 i1


N


N

s.t. x0 j  x j0  1; (4 - 2)
j0 j0

N N

 xij   x ji  yi ; i  1,...N , (4 - 3)
j1 j1

a  d y ; i  1,...N , (4 - 4)i i i

N

 ai  Q; (4 - 5)
i1

u  u  (N  1)x  N ; i, j  1,...N , (4 - 6)i j ij

66

xij :1, if the vehicletravelsto demandpoint j from i directly;

0, otherwise. i, j 1,...,N.

yi :1, if the demandpoint is visitedby thevehicle;0, otherwise.

i 1,...,N.

ai : load pickedup at demandpoint i by thevehicle;i 1,...,N.

ui :dummycontinous variablesfor subtour elimination;

 i : the dual variablefor ith constraintin therestrictedmasterproblem.

Constraints (4-2) and (4-3) are flow conservation constraints, while constraints

(4-4) and (4-5) are supplier’s demand constraints and vehicle constraints,

respectively. Constraints (4-6) are sub-tour elimination constraints.

The column generation technique is effective to solve LP models with

numerous variables (columns). Rather than using all variables of the LP model, the

algorithm uses the pricing sub-problem to find the variables that have the lowest

negative reduced cost and adds new columns to the master problem. When the

objective function value of the pricing sub-problem is equal to or larger than 0, no

new columns is generated, and thus the current solution to the master problem is the

optimal solution to the LP relaxed RMP. Usually, the pricing problems are mixed

integer-programming problems, such as knapsack problems in the cutting stock

problem and the shortest path problem with resource constraints in the vehicle

routing problem with time windows [18, 19, 24]. The optimal solution to the pricing

problems may be obtained by certain exact solution methods. However, the pricing

problem of a CVRP or an SDVRP is a capacitated prize-collecting Traveling

Salesman Problem, which is an NP-hard problem [24]. Therefore, it is difficult to

67

obtain the optimal solution even for medium size pricing problems. From the view of

graph theory, the problem is defined on a complete and undirected graph; dynamic

algorithm for the shortest path problem with resource constraints cannot work well.

Agarwal et al.[24] use a nonlinear programming that is analogous to a knapsack

problem to formulate the pricing sub-problem of their capacitated vehicle routing

problem, and they present a linear function method to obtain a lower bound of the

nonlinear objective function. Sierksma et al. [10] adopt the similar idea to work on

their pricing problem for the routing helicopters for crew exchange problem. They

define a subset S of the total N platforms (demand points) and calculate the TSP and

the knapsack problem within the subset S separately. Since the number of subsets S

is 2N-1, they also provide a smart method that excludes a large amount of subsets

from consideration.

4.2 A new algorithm to the pricing sub-problem

A limited-search-tree-with-bound algorithm is presented in this paper to solve

the pricing problem of the column generation based formulation of the SDVRP. First,

all demand points with nonzero i are sorted according to the non-increasing dual

value  i as candidate nodes in the search tree. The depot (point 0) represents the

root node. Each node has two values: the unit reduced cost for the master problem if

the associated demands are picked up without changing the basis of the master

problem and its position. Since the number of demand points in one feasible branch

6 8

is t y pi c all y s m all, s u c h as si x or l ess, a n e x a ct s ol uti o n al g orit h m f or t h e T S P is

p erf or m e d. A n o d e is f at h o m e d wit h o ut f urt h er br a n c hi n g w h e n it s atisfi es o n e of t h e

f oll o wi n g t w o crit eri a: 1) t h e a c c u m ul at e d l o a d pi c k e d u p at t h e c urr e nt n o d e e x c e e ds

t h e c a p a cit y Q of t h e v e hi cl e; 2) t h e l o w er b o u n d at t h e c urr e nt n o d e is l ar g er t h a n or

e q u al t o t h e c urr e nt u p p er b o u n d. T h e l o w er b o u n d of a n o d e is c al c ul at e d b as e d o n

t h e f oll o wi n g l e m m a.

L e m m a 4. 1: L et k b e t h e c urr e nt n o d e , S ' b e t h e s et of t h e d e m a n d p oi nts s e ar c h e d

b ef or e n o d e k, S ' S , (S is t h e s et of all n o d es i n t h e s e ar c h tr e e). If n o d e k d o es

n ot vi ol at e t h e c a p a cit at e d c o nstr ai nt (i. e.
i  Q), its l o w er b o u n d is  ia

i S ' { k }\ { 0 }

d   a   (Q  a) , w h er e d is t h e dist a n c e of t h e s h ort est t o ur
r (S ' { k })  i i k 1  i r ()

i S ' { k }\ { 0 } i S ' { k }\ { 0 }

t o visit t h e s et of d e m a n d p oi nts.

Pr o of: Si n c e  i , i  S ar e s ort e d o n a n o n-i n cr e asi n g or d er a n d visiti n g m or e

d e m a n d p oi nts will n ot d e cr e as e t h e l e n gt h of t h e s h ort est t o ur visiti n g t h es e p oi nts,

t h e r e d u c e d c ost of n o d e k is   ia i , a n d t h e hi g h est p ot e nti al r e d u c e d c ost of
i S ' { k }\ { 0 }

i n cl u di n g ot h er d e m a n d p oi nts is  (Q   a) . �k  1 i
i S ' { k }\ { 0 }

A n o d e is f at h o m e d if its l o w er b o u n d is n ot s m all er t h a n t h e c urr e nt u p p er

b o u n d. T h e f oll o wi n g e x a m pl e is us e d t o s h o w h o w t h e al g orit h m w or ks. We ass u m e

t h e d u al pri c es fr o m s ol vi n g t h e r estri ct e d m ast er pr o bl e m i n o n e it er ati o n ar e

  1. 2,   0,   2. 5   0. 9,   0, a n d   1. 7, a n d ar e s ort e d as1 2 3 4 5 6

( , , ,) i n a d es c e n di n g or d er, a n d t h eir c orr es p o n di n g d e m a n ds ar e a 3 = 0. 2 4 ,3 6 1 4

a 6 = 0. 3 5 , a 1 = 0. 1 3 , a n d a 4 = 0. 6. T h e pri ci n g pr o bl e m c a n b e s ol v e d f oll o wi n g t h e

69

procedures illustrated in Figure 4.1.

Node0: 0(the depot)

dist : 0

Load picked: 0

Obj: 0

Node 1: 3

dist: dr(0,3)

Load picked: 0.24

obj: obj1

Node 2: 6

dist: dr(0,3,6)

Load picked: 0.35

obj: obj2

Node 3: 1 (X)

dist: dr(0,3,6,1)

Load picked: 0.13

obj: obj3

Node 4: 4 (X)

Distance: dr(0,3,6,4)

Load picked: 0.41

obj : obj4

……

Figure 4.1: Limited-search-tree-with-bound procedure

A node in the search tree can be expressed by the following data structure:

Typedef struct node{

int info; /* the index of this node in the sorted demand point sequence;

int childinfo; /* the index of the next node generated by this node;

70

Set S’; /* the set of demand points traversed in the branch by this node;

int cut; /* indicate whether the node below this node will be cut or not;

double AccumLoad; /* the accumulated load picked up at the this node;

double obj; /* reduced cost of the current node, which is calculated as

dr(S '{info})  ai * i
iS '{info}\{0}

double dist; /* the distance of the shortest tour within the set S '{info} ;

double load; /* the load picked up at this node;

double lb; /* the lower bound of this node, which is calculated as stated in

lemma 4.1;

struct node * parlink; /* a pointer points to the node that generates this

node;

} NODE;

At the beginning, the upper bound of the pricing problem is set to , and the

lower bound of node 0 is set to   . Node 0 is branched to node 1 which represents

demand point 3. Travel distance d is 2c , because its corresponding route isr (0,3) 03

from the depot to demand point 3 and then back to the depot. Thus, the reduced cost

is d  a . Since the reduced cost of node 1 is d  a , which is less than r (0,3) 1 3 r (0,3) 1 3

 , the upper bound of the searching tree is updated to d (0,3) 1a3 . The lowerr

bound of node 1 is dr (0,3) 1a3  2 (Q  a3) . The cumulated load picked up so far is

less than the vehicle capacity, because the pickup at this node is a3=0.24. Since

neither stop criterion satisfies, the search continues. The calculation at node 2 is

71

similar to that at node 1, and the search continues to move to node 3 by adding

demand point 1. We assume at node 3 the present upper bound is less than the lower

bound of node 3, node 3 is fathomed and no branches are created from node 3. The

search is back to node 2 and then creates node 4 by adding demand point 4, which is

just behind demand point 1 in the sorted sequence. At node 4, only a part of the

demand of demand point 4 can be picked up since the vehicle is full. Therefore, node

4 is fathomed, and the search goes back to its parent node (node 2). If there are other

candidate demand points in the queue, another new node will be created. Otherwise,

node 2 will be fathomed. This procedure repeats until all the nodes are fathomed. At

the end, the node providing the optimal solution (the upper bound) provides a new

column (the loads at demand points in this node) with its cost coefficient of the

upper bound for the RMP. For instance, if the upper bound is obtained at node 4, the

optimal value of the pricing problem is

dr (0,3,6,4)  3a3  6a6  4 (Q  a3  a6) with the new column of

(0,0,a ,Q  a  a ,0,a) .3 3 6 6

The limited-search-tree-with-bound algorithm has several advantages over a

general optimization solver for solving the original pricing problem. First, it

decomposes the sub-problem into smaller TSP problems to avoid the memory

overflow problem caused during solving large-size MIP problems. Secondly, this

method generates not only the column with the highest reduced cost but also some

other columns with negative reduced value. Adding these columns together with the

72

optimal value column into the master problem may reduce the total number of

iterations and may be better than only adding one column each time provided by the

simplex based integer programming solver. Thirdly, using branch-and-price

algorithm requires the column with nth negative reduced cost at depth n in the

branch-and-bound tree that is beyond the capability of some algorithms for this

problem. Finally, this algorithm can avoid columns that are not allowed to produce if

they are already in the column pool.

4.3 The branching scheme

Column generation technique is developed to solve the large size linear

programming (LP). In order to obtain the feasible (optimal) integer solution, column

generation should be integrated in a branch and bound framework, and it is called the

branch-and-price algorithm [36]. This combination of column generation and

branch-and-bound is not as easy as just solving a column generation problem

followed by branch and bound to find an integer solution. There are fundamental

difficulties in applying column generation techniq9ues for linear programming in

integer programming solution methods [2]. First, conventional integer programming

branching on variables may not be effective because fixing variables can destroy the

structure of the pricing problem. Second, solving these LPs to optimality may not be

efficient, in which case different rules will apply for managing the branch-and-price

tree. Finally, it might not be possible to construct the optimal integer solution (even a

73

feasible integer solution) with the given columns from column generation steps.

Therefore, new columns should still be generated after branching in order to obtain

the integer solutions.

As M. Savelsbergh [22] has pointed out, branching strategies for 0-1 linear

programs are based on fixing variables. There are two kinds of methods to perform

variables fixing, one is a single variable fixing (variable dichotomy), the other is a

set of variables fixing (GUB dichotomy). Their work indicates that fixing a single

variable or fixing a set of variables in the standard formulation is equivalent to that

in the disaggregated formulation, and the resulting branching scheme is compatible

with the pricing problem.

For the SDVRP, we adopt the following branching scheme: if fractional number

of the variables xj for the Restricted Master Problem is obtained, then we set one of

xj to be zero, which means the corresponding route will not considered in the future.

Otherwise, fixing x j to 1 will require the route to be one of the candidate routes in

the integer (optimal) solution, and those demand points whose load are fully picked

up in this route are not allowed to be visited in the new routes generated by the

pricing sub-problem.

The above branching strategy specifies how the current set of feasible solutions

is to be divided into two smaller subsets. It does not specify how the sub-problem to

be solved next is to be selected. The selection strategy we use here is depth-first

search. This search is usually applied to obtain feasible solutions fast. Experience

74

shows that feasible solutions are more likely to be found deep in the tree than at

nodes near the root. It is necessary to have a good feasible solution to be able to

prune nodes and thus to reduce the size of the branch-and-bound tree.

4.4 Implementation and computational experiment

In this chapter, we propose a branch-and-price algorithm to solve the Split

Delivery Vehicle Routing Problem. The algorithm is written in c with the CPLEX

9.0 Callable Library and run on a PC with 2.8GHz CPU, 512 MB of RAM.

The whole algorithm is as follows:

Step 1: Determine an initial feasible restricted master problem (RMP).

Step 2: Initialize a column pool with the existing columns in the RMP.

Step 3: Solve the current restricted master problem.

Step 4: Generate one or more columns with negative reduced costs that are

not in the column pool by calling the limited-search-tree-with-bound

routine. Add the column(s) to the restricted master problem and to the

column pool. Go to step 3. If no such column can be generated, go to

step 5.

Step 5: Get the optimal solution of the relaxation of the RMP, and initialize

a root of a branch tree. Perform a proper branch scheme. In each node,

repeat the procedures of step 1 to step 4 until the whole branch tree

has been explored. Go to Step 6.

75

Step 6: Output the results.

This branch-and-price algorithm has been tested on a set of 11 instances from

the TSPLIB, and a set of 14 randomly generated instances provided by Belenguer et

al. [10]. The vehicle capacity is always Q=160, and the demands are randomly

generated within an interval expressed as a function of Q. Computational results are

reported in Tables 4.1 and 4.2, compared with the results obtained by Belenguer et

al.’s cutting-plane algorithm. The following columns summarize the results of both

algorithms:

LB: the lower bound,

UB: the upper bound,

GAP: the percentage of (UB-LB)/UB.

K, K’, and K’’ represent the number of vehicles needed in the VRP, the instances

of the SDVRP in the Belenguer et al.’s paper and in our method, respectively.

As to “Ratio”, it is calculated by d(V)/KQ, where d(V) is the total demand and

KQ is the total capacity. “Ratio” reflects how difficult an instance is.

Observed from Table 4.1, about 50% of results obtained by the branch-and-price

algorithm have a better lower bound. In Table 4.2, 6 out of 8 instances have better

outcomes both in lower bound and upper bound (feasible integer solution).

Belenguer et al. argue that the instances in Table 4.1 seem to be more difficult than

that in Table 4.2. But according to the experience of our algorithm, we have the

opposite conclusion.

Method cutting-plane algorithm branch-and-price algorithm

Instance K Q Ratio LB UB Gap LB UB Gap

Eil22 4 6,000 0.94 375.0 375 0.0 373.6 376 0.6

Eil23 3 4,500 0.75 569.0 569 0.0 564.3 608 7.2

Eil30 3 4,500 0.94 508.0 510 0.39 507.2 515.3 1.6

Eil33 4 8,000 0.92 833.0 835 0.24 830.2 873.4 4.9

Eil51 5 160 0.97 511.6 521 1.81 507.6 558.5 9.1

EilA76 10 140 0.97 782.7 832 5.92 800.3 900.7 11.1

EilB76 14 100 0.97 937.5 1,023 8.36 965.7 1163.1 17.0

EilC76 8 180 0.95 706.0 735 3.94 711.2 809.3 12.1

EilD76 7 220 0.89 659.4 683 3.45 652.3 768.8 15.2

EilA101 8 200 0.91 793.5 817 2.88 797.5 910.2 12.4

EilB101 14 112 0.93 1,005.9 1,077 6.61 1013.9 1174.1 13.6

Table 4.2: Computational results of the two algorithms on randomly generated instances

Method cutting-plane algorithm branch-and-price algorithm

Instance K Ratio K’ LB UB Gap K’’ LB UB Gap

S51D1 3 0.84 3 454 458 0.87 3 449.9 513.9 12.5

S51D2 9 0.98 9 676.6 726 6.80 9 556.7 1296.5 57.0

S51D3 15 0.95 15 905.2 972 6.87 15 956 986 3.14

S51D4 30 0.99 27 1,521 1,677 9.32 29 1623 1654 1.91

S51D5 26 0.99 23 1,273 1,440 11.61 25 1416 1434 1.27

S51D6 50 0.98 41 2,113 2,327 9.20 41 2270 2316 2.03

S76D4 40 0.97 37 2,012 2,257 10.87 39 2178 2205 1.24

76

Table 4.1: Computational results on some TSPLIB instances

This contradiction is due to the principle of the two algorithms. Belenguer et

al.’s algorithm is more inclined to solving the TSP, which means it works well when

the capacity of vehicle is large and the number of vehicle needed is small (less than

6). This kind of instances in Table 4.2 is more like the UPS or FedEx routing

problem. When the number of vehicles needed in the problem is larger than 6, their

algorithm cannot obtain good results as previous ones. This type of instances is more

 77

like truckload routing problems and our algorithm seems to be good at it. Therefore,

the branch-and-price algorithm is competitive to the cutting-plane algorithm, and is

promising in the instance where the number of vehicles needed is large.

CHAPTER V

CONCLUSION

This chapter consists of two sections. Section 5.1 proposes the contribution

of the research work in this dissertation. In Section 5.2, we discuss the future work

associated with our current study.

5.1 Contribution

In this dissertation, we examine the Split Delivery Vehicle Routing Problem

(SDVRP), which is a relaxed version of the classic Vehicle Routing Problem (VRP).

This problem was first introduced by Dror and Trudeau over a decade ago. Like its

parental problem, the SDVRP is an NP-hard problem, even “harder” than the VRP.

There are two cases in the Split Delivery Vehicle Routing Problem. One is the

number of vehicles in the fleet is a fixed number as the minimal required number of

vehicles, while in the other case the vehicle number is a variable. In the literature,

Dror and Trudeau [1, 8, 9], Sierksma and Tijssen [15] try to solve the SDVRP with a

various number of vehicles and focus on minimizing the total travel distance, while

Belenguer et al., Lee et al. cope with the Split Delivery Vehicle Routing Problem

with the fixed number of vehicles [9, 10].

We study both scenarios of the SDVRP in this dissertation. For the SDVRP with

78

79

a fixed number of vehicles, we provide a cutting-plane based exact method called

Two-Stage algorithm where the SDVRP is decomposed into two phases of clustering

and routing. At the first stage, an assignment problem is resolved to attain clusters

that cover all demand points and to obtain the initial lower bound for the whole

problem; at the second stage, the minimal travel distance in each cluster is calculated

as a classic Traveling Salesman Problem (TSP) to obtain the upper bound. We find a

way to make these two phases to communicate mutually for the first time. This

method yields a new exact approach to the Split Delivery Vehicle Routing Problem

rather than the heuristic one in the literature. Furthermore, we develop a family of

efficient valid inequalities to improve the performance of the algorithm significantly.

For instance, in order to avoid the replication in the process of finding the optimal

solution, we design an index assignment method. This method is a generalization of

the variable fixing method which is mentioned in Dror and Trudeau’s paper [1].

We consider another scenario when the number of the vehicles is a variable in

this dissertation as well. A column generation based branch-and-price algorithm is

presented. Although this methodology is applied comprehensively, it is the first time

to use this approach in this problem. We also develop a limit-search-tree-with-bound

algorithm to solve the sub-problem in the column generation method. This

sub-problem itself is an NP-hard problem, which is called capacitated

prize-collecting traveling salesman problem. The algorithm we provide has several

advantages over a general optimization solver, e.g., CPLEX.

80

The computational results indicate that both approaches are competitive to

those in the literature.

5.2 Future work

In the future, we may extend the current work by the following two ways. First,

we can do some research work to deepen and enrich the present algorithms for the

Split Delivery Vehicle Routing Problem. For instance, for the algorithm provided by

Belenguer et al., new facet-defining inequalities that can strengthen the formulation

have not been used. Therefore, the results could be improved if we design

identification procedures that could be added to the algorithm.

Moreover, the heuristics in Chapter IV can be improved to produce better lower

bound as well, and the information provided by such a good lower bound may be

used to design new heuristic algorithms to obtain better upper bound. In fact,

exploration on the efficient valid inequalities is also required in our Two-Stage exact

algorithm. For example, we may try to improve the triangular inequalities to exclude

more routes from consideration. For the branch-and-price approach, the final success

of this approach depends heavily on the resolving of the sub-problem efficiently.

We may also apply the techniques and ideas used in these algorithms to other

fields. Lee et al. present a dynamic programming based exact algorithm for the Split

Delivery Vehicle Routing Problem. In their research, they found that although the

most natural such formulation for the SDVRP contains an uncountable infinite state

81

space, it is possible to modify the formulation to obtain a dynamic programming

with a finite state space. This technique on the reduction of action space is inspiring,

and we may apply it to other actual problems. In this dissertation, we develop an

idea to build a bridge across the two sub-problems and let the first sub-problem have

feedback from the second one for the first time in our Two-Stage algorithm, which

makes the approach to be exact rather than heuristic. In fact, there are plenty of

problems that can be decomposed into several phases. Therefore, we may try to

apply this technique to these problems. Another technique we present is the index

assignment inequalities. This class of inequalities avoids a lot of replications due to

identicalness of the vehicle in the fleet when we solve the problem. The scenario

occurs in other problems as well, for instance, a group of machines, aircrafts, or

ships. Thus, we can apply the index fixing method to these problems to save a lot of

computational time. We may lend those valid inequalities to other type of vehicle

routing problems as well.

REFERENCES

[1] Dror, M., G. Laporte, and P. Trudeau, Vehicle routing with split deliveries.
Discrete Appl. Math. 1994; 50: 239-254.

[2] Altinkemer, K. and B. Gavish, Heuristics for unequal weight delivery
problems with a fixed error guarantee. Oper. Res. Lett. 1987; 6: 149-158.

[3] Altinkemer, K. and B. Gavish, Heuristics for delivery problems with constant
error guarantees. Trans. Sci. 1990; 24:294-297.

[4] Christofides, N. et al. The Traveling Salesman Problem: A guided Tour of
Combinatorial Optimization (Wiley, Chichster, UK, 1985) 361-401.

[5] Laporte, G., The vehicle routing problem: an overview of exact and
approximate algorithms, J. Oper. Res. 1992; 59: 509-514.

[6] Laporte, G. and Y. Nobert, A branch and bound algorithm for the capacitated
vehicle routing problem, OR Spektrum 1983; 5: 77-85.

[7] Laporte, G. and Y. Nobert, Exact algorithms for the vehicle routing problem,
Surveys in Combinatorial Optimization, Annals of Discrete Mathematics,
1987; 31: 147-185.

[8] Dror, M and P. Trudeau, Split delivery routing. Naval Re. Logist. 1990; 37:
383-402.

[9] Dror, M. and P. Trudeau, Savings by split delivery routing. Trans. Sci. 1989;
23: 141-145.

[10] Belenguer, J. M., M. C. Martinez and E. Mota, A lower bound for the split
delivery vehicle routing problem. Oper. Res. 2000; 48: 801-10.

[11] Lee, C. G., M. Epelman, and C. C. White C-C, A shortest path approach to
the Multiple-vehicle routing with split picks-up. Submitted to Transportation

82

Science. 2003.

[12] Frizzell, P.W. and J. W. Giffin, The bounded split delivery vehicle routing
problem with grid networks distances. Asia Pacific J. Oper. Res. 1992;
9:101-116.

[13] Frizzell, P.W. and J. W. Giffin, The split delivery vehicle scheduling problem
with time windows and grid network distance. Comput. Oper. Res. 1995; 22:
655-667.

[14] Mullaseril, A., M. Dror, and J. Leung, Split-delivery routing heuristics in
livestock feed distribution. J. Oper. Res. Soc. 1997; 48: 107-16.

[15] Sieksma G., and G. A. Tijssen, Routing helicopters for crew exchanges on
off-shore locations. Ann. Oper. Res. 1998; 76: 261-286.

[16] Ford, L. and D. Fulkerson, A suggested computation for maximal
multicommodity network flows. Management Sci. 1958; 5:97-101.

[17] Dantzig, G. and P. Wolfe, Decomposition principle for linear programs. Oper.
Res. 1960; 8:101-111.

[18] Gilmore, P.C. and R. E. Gomory, A linear programming approach to the
cutting stock problem. Oper. Res. 1961; 9: 849-859.

[19] Gilmore, P.C. and R. E. Gomory, A linear programming approach to the
cutting stock problem-Part II. Oper. Res. 1963; 11: 863-888.

[20] Desrochers, M., J. Desrosiers and M. Solomon, A new optimization
algorithm for the vehicle routing problem with time windows. Oper. Res.
1992; 40:342-354.

[21] Lubbecke, M. and J. Desrosiers, Selected topic in column generation.
Technique Report, Braunschweig University of Technology, December,
2002.

[22] Savelsbergh, M.W.P., A branch and price algorithm for the generalized
assignment problem. Oper. Res. 1997; 45: 831-841.

[23] Agarwal, Y., K. Mathur and H. M. Salkin, A set-partitioning-based exact

83

algorithm for the vehicle routing problem. Networks, 1989; 19: 731-749.

[24] Desrosiers, J., F. Soumis and M. Desrochers, Routing with time windows by
column generation. Networks, 1984; 14: 545-565.

[25] Sol, M., Column generation techniques for pickup and delivery problem.
PhD thesis, Eindhoven University of Technology.

[26] Forrest, J. and D. Goldfarb, Steepest-edge simplex algorithms for linear
programming. Math. Programming 1992; 57:341-374.

[27] Goldfarb, D. and J. Reid, A practicable steepest-edge simplex algorithm.
Math. Programming 1977;12:361-371.

[28] Harris, P., Pivot selection methods of the Devex LP code. Math.
Programming 1973;5:1-28.

[29] Clarke, G. and J. Wright, Scheduling of vehicles from a central depot to a
number of delivery points. Oper. Res. 1964; 12: 568-581.

[30] Barnhart, N. L. et al., Flight string models for aircraft fleeting and routing.
Trans. Sci. 1998; 32: 208-220.

[31] Valerio de Carvalho, J. M., Exact solution of bin-packing problems using
column generation and branch-and-bound. Ann. Oper. Res. 1999; 86:629-659.

[32] Mehrotra, A. and M. A. Trick, A column generation approach for graph
coloring. INFORMS J. Comput. 1996; 8(4): 344-354.

[33] Erdmanm, A. et al, Modeling and solving an airline scheduling generation
problem. Ann. Oper. Res. 2001; 107: 117-142.

[34] Marsten, R.E., W.W. Hogan and J.W. Blankenship, The boxstep method for
large-scale optimization. Oper. Res. 1975; 23: 389-405.

[35] Merle, O. et al., Stabilized column generation. Discrete Math. 1999; 194:
229-237.

[36] Barnhart, C., Branch-and-price: column generation for solving huge integer
programs. Oper. Res. 2000; 46: 316-329.

[37] Vanderbeck, F., On Dantzig-Wolfe decomposition in integer programming

84

and ways to perform branching in a branch-and-price algorithm. Oper. Res.
2000; 48:111-128.

[38] Bixby, A., C. Coullard and D. Simchi-Levi, The Capacitated Prize-Collecting
Traveling Salesman Problem. International Symposium on Mathematical
Programming Lausanne, EPFL, 1997.

[39] Ben A., H., Stabilization algorithms of column generation. Ph.D. Dissertation
Ecol Polytechnique de Montreal, 2002.

[40] Anbil, R., J. Forrest and W. Pulleyblank, Column generation and the airline
crew pairing problem. ICM, 1998; 3:677-686.

[41] Vance, P., Branch-and-Price algorithms for the one-dimensional cutting stock
problem. Comput. Optim. Appl. 1998; 9:211-228.

85

	A Study On The Split Delivery Vehicle Routing Problem
	Recommended Citation

