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This research presents a hybrid algorithm that combines List Scheduling (LS) with 

a Genetic Algorithm (GA) for constructing non-preemptive schedules for soft real-time 

parallel applications represented as directed acyclic graphs (DAGs). The execution time 

requirements of the applications’ tasks are assumed to be stochastic and are represented as 

probability distribution functions. The performance in terms of schedule lengths for three 

different genetic representation schemes are evaluated and compared for a number of dif-

ferent DAGs. The approaches presented in this research produce shorter schedules than 

HLFET, a popular LS approach for all of the sample problems. Of the three genetic rep-

resentation schemes investigated, PosCT, the technique that allows the GA to learn which 

tasks to delay in order to allow other tasks to complete produced the shortest schedules for 

a majority of the sample DAGs. 
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CHAPTER I 

INTRODUCTION 

This chapter introduces basic concepts of real-time systems and their classifcation. A 

brief description of real-time scheduling and various types of scheduling algorithms that 

are available is provided. Motivation behind choosing the problem, and also the applica-

tion which would beneft from the results of the study has been mentioned. The chapter 

provides a detailed defnition of the problem, describes the parallel proessing environment, 

and assumptions made regarding the communication infrastructure. 

1.1 Real-Time Systems 

A real-time system is one that has a set of tasks that need to complete execution be-

fore their respective deadlines. A real-time system needs to not only perform the required 

computations accurately, but also complete the computations within a certain interval of 

time. An operation that occurs too late could be useless or even dangerous depending on 

the application [4]. However, the timing constraints in real-time systems cannot be arbi-

trarily extended to ensure that tasks complete within their deadlines [5]. For example, a 

real-time fight control system generally requires sub-second response time to input from 

the pilot, whereas a weather forecasting system has several minutes or hours to respond to 

changes in atmospheric conditions [5]. Also, using faster processors does not guarantee 

1 
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that tasks will meet timing requirements because interaction of tasks with each other and 

with the environment have to be taken into consideration in real-time sytems [5]. Some ex-

amples of applications that require real-time computing include [4] chemical and nuclear 

plant control, railway switching systems, automotive applications, fight control systems, 

telecommunication systems, and industrial auomation. 

A real-time application is composed of a set of real-time tasks. Instances of real-time 

tasks are commonly characterized by the following properties in literature [5]: 

� Release time is the time relative to the schedule’s start time when a task instance 
becomes available for execution. 

� Start time is the absolute time when the task instance begins execution. 
� Execution time is the time required by the task to complete execution. 
� End time is the absolute time when the task completes execution. 
� Deadline is the absolute time by which a task instance must complete in order to 

meet real-time performance requirements. 

Here, “absolute time” is the time relative to the start of the schedule. These characteristics 

are depicted in Figure 1.1. 

Figure 1.1 

Task Execution Characteristics 
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The consequence of failing to comply with timing constraints is used to classify real-

time systems into the following two categories [16]: 

� Soft real-time systems: In these types of systems, some degree of fe xibility is ac-
ceptable; deadlines may be missed occasionally, but this does not have serious ef-
fects. Some examples are multimedia applications, cellular communications.

� Hard real-time systems: In these types of systems, deadlines are to be met strictly; 
the cost of missing a deadline is very high. A missed deadline may have disastrous 
consequences. Some examples are nuclear plant control, fight control systems. 

1.2 Real-Time Scheduling 

Scheduling essentially involves allocating system resources to tasks to carry out com-

putations that the tasks are supposed to perform, while keeping in mind the timing con-

straints that are applicable on task execution. In a system where all tasks are not released 

simultaneously and tasks cannot be preempted once they have started execution, then the 

problem of constructing optimal schedules becomes NP-hard in general [5, 17]. Real-time 

scheduling algorithms can be classifed into the following types based on the properties of 

the task set under consideration and the objectives of the scheduling algorithm [4, 5]: 

Preemptive vs. Non-preemptive. In a preemptive scheduling technique, a task already 

executing can be interrupted to execute another ready task on the same processor. The 

execution of the interrupted task is resumed when the interrupting task completes. In a 

non-preemptive scheduling technique, a task that is executing cannot be interrupted by 

another task. The other task has to wait till the executing task completes. 

Static vs. Dynamic. In a static scheduling algorithm, tasks and task properties are 

already known, and scheduling decisions are made before the tasks are executed. A dy-
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namic scheduling algorithm is one in which scheduling decisions cannot be made before 

hand since the task set is not known a priori, and can change over the system’s lifetime. 

Offine vs. Online. In an offine scheduling algorithm, scheduling decisions for the 

entire task set are made before the system is started. In an online scheduling algorithm, 

scheduling decisions are made when a currently executing task completes or a new task is 

ready for execution. 

Optimal vs. Heuristic. An optimizing scheduling algorithm minimizes a cost function 

or maximizes a proft function defned over the system’s tasks. A heuristic algorithm 

strives to achieve optimality, but does not guarantee it. 

Scheduling can be performed with a number of goals such as minimizing or improving 

response time, throughput, completion time, and cost [5]. For hard real-time scheduling, 

the main goal is to ensure that tasks meet their deadlines; reducing the total length of 

the schedule is a secondary objective. Traditionally, real-time scheduling typically deals 

with scheduling hard real-time systems in which the worst-case execution time (WCET) 

of tasks is used to construct deterministic schedules that guarantee the tasks’ execution 

within given time constraints. Although this use of pessimistic execution time assumptions 

provides real-time guarantees, it comes with the cost of decreased application performance 

and resource utilization. 

Since soft real-time systems can tolerate applications missing occasional deadlines, 

considerable fe xibility can be afforded in scheduling policies that allow balancing the 

need for meeting time constraints with the need for improved performance. Such systems 
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can improve resource utilization and performance based on the fact that, in a given interval 

of time, the likelihood of all tasks simultaneously requiring their WCET is small. However, 

as opposed to the pessimistic allocation of the WCET for each task, such a scheme that 

allocates less than the absolute maximum required time will lead to occasional missed 

deadlines if tasks require more time than was allocated for them. 

There are a number of systems in practice that tolerate occasional deadline misses. For 

example, in multimedia systems, video frames are decoded and displayed at a fx ed rate. If 

the system misses a frame-decoding deadline, then either a partial frame is displayed or the 

frame is skipped entirely. Therefore, viewers will tolerate the slight degradation in video 

quality resulting from an occasional deadline miss. Some systems may have critical timing 

requirements, but nevertheless can be considered to be soft real-time systems. An example 

of this can be a stock price quotation system [16]. It is expected to update the price of each 

stock as its price changes. In such a system, a late update is highly undesirable. However, 

in a very dynamic market, occasional late or missed deadlines can be tolerated as a trade-

off for other factors, such as the cost of installation and maintenance of the system, and 

the sheer number of users that the system can serve simultaneously. 

This research investigated heuristic techniques for developing static, non-premptive, 

offine schedules for soft real-time applications in which system resources are utilized 

more effciently than possible when WCET-based scheduling is performed. The schedul-

ing techniques will enable system designers to predictably trade schedule length for quality-

of-service (QoS). QoS is the probability that the schedule will complete by the assigned 
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deadline. Essentially, after the schedule is constructed, the system designer will be able to 

determine the amount of time required by the real-time system in order to guarantee a level 

of QoS. This research extends and improves on the previous work of Dandass [6] in using 

genetic list scheduling (GLS) algorithms for scheduling real-time applications that are rep-

resented as directed acyclic graphs (DAGs). The schedules produced by the GLS-based 

techniques in [6] were of higher quality than those produced by non GLS approaches. 

However, an analysis of those schedules revealed opportunities for further optimization. 

The techniques in this paper improve on the GLS algorithm and result in schedules with 

further reductions in schedule lengths. 

1.3 Motivation 

One class of application to which the scheduling technique developed in this research 

can be utilized for is a mobile augmented reality system. In such systems, computer-

generated graphics, termed “augmentations,” are rendered so that they overlay relevant 

parts of the real world in order to enhance information content. Such processes need 

signifcant real-time computation capacity while dealing with constraints of volume, mass, 

power consumption, and heat production. The applications for which such systems will 

be used need to compute and produce results on the input data at a high frame rate. An 

example application is a fre fghter wearing such a mobile computing system and entering 

a smoke flled room. Image augmentation such as location of doors, windows, pipes, and 

electrical wires are overlayed on a transparent display through which the fre fghter is 
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viewing the real world. Such a system may have video and audio inputs, inputs from 

a heat sensor, and a Global Positioning System (GPS), all providing information to be 

displayed to the fre-fghter . The image should correspond to what the fre fghter sees 

in real time. The system needs to process huge amounts of information quickly; a new 

image must be rendered based on the orientation of the fre fghter’ s head. Tradionally, 

dedicated processors are allocated to process each input stream; each processor performing 

one particular type of job. This makes the augmented reality system bulky, consuming 

large amounts of power, which in turn leads to the problem of increased heat dissipation. 

This can be avoided by allocating the tasks to a fnite set of homogeneous processors, 

capable of performing any task assigned to them. The problem then is to obtain effcient 

scheduling techniques for allocating fnite computing resources if such mobile augmented 

reality systems are to be built and to be used more commonly. 

There are a number of scheduling techniques available, such as Rate Monotonic Schedul-

ing (RMS) and Earliest Deadline First (EDF) [16]. RMS prioritizes tasks according to 

their period; tasks with shorter periods are given a higher priority. The EDF algorithm ex-

ecutes the task with the earliest absolute deadline. However, these algorithms are suitable 

for scheduling tasks in hard real-time systems. Research in [20] and [1] also dealt with 

scheduling of real-time tasks. These scheduling algorithms are restricted to uniprocessor 

systems and hence cannot be utilized in this research. A number of scheduling strategies 

have also been developed in the feld of Operations Research (OR). However, these can-

not be applied directly to real-time scheduling because the models used do not accurately 
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represent realistic real-time task execution requirements. Also, scheduling techniques de-

veloped in OR generally do not deal with tasks that recur, need synchronization or ones 

that communicate with each other and transfer information, and hence, these techniques 

seem impractical for scheduling of real-time tasks. 

1.4 Problem Defnition 

The problem is formally described as follows: given a directed acyclic graph (DAG), 

representing a soft real-time application, devise a scheduling algorithm that minimizes 

schedule lengths while simultaneously enabling the predictable tradeoff of quality-of-

service for improved resource allocation. 

The soft real-time applications are composed of two types of tasks: 

� computation tasks which are a series of computations. 
� communication tasks which are responsible for transferring information from one 

processing unit to another. 

A DAG G = (V, E) consists of a set V = (v � , v � , ..., v � ) of n vertices and a set E = (e � , e � , 
..., e � ) of k directed edges connecting the vertices. The vertices represent computational 

tasks and the directed edges represent communication operations. The edge direction spec-

ifes the direction of communication. The ordered pair e � = (v ���
	 , v ���� ) indicates that the 

direction of edge e � is from vertex v ���
	 to v ���� . The edges also determine task precedence 

constraints that have to be satisfed in the application. 

Preemption used in most periodic real-time scheduling algorithms can reduce perfor-

mance because of additional context switching times, and reduced locality (e.g., cache 
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content and branch prediction table entries setup for the original task are disturbed by the 

interrupting task) [5]. For this reason, the scheduling technique developed in this research 

prevents real-time tasks from being preempted at arbitrary instances of time. Instead, tasks 

can be preempted only at vertex or edge boundaries. Hence, applications which involve 

rapid task switching require large tasks to be partitioned into strings of vertices or edges. 

This restriction on preemption enables a more accurate determination of individual tasks’ 

execution times because the disruptive effects as mentioned above are isolated to task 

boundaries. 

In this research, the timing requirements of tasks are assumed to be varying in order 

to account for the uncertainty in the time to complete these tasks. The execution time 

requirement of a task is modeled as an independent random variable. The assumption of 

independence of task execution requirements is justifed because the causes of the variance 

in a task’s execution time requirements are restricted to the effects of the processor archi-

tecture (e.g., cache, branch prediction); variances in execution times caused by data char-

acteristics (e.g., size and locality) and execution fo ws (e.g., different conditional branches) 

are excluded [5]. Hence, the class of problems that are addressed here are primarily in the 

domain of real-time signal and image processing applications where successive “frames” 

of data gathered by sensors are processed repeatedly by a dedicated system. 

The independent random variables representing execution time are expressed in the 

form of probability distribution functions (PDF). A PDF maps a time quantity representing 

the execution time requirement of the task to the probability that the task will require that 
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much time to execute. Figure 1.2 shows an example PDF of the execution time of a task. 

Execution of the task may take anywhere between 3 and 10 ticks, and the probability with 

which the task executes in a given number of ticks is given by the histogram. 

Figure 1.2 

A Representative PDF for Task Execution Time Requirements [5] 

Figure 1.3 depicts a hypothetical DAG. Edges e � , e � , e � , and e � are designated as 

(v � , v � ), (v � , v � ), (v � , v � ), and (v � , v � ), respectively. Task execution time probabilities are 

depicted at the right. For example, when vertex v � is executed, it can take 4, 5, or 6 time 

units to complete with equal probability. 

It is assumed, without loss of generality, that the vertex and edge weights are specifed 

as integer values, and that the weight probabilities are non-zero over a fnite range of 

weight values. This is a valid assumption because real-time systems are designed to have 
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as little variance in execution time as possible. This assumption implies that vertices and 

edges have weight values only within a well-defned range of integers. 

Given the PDF of the start time and execution time of task J � , the completion time 

PDF of J � is computed by the convolution of the start time PDF and the execution time 

PDF of J � [5]. Task J ����� is started immediately after J � completes and its start time PDF 

is essentially the completion time PDF of J � that has been translated (i.e., shifted) to the 

right by one time unit. Therefore, in this research, task start time and end time are also 

represented by PDFs. 

The parallel application is assumed to execute on a homogeneous multiprocessor ma-

chine. All processors in a homogeneous machine are identical to each other in computa-

tional capacity. A computational task will thus take the same amount of time to execute 

on any of the processors. Also, a uniform point-to-point network capacity is assumed over 

the entire parallel system. This implies that the time needed to complete a particular com-

munication operation is the same over any combination of distinct source and destination 

processors. 

This research presents an offine scheduling technique with two main objectives: 

� Create a schedule of tasks in the DAG on a parallel machine so as to minimize the 
make-span of the schedule while utilizing as few processors as possible. If two 
schedules have identical make-spans, the schedule requiring fewer number of pro-
cessors is preferred. 

� Compute the completion time PDF of the application. This PDF provides a mean for 
precisely determining the amount of reduction in the application execution time that 
can be obtained by making a compromise on the probability of meeting end-to-end 
deadlines. 
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Figure 1.3 

A hypothetical DAG [5] 
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Schedules are created for a fnite set of processing elements (PEs). PEs are represen-

tatives of the actual processor units in the homogeneous multiprocessor system. Each PE 

is composed of a processor, and a pair of send and receive channels. The processor is re-

sponsible for executing computation tasks; the send and receive channels are responsible 

for executing communication operations. Thus, when a schedule is created, vertices are 

scheduled on the processor part of the PE, and edges are scheduled on the send and re-

ceive channels. Each channel is simplex; the send channel is used to transmit information 

to other PEs, while the receive channel is used to receive information from other PEs. The 

send and receive channesl are a pair of simplex channels that form a full-duplex commu-

nication interface to the network. A PE can perform a single communication operation on 

each simplex link. Simultaneous send and receive operations can occur, however, two send 

or two receive operations cannot occur simultaneously. The PEs are assumed to be inter-

connected by point-to-point links, thus forming a fully connected network topology. The 

network is assumed to be congestion-free and capable of transmitting data without loss or 

communication errors. Communication and computation tasks can be scheduled simulta-

neously on a PE provided their start times do not depend upon the completion time of the 

other, in other words, when the communication and computation tasks are independent of 

each other. 
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1.5 Approach 

This research employs Genetic Algorithms (GAs) for scheduling of computation and 

communication tasks. GAs are a broad class of algorithms that are analogous to natural 

evolution [10] and are based on the principle of “survival of the fttest. ” GAs try to obtain 

an optimal solution to a problem by manipulating a coding of the solution rather than 

the solution itself. A GA maintains a population of individuals, known as chromosomes, 

where each chromosome is an encoding of a solution to the problem. Genetic operators 

are applied to these chromosomes to produce new individuals, which are added to the 

population. A ftness criterion is used to decide whether an individual should be included 

in the development of further generations or not. In this research, the length of the schedule 

generated by a chromosome is used as a ftness criterion; the shorter the length, the better 

the schedule. GAs have been shown to be robust in optimization problems [23] because 

they can effectively and effciently search large search spaces and converge on a global 

optima [7]. Genetic List Scheduling (GLS) techniques will be applied to obtain schedules 

for the real-time application. 

A schedule is created by allocating ready tasks to processors that can allow the earli-

est execution of that task. The genetic representation is used for prioritizing the DAG’s 

vertices and equally importantly, its edges. In this research, two new priority-encoding 

schemes, PosCT and PriNT were implemented and compared to the PosNT scheme previ-

ously used by Dandass [5]. These schemes are discussed in detail in Section 3.6. Once a 

vertex is selected based on the prioritization schemes, an empty slot is found on a proces-
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sor that begins at or after the start time of the vertex. An empty slot is an interval of time 

in which no task has been scheduled. A vertex can be scheduled in a slot if the previously 

scheduled vertex on the same processor has completed and the incident edges on the ready 

vertex have been scheduled. The start time PDF of a task is calculated by the maximum 

of the PDFs of the two independent preceeding tasks. This is explained in more detail 

in Chapter 3. An edge can be scheduled in a common time slot on the send link of the 

source PE and on the receive link of the destination PE that starts after the source vertex 

has completed. As mentioned in Section 1.4, the end time PDF for each task is calculated 

by convoluting the start time and execution time PDFs of the task. This is also explained 

in more detail in Chapter 3. 

PDF manipulations are expensive to perform, hence the time required to construct a 

schedule becomes prohibitively large. Dandass in [5] has used a fx ed estimate of the exe-

cution time requirements of each task instead of the tasks’ execution time PDF to construct 

an initial schedule, from which task-resource allocations and task sequences are used to 

construct the fnal stochastic schedule using task execution time PDFs. This is discussed 

in more detail in Section 3.7. The expected value of the PDF is used as the fx ed esti-

mate. Two variations of the PosCT scheme are developed in this research: PosCT-Fixed 

and PosCT-Variable. The PosCT-Fixed uses the fx ed estimate of the execution time PDF, 

whereas PosCT-Variable uses the detailed start and end time PDFs of the vertices and edges 

for obtaining better schedules. The difference between PosCT-Fixed and PosCT-Variable 

are discussed in Section 3.10. 



CHAPTER II 

LITERATURE SURVEY 

This chapter summarizes related work in scheduling of real-time tasks using GAs, de-

terministic and probabilistic real-time scheduling, and sechduling with multi-processors. 

It also contains limitations of existing real-time scheduling research. 

2.1 Scheduling with Genetic Algorithms 

Grajcar in [10] worked on mapping a partially ordered set of tasks communicating 

over a shared bus to a heterogeneous multiprocessor system, with the goal of minimization 

of the makespan, taking into consideration the constraints due to data dependencies and 

resource usage. An approach based on list scheduling (LS) and genetic algorithms (GAs) 

is presented. The problem is essentially to map a task graph, with nodes as tasks, and edges 

as communications, onto a target architecture, consisting of a set of processing modules 

and a set of busses. The result of the algorithm is a schedule that determines the assignment 

of each task to a resource, and its starting time. The algorithm is capable of handling pre-

emption, however it does not handle migration since heterogeneous processor systems do 

not support migration. It is essentially a genetic algorithm using list scheduling, in which 

two parents are chosen to create an offspring, which is evaluated using list scheduling, and 

an unfeasible individual is selected to be replaced. Evaluation of an individual is done by 

16 
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creating a schedule using its chromosome and computing the resulting makespan. This 

algorithm is a heuristic and thus, it cannot be proved that a given solution is optimal. 

Montana et al. in [7] discussed factors such as large search spaces, dynamically chang-

ing problems and variety of constraints that make real-time scheduling diffcult. In their 

approach, they use an ordered-pair representation for scheduling, each pair consisting of 

a task, and a resource that is to be used to execute the corresponding task. Genetic opera-

tors shuffe task-resource parings as well as the sequence of tasks. The evaluation function 

measures the goodness of the schedule. To handle dynamically changing problems, the ge-

netic algorithm works on a fx ed problem for a fx ed amount of time, then the best schedule 

obtained at that point is modifed to take into account the changes that have taken place in 

this time. Thus, they claim that their approach of using genetic algorithms, reconciliation 

of changes, and incorporation of hard and soft constraints into genetic operators and an 

evaluation function addresses the factors that make real-time scheduling diffcult. 

Kim et al. have talked about a genetic reinforcement algorithm for the machine schedul-

ing problem in [14]. They have developed a genetic reinforcement learning scheduler 

called EVIS (Evolutionary Intracell Scheduler) that is applied to various classes of the 

machine scheduling problem, and also to the processor scheduling algorithm. It can be 

looked upon as a search for an optimal priority-list in a pool of priority-lists. It has been 

shown that the learning-based heuristic is robust and its performance is comparable to 

other problem-specifc heuristics. EVIS is an implementation of reinforcement leaning 

with delayed feedback, which determines a maximal reward policy, given a policy gener-
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ation method, an evaluation function, an updating function, and a stopping condition. The 

stopping condition can be either maximum number of generations or minimal improve-

ments in the best chromosome during a specifed number of generations. For application 

of EVIS to the processor scheduling problem, the cross-over operator is not used. A sched-

ule consists of operation-to-processor assignments as well as operation starting times. 

Highest Level First with Estimated Times (HLFET) [2] is a simple and fast LS heuristic 

in which ready vertices are scheduled according to non-decreasing order of the longest 

path between the ready vertex and a terminal vertex, which is one that does not have any 

outgoing edges, in the DAG. In this research, HLFET is used as the LS approach to create 

schedules for each of the DAGs. The schedules created by HLFET are compared with 

those created by the GLS approaches. 

Grajcar in [11] has talked about the strengths and weaknesses of genetic list scheduling 

for heterogeneous systems. The main lacuna of list scheduling is the lack of information 

about tasks that are not scheduled yet. Moreover, most list scheduling techniques work 

with a number of assumptions about the computing environment, such as the processors 

being alike, no competition for the communication channel, among others, which may 

not be always true for real-time or multimedia systems. This research treats communi-

cation as individual tasks too. Thus, invalidating the assumption of the absence of bus 

contention. Also, the author mentions that most heuristics ignore precedence constraints, 

but the heuristic used in this research does not. Information about tasks not scheduled yet 

can be utilized for determining if a given task may be allotted to a given resource. Looka-
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head as described in [3] may be used to some extent to try to solve the stated weakness of 

list scheduling. 

In [6], Dandass has combined list scheduling with genetic algorithms for constructing 

non-preemptive schedules for soft real-time parallel applications, represented as DAGs, 

where the task execution time is given in the form of a PDF. The parallel machine used for 

executing the application is assumed to be a homogeneous machine, where each processor 

is identical to each other, so that the time taken to execute a computational task is the same 

on any of the processors. Each processor is assumed to have separate send and receive 

channels for transmitting and receiving data respectively; these are used to schedule the 

communication tasks. The execution time of each task was modeled as an independent 

random variable. The problem was to schedule the tasks in the DAG using the least num-

ber of processors and then computing the completion time PDF of the application. List 

scheduling was used to generate the chromosomes for the population, on which genetic 

operations were performed. The resulting offspring chromosome was evaluated for its 

ftness, and the worst chromosome in the population was replaced by the offspring. The 

vertices to be scheduled are selected from a ready list, and their prioritization is determined 

by their order in the chromosome being considered. A chosen vertex is then scheduled by 

searching for idle time slots in which incident edges for the vertex, and the vertex itself can 

be executed. This is done on all of the available processors and the vertex is fnally sched-

uled on that processor that allows it to start the earliest. The execution time requirement 

of each vertex is given by the convolution of the start time PDF and the execution time 



20 

PDF of the vertex. The results obtained showed that using the genetic algorithm produced 

shorter schedules than list scheduling approaches for a sample set of problems. 

2.2 Probabilistic and Stochastic Scheduling 

A number of scheduling algorithms are available for scheduling real-time tasks. Some 

commonly used algorithms are Earliest Deadline First, Rate Monotonic, and Deadline 

Monotonic [16]. However, most of these algorithms rely on preemption of tasks and as-

sume fx ed task execution time requirements. 

The method developed in [20], known as Probabilistic Time Demand Analysis sched-

ules semi-periodic tasks by treating them as periodic tasks and scheduling them on a fx ed-

priority basis. It tries to fnd the probability that any request meets its deadline. This is 

done by computing the probability from the cumulative probability distribution of the total 

amount of processor time demanded by higher priority tasks. Abeni and Buttazzo in [1] 

try to solve the problem of soft real-time scheduling by using a Bandwidth Reservation 

Strategy. According to this strategy, each task is assigned a part of the CPU bandwidth 

and the scheduling mechanism ensures that the task will not require more than the reserved 

bandwidth. A task demanding too much time is just delayed, and it does not compromise 

the QoS guaranteed for other tasks. However, these techniques typically assume that tasks 

can be preempted, and the preemption cost is negligible, and also these techniques are 

generally restricted to single processor systems. 
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Dogan and Ozguner in [9] have tried to solve the problem of stochastic scheduling 

of a tasks in a heterogeneous distributed computing system. They have performed sim-

ulation studies, which showed that using a stochastic scheduling algorithm instead of a 

deterministic scheduling algorithm improved the performance of scheduling tasks in a het-

erogeneous system. They have developed a genetic algorithm based scheduling algorithm 

that makes scheduling decisions either stochastically or deterministically. Task execution 

times have been treated as random variables. They have assumed the objective of reducing 

the expected value of the length of the schedule. However, algorithms from [9] cannot 

be directly used in this research because they deal with independent tasks that have no 

data dependencies, whereas in this research, tasks having precedence constraints are being 

considered. 

In [3], Beaty has talked about the weaknesses of list scheduling, mainly when dealing 

with restricted timing. Two methods have been developed, namely foresight and looka-

head, that act to mitigate this weakness. Foresight checks to see whether all those op-

erations that become constrained after scheduling a particular operation can be “easily” 

scheduled, considering the constraints and conficts caused by resources. If an operation 

can be scheduled, then it is, and foresight is repeated for the subsequently following op-

erations. The lookahead method was developed with the aim of reducing the scheduling 

time and increasing the chances of creating valid schedules. It places operations instead of 

just testing for the possibility of placement; it can remove any or all the nodes in the ready 

set and make successors of these nodes available for scheduling. After experimentation, it 
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was found that foresight and lookahead were more important for forming valid schedules 

than choosing good heuristics, and that lookahead was able to enhance the ability of list 

scheduling to generate valid schedules. 

2.3 Scheduling for Multi-processors 

Mingsheng et al. in [17] present a list scheduling scheme to schedule tasks of a 

DAG onto a homogeneous multiprocessor system, with the aim of minimizing not only 

the schedule length, but also the scheduling time. In the paper, they propose a list schedul-

ing algorithm based on critical paths; all nodes belonging to the critical path are to be 

scheduled, as soon as they are ready, since they have the greatest infuence on the schedul-

ing length of the task graph. When nodes are to be assigned to processors, then critical 

path nodes are made to have the earliest start times. This algorithm has a time complex-

�ˇ˘˙ˆ˛˝ �˜°ity of , where p is the number of processors and v is the number of nodes in the 

graph. They compare this algorithm with other list scheduling algorithms and show that 

the others do not guarantee earliest scheduling of the critical path nodes, and that the time 

complexity of their algorithm is no more than the others. 

In [19], Ramamritham et al. describe scheduling algorithms based on heuristic func-

tions for real-time multiprocessor systems. Simulation is used to evaluate two scheduling 

algorithms; one considers all the tasks not yet scheduled as candidates, where as the other 

chooses a subset of tasks with the shortest deadlines. They show that the latter is very 
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effective when the maximum allowable scheduling overhead is fx ed, which makes it ap-

propriate for dynamic scheduling in real-time systems. 

In [22] Wang et al. have tried to establish bounds on the performance of heuristic 

algorithms for multiprocessor scheduling of hard real-time tasks by analyzing the perfor-

mance of list scheduling and H-scheduling algorithms. They have taken into consideration 

two performance aspects to evaluate heuristic algorithms, which are the ability of an al-

gorithm to generate a feasible solution, and the quality of the solution. The metric used 

to measure the ability is the ratio of the number of task sets for which the algorithm has 

found feasible schedules to the total number of task sets at hand, whereas the length of 

the schedule is used to determine the quality of the schedule. Simulation was used for the 

analysis and it is shown that tasks with the same computation times as well as those with 

arbitrary computation times, the complexity is 
�ˇ˘� �!����"#° for $&%(')%+*-, , and 

�ˇ˘� �."/° 
for '0*1$ , where n is the number of tasks, m is the number of processors, and r is the 

number of resources. However, these research efforts assume tasks with fx ed execution 

time requirements, which make these algorithms deterministic in nature. 



CHAPTER III 

APPROACH 

3.1 Objective 

An objective of this research is to extend the scheduling technique described in [5] 

for scheduling of soft-real-time parallel applications. They are represented in the form 

of directed acyclic graphs, with each vertex representing a computation task and each 

directed edge representing communication between different tasks. The communication 

operations decide precedence relations between computation tasks. 

3.2 Hardware 

The parallel application is assumed to execute on a homogenous set of prcossors. 

Each processor is similar to every other processor in terms of performance, so that a task 

can be allotted to any of the available processors. The tasks in the application cannot be 

preempted at any arbitrary instance of time, but can be preempted only at vertex or edge 

boundaries. This is done to enable a more accurate determination of individual tasks’ 

execution times because the disruptive effects of interrupt handling and task switching are 

isolated to task boundaries. The application may be a periodic application, in which case, 

once the optimum schedule is obtained, the entire schedule is repeated to represent the 

periodic nature of the application. Processing elements are the units which are used for 
24 
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scheduling the computation and communication tasks. Each processing element consists 

of a processor, and a pair of send and receive channels. The processor is capable of, but 

restricted to, executing the computation task that is assigned to it. The communication 

channels are used for transfer of information. Each channel is simplex; the send channel 

is used to send information out of the processing element, while the receive channel is 

used to receive information from another processing element. Thus, we have a pair of 

simplex channels that form a full-duplex communication interface to the network. Each 

of the processing elements is assumed to be connected to each other by point-to-point 

links, thus forming a fully connected network topology. The network is assumed to be 

congestion-free and capable of transmitting data without loss or communication errors. 

Communication and computation tasks can be scheduled simultaneously on a processing 

element provided they are independent of each other. 

3.3 Tasks and Task PDFs 

Each task has variable start and execution times, which cannot be fx ed in advance. 

These processing time requirements are modeled as independent random variables with 

bounded minimum and maximum values [5]. Independence of random variables implies 

that observation of any particular value of a variable is not infuenced by nor does it infu -

ence observed values of any other variable. Bounds on the values of end times are valid 

because real-time tasks are designed to reduce execution time jitter and hence cannot have 

unbounded end times. These independent variables have values that are given in the form 
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of a PDF. For experimental purposes, three different types of distributions will be consid-

ered, viz. exponential, beta, and random. Scheduling algorithms calculate the end time 

PDF of a task by using its execution time PDF and the end time PDF of the preceding 

task. In [5], Dandass states that computation costs for such PDF manipulations are high, 

and thus a fx ed estimate of the execution time requirements of each task is used instead of 

the tasks’ execution time PDF to construct an initial schedule, from which task-resource 

allocations and task sequences are used to construct the fnal stochastic schedule using 

task execution time PDFs. 

3.4 Genetic Algorithms 

Genetic algorithms are a broad class of algorithms that are analogous to natural evolu-

tion [10]. Operations taking place in genetic algorithms mimic biological principles such 

as “survival of the fttest”. Genetic algorithms have been shown to be robust in various 

optimization problems [23]. During their operation, they maintain populations of possible 

solutions to a problem [7]. Each of the solutions is called a chromosome. Thus at each step 

in the algorithm there is a gene pool consisting of genes of the chromosomes contained 

in the population. Genetic algorithms manipulate a coding of the solution, which is the 

chromosome, rather than the solution itself [18]. After generation of an initial population, 

applying genetic operators on the chromosomes creates a new population. Individuals in 

a population are assessed based on a ftness criterion. The chromosomes having higher 

values of the ftness criteria are supposed to be superior, and they are selected for repro-
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duction. Reproduction can take place by the application of one or more genetic operators, 

such as selection, crossover, and mutation. The operators merge the chromosomes of the 

parents, giving rise to a child, possibly combining the desirable properties of the parents 

[10]. 

The selection operator is used to select the best individual from the entire population 

or a subset of any size of the population. The score or value of an individual against the 

ftness criteria is used for comparison. The crossover operator resembles the exchange 

of genetic material that takes place during reproduction in nature. The child generated 

as a result of a crossover operation on the parents has qualities of both the parents in it. 

However, the crossover of two individuals may not always generate an individual better 

than the previous ones; it just generates a different individual [13]. Each of the results of 

reproduction also need to be tested against the ftness criteria, and may be eliminated if 

they are very unft. In some cases, such unft individuals may be retained in the population 

in order to explore new parts of the search space, which otherwise would not have been 

accessible. The mutation operator randomly exchanges positions of genes in the selected 

chromosome to create a completely new individual. The number of mutations taking place 

in the population is controlled by the mutation rate [13]. Variations of the basic genetic 

operators may be used in order to create a variety of individuals so that the algorithm does 

not converge to local maxima. This research uses a steady state genetic algorithm in that 

new chromosomes obtained by genetic operations immediately replace members of the 

current population. 
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Genetic algorithms have been successful in various optimization problems since they 

are capable of effectively and effciently searching large search spaces to fnd nearly global 

optima [7]. They use an objective function, which is the ftness criterion, to evaluate the 

quality of solutions to guide their search as opposed to heuristics, which often rely upon 

problem specifc information for getting results [23]. Genetic algorithms can be easily 

parallelized; different processors can work with different populations, thus obtaining a 

very large variety of solutions to the same problem, increasing the chances of getting an 

optimal solution. Also, information between different processors can be exchanged so that 

there is variation in the genetic material that each processor works with. 

3.5 List Scheduling and Genetic List Scheduling 

A number of heuristic algorithms have been proposed for constructing schedules for 

DAGs to minimize the make-span based on the List Scheduling (LS) algorithm. The fun-

damental LS algorithm consists of steps as shown in Figure 3.1. LS is an iterative algo-

rithm, in which, in each iteration, a list of ready vertices is constructed. A ready vertex is 

one whose precedence constraints have been met. The list is then prioritized according to 

a scheme and then the ready vertex with the highest priority is scheduled on the processor 

that allows the earliest execution of the task associated with that vertex. Prioritization of 

the vertices is performed according to a variety of heuristics, and the heuristic used has a 

profound impact not only on the length of the schedule, but also on the amount of time 

that is required to construct the schedule. 
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Figure 3.1 

The Fundamental LS Algorithm [6] 

Kwok and Ahmad [15] have proposed an effective technique for combining Genetic 

Algorithms (GAs) with the LS technique. Such a combination of GA and LS is known 

as Genetic List Scheduling (GLS). In GLS, chromosomes contain information that is used 

to decide the order in which the tasks are scheduled. Genetic operators are applied on 

individuals in a population to obtain better individuals. This iterative process is repeated 

till an optimal schedule is obtained. Figure 3.2 shows the steps in the fundamental GLS 

algorithm. 

In [5], GLS has been successfully applied to scheduling DAGs with multicast edges in 

the presence of precedence constraints. The fundamental algorithm shown in Figure 3.2 

is easily parallelizable. The advantage of using GAs is that they are able to search a 

large search space easily, without the need of having sophisticated models to describe the 

problem. 
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Figure 3.2 

The Fundamental GLS Algorithm [6] 

3.6 Genetic Representation 

Most existing LS and GLS algorithms focus on prioritizing vertices in the ready list 

and can schedule the incoming edges of a vertex in an arbitrary manner because commu-

nication contention is ignored. However, when communication contention is allowed, the 

order in which edges are scheduled also impacts schedule length. Therefore, the genetic 

representation in this research is used for prioritizing the DAG’s vertices and equally im-

portantly, its edges. The following three distinct priority encoding schemes are used in 

this research. 

3.6.1 Positional with No Thresholds (PosNT) 

In the Positional with No Thresholds (PosNT) encoding scheme, each chromosome in the 

GLS has two vectors of genes. The vertex vector contains a gene for each vertex in the 
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DAG and the edge vector contains a gene for each edge in the DAG (i.e. there are 2 V 2 + 2 E 2 
genes in each chromosome). Each gene is a 32 bit value identifying the corresponding task 

(vertex or edge) in the DAG. The position of the vertex and edge genes in their respective 

vectors determines the priority of the corresponding vertices and edges used by the list 

scheduler. For example, consider two ready vertices v 3 and v 4 appearing at indices i 3 and 

i 4 respectively in the vertex gene vector. If i 35% i 4 , the pointer for v 3 appears before the 

pointer for v 4 . In this case, v 3 is given a higher priority than v 4 . Edge priorities are similarly 

determined by the ordering of edge genes in the edge gene vector. The PostNT-based GA 

searches for an optimal ordering of tasks in the chromosomes. 

3.6.2 Positional with Customized Thresholds (PosCT) 

In the Positional with Customized Thresholds (PosCT) encoding scheme, in addition to 

the positional vector and edge genes as in PosNT, there is a third vector of genes making 

the total number of genes in a chromosome equal to 2 * ( 2 V 2 + 2 E 2 ). The vertex and edge 

vectors are identical in structure and function as in the PosNT representation described 

previously. The third vector contains overlap threshold genes, one for each vertex and 

edge in the DAG. The threshold gene specifes the overlap threshold value for the cor-

responding task represented as an 8-bit unsigned integer. It is a fractional value in the 

interval [0,1] computed by dividing the gene value by 255. The overlap threshold is used 

to determine if a task (vertex or edge), T 6 , to be scheduled on processor P 7 such that 

another task, T 7 , already in the schedule for P 7 , is delayed in order to allow task T 6 to 
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execute. (Section 3.10 contains additional details on thresholds which are used for de-

creasing schedule length.) Unlike the positional genes, the threshold genes occur at fx ed 

locations in the gene vector (i.e., the threshold for vertex v 3 is located at position x in the 

overlap threshold gene vector and that for edge e 4 is located at position 2 V 2 + y. In addition 

to searching for optimal vertex and edge positions, the PosCT-based GA also searches for 

optimal threshold assignments for tasks. There are two variations of the PosCT approach: 

the PosCT-Fixed and the PosCT-Variable. PosCT-Fixed uses a fx ed estimate of the start 

and end time PDFs of the tasks rather than using the PDFs themselves. This is done so as 

to decrease the time required to actually create a schedule. PDF manipulations and PDF 

operators are computationally expensive, and thus, using entire PDFs require prohibitively 

large amounts of time. The PosCT-Variable uses the entire start and end time PDFs instead 

of the fx ed estimate in constructing schedules. Schedules using PosCT-Variable were con-

structed for less than 12% of the total number of DAGs used for testing the fx ed estimate 

approaches. Moreover, in PosCT-Fixed, the value of the overlap gene is compared to the 

ratio of overlap versus task weights, whereas in PosCT-Variable, the value of the overlap 

gene is compared to the probability that a ready task fnishes before an already existing 

task. This is explained in more detail in Section 3.10. 

3.6.3 Priority with No Thresholds (PriNT) 

In the Priority with No Thresholds (PriNT) encoding scheme, the genetic representation 

is identical in structure to that of PosNT. The difference is that in this scheme the genes 
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directly encode the priority of the vertices and edges (recall that in PosNT, the priority of 

tasks was determined indirectly from their relative positions in the chromosome). There 

are 2 V 2 + 2 E 2 genes in each chromosome. The priority of each task in the DAG is rep-

resented by a 32-bit integer value at a unique (and fx ed) offset in the chromosome (i.e., 

the priority gene for vertex v 3 is located at position x in the priority gene vector and that 

for edge e 4 is located at position 2 V 2 + y.) The PriNT-based GA searches for an optimal 

prioritization of vertices and edges in the chromosomes. 

3.7 Schedule Construction and Fitness Computation 

This research adopts the schedule construction technique developed by Dandass in 

[5]. Given a chromosome, the LS portion of the GLS assigns vertices and edges in the 

DAG to the processors and processor-to-network links in the parallel machine. During 

each iteration, the algorithm schedules the highest priority ready vertex. The list of ready 

vertices is initially populated with vertices that do not have any preceding edges. During 

each iteration, the ready vertices are prioritized according to the genetic encoding scheme 

(i.e., PosNT, PosCT, or PriNT) in use. In PosNT and PosCT, the ready vertices are prior-

itized by their relative positions in C. In PriNT, the priority information directly encoded 

in the chromosome is used to select the highest priority vertex, v � . Conceptually, the start 

time of v � is determined by temporarily scheduling the vertex on a processor in the paral-

lel machine, M. Then, this temporary scheduling is reversed before scheduling v � on the 

next processor in M. After attempting the scheduling operation on each processor in M, the 
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algorithm greedily selects the processor that allowed the earliest completion of v � , and per-

manently schedules v � on that processor. Function Schedule Vertex is used for scheduling 

v � on a processor and function Remove Schedule is used for reversing the scheduling of v � . 
The key operations in Schedule Vertex are the searches for idle time slots on the processor 

and the communication channels in which the vertex and incident edges can be scheduled. 

Before v � is scheduled, its incident edges must be scheduled. Scheduling an edge requires 

the algorithm to fnd overlapping time slots on the communication channels of the source 

and destination processors during which the source processor’s outgoing network link and 

the destination processor’s incoming link are simultaneously idle. Vertices only need to be 

assigned to a single processor. 

3.8 Genetic Operators 

This research uses the genetic operators used by Dandass in [5]. Three different oper-

ators are used which are described as follows: 

3.8.1 Selection Operator 

In genetic algorithms, the fttest individuals dominate the population and can cause pre-

mature convergence. In order to reduce this, the following ftness function proposed by 

Grajcar [11] is used in this research: 

"<; ˘:9 °˘:9 '8 ° * ˆ "<C  EDF˘:9 ° (3.1)2>=@?A?AB 2˜GIH 
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where, the rank of chromosome c is the number of chromosomes in population J that pro-

duce poorer schedules than c. The chromosome with the largest ftness value in a random 

subset of size 2% to 10% of J is selected for reproduction. Similarly, the chromosome 

with the least ftness value from another random subset from J is selected for replacement. 

3.8.2 Recombination Operators 

Three different crossover operators, standard crossover (SX), ordered crossover (OX) [8] 

and vector crossover (VX), and a mutation operator are used in this research. 

SX is used for recombining genes in the threshold vectors in the PosCT approaches, 

and the priority vectors in PriNT. The vectors are treated as a sequence of bits. A random 

bit position is selected in the parent chrosomoes. The child chromosome contains the se-

quence of bits prior to the crossover bit from one of the parent, and the sequence following 

the crossover bit from the other parent. 

The OX operator recombines the genes in the positional vertex and edge vectors in the 

PosNT and PosCT representation schemes. A random crossover point is selected, similar 

to that as in SX. The genes prior to the crossover point are copied from one of the parent 

to the child. The remaining part of the child chromosome contains the remaining genes in 

the order in which they appear in the other parent chromosome. 

In VX, the child chromosome receives a copy of the entire vertex vector from one 

parent, and a copy of the entire edge vector from the other parent. 
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The mutation operator randomly swaps the location of a pair of genes within the vertex, 

edge, threshold, and priority vectors. 

3.9 PDF Operators 

In deterministic scheduling, since the execution time of a task is fx ed, the start time 

and the end time of a task are fx ed values. This research deals with stochastic scheduling 

where the tasks have stochastic execution times, and hence the start time and end time 

requirements need to be specifed as PDFs. Figure 3.3 depicts a schedule in Gantt-chart 

form for the DAG in Figure 1.3. In this fgure, the shaded rectangular regions indicate 

the times when the vertices and edges may potentially be executing. For example, v � 
begins executing on processor p � at time instance 1, and completes at the end of time 

instances 4, 5, or 6 with a probability of 1/3 each. Similarly, edge (v � , v � ) begins execution 

immediately after v � completes at time instances 5, 6, or 7 with a probability of 1/3 each. 

The edge completes execution at time instances 5, 6, 7, 8, or 9 with probabilities 1/9, 2/9, 

3/9, 2/9, and 1/9, respectively. 

In deterministic scheduling, the end time is calculated by summing the execution time 

requirement with the starting time. In stochastic scheduling, the summation is replaced by 

convolution; the start time and the execution time PDFs of a task are convoluted in order 

to obtain the PDF of the end time of that task. Convolution of discrete PDFs s(x) and w(x) 

is defned as follows: 
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˘�K ° O LNM ˘�S °UTWV ˘�KYXZS G[H ° ? * B (3.2)�QP˛R M 
where [l � , u � ] and [l \ , u \ ] are the intervals over which s(x) and w(x) are non-zero, respec-

tively, and X ] [l � +l \ -1, u � +u \ -1]. 

Figure 3.3 

Stochastic Schedule for the DAG in Figure 1.3 [5] 

A ready vertex, v � , may need to be scheduled on a processor after a previously sched-

uled vertex, v � , has completed and a previously scheduled incident edge, e � , on the ready 

vertex v � has also completed. For example, in Figure 3.3, v � can start executing only after 

vertex v � and edge (v � , v � ) complete. Note that edge (v � , v � ) has an effective weight of 0 

because v � and v � are scheduled on the same processor, and therefore, does not factor in 

v � ’s start time computation. In such cases, the start time PDF for the vertex is determined 
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from the maximum of the completion PDFs of the two preceding tasks. The maximum of 

two independent PDFs ^A� and ^_� defned over intervals [l � , u � ] and [l � , u � ], respectively, 

is computed as follows [6]: ` x ] [max(l � , l � ), max(u � , u � )], 
˘�m ° ˘�m ° ˘nm ° ˘�m °
p ˘nmˇX ° p ˘nmˇX ° ˘�m ° ^badc 3fehg@�
i gj�lk *[^A� ^_� Go^A� � H G � H ^_� (3.3) 

p pwhere � and � are the cumulative distribution functions (CDFs) corresponding to the 

pPDFs ^A� and ^_� respectively. The CDF, (x) associated with a PDF, ^ (x), is derived as 

follows: 

p ˘�K ° * O q ^ ˘�K °sr ` K ]otvu r˜wyx:z (3.4)�!P˛� 
To schedule an edge, a common time slot has to be found in the send and receive channels 

at the source and destination processors that starts after the source vertex has completed. 

Hence, the start time of an edge will be computed from the maximum of the end time PDFs 

of the source vertex, the previously scheduled edge (if any) in the communication channel 

of the source processor, and the previously scheduled edge (if any) in the communication 

channel of the destination processor. For example, suppose that edge e is to be sched-

uled after vertex v completes, and that the source communication channel has edge e ���
	 
scheduled to complete after e can begin executing. Similarly, assume that the destination 

communication channel has edge e ���� scheduled to complete after e can begin executing. 

In this case, the starting PDF of e can be computed from the maximum of the end time 

PDFs of v, e ���
	 , e ���� . The maximum of three independent PDFs ̂A� , ̂_� and ̂_� is computed 

as follows [6]: 

^ba{c 3fehg@�
i gf�.i gj�lk ˘nm ° *[, ; m t>, ; md˘ ^A� r ^_� °sr ^_� x:z (3.5) 

mailto:3fehg@�
igf�.igj�lk
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Equation 3.2 and Equation 3.3 only apply to independent PDFs. Situations with dependent 

PDFs must be handled separately. In the example above, if the previously scheduled edges 

in the source and destination communication channels are the same edge (i.e., e ���
	 = e |��� ), 
then the starting time PDF of e must be computed from the maximum of the end time 

PDFs of v and e ���
	 only; taking the maximum of v, e ���
	 , and e ���� in this situation will be 

incorrect. 

The end time of the entire schedule is given by the maximum of the PDFs of the end 

time of the terminal tasks, which are tasks that do not have any other tasks scheduled after 

them. 

3.10 Thresholds 

Every processor and communication channel has a list of idle time-slots. An idle time-

slot is an interval of time in which no tasks have been scheduled as yet. A task is allocated 

to a slot on a processor if the slot begins at, or before the task can begin execution. The 

ending time of a slot is given by the minimum starting time of all tasks previously allocated 

to the same processor with starting times greater than the starting time of the slot. PDF 

operators developed in [5] have been used to fnd the minimum and maximum of sets of 

PDFs to fnd the ending time of a slot. 

There are occasions when a ready task, T } ’s, ready time is less than or equal to the idle 

slot’s start time, however, the idle slot, S ~ , is not suffciently large in order to allow T } to 

complete (i.e. T } can be assigned to begin within S ~ but the previously scheduled task, T 7 , 
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that appears at the end of S ~ , is scheduled to begin before T } will complete if scheduled 

to start in S ~ ). In the PosNT approach (i.e., the no threshold approach initially used by 

[6]), T } is inserted into S ~ only if T } does not overlap T 7 . If there is overlap then T } is 

scheduled in another interval that occurs after S ~ . However, inspection of the schedules 

produced by PosNT revealed several instances in which delaying T 7 by a small amount of 

time would have resulted in reduced schedule lengths. This is because allocating T } in a 

later time slot resulted in a signifcant delay of tasks dependant on the completion of T } , 

as compared with the delay incurred by T 7 and its dependent tasks if T } was allowed to 

complete before T 7 began. Figure 3.4 depicts the schedule for the DAG in Figure 1.3 in 

which edge (v � , v � ) is allowed to execute before (v � , v � ). This results in a schedule that is 

shorter than the schedule shown in Figure 3.3 by one time unit. The schedule in Figure 3.3 

was constructed using the PosNT approach. 

However, arbitrarily delaying tasks can potentially perturb the scheduling power of the 

GLS algorithm. Therefore, previously allocated tasks should only be delayed by relatively 

small amounts. In order to determine when T 7 should be delayed, T } is tentatively as-

signed to begin in S ~ and the completion time of T } is computed. The two variations of 

PosCT, viz. PosCT-Fixed and PosCT-Variable, calculate the overlap between T 7 and T } in 

slightly different ways. This overlap is then compared to the threshold gene value of T 7 to 

decide if T } can be scheduled in S ~ or not. 
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Figure 3.4 

Shorter Schedule Produced by PosCT 

In the PosCT-Fixed approach, the amount of overlap between tasks T } and T 7 , � , is 

calculated as follows: 

˘�• r • ° ˘�• ° X—…–˘�• °!r� 7 } *‡† } 7 (3.6) 

where F(T } ) is the end time of T } and S(T 7 ) is the start time of T 7 . If �5ƒ 0, it implies that 

the two tasks do not overlap, and task T } can be scheduled in S ~ . If there is an overlap, 

meaning the difference in the end and start time is positive non-zero, then a decision has 

to be made as to whether T } can be scheduled in S ~ and T 7 has to be delayed, or T } has to 

be allocated at a later time. For this, the overlap ratio, ⁄ , is calculated as follows: 

˘�• r • °˘�• r • ° � 7 } r⁄ 7 } * S‹˘n• ° (3.7)7 
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where t(T 7 ) is the expected value of the weight of task T 7 . The overlap ratio is a ratio of 

the amount of overlap to the weight of T 7 . This overlap ratio is compared with the overlap 

threshold gene value for T 7 , as obtained from its corresponding position in the overlap 

threshold vector in the chromosome. If ⁄ (T 7 , T } ) is less than or equal to the threshold 

value, then T } is scheduled in S ~ and T 7 is delayed; otherwise T } is not scheduled in S ~ 
and the algorithm searches for the next available slot. ⁄ (T 7 , T } ) represents the overlap 

between T 7 and T } as a percentage of the total weight of T 7 . The threshold specifes the 

maximum allowable value of overlap as a percentage of the weight of the corresponding 

task. Only if the overlap percentage is less than the threshold will T } be scheduled in 

S ~ . If the overlap percentage is more than the threshold value, it implies that the overlap 

is signifcant in comparison to the weight of T 7 , and hence a later starting time slot for 

scheduling T } should be utilized. 

The PosCT-Variable approach calculates the probability that task T } fnishes before T 7 
if T } is scheduled in slot S ~ . This probability is compared with the overlap threshold value 

of T 7 . The threshold value in this case signifes the minimum probability with which T } 
should fnish before T 7 starts executing. If the probability of completion is at least as much 

as the threshold, T 7 is delayed and T } is scheduled in S ~ . If the probability of completion 

is less than the threshold, then a new slot is searched to schedule T } . This technique is 

adopted from [5]. 
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Note that a delay in the start time of T 7 also delays the start times of any previously 

scheduled tasks that depend on the completion of T 7 . Therefore, a delay in the start time 

of T 7 causes a “ripple” effect of delays in the partial schedule. 

3.11 Parallel Implementation 

A parallel implementation of the GLS algorithm based on the synchronous connected 

island model [21] was used to evaluate the scheduling approach described above. In the is-

land model, the GA population is distributed between the parallel processes. Each process 

evolves its share of the global population independently from the other processes. Af-

ter a predetermined number of iterations, all processes synchronously broadcast the fttest 

chromosomes in their local populations to all other processes. 

Varying the GA control parameters in each of the N parallel GLS processes can lead 

to increased genetic diversity [12]. Therefore, the probabilities with which mutation, VX, 

and OX operators are selected in a parallel GLS process, �›]0−<u r rfz‰zQzQr!„H X H@“ are given 

as: 

˘� ° z z^ a � *[u u/”–Gyu u/”5‘ 
˘� ° z z^b‚3 � *™u $fufGyu HWuŁ‘ 

„&r��’ 
„Œrs;  FŠ��’ 

(3.8) 

(3.9) 

^_Ÿ|3 ˘� � ° *[u zıŽ ” X u z Hł”Ł‘ ��’ „&r (3.10) 

respectively. This implies that the mutation rate ranges between 0.05 and 0.10, the VX rate 

ranges between 0.20 and 0.30, and the OX rate varies between 0.75 and 0.60. These ranges 

appear to work well for the sample scheduling problems solved in the research effort. 



44 

Evolving different populations separately from each other enhances “exploration” (and 

prevents premature convergence on a local optimum.) Periodically exchanging the fttest 

chromosomes introduces “exploitation” of good genetic information that can lead to higher-

quality solutions than those that can be found by the individual populations alone. 



CHAPTER IV 

EXPERIMENT DESIGN AND METRICS 

This chapter desrcribes the experiments that were conducted as part of this thesis, 

presents experimental data, and provides an analysis of the results. 

4.1 Directed Acyclic Graphs 

In this research, simulated DAGs were used for evaluating the three different GLS rep-

resentation schemes. DAGs represent tasks of real-time applications, task interactions and 

precedence relationsips. Experimental DAGs differed from each other with regards to the 

structure, size, weight distributions, and computation vs. communication requirements. 

4.1.1 DAG Structure 

The characteristic structure of the DAGs were one of the following: 

� Hierarchical Fork-Join (HFJ)
� Mean Value Analysis (MVA) 
� Out Tree (OUT)
� Random (RND)
� Simple Fork-Join (SFJ) 

The structures are as shown in Figure 4.1. 

45 
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Figure 4.1 

Structure of Experimental DAGs [6] 
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The fork-join type of DAGs (namely HFJ and SFJ) represent trivially parallel applica-

tions. In these types of applications, a single task completes an operation, which gives rise 

to a number of tasks that can be executed in parallel; and the results from these parallel 

tasks are gathered by another single task. The MVA structure is as shown in Figure 4.1 

(d). It represents a parallel application with several branching and joining fo ws. The OUT 

structure is similar to a tree structure with branches that keep splitting as we go down the 

tree hierarchy. The random DAG structure, RND, represents an application with no prede-

termined branching pattern, and is signifcantly irregular in structure than the other DAGs. 

4.1.2 DAG Size 

Each of the DAGs are constructed in such a way that the total number of vertices and 

edges in each DAG are in the ranges [290, 325], [390, 425], and [490, 525]. This number 

represents the total number of tasks in the application. These DAG sizes were selected in 

order to provide an additional degree of variability in the DAGs, and in order to investigate 

the effectiveness of each GLS representation for DAGs of different sizes. 

4.1.3 Weight Distributions 

Each of the tasks in a DAG have a variable weight value. These values are based on one 

of three distributions, namely, beta, exponential, and random. The process of selecting 

the weight probability distributions and assigning them to a task is adopted from [5]. Beta 

distributions are defned only over a fnite interval, which makes them suitable for model-

ing real-time applications since real-time tasks need to complete within a narrow range of 
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time. The beta and exponential distributions have relatively smooth curves as compared to 

the randomized PDFs which have irregularities in probability values. 

4.1.4 Computation to Communication Ratio 

The computation to communication ratio (CCR) for an application is the ratio of the total 

time spent performing computation tasks to the total amount of time spent performing 

communication operations. For a DAG representing an application, the CCR is defned as 

the ratio of the average vertex weight to the average edge weight. The CCR of DAG, G, is 

computed as follows: O ¤ t V ˘�˝ � °|x‚
¡n¢ł£
œšœšž�˘:€ ° 2>¥¦2 (4.1)* O ¤ V ˘:¨ °�xt �:¡�¢j§ 

2 ¤ 2 
The DAGs in this research have CCR ratios as follows: 

1. CCR = 0.5 represent applications whose computation tasks complete in 50% of the 
time that it takes for the communication tasks to complete. 

2. CCR = 0.6 represent applications whose computation tasks complete in 60% of the 
time that it takes for the communication tasks to complete. 

3. CCR = 1.0 represent applications whose computation tasks complete in the same 
amount of time as it takes for the communication tasks to complete. 

4. CCR = 1.5 represent applications whose computation tasks take 50% more time to 
complete than it takes for the communication tasks to complete. 

5. CCR = 2.0 represent applications whose computation tasks take twice the amount 
of time to complete than it takes for the communication tasks to complete. 
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4.2 DAG Instances 

The combination of DAG structures, sizes, weights, and CCR options resulted in a 

total of 225 DAGs as summarized in Table 4.1. 

Table 4.1 

DAG Structure Combinations 

Structure Number of 
Size Options 

Number of 
CCR Options 

Number of 
Weight Dis-
tribution 
Options 

Total DAGs 

HFJ 3 5 3 45 
MVA 3 5 3 45 
OUT 3 5 3 45 
RND 3 5 3 45 
SFJ 3 5 3 45 

TOTAL 225 

Schedules were created for all of the 225 DAGs with PosNT, PosCT-Fixed, and PriNT. 

The PosCT-Variable approach involves PDF manipulations which are computationally ex-

pensive. The amount of time to construct a schedule with the PosCT-Variable is pro-

hibitively large. Hence, for testing the PosCT-Variable approach, only 25 out of the 225 

DAGs were chosen. The 25 DAGs were randomly selected; there are 5 instances of each of 

the 5 DAG structures. Schedules constructed for these 25 DAGs by PosCT-Variable were 

compared to the schedules constructed for the same 25 DAGs with each of the PosNT, 

PosCT-Fixed, and PriNT approaches. 
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4.3 Metrics for Experimental Analysis 

This section describes the various metrics used for comparing the schedules created 

by the different representation schemes. The metrics used in this research are as discussed 

by Dandass in [5]. Since this research deals with schedule construction, the length of the 

schedule is an important factor for comparing the representation schemes. Improvements 

in the result in terms of schedule lengths as compared to the List Scheuling technique are 

reported. 

4.3.1 Schedule Length 

In this research, the length of the schedule is measured as the amount of time that is 

required for all the tasks in the application to execute so that the end-to-end deadline is 

met with a probability of 100%. The length is calculated from the maximum of the end 

time PDFs of the terminal vertices. Let V © be the set of terminal vertices in the DAG. Let 

f � be the end time PDF of vertex v �E] V © . The end time PDF, f :�j� , that is used for obtaining 

the length of the schedule is given by the following expression: 

?<�:�j�ª*I, ; m −@?W�{« ˝ �U]¬¥�©®“ z (4.2) 

The PDF f ��f� is defned over the interval [l :�j� , u ��f� ]. u ��f� is the maximum schedule length 

when the probability of meeting end-to-end deadlines is 100%. This value will be used as 

the schedule length metric for comparing the representation schemes. 
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4.3.2 Relative Improvement 

This metric is used to compare the length of the schedules produced by each of the genetic 

representation schemes with each other, and with those produced by the List Scheduling 

technique-HLFET. The schedule length used in this comparitive analysis is the same as 

described above. This metric shows how better or worse each technique is as compared 

to the other. If L � and L � are maximum lengths of two schedules schedule � and schedule � 
respectively, then the relative improvement in the schedule length is given as following: 

X¯ ˘ 9‹°b¨fŠ²±E³�¨ r 9‹°b¨fŠ²±E³�¨ ° � � zB � B � *µ́ ´ (4.3)�´ ¯ 
If schedule � is worse than schedule � , then L �ª¶ L � and will be negative. 

4.3.3 Schedule Compression 

The schedule compression metric, adopted from [5], gives the relative reduction in the 

width of the end time PDF when the probability of meeting end-to-end deadlines being 

less than 100% is acceptable. Let f ��f� be the end time PDF, defned over the interval [l :�f� , 
u ��f� ]. As stated above, if the probability of meeting end-to-end deadlines has to be 100%, 

the maximum schedule length will be u :�j� . Allocation of any more time units will result 

in a waste of resources. Also, if less than l :�j� time units are allocated, then the probability 

of meeting deadlines is 0. Therefore, the schedule length can be reduced in the range 

[l ��f� , u :�j� ]. However, it should be noted that although a 100% reduction is possible, it 

would require reducing the probability of meeting deadlines to 0. This research deals with 

soft real-time systems, in which occasional deadline misses are tolerable, but missing all 
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deadlines is not. Therefore, a 100% reduction will be inappropriate. Let L(x) be the length 

of the schedule that results when the required probability of meeting end-to-end deadlines 

is x%. The schedule compression metric is computed as follows: 

˘ z ° X ˘�m ° ± X ˘nm ° · ˘�m ° H u :�j� r* ´ ˘ X ´ ˘ * ± ´ (4.4)H z u ° u z u ° :�j� X0³ �:�f�´ ´ 
where 0 ƒ x ƒ 1. 

4.4 Platform Description 

The experiments involved constructing schedules for each of the 225 DAGs using the 

HLFET List Scheduling technique and each of PosNT, PosCT-Fixed, and PriNT. The sec-

ond set of experiments constructed schedules for the 25 DAGs by the PosCT-Variable 

scheme. The DAGs were evaluated on the basis of the metrics as mentioned above. 

Schedules were constructed on a cluster with eight compute nodes and one head node. 

Each compute node had two Intel Xeon processors, operating at 3.06GHz with 2GB of 

DDR RAM and 80GB SATA HDD. The head node was also dual-processor with 4GB 

DDR RAM and 120GB SATA HDD. Interconnect technology was 100Mbps Ethernet, 

capable of Gigabit Ethernet, not used in this research. The cluster used LAM-MPI Version 

7.0.6 with Linux Kernel 2.6.5, based on Fedora Core 2. 



CHAPTER V 

EXPERIMENTAL RESULTS AND ANALYSIS 

the This chapter presents the results and analyses of the experiments performed in this 

research. In the frst series of experiments, schedules were created for the 225 experimen-

tal DAGs by each of PosNT, PosCT-Fixed, and PriNT. In the second series of experiments, 

schedules were created by the PosCT-Variable approach for 25 randomly selected DAGs. 

In each experiment, each of the 8 processors maintained independent populations of 1,000 

chromosomes and computed 24,000 iterations. The processes exchanged the fttest chro-

�˙¸ �˙¸mosomes with each other at every 1,000 iteration, beginning with the 12,000 iteration 

�˙¸ �˙¸and at every 100 iteration after the 23,000 iteration. The schedule length was computed 

as described in the previous chapter. The schedule lengths obtained by HLFET and those 

by the genetic representation schemes were compared with each other. 

5.1 Schedule Lengths 

The pairwise performance of the fx ed estimate genetic representation schemes, namely 

PosNT, PosCT-Fixed, and PriNT, is shown in Table 5.1. The results are grouped according 

to the structure of DAGs. Each row shows the number of DAGs, out of 45 DAGs of each 

of the f ve types, that each approach produced better results than the other in the pairwise 

53 



54 

comparison. The last row shows the total number of DAGs for each approach out of the 

225 DAGs tested. 

Table 5.1 

Pairwise Comparison of PosNT, PosCT-Fixed, and PriNT 

Structure PosNT PriNT PosNT PosCT-
Fixed 

PriNT PosCT-
Fixed 

HFJ 27 18 18 27 15 30 
MVA 23 22 17 28 18 27 
RND 20 25 10 35 11 34 
OUT 22 23 20 25 22 23 
SFJ 21 24 10 35 6 39 
All 113 112 75 150 72 153 

For example, the frst row contains the breakup of the 45 HFJ structured DAGs as 

follows: 

� Of the 45 HFJ DAGs, scheduling with the PosNT approach produced shorter sched-
ule lengths for 27 DAGs as compared to scheduling with PriNT. The remaining 18 
DAGs had shorter schedule lengths with the PriNT approach as compared to PosNT. 

� Of the 45 HFJ DAGs, scheduling with the PosNT-Fixed approach produced shorter 
schedule lengths for 18 DAGs as compared to PosCT. The remaining 27 DAGs had 
shorter schedule lengths with the PosCT-Fixed approach as compared to PosNT. 

� Of the 45 HFJ DAGs, scheduling with the PriNT approach produced shorter sched-
ule lengths for 15 DAGs as compared to PosCT. The remaining 30 DAGs had shorter 
schedule lengths with the PosCT-Fixed approach as compared to PriNT. 

The last row of the above table gives the total number of the DAGs out of the 225 

DAGs for which each approach created better schedules as compared to the other. For 
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example, out of 225 DAGs, the PosNT approach created schedules with shorter schedule 

lengths for 113 DAGs as compared to 112 as created by PriNT. 

The results summarized in Table 5.1 clearly show that for the given experimental 

DAGs, PosNT and PriNT approaches have almost similar performance - 113 DAGs with 

PosNT and 112 DAGs with PriNT. PosCT-Fixed clearly outperformed both PosNT and 

PriNT by a ratio of 2:1. PosCT-Fixed produced better results for 150 DAGs out of 225 

DAGs as compared to 75 by PosNT, and 153 DAGs out of 225 DAGs as compared to 

72 by PriNT. All the three genetic representation schemes outperformed the HLFET LS 

scheduling technique. 

Table 5.2 

Comparison of PosNT, PosCT-Fixed, and PriNT 

Structure PosNT PriNT PosCT-Fixed Total 
HFJ 16 7 22 45 
MVA 10 16 19 45 
RND 5 9 31 45 
OUT 11 12 22 45 
SFJ 9 2 34 45 
All 51 46 128 225 

Whereas Table 5.1 provides a pairwise comparison of each of the three genetic rep-

resentation schemes, Table 5.2 shows the performance of the three schemes together. It 

shows the number of DAGs of each structure that each of the approach produced the best 
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result for. For example, the frst row shows that of the 45 HFJ DAGs, 16 were the best 

with the PosNT approach, 7 with PriNT, and 22 with PosCT-Fixed. The last row shows 

that of the 225 DAGs, the PosCT-Fixed approach yielded 128 DAGs with the best results, 

whereas the remaining 97 DAGs were almost equally divided between PosNT and PriNT. 

Thus, more than half the DAGs had favorable results with the PosCT-Fixed approach. This 

reinfores the fact that the performance of PosCT-Fixed is much better than the other two 

approaches and also the HLFET LS technique. 

Table 5.3 shows the pairwise comparison of the PosCT-Variable approach with PosNT, 

PosCT-Fixed, and PriNT scheduling approaches. The table can be read in the same man-

ner as 5.1. It can be seen that PosCT-Variable outperformed all of the fx ed-estimate 

approaches. 

Table 5.3 

Pairwise Comparison of PosCT-Variable with Fixed-Estimate Schemes 

Structure PosNT PosCT-
Variable 

PosCT-
Fixed 

PosCT-
Variable 

PriNT PosCT-
Variable 

HFJ 1 4 2 3 0 5 
MVA 2 3 1 4 0 5 
OUT 0 5 1 4 1 4 
RND 1 4 3 2 1 4 
SFJ 1 4 3 2 0 5 
All 5 20 10 15 2 23 
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It can be observed from Table 5.4 below that out of the 25 tested DAGs, 10 DAGs had 

shorter schedule lengths by the PosCT-Variable approach, which is greater than those by 

any of the other fx ed-estimate approaches. The performance of PosCT-Fixed and PosCT-

Variable seem almost equivalent. Their relative schedule improvements are presented in 

the following section. 

Table 5.4 

Comparison of PosNT, PosCT-Fixed, PriNT, and PosCT-Variable 

Approach Number of DAGs Out of 
PosNT 5 25 

PosCT-Fixed 8 25 
PriNT 2 25 

PosCT-Variable 10 25 

5.2 Relative Schedule Length Improvements 

Table 5.5 shows the relative schedule length improvements of schedules created by the 

three fx ed-estimate genetic representation schemes over those generated by the HLFET 

LS technique. Not only are all the schedules created by the genetic representation schemes 

better than those created by HLFET, but it can be seen from Table 5.5 that the relative 

improvements obtained are signifcant. 

Table 5.6, Table 5.7, and Table 5.8 show the pairwise relative schedule improvements 

of the fx ed-estimate representation schemes with respect to each other. The results are 
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grouped according to DAG structures. For each pair of representation schemes for a par-

ticular DAG structure, the “Average” column is the average improvement of one scheme 

over the other, averaged over the 45 instances of that DAG structure, whereas the “Max-

imum” column is the maximum improvement of one scheme over the other for the 45 

instances of DAG structure. The last row gives the average of the average and maximum 

improvements of one scheme over the other for all the 225 DAGs. 

Table 5.5 

Relative Schedule Improvements of Fixed-Estimate Schemes and HLFET 

Structure PosNT over HLFET PosCT-Fixed over HLFET PriNT over HLFET 
Average Maximum Average Maximum Average Maximum 

HFJ 21.85 39.20 25.78 39.05 22.06 34.56 
MVA 21.38 36.38 22.33 35.71 21.41 32.56 
OUT 46.06 65.74 54.90 71.64 47.22 71.00 
RND 28.83 45.29 29.53 46.74 29.38 44.66 
SFJ 18.10 36.46 24.65 40.54 18.37 35.84 
Average 27.24 44.61 31.44 46.73 27.69 43.72 

From Table 5.6 and Table 5.7, it can be seen that the average relative improvements 

for PosCT-Fixed over PosNT, and PosCT-Fixed over PriNT for the 225 DAGs are 6.12% 

and 5.21% respectively; and the average maximum relative improvement for PosCT-Fixed 

over PosNT, and PosCT-Fixed over PriNT are 23.95% and 24.98% respectively. 

Thus, not only has PosCT-Fixed outperformed PosNT and PriNT in terms of produc-

ing the largest number of DAGs with better schedules, but the improvement in schedule 
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lengths obtained over the other schemes is signifcant too. Table 5.8 shows that the relative 

improvements of PosNT over PriNT and vice versa are almost similar. 

Table 5.6 

Relative Schedule Improvements of PosCT-Fixed and PosNT Schemes 

Structure PosCT-Fixed over PosNT PosNT over PosCT-Fixed 
Average Maximum Average Maximum 

HFJ 4.99 15.16 -5.55 8.49 
MVA 1.13 8.83 -1.22 3.05 
OUT 15.93 41.15 -21.09 -0.13 
RND 0.99 15.98 -1.20 6.43 
SFJ 7.56 38.65 -10.10 5.64 
Average 6.12 23.95 -7.83 4.70 

Table 5.9 shows the pairwise relative schedule improvements of the two variations 

of the PosCT scheme. This table can be read in the same manner as Table 5.6. It was 

earlier established that PosCT-Variable performed better then PosCT-Fixed, in terms of the 

number of DAGs with shorter schedules. Table 5.9 compares the two schemes to evaluate 

the difference in the schedule lengths created by the two approaches. It can be seen that the 

maximum schedule length improvement of PosCT-Variable over PosCT-Fixed obtained is 

4.07%. Although PosCT-Variable produced the maximum number of best schedules as 

compared to the fx ed-estimate approaches, the quality of schedules is not much better 

than that of PosCT-Fixed over the other two fx ed-estimate approaches. 
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Table 5.7 

Relative Schedule Improvements of PosCT-Fixed and PriNT Schemes 

Structure PosCT-Fixed over PriNT PriNT over PosCT-Fixed 
Average Maximum Average Maximum 

HFJ 4.75 15.22 -5.29 2.16 
MVA 1.08 23.29 -1.29 2.71 
OUT 12.91 38.90 -18.36 11.87 
RND 0.18 8.72 -0.27 7.10 
SFJ 7.13 38.78 -9.41 1.88 
Average 5.21 24.98 -6.93 5.14 

Table 5.8 

Relative Schedule Improvements of PosNT and PriNT Schemes 

Structure PosNT over PriNT PriNT over PosNT 
Average Maximum Average Maximum 

HFJ -0.27 7.09 0.23 4.63 
MVA -0.10 24.09 -0.13 7.64 
OUT -3.21 13.81 2.62 16.33 
RND -0.95 4.07 0.79 18.30 
SFJ -0.85 31.42 0.21 20.77 
Average -1.08 16.10 0.74 13.53 



61 

Table 5.9 

Relative Schedule Improvements of the PosCT Schemes 

Structure PosCT-Variable over PosCT-Fixed PosCT-Fixed over PosCT-Variable 
Average Maximum Average Maximum 

HFJ 0.52 1.67 -0.54 0.50 
MVA 0.98 3.76 -1.12 5.60 
OUT 4.48 8.23 -4.79 0.68 
RND -0.34 4.48 0.22 3.49 
SFJ -0.01 2.22 -0.01 2.04 
Average 1.13 4.07 -1.25 2.46 

These results imply that if a single genetic representation scheme has to be chosen, 

given the constraints of time and computational resources, PosCT-Fixed is the clear choice. 

As far as PosCT-Variable is concerned, it does create the best schedules in terms of short 

schedule lengths; but it requires an investment of a prohibitively large amount of time to 

construct a schedule which is only marginally better than PosCT-Fixed. 

From the results, considering only the fx ed-estimate approaches, it can be observed 

that of the 50% DAGs that had shorter schedule lengths with PosNT and PriNT, both of 

these approaches proved almost equivalent in performance. 

Moreover, the maximum relative schedule length improvement of PosNT over PriNT 

and vice versa are very similar. Thus, if there are no constraints on time and computational 

resources, then all the three fx ed-estimate representation schemes should be used to obtain 

the best schedule with the shortest schedule length. 
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5.3 Compression 

For the compression metric, 4 DAGs of each DAG structure, each of different sizes 

and weight distributions were selected, and schedules were created using the PosCT-Fixed 

scheme. Schedule lengths were found out for probabilities of meeting end-to-end dead-

lines being 100%, and for values ranging from 99.9999999% to 70%. Table 5.10 shows 

the average compression obtained for each type of DAG structure. 

The graph in Figure 5.1 is plotted from the data in Table 5.10. It can be seen from 

Figure 5.1 that for all types of DAGs, a reduction of the probability to meet end-to-end 

deadlines to 70% results in a schedule compression of about 70% for all the 5 types of 

DAGs. As the probability of meeting end-to-end deadlines is increased, the amount of 

compression obtained is reduced till 0 compression is obtained when the probability is 

100%. 

The scheduling technique developed in this research are meant for soft real-time ap-

plications where occasional deadlines misses are tolerable. Figure 5.1 shows that if a 

less than 100% probability of meeting end-to-end deadlines is acceptable, then signifcant 

reductions in schedule length can be obtained. 
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Table 5.10 

Schedule Compression Grouped by DAG Structure 

Probability of 
meeting end-to-
end deadline 

HFJ MVA OUT RND SFJ All 

0.7 68.76 68.76 69.38 69.38 69.27 69.76 
0.8 68.05 68.05 68.66 68.58 68.43 68.81 
0.95 66.24 66.21 66.73 66.43 66.21 66.35 
0.96 65.99 65.96 66.44 66.12 65.88 65.96 
0.97 65.7 65.66 66.16 65.79 65.53 65.6 
0.98 65.29 65.25 65.71 65.32 65.05 65.02 
0.99 64.63 64.58 65.00 64.53 64.23 64.14 
0.999 62.71 62.61 62.93 62.28 61.93 61.58 
0.9999 61.1 60.98 61.19 60.36 59.97 59.45 
0.99999 59.69 59.53 59.66 58.68 58.24 57.53 
0.999999 58.41 58.21 58.24 57.12 56.65 55.84 
0.9999999 57.23 57.01 56.97 55.74 55.24 54.31 
0.99999999 56.13 55.89 55.78 54.43 53.92 52.83 
0.999999999 55.09 54.83 54.67 53.21 52.66 51.48 
1 0 0 0 0 0 0 
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Figure 5.1 

Compression grouped by DAG Structues 



CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the contributions and results of this research and presents 

potential extensions to the research. 

6.1 Contributions 

This research furthers the contributions made by Dandass in [5]. It generalizes and 

extends the traditional LS and GLS approaches for stochastic scheduling. Two new genetic 

representation schemes were developed in this research for constructing non-preemptive 

schedules for soft real-time parallel applications. The application was represented as a 

DAG with each vertex and edge representing computation and communication operations 

respectively. Each task had variable weights that refect the uncertainty in the time to 

complete these tasks. The weights are modeled as independent random variables, and 

are expressed in the form of probability distribution functions. The problem is to create 

stochastic schedules for the DAGs so as to minimize the schedule length. 

This research investigated three different genetic representation schemes that were 

used for prioritizing ready tasks and constructing a schedule. 225 DAGs with varying 

structure, size, weight distribution, and computation to communication ratio were con-
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structed. Schedules were created for each of them with the HLFET LS technique and the 

three genetic representation schemes. 

The PosCT approach developed in this research was similar to PosNT, developed by 

Dandass in [5]; it has positional vector and edge genes that serve as the prioritization cri-

teria. In addition to this, there is a third vector of genes that contains overlap threshold 

values for each vertex and edge in the DAG. After selecting a task to be scheduled, its over-

lap threshold value is used to determine when to delay the execution of certain previously 

scheduled tasks in order to allow that task to be scheduled. The genetic algorithm oper-

ates on the threshold gene vector alongwith the positional vertex and edge gene vectors to 

determine the best threshold for a task. 

In the PriNT approach that was developed in this research, the genes in a chromosome 

directly encode the priority of vertices and edges. There is a single priority value for each 

task in the DAG, and the task with the highest priority gene is selected for scheduling. 

The schedules were analyzed and compared on the basis of schedule lengths. It was 

observed that all the three genetic representation schemes outperformed the LS technique 

for each of the 225 DAGs tested. Of the three genetic schemes, the performance of PosCT 

was the best as compared to PosNT and PriNT. Using PosCT resulted in shorter schedules 

for more than 50% of the experimental DAGs as compared to the schedules produced 

using the other schemes. 

It can be seen from the compression graph that decreasing the required probability 

of meeting end-to-end deadlines results in an increased amount of reduction in schedule 
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length. With the probability of meeting end-to-end deadlines reduced to 70%, a reduc-

tion of almost 70% in schedule length is obtained. Soft real-time systems can tolerate 

occasional deadlines misses, and this itself can be used to create schedules with shorter 

schedule lengths than if deadlines are to be met 100% of the time. This is a tradeoff 

between the quality-of-service and improved performance. 

A paper based on the fndings of this research will appear in the proceedings of the 

ACM Genetic and Evolutionary Computation Science Conference (GECCO-2006). 

6.2 Future Work 

An immediate extension is to measure and compare the timing requirements for sched-

ule creation for each genetic scheme. It is expected that the HLFET LS technique will 

require the least amount of time, since genetic algorithms, by nature, are exploratory. 

However, since this research presents an offine scheduling technique, the increased pro-

gram execution time of the genetic representation schemes can be traded off for their 

ability to generate better quality schedules than LS. It will be interesting to compare the 

timing requirements of the positional and priority approaches and determine if any timing 

advantages can be achieved of either one over the other. 

The PriNT approach used in this research does not use the thresholding technique. A 

hybrid version of the PriNT with customized thresholds would be another prioritization 

scheme that can be tested for its effcac y for generating good schedules. 
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This research deals with DAGs that are generated for experimental purposes. The 

next step is to use an actual real-time application and observe the performance of the LS 

and genetic representation approaches for scheduling. A prospective application can be 

analyzing video or GPS information. Then the scheduling techniques can be implemented 

for a real-time system, such as the Mobile Augmented Reality system that needs video and 

GPS information as input. 

An important extension as mentioned in [5] is that this research assumes task execu-

tion time requirement PDFs to be independent of each other. However, in practical appli-

cations, this may not always be the case. Task behavior depends on the characteristics of 

the data which causes tasks to be dependent on other tasks, which was disregarded in this 

research. To account for such inter-task dependencies, new PDF manipulation algebra is 

required which can be used in schedule construction. 
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