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This study seeks to reduce the degree of uncertainty tham aftises in computational fluid
dynamics simulations about the computed accuracy of fonatioutputs. An error estimation
methodology based on discrete adjoint sensitivity anglissdeveloped to provide a quantitative
measure of the error in computed outputs. The develope@g@uoe relates the local residual errors
to the global error in output function via adjoint variabkes weight functions. The three major
steps in the error estimation methodology are: (1) devedynof adjoint sensitivity analysis
capabilities; (2) development of an efficient error estioraprocedure; (3) implementation of an
output-based grid adaptive scheme. Each of these stepwastigated.

For the first step, parallel discrete adjoint capabilities @eveloped for the variable Mach
version of theU? NCLE flow solver. To compare and validate the implementation ¢biatl
solver, this study also develops direct sensitivity calitads. A modification is proposed
to the commonly used unstructured flux-limiters, specificathose of Barth-Jespersen and
Venkatakrishnan, to make them piecewise continuous andbdaifor sensitivity analysis. A

distributed-memory message-passing model is employedhforparallelization of sensitivity



analysis solver and the consistency of linearization is atestrated in sequential and parallel
environments.

In the second step, to compute the error estimates, the flavaajoint solutions are
prolongated from a coarse-mesh to a fine-mesh using the esssiMoving Least Squares
(MLS) approximation. These error estimates are used asraatimn to obtain highly-accurate
functional outputs and as adaptive indicators in an itesatjrid adaptive scheme to enhance
the accuracy of the chosen output to a prescribed tolerafaethe third step, an output-based
adaptive strategy that takes into account the error in bmthptimal (flow) and dual (adjoint)
solutions is implemented. A second adaptive strategy bamsgghysics-based feature detection
is implemented to compare and demonstrate the robustndssffantiveness of the output-based
adaptive approach. As part of the study, a general-elemmattuctured mesh adaptor employing
h-refinement is developed using Python and C++. Error eitmand grid adaptation results are

presented for inviscid, laminar and turbulent flows.
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CHAPTERI
INTRODUCTION

1.1 Motivation

In engineering analysis and design, computational fluidadyias (CFD) is typically used
to compute specific quantities that assess the performdnite @pparatus under investigation.
For example, in a system such as an aircraft wing, these itjganére usually the integral
output functions such as the lift and drag coefficients. Atuaate estimate of these functional
outputs is essential for the design of wings. However, bezadf the approximations made to the
governing partial differential equations, and the compsantbetween the choice of discretization
and available computational resources, there is often sedegf uncertainty in CFD simulations
about the accuracy of these computed estimates. Thisgahbtefore, forces the design engineer
to include a large factor of safety in his design to accomrtediar the lack of a reliable error
estimator to guide his design process.

Error estimates of the computed outputs are an invaluabieromlity to the designer and
may be used to make informed decisions about the factor efyshbunds for improving existing
design. Also, these error estimates are of immense helpetdC#D engineer in providing a
guantitative assessment of the functional error (whichvigi a global measure of the local
residual/discretization errors) and may be used to dewvatoputput-based adaptive approach. An
output-based adaptive approach may be able to identifpmegyf the flow that have significant
influence on the output functional and will also provide adratnderstanding and insight into the
relevancy of resolving physical features of the flow suchlexk waves, stagnation points and
separation lines to improve functional accuracy. Henae ntiotivation for an output-based error

estimation methodology becomes obvious.



1.2 Survey of Recent Advancements
A brief survey of the research areas that are pertinent touhent study are presented here.
Though, this survey is not exhaustive, every attempt has besde to present the most recent
advancements in the respective topic areas. The interessgddr may use the survey presented in
the subsequent sections as a starting point for furthey.sisl a visualization tool, one possible
interpretation of the current study is presented in Fig. THis outline will serve as a road map

for the discussions to follow.

1.2.1 Fluid Analysis

Under low Mach number conditions, compressible flow solfac® numerical difficulties
because of the large disparity between the convective andstc parts of the eigenvalues.
If the flow is iso-energetic, i.e., total enthalpy is constahen steady solutions approach the
incompressible constant-density limit as the Mach numipgraaches zero. Incompressible or
artificial compressibility formulations can be used to diatel this class of problems. However,
low-speed flows with heat addition have variable density imedmpressible formulations are
not suitable. Several preconditioning techniques have pegposed to improve the stability and
convergence of compressible algorithms in low Mach numéginmes. A detailed review of these
techniques is reported by Turkel [1, 2]. Typically, a preditioning matrix is introduced to the
time derivatives in the governing equations to remove tispatity of wave speeds. The details

pertinent to the current work can be found in [3, 4].

1.2.2 Sensitivity Analysis
Gradient-based design methodologies require the gradmnthe objective/cost functions
(e.g., lift, drag, etc.) and constraints (e.g., flow equegjoetc.) with respect to design variables
(e.g., Reynolds number, angle of attack, a grid coordinatie). These sensitivity derivatives
can be evaluated using finite differences. However, thiotsonly computationally expensive,
accuracy is highly dependent on step size selection, arsldaleompromise between reducing

the truncation and subtractive cancelation errors mustddemAnother approach that has found
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success is the complex Taylor's series expansion (CTSH)addgb—7]. The CTSE approach
follows from a Taylor’s series expansion of a function wigspect to a complex perturbation, and
is not subject to cancelation errors, and thus step sizetsmidoecomes automatic. However, this
approach is CPU intensive because of the complex arithnmetitved in the function evaluations.
Martins et al. [8] have described an automated way to implar@d SE in existing codes.

The common approach to obtain sensitivity derivatives & dhalytic evaluation of these
derivatives, referred to asensitivity analysis Sensitivity analysis can be performed either by
directly differentiating the governing partial differential equais (PDES), or by introducing
Lagrange multipliers that can be defined by a set of lineaaggus adjoint to the governing
PDEs. Both these methods can be categorized furthercomtinuousor discreteformulations
based on the derivation procedure. In the continuous apprdlae PDEs are differentiated prior
to discretization and the resulting directly differendidhitor adjoint equations are discretized and
solved. The discrete approach differentiates the PDE dfseretization. An advantage of the
discrete approach is that the boundary conditions are dyireecorporated in the formulation,
whereas, for the continuous approach, they need to be s$elyaderived and discretized. An
excellent overview of these approaches is reported by Newehal. [9]. Detailed discussions
on the continuous approach to sensitivity analysis can badon the works of Jameson [10],
Soemarwoto [11], Anderson et al. [12], Nadarajah et. al {43,and Giles [15].

An excellent introduction to discrete direct and adjointnfalations is given by Hou et
al. [16]. More recently, Newman [17] has applied the diseréirect formulation to perform
multidisciplinary design optimization (MDO), and Burg aihg&wman [18] have compared the
direct formulation with an efficient CTSE method. Nielse®]&nd Nielsen et al. [20-23]
have done extensive work on discrete adjoint methods. @&le]$9] and Nadarajah [24] have
applied the discrete adjoint formulation to perform aerwpic design optimization. Recently,
Giles et al. [25, 26] have proposed an exact dual approackdieing the adjoint system to
achieve exact numerical equivalence between the direcadjoiht discretizations. Nielsen et al.

[21] have extended the exact dual scheme for implicit smfutilgorithms and showed identical
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asymptotic convergence rates for the primal and dual systéfultigrid solution for the discrete
adjoint problem on unstructured meshes has been reportédalyiplis [27]. A modification

to the current class of unstructured flux limiters has beapgsed by Balasubramanian and
Newman [28, 29] to make them piecewise continuous and seifabdiscrete sensitivity analysis.
Nielsen et al. [20] and Balasubramanian et al. [28] haveriest parallel implementation of the
discrete adjoint problem. Recently, Burdyshaw et al. [28jhdeveloped an efficient CTSE-based
method to compute adjoint sensitivities in a manner thatmizes maintenance required to reflect

subsequent updates of the primal solver.

1.2.3 Adjoint Error Estimates

In engineering applications of CFD, the quantities of iegt¢rare often the integral output
functions such as force and moment coefficients. An erronb@n the output function of interest,
or an error correction that delivers a more accurate funati@stimate than the overall base
solution is often desired. The adjoint (dual) solution dibss the sensitivity of the output function
to the flow (primal) residuals. By invoking the dual probleogal residual errors resulting from
approximation of the solution to the PDEs can be related ¢ogibbal error in output function
via adjoint variables as weight functions. These erromesties can be used as a correction to
produce improved functional estimates. The idea of erratysis for output functions using a
suitably defined adjoint problem originated in the work ofboftuand Nitsche [31]. BabuSka and
collaborators [32, 33] were among the first to apply the duablem in structural analysis for error
estimation of point quantities such as displacements ardsgs. Becker and Rannacher [34—36]
have developea posteriori error estimates for the Navier-Stokes equations based eduhl
problem within a finite element framework. More recent dgsians on adjoint error analysis for
CFD using finite element methods can be found in the resedr8hilicand collaborators [37, 38],
Peraire and collaborators [39, 40] and Giles and Pierce48]L—

Giles and Pierce [41-44] have developed an adjoint based eorrection procedure that

exhibits super-convergence properties for functionapotst from finite difference, finite element
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or finite volume discretizations. Venditti and Darmofal {4&] have used an algebraic version
of this procedure to estimate the error in the coarse-mesttitinal with respect to its value on a
globally refined fine-mesh. The auxiliary computations mekaly this procedure are: prolongation
of coarse-grid flow and adjoint solutions to the fine-mesld; faimctional and residual evaluations
on the fine-mesh. Park [49, 50] has applied this procedurediimating functional errors of three
dimensional compressible RANS simulations. Balasubraamad1] has implemented this error
correction procedure for two dimensional incompressitdergl

The error estimation procedure require a smooth recorngiruof the primal and dual

solutions to compute the error estimates. Giles and Pi&2:e54] have employed a cubic spline
interpolation in their research to reconstruct the prinmal dual solutions. Venditti and Darmofal
[46, 48] have applied a piecewise quadratic prolongaticeratpr, defined by local least squares
minimization in theH ! Sobolev norm. Park [49, 50] has used least squares quaittatigolation
and the prolongation operator of Venditti and Darmofal j@i&),in his work. Balasubramanian [51]
has implemented a finite element bi-quadratic interpatatiperator and a reconstruction operator

based on least squares to perform the prolongation.

1.2.4 Grid Adaptation

The numerical solution of PDEs governing the flow requiresiditization of the continuous
flow domain into a finite number of elements or volumes. Tworapphes,structured and
unstructured have evolved over the years to discretize the domain [5p, Bt structured grids
have implied connectivity and are computationally effitiefio handle complex configurations
with high curvatures, multi-block structured grids [57¢ @mployed, which are locally structured
but, globally unstructured. Unstructured grids provideaiarnative to structured grid domain-
decomposition methods because of its inherent arbitrsginand its ability to resolve highly
complex geometries efficiently. Another major advantagersitructured grids is grid adaptation
[58-61], as the mesh can be locally enriched where needéthuwtiaffecting other regions of the

mesh.
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Grid adaptive techniques typically employ local error cadors to identify regions that affect
the solution accuracy and locally enrich those regions. fmon approach is to use error
indicators based on the flow gradients or flow discontinsiitFlow regions that have large solution
gradients are resolved with more points and regions of nahsignificance are coarsened. This
will typically lead to refinement of regions that are of phoai significance such as boundary
layer, shocks, separation lines, stagnation points, e&l—€8]. This physics-based feature
approach sometimes leads to erroneous requests to theegrégtagor and results in continuous
local refinement of certain regions, whereas, globally thepéed grid may not produce the desired
results. Moreover, these adaptive indicators may not bwaigs from an engineering context,
where the main concern will be the accuracy of the outputtfans.

Using the adjoint error correction procedure [41-44, 46-48grid adaptive strategy may
be developed to enhance the accuracy of the chosen outputptesaribed tolerance. The
adaptive strategy strives to improve the computable erstimates by forming adaptation
parameters/indicators based on the level of error in coafpeiterror estimates. Based on
this strategy, a grid adaptive scheme can be implementadakes into account the error in
the primal solution, or both the primal and dual solutionsecBer and Rannacher [34-36]
have developed this output-based adaptive procedure Hgitxg finite element orthogonality
properties and duality concepts. Their adaptation paramietiuded only the error in primal
solution. By invoking the dual (adjoint) problem, Siili [[3&nd Suli and Houston [38] have
performed global error control for adaptive finite elemguiraximations of hyperbolic problems.
They found computable error bounds (based on error in preokition) of linear functional to
drive the adaptive algorithm. Venditti and Darmofal [48;-82] have enhanced this output-based
adaptive procedure by including the error in both primal dadl solutions to form the adaptation
parameters. They have compared this procedure with a cuevbased adaptive approach and
demonstrated its robustness on finite element and finitem®ldiscretizations. Park [49, 50]
has employed this output-based adaptive procedure foe ttirmensional RANS simulations.

Peraire and collaborators [39, 40] have incorporated aptagaprocedure based on an impliait
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posterioriprocedure for computing upper and lower bounds on functiomiguts of finite element
solutions. Miuller and Giles [72] have employed an altesmaitput-based strategy based on the
computable error estimates. In principle, this leads todaptive algorithm for minimizing the
magnitude of the correction and hence, not a very robustoappr Balasubramanian [51] has

compared the adaptive strategies by Venditti and Darmé&1§9—71] and Muller and Giles [72].

1.3 Objectives and Approach

The primary goal of this study is to develop an effective affficient error estimation
methodology to provide a quantitative measure of the emr@omputed outputs and improve the
computed accuracy of functional outputs. The error estonahethodology depicted in Fig. 1.1,
may be decomposed into three major steps: (1) develop adjemsitivity analysis capabilities;
(2) develop an error estimation procedure; (3) implemernbput-based grid adaptive scheme.
In the current work, all three steps have been accomplisbed@ained below.

The first step is to develop parallel discretdjoint sensitivity analysis capabilities for the
arbitrary Mach version of/2NCLE flow solver [73, 74]. This study also developtrect
sensitivity capabilities in addition, to compare and val&lthe implementation of adjoint solver.
The accuracy of the derivatives from discrete sensitivitalgsis necessitates a consistent and
complete linearization of the flow solver. A modification lposed to make the commonly used
unstructured flux limiters (Barth-Jespersen [75] and Végiigshnan [76]), piecewise continuous
and numerically differentiable, without compromising thenotonicity conditions. The modified
limiters are essentially weak formof the original limiters and avoid the numerical instalilit
introduced by the linearization of limiters in their originform. An improved version of
Symmetric Gauss-Seidel (SGS) scheme suggested by Wh[ifiglds implemented to solve the
linear system of equations from direct formulation. An dxagal algorithm of the improved
SGS scheme based on [21, 25, 26] is presented for the adjpmufation. The parallelization

of sensitivity analysis solver is accomplished using arihigted-memory message passing
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model. Consistency of linearization is demonstrated irusatjal and parallel environments, and
validation cases are presented for inviscid, laminar arfalitent flows.

Previous work on three-dimensional adjoint error estioma{y9, 50] defined the fine-mesh
as embedded within the coarse-mesh, formed by h-refinenfie@ich coarse-mesh element in a
fixed ratio, say 1:8. Moreover, all the previous work [49, B&Ye been performed on unstructured
tetrahedral meshes. The objective of the present studyéstend the adjoint error estimation
procedure for a generalized fine-mesh, not necessarilydited embedded mesh. Also, the
present study strives to support a mixed-element unsteettnesh, comprising of hexahedrals,
prisms, pyramids and tetrahedrals. To accomplish thigygghless approximation, Moving Least
Squares (MLS) [78-83] is chosen to reconstruct the coaessirfilow and adjoint solutions to
fine-mesh. Linear and quadratic basis functions are comsideith cubic spline [82] and inverse-
distance weight functions. Weight functions with compaitcular or rectangular supports are
defined by isotropic (radial) or anisotropic (tensor prdilicectional) weights. Mixed supports
are also defined; i.e., circular support with isotropic isdgor tetrahedrals and pyramids (inviscid
regions) and rectangular support with anisotropic weiftitgrisms and hexahedrals (boundary
layer regions).

The final step is to implement an adjoint-based grid adastireegy [48, 69—71] to improve
the accuracy of the chosen output to a prescribed tolerahbe.output-based approach strives
to improve the computable error estimates by forming ad@ptgparameters based on the level
of error in both the primal and dual solutions. A featuredshadaptive approach [64—67] is also
implemented to compare and demonstrate the robustnessffantiveness of the output-based
approach. The feature-based approach identifies sigrtiffeatures in the flow field by using
error indicators that represent expansions and compressiothe flow direction and gradients
normal to the flow direction. To perform grid adaptation, agral element unstructured mesh
adaptor is developed using Objective Oriented (OO) tealwsq The adaptive mesh library is
based on [84-86] and performs isotropic h-refinement of thments. A refinement template

[87] controls the pattern of subdivision of the mesh element
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In the current study, the three-dimensional compressildgnBlds-averaged Navier-Stokes
equations are solved as described in [4], by introducingcqditioning that is uniformly
applicable to Mach numbers ranging from essentially inc@sgible to supersonic. The one-
equation turbulence model of Spalart and Allmaras [88] &lusr turbulent flows. The motivation
to implement the procedure within an arbitrary Mach framewstems from the desire to
handle a wide-range of applications. Applications of thiglg have been reported in references

[28, 29, 89, 90].
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CHAPTERIII
FLUID ANALYSIS

This chapter is intended to give a brief introduction to thsddine flow solver used to develop
the present error estimation methodology. The governingagons are introduced, the finite-

volume formulation is discussed and the solution algorithiexplained.

2.1 Governing Equations
The Reynolds-averaged Navier-Stokes equations for tiraensional, variable Mach
number flows are used in the present study. The Navier-Stekgmtions represent the
conservation laws of mass, momentum, and energy. Thesé@tpiare presented here in a non-
rotating Cartesian coordinate system for a finite-voluraeework. In the absence of body forces,
the non-dimensionalized equations in integral form for argted domairf?, with boundaryof?,

can be expressed in primitive variable form [74] as

Mrglg/qdwrf F,-ndS— ¢ F,-ndS =0 (2.1)
ot Jqo 00 00

wheren = {ng, ny, n,}T is the outward pointing unit normal vector to the boundary
0. The conservative flux formulation is written in terms ofrpitive variables to facilitate

preconditioning. The preconditioning matrix
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is a constant diagonal matrix that only depends on the re¢erlach number. In Eqn.(2.1) =
[%—3] is a transformation matrix from conservative variab@s= {p, pu, pv, pw, pe;}’ to
primitive variablesg = {p, u, v, w, p}T. Here,p is the densityu, v, andw are the components
of velocity in thez, y, and z directions respectivelyy is the pressure; ang is the specific total

energy.F; is the inviscid flux vector given by

p©
pu® + png
Fi-n = | pvO + pny, (2.3)

pwoO + pn,

pht@

whereh; = e; + (v — 1) p M? is the specific total enthalp is the normal velocity given by

©=V.n=un,+vny,+wn, (2.4)

The viscous flux vectoF,, is given by

Og
F, i = o) (2.5)
Oz

uoy+voy+two,+Qy

whereo;, 0y, ando, are the viscous shear stresses given as

Or = Tag Mg + Toy Ny + Tz N, (2.6)

Ty = Tyz Mg + Tyy Ny + Tyz N (2.7)
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Oy = Tog Ng + Toy Ny + Toz Ny (28)
and
(e + pe) 2 du v Ow
oy = ~ 2= - = - = 2.9
i Re 3 ox oy 0z (2:9)
() 2 ov ou ow
W T TRe 3 2 oy Ox 0z (2.10)
() 2 ow ou ov
T TRe 3 2 0z oz oy (2.11)
_ _ (pt+pm) (Ou  Ov
Tey = Tyz = Re Ay + O (2.12)
_ _ (ptp) (Ou | Ow
Toy = Tox = Tre 72 + o (2.13)
(u+pe) (Ov  Ow
. = T = A 2.14
Ty T2y Re 0z + oy ( )

where Re is the Reynolds number based on the reference valpgss the turbulent or eddy

viscosity andu is the molecular viscosity given by Sutherland’s law [91] as

(10132

o (2.15)

where T is the temperatur€;* = 198.6/T, is Sutherland’s constant arid = 460.0°R is the

reference temperature. The heat flux terms are

Qn = Qg Nz + Qy Ny +q. n, (216)
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and
b o mOT
o = (v —1) Re (Pr+Prt> oz (2.17)
_ o mOT
Ty = (v—1) Re <P7“+Prt> oy (2.18)
_ v ) OT
= = (y—1) Re (Pr—l_Prt) 0z (2.19)

where Pr = 0.72 and Pr; = 0.9 are the Prandtl numbers for the laminar and turbulent parts
respectively. The transport equations are closed with go@tioon of state for a perfect gas (non-

dimensional form)

p et (v—=1) 2
= — A% 2.20
P = 5 P V]| (2.20)

Here, the governing equations have been reduced to theimmmsional form by the following
reference values: density,.; velocity, U,.; temperature,.; length, L,; pressure,orU,?; speed
of sound,a,; time, L, /U,; laminar and turbulent viscosity,,; energy and enthalpy,,7,.. The
reference Mach number is given By, = U, /a, andy = C,/C, is the ratio of specific heats at

constant pressur€,) and constant volumecy,).

2.1.1 Preconditioning Parameter
The purpose of preconditioning is to reduce the large dispadetween the acoustic and
convective parts of the wave speed at low Mach numbers. In(E@), the choicgd = 1 recovers
the unpreconditioned formulation. In the present stuti chosen with values representative of

global flow properties as given in [4]

M2 M, <1
B (M) = (2.21)

1 s M, > 1

whereM, (U,,T,) = U,//vRT, is the reference Mach number.
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2.1.2 Turbulence Model
For the present study, the one-equation turbulence mo@palfart and Allmaras [88] is used.
This model formulates a transport equation for the turbiuUReynolds numberf), which is related

to the kinematic turbulent viscosity (= /p) by
ve =1 fo1 (2.22)

where f,; = f,1(7,v) is a function of turbulent Reynolds number and kinematic enolar
viscosity v(= u/p). The turbulence equation is non-dimensionalized by tifiereace values

mentioned above and the equation #ds given by

- ~N\ 2
% + V-V = co1 [fr1 — fr2] ST — % Cul fuw — %fm} (g) +

L V4 (i) V] — iV - [V} (2.23)
oRe

whered is the distance to the closest wall afdis the magnitude of vorticity. The function

definitions [88, 92] in non-dimensionalized form are

X3

1%

Jor = m7 X = o (2.24)

~ U X
S — S = Jv2, v2 = 1 - —- 225
+ Re k2 d2 f2 f2 1+ val ( )

1+c8, ]1/6 6 7

w = — s , = r+ ¢y —r), = =— 2.26
/ I [96 + 8, g =r+en () "7 52@Re (2.20)

fto = czexp (_Ct4X2) (2.27)
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1 : default [88]
fr = (2.28)

(1+¢m1) 12% [1 —¢pgtan! (cfgf)] — ¢ modified [92]

PR k) (2.29)
2
_— 1Sij o aul 8Uj aul 8Uj
m=1/3 S| where S;; = [aazj + 8:&} [aazj 0z, (2.30)

The constant definitions are as follows:

k= 0.41, o=2/3, 1 =T7.1,

cpp = 0.1355,  cpo = 0.622,

Cp1 1 + Cp2
K2 K

Cwl = ) Cw2 = 037 Cw3 = 207

cn =10, 2=20, caz=11 = cu=20

Cr1 = 17 Cr2 = 127 3 =1

2.2 Finite Volume Formulation
Discretization of the governing equations is accomplisbhsithg a finite volume technique.
The flow domain is divided into a finite number of elements amtlal mesh is constructed by
connecting the centroid of elements to the midpoint of edge$orm non-overlapping control
volumes around each vertex in the mesh. Equation (2.1) i3 ititegrated over each of these

control volumes and solved for the conserved state vasgable
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The semi-discrete approximation to the spatial terms &ssat with the control volume

surrounding a vertex can be expressed as

0Q
Vs =-R (2.31)

whereV is the volume of the control volume) the cell averaged state variables, akdhe
residual vector with contributions from the spatial appmetion to the inviscid and viscous flux

terms.

2.3 Solution Methodology

The flow solver used in the present study is the arbitrary Maghber version of the three-
dimensional RANS solvet/?NCLE, described at length in [73, 74]. The solver employs a
node-based, finite volume implicit scheme built on an urstmed grid framework capable of
handling mixed elements. The solver uses upwind differentd discretize the convective terms
and the modified Roe’s flux-difference scheme described,i®$} to evaluate the fluxes. The
viscous flux terms are evaluated using either the diredtideavative, or the normal-derivative
edge-based schemes presented in [73, 74]. For turbuler, ftbesone-equation model of Spalart
and Allmaras [88] is solved separately in a loosely coupleshmer; i.e., the mean flow equations
are solved first, followed by the equation for the turbulenuedel. Temporal discretization is
accomplished using a backward-Euler time integration ehand Newton’s method is used to
advance the solution in time. The discrete approximatioBdgn.(2.31) can be written as
V. OR

==

i+ 5g| AN =-F (2.32)

whereA™Q = Q™! — Q™. Q" and@Q" ! are the solution vectors at time levelaindn + 1, I is
the identity matrix, and\t is the time stepR is the residual vector accounting for the spatial and
temporal (in case of unsteady flows) discretizations %ds the residual Jacobian matrix. The

flow equations represent a large linear system of equatibttedorm Az = b. They are solved
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using an improved point-iterative Symmetric Gauss-Seif€lS) solver as explained below. The
original SGS scheme can be written as

forward sweep

[D]a} + Ul — (L2}, = b; (2.33)

backward sweep

D)t + U]l — [L]ak, = b, (2.34)

where [D], [L], and [U] represent the diagonal, strictly lower-triangular andcyr upper-
triangular blocks of A] andk represent the sub-iteration number. In forward sweep, thstm
recently updated values af at sub-iteratiork is used for nodes numbered less than the current
node(i — 1 < ¢) and the solution at the previous sub-iteratled is used for nodes numbered

greater than the current nodet 1 > i). The procedure is reversed for the backward sweep. By

rearranging Eqns.(2.33) and (2.34) as

[Dlaf + [Ulziy = bi+ [Ll2f (2.35)

(D)™ + U2k} = b+ (L]}, (2.36)

and recasting them, an improved version of SGS suggestedhitfiéMd [77] can be obtained

forward sweep

[Dlzf + Ui — [Llafy = bi (2.37)

backward sweep

[DlAz} + [U) () =) =0 (2.38)

whereAzF = M1 — 2k An extra vector memory is needed for storing the solutiortareat

iteration levelk-1. However, one matrix-vector multiplication is avoided quared to the original
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SGS backward sweep. A considerable reduction in computdtmst is achieved without loss of

convergence rate.



CHAPTER IlI
DISCRETE SENSITIVITY ANALYSIS

This chapter explains the first step in developing the ptesgor estimation methodology:
development of adjoint sensitivity analysis capabilitieBhe discrete sensitivity equations are
introduced and the solution methodology is discussed. Reaiization issues with the current
family of unstructured flux limiters are identified and a nfardition is proposed to make the
limiters suitable for sensitivity analysis. Parallel iraplentation is elaborated and speedup
results are provided. Finally, validation cases are ptteseto demonstrate the consistency of

linearization.

3.1 Discrete Sensitivity Analysis Formulation
Consider the following form of steady state non-linear gougy equations, wher@ represent
the steady state solution vectof, the grid co-ordinates andy, the set of design variables. The

discrete residual vectdr at steady state is given by

R(Q,X, ak) = R[(Q,X, Oék) + B(Q,X, ak) =0 (31)

Here,R; is the discretized residual at the interior aBdthe residual at the boundaries (accounting
for the boundary conditions). Lét(Q, X, «y) represent the cost/output function of interest and

V F, the gradient of the output function with respect to desigriables.

20
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3.1.1 Direct Formulation
By directly differentiating Egn.(3.1) with respect to thector of design variables, the discrete

direct equations are obtained as

dR OR 0Q ~OR 09X OR

E_%@+87@+@ =0 (3.2)

Rearranging the above equation in matrix form yields

oQ OR 0X OR
[aQHaak}— {a_XaT%JFaT%} (3.3)

Here, [gg} is the residual jacobian matr|>{ 299 } is the vector of direct sensitivity variables;
{gj } and{ } are the linear sensitivities of the mesh and residue witheesto the design

variableay. The gradient of the output function using the direct foration is given by

oF T (0Q OF 98X OF
F=<{— - - = 4= 3.4
v {8@} {aak}+{8X 8ak+8ak} (3.4)
3.1.2 Adjoint Formulation

For the discrete adjoint formulation, the output functidnrerest may be augmented with

the non-linear discrete flow equations via adjoint variablas

F(Q, X, o) = F(Q, X, ar) + {7} R(Q, X, a.) (3.5)

Equation (3.5) results from the fact that for a steady sotuthe residual vector is zero. Hence,
the inner product of any vector with the residual vector nalsb be zero. Linearizing Eqn.(3.5)

yields

VF:{y}T{a_Ra_X 0R} {8F8X 8F}

9X Doy | dop X Doy | don

(o) () e
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Since{~} is yet to be defined, it may be chosen to force the coefficie‘n{sgé%} to be zero. The
equation for adjoint variables is then
OR orF "
T
-t — L = 3.7
0V [5q) +{ag} = &0
By taking the transpose of the above equation, the adjoidile co-state vectors are given by

2 01

and the gradient of the output function can be obtained as

R X aR} {aF X 8F} (3.9)

VFZ{’Y}T{aX dor " 9 | T 10X Dy don
3.1.3 Direct Vs Adjoint Formulation
The selection of an appropriate sensitivity analysis fdatien (direct or adjoint) depends on
the particular design problem being studied. In the diregthmd, a linear system must be solved
for derivatives with respect to each design variable. Feratjoint formulation, the number of
linear systems that must be solved scales with the numbergohanted objective/cost functions.
Thus, if the number of design variables are more comparédaetaamber of objective functions,

the adjoint formulation is preferred and vice versa.

3.1.4 Objective Functions
The objective functions or cost functions (from an optiniza point of view) are mostly the
integral outputs of CFD calculations that are relevant tgirgering applications. For example,
these outputs can be the force and moment coefficients omaafti The objective functions that
are considered for the present study are the&ljftand dragCp coefficients. The expressions for

Cr, andCp are
_ Lift  fycosa— f,sina

C GooS dooS

(3.10)
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_ Lift  fircosa+ f,sina

C
b GooS JocS

(3.11)

wherea is the freestream angle of attack;, = 3p.U,” is the dynamic pressure; artlis the
reference area and for aircraft winggcan be the wing ared,, and f, are the forces in the x and

y directions given by

fz :?é (p+sf)iydA (3.12)
o0

fy = ]{ (p + sf)iiy dA (3.13)
o0

wherep is the pressures f is viscous stress due to skin frictiofi;, 77, are the boundary normals

in the x and y directions; andA is the surface area of the boundary.

3.2 Solution Methodology
The discrete sensitivity equations for the fluid equationd rbulence model are solved in
a loosely coupled manner much like the flow solver; i.e., #sgivity equations for the mean
flow are solved first, followed by the loosely coupled equatior the turbulence model. The
loosely coupled implementation of the turbulence modehm flow solver sometimes result in
stalled convergence or limit-cycle oscillations that i¢rieental to the convergence of sensitivity
analysis solver. This behavior has also been reported bigétieet al. [21]. This issue needs
further investigation and should be addressed in futureares.
Although the sensitivity Egns.(3.3) and (3.8) for the dirand adjoint formulations can be
solved as such, it is more robust to solve them by adding adienizative term and recast in an
incremental iterative form [94—96]. The recast equaticans lee written as

V.o OR| ., (0Q\  [OR OX OR)| [OR 0Q\"
£ (a@)‘ {a—xafwavk} [@Lm (a@) (3:14)

~l 90

W OF
A= acz{

T
ok } A (3.15)

aQ

exact
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where A" (%) = (%)nﬂ - (%ﬁ)n and A"y = 41 — 47 The time term makes the
equations diagonally dominant and allows the solution tolitained in a time-marching manner
much like the flow solver. It has been found that an approxénoafirst-order Jacobian works well
for the left-hand side. However, no approximations may bdara the Jacobian on the right-hand
side. Note that, the block-Jacobian matrix on the rightehside is exact for turbulent flows, even
though the mean flow and turbulent sensitivity equationsaheed in a loosely coupled manner;
i.e. each block is & x 6 matrix for the mean flow, and Bix 6 matrix for the turbulence model to
account for the five flow variables and one turbulent quantity

The direct and adjoint sensitivity Eqns.(3.14) and (3.Epresent a large linear system of
equations that can be cast 43 = b. The direct equations are solved using the improved
Symmetric Gauss-Seidel (SGS) solver explained in secti®n 2

Recently, Giles et al. [25, 26] proposed an exact dual agprima solving the adjoint system to
achieve exact numerical equivalence between the direcadjoiht discretizations. Nielsen et al.
[21] extended the exact dual scheme for implicit solutiagodathms and showed asymptotically

equivalent convergence rates for the primal and dual systefm exact dual algorithm of the

improved SGS scheme based on [21, 25, 26] is presented hereritihg
[A" = ([D]+ U] -[L])" = D" +[U]" - [1)" = [D] + [L] - [U] (3.16)

where[L] = [U]T and[U] = [L]” are the strictly lower-triangular and strictly upper-trgalar
parts of the matrixA”, an exact dual form of Eqns.(2.37) and (2.38) for the adjsyistem can be
obtained

backward sweep

[D]:U]-“— [U]xfﬂ + [i]mf_ll = b (3.17)

forward sweep

DAzl + [L](2F ! =2t = 0 (3.18)
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In the above exact dual scheme, backward sweep is done fiestéal by forward sweep.

3.3 Flux Limiters
For higher-order upwind differencing, a Taylor series eégian of the state variables)

about the noder() in Fig. 3.1, gives the limited data on the face as

Figure 3.1: Control volume surrounding verteXormed by centroid-midpoint dual in 2D.

whereVQ,, is the gradient at, 7 is the distance vector from to a point on the control volume
face f1, and@Qy, is the reconstructed solution at the face. The flux limitdueatn [75, 76] is
given by

@, = min{®y,, fi = f1, fo.  fo} (3.20)
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where® . are the limited values at the control volume faces evaluasaty Barth-Jespersen [75]

or Venkatakrishnan [76] limiter. The limited face value tsained by

min (1.6 (%7252 ) ) i @y - Qu >0
O, = min<1,¢<%>> Jif Qp —Qn <0 (3.21)

Barth-Jespersen:

a a
¢ (3) =3 (3.22)
Venkatakrishnan:
a\ 1] (a*+ €*)b+ 2ab?
¢(5> 9 [a2+2b2—|—ab+e2] (3.23)

whereQ™@ Q™" ande are as given in [75] and [76]. Both these limiters are widedgdiin
unstructured flow solvers to ensure no new extrema are dr@atbe reconstruction process.

Differentiating Eqn.(3.19) with respect to solution vaofpyields
dQr = (dQyp, )L = dQp + d®, VQ,, - 71 + @, d(VQy, - 71) (3.24)

®,,, given by Eqn.(3.20) can be numerically differentiated dfg, € {d®, ,dPy,, - ,dPy, }.
However, use of non-differentiable functions such asrthe function to obtain®,, introduces
numerical scaling issues when the linearization is peréatmTo illustrate the scaling issues,

consider the ternfd®,, VQ,, - 71 } in Eqn.(3.24). Suppos&,, = ®,, thend®,, can be written as
Q™™™ — dQn  d(VQu) - 7

A%y = dy, = = ~o (3.25)

and

L (dQEe™ —dQ,,  d(VQy) - 3}
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In unstructured meshes, the distance vectpendr; need not be of the same order of magnitude,
leading to instances wher&v@),, - ) << (VQ, - 71). In such cases, the numerator and
denominator of the terms in Egn.(3.26) may be of differentecs of magnitude. For example,
if VQ, - 71~ O0(1071); VQ,, - ™ ~ O(1073); andd(VQ,,) - 7 ~ O(1073); then

o) 0(10-?)
(10-3) T 0(10-9)

d®, VQ, -7 ~ <0 )0(10—1) ~ 0(100) (3.27)

The linearization for limiters in this form introduces nuneal instability if used with sensitivity
analysis. One option may be to use limiters in flow solver, fiedze them (assume as constant
with derivativesd®,, = 0) when performing sensitivity analysis. This approach isaconsistent
linearization and may produce inaccurate sensitivityvadiries.

A modification is proposed to make the limiters piecewisetiomous and numerically
differentiable, without compromising the monotonicity nclitions. Instead of usingp,, to
reconstruct the solution to the faces, each face is reemtstt with its own limited valueb

as shown below

ij =Qn+ q>fj VQn - 'FJ (328)

and®;, are computed the same way as given in Eqns.(3.21), (3.223a2@8). This modification
makes the limiters piecewise continuous and also avoidauheerical instability introduced by
the linearization of limiters in their original form. Sindée base schemes to comp@tg have not
changed, the modified limiters satisfy the monotonicityecia ensuring no new extrema creation.
The modified limiters are essentiallyaeak formof the original limiters.

To illustrate the need for the modified form of limiters, cles the case of inviscid flow over a
Onera-M6 wing at an angle of attack06° and Mach number df.84. A lambda shock is typical
of these flow conditions and the solution is reconstructaagusgn.(3.28) with the modified form
of Venkatakrishnan limiter. Sensitivity analysis is penfied in two ways: (1) with the limiters
linearized accounting for a consistent and complete lination; (2) with the limiters frozen

(assumed as constant with derivativids; = 0) accounting for an incomplete linearization. Table
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Table 3.1: Comparison of sensitivity derivatives with cdet@ and incomplete linearization of

limiters
Method dCL/dy dCD/dy
Central Finite Difference
le™® —5.24676e75 | 9.4514e~6
l.e™6 —5.2390e7° | 9.4795¢~6
l.e™8 —5.1850e® | 9.450e~6
adjoint (complete linearization)| —5.16418¢~> | 9.3635¢~°
adjoint (incomplete linearization)) —4.92201e=° | 1.20769¢~°

(3.1) compares the adjoint sensitivity derivatives frormptete and incomplete linearizations with
central finite differences. The table shows the derivatofdgt (C;) and drag ('p) coefficients
with respect tay coordinate of a node on the wing. From Table (3.1), it can Is=nted that the
adjoint sensitivities fol”r, andCp from complete linearization match with finite differencqda

5 and6 decimal places respectively. However, there is atleassmmificant digit loss in accuracy
in the derivatives obtained from the incomplete linearratof limiters. This loss of accuracy
illustrates the need for complete linearization of linstewhich can not be accomplished if they are
implemented in their original form. The author believesriiters have to be used in conjunction
with direct or adjoint sensitivity analysis, they must bepdoged in their modified/weak-form for
a consistent and complete linearization.

A grid resolution study is also performed for the above ioiiscase to study the behavior of
the modified limiters. Three levels of grid, ranging from kszato relatively fine discretizations are
chosen, and numerical tests are performed employing thdfiswdnd original limiters. Similar
behavior is observed on all grids and results are preseeteddr the intermediate grid level. Fig.
3.2 shows the convergence history of the modified and olligimé&ers. The modified limiters
are more dispersive because of their weak form, and showrbaihvergence behavior when
compared with the original limiters. Th€), distribution on the upper and lower surfaces of
the Onera-M6 wing at three span wise locations are plotteligs. 3.3, 3.4 and 3.5. These

figures compare th€, distribution obtained using the original and weak-formta timiters with
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Residual Convergence history

limiter' (Barth—Jespersen)
=——a modified limiter
——~ limiter® (Venkatakrishnan)
=- — -8 modified limiter

LU

I, residual norm

0 1000 2000
No. of iterations

Figure 3.2:L, norm convergence of flow residual employing Barth-Jespei@aniter') or
Venkatakrishnanl{miter?) limiter.

experimental data obtained from [97]. The lambda shockishigipical of these flow conditions is

captured well.

3.4 Parallel Implementation

The parallel methodology is based on a distributed memorgsage passing model and
employs coarse-grained domain decomposition with subagltsrassigned to multiple processors.
Message passing is achieved using MPI-based librarieshenchésh partitioner MeTiS [98, 99]
is used to subdivide the mesh into sub-domains. Since, tbeliba flow solver [73] could run
in a multiprocessor environment when this work was statteal existing MPI-based libraries are
utilized to develop parallel capabilities for the directiaadjoint solvers.

Because of the gradient terms used in the reconstructiczepsp a complete linearization of
the higher-order spatial terms require neighbor’s infdrameand neighbor’s neighbor information.
Fig. 3.6 shows the complete linearization stencil for trghkr-order spatial discretization of node
i. For nodes in the partition boundary, this requirement lire® two levels of ghost nodes as

shown in Fig. 3.6. The flow solver typically needs only letakhost nodes and they are included
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Figure 3.3:C,, distribution on the Onera-M6 wing at span wise locatieypis = 0.20.
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Figure 3.4:C,, distribution on the Onera-M6 wing at span wise locatieyis = 0.65.
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Figure 3.5:C,, distribution on the Onera-M6 wing at span wise locatiepis = 0.95.

in the partition. The information from level-2 ghost nodiattare not included in the partition
must be accounted for in sensitivity analysis to perform mmlete linearization. The parallel
implementation of the sensitivity analysis solver is diémd below for nodes in the partition

boundary.

e Only level-1 ghost nodes are included in the partition.

e Data in level-1 ghost nodes are used to compute nearestaoeigdsidual contributions and
gathered by the physical nodes in each block (similar to the $lolver). In Fig. 3.6, node
1 is a physical node iblock 1. It uses the information from physical nod&st and level-1

ghost nodes, 2, 5 to gather nearest neighbor residual contributions.

¢ Residual contributions from level-2 ghost nodes (neareightor’s neighbors that are not
included in the patrtition) are gathered by the respectiveld& ghost nodes in corresponding
block. In Fig. 3.6, nodé is a level-1 ghost node iblock-2. Nodes?7, 8, 9, 10 are level-2
ghost nodes foblock-1, but, are physical nodes ilock 2. Residual contributions from

nodesy, 8, 9, 10 are gathered by level-1 ghost nodie block-2.
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i - node considered

1,2,3,4,5 -immediate neighbors of node

rest of nodes - immediate neighbor’s neighbors

For block 1 For block 2

O o

hysical nodes
o P

physical nodes

@® level-1 ghost nodes O  level-1 ghost nodes
@ Ilcvel-2 ghostnodes O level-2 ghost nodes

Partition boundary

Figure 3.6: Stencil for the complete linearization of higbeder spatial discretization for node

e Swap the send and receive lists. Each block has a list of s#aéhd receive lists. Send lists
have the list of physical nodes that must share it data witfjhivering blocks and receive
lists have the list of ghost nodes that need to update its d&yaswapping the send and
receive lists, the new send lists will have list of ghost reottet hold the scattered residual
contributions and the new receive lists will have the ligbb§sical nodes that need to gather

this data.

e Data in ghost nodes is communicated to neighboring blocksgathered by the physical

nodes to perform a consistent and complete linearization.

The speedup results for the sensitivity analysis solveesdemonstrated in Figs.(3.7a) and
(3.7b). It can be observed that a nearly linear speedup rasdigained. The computations for
the test case is performed on a 384 processor Intel Xeoreclusor this test, turbulent flow is
simulated over the Onera M6 wing at an angle of attack%fwith freestream Mach number
of 0.52, and chord-based Reynolds numberl 00, 000. For illustrative purposes, the mixed-
element grid for the turbulent flow simulation is shown in J&g8). This grid contains 232,003

prisms, 10882 pyramids, 319,016 tetrahedrals, 178,1989)@&1402 surface triangles and 1787
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surface quadrilaterals with a wall spacinglef-? of mean aerodynamic chord. The linearization

results are presented in next section.

Parallel Speedup for Direct Solver Parallel Speedup for Adjoint Solver

40 T T T 40

30 - O Actual 1 30 - OActual
— Linear — Linear

0 10 20 30 40 0 10 20 30 40
Number of Processors Number of Processors

(@) (b)

Figure 3.7: Parallel speedup for turbulent flow over a Onefawihg. (a): Direct solver. (b):
Adjoint solver.

3.5 Validation Cases

Linearizations are performed analytically by hand-défaration for the viscous flux terms
and by the complex Taylor's series expansion approach [3ei7fhe inviscid terms. The
consistency of linearization is validated by performingegies of test cases with the Onera
M6 wing. The design or independent variable for all validatcases is thg co-ordinate of a
node on the wing. Sensitivity of the lift{;) and drag ('p) coefficients from direct and adjoint
analysis are compared with the derivatives evaluated Uigiitg differences. In all finite difference
results, the flow solution and force coefficients have beemerged to machine precision. Similar
convergence behavior is observed on all variables and k& sfclarity, only convergence plots

of direct and adjoint densities are presented here.
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Figure 3.8: Volume grid for Onera M6 wing.

3.5.1 Inviscid Flow

The first test case is inviscid flow at an angle of attacR‘ofvith freestream Mach number of
0.84. The unstructured grid contains 65538 nodes and 360,0B8th&sirals. The convergence
history of direct and adjoint densities are plotted in Fig.9a3 Asymptotically equivalent
convergence rates are observed. The sensitivity dervatithe drag coefficient{p) is compared
with central finite difference derivatives in Table (3.2).heTfinite difference derivatives are
obtained by using different perturbation sizes. There ifepeagreement between the direct and
adjoint sensitivities and they match with finite differeaagpto six decimal places. From Table
(3.2), it can be inferred that the direct and adjoint seviis are consistent over sequential and

parallel runs.

3.5.2 Viscous Laminar Flow
Two viscous laminar cases are studied with chord-baseddRiynumber 05000 and angle

of attack of2°. The first case is transonic flow with freestream Mach numlber.gt and the
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Table 3.2: Comparison of sensitivity derivatives for imiisflow

Method dCp/dy
Central Finite Difference

le™ —~7.7161e~6

l.e=¢ —7.6925¢ 6

le™8 —7.6500e 6

direct (sequential) | —7.5936e=°
direct (parallel) —17.5936e~6
adjoint (sequential) | —7.5936e~°
adjoint (parallel) —7.5936e~6

second case is a low Mach number flowOof. The flow is simulated on a mixed-element grid
with 76376 prisms, 6800 pyramids, 277,849 tetrahedrald/33odes, 31392 surface triangles
and 500 surface quadrilaterals. Similar asymptotic rate®bserved in the convergence of direct
and adjoint solutions in Fig. 3.9b. Tables (3.3) and (3.4hpare the sensitivity derivatives of lift

and drag coefficients with finite differences. The direct adgbint sensitivities are in excellent

agreement with each other and compare favorably with firfiterdnces, given the errors inherent
in finite difference approximation. It can be verified fronbles (3.3) and (3.4) that once again

the derivatives are consistent across sequential andglaalironments.

Table 3.3: Comparison of sensitivity derivatives for vissdaminar flow

Method dCL/dy dCD/dy
Central Finite Differenceg

le™? —5.69920e° | 1.73546e°
l.e™ —5.69365¢° | 1.71380e5

l.e™8 —5.70e° 1.7150e =

1.e~10 —5.50e° 2.0e7°

direct (sequential) | —5.69358¢7° | 1.71382¢~°
direct (parallel) —5.69358¢7° | 1.71382¢5
adjoint (sequential) | —5.69358e~° | 1.71382¢~°
adjoint (parallel) —5.69358¢7° | 1.71382¢°
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Table 3.4: Comparison of sensitivity derivatives for low dhanumber laminar flow

Method dCr,/dy
Central Finite Difference

l.e= —1.686295¢ 4

le™8 —1.680500e 4

direct (sequential) | —1.686252¢=*
direct (parallel) —1.686252¢ 4
adjoint (sequential) | —1.686252¢*
adjoint (parallel) —1.686252¢ 4

3.5.3 Turbulent Flow

The final validation case is turbulent flow over the Onera MGgvat an angle of attack of
19, with freestream Mach number 6152, and chord-based Reynolds numbed ¢§00, 000. The
mixed-element grid for this simulation is shown in Fig.(3.8he one-equation turbulence model
of Spalart and Allmaras [88] is solved in a loosely couplechn& in both flow and sensitivity
analysis.

The sensitivity derivatives of lift and drag coefficient® arompared with finite differences
in Table (3.5). The direct and adjoint sensitivities are kteatlent agreement with each
other and compare favorably with finite differences. Frombl@g3.5), it can be verified that
the linearizations are consistent over sequential andlplaxersions. Fig.(3.10a) shows the
convergence histories of density and turbulent quantityttfie direct and adjoint solutions. The
asymptotic rates are similar. To further demonstrate thmearical equivalence between the direct
and adjoint solvers, the error in drag derivatives is ptbtteFig.(3.10b). The error is defined as
the difference between the current value and the final cgedevalue. The reduction in error rates

are identical.
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Table 3.5: Comparison of sensitivity derivatives for tudmi flow

Method dC’L/dy dCD/dy
Central Finite Difference

1.e™© 1.09190e~° | —2.77890e~

l.e™8 1.20500e~° | —2.7800e°

direct (sequential) | 1.11464e~° | —2.78552¢~°
direct (parallel) 1.11464e~° | —2.78552¢™
adjoint (sequential) | 1.11464e=> | —2.78552¢~°
adjoint (parallel) 1.11464e=5 | —2.78552¢
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Figure 3.9:L, norm convergence af 7 and/A+. (a): Inviscid flow. (b): Viscous laminar flow.
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Figure 3.10: Turbulent flow over a Onera M6 wing40A = 1° with M, = 0.52 and Re =
1,000,000. (a): Ly norm convergence af 7 andAy. (b): Convergence of drag

derivatives.



CHAPTER IV
ERROR ESTIMATION

This chapter explains the second step in the present ermimag®n methodology:
development of an efficient and robust error correction guoce. The adjoint-based error
correction procedure is derived and the prolongation dpesare introduced. Error correction

results are presented for inviscid, laminar and turbulestes.

4.1 Formulation

For the following discussions, leF(Q) represent the output function of interesg, the
steady-state solution vectaR((), the discrete residual vector; andthe adjoint solution vector.
Typically, in engineering applications of CFD, an accuregémate off’'(Q) is desired. But often,
a compromise must be made between the fidelity of solutioaimdéd and the available resources.
To elaborate on this, consider discretization of the cortputial domain{) using a coarse-mesh
Qg and a fine-mesk),. H andh (H > h) may represent suitably defined length scales based
on the approximation such as finite difference, finite elenoeriinite volume. LetFy(Qy) and
F,(Qp) be estimates of (Q) from Qg andQ,. Fy(Qpy) and F,(Qy) are evaluated using g
and@)y,, the discrete solutions dngy and(;, respectively. The coarse-me§hy is affordable in
terms of memory and computation time. However, the estinhaté? ) may not be accurate
enough for engineering applications. The fine-mesh estimig{();) may satisfy the desired
accuracy criteria, but is prohibitively expensive to cogouA computationally efficient error
correction procedure [41-44, 46-48] is introduced thatlpece improved estimates of output

functions without ever solving on the fine-megh.

39
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By introducing a perturbation@;, to the fine-mesh solutioty;,, and performing a Taylor’s

series expansion df, (Qn + Qy,) yields

Fr(Qn+0Qn) = Fr(Qn) + {STI;Z} oQn + -+ (4.1)

Now, definingdQ;, = Q’}{ — Qn, WhereQ*}{ is the solution at fine-mesh obtained through

prolongation of coarse-mesh solutigh;, Egn.(4.1) can be written as

oFy,

F@) = @) + {50t

}Qh(Qh—wQ%)+--~ (4.2)

Here, F},(Q"%) is the fine-mesh estimate of the function evaluated u@ﬁ@nd{% }Qh is the
H

linear sensitivities of the fine-mesh function with resgead”;. Q% is given by

QY = PiQu (4.3)

andPI’j, is a suitably defined prolongation operator.
Let R, (Qr) be the non-linear residual vector obtained by discretimatif the flow equations

at the fine-mesh. For a steady state problem

Rp(Qr) = 0 (4.4)

By performing a Taylor’s series expansion®f(Q, + 0Qx)

Rp(Qn +0Qn) = Ru(Qr) + {%} oQn + -+ (4.5)
oQy

and substitutingQ;, = Q% — Q»,

ORy,

Ri(Qn) = Ru(QY) + L()T?h

} (Qn = Qly) + -+ (4.6)
2l
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Here, R, (Q%) is the residual vector evaluated at the fine-mesh ugifjgand [%}Qh is the
H
fine-mesh Jacobian evaluated us'@@,. Combining equations (4.4 and 4.6) and assuming the

well-posedness of the equations
aRh -t h
Ry(Qf) (4.7)

hy ~ _ |Z2M
(Qh_QH) ~ |:8Qh

h
Qn

Substituting Egn.(4.7) in Eqn.(4.2)

oF " [oR,]7!
R@) ~ R@ - {55 [5e] | @ 9
Qn ) gn LOQn ] gn,
~ Fa(@) + {mlgy Ba(QH) (4.9)
where {’Yh}gh is the adjoint solution vector at the fine-mesh evaluatengQ’}{. The adjoint
H
equation for{yh}Q;;I can be written as
8Rh]T {th}
— = == 4.10
[aczh o ek 901 | o (4-10)

To avoid the need for computingyh}gh on the fine-mesh, it may also be approximated through
H

interpolation as

{mlay, ~ i = Phyu (4.12)

where~ is the adjoint solution at the coarse-mesh given by

ORu]" .\ _ _[0Fu
[—H] by = {aQH} (#.12)

The computable estimate of the output function is given by

F(Q) = Fu(@Y) + {vir}" Ru(Ql) (4.13)
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In the above expressiofy?, }T R;,(Q%) is theerror correctionterm that approximates the error
in output function as the inner product of the adjoint salntiand the primal residual error.
The auxiliary computations needed by this procedure amdopgation of coarse-mesh flow and

adjoint solutions to the fine-mesh; and functional and redidvaluations on the fine-mesh.

4.2 Enhancements to the Error Correction Procedure
Previous work on three-dimensional adjoint error estioref#9, 50] defined the fine-mesh,
as embedded within the coarse-mesh, formed by h-refinenfie@ch coarse-mesh element in a
fixed ratio, say 1:8. Moreover, all the previous work [49, B&Ye been performed on unstructured
tetrahedral meshes. The present study extends the adjoort estimation procedure for a
generalized fine-mesh, not necessarily a h-refined embeddsh. Also, the present study strives
to support a mixed-element unstructured mesh, compridihgxahedrals, prisms, pyramids and

tetrahedrals. For subsequent discussions, the fine-madbeazategorized into

Uniformly Refined: fine-mesh obtained using h-refinement; each fine-mesh aleise

embedded within a coarse-mesh element.

Non-uniformly Refined: fine-mesh obtained from a grid generator by manually ggttie point

spacing; fine-mesh element need not be embedded within secossh element.

The isotropic h-refinement of different element types iswaihon Appendix B. In three
dimensions, uniform refinement of a coarse-mesh often teesal a fine-mesh that has
approximately 8 times the number of coarse-mesh elemenisthd present study, the error
correction procedure is sequential (done in a single psmegsand hence, uniformly refined
meshes become prohibitively expensive in terms of memory @mputational cost. Also,
successive refinements result in meshes with very poortguadipecially in the boundary layer,
and projection of boundary nodes on the surface geometsggadditional complexity. Non-
uniformly refined meshes generated from a grid generatoe hetter quality than uniformly
refined meshes. Also, they maintain boundary integrity betwthe coarse and fine-meshes,

since, the same CAD definition will be used to generate thehewesMoreover, the user will
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know a priori the available memory and computational resources and hémedevel of fine-
mesh refinement can be modified accordingly to make use oWHikakle resources.

In the present study, the error estimation procedure isieppb both uniformly and non-
uniformly refined meshes. The non-uniform fine-meshes anerg¢éed using AFLR3 [100] and
the uniformly refined meshes are generated using the megioadhscussed in section 5.3. To
handle a general mesh (both uniform and non-uniform), thehtees Moving Least Squares
(MLS) approximation [78—83] is chosen to reconstruct tharse-mesh flow and adjoint solutions

to fine-mesh. The MLS procedure is explained in Appendix A.

4.3 Prolongation Operators

The prolongation operation given by Eqn.(4.3) can be expdrad

Qh = PhQu=>_ ¢§ (Qn)r (4.14)
I=1
where®* = {¢F ¢k, --- ¢k} are the MLS shape functions,is the order of the basis function,

and n is size of the MLS support stencil. In the present study, dinend quadratic basis

functions given in Eqns.(A.2) and (A.3) are considered witivic spline and inverse-distance
[82] weights. Weight functions are defined with compact wac or rectangular supports as
explained in Appendix A. Once the supports are built, weigdre applied, either isotropically

as radial weights, or anisotropically as tensor producghisi Mixed supports are also defined;
i.e., circular support with isotropic weights for tetrahgd and pyramids (inviscid regions) and
rectangular support with anisotropic weights for prismg hexahedrals (boundary layer regions).

In the the present study, the basis functions are classified a
linear-linear: prolongation performed with linear basis for both flow agbant solutions.

quadratic-quadratic: prolongation performed with quadratic basis for both flawd adjoint

solutions.
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linear-quadratic: prolongation performed with linear basis for flow solutemd quadratic basis

for adjoint solution.

quadratic-linear: prolongation performed with quadratic basis for flow simntand linear basis

for adjoint solution.
The weight functions are classified as:
cubic spline cubic spline weights given by Eqn.(A.21) in Appendix A.
inverse-distance inverse-distance weights given by Eqn.(A.22) in Apperflix
and the weights are applied as:
isotropic: radial weights defined by circular supports.
anisotropic: tensor product weights defined by rectangular supports.
mixed: both radial and tensor product weights defined by circtdatangular supports.

For tetrahedral meshes the stencil is built using circulgopserts. For mixed-element meshes,
circular supports are used to build the stencil in regiondetfahedrals and pyramids, and
rectangular supports are used in regions of prisms and bdrals. Once the stencil is built, both
isotropic and anisotropic weights are applied. Note thatneaf the stencil is built with circular
support, anisotropic weights are applied with the directldengths defined by the absolute values
of the position vector from the data point to the MLS seed oiftn other words, a rectangular
support is constructed using the maximum directional les@h the circular support. This is
equivalent to reconstructing the support to a rectanguiiiin the circular support as background.
The points that make the stencil remain the same, exceptefghts are applied differently. The
same procedure applies to isotropic weights in a rectangulgport, with the directional lengths

substituted by the radial distances.
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4.3.1 Strong Boundary Conditions

In finite volume solvers, the noslip conditions are enforagdiscous boundaries by setting
up = 0, v, = 0 andwy, = 0, wherewy, v, andw, are thex, y andz components of velocity at
the boundary. This is often referred as a weak-enforcenfaheamo-slip condition. However, the
common practice in most node-based finite volume solvers &iditionally set the momentum
and energy fluxes in Egns.(2.3) and (2.5) to zero. Insteadlofng for the conservation of
momentum and energy at the viscous boundary nodes, thexgalieitey set to zero in a strong-
enforcement of the no-slip condition. Similarly, in tureat flows, the turbulent residual and
turbulent quantity %) are explicitly set to zero at the viscous boundary nodes.

To account for this strong-enforcement at the viscous bayndhe adjoint system [25, 26]
for an interior node needs to be explicitly modified with abaous boundary nodes removed
from the momentum and energy linearization. So, when pgatan is performed for the interior
nodes near viscous boundaries, the boundary nodes shdube irecluded in the stencil because
interpolation will be between nodes with different dual pedies. In references [48, 50, 71],
the boundary adjoint solution is replaced with extrapalakgerior values and the prolongation is
performed using the extrapolated boundary values. Thedawyradjoint is then post processed
as explained in [48]. In the present study, the MLS fit for tldogities and turbulent quantity
are performed without any viscous boundary nodes in thecistelidowever, for adjoint density
and pressure, the MLS fit included viscous boundary nodete tHat, the present study employs

the adiabatic boundary conditichTa(fL—’m = 0, based on both interior and boundary temperatures

(T"=T(p,p))-

4.3.2 Parameter Definitions for Comparison of Prolonga@merators
The following parameters are defined to make meaningful esis@ns of the different
prolongation operators.

Quality of MLS fit: The MLS procedure produces thest possiblepproximation for a given

data point based on a least squares fit of the seed points sufiport stencil. The quality of

the fit is largely dependent on the support stencil. This teeexely important in boundary layer
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regions, where the presence of high-aspect ratio elemeayspnoduce an ill-conditioned MLS
system, degrading the quality of the fit. To measure the aqpedion error in the MLS fit and
thereby, get an idea about the quality of the support steamsimple test is performed by finding
the approximation for the seed points in the stencil. Theramthe MLS approximation can be
defined as

MLSfiterror = up(z7) — u(zy) (4.15)

whereuy, (x) is the approximation from MLS fit and(z;) is the actual value.

% True Error The actual functional error is defined as

computed output at coarse-mesh
P b ) 100 (4.16)
computed output at fine-mesh

% True Error= 1.0 —

% Error after correctionThe remaining error in the corrected functional is defined a

error corrected output at coarse-mes
P *Noo

. 4.17
computed output at fine-mesh ( )

% Error after correction= 1.0 —

Parallel CostIn the present study, all the flow and adjoint computatiaresdmne in parallel.
To make uniform comparisons of CPU time between differensyuhe parallel CPU/run time
is linearly scaled based on the number of processors tosemréhe overall parallel cost. The

parallel cost measured in CPU hours is computed as

Parallel cost= (Actual Parallel CPU time)*(Number of processors) (4.18)

4.4 Results and Discussions
Error correction results are presented here for inviseidhihar and turbulent test cases. The
prolongation operators are compared based on the choica) dfagis functions: linear-linear,
guadratic-quadratic, linear-quadratic or quadratiedin (b) weight functions: cubic spline or
inverse-distance; and (c) type of support (application eights): isotropic, anisotropic or mixed.

For the cases, when the prolongation operator is comparedaoseries of coarse, intermediate
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and fine meshes, true ertas defined between the coarsest and intermediate mesh andrmr

is defined between the intermediate and finest mesh.

4.4.1 Inviscid flow
The first test case is inviscid flow over an Onera M6 wing at agleaof attack of3.06°

and Mach number 00.8395. Error correction is performed for both liftC{y) and drag
(Cp) coefficients on the wing. Three non-uniformly refined meshee generated with the
coarsest mesh containid@, 114 nodes23, 422 surface triangles an2il 3, 889 tetrahedrals. The
intermediate and finest meshes are generated by reducipgititespacings in the boundary by a
factor of two and four with respect to the initial coarse-mepacing. The intermediate and finest
grids contain respectivelyi83, 796 nodes,76, 152 surface triangles anf76, 344 tetrahedrals;
and 976, 503 nodes,286, 728 surface triangles and, 372,918 tetrahedrals. The coarsest mesh
is uniformly refined to construct an embedded mesh cont@idif, 119 nodes,93, 688 surface
triangles andl, 712,372 tetrahedrals. The MLS support stencil is built with cireusaipports
and when tensor product (anisotropic) weights are applie€el,supports are reconstructed to

rectangular from the circular support.

4.4.1.1 CpinaOnera M6 wing afi/,, = 0.8395 andAOA = 3.06°

The error correction results faf'p are presented in Tables (4.1) to (4.10). Tables (4.1)
and (4.2) compare the different MLS fits for prolongation tairdformly refined mesh using
cubic spline and inverse-distance weights respectivelpmFTables (4.1) and (4.2), it can be
observed that the corrections from all the MLS fits reducettihe error by50%. The isotropic
and anisotropic application of weights produce nearly tidah corrections. For the linear-
linear and quadratic-quadratic MLS fits, the correctiomsrircubic spline and inverse-distance
weight functions are of the same order of magnitude. Howekercubic spline linear-quadratic
and quadratic-linear MLS fits compute better correctionmgared to their inverse-distance
counterparts. The best estimates of correction are oliarveubic spline linear-quadratic

and quadratic-linear MLS fits. The error correcte@ from the cubic spline linear-quadratic
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and quadratic-linear MLS fits are withitfs and 5% of the fine-mesh estimate. One possible
explanation for the better correction from a combined MLSlfitear-quadratic or quadratic-
linear) may be a bad flow or adjoint approximation in the indlisal MLS fits (linear-linear or
guadratic-quadratic) and the bad approximation is not eygal in the combined fit. Another
possible explanation may be the leading truncation err&) (Erms in the linear and quadratic
approximations are of different signs and result in a smédlading TE term and hence, a more
accurate correction for the combined approximation.

The behavior of the error estimates is studied by perforntiv@gerror correction procedure
over a sequence of non-uniformly refined meshes. As the nesstution increases, the functional
estimates get more accurate and this can be observed irdigtion in true error from-40.57%
between the coarse and intermediate meshe®183% between the intermediate and fine meshes
in Table (4.3). Similar behavior should be observed in theregstimates, with the correction
getting smaller as the functional output converges to ysngsotic value. This behavior can be
observed in Tables (4.3) to (4.10) for the non-uniformlyrrefi meshes. The tables demonstrate
the decrease in error correction estimates as the proiongatperformed between better resolved
grids with smaller true error. The weights are applied utrally and it can be noticed from the
tables that the inverse-distance corrections are sligiglyer than the cubic spline corrections.
For all the MLS fits, the true errbrand true error are reduced by more thd&i0% after applying
correction.

The quadratic-linear MLS fits given in Tables (4.9) and (4.d@nsistently produce the best
correction estimates. The correct€g from the coarse and intermediate-meshes are withiof
their respective fine-mesh estimates; i.e. the true eaod true error are reduced b99% after
correction. The role, the leading TE terms play in a combiapdroximation (linear-quadratic
or quadratic-linear) can be better appreciated by lookingahles (4.7) to (4.10) for the linear-
guadratic and quadratic-linear MLS fits. For the lineardratic MLS fits, the corrections at the
intermediate-mesh are worse compared to the individuakctions (linear-linear or quadratic-

guadratic), whereas, the quadratic-linear correctiomshatter than the individual corrections.
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This behavior may be best explained by the signs of the lga@in (truncation error) terms in
the linear and quadratic approximations. If they are of #@es sign, they add up resulting in
a larger TE term and a less accurate correction as observéx ilnear-quadratic corrections
for the intermediate-mesh. If they are of opposite signsy ttancel out resulting in a smaller
leading TE term and a more accurate correction as seen irutdrajic-linear corrections for the
intermediate-mesh.

Fig.(4.1) shows the parallel CPU costs for the error coee€tp. From Fig.(4.1), it can be
inferred that significant savings in parallel computatlaust can be obtained by performing error
correction. ThelL, norm error in the MLS fit for the flow and adjoint solutions ore tboarsest
mesh is plotted in Figs.(4.2a - 4.2d). As expected, the emdhe inverse-distance MLS fit is
smaller compared to the cubic spline MLS fit. The inverseagise weights have a large penalty
factor that forces the fit to start interpolating the datahesdistance between the data and seed
points approaches zero. However, the cubic MLS fit produc@aa@other approximation and the
corrections in Tables (4.1) to (4.10) are almost identioadrf both these approximations. The
norm error for the adjoint fit is larger compared to the flow #tiso, the L, norm error in the
linear and quadratic approximations are of the same order.

Table 4.1: Inviscid flow over a Onera M6 wing¥/,, = 0.8395, AOA = 3.06°. Cubic spline

weights correction from a coarse-mesh with = 0.02250563 to a uniformly refined
mesh withC'p = 0.01510187; True Error =—49.02%.

MLS fit Error CorrectedCp % Error
Correction after correction

Linear — Linear(isotropic) —0.00468865 | 0.01781698 —17.97
Linear — Linear(anisotropic) —0.00390798 | 0.01859765 —23.14
Quadratic — Quadratic(isotropic) —0.00407856 | 0.01842707 —22.01
Quadratic — Quadratic(anisotropic) | —0.00366597 | 0.01883966 —24.75
Linear — Quadratic(isotropic) —0.00749459 | 0.01501104 0.601

Linear — Quadratic(anisotropic) —0.00747593 | 0.01502970 0.478

Quadratic — Linear(isotropic) —0.00666770 | 0.01583793 —4.873
Quadratic — Linear(anisotropic) —0.00689221 | 0.01561342 —3.387




50

Table 4.2: Inviscid flow over a Onera M6 wing/,, = 0.8395, AOA = 3.06°. Inverse-distance
weights correction from a coarse-mesh with = 0.02250563 to a uniformly refined
mesh withCp = 0.01510187; True Error =—49.02%.

MLS fit Error CorrectedCp % Error
Correction after correction
Linear — Linear(isotropic) —0.00451507 | 0.01799056 —19.12
Linear — Linear(anisotropic) —0.00396752 | 0.01853811 —22.75
Quadratic — Quadratic(isotropic) —0.00439652 | 0.01810911 —-19.91
Quadratic — Quadratic(anisotropic) | —0.00392247 | 0.01858316 —23.05
Linear — Quadratic(isotropic) —0.00524878 | 0.01725685 —14.26
Linear — Quadratic(anisotropic) —0.00425534 | 0.01825029 —20.84
Quadratic — Linear(isotropic) —0.00557292 | 0.01693273 —12.12
Quadratic — Linear(anisotropic) —0.00530304 | 0.01720259 —-13.91

Table 4.3: Inviscid flow over a Onera M6 wing,, = 0.8395, AOA = 3.06°. Isotropic cubic
spline weights correction fo€'p with linear-linear basis on non-uniformly refined

meshes; True Errdr= —40.57%, True Errof = —9.93%.

Nodes Ch Error Corrected”p % Error
Correction after correction
42114 | 0.02250563 | —0.00413585 | 0.01836978 —14.74
183796 | 0.01601001 | —0.00153230 | 0.01447771 0.588
976503 | 0.01456340 — — —

Table 4.4: Inviscid flow over a Onera M6 wingZ,, = 0.8395, AOA = 3.06°. Isotropic inverse-
distance weights correction f@rp with linear-linear basis on non-uniformly refined

meshes; True Errdr= —40.57%, True Errof = —9.93%.

Nodes Ch Error Corrected”p % Error
Correction after correction
42114 | 0.02250563 | —0.00471712 | 0.01778851 —11.10
183796 | 0.01601001 | —0.00166997 | 0.01434004 1.53
976503 | 0.01456340 — — —




51

Table 4.5: Inviscid flow over a Onera M6 wing,, = 0.8395, AOA = 3.06°. Isotropic cubic
spline weights correction fo€p with quadratic-quadratic basis on non-uniformly

refined meshes; True Erfor —40.57%, True Errof = —9.93%.

Nodes Ch Error Corrected”p % Error
Correction after correction
42114 | 0.02250563 | —0.00384564 | 0.01865999 —17.08
183796 | 0.01601001 | —0.00127405 | 0.01473596 —1.184
976503 | 0.01456340 — — —

Table 4.6: Inviscid flow over a Onera M6 wingZ,, = 0.8395, AOA = 3.06°. Isotropic inverse-
distance weights correction farp with quadratic-quadratic basis on non-uniformly

refined meshes: True Erfor —40.57%, True Errof = —9.93%.

Nodes Cp Error CorrectedCp % Error
Correction after correction
42114 | 0.02250563 | —0.00413646 | 0.01836917 —14.73
183796 | 0.01601001 | —0.00135075 | 0.01465926 —0.658
976503 | 0.01456340 — — —

Table 4.7: Inviscid flow over a Onera M6 wing/,, = 0.8395, AOA = 3.06°. Isotropic cubic
spline weights correction faf'p with linear-quadratic basis on non-uniformly refined

meshes; True Errbr= —40.57%, True Errof = —9.93%.

Nodes Cp Error CorrectedCp % Error
Correction after correction
42114 | 0.02250563 | —0.00672852 | 0.01577711 1.454
183796 | 0.01601001 | —0.00175355 | 0.01425646 2.107
976503 | 0.01456340 — — —

Table 4.8: Inviscid flow over a Onera M6 wingZ,, = 0.8395, AOA = 3.06°. Isotropic inverse-
distance weights correction fafp with linear-quadratic basis on non-uniformly refined

meshes; True Errdr= —40.57%, True Errof = —9.93%.

Nodes Ch Error Corrected”p % Error
Correction after correction
42114 | 0.02250563 | —0.00556712 | 0.01693851 —0.580
183796 | 0.01601001 | —0.00189285 | 0.01411716 3.064
976503 | 0.01456340 — — —
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Table 4.9: Inviscid flow over a Onera M6 wing,, = 0.8395, AOA = 3.06°. Isotropic cubic
spline weights correction faf'p with quadratic-linear basis on non-uniformly refined

meshes: True Errdbr= —40.57%, True Errof = —9.93%.

Nodes Cp Error CorrectedCp % Error
Correction after correction
42114 | 0.02250563 | —0.00637202 | 0.01613361 —0.772
183796 | 0.01601001 | —0.00139431 | 0.01461570 —0.359
976503 | 0.01456340 — — —

Table 4.10: Inviscid flow over a Onera M6 wingM,, = 0.8395, AOA = 3.06°. Isotropic
inverse-distance weights correction féfp with quadratic-linear basis on non-
uniformly refined meshes; True Erfor —40.57%, True Errof = —9.93%.

Nodes Ch Error Corrected”p % Error
Correction after correction
42114 | 0.02250563 | —0.00566662 | 0.01683901 -0.517
183796 | 0.01601001 | —0.00143605 | 0.01457396 —0.0725
976503 | 0.01456340 — — —

Error Corrected G, vs Parallel cost
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Figure 4.1: Inviscid flow over a Onera M6 wingZ,, = 0.8395, AOA = 3.06°. Parallel cost for
the error corrected’p.
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Figure 4.2: Inviscid flow over Onera M6 wing/, = 0.8395, AOA = 3.06°. L, norm of error
in MLS fit of individual variablesl = p, 2 = u, 3 = v,4 = w,5 = p. (&) Cubic spline
fit for flow solution; (b) Inverse-distance fit for flow solutip(c) Cubic spline fit for
adjoint solution; (d) Inverse-distance fit for adjoint san.
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4.4.1.2 CrinaOnera M6 wing af/,, = 0.8395 andAO A = 3.06°

The error correction summary for prolongation to a uniformdfined fine-mesh is presented
in Tables (4.11) and (4.12). All the MLS fits perform as expdgctreducing the true error by
50% to 60%. The best corrections are observed in the cubic spline asdse-distance quadratic-
quadratic approximations with the correctég within 0.07% and0.5% of the fine-mesh estimate.

The error correction results f@f;, on a series of non-uniformly refined meshes are presented
in Tables (4.13) to (4.16). The tables compare isotropibjccapline prolongation operators for
different basis functions. The best corrections are oleskem linear-linear and quadratic-linear
MLS fits. The quadratic-quadratic MLS fit over-predicts tloerection at both the mesh levels and
the linear-quadratic fit over-predicts at the intermedratsh. The inferior corrections from the
guadratic-quadratic and linear-quadratic MLS fits can lxbated to a bad quadratic fit for the
adjoint. This is further confirmed by the excellent correst produced by the quadratic-linear fit.
The parallel CPU costs for the error correctég are shown in Fig.(4.3). It can be inferred from
Fig.(4.3) that the fine-mesti;, estimate is obtained with a factor 3 reduction in paralledtdzy
performing error correction.

Table 4.11: Inviscid flow over a Onera M6 wing/,, = 0.8395, AOA = 3.06°. Cubic spline

weights correction from a coarse-mesh with = 0.32904858 to a uniformly refined
mesh withC';, = 0.34140372; True Error =3.62%.

MLS fit Error CorrectedC, % Error
Correction after correction
Linear — Linear(isotropic) 0.00543562 | 0.33448420 2.026
Linear — Linear(anisotropic) 0.00557426 | 0.33462284 1.986
Quadratic — Quadratic(isotropic) 0.01208721 | 0.34113579 0.078
Quadratic — Quadratic(anisotropic) | 0.01276145 | 0.34181003 —0.119
Linear — Quadratic(isotropic) 0.00460063 | 0.33364921 2.271
Linear — Quadratic(anisotropic) 0.00706106 | 0.33610964 1.550
Quadratic — Linear(isotropic) 0.00872527 | 0.33777385 1.063
Quadratic — Linear(anisotropic) 0.01006647 | 0.33911505 0.670
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Table 4.12: Inviscid flow over a Onera M6 wing/, = 0.8395, AOA = 3.06". Inverse-distance
weights correction from a coarse-mesh with = 0.32904858 to a uniformly refined
mesh withC';, = 0.34140372; True Error =3.62%.

MLS fit Error Corrected”], % Error
Correction after correction
Linear — Linear(isotropic) 0.00778603 | 0.33683461 1.334
Linear — Linear(anisotropic) 0.00788570 | 0.33693428 1.309
Quadratic — Quadratic(isotropic) 0.01068615 | 0.33973473 0.488
Quadratic — Quadratic(anisotropic) | 0.00998060 | 0.33902918 0.695
Linear — Quadratic(isotropic) 0.00600940 | 0.33505798 1.858
Linear — Quadratic(anisotropic) 0.00628382 | 0.33533240 0.335
Quadratic — Linear(isotropic) 0.01325666 | 0.34230524 —0.264
Quadratic — Linear(anisotropic) 0.00987792 | 0.33892650 0.725

Table 4.13: Inviscid flow over a Onera M6 wingZ,, = 0.8395, AOA = 3.06°. Isotropic cubic
spline weights correction fo€';, with linear-linear basis on non-uniformly refined
meshes; True Errdr= 3.89%, True Errof = 0.364%.

Nodes CL Error CorrectedCy, % Error
Correction after correction
42114 | 0.32904858 | 0.00751931 | 0.33656789 1.697
183796 | 0.34237983 | 0.00170301 | 0.34408284 —0.131
976503 | 0.34363090 — — —

Table 4.14: Inviscid flow over a Onera M6 wingZ,, = 0.8395, AOA = 3.06°. Isotropic cubic
spline weights correction fo€';, with quadratic-quadratic basis on non-uniformly
refined meshes; True Erfor 3.89%, True Errof = 0.364%.

Nodes CL Error CorrectedCy, % Error
Correction after correction
42114 | 0.32904858 | 0.02045818 | 0.34950676 —2.081
183796 | 0.34237983 | 0.00223984 | 0.34461967 —0.287
976503 | 0.34363090 — — —
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Table 4.15: Inviscid flow over a Onera M6 wingZ,, = 0.8395, AOA = 3.06°. Isotropic cubic
spline weights correction far'’;, with linear-quadratic basis on non-uniformly refined

meshes: True Errdr= 3.89%, True Errof = 0.364%.

Nodes CL Error CorrectedCy, % Error
Correction after correction
42114 | 0.32904858 | 0.00580444 | 0.33485302 2.198
183796 | 0.34237983 | 0.00323724 | 0.34561707 —0.578
976503 | 0.34363090 — — —

Table 4.16: Inviscid flow over a Onera M6 wingZ,, = 0.8395, AOA = 3.06°. Isotropic cubic
spline weights correction faf';, with quadratic-linear basis on non-uniformly refined

meshes; True Errér= 3.89%, True Errof = 0.364%.

Nodes CL Error CorrectedC, % Error
Correction after correction
42114 | 0.32904858 | 0.00853922 | 0.33758780 1.40
183796 | 0.34237983 | 0.00101208 | 0.34339191 0.069
976503 | 0.34363090 — — —

Error Corrected G, Vs Parallel cost
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Figure 4.3: Inviscid flow over a Onera M6 wingZ,, = 0.8395, AOA = 3.06°. Parallel cost for
the error corrected’;,.
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4.4.2 Viscous laminar flow

Mixed-element meshes are used for viscous cases with pisthe boundary layer regions
and, pyramids and tetrahedrals outside the boundary layé#rei inviscid regions. The MLS
support stencil is built with rectangular supports in theiary layer regions and with circular
supports in the inviscid regions. When isotropic weightsapplied in the boundary layer regions,
the rectangular supports are reconstructed to representari supports. Similarly, when tensor
product weights are applied in the inviscid regions, theuwar supports are reconstructed to
represent rectangular supports. No modifications are detmtethe mixed support, since, it

employs tensor product weights in the boundary layer arcoigiz weights in the inviscid regions.

4.4.2.1 Cp inaunit Cylinder atM,, = 0.3 andRe = 100

The first viscous test case is the laminar flow over a unit dgirat a Mach number 6f3 and
Reynolds number of 100. The output function considereddsithg coefficienCp. The cylinder
is capped with symmetry planes at each end and the coardeguetins 13,543 nodes, 1,792
surface quadrilaterals, 3,098 surface triangles, 20,%&61p and 8,133 tetrahedrals. The coarse-
mesh is uniformly refined to construct a h-refined embeddeshneentaining 101,308 nodes,
7,168 surface quadrilaterals, 12,392 surface trianglé%,328 prisms and 65,064 tetrahedrals.
Two non-uniformly refined meshes are generated using AFIRG][with the intermediate-mesh
containing 56,808 nodes, 3,380 surface quadrilateralgd523urface triangles, 81,016 prisms and
66,474 tetrahedrals; and the fine-mesh containing 253,848 6,704 surface quadrilaterals,
55,424 surface triangles, 313,807 prisms and 466,17 heztrals.

The error correction results f6rp on a uniformly refined mesh is shown in Tables (4.17) and
(4.18). The tables compare the cubic spline and invergardie weights for different MLS fits.
With the exception of quadratic prolongation operators legipg tensor product weights, all the
MLS fits reduce the true error by0%. From Table (4.18) for inverse-distance weights, it can
be noticed that the quadratic-quadratic and quadrateafimnisotropic MLS fits over-predict the
correction. This can be attributed to a bad quadratic fitHerftow solution, when the weights are

applied anisotropically. This is further confirmed by theellent correction from linear-quadratic
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anisotropic fit. Another possible explanation for the ifdecorrections may be because of the use
of rectangular supports in the inviscid regions. This cawdr#fied from the quality corrections
with a mixed MLS fit, which uses an anisotropic fit in the bounydayer and an isotropic fit in
inviscid regions.

Tables (4.19) to (4.26) compare the different MLS operatmer a series of non-uniformly
refined meshes for mixed supports. Mixed supports are mamppate in mixed element meshes
and so, they are chosen for further investigation. For alMh.S fits, the true errdrand true error
are reduced by more th&% after applying correction. The remaining error in the coted Cp
from the different MLS fits are almost of the same order of nitagie. Fig.(4.4) shows the parallel
CPU costs for the error correctédy. It can be noticed that significant savings in parallel cast ¢
be achieved by performing error correction. The glabahorm error in the MLS fit for the flow
and adjoint solutions on the coarse-mesh is shown in Tabl2g)and (4.28). As expected, the
norm errors in the inverse-distance weights are smalleheabILS fit behaves like an interpolant
when the distance between data and seed points approachTherd, norm errors in the cubic
spline quadratic MLS fits for the adjoint are one order of mtagie larger compared to the other

cubic spline fits.
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Table 4.17: Laminar flow over a Cylinder:M,, = 0.3, Re =100. Cubic spline weights
correction from a coarse-mesh wittp = 2.271672 to a uniformly refined mesh with
Cp = 2.0778713; True Error =—9.325%.

MLS fit Error CorrectedCp % Error
Correction after correction

Linear — Linear(isotropic) —0.08860659 | 2.18306541 —5.062
Linear — Linear(anisotropic) —0.07975986 | 2.19191214 —5.488
Linear — Linear(mixed) —0.08521173 | 2.18646027 —5.226
Quadratic — Quadratic(isotropic) —0.09542261 | 2.17624939 —4.734
Quadratic — Quadratic(anisotropic) | —0.33037676 | 1.94129524 6.572

Quadratic — Quadratic(mized) —0.09161557 | 2.18005643 —4.917
Linear — Quadratic(isotropic) —0.1363136 2.1353584 —2.767
Linear — Quadratic(anisotropic) —0.1379030 2.1337690 —2.690
Linear — Quadratic(mized) —0.1313387 2.1403333 —3.006
Quadratic — Linear(isotropic) —0.1209169 2.1507551 —3.507
Quadratic — Linear(anisotropic) —0.1363500 2.1353220 —2.764
Quadratic — Linear(mized) —0.1221979 2.1494741 —3.445

Table 4.18: Laminar flow over a CylinderM, = 0.3, Re = 100. Inverse-distance weights
correction from a coarse-mesh with, = 2.271672 to a uniformly refined mesh with
Cp = 2.0778713; True Error =—9.325%.

MLS fit Error CorrectedCp % Error
Correction after correction

Linear — Linear(isotropic) —0.09028313 | 2.18138887 —4.981
Linear — Linear(anisotropic) —0.09316668 | 2.17850532 —4.843
Linear — Linear(mixed) —0.09262002 | 2.17905198 —4.869
Quadratic — Quadratic(isotropic) —0.10138606 | 2.17028594 —4.447
Quadratic — Quadratic(anisotropic) | —0.40984835 | 1.86182365 10.39

Quadratic — Quadratic(mized) —0.11318102 | 2.15849098 —3.88

Linear — Quadratic(isotropic) —0.10326479 | 2.16840721 —4.357
Linear — Quadratic(anisotropic) —0.12797833 | 2.14369367 —3.17

Linear — Quadratic(mized) —0.11352251 | 2.15814949 —3.863
Quadratic — Linear(isotropic) —0.14136428 | 2.13030772 —2.523
Quadratic — Linear(anisotropic) —0.42476962 | 1.84690238 11.11

Quadratic — Linear(mized) —0.16240366 | 2.10926834 —1.511




60

Table 4.19: Laminar flow over a Cylinder:M,, = 0.3, Re=100. Mixed cubic spline

weights correction foC’p with linear-linear basis on non-uniformly refined meshes;
True Errof = —8.25%, True Errof = —8.06%.

Nodes Cp Error CorrectedCp % Error
Correction after correction
13543 | 2.2716720 | —0.05288262 | 2.21878938 —5.736
56808 | 2.0984108 | —0.04865962 | 2.04975118 —5.558
253243 | 1.9418062 — — —

Table 4.20: Laminar flow over a CylinderM,, = 0.3, Re =100. Mixed inverse-distance

weights correction foC’p with linear-linear basis on non-uniformly refined meshes;
True Errof = —8.25%, True Errof = —8.06%.

Nodes Ch Error CorrectedCp % Error
Correction after correction
13543 | 2.2716720 | —0.0745105 2.1971615 —4.705
56808 | 2.0984108 | —0.07674662 | 2.02166418 —4.112
253243 | 1.9418062 — — —

Table 4.21: Laminar flow over a Cylindett/, = 0.3, Re = 100. Mixed cubic spline weights

correction forC'p with quadratic-quadratic basis on non-uniformly refinedshess;
True Errof = —8.25%, True Errof = —8.06%.

Nodes Ch Error CorrectedCp | % Error
Correction
13543 | 2.2716720 | —0.07637621 2.19529579 —4.617

56808 | 2.0984108 | —0.13209183 | 1.96631897 | —1.262
253243 | 1.9418062 —

Table 4.22: Laminar flow over a Cylindeb/,, = 0.3, Re = 100. Mixed inverse-distance weights

correction forC'p with quadratic-quadratic basis on non-uniformly refinedshes;
True Errof = —8.25%, True Errof = —8.06%.

Nodes Cp Error CorrectedCp % Error
Correction after correction
13543 | 2.2716720 | —0.07336892 | 2.19830308 —4.76
56808 | 2.0984108 | —0.08416162 | 2.01424918 —-3.73
253243 | 1.9418062 — — —
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Table 4.23: Laminar flow over a Cylindet/,, = 0.3, Re = 100. Mixed cubic spline weights
correction for Cp with linear-quadratic basis on non-uniformly refined meshe
True Errof = —8.25%, True Errof = —8.06%.

Nodes Cp Error CorrectedCp % Error
Correction after correction
13543 | 2.2716720 | —0.10212237 | 2.16954963 —3.390
56808 | 2.0984108 | —0.06444012 | 2.03397068 —4.746
253243 | 1.9418062 — — —

Table 4.24: Laminar flow over a Cylindeb/,, = 0.3, Re = 100. Mixed inverse-distance weights
correction forCp with linear-quadratic basis on non-uniformly refined meshe
True Errof = —8.25%, True Errof = —8.06%.

Nodes Ch Error CorrectedCp % Error
Correction after correction
13543 | 2.2716720 | —0.09987072 | 2.17180128 -3.5
56808 | 2.0984108 | —0.10708798 | 1.99132282 —2.55
253243 | 1.9418062 — — —

Table 4.25: Laminar flow over a Cylindeit/, = 0.3, Re = 100. Mixed cubic spline weights
correction forCp with quadratic-linear basis on non-uniformly refined meshe
True Errof = —8.25%, True Errof = —8.06%.

Nodes Ch Error CorrectedCp % Error
Correction after correction
13543 | 2.2716720 | —0.10570873 | 2.16596327 —3.219
56808 | 2.0984108 | —0.08306125 | 2.01534955 —3.787
253243 | 1.9418062 — — —

Table 4.26: Laminar flow over a Cylindeb/,, = 0.3, Re = 100. Mixed inverse-distance weights
correction for Cp with quadratic-linear basis on non-uniformly refined meshe
True Errof = —8.25%, True Errof = —8.06%.

Nodes Cp Error CorrectedCp % Error
Correction after correction
13543 | 2.2716720 | —0.15995850 | 2.11171350 —0.634
56808 | 2.0984108 | —0.08757107 | 2.01083973 —3.55
253243 | 1.9418062 — — —
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Error Corrected G, Vs Parallel cost
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Figure 4.4: Laminar flow over a CylinderM, = 0.3, Re = 100. Parallel cost for the error

corrected”p.

Table 4.27: Laminar flow over a Cylinde#/,, = 0.3, Re = 100. Globalls norm of error in MLS

fit for flow solution

MLS fit Cubic spline | Inverse-distance
weights weights
Linear — Linear(isotropic) 1.822F — 03 | 8.454F — 14
Linear — Linear(mixed) 1.814F — 03 | 7.914F — 14
Linear — Linear(anisotropic) 4.792E — 04 | 2.069FE — 17
Quadratic — Quadratic(isotropic) 2.139EFE — 03 | 8.166E — 14
Quadratic — Quadratic(mized) 2.025E —03 | 1.374E — 14
Quadratic — Quadratic(anisotropic) | 1.532F — 03 | 3.154F — 17

Table 4.28: Laminar flow over a Cylindek/,, = 0.3, Re = 100. Globall; norm of error in MLS

fit for adjoint solution

MLS fit Cubic spline | Inverse-distance
weights weights
Linear — Linear(isotropic) 3.086E —03 | 4.088E —13
Linear — Linear(mixed) 2.986E — 03 | 1.629E —13
Linear — Linear(anisotropic) 9.407E — 04 | 6.647TE — 18
Quadratic — Quadratic(isotropic) 8.855FE —02 | 1.117F —11
Quadratic — Quadratic(mized) 6.968E — 02 | 4.561F — 14
Quadratic — Quadratic(anisotropic) | 6.964F — 02 | 7.153F — 18
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4.4.2.2 CpinaOnera M6 wing afi/,, = 0.8395, Re = 5,000 and AOA = 3.06°

The second viscous test case is laminar flow over an Onera M§ atia Mach number of
0.8395, chord-based Reynolds numberspf00 and angle of attack df.06°. The output function
considered is the drag coefficie@ty on the wing. For this test case, two coarse-meshes are
generated, a mixed-element and an all tetrahedral meshgramdestimates are evaluated on a
non-uniformly refined mixed-element fine-mesh. For the mhigeement meshes, prisms are used
in the boundary layer. For the tetrahedral mesh, the boyrldger prisms are subdivided into
tetrahedra in an advancing layer fashion. The mixed-elégmarse-mesh contailg, 951 nodes,
656 surface quadrilateral3, 664 surface triangles37, 009 prisms,3, 561 pyramids and 76, 902
tetrahedrals. The tetrahedral coarse-mesh con&irzg86 nodes,25,004 surface triangles and
470,954 tetrahedrals, among whics00, 944 are boundary layer tetrahedrals. The fine-mesh
containss16, 834 nodes,2, 607 surface quadrilateral§g, 088 surface triangles{31, 774 prisms,
23,413 pyramids and’21, 791 tetrahedrals.

This case is performed to test the approximation power oMh& prolongation operators
between meshes of different element types. This will vadidae mesh independent nature of
the present MLS approximation. For the mixed-element @arash, the stencil is built with
rectangular supports only in boundary layer and circul@psus are used in rest of the regions.
Supports are reconstructed when weights are applied mo#ity or anisotropically. For the
tetrahedral coarse-mesh, the support is either circulall iregions (boundary layer and inviscid)
or rectangular in all regions. Tables (4.29) and (4.30) camphe cubic spline MLS fits for the
mixed-element and tetrahedral coarse-meshes. Exceigfdinear-linear MLS fits on the mixed-
element coarse-mesh, the remaining error in the correCigds less thant0% of the true error.
The MLS operators perform well on both the coarse-mesheselly, validating the meshless

nature of the present MLS approximation.
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Table 4.29: Laminar flow over a Onera M6 wing/,, = 0.8395, AOA = 3.06°, Re = 5, 000.
Cubic spline weights correction from a mixed-element oeangsh with

Cp = 0.08785503 to a non-uniformly refined mixed-element mesh with
Cp = 0.08280842; True Error =—6.09%.
MLS fit Error Corrected”p % Error
Correction after correction
Linear — Linear(isotropic) 0.00066847 0.08852350 —6.901
Linear — Linear(anisotropic) —0.00061292 | 0.08724211 —5.354
Linear — Linear(mixed) —0.00059159 | 0.08726344 —5.379
Quadratic — Quadratic(isotropic) —0.00380478 | 0.08405025 —1.50
Quadratic — Quadratic(anisotropic) | —0.00148669 | 0.08636834 —4.30
Quadratic — Quadratic(mized) —0.00466223 | 0.08319280 —0.464
Linear — Quadratic(isotropic) —0.00285646 | 0.08499857 —2.644
Linear — Quadratic(anisotropic) —0.00310203 | 0.08475300 —2.348
Linear — Quadratic(mized) —0.00296975 | 0.08488528 —2.508
Quadratic — Linear(isotropic) —0.00389405 | 0.08396098 —1.391
Quadratic — Linear(anisotropic) —0.00485201 | 0.08300302 —0.235
Quadratic — Linear(mized) —0.00417283 | 0.08368220 —1.055
Table 4.30: Laminar flow over a Onera M6 wing: M, = 0.8395, AOA = 3.06°,
Re =5,000. Cubic spline weights correction from a Tetrahedral coanssh

with Cp = 0.08726068 to a non-uniformly refined mixed-element mesh with

Cp = 0.08280842; True Error =—5.37%.

MLS fit Error CorrectedCp % Error
Correction after correction

Linear — Linear(isotropic) —0.00192239 | 0.08533829 —3.055
Linear — Linear(anisotropic) —0.00217514 | 0.08508554 —2.75

Quadratic — Quadratic(isotropic) —0.00225737 | 0.08500331 —2.650
Quadratic — Quadratic(anisotropic) | —0.00258690 | 0.08467378 —2.252
Linear — Quadratic(isotropic) —0.00420017 | 0.08306051 —0.304
Linear — Quadratic(anisotropic) —0.00391970 | 0.08334098 —0.643
Quadratic — Linear(isotropic) —0.00240976 | 0.08485092 —2.466
Quadratic — Linear(anisotropic) —0.00281541 | 0.08444527 —1.976




65
4.4.3 Turbulent flow

The one-equation turbulence model of Spalart and Allma88kif used in the present study.
The turbulence model is solved in a loosely coupled mannkoih flow and sensitivity analysis.
The turbulent contributions to the mean flow are added by tuy eviscosity ;. To better
understand the influence pf on the computed error estimates, the error correction futant
flows is evaluated in three ways: (&) is prolongated from the coarse-mesh; (2)is evaluated
by Eqn.(2.22) using the prolongated turbulent quarntigt the fine-mesh; (3); is floored to zero

removing the turbulent contributions in mean flow.

4.4.3.1 CpinaNACA 0012 rectangular wing at/,, = 0.95, Re = 3,000,000 andA0A = 0°

The test case is turbulent flow over a NACA 0012 rectangulargwat a Mach number
of 0.95, chord-based Reynolds number 2000, 000 and angle of attack of®. The coarse-
mesh containg56, 420 nodes,2, 576 surface quadrilateral®3, 072 surface triangles§11, 744
prisms and258, 874 tetrahedrals with a wall spacing 8~ of mean aerodynamic chord. Error
correction is performed on a non-uniformly refined fine-mesttainingl, 003, 430 nodes4, 570
surface quadrilateralg,l, 972 surface trianglesl, 706, 813 prisms and’67, 814 tetrahedrals with
the same wall spacing as coarse-mesh.

The error corrections results are presented in Tables )4d314.36) for cubic spline and
inverse-distance weights. From the tables, it can be obddhat the best corrections are observed
in quadratic-quadratic and quadratic-linear MLS fits foketl supports, with the remaining error
in the corrected”p less tharb0% of the true error. Also, the error corrections evaluatechwit
computedu; (option (2)) are significantly better than the interpolated zeroed:; (options (1)
and (3)). For the quadratic-quadratic fit, the isotropicpsuis (all circular) and the anisotropic
supports (all rectangular) produce too small and too laggeections. This under-prediction and
over-prediction of corrections may be attributed to the abeectangular supports in inviscid
regions for the anisotropic case and circular supportserhighly stretched boundary layer for

the isotropic case.
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All the linear-linear MLS fits produce inferior correctiomsth the wrong signs. This behavior
is observed in all linear-quadratic fits also. The sourcdefinferior corrections can be attributed
to a bad linear approximation for the flow solution. The hygsiretched nature of the boundary
layer elements with aspect ratios exceeding 10,000 may fiesvited in an ill-conditioned MLS
system that is converging to the wrong values for the linpar@imation. Though the estimates
are not shown here, the linear approximations are tried thi#Harger quadratic stencil, but, they
also resulted in corrections with wrong signs. This behargguires further investigation of the
MLS support stencil for turbulent corrections and shoul@gbfdressed in future research.

The parallel CPU costs for the error correctéd are shown in Fig.(4.5). It can be inferred that
large savings in parallel cost may be realized by perforneimgr correction. The quality of the
MLS fits for the turbulent case is shown in Tables (4.37) td@.. TheL, norm errors in the linear
fits do not explain the behavior of the bad linear approxioreti The quadratic approximations

have a largei, norm error, but, produced better corrections comparedetditiear fits.

Table 4.31: Turbulent flow over a NACA0012 rectangular wingZ,, = 0.95, AOA = (0°,
Re = 3,000,000. Cubic spline weights correction from a coarse-mesh with
Cp = 0.06146953 to a non-uniformly refined mesh with'p = 0.07064086 with
prolongatedu;; True Error =12.98%.

MLS fit Error Corrected”p % Error
Correction after correction

Linear — Linear(isotropic) —0.02044105 | 0.04102848 41.92
Linear — Linear(anisotropic) —0.02603397 | 0.03543556 49.83
Linear — Linear(mixed) —0.02049659 | 0.04097294 42.0
Quadratic — Quadratic(isotropic) 0.00066702 0.06213655 12.03
Quadratic — Quadratic(anisotropic) | 0.01170592 0.07317545 —3.58
Quadratic — Quadratic(mized) 0.00421005 0.06567958 7.02
Linear — Quadratic(isotropic) —0.01892106 | 0.04254847 39.77
Linear — Quadratic(anisotropic) —0.01778208 | 0.04368745 38.15
Linear — Quadratic(mized) —0.01914460 | 0.04232493 40.08
Quadratic — Linear(isotropic) 0.00314096 0.06461049 8.53
Quadratic — Linear(anisotropic) —0.00642091 | 0.05504862 22.07
Quadratic — Linear(mized) 0.00387947 0.06534900 7.5
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Table 4.32: Turbulent flow over a NACA0012 rectangular wing/,, = 0.95, AOA = 0°,

Re = 3,000, 000.

Inverse-distance weights correction from a coarse-meigh w

Cp = 0.06146953 to a non-uniformly refined mesh with'p = 0.07064086 with
prolongatedu,; True Error =12.98%.

MLS fit Error CorrectedC'p % Error
Correction after correction

Linear — Linear(isotropic) —0.01976715 | 0.04170238 40.96
Linear — Linear(anisotropic) —0.02684151 | 0.03462802 50.98
Linear — Linear(mixed) —0.01986285 | 0.04160668 41.10
Quadratic — Quadratic(isotropic) 0.00284616 0.06431569 8.95
Quadratic — Quadratic(anisotropic) | 0.01381020 0.07527973 —6.56
Quadratic — Quadratic(mized) 0.00444236 0.06591189 6.69
Linear — Quadratic(isotropic) —0.01863537 | 0.04283416 39.36
Linear — Quadratic(anisotropic) —0.01992065 | 0.04154888 41.18
Linear — Quadratic(mized) —0.01702510 | 0.04444443 37.08
Quadratic — Linear(isotropic) 0.00996636 0.07143589 —1.12
Quadratic — Linear(anisotropic) 0.00931081 0.07078034 —0.20
Quadratic — Linear(mized) 0.00611743 0.06758696 4.321

Table 4.33: Turbulent flow over a NACA0012 rectangular wing/,, = 0.95, AOA = 0°,

Re = 3,000, 000.

Cubic spline weights correction from a coarse-mesh with

Cp = 0.06146953 to a non-uniformly refined mesh with'p = 0.07064086 with
computedu,; True Error =12.98%.

MLS fit Error CorrectedCp % Error
Correction after correction

Linear — Linear(isotropic) —0.02053464 | 0.04093489 42.05
Linear — Linear(anisotropic) —0.02575492 | 0.03571461 49.44
Linear — Linear(mixed) —0.02063805 | 0.04083148 42.2
Quadratic — Quadratic(isotropic) 0.00073695 0.06220648 11.93
Quadratic — Quadratic(anisotropic) | 0.01523128 0.07670081 —8.57
Quadratic — Quadratic(mized) 0.00718791 0.06865744 2.81
Linear — Quadratic(isotropic) —0.01913630 | 0.04233323 40.07
Linear — Quadratic(anisotropic) —0.01776635 | 0.04370318 38.13
Linear — Quadratic(mized) —0.01946077 | 0.04200876 40.53
Quadratic — Linear(isotropic) —0.00230264 | 0.05916689 16.24
Quadratic — Linear(anisotropic) —0.00599742 | 0.05547211 21.47
Quadratic — Linear(mized) 0.00606966 0.06753919 4.39
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Table 4.34: Turbulent flow over a NACA0012 rectangular wing/,, = 0.95, AOA = 0°,

Re = 3,000, 000.

Inverse-distance weights correction from a coarse-meigh w

Cp = 0.06146953 to a non-uniformly refined mesh with'p = 0.07064086 with
computedu,; True Error =12.98%.

MLS fit Error CorrectedC'p % Error
Correction after correction

Linear — Linear(isotropic) —0.01993086 | 0.04153867 41.20
Linear — Linear(anisotropic) —0.02592073 | 0.03554880 49.67
Linear — Linear(mixed) —0.01984222 | 0.04162731 41.07
Quadratic — Quadratic(isotropic) 0.00350393 0.06497346 8.02
Quadratic — Quadratic(anisotropic) | 0.01395067 0.07542020 —6.76
Quadratic — Quadratic(mized) 0.00458292 0.06605245 6.5
Linear — Quadratic(isotropic) —0.01895162 | 0.04251791 39.81
Linear — Quadratic(anisotropic) —0.02003803 | 0.04143150 41.35
Linear — Quadratic(mized) —0.01714216 | 0.04432737 37.25
Quadratic — Linear(isotropic) 0.01017355 0.07164308 —1.42
Quadratic — Linear(anisotropic) 0.011644282 | 0.07311381 -3.5
Quadratic — Linear(mized) 0.00845078 0.06992031 1.02

Table 4.35: Turbulent flow over a NACA0012 rectangular wing/,, = 0.95, AOA = 0°,

Re = 3,000, 000.

Cubic spline weights correction from a coarse-mesh with

Cp = 0.06146953 to a non-uniformly refined mesh wittip = 0.07064086 with 1
floored to zero; True Error £2.98%.

MLS fit Error CorrectedCp % Error
Correction after correction

Linear — Linear(isotropic) —0.01843408 | 0.04303545 39.07
Linear — Linear(anisotropic) —0.01819439 | 0.04327514 38.73
Linear — Linear(mixed) —0.01861335 | 0.04285618 39.33
Quadratic — Quadratic(isotropic) 0.00037584 0.06184537 12.45
Quadratic — Quadratic(anisotropic) | 0.01059496 0.07206449 -2.01
Quadratic — Quadratic(mized) 0.00310038 0.06456991 8.6
Linear — Quadratic(isotropic) —0.01847939 | 0.04299014 39.14
Linear — Quadratic(anisotropic) —0.01330620 | 0.04816333 31.82
Linear — Quadratic(mized) —0.01891338 | 0.04255615 39.75
Quadratic — Linear(isotropic) 0.00025986 0.06172939 12.61
Quadratic — Linear(anisotropic) —0.00635012 | 0.05511941 21.97
Quadratic — Linear(mized) 0.00319125 0.06466078 8.46
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Table 4.36: Turbulent flow over a NACA0012 rectangular wing/,, = 0.95, AOA = 0°,

Re = 3,000, 000.

Inverse-distance weights correction from a coarse-meh w

Cp = 0.06146953 to a non-uniformly refined mesh wittip = 0.07064086 with 1
floored to zero; True Error #2.98%.

MLS fit Error CorrectedC'p % Error
Correction after correction
Linear — Linear(isotropic) —0.01785474 | 0.04361479 38.25
Linear — Linear(anisotropic) —0.01949098 | 0.04197855 40.57
Linear — Linear(mixed) —0.01784394 | 0.04362559 38.24
Quadratic — Quadratic(isotropic) 0.00016784 0.06163737 12.74
Quadratic — Quadratic(anisotropic) | 0.00727151 0.06874104 2.68
Quadratic — Quadratic(mized) 0.00209401 0.06356354 10.01
Linear — Quadratic(isotropic) —0.01825629 | 0.04321324 38.82
Linear — Quadratic(anisotropic) —0.02082238 | 0.04064715 42.45
Linear — Quadratic(mized) —0.01791899 | 0.04355054 38.34
Quadratic — Linear(isotropic) 0.00752036 0.06898989 2.33
Quadratic — Linear(anisotropic) 0.00553917 0.06700870 5.14
Quadratic — Linear(mized) 0.00232975 0.06379928 9.68

Error Corrected C,, Vs Parallel cost
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Figure 4.5: Turbulent flow over a NACAO0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000,000. Parallel cost for the error corrected, with computedy; and

mixed supports.
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Table 4.37: Turbulent flow over NACA 0012 wing/., = 0.95, AOA = 0°, Re = 3,000, 000.
Globally norm of error in MLS fit for flow solution

MLS fit Cubic spline | Inverse-distanceg
weights weights
Linear — Linear(isotropic) 7.392E — 04 | 4.880E — 12
Linear — Linear(mixed) 6.905E — 04 | 5.647E — 13
Linear — Linear(anisotropic) 3.094E — 04 | 2.839F — 17
Quadratic — Quadratic(isotropic) 2.163E — 03 | 1.302E — 10
Quadratic — Quadratic(mized) 1.367E — 03 | 4.333E — 14
Quadratic — Quadratic(anisotropic) | 1.072E — 03 | 3.216F — 17

Table 4.38: Turbulent flow over NACA 0012 wing/,, = 0.95, AOA = 0°, Re = 3,000, 000.
Globalis norm of error in MLS fit for adjoint solution

MLS fit Cubic spline | Inverse-distanceg
weights weights
Linear — Linear(isotropic) 5.210E — 02 | 1.182E —09
Linear — Linear(mixed) 4205E — 03 | 7.823E —12
Linear — Linear(anisotropic) 1.789E — 03 | 3.122F — 16
Quadratic — Quadratic(isotropic) 1.719E — 01 | 3.866F — 08
Quadratic — Quadratic(mized) 1.371F — 01 | 2.228E — 10
Quadratic — Quadratic(anisotropic) | 9.972F — 02 | 5.723F — 14

Table 4.39: Turbulent flow over NACA 0012 wing”/., = 0.95, AOA = 0°, Re = 3,000, 000.

Globalis norm of error in MLS fit for turbulent quantity

MLS fit Cubic spline | Inverse-distanceg
weights weights
Linear — Linear(isotropic) 1.257E 400 | 1.873E — 09
Linear — Linear(mized) 1.255FE 400 | 1.745E — 09
Linear — Linear(anisotropic) 9.502E — 01 | 5.901E — 20
Quadratic — Quadratic(isotropic) 4.102E 400 | 3.750F — 09
Quadratic — Quadratic(mized) 2715E +00 | 1.374E —14
Quadratic — Quadratic(anisotropic) | 1.066FE + 00 | 4.154F — 17
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Table 4.40: Turbulent flow over NACA 0012 wing/,, = 0.95, AOA = 0°, Re = 3,000, 000.
Globalls norm of error in MLS fit for turbulent-adjoint

MLS fit Cubic spline | Inverse-distance
weights weights
Linear — Linear(isotropic) 1.649E — 06 | 1.666E — 14
Linear — Linear(mixed) 8.450E — 07 | 7.823E — 12
Linear — Linear(anisotropic) 5.986E — 07 | 6.647TE — 18
Quadratic — Quadratic(isotropic) 9.804F — 05 | 4.152F — 12
Quadratic — Quadratic(mized) 7.552E — 05 | 4.561F — 14
Quadratic — Quadratic(anisotropic) | 6.713E — 05 | 6.721E — 18




CHAPTER YV
GRID ADAPTATION

This section demonstrates the final step in the present ewoection methodology:
implementation of an efficient and robust output-based agiaptive scheme. The adjoint-based
and feature-based adaptive approaches are introduceti@addptive indicators are formulated.
The adaptation mechanics is discussed and adaptationsraselpresented for inviscid, laminar

and turbulent test cases.

5.1 Adjoint-based Approach
The present output-based adaptive strategy suggested rmitti/eand Darmofal [48, 69—
71] is based on the adjoint error correction procedure destrin section 4.1. The adaptive
procedure strives to improve the error estimdtes }7 R, (Q%) by reducing the level of error in
the computable error correction. By including the erroromputable estimates, Eqn.(4.9) can be

written as

FQ) - Fu@) ~ 1Y Bu@i) + -k} Ra@lp) 5.1)

In the above equation, the first term on the right hand sideesomputable error correction and
the second term is the error in computable correction. Tlagioaship between the primal (flow)
and dual (adjoint) problem gives rise to another expresiiothe second term. Neglecting the

non-linear effects, the second term can be written as

(n =) Ral@) = B (- @) 52)

72
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whereRz(fyI’;) is the adjoint residual given by

~ [oR,]" dF),
Ri(v) = {TQJQ% {7+ {TQh}Q?{ (5.3)

A conservative adaptive indicator can be formed by inclgdime errors in computing the
adjoint solution also in the formulation. The error indmaft;) formed by including both the

primal and adjoint residual errors is

B — (v — ’Y]h{)T Ry (Q%) ; RI(vE) (Qn— Q) (5.4)

5.1.1 Implementation
The error intensity £;) at each fine-mesh nodean be evaluated as
T
{6n =) Ral@i] + [RIGH): (@0 - @)l }

()i = 5 (5.5)

By approximating

e I (G R 01 e e e

[Qn — QY] ()T — (@)™ = [RT° — Q™)

Q

Egn. (5.5) can be written as

‘(’YHO - ’YLO);F Ry(QM9)i| + |Ry(+7): (@9 — Q)]
(Er)i = 2 &0

whereyf19, QHO and~+9, QL are the higher-order and lower-order prolongated adjaiolt a
flow solutions. Higher-order prolongation is performedngsguadratic basis and lower-order
prolongation is achieved using linear basis. This has adgas computationally, as the need

to solve for the adjoint solution at the fine-mesh is avoidad the accuracy is not affected
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significantly. The only computational costs on this largegsim are function evaluations, flow
and adjoint residual evaluations, and dot product of vector

The formation of adaptation parameters at the coarse-nresh the error intensities at
the fine-mesh differs slightly for uniformly and non-unifioly refined fine-meshes, but, the
underlying principle is essentially the same. The adaman'arameteﬂ}, for a coarse-mesh node
k can be obtained from a uniformly refined fine-mesh by loopiver @ll the coarse-mesh edges
surrounding nodé, and adding one-half of the error intensitids;J from each of the embedded
fine-mesh nodes located at the midpoint of these edges. Hptaditn parameteﬁ}, at nodek is

given by

(A = ' (5.7)

wheren(k) is the summation over all the embedded fine-mesh nodes (whecht the midpoint of
the edges surrounding no#le The adaptation parameters can be obtained from a noaruomif
refined fine-mesh by looping over all the coarse-mesh elestbat contain fine-mesh nodes and
split the error intensitye; between all the nodes that make the element. The adaptaiampter

Al at nodek is given by

_ Er);
(A = ZZ i (5.8)

wheree(k) is the number of coarse-mesh elements incident at kpdg) is the number of fine-

mesh nodes contained by eleméandd; is the element size (number of nodes that make element

0).

5.2 Feature-based Approach
The second adaptive strategy is based on feature dete6de®]. This approach strives to
identify and resolve the significant features of the flow. Hdaptation parameterélﬁ) can be
defined as

AI% = {61,62,63} (59)
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whereeq, es, e3 are the error indicators given by

el = mazx {— %@ ) 0} (5.10)

es = maz {Jr %”"m, o} (5.11)
V (V- grad@

es = |grad@Q — — <7> ‘ (5.12)

’ VL V]

| - | represent the magnitudég) is any suitable flow property and denotes the velocity vector.
Each of these error indicators can isolate a particular offpeature. The first two error indicators
represent expansions and compressions in the flow direatidnthe third represents gradients
normal to the flow direction [65]. At viscous boundarielsﬁ is defined only by the magnitude of

the gradient of) (| grad Q|) because of the no-slip boundary conditioN&=Q).

5.3 Adaptation Mechanics

Simple adaptation mechanics are employed in the preseny. sithe adaptation procedure
employed in the present study constitutes two stages: (f)dton of element-adaptation flags;
(2) h-refinement.

The adaptation parametelg or Af, given in Eqns.(5.7), (5.8) and (5.9) are formed at all the
coarse-mesh nodes. These nodal values are transferred &etinents by a simple averaging.
The mean f) and standard deviatiowr) of the adaptation parameters over all the coarse-mesh
elements are computed and elements are flagged for refinelinértir adaptation parameter is

greater than a proposed error limig;(,) given by
€lim = +crelxo (5.13)

wherecrel is a relaxation factor usually greater than 0.5.
An unstructured mesh refinement module is developed usitigoRyand C++ to perform
adaptation. The adaptive mesh library is based on [84—8®&]panforms isotropic h-refinement

of the elements. The refinement template [87] controls theepaof subdivision of the mesh
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elements. The h-refinement templates used in the presaiyt ate shown in Appendix B. In
the present study, only node addition is considered and i@aisening is not implemented. H-

refinement is performed in 4 steps:

1. isotropically refine all flagged elements; the isotrogifinement pattern for each element

type is shown in Appendix B.

2. loop over all elements and identify the refinement patterreach element by adding new
nodes if needed; this step should be repeated till no newserdeadded and all the elements

have valid refinement patterns.
3. split the element based on its refinement pattern.
4. perform boundary projection.

For h-refined tetrahedral meshes, quality improvement bgllceconnection and Laplacian
smoothing is performed using AFLR3 [100]. No quality impeovent is performed on mixed-
element meshes. In the present study, the mixed-elemertemdéom AFLR3 [100] typically
have prisms in the boundary layer, tetrahedra in the irdisggiions and pyramids in the transition
region. Anisotropic refinement of prisms resulted in poaaligy pyramids and tetrahedrals in the
boundary layer. This is not desirable and hence, anisatrgfinement of prisms is not supported
in the present study. Because of this, no refinement is atlowdhe streamwise direction of
boundary layer, especially for prisms. If streamwise refiapt is allowed, this resulted in the
refinement of the whole layer to preserve the shape of prism.

The adaptation process creates boundary nodes at the mtidgdihe edges, by a simple
averaging of the node coordinates. Boundary node projedsoaccomplished by using a
transfinite, visually continuous, triangular interpolaplained in [60, 101]. The interpolant
is based on side-vertex interpolation in triangles [101]heTcubic Hermite interpolant uses
outward surface normals to reconstruct the surface andeshdting reconstructed surface is a

G' representation with a continuously varying outward norweaitor. The reader is referred to
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[60] for a derivation of the interpolant. This is a slightlgtter approximation than the simple
averaging of the nodes. In boundary layer regions if thegated boundary node resulted in

negative volumes, it is replaced with the averaged value.

5.4 Results and Discussions
Grid adaptation is performed using adjoint-based and fediased approaches and the
improvement in functional estimates is observed. For atjoased adaptation, the adaptive
indicators are evaluated by prolongating the flow and at@itutions to a fine-mesh using the
MLS approximation described in chapter 4. The fine-mesh neayriiformly or non-uniformly
refined, though, uniform refinement should be the best clibioeiltiple iterations of adaptation
are performed. In the present study, the number of adapérations is limited to one or two and

so, non-uniformly refined meshes are also used, wherevereseappropriate.

5.4.1 Inviscid flow
The first test case is inviscid flow over an Onera M6 wing at agleanf attack of3.06" and
Mach number 0f).8395. A lambda shock is typical of these flow conditions and théreses
of Cr and Cp are largely dependent on the accurate prediction of thekshnd its location.
Adjoint-based adaptation is performed for both lift;() and drag ¢'p) coefficients on the wing
and compared with feature-based adaptation. For the adjased adaptation, the non-uniformly
refined fine-mesh witl76, 503 nodes,286, 728 surface triangles angl, 372,918 tetrahedrals is

used to establish the adaptive indicators.

5.4.1.1 CpinaOnera M6 wing af\/,, = 0.8395 andAOA = 3.06°

Figs.(5.1a) and (5.1b) show the convergencé'pfafter two adaptive iterations. The adjoint-
basedCp adaptation reaches the finest-mesh estimate in two itastgth less thar200, 000
nodes compared 976, 503 nodes at the finest-mesh; a factor 5 reduction in mesh sizéhéor
same level ofCp accuracy. Also, adjoint adaptation with correction acbgesuper-convergent

estimates and have probably converged to the asymptotie Viar C'p. The feature-based
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adaptation is converging to an erroneous value signifigdartjer than the finest-meshy. From
Fig.(5.1a), it can be observed that thg accuracy from adjoint-bas&d; adaptation is better than
feature-based adaptation, but, slightly inferior to adjddased”, adaptation. From the parallel
CPU costs shown in Fig.(5.1b), it can be noticed that larganga in parallel cost may be realized
by performing adjoint adaptation.

The initial and adjoint-adapted’(y) grids are shown in Figs.(5.2a) and (5.2b). There is
significant refinement near the leading and trailing edgest anthe lambda shock location.
Fig.(5.3) shows the initial grid on the upper wing surfaceneBurface grids from adjoint and
feature adaptations are shown in Figs.(5.4) and (5.5). @&rife-based adapted grid has excessive
refinement near the leading and trailing edges, but, have gloack resolution. The podr'p
results from the feature approach may be attributed to therdato resolve the lambda shock.
The adaptation parameter contours for the adjoint and redtased approaches on the upper
wing surface of the initial grid are shown in Figs.(5.6a)%®(). The adjoint error indicators have
identified the lambda shock, whereas, the feature errocaalis have failed to identify the lambda
shock properly. A look at the initial density contours in &g7) can explain this behavior. The
initial grid has resolved the shock poorly and the featiasell approach may need a well resolved
initial grid to identify the features. The resolution of thmétial grid did not pose a problem for
the adjoint approach. The density contours on the upper siinfgice of the adjoint and feature-
adapted grids are shown in Figs.(5.8) and (5.9). The lambdeksis clearly visible and captured
well by the adjoint approach. However, the feature appreeshfailed to resolve the shock in two

iterations of adaptation.

5.4.1.2 Cp inaOnera M6 wing af/,, = 0.8395 andAOA = 3.06°

Fig.(5.10) shows the convergence ©f for the adjoint and feature approaches. From
Fig.(5.10), it can be noticed that;, is better predicted by the adjoint approach, and the feature
approach is converging to a lower estimate(4f. More adaptive iterations are needed for the

adjoint approach to attain the same level of accuracy astkestfmesh estimate. However, the
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error corrected’;, estimate from adjoint adaptation has achieved the fineskhraecuracy in two
iterations. Also, the&”;, accuracy from adjoint-based; andC'p adaptations compare favorably.
Fig.(5.11a) shows thé’;, adaptation contours on the upper wing surface for the firgptdion.
The adapted grid after tw@';, adaptations is shown in Fig.(5.11b) for the upper wing serfdt
can be observed that there is considerable refinement retantibda shock and near the leading

and trailing edges of the wing.

C, Convergence C, Convergence
Inviscid flow over a Onera M6 wing Inviscid flow over a Onera M6 wing
©—=© Non-Uniform Refinement : N —
0.025 | Adjoint-C, adaptation 0.024 - (/B—QNo_nfumform Reﬂngmeql !
Adjoint CD adaptation with correction ~—4 Adjoint-C,, adaptation with correction
A—A -C, r - )
Fealule-based adaptation *—* Feature-based adaptation
0.023 - +—+ Adjoint-C, adaptation 0.022 -
0.021 0.02 -
0.019 - 0.018
o o
[§) [§)
0.017 - 0.016 -
0.015 |- 0.014 \ —A
0.013 - 1 0.012
0.011 L s 0.01 I I
10 10 10 1 10 100 1000
Number of nodes Parallel cost (CPU hours)
(a) (b)

Figure 5.1: Inviscid flow over Onera M6 wingi/,, = 0.8395, AOA = 3.06°. Cp convergence.
Correction computed with isotropic cubic spline weightsl dinear-quadratic basis.
(8) Cp Vs Number of Nodes. (b)'p Vs Parallel cost.
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Figure 5.6: Inviscid flow over Onera M6 wingM,, = 0.8395, AOA = 3.06°. Adaptation
parameters on upper wing surface in initial grid. (a) Adjgifp (Eqn.(5.8)); (b)
Featurel (Eqn.(5.10)); (c) Feature2 (Eqn.(5.11)); (dxwed (Eqn.(5.12)).
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Figure 5.7: Inviscid flow over Onera M6 wing/,, = 0.8395, AOA = 3.06°. Density contours
on upper wing for initial grid.

Figure 5.8: Inviscid flow over Onera M6 wing/,, = 0.8395, AOA = 3.06°. Density contours
on upper wing for adjointc’p, adapted grid.
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Figure 5.9: Inviscid flow over Onera M6 wing/,, = 0.8395, AOA = 3.06°. Density contours
on upper wing for feature-adapted grid.
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Figure 5.10: Inviscid flow over Onera M6 wingZ/,, = 0.8395, AOA = 3.06". C, convergence.
Correction computed with isotropic cubic spline weightsl auadratic-quadratic
basis.
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5.4.2 Viscous laminar flow
For the viscous cases, only adjoint adaptation is perforaretuniformly refined grids are

used to evaluate the adaptive indicators.

5.4.2.1 Cp inaunit Cylinder atM, = 0.1 and Re = 20

The first viscous test case is laminar flow over a unit cyliratea Mach number of 0.1 and
Reynolds number of 20. The cylinder is capped with symmdaygs at both ends and has a height
of half its diameter. The initial cylinder grid shown in H§.12) contains 22,242 nodes, 4,608
surface quadrilaterals, 2,520 surface triangles, 36,8&4ng and 5,618 tetrahedrals. Adaptation
is performed foiCp using the adjoint approach.

The convergence af'p is shown in Figs.(5.13a) and (5.13b). The adjoint-basegbtatian
converges to the finest-mesh estimate in two iterations. adapted grid has26, 812 nodes
compared t303, 152 nodes for the finest-mesh; a factor 2 reduction in mesh siaehgeved for
the same level of’p accuracy. A more accurate estimate(gj is attained by combining error
correction with adaptation. The parallel CPU costs are showig.(5.13b), and it can be noticed
that considerable savings in parallel cost is obtained Ibfppming adaptation.

The initial and final adapted symmetry plane grids are shovigs.(5.14a) and (5.14b). Near
field views of the symmetry plane grids are shown in Figs§&)Jland (5.15b). From Fig.(5.14b),
it can be observed that there is significant refinement inrtive and wake of cylinder. The wake
regions are always a source of drag, and it can be noticedheatdjoint-based adaptation has
identified these regions for enrichment. The leading edagnsttion point and the regions of flow
acceleration near the top and bottom of the cylinder hava bessiderably refined. These are the
regions of the flow where pressure changes rapidly in tharstnése direction. This is confirmed
by a look at the pressure contours on the symmetry plane ahiti@ grid in Fig.(5.16). The
pressure contours on the symmetry plane of the final adaptddsgshown in Fig.(5.17), and
it can be noticed that the pressure contours are symmeitli@anbetter resolved. The velocity
magnitude U = vu2 + v2 + w?) contours on the farther symmetry plane for the initial and
adapted grids are shown in Figs.(5.18) and (5.19). From ipe.(5.18) and (5.19), it can be
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observed that the shear layer is better resolved in the ediaptd in the wake regions. The
tangential component of velocity vector for the initial esmapted grids are shown in Figs.(5.20)

and (5.21). The attached symmetric vortices behind thedagtican be observed.

5.4.2.2 Cp ina Onera M6 wing af/,, = 0.8395, Re = 5,000 andAOA = 3.06°

The second case is laminar flow over an Onera M6 wing at a Maetbauof0.8395, chord-
based Reynolds number 5000 and angle of attack af.06°. The initial grid containss5, 286
nodes25, 004 surface triangles antr0, 954 tetrahedrals. Out of70, 954 tetrahedra300, 944 are
boundary layer tetrahedra that are arranged in an advatajeg fashion. For this case, the flow
separates from the suction side of the wing at approximatgly chord lengths, while remaining
attached on the lower surface. The output function constlesrthe lift coefficientC'’;, on the wing.
Because of the highly stretched tetrahedral elements ibdhedary layer, only one iteration of
adaptation is performed, and the improvement'inis observed.

The convergence af';, is shown in Fig.(5.22). Th€';, estimate from the adapted grid with
224,997 nodes is better than the estimate on the uniformly refinechmédth 654, 047 nodes; a
factor 3 reduction in mesh size is achieved with an improes@llof accuracy. The initial and
adapted upper wing surface grids are shown in Figs.(5.28) ®23b). Figs.(5.24) and (5.25)
show the initial and adapted symmetry plane grids. Theaingrid was generated with a large
boundary layer growth factor using AFLR3 [100] to keep thesmsize small. It can be noticed
that the first few layers of boundary layer have been refinezbtopensate for the large growth
factor. Also, the region where the flow separates on the uppdace (approximately5% of
chord length) has been considerably refined. The regiornseaps of the leading edge (outside
the boundary layer), and the wake regions also have signifredinement. The Mach number
contours on the symmetry plane for the initial and adaptedsgare shown in Figs.(5.26) and

(5.27). From the plots, it can be noticed that the shear lsy®solved better in the adapted grid.
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Figure 5.16: Laminar flow over a cylinderM, = 0.1, Re = 20. Pressure contours on the
symmetry plane for initial grid.

s

Figure 5.17: Laminar flow over a cylinderM,, = 0.1, Re =20. Pressure contours on the
symmetry plane for adjoint-adapted grid.
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Figure 5.18: Laminar flow over a cylindeit/,, = 0.1, Re = 20. Velocity magnitude contours on
the symmetry plane for initial grid.

Figure 5.19: Laminar flow over a cylindei/,, = 0.1, Re = 20. Velocity magnitude contours on
the symmetry plane for adjoint-adapted grid.
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Figure 5.20: Laminar flow over a cylinderd,, = 0.1, Re = 20. Tangential component of
velocity vector on the symmetry plane for initial grid.

Figure 5.21: Laminar flow over a cylinderd,, = 0.1, Re = 20. Tangential component of
velocity vector on the symmetry plane for adjoint-adaptdd.g
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Figure 5.26: Laminar flow over Onera M6 wingt/,, = 0.8395, AOA = 3.06°, Re = 5, 000.
Mach number contours on the symmetry plane for initial grid.

Figure 5.27: Laminar flow over Onera M6 wingt/,, = 0.8395, AOA = 3.06°, Re = 5, 000.
Mach number contours on the symmetry plane for adjoint-edhgrid.
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5.4.3 Turbulent flow
Because of memory constraints, only a single iteration @fpgation is performed for the

turbulent case.

5.4.3.1 CpinaNACA 0012 rectangular wing at/,, = 0.95, Re = 3,000,000 andAOA = (°

Turbulent flow is simulated over a NACA 0012 rectangular witga Mach number of
0.95, chord-based Reynolds number %000, 000 and angle of attack of®. The test case is
a supercritical flow with strong shocks on the upper and loswgfaces of the wing. There is
shock/boundary layer interaction and because of the preswrstrong shocks, the boundary layer
thickens and separates on the upper and lower wing surfaes.output function considered
is the drag coefficienCp on the wing. The estimates @fp are largely dependent on the
accurate prediction of the upper and lower wing shocks, @albetheir locations, and adequate
resolution of the separation zones in the boundary layere ifftial grid contains356, 420
nodes, 2,576 surface quadrilaterals23,072 surface trianglesf11,744 prisms and258, 874
tetrahedrals with a wall spacing 8fx 10~ of the mean aerodynamic chord. For the adjoint-
based adaptation, the non-uniformly refined intermediatifinesh witH , 003, 430 nodes4, 570
surface quadrilateralsjl, 972 surface triangles], 706,813 prisms andr67, 814 tetrahedrals is
used to establish the adaptive indicators. The wall spamintie fine-mesh is same as the initial
grid.

The convergence of'p is shown in Figs.(5.28a) and (5.28b). The estimate’gf from
the adjoint-adapted grid with78, 952 nodes is better than the estimates from the non-uniformly
refined fine-mesh with, 003, 430 nodes, and the uniformly refined mesh wiB5 x 10° nodes.
Also, note that the adapted gridi; has surpassed the estimate of the fine-mesh employed to form
the adaptive indicators. The feature-based approach ed fa make any improvements &@p
and in fact, there is loss of accuracydh, from the feature-adapted grid with 135, 637 nodes.
From Fig.(5.28b) for the parallel CPU costs, it can be irfdrthat large savings in parallel cost

may be attained with adjoint-based adaptation.
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The surface grids on the upper wing surface for the initidjpiat-adapted and feature-adapted
grids are shown in Figs.(5.29), (5.30) and (5.33). Theahiadjoint-adapted and feature-adapted
symmetry plane grids are shown in Figs.(5.31),(5.32) and84)5 For the adjoint-adapted grid
shown in Figs.(5.30) and (5.32), besides refinement nededloking edge, trailing edge and surface
of the wing, there is moderate refinement in the wake regimggons upstream of leading edge
(outside boundary layer) and regions near the outer edgewfdary layer. The feature-adapted
grid in Figs.(5.33) and (5.34) has considerable refinemeat the leading and trailing edges of
the wing and has moderate surface refinement. There is nicagm refinement in rest of the
regions.

The initial density contours on the upper and lower surfagkeshe wing are shown in
Figs.(5.35a) and (5.35b) and it can be noticed that the sisogkeared over lot of points. From
the density contours of the adjoint-adapted grid in Fig86&) and (5.36b), it can be observed that
the curvature of the shock is captured well and there is parishock compared to the initial grid.
However, in the density contours of the feature-adapted gliown in Figs.(5.37a) and (5.37b),
the shock curvature is less captured, and there is no sigmifreduction in the smearing of shock
compared to the initial grid. The pressure contours on tmensgtry plane of the initial grid is
shown in Fig.(5.38). The shocks are poorly resolved outiddoundary layer and in the inviscid
regions. In the pressure contours of the adjoint-adaptedsipown in Fig.(5.39), there is less
smearing of the shocks and their resolution in the invisegians have improved greatly. There
is o improvement in the pressure contours of the featuaptad grid shown in Fig.(5.40). The
feature adaptation has been handicapped by the poor riesotut the initial grid. However, this
does not pose a problem for the adjoint adaptation. A bettlved initial grid may be needed
for the feature adaptation.

Figs.(5.41), (5.42) and (5.43) show the Mach number costoarthe symmetry plane for the
initial, adjoint-adapted and feature-adapted grids. Thelhnumber contours are plotted here to
see the resolution of the separation zone in the boundaey. [Byom Figs.(5.41), (5.42) and (5.43),

the thickening of the boundary layer because of the shoak®eanoticed. Figs.(5.44) and (5.45)
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show the Mach number contours near the trailing edge fordjwrda-adapted and feature-adapted
grids. It can be observed that the separation zone is bettelved by the adjoint adaptation, while,
it is poorly resolved in the feature approach. The featurgr@h predicts a large separation
with the flow separating immediately after the shock. Bug #ctual separation occurs further
downstream close to the trailing edge as predicted by th@rdadjdaptation. The loss of accuracy

in the feature-adapted grid may be attributed to the poalutien of the separation zone.

C, Convergence
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(@) (b)

Figure 5.35: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000,000. Initial grid. (a) upper wing surface density contours; dyer
wing surface density contours.

(@) (b)

Figure 5.36: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000,000. Adjoint-adapted grid. (a) upper wing surface density oarg;
(b) lower wing surface density contours.
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Figure 5.37: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000,000. Feature-adapted grid. (a) upper wing surface densityocosit
(b) lower wing surface density contours.

Figure 5.38: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000, 000. Pressure contours on the symmetry plane for the initial. gri
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Figure 5.39: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000,000. Pressure contours on the symmetry plane for the adjoeyptad
grid.

Figure 5.40: Turbulent flow over NACA 0012 rectangular wing/,, = 0.52, AOA = 09,
Re = 3,000,000. Pressure contours on the symmetry plane for the featapted
grid.
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Figure 5.41: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000,000. Mach number contours on the symmetry plane for the initi@l. g

Figure 5.42: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = (0°,
Re = 3,000,000. Mach number contours on the symmetry plane for the adjoint-
adapted grid.
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Figure 5.43: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000,000. Mach number contours on the symmetry plane for the feature-
adapted grid.

Figure 5.44: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000,000. Mach number contours near the trailing edge on the symmetry
plane for the adjoint-adapted grid.
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Figure 5.45: Turbulent flow over NACA 0012 rectangular wing/,, = 0.95, AOA = 0°,
Re = 3,000,000. Mach number contours near the trailing edge on the symmetry
plane for the feature-adapted grid.



CHAPTER VI
SUMMARY AND RECOMMENDATIONS

An adjoint-based error estimation methodology has beesepted that provides a quantitative
measure of the error in computed outputs and improves theuetan accuracy of functional
outputs. The error estimates relate the local residuatstoothe global error in output function
via adjoint variables as weight functions. The major stephe error estimation methodology:
(1) development of adjoint sensitivity analysis capaietif (2) development of an efficient and
robust error estimation procedure; (3) implementationrobatput-based grid adaptive scheme
have been accomplished in this work.

In the first step, parallel discrete direct and adjoint desityi analysis capabilities have been
developed for variable Mach number flows on mixed-elemestruntured meshes. The parallel
implementation is based on coarse-grained domain decdtimpoand has been shown to scale
well. Results for several cases validate the consistenligazrization over sequential and parallel
runs. A modification has been proposed to the current clasasifuctured flux limiters to make
them piecewise continuous and suitable for discrete sahsianalysis. The modified limiters
are essentially a weak form of the original limiters and haeen found to be more dispersive
from numerical tests. The current study is perhaps the fiskwo accomplish a consistent
and complete linearization of limiters for discrete sawisit analysis. An improved version
of Symmetric Gauss Seidel scheme and its exact dual algoti@ive been implemented. The
algorithms exhibit identical asymptotic convergence satiemonstrating numerical equivalence
between the direct and adjoint discretizations.

The second step required prolongation of flow and adjoinitemis from a coarse-mesh to a
fine-mesh to compute the error estimates. Smooth recotistraf the coarse-mesh solutions has

been accomplished using the meshless Moving Least Squdte3) @pproximation. The MLS
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procedure has been found to compute highly accurate cmmeabn the fine-mesh. A thorough
investigation of the error correction procedure has beé&fopeed based on the choice of (a) basis
functions: linear basis for both flow and adjoint solutiolisear-linear), quadratic basis for both
flow and adjoint solutions (quadratic-quadratic), lineasib for flow solution and quadratic basis
for adjoint solution (linear-quadratic), quadratic bdsisflow solution and linear basis for adjoint
solution (quadratic-linear); (b) weight functions: culkjaline or inverse-distance; and (c) type of
support: circular, rectangular or mixed.

The linear-quadratic and quadratic-linear MLS fits havenldegdpful to understand the quality
of linear/quadratic approximations for the flow and adj@olutions and to identify the source of
bad approximations in linear-linear and quadratic-quiaciféis. The cubic spline weights has been
found to produce smoother approximations compared to theese-distance weights, resulting in
slightly better corrections. Circular supports are fouffféative in inviscid regions (typically,
tetrahedrals and pyramids) and rectangular supports ang feffective in boundary layer regions
(typically, prisms and hexahedrals). Circular supportsufthbe the choice for tetrahedral meshes
and mixed (circular-rectangular) supports should be tloécehfor mixed-element meshes. Error
correction results presented for inviscid, laminar antbulent flows demonstrate the robustness
of the developed error estimation procedure in improvingctional accuracy. Also, this is the
first work to demonstrate the error correction procedure oedielement unstructured meshes
and both uniformly and non-uniformly refined fine-meshes.

In the final step, adjoint-based and feature-based adagitiaegies have been implemented
to improve the accuracy of the chosen output to a prescribledance. Grid adaptation results
presented for inviscid, laminar and turbulent flows demmstthe robustness of the adjoint-based
approach over the feature-based approach. In all the adjdaptation cases presented, the same
level of functional accuracy has been accomplished with ahmaimaller mesh size (typically a
factor of 3 to 5 reduction in mesh size) compared to the umifprand non-uniformly refined fine-
meshes. Also, significant savings in parallel CPU cost has laehieved by performing adjoint

adaptation. The feature approach has suffered by a podutiesoof the initial grid and failed to
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make significant improvements to functional accuracy. Hewehe resolution of the initial grid
did not pose a problem for the adjoint adaptation. A bettsolked initial grid is needed by the
feature-based approach.

The first recommendation for future work is to improve thegity of the adjoint solver for
turbulent flows. In the present study, the loosely coupleplémentation of the turbulence model
in the flow solver sometimes resulted in stalled convergemdamit-cycle oscillations. This has
been detrimental to the convergence of sensitivity amalysiver. Future work may be to develop
a tightly coupled turbulence model along the lines of [21$t@bilize the adjoint calculations by
using the standard solver as a preconditioner with outer GBI eneralized Minimal Residual)
or RPM (Recursive Projection Method) iterations along thed of [102, 103].

In the present study, the error correction procedure iseg@@l, and because of memory
constraints, complex geometries and large mesh sizes amtlcdbe handled. The second
recommendation for future work is to perform error estimatin parallel to handle large real
life applications. Parallel error estimation can be impdeted by uniformly refining the mesh
in each individual partition and performing error estirpatilocally in each partition with due
care taken at the block boundaries. The error estimatescimiadividual partition can then be
post-processed based on the needs of the adaptation module.

The final recommendation for future work is to develop a udiffeemework for direct
interface of the CAD models to CFD software. By facilitatidgect access to the CAD model,
mesh movement and mesh adaptation can be easily integratethe/CFD software, and this will
greatly improve design optimization capabilities. Furthere, at a larger level, multidisciplinary
analysis and design can be performed with the CAD model isgras a common geometry

description.
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The moving least squares (MLS) procedure was proposed byalséer and Salkauskas [78]
for performing smooth interpolation of scattered data. sa is to start with a weighted least
squares fit for an arbitrary data point in the domain, and thewe this point over the entire
parameter domain, where a weighted least squares fit is dethpimd evaluated for each point
individually. By choosing appropriate weight functionsistlocal weighted least squares fit results
in a global approximation with good smoothing propertiesdeailed study of the interpolating
property of the MLS methods can be found in [79-81]. More ndgeMLS approximations have
become popular irmeshlessor element free Galerkimethods. An excellent overview of the
MLS approximation to meshless methods can be found in [8B¢ WILS procedure used in the
present study is based on the meshless approximation eeglai [82]. In the following sections,
the MLS procedure is derived, the weight functions are ohiced and the approach to build a

compact support is explained.

A.1 MLS Formulation
Consider the following form of approximation, whexerepresent the co-ordinates of the

points andu, the data at these points. The MLS approximation can beenrds
u(x) = Y pi(x)ai(x) = p’(x)a(x) (A1)

Here,u"(x) is the MLS approximation at, p;(x) are the monomial basis functions, is the
number of terms in the polynomial basis, andx) are the coefficients. The common basis
functions in three dimensions are

linear basis

p’ (%) = (L,z,y,2) (A.2)

gquadratic basis

pT(X) = (171:7 y? Z? ‘/Ey? yz7 Z‘/E? x27y27z2) (A'S)
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A local approximation of:"(x) can be derived based on [78, 82]

u"(x,xr) = Y pixr)ai(x) = p’ (x1)a(x) (A.4)
i=1

and the least squares problem can be defined as

F = ZW(X—XI) (uh(x,XI)—U(X1)>2

I

2
= D wx—xp) <Z pi(x1) ai(x) — w) (A.5)

1

In the above equation, the polynomial bagfs is defined atx; and the unknown coefficients
are atx obtained from the weighted least squares fit for the local@pmation. w(x —x;) are the
weight functions with compact support given in section AN&iting Eqn.(A.5) as a least squares

minimization problem:

finda = {ag,a1,--- ,a,} such that F{*) = min F(a). The coefficienta(x) can be obtained
as
oF
8 0 (A.6)
> w(x —xq) [p(xr)p” (x1) a(x) — p(xr)u(xs)] =0 (A7)

1

Equation (A.7) can be written in matrix form as

P"WPa(x) - PTWu=0 (A.8)

where

ul = (ug, uy, - ,Up) (A.9)
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pi(x1) p2(x1) - pm(x1)
p_ pi(x2) p2(x2) - pm(x2) (A.10)
L pi(xn) p2(xn) - pm(xn) |
and
[ w(x — X1) 0 0 ]
— 0 w(x —X2) - 0 (A11)
i 0 0 o w(x —Xp) |

Equation (A.8) can be written as
PTWPa(x) =P Wu (A.12)

[M]a(x) = [B]u(xy) (A.13)

where[M] = PT W P is the moment matrix and3] = P” W. The coefficients can be obtained
by a simple inverse df\/] as

a(x) = [M]™' [Blu (A.14)

By defining ®*(x) = {¢%(x), #5(x),--- ,#%(x)} as the MLS shape functions of ordey the

MLS approximation in Eqn.(A.1) can be cast as
uh(x) = ¢ ur (A.15)
I=1
and the shape functions are given by

ok (x) = p’(x) [M] " [B] (A.16)
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It is more common to use a scaled and locally defined polyriobaisis instead of the globally

definedp” (x) given by Eqns.(A.2) and (A.3). By defining the scaled coaatiis as

(xr — ) (yr —y) (21 — 2)

T = y Y=, Z= (A.17)
P1 P2 P3
Egns.(A.2) and (A.3) can be written as
linear basis
p’ (%)= (1,2,7,2) (A.18)
quadratic basis
p’ (%) = (1,2,7, 2,37, §%, 22, 2%, %, 2°) (A.19)

Here,p1, p2 andps define the lengths of the support explained in section A.Z2actmunt for the

scaling, the Eqn.(A.16) for the MLS shape functions is novitem as

¢*(x) = p’ (0) [M]~" [B] (A.20)

The MLS problem defined by Eqn.(A.5) typically results in areaetermined system with
more equations than unknowns. Also, the moment mafvik in Eqn.(A.20) may be severely
ill-conditioned on highly stretched meshes. To avoid nuocarinstability and have a stable

algorithm, the least squares problem is solved using Samgidlue Decomposition (SVD) [104].

A.2 Weight Functions
The MLS weight functionsv(x — x;) are typically defined to have compact support; i. e.,
they are non-zero over arelatively small part of the entinmdin. The sub-domain that defines the
support is called the domain of influence. The most commosgdwsupports are circular (discs
or balls) and rectangular (rectangles or bricks). Mixedt@rgular-circular) supports may also be

used. Figs.(A.1), (A.2) and (A.3) show the circular, regialar and mixed supports for a node |
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in two dimensions. In Figs.(A.1), (A.2) and (A.3), only thedes inside the sub-domaiy will
have influence on node I.

The commonly used weight functions in meshless approxanat[82] are employed in this
study. For circular supports, the weight functions arerggmt. By definings = ||x — x;||; and

5 = s/p, wherep = sp,q. is the radius of the support, the weights functions [82] carléfined

as
cubic spline
2 45% +48° ;5< 4
w(E) =44 454452 - 45 ;l<s<t (A.21)
0 ;5 >1
inverse-distance
2re 9 < Smaz
w(s)=4°" (A.22)
0 ;S > Smax

The above cubic spline and inverse-distance weights haea benstructed to possegs’
continuity. For, inverse-distance weightéss a penalty factor that forces the MLS fit to interpolate
the data fors = 0. In the present study, a penalty factoreof= 1e~!2 is used. For rectangular

supports, tensor product weights (also referred as anjsotweights) can be defined as

[l — 2rll Iz = 2

ly — yrll
P1 Jul P2 Jul P3

w(x —x7) = w(

) (A.23)

wherep; = ||z — z1|lmaz, P2 = |[Y — Y1llmaz @Ndps = ||z — z1|lmax are the lengths of the

rectangular support.

A.3 Optimal Selection of Support Stencil
Optimal selection of nodes for the support stencil play aiafurole in producing a good
MLS approximation. The three main factors that influencegihality of MLS fit are: (1) support

stencil must contain nodes that produce the best possibl®xémation; (2) support stencil must
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Figure A.1: Circular support for the MLS weight functions.
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Figure A.2: Rectangular support for the MLS weight function



126

Figure A.3: Mixed (Circular-Rectangular) support for thé. $weight functions.

have enough nodes to avoid an ill-conditioned MLS systeith@ supports must have sufficient
overlap to ensure continuity of the approximation. In thesgnt study, data values are interpolated
from a coarse-mesh to fine-mesh and therefore, (3) is sdtisfast of the times. The best way to
satisfy (1) is to construct a stencil that includes nodefi@énitnmediate vicinity of the node (say
'1"), for which the approximation is sought. To accomplish, {2)s easy to expand the stencil with
a large number of nodes. However, an extremely overdetedripstem dilutes the approximation
and results in a poor fit, thereby, not satisfying (1). The besy to satisfy (1) and (2) is to select
nodes based on local configurations; test the stencil fopifiditioned components using Singular
Value Decomposition (SVD); and increase the stencil sizeédded, to accomplish the requested
order of approximation. However, this is extremely expemsind is not done in the present study.
In the present study, a global stencil size is chosen fodimglthe support. Typically, a stencil
size that is atleast twice the size of basis function proslacevell-conditioned MLS system. For
circular support, a stencil size of 9 is chosen for the liregis, and a stencil size of 21 is chosen
for the quadratic basis. For rectangular support, a steizelof 6 is chosen for the linear basis, and
a stencil size of 24 is chosen for the quadratic basis. THegeiksizes need not be optimum and
they are chosen solely for a robust way to build the stentik Stencil is built the following way

for the circular and rectangular supports using a octreg staticture developed by Patel [105].
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For circular supports:
1. build a octree for the coarse-mesh coordinates.
2. perform a octree search to find the closest nodé.to’

3. using this distance as starting radius, perform a radiich and add nodes till the required

stencil size is met.
For rectangular supports:
1. build a octree for the coarse-mesh element centroids.
2. perform a octree search to find the closest centroid.to’

3. with the closest element centroid as start, do a locahheidiood search to find the element
containing I'. If the containing element is not found by the local seathk,closest element

centroid is used as the containing element.
4. add all the nodes of containing element to the stencitchestops here for linear basis.

5. do a directional search using the distances in x, y and adddhe adjacent element nodes

till the required stencil size is met.

Since, the rectangular supports are in the boundary lagionea 2:1 y-directional bias is used
when building the support for velocities and turbulent ditgnFor density and pressure, a stencil

biased in x and z is built.
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Hierarchical element subdivision, widely know as h-refieatis one of the easiest ways to
perform grid adaptation. Mesh enrichment is accomplishedutdividing the elements to form
smaller children elements based on predetermined refinepaterns. Typically, subdivision
rules are formulated to ensure valid element types areemtahiring refinement. The isotropic
refinement of different elements is shown in Figs.(B.1),2{B(B.3) and (B.4). The isotropic
refinement of a tetrahedral, prism and hexahedral elementltsein 8 similar but smaller
tetrahedrals, prisms and hexahedrals respectively. Bijsc refinement of a pyramid element
results in 6 pyramids and 4 tetrahedral elements. In theeptetudy, uniformly refined meshes
are generated by the isotropic refinement of the elementsimish based on Figs.(B.1), (B.2),
(B.3) and (B.4).

For adaptive mesh subdivision, only a limited number of efient patterns are allowed.
Figs.(B.5) and (B.6) show the permitted subdivision typastfiangular and quadrilateral faces.
The permitted subdivision types for tetrahedral elemenghown in Fig.(B.7). A tetrahedra may
be divided into 2, 4, or 8 children. The subdivision of tetdia into 2 or 4 elements helps to
stop additional mesh refinement. Fig.(B.8) shows the pe&thgubdivision types for prisms. A
prism may be divided into 2 or 4 children. Isotropic refinetnaina prism is not performed and
instead, it is split into 4 new prisms. The refinement is aldwio propagate till the edge of the
boundary layer, but, streamwise propagation is stoppetidgiibdivision of neighboring prisms
into 2 new prisms. Though, the h-refinement module develapdte present study supports all
the refinement patterns/templates described in [87], ombdisision types used in the present

study are shown here.
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1:8

Figure B.1: Isotropic Refinement of Tetrahedra.

Figure B.3: Isotropic Refinement of Prism.
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Figure B.5: Permitted subdivision types for Triangles irsitnadaptation.

Figure B.6: Permitted subdivision types for Quadrilateialmesh adaptation.
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@

Figure B.7: Permitted subdivision types for Tetrahedrahetnts in mesh adaptation.
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Figure B.8: Permitted subdivision types for Prism elem@antaesh adaptation.
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