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This study seeks to reduce the degree of uncertainty that often arises in computational fluid

dynamics simulations about the computed accuracy of functional outputs. An error estimation

methodology based on discrete adjoint sensitivity analysis is developed to provide a quantitative

measure of the error in computed outputs. The developed procedure relates the local residual errors

to the global error in output function via adjoint variablesas weight functions. The three major

steps in the error estimation methodology are: (1) development of adjoint sensitivity analysis

capabilities; (2) development of an efficient error estimation procedure; (3) implementation of an

output-based grid adaptive scheme. Each of these steps are investigated.

For the first step, parallel discrete adjoint capabilities are developed for the variable Mach

version of theU2NCLE flow solver. To compare and validate the implementation of adjoint

solver, this study also develops direct sensitivity capabilities. A modification is proposed

to the commonly used unstructured flux-limiters, specifically, those of Barth-Jespersen and

Venkatakrishnan, to make them piecewise continuous and suitable for sensitivity analysis. A

distributed-memory message-passing model is employed forthe parallelization of sensitivity



analysis solver and the consistency of linearization is demonstrated in sequential and parallel

environments.

In the second step, to compute the error estimates, the flow and adjoint solutions are

prolongated from a coarse-mesh to a fine-mesh using the meshless Moving Least Squares

(MLS) approximation. These error estimates are used as a correction to obtain highly-accurate

functional outputs and as adaptive indicators in an iterative grid adaptive scheme to enhance

the accuracy of the chosen output to a prescribed tolerance.For the third step, an output-based

adaptive strategy that takes into account the error in both the primal (flow) and dual (adjoint)

solutions is implemented. A second adaptive strategy basedon physics-based feature detection

is implemented to compare and demonstrate the robustness and effectiveness of the output-based

adaptive approach. As part of the study, a general-element unstructured mesh adaptor employing

h-refinement is developed using Python and C++. Error estimation and grid adaptation results are

presented for inviscid, laminar and turbulent flows.
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CHAPTER I

INTRODUCTION

1.1 Motivation

In engineering analysis and design, computational fluid dynamics (CFD) is typically used

to compute specific quantities that assess the performance of the apparatus under investigation.

For example, in a system such as an aircraft wing, these quantities are usually the integral

output functions such as the lift and drag coefficients. An accurate estimate of these functional

outputs is essential for the design of wings. However, because of the approximations made to the

governing partial differential equations, and the compromise between the choice of discretization

and available computational resources, there is often a degree of uncertainty in CFD simulations

about the accuracy of these computed estimates. This reality, therefore, forces the design engineer

to include a large factor of safety in his design to accommodate for the lack of a reliable error

estimator to guide his design process.

Error estimates of the computed outputs are an invaluable commodity to the designer and

may be used to make informed decisions about the factor of safety bounds for improving existing

design. Also, these error estimates are of immense help to the CFD engineer in providing a

quantitative assessment of the functional error (which provide a global measure of the local

residual/discretization errors) and may be used to developan output-based adaptive approach. An

output-based adaptive approach may be able to identify regions of the flow that have significant

influence on the output functional and will also provide a better understanding and insight into the

relevancy of resolving physical features of the flow such as shock waves, stagnation points and

separation lines to improve functional accuracy. Hence, the motivation for an output-based error

estimation methodology becomes obvious.

1
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1.2 Survey of Recent Advancements

A brief survey of the research areas that are pertinent to thecurrent study are presented here.

Though, this survey is not exhaustive, every attempt has been made to present the most recent

advancements in the respective topic areas. The interestedreader may use the survey presented in

the subsequent sections as a starting point for further study. As a visualization tool, one possible

interpretation of the current study is presented in Fig. 1.1. This outline will serve as a road map

for the discussions to follow.

1.2.1 Fluid Analysis

Under low Mach number conditions, compressible flow solversface numerical difficulties

because of the large disparity between the convective and acoustic parts of the eigenvalues.

If the flow is iso-energetic, i.e., total enthalpy is constant, then steady solutions approach the

incompressible constant-density limit as the Mach number approaches zero. Incompressible or

artificial compressibility formulations can be used to simulate this class of problems. However,

low-speed flows with heat addition have variable density andincompressible formulations are

not suitable. Several preconditioning techniques have been proposed to improve the stability and

convergence of compressible algorithms in low Mach number regimes. A detailed review of these

techniques is reported by Turkel [1, 2]. Typically, a preconditioning matrix is introduced to the

time derivatives in the governing equations to remove the disparity of wave speeds. The details

pertinent to the current work can be found in [3, 4].

1.2.2 Sensitivity Analysis

Gradient-based design methodologies require the gradients of the objective/cost functions

(e.g., lift, drag, etc.) and constraints (e.g., flow equations, etc.) with respect to design variables

(e.g., Reynolds number, angle of attack, a grid coordinate,etc.). These sensitivity derivatives

can be evaluated using finite differences. However, this is not only computationally expensive,

accuracy is highly dependent on step size selection, and thus a compromise between reducing

the truncation and subtractive cancelation errors must be made. Another approach that has found
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success is the complex Taylor’s series expansion (CTSE) method [5–7]. The CTSE approach

follows from a Taylor’s series expansion of a function with respect to a complex perturbation, and

is not subject to cancelation errors, and thus step size selection becomes automatic. However, this

approach is CPU intensive because of the complex arithmeticinvolved in the function evaluations.

Martins et al. [8] have described an automated way to implement CTSE in existing codes.

The common approach to obtain sensitivity derivatives is the analytic evaluation of these

derivatives, referred to assensitivity analysis. Sensitivity analysis can be performed either by

directly differentiating the governing partial differential equations (PDEs), or by introducing

Lagrange multipliers that can be defined by a set of linear equationsadjoint to the governing

PDEs. Both these methods can be categorized further intocontinuousor discreteformulations

based on the derivation procedure. In the continuous approach, the PDEs are differentiated prior

to discretization and the resulting directly differentiated or adjoint equations are discretized and

solved. The discrete approach differentiates the PDE afterdiscretization. An advantage of the

discrete approach is that the boundary conditions are already incorporated in the formulation,

whereas, for the continuous approach, they need to be separately derived and discretized. An

excellent overview of these approaches is reported by Newman et al. [9]. Detailed discussions

on the continuous approach to sensitivity analysis can be found in the works of Jameson [10],

Soemarwoto [11], Anderson et al. [12], Nadarajah et. al [13,14] and Giles [15].

An excellent introduction to discrete direct and adjoint formulations is given by Hou et

al. [16]. More recently, Newman [17] has applied the discrete direct formulation to perform

multidisciplinary design optimization (MDO), and Burg andNewman [18] have compared the

direct formulation with an efficient CTSE method. Nielsen [19] and Nielsen et al. [20–23]

have done extensive work on discrete adjoint methods. Nielsen [19] and Nadarajah [24] have

applied the discrete adjoint formulation to perform aerodynamic design optimization. Recently,

Giles et al. [25, 26] have proposed an exact dual approach forsolving the adjoint system to

achieve exact numerical equivalence between the direct andadjoint discretizations. Nielsen et al.

[21] have extended the exact dual scheme for implicit solution algorithms and showed identical
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asymptotic convergence rates for the primal and dual systems. Multigrid solution for the discrete

adjoint problem on unstructured meshes has been reported byMavriplis [27]. A modification

to the current class of unstructured flux limiters has been proposed by Balasubramanian and

Newman [28, 29] to make them piecewise continuous and suitable for discrete sensitivity analysis.

Nielsen et al. [20] and Balasubramanian et al. [28] have described parallel implementation of the

discrete adjoint problem. Recently, Burdyshaw et al. [30] have developed an efficient CTSE-based

method to compute adjoint sensitivities in a manner that minimizes maintenance required to reflect

subsequent updates of the primal solver.

1.2.3 Adjoint Error Estimates

In engineering applications of CFD, the quantities of interest are often the integral output

functions such as force and moment coefficients. An error bound on the output function of interest,

or an error correction that delivers a more accurate functional estimate than the overall base

solution is often desired. The adjoint (dual) solution describes the sensitivity of the output function

to the flow (primal) residuals. By invoking the dual problem,local residual errors resulting from

approximation of the solution to the PDEs can be related to the global error in output function

via adjoint variables as weight functions. These error estimates can be used as a correction to

produce improved functional estimates. The idea of error analysis for output functions using a

suitably defined adjoint problem originated in the work of Aubin and Nitsche [31]. Babus̆ka and

collaborators [32, 33] were among the first to apply the dual problem in structural analysis for error

estimation of point quantities such as displacements and stresses. Becker and Rannacher [34–36]

have developeda posteriori error estimates for the Navier-Stokes equations based on the dual

problem within a finite element framework. More recent discussions on adjoint error analysis for

CFD using finite element methods can be found in the research of Süli and collaborators [37, 38],

Peraire and collaborators [39, 40] and Giles and Pierce [41–45].

Giles and Pierce [41–44] have developed an adjoint based error correction procedure that

exhibits super-convergence properties for functional outputs from finite difference, finite element
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or finite volume discretizations. Venditti and Darmofal [46–48] have used an algebraic version

of this procedure to estimate the error in the coarse-mesh functional with respect to its value on a

globally refined fine-mesh. The auxiliary computations needed by this procedure are: prolongation

of coarse-grid flow and adjoint solutions to the fine-mesh; and functional and residual evaluations

on the fine-mesh. Park [49, 50] has applied this procedure forestimating functional errors of three

dimensional compressible RANS simulations. Balasubramanian [51] has implemented this error

correction procedure for two dimensional incompressible flows.

The error estimation procedure require a smooth reconstruction of the primal and dual

solutions to compute the error estimates. Giles and Pierce [52–54] have employed a cubic spline

interpolation in their research to reconstruct the primal and dual solutions. Venditti and Darmofal

[46, 48] have applied a piecewise quadratic prolongation operator, defined by local least squares

minimization in theH1 Sobolev norm. Park [49, 50] has used least squares quadraticinterpolation

and the prolongation operator of Venditti and Darmofal [46,48] in his work. Balasubramanian [51]

has implemented a finite element bi-quadratic interpolation operator and a reconstruction operator

based on least squares to perform the prolongation.

1.2.4 Grid Adaptation

The numerical solution of PDEs governing the flow requires discretization of the continuous

flow domain into a finite number of elements or volumes. Two approaches,structured and

unstructured, have evolved over the years to discretize the domain [55, 56]. The structured grids

have implied connectivity and are computationally efficient. To handle complex configurations

with high curvatures, multi-block structured grids [57] are employed, which are locally structured

but, globally unstructured. Unstructured grids provide analternative to structured grid domain-

decomposition methods because of its inherent arbitrariness, and its ability to resolve highly

complex geometries efficiently. Another major advantage ofunstructured grids is grid adaptation

[58–61], as the mesh can be locally enriched where needed, without affecting other regions of the

mesh.
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Grid adaptive techniques typically employ local error indicators to identify regions that affect

the solution accuracy and locally enrich those regions. A common approach is to use error

indicators based on the flow gradients or flow discontinuities. Flow regions that have large solution

gradients are resolved with more points and regions of minimal significance are coarsened. This

will typically lead to refinement of regions that are of physical significance such as boundary

layer, shocks, separation lines, stagnation points, etc. [61–68]. This physics-based feature

approach sometimes leads to erroneous requests to the grid generator and results in continuous

local refinement of certain regions, whereas, globally the adapted grid may not produce the desired

results. Moreover, these adaptive indicators may not be rigorous from an engineering context,

where the main concern will be the accuracy of the output functions.

Using the adjoint error correction procedure [41–44, 46–48], a grid adaptive strategy may

be developed to enhance the accuracy of the chosen output to aprescribed tolerance. The

adaptive strategy strives to improve the computable error estimates by forming adaptation

parameters/indicators based on the level of error in computable error estimates. Based on

this strategy, a grid adaptive scheme can be implemented that takes into account the error in

the primal solution, or both the primal and dual solutions. Becker and Rannacher [34–36]

have developed this output-based adaptive procedure by exploiting finite element orthogonality

properties and duality concepts. Their adaptation parameter included only the error in primal

solution. By invoking the dual (adjoint) problem, Süli [37] and Süli and Houston [38] have

performed global error control for adaptive finite element approximations of hyperbolic problems.

They found computable error bounds (based on error in primalsolution) of linear functional to

drive the adaptive algorithm. Venditti and Darmofal [48, 69–71] have enhanced this output-based

adaptive procedure by including the error in both primal anddual solutions to form the adaptation

parameters. They have compared this procedure with a curvature-based adaptive approach and

demonstrated its robustness on finite element and finite volume discretizations. Park [49, 50]

has employed this output-based adaptive procedure for three dimensional RANS simulations.

Peraire and collaborators [39, 40] have incorporated an adaptive procedure based on an implicita
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posterioriprocedure for computing upper and lower bounds on functional outputs of finite element

solutions. Müller and Giles [72] have employed an alternate output-based strategy based on the

computable error estimates. In principle, this leads to an adaptive algorithm for minimizing the

magnitude of the correction and hence, not a very robust approach. Balasubramanian [51] has

compared the adaptive strategies by Venditti and Darmofal [48, 69–71] and Müller and Giles [72].

1.3 Objectives and Approach

The primary goal of this study is to develop an effective and efficient error estimation

methodology to provide a quantitative measure of the error in computed outputs and improve the

computed accuracy of functional outputs. The error estimation methodology depicted in Fig. 1.1,

may be decomposed into three major steps: (1) develop adjoint sensitivity analysis capabilities;

(2) develop an error estimation procedure; (3) implement anoutput-based grid adaptive scheme.

In the current work, all three steps have been accomplished as explained below.

The first step is to develop parallel discreteadjoint sensitivity analysis capabilities for the

arbitrary Mach version ofU2NCLE flow solver [73, 74]. This study also developsdirect

sensitivity capabilities in addition, to compare and validate the implementation of adjoint solver.

The accuracy of the derivatives from discrete sensitivity analysis necessitates a consistent and

complete linearization of the flow solver. A modification is proposed to make the commonly used

unstructured flux limiters (Barth-Jespersen [75] and Venkatakrishnan [76]), piecewise continuous

and numerically differentiable, without compromising themonotonicity conditions. The modified

limiters are essentially aweak formof the original limiters and avoid the numerical instability

introduced by the linearization of limiters in their original form. An improved version of

Symmetric Gauss-Seidel (SGS) scheme suggested by Whitfield[77] is implemented to solve the

linear system of equations from direct formulation. An exact dual algorithm of the improved

SGS scheme based on [21, 25, 26] is presented for the adjoint formulation. The parallelization

of sensitivity analysis solver is accomplished using a distributed-memory message passing
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model. Consistency of linearization is demonstrated in sequential and parallel environments, and

validation cases are presented for inviscid, laminar and turbulent flows.

Previous work on three-dimensional adjoint error estimation [49, 50] defined the fine-mesh

as embedded within the coarse-mesh, formed by h-refinement of each coarse-mesh element in a

fixed ratio, say 1:8. Moreover, all the previous work [49, 50]have been performed on unstructured

tetrahedral meshes. The objective of the present study is toextend the adjoint error estimation

procedure for a generalized fine-mesh, not necessarily a h-refined embedded mesh. Also, the

present study strives to support a mixed-element unstructured mesh, comprising of hexahedrals,

prisms, pyramids and tetrahedrals. To accomplish this, themeshless approximation, Moving Least

Squares (MLS) [78–83] is chosen to reconstruct the coarse-mesh flow and adjoint solutions to

fine-mesh. Linear and quadratic basis functions are considered with cubic spline [82] and inverse-

distance weight functions. Weight functions with compact,circular or rectangular supports are

defined by isotropic (radial) or anisotropic (tensor product/directional) weights. Mixed supports

are also defined; i.e., circular support with isotropic weights for tetrahedrals and pyramids (inviscid

regions) and rectangular support with anisotropic weightsfor prisms and hexahedrals (boundary

layer regions).

The final step is to implement an adjoint-based grid adaptivestrategy [48, 69–71] to improve

the accuracy of the chosen output to a prescribed tolerance.The output-based approach strives

to improve the computable error estimates by forming adaptation parameters based on the level

of error in both the primal and dual solutions. A feature-based adaptive approach [64–67] is also

implemented to compare and demonstrate the robustness and effectiveness of the output-based

approach. The feature-based approach identifies significant features in the flow field by using

error indicators that represent expansions and compressions in the flow direction and gradients

normal to the flow direction. To perform grid adaptation, a general element unstructured mesh

adaptor is developed using Objective Oriented (OO) techniques. The adaptive mesh library is

based on [84–86] and performs isotropic h-refinement of the elements. A refinement template

[87] controls the pattern of subdivision of the mesh elements.
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In the current study, the three-dimensional compressible Reynolds-averaged Navier-Stokes

equations are solved as described in [4], by introducing preconditioning that is uniformly

applicable to Mach numbers ranging from essentially incompressible to supersonic. The one-

equation turbulence model of Spalart and Allmaras [88] is used for turbulent flows. The motivation

to implement the procedure within an arbitrary Mach framework stems from the desire to

handle a wide-range of applications. Applications of this study have been reported in references

[28, 29, 89, 90].
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Figure 1.1: Error correction and grid adaptation for functional outputs using discrete adjoint
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CHAPTER II

FLUID ANALYSIS

This chapter is intended to give a brief introduction to the baseline flow solver used to develop

the present error estimation methodology. The governing equations are introduced, the finite-

volume formulation is discussed and the solution algorithmis explained.

2.1 Governing Equations

The Reynolds-averaged Navier-Stokes equations for three-dimensional, variable Mach

number flows are used in the present study. The Navier-Stokesequations represent the

conservation laws of mass, momentum, and energy. These equations are presented here in a non-

rotating Cartesian coordinate system for a finite-volume framework. In the absence of body forces,

the non-dimensionalized equations in integral form for a bounded domainΩ, with boundary∂Ω,

can be expressed in primitive variable form [74] as

MΓ−1
q

∂

∂t

∫

Ω
q dV +

∮

∂Ω
Fi · n̂ dS −

∮

∂Ω
Fv · n̂ dS = 0 (2.1)

where n̂ = {nx, ny, nz}T is the outward pointing unit normal vector to the boundary

∂Ω. The conservative flux formulation is written in terms of primitive variables to facilitate

preconditioning. The preconditioning matrix

Γ−1
q =



























1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 β(Mr)



























= diag [1, 1, 1, 1, β(Mr)] (2.2)

11



12

is a constant diagonal matrix that only depends on the reference Mach number. In Eqn.(2.1),M =
[

∂Q
∂q

]

is a transformation matrix from conservative variablesQ = {ρ, ρu, ρv, ρw, ρet}T to

primitive variablesq = {ρ, u, v, w, p}T . Here,ρ is the density;u, v, andw are the components

of velocity in thex, y, andz directions respectively;p is the pressure; andet is the specific total

energy.Fi is the inviscid flux vector given by

Fi · n̂ =



























ρ Θ

ρ u Θ + p nx

ρ v Θ + p ny

ρ w Θ + p nz

ρ ht Θ



























(2.3)

whereht = et + (γ − 1) p M2
r is the specific total enthalpy.Θ is the normal velocity given by

Θ = V · n̂ = u nx + v ny + w nz (2.4)

The viscous flux vectorFv is given by

Fv · n̂ =



























0

σx

σy

σz

u σx + v σy + w σz + Qn



























(2.5)

whereσx, σy, andσz are the viscous shear stresses given as

σx = τxx nx + τxy ny + τxz nz (2.6)

σy = τyx nx + τyy ny + τyz nz (2.7)
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σz = τzx nx + τzy ny + τzz nz (2.8)

and

τxx =
(µ + µt)

Re

2

3

(

2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)

(2.9)

τyy =
(µ + µt)

Re

2

3

(

2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)

(2.10)

τzz =
(µ + µt)

Re

2

3

(

2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)

(2.11)

τxy = τyx =
(µ + µt)

Re

(

∂u

∂y
+

∂v

∂x

)

(2.12)

τxz = τzx =
(µ + µt)

Re

(

∂u

∂z
+

∂w

∂x

)

(2.13)

τyz = τzy =
(µ + µt)

Re

(

∂v

∂z
+

∂w

∂y

)

(2.14)

whereRe is the Reynolds number based on the reference values.µt is the turbulent or eddy

viscosity andµ is the molecular viscosity given by Sutherland’s law [91] as

µ =
(1 + C∗) T 3/2

T + C∗
(2.15)

where T is the temperature,C∗ = 198.6/Tr is Sutherland’s constant andTr = 460.0oR is the

reference temperature. The heat flux terms are

Qn = qx nx + qy ny + qz nz (2.16)
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and

qx = − 1

(γ − 1) Re

(

µ

Pr
+

µt

Prt

)

∂T

∂x
(2.17)

qy = − 1

(γ − 1) Re

(

µ

Pr
+

µt

Prt

)

∂T

∂y
(2.18)

qz = − 1

(γ − 1) Re

(

µ

Pr
+

µt

Prt

)

∂T

∂z
(2.19)

wherePr = 0.72 andPrt = 0.9 are the Prandtl numbers for the laminar and turbulent parts

respectively. The transport equations are closed with the equation of state for a perfect gas (non-

dimensional form)

p =
ρ et

M2
r

− (γ − 1)

2
ρ |V|2 (2.20)

Here, the governing equations have been reduced to the non-dimensional form by the following

reference values: density,ρr; velocity, Ur; temperature,Tr; length,Lr; pressure,ρrU
2
r ; speed

of sound,ar; time, Lr/Ur; laminar and turbulent viscosity,µr; energy and enthalpy,CpTr. The

reference Mach number is given byMr = Ur/ar andγ = Cp/Cv is the ratio of specific heats at

constant pressure (Cp) and constant volume (Cv).

2.1.1 Preconditioning Parameter

The purpose of preconditioning is to reduce the large disparity between the acoustic and

convective parts of the wave speed at low Mach numbers. In Eqn.(2.2), the choiceβ = 1 recovers

the unpreconditioned formulation. In the present study,β is chosen with values representative of

global flow properties as given in [4]

β (Mr) =















Mr
2 ; Mr < 1

1 ; Mr ≥ 1

(2.21)

whereMr (Ur, Tr) = Ur/
√

γRTr is the reference Mach number.
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2.1.2 Turbulence Model

For the present study, the one-equation turbulence model ofSpalart and Allmaras [88] is used.

This model formulates a transport equation for the turbulent Reynolds number (̃ν), which is related

to the kinematic turbulent viscosity (νt = µt/ρ) by

νt = ν̃ fv1 (2.22)

wherefv1 = fv1(ν̃, ν) is a function of turbulent Reynolds number and kinematic molecular

viscosity ν(= µ/ρ). The turbulence equation is non-dimensionalized by the reference values

mentioned above and the equation forν̃ is given by

∂ν̃

∂t
+ V · ∇ν̃ = cb1 [fr1 − ft2] S̃ν̃ − 1

Re

[

cw1fw − cb1

κ2
ft2

]

(

ν̃

d

)2

+

1

σRe
{ ∇ · [(ν + (1 + cb2)ν̃)∇ν̃] − cb2ν̃∇ · [∇ν̃] } (2.23)

whered is the distance to the closest wall andS is the magnitude of vorticity. The function

definitions [88, 92] in non-dimensionalized form are

fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
(2.24)

S̃ = S +
ν̃

Re κ2 d2
fv2, fv2 = 1 − χ

1 + χ fv1
(2.25)

fw = g

[

1 + c6
w3

g6 + c6
w3

]1/6

, g = r + cw2

(

r6 − r
)

, r =
ν̃

S̃κ2d2Re
(2.26)

ft2 = ct3exp
(

−ct4χ
2
)

(2.27)
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fr1 =















1 : default [88]

(1 + cr1)
2r∗

1+r∗

[

1 − cr3 tan−1 (cr2r̃)
]

− cr1 : modified [92]

(2.28)

r̃ =
(1 − r∗)

2
(2.29)

r∗ =

√

1

2

Sij

|S| where Sij =

[

∂ui

∂xj
+

∂uj

∂xi

] [

∂ui

∂xj
+

∂uj

∂xi

]

(2.30)

The constant definitions are as follows:

κ = 0.41, σ = 2/3, cv1 = 7.1,

cb1 = 0.1355, cb2 = 0.622,

cw1 =
cb1

κ2
+

1 + cb2

κ
, cw2 = 0.3, cw3 = 2.0,

ct1 = 1.0, ct2 = 2.0, ct3 = 1.1, ct4 = 2.0

cr1 = 1, cr2 = 12, cr3 = 1

2.2 Finite Volume Formulation

Discretization of the governing equations is accomplishedusing a finite volume technique.

The flow domain is divided into a finite number of elements and adual mesh is constructed by

connecting the centroid of elements to the midpoint of edges, to form non-overlapping control

volumes around each vertex in the mesh. Equation (2.1) is then integrated over each of these

control volumes and solved for the conserved state variables.
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The semi-discrete approximation to the spatial terms associated with the control volume

surrounding a vertex can be expressed as

V
∂Q

∂t
= −R (2.31)

whereV is the volume of the control volume,Q the cell averaged state variables, andR the

residual vector with contributions from the spatial approximation to the inviscid and viscous flux

terms.

2.3 Solution Methodology

The flow solver used in the present study is the arbitrary Machnumber version of the three-

dimensional RANS solverU2NCLE, described at length in [73, 74]. The solver employs a

node-based, finite volume implicit scheme built on an unstructured grid framework capable of

handling mixed elements. The solver uses upwind differencing to discretize the convective terms

and the modified Roe’s flux-difference scheme described in [4, 93] to evaluate the fluxes. The

viscous flux terms are evaluated using either the directional-derivative, or the normal-derivative

edge-based schemes presented in [73, 74]. For turbulent flows, the one-equation model of Spalart

and Allmaras [88] is solved separately in a loosely coupled manner; i.e., the mean flow equations

are solved first, followed by the equation for the turbulencemodel. Temporal discretization is

accomplished using a backward-Euler time integration scheme and Newton’s method is used to

advance the solution in time. The discrete approximation toEqn.(2.31) can be written as

[

V

4t
Ī +

∂R̃

∂Q

]

4nQ = −R (2.32)

where4nQ = Qn+1 −Qn. Qn andQn+1 are the solution vectors at time levelsn andn + 1, Ī is

the identity matrix, and4t is the time step.R is the residual vector accounting for the spatial and

temporal (in case of unsteady flows) discretizations and∂R̃
∂Q is the residual Jacobian matrix. The

flow equations represent a large linear system of equations of the formAx = b. They are solved
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using an improved point-iterative Symmetric Gauss-Seidel(SGS) solver as explained below. The

original SGS scheme can be written as

forward sweep

[D]xk
i + [U ]xk−1

i+1 − [L]xk
i−1 = bi (2.33)

backward sweep

[D]xk+1
i + [U ]xk+1

i+1 − [L]xk
i−1 = bi (2.34)

where [D], [L], and [U ] represent the diagonal, strictly lower-triangular and strictly upper-

triangular blocks of[A] and k represent the sub-iteration number. In forward sweep, the most

recently updated values ofx at sub-iterationk is used for nodes numbered less than the current

node(i − 1 < i) and the solution at the previous sub-iterationk-1 is used for nodes numbered

greater than the current node (i + 1 > i). The procedure is reversed for the backward sweep. By

rearranging Eqns.(2.33) and (2.34) as

[D]xk
i + [U ]xk−1

i+1 = bi + [L]xk
i−1 (2.35)

[D]xk+1
i + [U ]xk+1

i+1 = bi + [L]xk
i−1 (2.36)

and recasting them, an improved version of SGS suggested by Whitfield [77] can be obtained

forward sweep

[D]xk
i + [U ]xk−1

i+1 − [L]xk
i−1 = bi (2.37)

backward sweep

[D]4xk
i + [U ](xk+1

i+1 − xk−1
i+1 ) = 0 (2.38)

where4xk
i = xk+1

i − xk
i . An extra vector memory is needed for storing the solution vector at

iteration levelk-1. However, one matrix-vector multiplication is avoided compared to the original
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SGS backward sweep. A considerable reduction in computational cost is achieved without loss of

convergence rate.



CHAPTER III

DISCRETE SENSITIVITY ANALYSIS

This chapter explains the first step in developing the present error estimation methodology:

development of adjoint sensitivity analysis capabilities. The discrete sensitivity equations are

introduced and the solution methodology is discussed. The linearization issues with the current

family of unstructured flux limiters are identified and a modification is proposed to make the

limiters suitable for sensitivity analysis. Parallel implementation is elaborated and speedup

results are provided. Finally, validation cases are presented to demonstrate the consistency of

linearization.

3.1 Discrete Sensitivity Analysis Formulation

Consider the following form of steady state non-linear governing equations, whereQ represent

the steady state solution vector,X, the grid co-ordinates andαk, the set of design variables. The

discrete residual vectorR at steady state is given by

R(Q,X,αk) ≡ RI(Q,X,αk) + B(Q,X,αk) = 0 (3.1)

Here,RI is the discretized residual at the interior andB, the residual at the boundaries (accounting

for the boundary conditions). LetF (Q,X,αk) represent the cost/output function of interest and

∇F , the gradient of the output function with respect to design variables.

20
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3.1.1 Direct Formulation

By directly differentiating Eqn.(3.1) with respect to the vector of design variables, the discrete

direct equations are obtained as

dR

dαk
=

∂R

∂Q

∂Q

∂αk
+

∂R

∂X

∂X

∂αk
+

∂R

∂αk
= 0 (3.2)

Rearranging the above equation in matrix form yields

[

∂R

∂Q

]{

∂Q

∂αk

}

= −
{

∂R

∂X

∂X

∂αk
+

∂R

∂αk

}

(3.3)

Here,
[

∂R
∂Q

]

is the residual jacobian matrix;
{

∂Q
∂αk

}

is the vector of direct sensitivity variables;
{

∂X
∂αk

}

and
{

∂R
∂αk

}

are the linear sensitivities of the mesh and residue with respect to the design

variableαk. The gradient of the output function using the direct formulation is given by

∇F =

{

∂F

∂Q

}T { ∂Q

∂αk

}

+

{

∂F

∂X

∂X

∂αk
+

∂F

∂αk

}

(3.4)

3.1.2 Adjoint Formulation

For the discrete adjoint formulation, the output function of interest may be augmented with

the non-linear discrete flow equations via adjoint variables γ as

F (Q,X,αk) = F (Q,X,αk) + {γ}T R(Q,X,αk) (3.5)

Equation (3.5) results from the fact that for a steady solution the residual vector is zero. Hence,

the inner product of any vector with the residual vector mustalso be zero. Linearizing Eqn.(3.5)

yields

∇F = {γ}T

{

∂R

∂X

∂X

∂αk
+

∂R

∂αk

}

+

{

∂F

∂X

∂X

∂αk
+

∂F

∂αk

}

+

(

{

∂F

∂Q

}T

+ {γ}T

[

∂R

∂Q

]

)

{

dQ

dαk

}

(3.6)



22

Since{γ} is yet to be defined, it may be chosen to force the coefficients of
{

∂Q
∂αk

}

to be zero. The

equation for adjoint variables is then

{γ}T

[

∂R

∂Q

]

+

{

∂F

∂Q

}T

= 0 (3.7)

By taking the transpose of the above equation, the adjoint variable co-state vectors are given by

[

∂R

∂Q

]T

{γ} = −
{

∂F

∂Q

}

(3.8)

and the gradient of the output function can be obtained as

∇F = {γ}T

{

∂R

∂X

∂X

∂αk
+

∂R

∂αk

}

+

{

∂F

∂X

∂X

∂αk
+

∂F

∂αk

}

(3.9)

3.1.3 Direct Vs Adjoint Formulation

The selection of an appropriate sensitivity analysis formulation (direct or adjoint) depends on

the particular design problem being studied. In the direct method, a linear system must be solved

for derivatives with respect to each design variable. For the adjoint formulation, the number of

linear systems that must be solved scales with the number of augmented objective/cost functions.

Thus, if the number of design variables are more compared to the number of objective functions,

the adjoint formulation is preferred and vice versa.

3.1.4 Objective Functions

The objective functions or cost functions (from an optimization point of view) are mostly the

integral outputs of CFD calculations that are relevant to engineering applications. For example,

these outputs can be the force and moment coefficients on an aircraft. The objective functions that

are considered for the present study are the liftCL and dragCD coefficients. The expressions for

CL andCD are

CL =
Lift

q∞S
=

fy cosᾱ − fx sinᾱ

q∞S
(3.10)
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CD =
Lift

q∞S
=

fx cosᾱ + fy sinᾱ

q∞S
(3.11)

whereᾱ is the freestream angle of attack;q∞ = 1
2ρrUr

2 is the dynamic pressure; andS is the

reference area and for aircraft wings,S can be the wing area.fx andfy are the forces in the x and

y directions given by

fx =

∮

∂Ω
(p + sf)~nx dA (3.12)

fy =

∮

∂Ω
(p + sf)~ny dA (3.13)

wherep is the pressure;sf is viscous stress due to skin friction;~nx, ~ny are the boundary normals

in the x and y directions; anddA is the surface area of the boundary.

3.2 Solution Methodology

The discrete sensitivity equations for the fluid equations and turbulence model are solved in

a loosely coupled manner much like the flow solver; i.e., the sensitivity equations for the mean

flow are solved first, followed by the loosely coupled equation for the turbulence model. The

loosely coupled implementation of the turbulence model in the flow solver sometimes result in

stalled convergence or limit-cycle oscillations that is detrimental to the convergence of sensitivity

analysis solver. This behavior has also been reported by Nielsen et al. [21]. This issue needs

further investigation and should be addressed in future research.

Although the sensitivity Eqns.(3.3) and (3.8) for the direct and adjoint formulations can be

solved as such, it is more robust to solve them by adding a time-derivative term and recast in an

incremental iterative form [94–96]. The recast equations can be written as

[

V

4t
Ī +

∂R̃

∂Q

]

4n

(

∂Q

∂αk

)

= −
{

∂R

∂X

∂X

∂αk
+

∂R

∂αk

}

−
[

∂R

∂Q

]

exact

(

∂Q

∂αk

)n

(3.14)

[

V

4t
Ī +

∂R̃

∂Q

]T

4nγ = −∂F

∂Q
−
[

∂R

∂Q

]T

exact

γn (3.15)
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where4n
(

∂Q
∂αk

)

=
(

∂Q
∂αk

)n+1
−
(

∂Q
∂αk

)n
and4nγ = γn+1 − γn. The time term makes the

equations diagonally dominant and allows the solution to beobtained in a time-marching manner

much like the flow solver. It has been found that an approximate or first-order Jacobian works well

for the left-hand side. However, no approximations may be made to the Jacobian on the right-hand

side. Note that, the block-Jacobian matrix on the right-hand side is exact for turbulent flows, even

though the mean flow and turbulent sensitivity equations aresolved in a loosely coupled manner;

i.e. each block is a5× 6 matrix for the mean flow, and a1× 6 matrix for the turbulence model to

account for the five flow variables and one turbulent quantity.

The direct and adjoint sensitivity Eqns.(3.14) and (3.15) represent a large linear system of

equations that can be cast asAx = b. The direct equations are solved using the improved

Symmetric Gauss-Seidel (SGS) solver explained in section 2.3.

Recently, Giles et al. [25, 26] proposed an exact dual approach for solving the adjoint system to

achieve exact numerical equivalence between the direct andadjoint discretizations. Nielsen et al.

[21] extended the exact dual scheme for implicit solution algorithms and showed asymptotically

equivalent convergence rates for the primal and dual systems. An exact dual algorithm of the

improved SGS scheme based on [21, 25, 26] is presented here. By writing

[A]T = ( [D] + [U ] − [L] )T = [D]T + [U ]T − [L]T ≡ ¯[D] + ¯[L] − ¯[U ] (3.16)

where ¯[L] = [U ]T and ¯[U ] = [L]T are the strictly lower-triangular and strictly upper-triangular

parts of the matrixAT , an exact dual form of Eqns.(2.37) and (2.38) for the adjointsystem can be

obtained

backward sweep

¯[D]xk
i − ¯[U ]xk

i+1 + ¯[L]xk−1
i−1 = bi (3.17)

forward sweep

¯[D]4xk
i + ¯[L](xk+1

i−1 − xk−1
i−1 ) = 0 (3.18)
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In the above exact dual scheme, backward sweep is done first followed by forward sweep.

3.3 Flux Limiters

For higher-order upwind differencing, a Taylor series expansion of the state variables (Q)

about the node (n) in Fig. 3.1, gives the limited data on the face as

QL ≡ (Qf1
)L = Qn + Φn ∇Qn · ~r1 (3.19)

1

2

3

4

5

6

L
R

n
f 3

f 4

f 5

f 6

f1

f2

Figure 3.1: Control volume surrounding vertexn formed by centroid-midpoint dual in 2D.

where∇Qn is the gradient atn, ~r1 is the distance vector fromn to a point on the control volume

facef1, andQL is the reconstructed solution at the face. The flux limiter value atn [75, 76] is

given by

Φn = min{Φfj
, fj = f1, f2, · · · , f6} (3.20)
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whereΦfj
are the limited values at the control volume faces evaluatedusing Barth-Jespersen [75]

or Venkatakrishnan [76] limiter. The limited face value is obtained by

Φfj
=



































min

(

1, φ

(

Qn
max

−Qn

Qfj
−Qn

))

, if Qfj
− Qn > 0

min

(

1, φ

(

Qn
min

−Qn

Qfj
−Qn

))

, if Qfj
− Qn < 0

1 , if Qfj
− Qn = 0

(3.21)

Barth-Jespersen:

φ
(a

b

)

=
a

b
(3.22)

Venkatakrishnan:

φ
(a

b

)

=
1

b

[

(a2 + ε2)b + 2ab2

a2 + 2b2 + ab + ε2

]

(3.23)

whereQmax
n , Qmin

n andε are as given in [75] and [76]. Both these limiters are widely used in

unstructured flow solvers to ensure no new extrema are created in the reconstruction process.

Differentiating Eqn.(3.19) with respect to solution vector Q yields

dQL ≡ (dQf1
)L = dQn + dΦn ∇Qn · ~r1 + Φn d (∇Qn · ~r1) (3.24)

Φn, given by Eqn.(3.20) can be numerically differentiated anddΦn ∈ {dΦf1
, dΦf2

, · · · , dΦf6
}.

However, use of non-differentiable functions such as themin function to obtainΦn introduces

numerical scaling issues when the linearization is performed. To illustrate the scaling issues,

consider the term{dΦn ∇Qn ·~r1} in Eqn.(3.24). Suppose,Φn = Φf2
, thendΦn can be written as

dΦn = dΦf2
=

dQ
max/min
n − dQn

∇Qn · ~r2
− d(∇Qn) · ~r2

(∇Qn · ~r2)2
(3.25)

and

dΦn ∇Qn · ~r1 =

(

dQ
max/min
n − dQn

∇Qn · ~r2
− d(∇Qn) · ~r2

(∇Qn · ~r2)2

)

(∇Qn · ~r1) (3.26)
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In unstructured meshes, the distance vectors~r1 and~r2 need not be of the same order of magnitude,

leading to instances where(∇Qn · ~r2) << (∇Qn · ~r1). In such cases, the numerator and

denominator of the terms in Eqn.(3.26) may be of different orders of magnitude. For example,

if ∇Qn · ~r1 ∼ O(10−1); ∇Qn · ~r2 ∼ O(10−3); andd(∇Qn) · ~r2 ∼ O(10−3); then

dΦn ∇Qn · ~r1 ∼
(

O(1)

O(10−3)
+

O(10−3)

O(10−6)

)

O(10−1) ∼ O(100) (3.27)

The linearization for limiters in this form introduces numerical instability if used with sensitivity

analysis. One option may be to use limiters in flow solver, andfreeze them (assume as constant

with derivativesdΦn = 0) when performing sensitivity analysis. This approach is not a consistent

linearization and may produce inaccurate sensitivity derivatives.

A modification is proposed to make the limiters piecewise continuous and numerically

differentiable, without compromising the monotonicity conditions. Instead of usingΦn to

reconstruct the solution to the faces, each face is reconstructed with its own limited valueΦf

as shown below

Qfj
= Qn + Φfj

∇Qn · ~rj (3.28)

andΦfj
are computed the same way as given in Eqns.(3.21), (3.22) and(3.23). This modification

makes the limiters piecewise continuous and also avoids thenumerical instability introduced by

the linearization of limiters in their original form. Since, the base schemes to computeΦfj
have not

changed, the modified limiters satisfy the monotonicity criteria ensuring no new extrema creation.

The modified limiters are essentially aweak formof the original limiters.

To illustrate the need for the modified form of limiters, consider the case of inviscid flow over a

Onera-M6 wing at an angle of attack of3.060 and Mach number of0.84. A lambda shock is typical

of these flow conditions and the solution is reconstructed using Eqn.(3.28) with the modified form

of Venkatakrishnan limiter. Sensitivity analysis is performed in two ways: (1) with the limiters

linearized accounting for a consistent and complete linearization; (2) with the limiters frozen

(assumed as constant with derivativesdΦf = 0) accounting for an incomplete linearization. Table
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Table 3.1: Comparison of sensitivity derivatives with complete and incomplete linearization of
limiters

Method dCL/dy dCD/dy

Central Finite Difference
1.e−5 −5.24676e−5 9.4514e−6

1.e−6 −5.2390e−5 9.4795e−6

1.e−8 −5.1850e−5 9.450e−6

adjoint (complete linearization) −5.16418e−5 9.3635e−6

adjoint (incomplete linearization) −4.92201e−5 1.20769e−5

(3.1) compares the adjoint sensitivity derivatives from complete and incomplete linearizations with

central finite differences. The table shows the derivativesof lift ( CL) and drag (CD) coefficients

with respect toy coordinate of a node on the wing. From Table (3.1), it can be observed that the

adjoint sensitivities forCL andCD from complete linearization match with finite differences upto

5 and6 decimal places respectively. However, there is atleast onesignificant digit loss in accuracy

in the derivatives obtained from the incomplete linearization of limiters. This loss of accuracy

illustrates the need for complete linearization of limiters, which can not be accomplished if they are

implemented in their original form. The author believes if limiters have to be used in conjunction

with direct or adjoint sensitivity analysis, they must be employed in their modified/weak-form for

a consistent and complete linearization.

A grid resolution study is also performed for the above inviscid case to study the behavior of

the modified limiters. Three levels of grid, ranging from coarse to relatively fine discretizations are

chosen, and numerical tests are performed employing the modified and original limiters. Similar

behavior is observed on all grids and results are presented here for the intermediate grid level. Fig.

3.2 shows the convergence history of the modified and original limiters. The modified limiters

are more dispersive because of their weak form, and show better convergence behavior when

compared with the original limiters. TheCp distribution on the upper and lower surfaces of

the Onera-M6 wing at three span wise locations are plotted inFigs. 3.3, 3.4 and 3.5. These

figures compare theCp distribution obtained using the original and weak-form of the limiters with
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Figure 3.2:L2 norm convergence of flow residual employing Barth-Jespersen (limiter1) or
Venkatakrishnan (limiter2) limiter.

experimental data obtained from [97]. The lambda shock thatis typical of these flow conditions is

captured well.

3.4 Parallel Implementation

The parallel methodology is based on a distributed memory message passing model and

employs coarse-grained domain decomposition with sub-domains assigned to multiple processors.

Message passing is achieved using MPI-based libraries and the mesh partitioner MeTiS [98, 99]

is used to subdivide the mesh into sub-domains. Since, the baseline flow solver [73] could run

in a multiprocessor environment when this work was started,the existing MPI-based libraries are

utilized to develop parallel capabilities for the direct and adjoint solvers.

Because of the gradient terms used in the reconstruction process, a complete linearization of

the higher-order spatial terms require neighbor’s information and neighbor’s neighbor information.

Fig. 3.6 shows the complete linearization stencil for the higher-order spatial discretization of node

i. For nodes in the partition boundary, this requirement involves two levels of ghost nodes as

shown in Fig. 3.6. The flow solver typically needs only level-1 ghost nodes and they are included
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Figure 3.3:Cp distribution on the Onera-M6 wing at span wise locationsz/c = 0.20.
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Figure 3.4:Cp distribution on the Onera-M6 wing at span wise locationsz/c = 0.65.



31

0 0.2 0.4 0.6 0.8 1

x/c

−2

−1.5

−1

−0.5

0

0.5

1
C

p

Barth−Jespersen Limiter

C
p 
distribution at z/c = 0.95

Experimental

Modified limiter

Original limiter

0 0.2 0.4 0.6 0.8 1

x/c

−2

−1.5

−1

−0.5

0

0.5

1

C
p

Venkatakrishnan Limiter

C
p 
distribution at z/c = 0.95

Experimental

Modified limiter

Original limiter

Figure 3.5:Cp distribution on the Onera-M6 wing at span wise locationsz/c = 0.95.

in the partition. The information from level-2 ghost nodes that are not included in the partition

must be accounted for in sensitivity analysis to perform a complete linearization. The parallel

implementation of the sensitivity analysis solver is described below for nodes in the partition

boundary.

• Only level-1 ghost nodes are included in the partition.

• Data in level-1 ghost nodes are used to compute nearest neighbor residual contributions and

gathered by the physical nodes in each block (similar to the flow solver). In Fig. 3.6, node

i is a physical node inblock 1. It uses the information from physical nodes3, 4 and level-1

ghost nodes1, 2, 5 to gather nearest neighbor residual contributions.

• Residual contributions from level-2 ghost nodes (nearest neighbor’s neighbors that are not

included in the partition) are gathered by the respective level-1 ghost nodes in corresponding

block. In Fig. 3.6, nodei is a level-1 ghost node inblock-2. Nodes7, 8, 9, 10 are level-2

ghost nodes forblock-1, but, are physical nodes inblock 2. Residual contributions from

nodes7, 8, 9, 10 are gathered by level-1 ghost nodei in block-2.
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Figure 3.6: Stencil for the complete linearization of higher-order spatial discretization for nodei.

• Swap the send and receive lists. Each block has a list of send lists and receive lists. Send lists

have the list of physical nodes that must share it data with neighboring blocks and receive

lists have the list of ghost nodes that need to update its data. By swapping the send and

receive lists, the new send lists will have list of ghost nodes that hold the scattered residual

contributions and the new receive lists will have the list ofphysical nodes that need to gather

this data.

• Data in ghost nodes is communicated to neighboring blocks and gathered by the physical

nodes to perform a consistent and complete linearization.

The speedup results for the sensitivity analysis solvers are demonstrated in Figs.(3.7a) and

(3.7b). It can be observed that a nearly linear speedup has been obtained. The computations for

the test case is performed on a 384 processor Intel Xeon cluster. For this test, turbulent flow is

simulated over the Onera M6 wing at an angle of attack of10, with freestream Mach number

of 0.52, and chord-based Reynolds number of1, 000, 000. For illustrative purposes, the mixed-

element grid for the turbulent flow simulation is shown in Fig.(3.8). This grid contains 232,003

prisms, 10882 pyramids, 319,016 tetrahedrals, 178,193 nodes, 31402 surface triangles and 1787
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surface quadrilaterals with a wall spacing of1e−05 of mean aerodynamic chord. The linearization

results are presented in next section.
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Figure 3.7: Parallel speedup for turbulent flow over a Onera M6 wing. (a): Direct solver. (b):
Adjoint solver.

3.5 Validation Cases

Linearizations are performed analytically by hand-differentiation for the viscous flux terms

and by the complex Taylor’s series expansion approach [5–7]for the inviscid terms. The

consistency of linearization is validated by performing a series of test cases with the Onera

M6 wing. The design or independent variable for all validation cases is they co-ordinate of a

node on the wing. Sensitivity of the lift (CL) and drag (CD) coefficients from direct and adjoint

analysis are compared with the derivatives evaluated usingfinite differences. In all finite difference

results, the flow solution and force coefficients have been converged to machine precision. Similar

convergence behavior is observed on all variables and for sake of clarity, only convergence plots

of direct and adjoint densities are presented here.
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Figure 3.8: Volume grid for Onera M6 wing.

3.5.1 Inviscid Flow

The first test case is inviscid flow at an angle of attack of20 with freestream Mach number of

0.84. The unstructured grid contains 65538 nodes and 360,035 tetrahedrals. The convergence

history of direct and adjoint densities are plotted in Fig. 3.9a. Asymptotically equivalent

convergence rates are observed. The sensitivity derivative of the drag coefficient (CD) is compared

with central finite difference derivatives in Table (3.2). The finite difference derivatives are

obtained by using different perturbation sizes. There is perfect agreement between the direct and

adjoint sensitivities and they match with finite differences upto six decimal places. From Table

(3.2), it can be inferred that the direct and adjoint sensitivities are consistent over sequential and

parallel runs.

3.5.2 Viscous Laminar Flow

Two viscous laminar cases are studied with chord-based Reynolds number of5000 and angle

of attack of20. The first case is transonic flow with freestream Mach number of 0.84 and the
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Table 3.2: Comparison of sensitivity derivatives for inviscid flow

Method dCD/dy

Central Finite Difference
1.e−4 −7.7161e−6

1.e−6 −7.6925e−6

1.e−8 −7.6500e−6

direct (sequential) −7.5936e−6

direct (parallel) −7.5936e−6

adjoint (sequential) −7.5936e−6

adjoint (parallel) −7.5936e−6

second case is a low Mach number flow of0.1. The flow is simulated on a mixed-element grid

with 76376 prisms, 6800 pyramids, 277,849 tetrahedrals, 93473 nodes, 31392 surface triangles

and 500 surface quadrilaterals. Similar asymptotic rates are observed in the convergence of direct

and adjoint solutions in Fig. 3.9b. Tables (3.3) and (3.4) compare the sensitivity derivatives of lift

and drag coefficients with finite differences. The direct andadjoint sensitivities are in excellent

agreement with each other and compare favorably with finite differences, given the errors inherent

in finite difference approximation. It can be verified from Tables (3.3) and (3.4) that once again

the derivatives are consistent across sequential and parallel environments.

Table 3.3: Comparison of sensitivity derivatives for viscous laminar flow

Method dCL/dy dCD/dy

Central Finite Difference
1.e−4 −5.69920e−5 1.73546e−5

1.e−6 −5.69365e−5 1.71380e−5

1.e−8 −5.70e−5 1.7150e−5

1.e−10 −5.50e−5 2.0e−5

direct (sequential) −5.69358e−5 1.71382e−5

direct (parallel) −5.69358e−5 1.71382e−5

adjoint (sequential) −5.69358e−5 1.71382e−5

adjoint (parallel) −5.69358e−5 1.71382e−5
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Table 3.4: Comparison of sensitivity derivatives for low Mach number laminar flow

Method dCL/dy

Central Finite Difference
1.e−6 −1.686295e−4

1.e−8 −1.680500e−4

direct (sequential) −1.686252e−4

direct (parallel) −1.686252e−4

adjoint (sequential) −1.686252e−4

adjoint (parallel) −1.686252e−4

3.5.3 Turbulent Flow

The final validation case is turbulent flow over the Onera M6 wing at an angle of attack of

10, with freestream Mach number of0.52, and chord-based Reynolds number of1, 000, 000. The

mixed-element grid for this simulation is shown in Fig.(3.8). The one-equation turbulence model

of Spalart and Allmaras [88] is solved in a loosely coupled manner in both flow and sensitivity

analysis.

The sensitivity derivatives of lift and drag coefficients are compared with finite differences

in Table (3.5). The direct and adjoint sensitivities are in excellent agreement with each

other and compare favorably with finite differences. From Table (3.5), it can be verified that

the linearizations are consistent over sequential and parallel versions. Fig.(3.10a) shows the

convergence histories of density and turbulent quantity for the direct and adjoint solutions. The

asymptotic rates are similar. To further demonstrate the numerical equivalence between the direct

and adjoint solvers, the error in drag derivatives is plotted in Fig.(3.10b). The error is defined as

the difference between the current value and the final converged value. The reduction in error rates

are identical.
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Table 3.5: Comparison of sensitivity derivatives for turbulent flow

Method dCL/dy dCD/dy

Central Finite Difference
1.e−6 1.09190e−5 −2.77890e−5

1.e−8 1.20500e−5 −2.7800e−5

direct (sequential) 1.11464e−5 −2.78552e−5

direct (parallel) 1.11464e−5 −2.78552e−5

adjoint (sequential) 1.11464e−5 −2.78552e−5

adjoint (parallel) 1.11464e−5 −2.78552e−5
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Figure 3.9:L2 norm convergence of4 ∂Q
∂αk

and4γ. (a): Inviscid flow. (b): Viscous laminar flow.
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CHAPTER IV

ERROR ESTIMATION

This chapter explains the second step in the present error estimation methodology:

development of an efficient and robust error correction procedure. The adjoint-based error

correction procedure is derived and the prolongation operators are introduced. Error correction

results are presented for inviscid, laminar and turbulent cases.

4.1 Formulation

For the following discussions, letF (Q) represent the output function of interest;Q, the

steady-state solution vector;R(Q), the discrete residual vector; andγ, the adjoint solution vector.

Typically, in engineering applications of CFD, an accurateestimate ofF (Q) is desired. But often,

a compromise must be made between the fidelity of solution obtained and the available resources.

To elaborate on this, consider discretization of the computational domain (Ω) using a coarse-mesh

ΩH and a fine-meshΩh. H andh (H > h) may represent suitably defined length scales based

on the approximation such as finite difference, finite element or finite volume. LetFH(QH) and

Fh(Qh) be estimates ofF (Q) from ΩH andΩh. FH(QH) andFh(Qh) are evaluated usingQH

andQh, the discrete solutions onΩH andΩh respectively. The coarse-meshΩH is affordable in

terms of memory and computation time. However, the estimateFH(QH) may not be accurate

enough for engineering applications. The fine-mesh estimate Fh(Qh) may satisfy the desired

accuracy criteria, but is prohibitively expensive to compute. A computationally efficient error

correction procedure [41–44, 46–48] is introduced that produce improved estimates of output

functions without ever solving on the fine-meshΩh.

39
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By introducing a perturbationδQh to the fine-mesh solutionQh, and performing a Taylor’s

series expansion ofFh(Qh + δQh) yields

Fh(Qh + δQh) = Fh(Qh) +

{

∂Fh

∂Qh

}

δQh + · · · (4.1)

Now, defining δQh = Qh
H − Qh, whereQh

H is the solution at fine-mesh obtained through

prolongation of coarse-mesh solutionQH , Eqn.(4.1) can be written as

Fh(Qh) = Fh(Qh
H) +

{

∂Fh

∂Qh

}

Qh
H

(Qh − Qh
H) + · · · (4.2)

Here,Fh(Qh
H) is the fine-mesh estimate of the function evaluated usingQh

H and
{

∂Fh

∂Qh

}

Qh
H

is the

linear sensitivities of the fine-mesh function with respectto Qh
H . Qh

H is given by

Qh
H = P h

H QH (4.3)

andP h
H is a suitably defined prolongation operator.

Let Rh(Qh) be the non-linear residual vector obtained by discretization of the flow equations

at the fine-mesh. For a steady state problem

Rh(Qh) = 0 (4.4)

By performing a Taylor’s series expansion ofRh(Qh + δQh)

Rh(Qh + δQh) = Rh(Qh) +

[

∂Rh

∂Qh

]

δQh + · · · (4.5)

and substitutingδQh = Qh
H − Qh

Rh(Qh) = Rh(Qh
H) +

[

∂Rh

∂Qh

]

Qh
H

(Qh − Qh
H) + · · · (4.6)
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Here,Rh(Qh
H) is the residual vector evaluated at the fine-mesh usingQh

H and
[

∂Rh

∂Qh

]

Qh
H

is the

fine-mesh Jacobian evaluated usingQh
H . Combining equations (4.4 and 4.6) and assuming the

well-posedness of the equations

(Qh − Qh
H) ≈ −

[

∂Rh

∂Qh

]

−1

Qh
H

Rh(Qh
H) (4.7)

Substituting Eqn.(4.7) in Eqn.(4.2)

Fh(Qh) ≈ Fh(Qh
H) −

{

∂Fh

∂Qh

}T

Qh
H

[

∂Rh

∂Qh

]

−1

Qh
H

Rh(Qh
H) (4.8)

≈ Fh(Qh
H) + {γh}T

Qh
H

Rh(Qh
H) (4.9)

where{γh}T
Qh

H

is the adjoint solution vector at the fine-mesh evaluated using Qh
H . The adjoint

equation for{γh}Qh
H

can be written as

[

∂Rh

∂Qh

]T

Qh
H

{γh}Qh
H

= −
{

∂Fh

∂Qh

}

Qh
H

(4.10)

To avoid the need for computing{γh}T
Qh

H

on the fine-mesh, it may also be approximated through

interpolation as

{γh}Qh
H

≈ γh
H = P h

H γH (4.11)

whereγH is the adjoint solution at the coarse-mesh given by

[

∂RH

∂QH

]T

{γH} = −
{

∂FH

∂QH

}

(4.12)

The computable estimate of the output function is given by

F (Q) = Fh(Qh
H) + {γh

H}T Rh(Qh
H) (4.13)
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In the above expression,{γh
H}T Rh(Qh

H) is theerror correctionterm that approximates the error

in output function as the inner product of the adjoint solution and the primal residual error.

The auxiliary computations needed by this procedure are: prolongation of coarse-mesh flow and

adjoint solutions to the fine-mesh; and functional and residual evaluations on the fine-mesh.

4.2 Enhancements to the Error Correction Procedure

Previous work on three-dimensional adjoint error estimation [49, 50] defined the fine-meshΩh

as embedded within the coarse-mesh, formed by h-refinement of each coarse-mesh element in a

fixed ratio, say 1:8. Moreover, all the previous work [49, 50]have been performed on unstructured

tetrahedral meshes. The present study extends the adjoint error estimation procedure for a

generalized fine-mesh, not necessarily a h-refined embeddedmesh. Also, the present study strives

to support a mixed-element unstructured mesh, comprising of hexahedrals, prisms, pyramids and

tetrahedrals. For subsequent discussions, the fine-mesh can be categorized into

Uniformly Refined: fine-mesh obtained using h-refinement; each fine-mesh element is

embedded within a coarse-mesh element.

Non-uniformly Refined: fine-mesh obtained from a grid generator by manually setting the point

spacing; fine-mesh element need not be embedded within a coarse-mesh element.

The isotropic h-refinement of different element types is shown in Appendix B. In three

dimensions, uniform refinement of a coarse-mesh often results in a fine-mesh that has

approximately 8 times the number of coarse-mesh elements. In the present study, the error

correction procedure is sequential (done in a single processor) and hence, uniformly refined

meshes become prohibitively expensive in terms of memory and computational cost. Also,

successive refinements result in meshes with very poor quality, especially in the boundary layer,

and projection of boundary nodes on the surface geometry raises additional complexity. Non-

uniformly refined meshes generated from a grid generator have better quality than uniformly

refined meshes. Also, they maintain boundary integrity between the coarse and fine-meshes,

since, the same CAD definition will be used to generate the meshes. Moreover, the user will
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know a priori the available memory and computational resources and hence, the level of fine-

mesh refinement can be modified accordingly to make use of the available resources.

In the present study, the error estimation procedure is applied to both uniformly and non-

uniformly refined meshes. The non-uniform fine-meshes are generated using AFLR3 [100] and

the uniformly refined meshes are generated using the mesh adaptor discussed in section 5.3. To

handle a general mesh (both uniform and non-uniform), the meshless Moving Least Squares

(MLS) approximation [78–83] is chosen to reconstruct the coarse-mesh flow and adjoint solutions

to fine-mesh. The MLS procedure is explained in Appendix A.

4.3 Prolongation Operators

The prolongation operation given by Eqn.(4.3) can be expanded as

Qh
H = P h

H QH ≡
n
∑

I=1

φk
I (QH)I (4.14)

whereΦk = {φk
1 , φk

2 , · · · , φk
n} are the MLS shape functions,k is the order of the basis function,

and n is size of the MLS support stencil. In the present study, linear and quadratic basis

functions given in Eqns.(A.2) and (A.3) are considered withcubic spline and inverse-distance

[82] weights. Weight functions are defined with compact circular or rectangular supports as

explained in Appendix A. Once the supports are built, weights are applied, either isotropically

as radial weights, or anisotropically as tensor product weights. Mixed supports are also defined;

i.e., circular support with isotropic weights for tetrahedrals and pyramids (inviscid regions) and

rectangular support with anisotropic weights for prisms and hexahedrals (boundary layer regions).

In the the present study, the basis functions are classified as:

linear-linear : prolongation performed with linear basis for both flow and adjoint solutions.

quadratic-quadratic : prolongation performed with quadratic basis for both flow and adjoint

solutions.
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linear-quadratic : prolongation performed with linear basis for flow solutionand quadratic basis

for adjoint solution.

quadratic-linear : prolongation performed with quadratic basis for flow solution and linear basis

for adjoint solution.

The weight functions are classified as:

cubic spline: cubic spline weights given by Eqn.(A.21) in Appendix A.

inverse-distance: inverse-distance weights given by Eqn.(A.22) in AppendixA.

and the weights are applied as:

isotropic: radial weights defined by circular supports.

anisotropic: tensor product weights defined by rectangular supports.

mixed: both radial and tensor product weights defined by circular-rectangular supports.

For tetrahedral meshes the stencil is built using circular supports. For mixed-element meshes,

circular supports are used to build the stencil in regions oftetrahedrals and pyramids, and

rectangular supports are used in regions of prisms and hexahedrals. Once the stencil is built, both

isotropic and anisotropic weights are applied. Note that, even if the stencil is built with circular

support, anisotropic weights are applied with the directional lengths defined by the absolute values

of the position vector from the data point to the MLS seed points. In other words, a rectangular

support is constructed using the maximum directional lengths in the circular support. This is

equivalent to reconstructing the support to a rectangular,with the circular support as background.

The points that make the stencil remain the same, except the weights are applied differently. The

same procedure applies to isotropic weights in a rectangular support, with the directional lengths

substituted by the radial distances.
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4.3.1 Strong Boundary Conditions

In finite volume solvers, the noslip conditions are enforcedat viscous boundaries by setting

ub = 0, vb = 0 andwb = 0, whereub, vb andwb are thex, y andz components of velocity at

the boundary. This is often referred as a weak-enforcement of the no-slip condition. However, the

common practice in most node-based finite volume solvers is to additionally set the momentum

and energy fluxes in Eqns.(2.3) and (2.5) to zero. Instead of solving for the conservation of

momentum and energy at the viscous boundary nodes, they are explicitly set to zero in a strong-

enforcement of the no-slip condition. Similarly, in turbulent flows, the turbulent residual and

turbulent quantity (̄ν) are explicitly set to zero at the viscous boundary nodes.

To account for this strong-enforcement at the viscous boundary, the adjoint system [25, 26]

for an interior node needs to be explicitly modified with all viscous boundary nodes removed

from the momentum and energy linearization. So, when prolongation is performed for the interior

nodes near viscous boundaries, the boundary nodes should not be included in the stencil because

interpolation will be between nodes with different dual properties. In references [48, 50, 71],

the boundary adjoint solution is replaced with extrapolated interior values and the prolongation is

performed using the extrapolated boundary values. The boundary adjoint is then post processed

as explained in [48]. In the present study, the MLS fit for the velocities and turbulent quantity

are performed without any viscous boundary nodes in the stencil. However, for adjoint density

and pressure, the MLS fit included viscous boundary nodes. Note that, the present study employs

the adiabatic boundary condition∂T (ρ,p)
∂n = 0, based on both interior and boundary temperatures

(T = T (ρ, p)).

4.3.2 Parameter Definitions for Comparison of ProlongationOperators

The following parameters are defined to make meaningful comparisons of the different

prolongation operators.

Quality of MLS fit: The MLS procedure produces thebest possibleapproximation for a given

data point based on a least squares fit of the seed points in thesupport stencil. The quality of

the fit is largely dependent on the support stencil. This is extremely important in boundary layer
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regions, where the presence of high-aspect ratio elements may produce an ill-conditioned MLS

system, degrading the quality of the fit. To measure the approximation error in the MLS fit and

thereby, get an idea about the quality of the support stencil, a simple test is performed by finding

the approximation for the seed points in the stencil. The error in the MLS approximation can be

defined as

MLS fit error = uh(xI) − u(xI) (4.15)

whereuh(xI) is the approximation from MLS fit andu(xI) is the actual value.

% True Error: The actual functional error is defined as

% True Error= 1.0 − computed output at coarse-mesh
computed output at fine-mesh

× 100 (4.16)

% Error after correction: The remaining error in the corrected functional is defined as

% Error after correction= 1.0 − error corrected output at coarse-mesh
computed output at fine-mesh

× 100 (4.17)

Parallel Cost: In the present study, all the flow and adjoint computations are done in parallel.

To make uniform comparisons of CPU time between different runs, the parallel CPU/run time

is linearly scaled based on the number of processors to represent the overall parallel cost. The

parallel cost measured in CPU hours is computed as

Parallel cost= (Actual Parallel CPU time)*(Number of processors) (4.18)

4.4 Results and Discussions

Error correction results are presented here for inviscid, laminar and turbulent test cases. The

prolongation operators are compared based on the choice of (a) basis functions: linear-linear,

quadratic-quadratic, linear-quadratic or quadratic-linear; (b) weight functions: cubic spline or

inverse-distance; and (c) type of support (application of weights): isotropic, anisotropic or mixed.

For the cases, when the prolongation operator is compared over a series of coarse, intermediate
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and fine meshes, true error1 is defined between the coarsest and intermediate mesh and true error2

is defined between the intermediate and finest mesh.

4.4.1 Inviscid flow

The first test case is inviscid flow over an Onera M6 wing at an angle of attack of3.060

and Mach number of0.8395. Error correction is performed for both lift (CL) and drag

(CD) coefficients on the wing. Three non-uniformly refined meshes are generated with the

coarsest mesh containing42, 114 nodes,23, 422 surface triangles and213, 889 tetrahedrals. The

intermediate and finest meshes are generated by reducing thepoint spacings in the boundary by a

factor of two and four with respect to the initial coarse-mesh spacing. The intermediate and finest

grids contain respectively,183, 796 nodes,76, 152 surface triangles and976, 344 tetrahedrals;

and976, 503 nodes,286, 728 surface triangles and5, 372, 918 tetrahedrals. The coarsest mesh

is uniformly refined to construct an embedded mesh containing 310, 119 nodes,93, 688 surface

triangles and1, 712, 372 tetrahedrals. The MLS support stencil is built with circular supports

and when tensor product (anisotropic) weights are applied,the supports are reconstructed to

rectangular from the circular support.

4.4.1.1 CD in a Onera M6 wing atM∞ = 0.8395 andAOA = 3.060

The error correction results forCD are presented in Tables (4.1) to (4.10). Tables (4.1)

and (4.2) compare the different MLS fits for prolongation to auniformly refined mesh using

cubic spline and inverse-distance weights respectively. From Tables (4.1) and (4.2), it can be

observed that the corrections from all the MLS fits reduce thetrue error by50%. The isotropic

and anisotropic application of weights produce nearly identical corrections. For the linear-

linear and quadratic-quadratic MLS fits, the corrections from cubic spline and inverse-distance

weight functions are of the same order of magnitude. However, the cubic spline linear-quadratic

and quadratic-linear MLS fits compute better corrections compared to their inverse-distance

counterparts. The best estimates of correction are observed in cubic spline linear-quadratic

and quadratic-linear MLS fits. The error correctedCD from the cubic spline linear-quadratic
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and quadratic-linear MLS fits are within1% and5% of the fine-mesh estimate. One possible

explanation for the better correction from a combined MLS fit(linear-quadratic or quadratic-

linear) may be a bad flow or adjoint approximation in the individual MLS fits (linear-linear or

quadratic-quadratic) and the bad approximation is not employed in the combined fit. Another

possible explanation may be the leading truncation error (TE) terms in the linear and quadratic

approximations are of different signs and result in a smaller leading TE term and hence, a more

accurate correction for the combined approximation.

The behavior of the error estimates is studied by performingthe error correction procedure

over a sequence of non-uniformly refined meshes. As the mesh resolution increases, the functional

estimates get more accurate and this can be observed in the reduction in true error from−40.57%

between the coarse and intermediate meshes to−9.93% between the intermediate and fine meshes

in Table (4.3). Similar behavior should be observed in the error estimates, with the correction

getting smaller as the functional output converges to its asymptotic value. This behavior can be

observed in Tables (4.3) to (4.10) for the non-uniformly refined meshes. The tables demonstrate

the decrease in error correction estimates as the prolongation is performed between better resolved

grids with smaller true error. The weights are applied isotropically and it can be noticed from the

tables that the inverse-distance corrections are slightlybetter than the cubic spline corrections.

For all the MLS fits, the true error1 and true error2 are reduced by more than50% after applying

correction.

The quadratic-linear MLS fits given in Tables (4.9) and (4.10) consistently produce the best

correction estimates. The correctedCD from the coarse and intermediate-meshes are within1% of

their respective fine-mesh estimates; i.e. the true error1 and true error2 are reduced by99% after

correction. The role, the leading TE terms play in a combinedapproximation (linear-quadratic

or quadratic-linear) can be better appreciated by looking at Tables (4.7) to (4.10) for the linear-

quadratic and quadratic-linear MLS fits. For the linear-quadratic MLS fits, the corrections at the

intermediate-mesh are worse compared to the individual corrections (linear-linear or quadratic-

quadratic), whereas, the quadratic-linear corrections are better than the individual corrections.
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This behavior may be best explained by the signs of the leading TE (truncation error) terms in

the linear and quadratic approximations. If they are of the same sign, they add up resulting in

a larger TE term and a less accurate correction as observed inthe linear-quadratic corrections

for the intermediate-mesh. If they are of opposite signs, they cancel out resulting in a smaller

leading TE term and a more accurate correction as seen in the quadratic-linear corrections for the

intermediate-mesh.

Fig.(4.1) shows the parallel CPU costs for the error corrected CD. From Fig.(4.1), it can be

inferred that significant savings in parallel computational cost can be obtained by performing error

correction. TheL2 norm error in the MLS fit for the flow and adjoint solutions on the coarsest

mesh is plotted in Figs.(4.2a - 4.2d). As expected, the errorin the inverse-distance MLS fit is

smaller compared to the cubic spline MLS fit. The inverse-distance weights have a large penalty

factor that forces the fit to start interpolating the data as the distance between the data and seed

points approaches zero. However, the cubic MLS fit produces asmoother approximation and the

corrections in Tables (4.1) to (4.10) are almost identical from both these approximations. TheL2

norm error for the adjoint fit is larger compared to the flow fit.Also, theL2 norm error in the

linear and quadratic approximations are of the same order.

Table 4.1: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Cubic spline
weights correction from a coarse-mesh withCD = 0.02250563 to a uniformly refined
mesh withCD = 0.01510187; True Error =−49.02%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.00468865 0.01781698 −17.97
Linear − Linear(anisotropic) −0.00390798 0.01859765 −23.14

Quadratic − Quadratic(isotropic) −0.00407856 0.01842707 −22.01
Quadratic − Quadratic(anisotropic) −0.00366597 0.01883966 −24.75

Linear − Quadratic(isotropic) −0.00749459 0.01501104 0.601
Linear − Quadratic(anisotropic) −0.00747593 0.01502970 0.478

Quadratic − Linear(isotropic) −0.00666770 0.01583793 −4.873
Quadratic − Linear(anisotropic) −0.00689221 0.01561342 −3.387
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Table 4.2: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Inverse-distance
weights correction from a coarse-mesh withCD = 0.02250563 to a uniformly refined
mesh withCD = 0.01510187; True Error =−49.02%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.00451507 0.01799056 −19.12
Linear − Linear(anisotropic) −0.00396752 0.01853811 −22.75

Quadratic − Quadratic(isotropic) −0.00439652 0.01810911 −19.91
Quadratic − Quadratic(anisotropic) −0.00392247 0.01858316 −23.05

Linear − Quadratic(isotropic) −0.00524878 0.01725685 −14.26
Linear − Quadratic(anisotropic) −0.00425534 0.01825029 −20.84

Quadratic − Linear(isotropic) −0.00557292 0.01693273 −12.12
Quadratic − Linear(anisotropic) −0.00530304 0.01720259 −13.91

Table 4.3: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic cubic
spline weights correction forCD with linear-linear basis on non-uniformly refined
meshes; True Error1 = −40.57%, True Error2 = −9.93%.

Nodes CD Error CorrectedCD % Error
Correction after correction

42114 0.02250563 −0.00413585 0.01836978 −14.74

183796 0.01601001 −0.00153230 0.01447771 0.588

976503 0.01456340 − − −

Table 4.4: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic inverse-
distance weights correction forCD with linear-linear basis on non-uniformly refined
meshes; True Error1 = −40.57%, True Error2 = −9.93%.

Nodes CD Error CorrectedCD % Error
Correction after correction

42114 0.02250563 −0.00471712 0.01778851 −11.10

183796 0.01601001 −0.00166997 0.01434004 1.53

976503 0.01456340 − − −
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Table 4.5: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic cubic
spline weights correction forCD with quadratic-quadratic basis on non-uniformly
refined meshes; True Error1 = −40.57%, True Error2 = −9.93%.

Nodes CD Error CorrectedCD % Error
Correction after correction

42114 0.02250563 −0.00384564 0.01865999 −17.08

183796 0.01601001 −0.00127405 0.01473596 −1.184

976503 0.01456340 − − −

Table 4.6: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic inverse-
distance weights correction forCD with quadratic-quadratic basis on non-uniformly
refined meshes; True Error1 = −40.57%, True Error2 = −9.93%.

Nodes CD Error CorrectedCD % Error
Correction after correction

42114 0.02250563 −0.00413646 0.01836917 −14.73

183796 0.01601001 −0.00135075 0.01465926 −0.658

976503 0.01456340 − − −

Table 4.7: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic cubic
spline weights correction forCD with linear-quadratic basis on non-uniformly refined
meshes; True Error1 = −40.57%, True Error2 = −9.93%.

Nodes CD Error CorrectedCD % Error
Correction after correction

42114 0.02250563 −0.00672852 0.01577711 1.454

183796 0.01601001 −0.00175355 0.01425646 2.107

976503 0.01456340 − − −

Table 4.8: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic inverse-
distance weights correction forCD with linear-quadratic basis on non-uniformly refined
meshes; True Error1 = −40.57%, True Error2 = −9.93%.

Nodes CD Error CorrectedCD % Error
Correction after correction

42114 0.02250563 −0.00556712 0.01693851 −0.580

183796 0.01601001 −0.00189285 0.01411716 3.064

976503 0.01456340 − − −
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Table 4.9: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic cubic
spline weights correction forCD with quadratic-linear basis on non-uniformly refined
meshes; True Error1 = −40.57%, True Error2 = −9.93%.

Nodes CD Error CorrectedCD % Error
Correction after correction

42114 0.02250563 −0.00637202 0.01613361 −0.772

183796 0.01601001 −0.00139431 0.01461570 −0.359

976503 0.01456340 − − −

Table 4.10: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic
inverse-distance weights correction forCD with quadratic-linear basis on non-
uniformly refined meshes; True Error1 = −40.57%, True Error2 = −9.93%.

Nodes CD Error CorrectedCD % Error
Correction after correction

42114 0.02250563 −0.00566662 0.01683901 −0.517

183796 0.01601001 −0.00143605 0.01457396 −0.0725

976503 0.01456340 − − −
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Figure 4.1: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Parallel cost for
the error correctedCD.
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Figure 4.2: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. L2 norm of error
in MLS fit of individual variables1 = ρ, 2 = u, 3 = v,4 = w,5 = p. (a) Cubic spline
fit for flow solution; (b) Inverse-distance fit for flow solution; (c) Cubic spline fit for
adjoint solution; (d) Inverse-distance fit for adjoint solution.
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4.4.1.2 CL in a Onera M6 wing atM∞ = 0.8395 andAOA = 3.060

The error correction summary for prolongation to a uniformly refined fine-mesh is presented

in Tables (4.11) and (4.12). All the MLS fits perform as expected, reducing the true error by

50% to 60%. The best corrections are observed in the cubic spline and inverse-distance quadratic-

quadratic approximations with the correctedCL within 0.07% and0.5% of the fine-mesh estimate.

The error correction results forCL on a series of non-uniformly refined meshes are presented

in Tables (4.13) to (4.16). The tables compare isotropic, cubic spline prolongation operators for

different basis functions. The best corrections are observed in linear-linear and quadratic-linear

MLS fits. The quadratic-quadratic MLS fit over-predicts the correction at both the mesh levels and

the linear-quadratic fit over-predicts at the intermediatemesh. The inferior corrections from the

quadratic-quadratic and linear-quadratic MLS fits can be attributed to a bad quadratic fit for the

adjoint. This is further confirmed by the excellent corrections produced by the quadratic-linear fit.

The parallel CPU costs for the error correctedCL are shown in Fig.(4.3). It can be inferred from

Fig.(4.3) that the fine-meshCL estimate is obtained with a factor 3 reduction in parallel cost by

performing error correction.

Table 4.11: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Cubic spline
weights correction from a coarse-mesh withCL = 0.32904858 to a uniformly refined
mesh withCL = 0.34140372; True Error =3.62%.

MLS fit Error CorrectedCL % Error
Correction after correction

Linear − Linear(isotropic) 0.00543562 0.33448420 2.026
Linear − Linear(anisotropic) 0.00557426 0.33462284 1.986

Quadratic − Quadratic(isotropic) 0.01208721 0.34113579 0.078
Quadratic − Quadratic(anisotropic) 0.01276145 0.34181003 −0.119

Linear − Quadratic(isotropic) 0.00460063 0.33364921 2.271
Linear − Quadratic(anisotropic) 0.00706106 0.33610964 1.550

Quadratic − Linear(isotropic) 0.00872527 0.33777385 1.063
Quadratic − Linear(anisotropic) 0.01006647 0.33911505 0.670
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Table 4.12: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Inverse-distance
weights correction from a coarse-mesh withCL = 0.32904858 to a uniformly refined
mesh withCL = 0.34140372; True Error =3.62%.

MLS fit Error CorrectedCL % Error
Correction after correction

Linear − Linear(isotropic) 0.00778603 0.33683461 1.334
Linear − Linear(anisotropic) 0.00788570 0.33693428 1.309

Quadratic − Quadratic(isotropic) 0.01068615 0.33973473 0.488
Quadratic − Quadratic(anisotropic) 0.00998060 0.33902918 0.695

Linear − Quadratic(isotropic) 0.00600940 0.33505798 1.858
Linear − Quadratic(anisotropic) 0.00628382 0.33533240 0.335

Quadratic − Linear(isotropic) 0.01325666 0.34230524 −0.264
Quadratic − Linear(anisotropic) 0.00987792 0.33892650 0.725

Table 4.13: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic cubic
spline weights correction forCL with linear-linear basis on non-uniformly refined
meshes; True Error1 = 3.89%, True Error2 = 0.364%.

Nodes CL Error CorrectedCL % Error
Correction after correction

42114 0.32904858 0.00751931 0.33656789 1.697

183796 0.34237983 0.00170301 0.34408284 −0.131

976503 0.34363090 − − −

Table 4.14: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic cubic
spline weights correction forCL with quadratic-quadratic basis on non-uniformly
refined meshes; True Error1 = 3.89%, True Error2 = 0.364%.

Nodes CL Error CorrectedCL % Error
Correction after correction

42114 0.32904858 0.02045818 0.34950676 −2.081

183796 0.34237983 0.00223984 0.34461967 −0.287

976503 0.34363090 − − −
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Table 4.15: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic cubic
spline weights correction forCL with linear-quadratic basis on non-uniformly refined
meshes; True Error1 = 3.89%, True Error2 = 0.364%.

Nodes CL Error CorrectedCL % Error
Correction after correction

42114 0.32904858 0.00580444 0.33485302 2.198

183796 0.34237983 0.00323724 0.34561707 −0.578

976503 0.34363090 − − −

Table 4.16: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Isotropic cubic
spline weights correction forCL with quadratic-linear basis on non-uniformly refined
meshes; True Error1 = 3.89%, True Error2 = 0.364%.

Nodes CL Error CorrectedCL % Error
Correction after correction

42114 0.32904858 0.00853922 0.33758780 1.40

183796 0.34237983 0.00101208 0.34339191 0.069

976503 0.34363090 − − −
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Figure 4.3: Inviscid flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Parallel cost for
the error correctedCL.
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4.4.2 Viscous laminar flow

Mixed-element meshes are used for viscous cases with prismsin the boundary layer regions

and, pyramids and tetrahedrals outside the boundary layer in the inviscid regions. The MLS

support stencil is built with rectangular supports in the boundary layer regions and with circular

supports in the inviscid regions. When isotropic weights are applied in the boundary layer regions,

the rectangular supports are reconstructed to represent circular supports. Similarly, when tensor

product weights are applied in the inviscid regions, the circular supports are reconstructed to

represent rectangular supports. No modifications are needed for the mixed support, since, it

employs tensor product weights in the boundary layer and isotropic weights in the inviscid regions.

4.4.2.1 CD in a unit Cylinder atM∞ = 0.3 andRe = 100

The first viscous test case is the laminar flow over a unit cylinder at a Mach number of0.3 and

Reynolds number of 100. The output function considered is the drag coefficientCD. The cylinder

is capped with symmetry planes at each end and the coarse-mesh contains 13,543 nodes, 1,792

surface quadrilaterals, 3,098 surface triangles, 20,916 prisms and 8,133 tetrahedrals. The coarse-

mesh is uniformly refined to construct a h-refined embedded mesh containing 101,308 nodes,

7,168 surface quadrilaterals, 12,392 surface triangles, 167,328 prisms and 65,064 tetrahedrals.

Two non-uniformly refined meshes are generated using AFLR3 [100] with the intermediate-mesh

containing 56,808 nodes, 3,380 surface quadrilaterals, 13,452 surface triangles, 81,016 prisms and

66,474 tetrahedrals; and the fine-mesh containing 253,243 nodes, 6,704 surface quadrilaterals,

55,424 surface triangles, 313,807 prisms and 466,177 tetrahedrals.

The error correction results forCD on a uniformly refined mesh is shown in Tables (4.17) and

(4.18). The tables compare the cubic spline and inverse-distance weights for different MLS fits.

With the exception of quadratic prolongation operators employing tensor product weights, all the

MLS fits reduce the true error by50%. From Table (4.18) for inverse-distance weights, it can

be noticed that the quadratic-quadratic and quadratic-linear anisotropic MLS fits over-predict the

correction. This can be attributed to a bad quadratic fit for the flow solution, when the weights are

applied anisotropically. This is further confirmed by the excellent correction from linear-quadratic
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anisotropic fit. Another possible explanation for the inferior corrections may be because of the use

of rectangular supports in the inviscid regions. This can beverified from the quality corrections

with a mixed MLS fit, which uses an anisotropic fit in the boundary layer and an isotropic fit in

inviscid regions.

Tables (4.19) to (4.26) compare the different MLS operatorsover a series of non-uniformly

refined meshes for mixed supports. Mixed supports are more appropriate in mixed element meshes

and so, they are chosen for further investigation. For all the MLS fits, the true error1 and true error2

are reduced by more than50% after applying correction. The remaining error in the correctedCD

from the different MLS fits are almost of the same order of magnitude. Fig.(4.4) shows the parallel

CPU costs for the error correctedCD. It can be noticed that significant savings in parallel cost can

be achieved by performing error correction. The globalL2 norm error in the MLS fit for the flow

and adjoint solutions on the coarse-mesh is shown in Tables (4.27) and (4.28). As expected, theL2

norm errors in the inverse-distance weights are smaller, asthe MLS fit behaves like an interpolant

when the distance between data and seed points approach zero. TheL2 norm errors in the cubic

spline quadratic MLS fits for the adjoint are one order of magnitude larger compared to the other

cubic spline fits.
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Table 4.17: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Cubic spline weights
correction from a coarse-mesh withCD = 2.271672 to a uniformly refined mesh with
CD = 2.0778713; True Error =−9.325%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.08860659 2.18306541 −5.062
Linear − Linear(anisotropic) −0.07975986 2.19191214 −5.488
Linear − Linear(mixed) −0.08521173 2.18646027 −5.226

Quadratic − Quadratic(isotropic) −0.09542261 2.17624939 −4.734
Quadratic − Quadratic(anisotropic) −0.33037676 1.94129524 6.572
Quadratic − Quadratic(mixed) −0.09161557 2.18005643 −4.917

Linear − Quadratic(isotropic) −0.1363136 2.1353584 −2.767
Linear − Quadratic(anisotropic) −0.1379030 2.1337690 −2.690
Linear − Quadratic(mixed) −0.1313387 2.1403333 −3.006

Quadratic − Linear(isotropic) −0.1209169 2.1507551 −3.507
Quadratic − Linear(anisotropic) −0.1363500 2.1353220 −2.764
Quadratic − Linear(mixed) −0.1221979 2.1494741 −3.445

Table 4.18: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Inverse-distance weights
correction from a coarse-mesh withCD = 2.271672 to a uniformly refined mesh with
CD = 2.0778713; True Error =−9.325%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.09028313 2.18138887 −4.981
Linear − Linear(anisotropic) −0.09316668 2.17850532 −4.843
Linear − Linear(mixed) −0.09262002 2.17905198 −4.869

Quadratic − Quadratic(isotropic) −0.10138606 2.17028594 −4.447
Quadratic − Quadratic(anisotropic) −0.40984835 1.86182365 10.39
Quadratic − Quadratic(mixed) −0.11318102 2.15849098 −3.88

Linear − Quadratic(isotropic) −0.10326479 2.16840721 −4.357
Linear − Quadratic(anisotropic) −0.12797833 2.14369367 −3.17
Linear − Quadratic(mixed) −0.11352251 2.15814949 −3.863

Quadratic − Linear(isotropic) −0.14136428 2.13030772 −2.523
Quadratic − Linear(anisotropic) −0.42476962 1.84690238 11.11
Quadratic − Linear(mixed) −0.16240366 2.10926834 −1.511
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Table 4.19: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Mixed cubic spline
weights correction forCD with linear-linear basis on non-uniformly refined meshes;
True Error1 = −8.25%, True Error2 = −8.06%.

Nodes CD Error CorrectedCD % Error
Correction after correction

13543 2.2716720 −0.05288262 2.21878938 −5.736

56808 2.0984108 −0.04865962 2.04975118 −5.558

253243 1.9418062 − − −

Table 4.20: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Mixed inverse-distance
weights correction forCD with linear-linear basis on non-uniformly refined meshes;
True Error1 = −8.25%, True Error2 = −8.06%.

Nodes CD Error CorrectedCD % Error
Correction after correction

13543 2.2716720 −0.0745105 2.1971615 −4.705

56808 2.0984108 −0.07674662 2.02166418 −4.112

253243 1.9418062 − − −

Table 4.21: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Mixed cubic spline weights
correction forCD with quadratic-quadratic basis on non-uniformly refined meshes;
True Error1 = −8.25%, True Error2 = −8.06%.

Nodes CD Error CorrectedCD % Error
Correction

13543 2.2716720 −0.07637621 2.19529579 −4.617

56808 2.0984108 −0.13209183 1.96631897 −1.262

253243 1.9418062 − − −

Table 4.22: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Mixed inverse-distance weights
correction forCD with quadratic-quadratic basis on non-uniformly refined meshes;
True Error1 = −8.25%, True Error2 = −8.06%.

Nodes CD Error CorrectedCD % Error
Correction after correction

13543 2.2716720 −0.07336892 2.19830308 −4.76

56808 2.0984108 −0.08416162 2.01424918 −3.73

253243 1.9418062 − − −
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Table 4.23: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Mixed cubic spline weights
correction for CD with linear-quadratic basis on non-uniformly refined meshes;
True Error1 = −8.25%, True Error2 = −8.06%.

Nodes CD Error CorrectedCD % Error
Correction after correction

13543 2.2716720 −0.10212237 2.16954963 −3.390

56808 2.0984108 −0.06444012 2.03397068 −4.746

253243 1.9418062 − − −

Table 4.24: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Mixed inverse-distance weights
correction for CD with linear-quadratic basis on non-uniformly refined meshes;
True Error1 = −8.25%, True Error2 = −8.06%.

Nodes CD Error CorrectedCD % Error
Correction after correction

13543 2.2716720 −0.09987072 2.17180128 −3.5

56808 2.0984108 −0.10708798 1.99132282 −2.55

253243 1.9418062 − − −

Table 4.25: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Mixed cubic spline weights
correction for CD with quadratic-linear basis on non-uniformly refined meshes;
True Error1 = −8.25%, True Error2 = −8.06%.

Nodes CD Error CorrectedCD % Error
Correction after correction

13543 2.2716720 −0.10570873 2.16596327 −3.219

56808 2.0984108 −0.08306125 2.01534955 −3.787

253243 1.9418062 − − −

Table 4.26: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Mixed inverse-distance weights
correction for CD with quadratic-linear basis on non-uniformly refined meshes;
True Error1 = −8.25%, True Error2 = −8.06%.

Nodes CD Error CorrectedCD % Error
Correction after correction

13543 2.2716720 −0.15995850 2.11171350 −0.634

56808 2.0984108 −0.08757107 2.01083973 −3.55

253243 1.9418062 − − −
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Figure 4.4: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Parallel cost for the error
correctedCD.

Table 4.27: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Globall2 norm of error in MLS
fit for flow solution

MLS fit Cubic spline Inverse-distance
weights weights

Linear − Linear(isotropic) 1.822E − 03 8.454E − 14
Linear − Linear(mixed) 1.814E − 03 7.914E − 14
Linear − Linear(anisotropic) 4.792E − 04 2.069E − 17

Quadratic − Quadratic(isotropic) 2.139E − 03 8.165E − 14
Quadratic − Quadratic(mixed) 2.025E − 03 1.374E − 14
Quadratic − Quadratic(anisotropic) 1.532E − 03 3.154E − 17

Table 4.28: Laminar flow over a Cylinder:M∞ = 0.3, Re = 100. Globall2 norm of error in MLS
fit for adjoint solution

MLS fit Cubic spline Inverse-distance
weights weights

Linear − Linear(isotropic) 3.086E − 03 4.088E − 13
Linear − Linear(mixed) 2.986E − 03 1.629E − 13
Linear − Linear(anisotropic) 9.407E − 04 6.647E − 18

Quadratic − Quadratic(isotropic) 8.855E − 02 1.117E − 11
Quadratic − Quadratic(mixed) 6.968E − 02 4.561E − 14
Quadratic − Quadratic(anisotropic) 6.964E − 02 7.153E − 18
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4.4.2.2 CD in a Onera M6 wing atM∞ = 0.8395, Re = 5, 000 andAOA = 3.060

The second viscous test case is laminar flow over an Onera M6 wing at a Mach number of

0.8395, chord-based Reynolds number of5, 000 and angle of attack of3.060. The output function

considered is the drag coefficientCD on the wing. For this test case, two coarse-meshes are

generated, a mixed-element and an all tetrahedral mesh, anderror estimates are evaluated on a

non-uniformly refined mixed-element fine-mesh. For the mixed-element meshes, prisms are used

in the boundary layer. For the tetrahedral mesh, the boundary layer prisms are subdivided into

tetrahedra in an advancing layer fashion. The mixed-element coarse-mesh contains80, 951 nodes,

656 surface quadrilaterals,23, 664 surface triangles,87, 009 prisms,3, 561 pyramids and176, 902

tetrahedrals. The tetrahedral coarse-mesh contains85, 286 nodes,25, 004 surface triangles and

470, 954 tetrahedrals, among which300, 944 are boundary layer tetrahedrals. The fine-mesh

contains516, 834 nodes,2, 607 surface quadrilaterals,78, 088 surface triangles,731, 774 prisms,

23, 413 pyramids and721, 791 tetrahedrals.

This case is performed to test the approximation power of theMLS prolongation operators

between meshes of different element types. This will validate the mesh independent nature of

the present MLS approximation. For the mixed-element coarse-mesh, the stencil is built with

rectangular supports only in boundary layer and circular supports are used in rest of the regions.

Supports are reconstructed when weights are applied isotropically or anisotropically. For the

tetrahedral coarse-mesh, the support is either circular inall regions (boundary layer and inviscid)

or rectangular in all regions. Tables (4.29) and (4.30) compare the cubic spline MLS fits for the

mixed-element and tetrahedral coarse-meshes. Except for the linear-linear MLS fits on the mixed-

element coarse-mesh, the remaining error in the correctedCD is less than40% of the true error.

The MLS operators perform well on both the coarse-meshes, thereby, validating the meshless

nature of the present MLS approximation.
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Table 4.29: Laminar flow over a Onera M6 wing:M∞ = 0.8395, AOA = 3.060, Re = 5, 000.
Cubic spline weights correction from a mixed-element coarse-mesh with
CD = 0.08785503 to a non-uniformly refined mixed-element mesh with
CD = 0.08280842; True Error =−6.09%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) 0.00066847 0.08852350 −6.901
Linear − Linear(anisotropic) −0.00061292 0.08724211 −5.354
Linear − Linear(mixed) −0.00059159 0.08726344 −5.379

Quadratic − Quadratic(isotropic) −0.00380478 0.08405025 −1.50
Quadratic − Quadratic(anisotropic) −0.00148669 0.08636834 −4.30
Quadratic − Quadratic(mixed) −0.00466223 0.08319280 −0.464

Linear − Quadratic(isotropic) −0.00285646 0.08499857 −2.644
Linear − Quadratic(anisotropic) −0.00310203 0.08475300 −2.348
Linear − Quadratic(mixed) −0.00296975 0.08488528 −2.508

Quadratic − Linear(isotropic) −0.00389405 0.08396098 −1.391
Quadratic − Linear(anisotropic) −0.00485201 0.08300302 −0.235
Quadratic − Linear(mixed) −0.00417283 0.08368220 −1.055

Table 4.30: Laminar flow over a Onera M6 wing: M∞ = 0.8395, AOA = 3.060,
Re = 5, 000. Cubic spline weights correction from a Tetrahedral coarse-mesh
with CD = 0.08726068 to a non-uniformly refined mixed-element mesh with
CD = 0.08280842; True Error =−5.37%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.00192239 0.08533829 −3.055
Linear − Linear(anisotropic) −0.00217514 0.08508554 −2.75

Quadratic − Quadratic(isotropic) −0.00225737 0.08500331 −2.650
Quadratic − Quadratic(anisotropic) −0.00258690 0.08467378 −2.252

Linear − Quadratic(isotropic) −0.00420017 0.08306051 −0.304
Linear − Quadratic(anisotropic) −0.00391970 0.08334098 −0.643

Quadratic − Linear(isotropic) −0.00240976 0.08485092 −2.466
Quadratic − Linear(anisotropic) −0.00281541 0.08444527 −1.976
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4.4.3 Turbulent flow

The one-equation turbulence model of Spalart and Allmaras [88] is used in the present study.

The turbulence model is solved in a loosely coupled manner inboth flow and sensitivity analysis.

The turbulent contributions to the mean flow are added by the eddy viscosityµt. To better

understand the influence ofµt on the computed error estimates, the error correction for turbulent

flows is evaluated in three ways: (1)µt is prolongated from the coarse-mesh; (2)µt is evaluated

by Eqn.(2.22) using the prolongated turbulent quantityν̃ at the fine-mesh; (3)µt is floored to zero

removing the turbulent contributions in mean flow.

4.4.3.1 CD in a NACA 0012 rectangular wing atM∞ = 0.95, Re = 3, 000, 000 andAOA = 00

The test case is turbulent flow over a NACA 0012 rectangular wing at a Mach number

of 0.95, chord-based Reynolds number of3, 000, 000 and angle of attack of00. The coarse-

mesh contains356, 420 nodes,2, 576 surface quadrilaterals,23, 072 surface triangles,611, 744

prisms and258, 874 tetrahedrals with a wall spacing of8e−06 of mean aerodynamic chord. Error

correction is performed on a non-uniformly refined fine-meshcontaining1, 003, 430 nodes,4, 570

surface quadrilaterals,71, 972 surface triangles,1, 706, 813 prisms and767, 814 tetrahedrals with

the same wall spacing as coarse-mesh.

The error corrections results are presented in Tables (4.31) to (4.36) for cubic spline and

inverse-distance weights. From the tables, it can be observed that the best corrections are observed

in quadratic-quadratic and quadratic-linear MLS fits for mixed supports, with the remaining error

in the correctedCD less than50% of the true error. Also, the error corrections evaluated with

computedµt (option (2)) are significantly better than the interpolatedand zeroedµt (options (1)

and (3)). For the quadratic-quadratic fit, the isotropic supports (all circular) and the anisotropic

supports (all rectangular) produce too small and too large corrections. This under-prediction and

over-prediction of corrections may be attributed to the useof rectangular supports in inviscid

regions for the anisotropic case and circular supports in the highly stretched boundary layer for

the isotropic case.
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All the linear-linear MLS fits produce inferior correctionswith the wrong signs. This behavior

is observed in all linear-quadratic fits also. The source of the inferior corrections can be attributed

to a bad linear approximation for the flow solution. The highly stretched nature of the boundary

layer elements with aspect ratios exceeding 10,000 may haveresulted in an ill-conditioned MLS

system that is converging to the wrong values for the linear approximation. Though the estimates

are not shown here, the linear approximations are tried withthe larger quadratic stencil, but, they

also resulted in corrections with wrong signs. This behavior requires further investigation of the

MLS support stencil for turbulent corrections and should beaddressed in future research.

The parallel CPU costs for the error correctedCD are shown in Fig.(4.5). It can be inferred that

large savings in parallel cost may be realized by performingerror correction. The quality of the

MLS fits for the turbulent case is shown in Tables (4.37) to (4.40). TheL2 norm errors in the linear

fits do not explain the behavior of the bad linear approximations. The quadratic approximations

have a largerL2 norm error, but, produced better corrections compared to the linear fits.

Table 4.31: Turbulent flow over a NACA0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Cubic spline weights correction from a coarse-mesh with
CD = 0.06146953 to a non-uniformly refined mesh withCD = 0.07064086 with
prolongatedµt; True Error =12.98%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.02044105 0.04102848 41.92
Linear − Linear(anisotropic) −0.02603397 0.03543556 49.83
Linear − Linear(mixed) −0.02049659 0.04097294 42.0

Quadratic − Quadratic(isotropic) 0.00066702 0.06213655 12.03
Quadratic − Quadratic(anisotropic) 0.01170592 0.07317545 −3.58
Quadratic − Quadratic(mixed) 0.00421005 0.06567958 7.02

Linear − Quadratic(isotropic) −0.01892106 0.04254847 39.77
Linear − Quadratic(anisotropic) −0.01778208 0.04368745 38.15
Linear − Quadratic(mixed) −0.01914460 0.04232493 40.08

Quadratic − Linear(isotropic) 0.00314096 0.06461049 8.53
Quadratic − Linear(anisotropic) −0.00642091 0.05504862 22.07
Quadratic − Linear(mixed) 0.00387947 0.06534900 7.5
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Table 4.32: Turbulent flow over a NACA0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Inverse-distance weights correction from a coarse-mesh with
CD = 0.06146953 to a non-uniformly refined mesh withCD = 0.07064086 with
prolongatedµt; True Error =12.98%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.01976715 0.04170238 40.96
Linear − Linear(anisotropic) −0.02684151 0.03462802 50.98
Linear − Linear(mixed) −0.01986285 0.04160668 41.10

Quadratic − Quadratic(isotropic) 0.00284616 0.06431569 8.95
Quadratic − Quadratic(anisotropic) 0.01381020 0.07527973 −6.56
Quadratic − Quadratic(mixed) 0.00444236 0.06591189 6.69

Linear − Quadratic(isotropic) −0.01863537 0.04283416 39.36
Linear − Quadratic(anisotropic) −0.01992065 0.04154888 41.18
Linear − Quadratic(mixed) −0.01702510 0.04444443 37.08

Quadratic − Linear(isotropic) 0.00996636 0.07143589 −1.12
Quadratic − Linear(anisotropic) 0.00931081 0.07078034 −0.20
Quadratic − Linear(mixed) 0.00611743 0.06758696 4.321

Table 4.33: Turbulent flow over a NACA0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Cubic spline weights correction from a coarse-mesh with
CD = 0.06146953 to a non-uniformly refined mesh withCD = 0.07064086 with
computedµt; True Error =12.98%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.02053464 0.04093489 42.05
Linear − Linear(anisotropic) −0.02575492 0.03571461 49.44
Linear − Linear(mixed) −0.02063805 0.04083148 42.2

Quadratic − Quadratic(isotropic) 0.00073695 0.06220648 11.93
Quadratic − Quadratic(anisotropic) 0.01523128 0.07670081 −8.57
Quadratic − Quadratic(mixed) 0.00718791 0.06865744 2.81

Linear − Quadratic(isotropic) −0.01913630 0.04233323 40.07
Linear − Quadratic(anisotropic) −0.01776635 0.04370318 38.13
Linear − Quadratic(mixed) −0.01946077 0.04200876 40.53

Quadratic − Linear(isotropic) −0.00230264 0.05916689 16.24
Quadratic − Linear(anisotropic) −0.00599742 0.05547211 21.47
Quadratic − Linear(mixed) 0.00606966 0.06753919 4.39
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Table 4.34: Turbulent flow over a NACA0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Inverse-distance weights correction from a coarse-mesh with
CD = 0.06146953 to a non-uniformly refined mesh withCD = 0.07064086 with
computedµt; True Error =12.98%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.01993086 0.04153867 41.20
Linear − Linear(anisotropic) −0.02592073 0.03554880 49.67
Linear − Linear(mixed) −0.01984222 0.04162731 41.07

Quadratic − Quadratic(isotropic) 0.00350393 0.06497346 8.02
Quadratic − Quadratic(anisotropic) 0.01395067 0.07542020 −6.76
Quadratic − Quadratic(mixed) 0.00458292 0.06605245 6.5

Linear − Quadratic(isotropic) −0.01895162 0.04251791 39.81
Linear − Quadratic(anisotropic) −0.02003803 0.04143150 41.35
Linear − Quadratic(mixed) −0.01714216 0.04432737 37.25

Quadratic − Linear(isotropic) 0.01017355 0.07164308 −1.42
Quadratic − Linear(anisotropic) 0.011644282 0.07311381 −3.5
Quadratic − Linear(mixed) 0.00845078 0.06992031 1.02

Table 4.35: Turbulent flow over a NACA0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Cubic spline weights correction from a coarse-mesh with
CD = 0.06146953 to a non-uniformly refined mesh withCD = 0.07064086 with µt

floored to zero; True Error =12.98%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.01843408 0.04303545 39.07
Linear − Linear(anisotropic) −0.01819439 0.04327514 38.73
Linear − Linear(mixed) −0.01861335 0.04285618 39.33

Quadratic − Quadratic(isotropic) 0.00037584 0.06184537 12.45
Quadratic − Quadratic(anisotropic) 0.01059496 0.07206449 −2.01
Quadratic − Quadratic(mixed) 0.00310038 0.06456991 8.6

Linear − Quadratic(isotropic) −0.01847939 0.04299014 39.14
Linear − Quadratic(anisotropic) −0.01330620 0.04816333 31.82
Linear − Quadratic(mixed) −0.01891338 0.04255615 39.75

Quadratic − Linear(isotropic) 0.00025986 0.06172939 12.61
Quadratic − Linear(anisotropic) −0.00635012 0.05511941 21.97
Quadratic − Linear(mixed) 0.00319125 0.06466078 8.46
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Table 4.36: Turbulent flow over a NACA0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Inverse-distance weights correction from a coarse-mesh with
CD = 0.06146953 to a non-uniformly refined mesh withCD = 0.07064086 with µt

floored to zero; True Error =12.98%.

MLS fit Error CorrectedCD % Error
Correction after correction

Linear − Linear(isotropic) −0.01785474 0.04361479 38.25
Linear − Linear(anisotropic) −0.01949098 0.04197855 40.57
Linear − Linear(mixed) −0.01784394 0.04362559 38.24

Quadratic − Quadratic(isotropic) 0.00016784 0.06163737 12.74
Quadratic − Quadratic(anisotropic) 0.00727151 0.06874104 2.68
Quadratic − Quadratic(mixed) 0.00209401 0.06356354 10.01

Linear − Quadratic(isotropic) −0.01825629 0.04321324 38.82
Linear − Quadratic(anisotropic) −0.02082238 0.04064715 42.45
Linear − Quadratic(mixed) −0.01791899 0.04355054 38.34

Quadratic − Linear(isotropic) 0.00752036 0.06898989 2.33
Quadratic − Linear(anisotropic) 0.00553917 0.06700870 5.14
Quadratic − Linear(mixed) 0.00232975 0.06379928 9.68
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Figure 4.5: Turbulent flow over a NACA0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Parallel cost for the error correctedCD with computedµt and
mixed supports.
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Table 4.37: Turbulent flow over NACA 0012 wing:M∞ = 0.95, AOA = 00, Re = 3, 000, 000.
Global l2 norm of error in MLS fit for flow solution

MLS fit Cubic spline Inverse-distance
weights weights

Linear − Linear(isotropic) 7.392E − 04 4.880E − 12
Linear − Linear(mixed) 6.905E − 04 5.647E − 13
Linear − Linear(anisotropic) 3.094E − 04 2.839E − 17

Quadratic − Quadratic(isotropic) 2.163E − 03 1.302E − 10
Quadratic − Quadratic(mixed) 1.367E − 03 4.333E − 14
Quadratic − Quadratic(anisotropic) 1.072E − 03 3.216E − 17

Table 4.38: Turbulent flow over NACA 0012 wing:M∞ = 0.95, AOA = 00, Re = 3, 000, 000.
Global l2 norm of error in MLS fit for adjoint solution

MLS fit Cubic spline Inverse-distance
weights weights

Linear − Linear(isotropic) 5.210E − 02 1.182E − 09
Linear − Linear(mixed) 4.205E − 03 7.823E − 12
Linear − Linear(anisotropic) 1.789E − 03 3.122E − 16

Quadratic − Quadratic(isotropic) 1.719E − 01 3.866E − 08
Quadratic − Quadratic(mixed) 1.371E − 01 2.228E − 10
Quadratic − Quadratic(anisotropic) 9.972E − 02 5.723E − 14

Table 4.39: Turbulent flow over NACA 0012 wing:M∞ = 0.95, AOA = 00, Re = 3, 000, 000.
Global l2 norm of error in MLS fit for turbulent quantitȳν

MLS fit Cubic spline Inverse-distance
weights weights

Linear − Linear(isotropic) 1.257E + 00 1.873E − 09
Linear − Linear(mixed) 1.255E + 00 1.745E − 09
Linear − Linear(anisotropic) 9.502E − 01 5.901E − 20

Quadratic − Quadratic(isotropic) 4.102E + 00 3.750E − 09
Quadratic − Quadratic(mixed) 2.715E + 00 1.374E − 14
Quadratic − Quadratic(anisotropic) 1.056E + 00 4.154E − 17
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Table 4.40: Turbulent flow over NACA 0012 wing:M∞ = 0.95, AOA = 00, Re = 3, 000, 000.
Global l2 norm of error in MLS fit for turbulent-adjoint

MLS fit Cubic spline Inverse-distance
weights weights

Linear − Linear(isotropic) 1.649E − 06 1.666E − 14
Linear − Linear(mixed) 8.450E − 07 7.823E − 12
Linear − Linear(anisotropic) 5.986E − 07 6.647E − 18

Quadratic − Quadratic(isotropic) 9.804E − 05 4.152E − 12
Quadratic − Quadratic(mixed) 7.552E − 05 4.561E − 14
Quadratic − Quadratic(anisotropic) 6.713E − 05 6.721E − 18



CHAPTER V

GRID ADAPTATION

This section demonstrates the final step in the present errorcorrection methodology:

implementation of an efficient and robust output-based gridadaptive scheme. The adjoint-based

and feature-based adaptive approaches are introduced and the adaptive indicators are formulated.

The adaptation mechanics is discussed and adaptation results are presented for inviscid, laminar

and turbulent test cases.

5.1 Adjoint-based Approach

The present output-based adaptive strategy suggested by Venditti and Darmofal [48, 69–

71] is based on the adjoint error correction procedure described in section 4.1. The adaptive

procedure strives to improve the error estimates{γh
H}T Rh(Qh

H) by reducing the level of error in

the computable error correction. By including the error in computable estimates, Eqn.(4.9) can be

written as

F (Q) − Fh(Qh
H) ≈ {γh

H}T Rh(Qh
H) +

{

γh − γh
H

}T
Rh(Qh

H) (5.1)

In the above equation, the first term on the right hand side is the computable error correction and

the second term is the error in computable correction. The relationship between the primal (flow)

and dual (adjoint) problem gives rise to another expressionfor the second term. Neglecting the

non-linear effects, the second term can be written as

(

γh − γh
H

)T
Rh(Qh

H) ≈ Rγ
h(γh

H)
(

Qh − Qh
H

)

(5.2)

72
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whereRγ
h(γh

H) is the adjoint residual given by

Rγ
h(γ) =

[

∂Rh

∂Qh

]T

Qh
H

{γ} +

{

∂Fh

∂Qh

}

Qh
H

(5.3)

A conservative adaptive indicator can be formed by including the errors in computing the

adjoint solution also in the formulation. The error indicator (EI ) formed by including both the

primal and adjoint residual errors is

EI =

(

γh − γh
H

)T
Rh(Qh

H) + Rγ
h(γh

H)
(

Qh − Qh
H

)

2
(5.4)

5.1.1 Implementation

The error intensity (EI ) at each fine-mesh nodei can be evaluated as

(EI)i =

{
∣

∣

∣

(

γh − γh
H

)T

i
Rh(Qh

H)i

∣

∣

∣
+
∣

∣Rγ
h(γh

H)i
(

Qh − Qh
H

)

i

∣

∣

}

2
(5.5)

By approximating

[γh − γh
H ] ≈ [(γh

H)HO − (γh
H)LO] ≡ [γHO − γLO]

[Qh − Qh
H ] ≈ [(Qh

H)HO − (Qh
H)LO] ≡ [QHO − QLO]

Eqn. (5.5) can be written as

(EI)i =

∣

∣

∣

(

γHO − γLO
)T

i
Rh(QHO)i

∣

∣

∣
+
∣

∣Rγ
h(γHO)i

(

QHO − QLO
)

i

∣

∣

2
(5.6)

whereγHO, QHO andγLO, QLO are the higher-order and lower-order prolongated adjoint and

flow solutions. Higher-order prolongation is performed using quadratic basis and lower-order

prolongation is achieved using linear basis. This has advantages computationally, as the need

to solve for the adjoint solution at the fine-mesh is avoided and the accuracy is not affected
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significantly. The only computational costs on this larger mesh are function evaluations, flow

and adjoint residual evaluations, and dot product of vectors.

The formation of adaptation parameters at the coarse-mesh from the error intensities at

the fine-mesh differs slightly for uniformly and non-uniformly refined fine-meshes, but, the

underlying principle is essentially the same. The adaptation parameterA1
p for a coarse-mesh node

k can be obtained from a uniformly refined fine-mesh by looping over all the coarse-mesh edges

surrounding nodek, and adding one-half of the error intensities (EI ) from each of the embedded

fine-mesh nodes located at the midpoint of these edges. The adaptation parameterA1
p at nodek is

given by

(A1
p)k =

n(k)
∑

j=1

(EI)j
2

(5.7)

wheren(k) is the summation over all the embedded fine-mesh nodes (whichare at the midpoint of

the edges surrounding nodek). The adaptation parameters can be obtained from a non-uniformly

refined fine-mesh by looping over all the coarse-mesh elements that contain fine-mesh nodes and

split the error intensityEI between all the nodes that make the element. The adaptation parameter

A1
p at nodek is given by

(A1
p)k =

e(k)
∑

i=1

n(i)
∑

j=1

(EI)j
di

(5.8)

wheree(k) is the number of coarse-mesh elements incident at nodek, n(i) is the number of fine-

mesh nodes contained by elementi anddi is the element size (number of nodes that make element

i).

5.2 Feature-based Approach

The second adaptive strategy is based on feature detection [64–67]. This approach strives to

identify and resolve the significant features of the flow. Theadaptation parameter (A2
p) can be

defined as

A2
p = {e1, e2, e3} (5.9)
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wheree1, e2, e3 are the error indicators given by

e1 = max

[

− V · gradQ

|V| , 0

]

(5.10)

e2 = max

[

+
V · gradQ

|V| , 0

]

(5.11)

e3 =

∣

∣

∣

∣

gradQ − V

|V|

(

V · gradQ

|V|

) ∣

∣

∣

∣

(5.12)

| · | represent the magnitude,Q is any suitable flow property andV denotes the velocity vector.

Each of these error indicators can isolate a particular typeof feature. The first two error indicators

represent expansions and compressions in the flow directionand the third represents gradients

normal to the flow direction [65]. At viscous boundaries,A2
p is defined only by the magnitude of

the gradient ofQ (| gradQ|) because of the no-slip boundary conditions (V=0).

5.3 Adaptation Mechanics

Simple adaptation mechanics are employed in the present study. The adaptation procedure

employed in the present study constitutes two stages: (1) formation of element-adaptation flags;

(2) h-refinement.

The adaptation parametersA1
p or A2

p given in Eqns.(5.7), (5.8) and (5.9) are formed at all the

coarse-mesh nodes. These nodal values are transferred to the elements by a simple averaging.

The mean (µ) and standard deviation (σ) of the adaptation parameters over all the coarse-mesh

elements are computed and elements are flagged for refinement, if their adaptation parameter is

greater than a proposed error limit (elim) given by

elim = µ + crel ∗ σ (5.13)

wherecrel is a relaxation factor usually greater than 0.5.

An unstructured mesh refinement module is developed using Python and C++ to perform

adaptation. The adaptive mesh library is based on [84–86] and performs isotropic h-refinement

of the elements. The refinement template [87] controls the pattern of subdivision of the mesh
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elements. The h-refinement templates used in the present study are shown in Appendix B. In

the present study, only node addition is considered and meshcoarsening is not implemented. H-

refinement is performed in 4 steps:

1. isotropically refine all flagged elements; the isotropic refinement pattern for each element

type is shown in Appendix B.

2. loop over all elements and identify the refinement patternfor each element by adding new

nodes if needed; this step should be repeated till no new nodes are added and all the elements

have valid refinement patterns.

3. split the element based on its refinement pattern.

4. perform boundary projection.

For h-refined tetrahedral meshes, quality improvement by local reconnection and Laplacian

smoothing is performed using AFLR3 [100]. No quality improvement is performed on mixed-

element meshes. In the present study, the mixed-element meshes from AFLR3 [100] typically

have prisms in the boundary layer, tetrahedra in the inviscid regions and pyramids in the transition

region. Anisotropic refinement of prisms resulted in poor quality pyramids and tetrahedrals in the

boundary layer. This is not desirable and hence, anisotropic refinement of prisms is not supported

in the present study. Because of this, no refinement is allowed in the streamwise direction of

boundary layer, especially for prisms. If streamwise refinement is allowed, this resulted in the

refinement of the whole layer to preserve the shape of prism.

The adaptation process creates boundary nodes at the midpoint of the edges, by a simple

averaging of the node coordinates. Boundary node projection is accomplished by using a

transfinite, visually continuous, triangular interpolantexplained in [60, 101]. The interpolant

is based on side-vertex interpolation in triangles [101]. The cubic Hermite interpolant uses

outward surface normals to reconstruct the surface and the resulting reconstructed surface is a

G1 representation with a continuously varying outward normalvector. The reader is referred to
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[60] for a derivation of the interpolant. This is a slightly better approximation than the simple

averaging of the nodes. In boundary layer regions if the projected boundary node resulted in

negative volumes, it is replaced with the averaged value.

5.4 Results and Discussions

Grid adaptation is performed using adjoint-based and feature-based approaches and the

improvement in functional estimates is observed. For adjoint-based adaptation, the adaptive

indicators are evaluated by prolongating the flow and adjoint solutions to a fine-mesh using the

MLS approximation described in chapter 4. The fine-mesh may be uniformly or non-uniformly

refined, though, uniform refinement should be the best choiceif multiple iterations of adaptation

are performed. In the present study, the number of adaptive iterations is limited to one or two and

so, non-uniformly refined meshes are also used, wherever seemed appropriate.

5.4.1 Inviscid flow

The first test case is inviscid flow over an Onera M6 wing at an angle of attack of3.060 and

Mach number of0.8395. A lambda shock is typical of these flow conditions and the estimates

of CL and CD are largely dependent on the accurate prediction of the shock and its location.

Adjoint-based adaptation is performed for both lift (CL) and drag (CD) coefficients on the wing

and compared with feature-based adaptation. For the adjoint-based adaptation, the non-uniformly

refined fine-mesh with976, 503 nodes,286, 728 surface triangles and5, 372, 918 tetrahedrals is

used to establish the adaptive indicators.

5.4.1.1 CD in a Onera M6 wing atM∞ = 0.8395 andAOA = 3.060

Figs.(5.1a) and (5.1b) show the convergence ofCD after two adaptive iterations. The adjoint-

basedCD adaptation reaches the finest-mesh estimate in two iterations with less than200, 000

nodes compared to976, 503 nodes at the finest-mesh; a factor 5 reduction in mesh size forthe

same level ofCD accuracy. Also, adjoint adaptation with correction achieves super-convergent

estimates and have probably converged to the asymptotic value for CD. The feature-based
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adaptation is converging to an erroneous value significantly larger than the finest-meshCD. From

Fig.(5.1a), it can be observed that theCD accuracy from adjoint-basedCL adaptation is better than

feature-based adaptation, but, slightly inferior to adjoint-basedCD adaptation. From the parallel

CPU costs shown in Fig.(5.1b), it can be noticed that large savings in parallel cost may be realized

by performing adjoint adaptation.

The initial and adjoint-adapted (CD) grids are shown in Figs.(5.2a) and (5.2b). There is

significant refinement near the leading and trailing edges and at the lambda shock location.

Fig.(5.3) shows the initial grid on the upper wing surface. The surface grids from adjoint and

feature adaptations are shown in Figs.(5.4) and (5.5). The feature-based adapted grid has excessive

refinement near the leading and trailing edges, but, have poor shock resolution. The poorCD

results from the feature approach may be attributed to the failure to resolve the lambda shock.

The adaptation parameter contours for the adjoint and feature-based approaches on the upper

wing surface of the initial grid are shown in Figs.(5.6a) to (5.6d). The adjoint error indicators have

identified the lambda shock, whereas, the feature error indicators have failed to identify the lambda

shock properly. A look at the initial density contours in Fig.(5.7) can explain this behavior. The

initial grid has resolved the shock poorly and the feature-based approach may need a well resolved

initial grid to identify the features. The resolution of theinitial grid did not pose a problem for

the adjoint approach. The density contours on the upper wingsurface of the adjoint and feature-

adapted grids are shown in Figs.(5.8) and (5.9). The lambda shock is clearly visible and captured

well by the adjoint approach. However, the feature approachhas failed to resolve the shock in two

iterations of adaptation.

5.4.1.2 CL in a Onera M6 wing atM∞ = 0.8395 andAOA = 3.060

Fig.(5.10) shows the convergence ofCL for the adjoint and feature approaches. From

Fig.(5.10), it can be noticed thatCL is better predicted by the adjoint approach, and the feature

approach is converging to a lower estimate ofCL. More adaptive iterations are needed for the

adjoint approach to attain the same level of accuracy as the finest-mesh estimate. However, the
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error correctedCL estimate from adjoint adaptation has achieved the finest-mesh accuracy in two

iterations. Also, theCL accuracy from adjoint-basedCL andCD adaptations compare favorably.

Fig.(5.11a) shows theCL adaptation contours on the upper wing surface for the first adaptation.

The adapted grid after twoCL adaptations is shown in Fig.(5.11b) for the upper wing surface. It

can be observed that there is considerable refinement near the lambda shock and near the leading

and trailing edges of the wing.
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Figure 5.1: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. CD convergence.
Correction computed with isotropic cubic spline weights and linear-quadratic basis.
(a)CD Vs Number of Nodes. (b)CD Vs Parallel cost.
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(a) (b)

Figure 5.2: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. (a) Initial Onera
M6 wing grid with 42, 114 nodes. (b) Onera M6 wing grid after two adjoint-CD

adaptations with172, 299 nodes.

Figure 5.3: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Initial surface grid
on upper wing (Total Nodes:42, 114).
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Figure 5.4: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Surface grid on
upper wing after two adjoint-CD adaptations (Total Nodes:172, 299).

Figure 5.5: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Surface grid on
upper wing after two feature adaptations (Total Nodes:498, 863).
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(a) (b)

(c) (d)

Figure 5.6: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Adaptation
parameters on upper wing surface in initial grid. (a) Adjoint-CD (Eqn.(5.8)); (b)
Feature1 (Eqn.(5.10)); (c) Feature2 (Eqn.(5.11)); (d) Feature3 (Eqn.(5.12)).
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Figure 5.7: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Density contours
on upper wing for initial grid.

Figure 5.8: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Density contours
on upper wing for adjoint-CD adapted grid.
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Figure 5.9: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. Density contours
on upper wing for feature-adapted grid.
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(a) (b)

Figure 5.11: Inviscid flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060. (a) Adjoint-CL

adaptation parameters on upper wing surface in the initial grid. (b) Surface grid on
upper wing after two adjoint-CL adaptations (Total nodes:177, 540).
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5.4.2 Viscous laminar flow

For the viscous cases, only adjoint adaptation is performedand uniformly refined grids are

used to evaluate the adaptive indicators.

5.4.2.1 CD in a unit Cylinder atM∞ = 0.1 andRe = 20

The first viscous test case is laminar flow over a unit cylinderat a Mach number of 0.1 and

Reynolds number of 20. The cylinder is capped with symmetry planes at both ends and has a height

of half its diameter. The initial cylinder grid shown in Fig.(5.12) contains 22,242 nodes, 4,608

surface quadrilaterals, 2,520 surface triangles, 36,864 prisms and 5,618 tetrahedrals. Adaptation

is performed forCD using the adjoint approach.

The convergence ofCD is shown in Figs.(5.13a) and (5.13b). The adjoint-based adaptation

converges to the finest-mesh estimate in two iterations. Theadapted grid has126, 812 nodes

compared to303, 152 nodes for the finest-mesh; a factor 2 reduction in mesh size isachieved for

the same level ofCD accuracy. A more accurate estimate ofCD is attained by combining error

correction with adaptation. The parallel CPU costs are shown in Fig.(5.13b), and it can be noticed

that considerable savings in parallel cost is obtained by performing adaptation.

The initial and final adapted symmetry plane grids are shown in Figs.(5.14a) and (5.14b). Near

field views of the symmetry plane grids are shown in Figs.(5.15a) and (5.15b). From Fig.(5.14b),

it can be observed that there is significant refinement in the front and wake of cylinder. The wake

regions are always a source of drag, and it can be noticed thatthe adjoint-based adaptation has

identified these regions for enrichment. The leading edge stagnation point and the regions of flow

acceleration near the top and bottom of the cylinder have been considerably refined. These are the

regions of the flow where pressure changes rapidly in the streamwise direction. This is confirmed

by a look at the pressure contours on the symmetry plane of theinitial grid in Fig.(5.16). The

pressure contours on the symmetry plane of the final adapted grid is shown in Fig.(5.17), and

it can be noticed that the pressure contours are symmetric and are better resolved. The velocity

magnitude (U =
√

u2 + v2 + w2) contours on the farther symmetry plane for the initial and

adapted grids are shown in Figs.(5.18) and (5.19). From the Figs.(5.18) and (5.19), it can be
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observed that the shear layer is better resolved in the adapted grid in the wake regions. The

tangential component of velocity vector for the initial andadapted grids are shown in Figs.(5.20)

and (5.21). The attached symmetric vortices behind the cylinder can be observed.

5.4.2.2 CL in a Onera M6 wing atM∞ = 0.8395, Re = 5, 000 andAOA = 3.060

The second case is laminar flow over an Onera M6 wing at a Mach number of0.8395, chord-

based Reynolds number of5, 000 and angle of attack of3.060. The initial grid contains85, 286

nodes,25, 004 surface triangles and470, 954 tetrahedrals. Out of470, 954 tetrahedra,300, 944 are

boundary layer tetrahedra that are arranged in an advancinglayer fashion. For this case, the flow

separates from the suction side of the wing at approximately75% chord lengths, while remaining

attached on the lower surface. The output function considered is the lift coefficientCL on the wing.

Because of the highly stretched tetrahedral elements in theboundary layer, only one iteration of

adaptation is performed, and the improvement inCL is observed.

The convergence ofCL is shown in Fig.(5.22). TheCL estimate from the adapted grid with

224, 997 nodes is better than the estimate on the uniformly refined mesh with 654, 047 nodes; a

factor 3 reduction in mesh size is achieved with an improved level of accuracy. The initial and

adapted upper wing surface grids are shown in Figs.(5.23a) and (5.23b). Figs.(5.24) and (5.25)

show the initial and adapted symmetry plane grids. The initial grid was generated with a large

boundary layer growth factor using AFLR3 [100] to keep the mesh size small. It can be noticed

that the first few layers of boundary layer have been refined tocompensate for the large growth

factor. Also, the region where the flow separates on the uppersurface (approximately75% of

chord length) has been considerably refined. The regions upstream of the leading edge (outside

the boundary layer), and the wake regions also have significant refinement. The Mach number

contours on the symmetry plane for the initial and adapted grids are shown in Figs.(5.26) and

(5.27). From the plots, it can be noticed that the shear layeris resolved better in the adapted grid.



88

Figure 5.12: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. Initial cylinder grid with the
near symmetry plane removed.
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Figure 5.13: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. CD convergence. Correction
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(a) (b)

Figure 5.14: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. (a) Initial symmetry plane grid
(Total Nodes:22, 242). (b) Symmetry plane grid after two adjoint-CD adaptations
(Total Nodes:126, 812).

(a) (b)

Figure 5.15: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. (a) Near field view of initial
symmetry plane grid. (b) Near field view of adjoint-adapted symmetry plane grid.
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Figure 5.16: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. Pressure contours on the
symmetry plane for initial grid.

Figure 5.17: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. Pressure contours on the
symmetry plane for adjoint-adapted grid.
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Figure 5.18: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. Velocity magnitude contours on
the symmetry plane for initial grid.

Figure 5.19: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. Velocity magnitude contours on
the symmetry plane for adjoint-adapted grid.
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Figure 5.20: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. Tangential component of
velocity vector on the symmetry plane for initial grid.

Figure 5.21: Laminar flow over a cylinder:M∞ = 0.1, Re = 20. Tangential component of
velocity vector on the symmetry plane for adjoint-adapted grid.
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(a) (b)

Figure 5.23: Laminar flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060, Re = 5, 000. (a)
Initial surface grid on upper wing. (b) Surface grid on upperwing after one adjoint-
CL adaptation
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Figure 5.24: Laminar flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060, Re = 5, 000.
Initial symmetry plane grid (Total Nodes:85, 286).

Figure 5.25: Laminar flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060, Re = 5, 000.
Symmetry plane grid after one adjoint-CL adaptation (Total Nodes:224, 997).
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Figure 5.26: Laminar flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060, Re = 5, 000.
Mach number contours on the symmetry plane for initial grid.

Figure 5.27: Laminar flow over Onera M6 wing:M∞ = 0.8395, AOA = 3.060, Re = 5, 000.
Mach number contours on the symmetry plane for adjoint-adapted grid.
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5.4.3 Turbulent flow

Because of memory constraints, only a single iteration of adaptation is performed for the

turbulent case.

5.4.3.1 CD in a NACA 0012 rectangular wing atM∞ = 0.95, Re = 3, 000, 000 andAOA = 00

Turbulent flow is simulated over a NACA 0012 rectangular wingat a Mach number of

0.95, chord-based Reynolds number of3, 000, 000 and angle of attack of00. The test case is

a supercritical flow with strong shocks on the upper and lowersurfaces of the wing. There is

shock/boundary layer interaction and because of the presence of strong shocks, the boundary layer

thickens and separates on the upper and lower wing surfaces.The output function considered

is the drag coefficientCD on the wing. The estimates ofCD are largely dependent on the

accurate prediction of the upper and lower wing shocks, especially their locations, and adequate

resolution of the separation zones in the boundary layer. The initial grid contains356, 420

nodes,2, 576 surface quadrilaterals,23, 072 surface triangles,611, 744 prisms and258, 874

tetrahedrals with a wall spacing of8 × 10−06 of the mean aerodynamic chord. For the adjoint-

based adaptation, the non-uniformly refined intermediate fine-mesh with1, 003, 430 nodes,4, 570

surface quadrilaterals,71, 972 surface triangles,1, 706, 813 prisms and767, 814 tetrahedrals is

used to establish the adaptive indicators. The wall spacingon the fine-mesh is same as the initial

grid.

The convergence ofCD is shown in Figs.(5.28a) and (5.28b). The estimate ofCD from

the adjoint-adapted grid with478, 952 nodes is better than the estimates from the non-uniformly

refined fine-mesh with1, 003, 430 nodes, and the uniformly refined mesh with2.35 × 106 nodes.

Also, note that the adapted gridCD has surpassed the estimate of the fine-mesh employed to form

the adaptive indicators. The feature-based approach has failed to make any improvements toCD

and in fact, there is loss of accuracy inCD from the feature-adapted grid with1, 135, 637 nodes.

From Fig.(5.28b) for the parallel CPU costs, it can be inferred that large savings in parallel cost

may be attained with adjoint-based adaptation.
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The surface grids on the upper wing surface for the initial, adjoint-adapted and feature-adapted

grids are shown in Figs.(5.29), (5.30) and (5.33). The initial, adjoint-adapted and feature-adapted

symmetry plane grids are shown in Figs.(5.31),(5.32) and (5.34). For the adjoint-adapted grid

shown in Figs.(5.30) and (5.32), besides refinement near theleading edge, trailing edge and surface

of the wing, there is moderate refinement in the wake regions,regions upstream of leading edge

(outside boundary layer) and regions near the outer edge of boundary layer. The feature-adapted

grid in Figs.(5.33) and (5.34) has considerable refinement near the leading and trailing edges of

the wing and has moderate surface refinement. There is no significant refinement in rest of the

regions.

The initial density contours on the upper and lower surfacesof the wing are shown in

Figs.(5.35a) and (5.35b) and it can be noticed that the shockis smeared over lot of points. From

the density contours of the adjoint-adapted grid in Figs.(5.36a) and (5.36b), it can be observed that

the curvature of the shock is captured well and there is a crisper shock compared to the initial grid.

However, in the density contours of the feature-adapted grid shown in Figs.(5.37a) and (5.37b),

the shock curvature is less captured, and there is no significant reduction in the smearing of shock

compared to the initial grid. The pressure contours on the symmetry plane of the initial grid is

shown in Fig.(5.38). The shocks are poorly resolved outsidethe boundary layer and in the inviscid

regions. In the pressure contours of the adjoint-adapted grid shown in Fig.(5.39), there is less

smearing of the shocks and their resolution in the inviscid regions have improved greatly. There

is no improvement in the pressure contours of the feature-adapted grid shown in Fig.(5.40). The

feature adaptation has been handicapped by the poor resolution on the initial grid. However, this

does not pose a problem for the adjoint adaptation. A better resolved initial grid may be needed

for the feature adaptation.

Figs.(5.41), (5.42) and (5.43) show the Mach number contours on the symmetry plane for the

initial, adjoint-adapted and feature-adapted grids. The Mach number contours are plotted here to

see the resolution of the separation zone in the boundary layer. From Figs.(5.41), (5.42) and (5.43),

the thickening of the boundary layer because of the shocks can be noticed. Figs.(5.44) and (5.45)
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show the Mach number contours near the trailing edge for the adjoint-adapted and feature-adapted

grids. It can be observed that the separation zone is better resolved by the adjoint adaptation, while,

it is poorly resolved in the feature approach. The feature approach predicts a large separation

with the flow separating immediately after the shock. But, the actual separation occurs further

downstream close to the trailing edge as predicted by the adjoint adaptation. The loss of accuracy

in the feature-adapted grid may be attributed to the poor resolution of the separation zone.
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Figure 5.29: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Initial surface grid on upper wing (Total Nodes:356, 420).

Figure 5.30: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Surface grid on upper wing after one adjoint-CD adaptation (Total
Nodes:478, 952).
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Figure 5.31: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Initial symmetry plane grid (Total Nodes:356, 420).

Figure 5.32: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Symmetry plane grid after one adjoint-CD adaptation (Total
Nodes:478, 952).
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Figure 5.33: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Surface grid on upper wing after one feature adaptation (Total
Nodes:1, 135, 637).

Figure 5.34: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Symmetry plane grid after one feature adaptation (Total Nodes:
1, 135, 637).
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(a) (b)

Figure 5.35: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Initial grid. (a) upper wing surface density contours; (b)lower
wing surface density contours.

(a) (b)

Figure 5.36: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Adjoint-adapted grid. (a) upper wing surface density contours;
(b) lower wing surface density contours.
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(a) (b)

Figure 5.37: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Feature-adapted grid. (a) upper wing surface density contours;
(b) lower wing surface density contours.

Figure 5.38: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Pressure contours on the symmetry plane for the initial grid.
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Figure 5.39: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Pressure contours on the symmetry plane for the adjoint-adapted
grid.

Figure 5.40: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.52, AOA = 00,
Re = 3, 000, 000. Pressure contours on the symmetry plane for the feature-adapted
grid.
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Figure 5.41: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Mach number contours on the symmetry plane for the initial grid.

Figure 5.42: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Mach number contours on the symmetry plane for the adjoint-
adapted grid.
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Figure 5.43: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Mach number contours on the symmetry plane for the feature-
adapted grid.

Figure 5.44: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Mach number contours near the trailing edge on the symmetry
plane for the adjoint-adapted grid.
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Figure 5.45: Turbulent flow over NACA 0012 rectangular wing:M∞ = 0.95, AOA = 00,
Re = 3, 000, 000. Mach number contours near the trailing edge on the symmetry
plane for the feature-adapted grid.



CHAPTER VI

SUMMARY AND RECOMMENDATIONS

An adjoint-based error estimation methodology has been presented that provides a quantitative

measure of the error in computed outputs and improves the computed accuracy of functional

outputs. The error estimates relate the local residual errors to the global error in output function

via adjoint variables as weight functions. The major steps of the error estimation methodology:

(1) development of adjoint sensitivity analysis capabilities; (2) development of an efficient and

robust error estimation procedure; (3) implementation of an output-based grid adaptive scheme

have been accomplished in this work.

In the first step, parallel discrete direct and adjoint sensitivity analysis capabilities have been

developed for variable Mach number flows on mixed-element unstructured meshes. The parallel

implementation is based on coarse-grained domain decomposition and has been shown to scale

well. Results for several cases validate the consistency oflinearization over sequential and parallel

runs. A modification has been proposed to the current class ofunstructured flux limiters to make

them piecewise continuous and suitable for discrete sensitivity analysis. The modified limiters

are essentially a weak form of the original limiters and havebeen found to be more dispersive

from numerical tests. The current study is perhaps the first work to accomplish a consistent

and complete linearization of limiters for discrete sensitivity analysis. An improved version

of Symmetric Gauss Seidel scheme and its exact dual algorithm have been implemented. The

algorithms exhibit identical asymptotic convergence rates, demonstrating numerical equivalence

between the direct and adjoint discretizations.

The second step required prolongation of flow and adjoint solutions from a coarse-mesh to a

fine-mesh to compute the error estimates. Smooth reconstruction of the coarse-mesh solutions has

been accomplished using the meshless Moving Least Squares (MLS) approximation. The MLS

108
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procedure has been found to compute highly accurate corrections on the fine-mesh. A thorough

investigation of the error correction procedure has been performed based on the choice of (a) basis

functions: linear basis for both flow and adjoint solutions (linear-linear), quadratic basis for both

flow and adjoint solutions (quadratic-quadratic), linear basis for flow solution and quadratic basis

for adjoint solution (linear-quadratic), quadratic basisfor flow solution and linear basis for adjoint

solution (quadratic-linear); (b) weight functions: cubicspline or inverse-distance; and (c) type of

support: circular, rectangular or mixed.

The linear-quadratic and quadratic-linear MLS fits have been helpful to understand the quality

of linear/quadratic approximations for the flow and adjointsolutions and to identify the source of

bad approximations in linear-linear and quadratic-quadratic fits. The cubic spline weights has been

found to produce smoother approximations compared to the inverse-distance weights, resulting in

slightly better corrections. Circular supports are found effective in inviscid regions (typically,

tetrahedrals and pyramids) and rectangular supports are found effective in boundary layer regions

(typically, prisms and hexahedrals). Circular supports should be the choice for tetrahedral meshes

and mixed (circular-rectangular) supports should be the choice for mixed-element meshes. Error

correction results presented for inviscid, laminar and turbulent flows demonstrate the robustness

of the developed error estimation procedure in improving functional accuracy. Also, this is the

first work to demonstrate the error correction procedure on mixed-element unstructured meshes

and both uniformly and non-uniformly refined fine-meshes.

In the final step, adjoint-based and feature-based adaptivestrategies have been implemented

to improve the accuracy of the chosen output to a prescribed tolerance. Grid adaptation results

presented for inviscid, laminar and turbulent flows demonstrate the robustness of the adjoint-based

approach over the feature-based approach. In all the adjoint adaptation cases presented, the same

level of functional accuracy has been accomplished with a much smaller mesh size (typically a

factor of 3 to 5 reduction in mesh size) compared to the uniformly and non-uniformly refined fine-

meshes. Also, significant savings in parallel CPU cost has been achieved by performing adjoint

adaptation. The feature approach has suffered by a poor resolution of the initial grid and failed to
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make significant improvements to functional accuracy. However, the resolution of the initial grid

did not pose a problem for the adjoint adaptation. A better resolved initial grid is needed by the

feature-based approach.

The first recommendation for future work is to improve the stability of the adjoint solver for

turbulent flows. In the present study, the loosely coupled implementation of the turbulence model

in the flow solver sometimes resulted in stalled convergenceor limit-cycle oscillations. This has

been detrimental to the convergence of sensitivity analysis solver. Future work may be to develop

a tightly coupled turbulence model along the lines of [21] orstabilize the adjoint calculations by

using the standard solver as a preconditioner with outer GMRES (Generalized Minimal Residual)

or RPM (Recursive Projection Method) iterations along the lines of [102, 103].

In the present study, the error correction procedure is sequential, and because of memory

constraints, complex geometries and large mesh sizes couldnot be handled. The second

recommendation for future work is to perform error estimation in parallel to handle large real

life applications. Parallel error estimation can be implemented by uniformly refining the mesh

in each individual partition and performing error estimation locally in each partition with due

care taken at the block boundaries. The error estimates in each individual partition can then be

post-processed based on the needs of the adaptation module.

The final recommendation for future work is to develop a unified framework for direct

interface of the CAD models to CFD software. By facilitatingdirect access to the CAD model,

mesh movement and mesh adaptation can be easily integrated with the CFD software, and this will

greatly improve design optimization capabilities. Furthermore, at a larger level, multidisciplinary

analysis and design can be performed with the CAD model serving as a common geometry

description.
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The moving least squares (MLS) procedure was proposed by Lancaster and Salkauskas [78]

for performing smooth interpolation of scattered data. Theidea is to start with a weighted least

squares fit for an arbitrary data point in the domain, and thenmove this point over the entire

parameter domain, where a weighted least squares fit is computed and evaluated for each point

individually. By choosing appropriate weight functions, this local weighted least squares fit results

in a global approximation with good smoothing properties. Adetailed study of the interpolating

property of the MLS methods can be found in [79–81]. More recently, MLS approximations have

become popular inmeshlessor element free Galerkinmethods. An excellent overview of the

MLS approximation to meshless methods can be found in [82]. The MLS procedure used in the

present study is based on the meshless approximation explained in [82]. In the following sections,

the MLS procedure is derived, the weight functions are introduced and the approach to build a

compact support is explained.

A.1 MLS Formulation

Consider the following form of approximation, wherex represent the co-ordinates of the

points andu, the data at these points. The MLS approximation can be written as

uh(x) =

m
∑

i=1

pi(x)ai(x) = pT (x)a(x) (A.1)

Here,uh(x) is the MLS approximation atx, pi(x) are the monomial basis functions,m is the

number of terms in the polynomial basis, andai(x) are the coefficients. The common basis

functions in three dimensions are

linear basis

pT (x) = (1, x, y, z) (A.2)

quadratic basis

pT (x) =
(

1, x, y, z, xy, yz, zx, x2 , y2, z2
)

(A.3)
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A local approximation ofuh(x) can be derived based on [78, 82]

uh(x,xI) =

m
∑

i=1

pi(xI)ai(x) = pT (xI)a(x) (A.4)

and the least squares problem can be defined as

F =
∑

I

w(x − xI)
(

uh(x,xI) − u(xI)
)2

=
∑

I

w(x − xI)

(

∑

i

pi(xI) ai(x) − uI

)2

(A.5)

In the above equation, the polynomial basispT is defined atxI and the unknown coefficientsai

are atx obtained from the weighted least squares fit for the local approximation.w(x−xI ) are the

weight functions with compact support given in section A.2.Writing Eqn.(A.5) as a least squares

minimization problem:

find a = {a0, a1, · · · , an} such that F(a∗) = min F(a). The coefficientsa(x) can be obtained

as
∂F

∂a
= 0 (A.6)

∑

I

w(x − xI)
[

p(xI)p
T (xI)a(x) − p(xI)u(xI)

]

= 0 (A.7)

Equation (A.7) can be written in matrix form as

PT WPa(x) −PT Wu = 0 (A.8)

where

uT = (u0, u1, · · · , un) (A.9)
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P =



















p1(x1) p2(x1) · · · pm(x1)

p1(x2) p2(x2) · · · pm(x2)

: : : :

p1(xn) p2(xn) · · · pm(xn)



















(A.10)

and

W =



















w(x − x1) 0 · · · 0

0 w(x − x2) · · · 0

: : : :

0 0 · · · w(x − xn)



















(A.11)

Equation (A.8) can be written as

PT WPa(x) = PT Wu (A.12)

[M ]a(x) = [B]u(xI) (A.13)

where[M ] = PT WP is the moment matrix and[B] = PT W. The coefficients can be obtained

by a simple inverse of[M ] as

a(x) = [M ]−1 [B]u (A.14)

By definingΦk(x) = {φk
1(x), φk

2(x), · · · , φk
n(x)} as the MLS shape functions of orderk, the

MLS approximation in Eqn.(A.1) can be cast as

uh(x) =

n
∑

I=1

φk
I uI (A.15)

and the shape functions are given by

Φk(x) = pT (x) [M ]−1 [B] (A.16)
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It is more common to use a scaled and locally defined polynomial basis instead of the globally

definedpT (xI) given by Eqns.(A.2) and (A.3). By defining the scaled coordinates as

x̄ =
(xI − x)

ρ1
, ȳ =

(yI − y)

ρ2
, z̄ =

(zI − z)

ρ3
(A.17)

Eqns.(A.2) and (A.3) can be written as

linear basis

pT (x̄) = (1, x̄, ȳ, z̄) (A.18)

quadratic basis

pT (x̄) =
(

1, x̄, ȳ, z̄, x̄ȳ, ȳz̄, z̄x̄, x̄2, ȳ2, z̄2
)

(A.19)

Here,ρ1, ρ2 andρ3 define the lengths of the support explained in section A.2. Toaccount for the

scaling, the Eqn.(A.16) for the MLS shape functions is now written as

Φk(x) = pT (0) [M ]−1 [B] (A.20)

The MLS problem defined by Eqn.(A.5) typically results in an overdetermined system with

more equations than unknowns. Also, the moment matrix[M ] in Eqn.(A.20) may be severely

ill-conditioned on highly stretched meshes. To avoid numerical instability and have a stable

algorithm, the least squares problem is solved using Singular Value Decomposition (SVD) [104].

A.2 Weight Functions

The MLS weight functionsw(x − xI) are typically defined to have compact support; i. e.,

they are non-zero over a relatively small part of the entire domain. The sub-domain that defines the

support is called the domain of influence. The most commonly used supports are circular (discs

or balls) and rectangular (rectangles or bricks). Mixed (rectangular-circular) supports may also be

used. Figs.(A.1), (A.2) and (A.3) show the circular, rectangular and mixed supports for a node I
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in two dimensions. In Figs.(A.1), (A.2) and (A.3), only the nodes inside the sub-domainΩI will

have influence on node I.

The commonly used weight functions in meshless approximations [82] are employed in this

study. For circular supports, the weight functions are isotropic. By definings = ‖x − xI‖; and

s̄ = s/ρ, whereρ = smax is the radius of the support, the weights functions [82] can be defined

as

cubic spline

w(s̄) =































2
3 − 4s̄2 + 4s̄3 ; s̄ ≤ 1

2

4
3 − 4s̄ + 4s̄2 − 4

3 s̄3 ; 1
2 < s̄ ≤ 1

0 ; s̄ > 1

(A.21)

inverse-distance

w(s) =















1
s2+ε

; s ≤ smax

0 ; s > smax

(A.22)

The above cubic spline and inverse-distance weights have been constructed to possessC2

continuity. For, inverse-distance weights,ε is a penalty factor that forces the MLS fit to interpolate

the data fors = 0. In the present study, a penalty factor ofε = 1e−12 is used. For rectangular

supports, tensor product weights (also referred as anisotropic weights) can be defined as

w(x − xI) = w(
‖x − xI‖

ρ1
)w(

‖y − yI‖
ρ2

)w(
‖z − zI‖

ρ3
) (A.23)

whereρ1 = ‖x − xI‖max, ρ2 = ‖y − yI‖max andρ3 = ‖z − zI‖max are the lengths of the

rectangular support.

A.3 Optimal Selection of Support Stencil

Optimal selection of nodes for the support stencil play a crucial role in producing a good

MLS approximation. The three main factors that influence thequality of MLS fit are: (1) support

stencil must contain nodes that produce the best possible approximation; (2) support stencil must
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I

ΩI

Figure A.1: Circular support for the MLS weight functions.

I

Ω I

Figure A.2: Rectangular support for the MLS weight functions.
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I

Ω I

Figure A.3: Mixed (Circular-Rectangular) support for the MLS weight functions.

have enough nodes to avoid an ill-conditioned MLS system; (3) the supports must have sufficient

overlap to ensure continuity of the approximation. In the present study, data values are interpolated

from a coarse-mesh to fine-mesh and therefore, (3) is satisfied most of the times. The best way to

satisfy (1) is to construct a stencil that includes nodes in the immediate vicinity of the node (say

’ i’), for which the approximation is sought. To accomplish (2), it is easy to expand the stencil with

a large number of nodes. However, an extremely overdetermined system dilutes the approximation

and results in a poor fit, thereby, not satisfying (1). The best way to satisfy (1) and (2) is to select

nodes based on local configurations; test the stencil for ill-conditioned components using Singular

Value Decomposition (SVD); and increase the stencil size ifneeded, to accomplish the requested

order of approximation. However, this is extremely expensive and is not done in the present study.

In the present study, a global stencil size is chosen for building the support. Typically, a stencil

size that is atleast twice the size of basis function produces a well-conditioned MLS system. For

circular support, a stencil size of 9 is chosen for the linearbasis, and a stencil size of 21 is chosen

for the quadratic basis. For rectangular support, a stencilsize of 6 is chosen for the linear basis, and

a stencil size of 24 is chosen for the quadratic basis. These stencil sizes need not be optimum and

they are chosen solely for a robust way to build the stencil. The stencil is built the following way

for the circular and rectangular supports using a octree data structure developed by Patel [105].
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For circular supports:

1. build a octree for the coarse-mesh coordinates.

2. perform a octree search to find the closest node to ’i’.

3. using this distance as starting radius, perform a radial search and add nodes till the required

stencil size is met.

For rectangular supports:

1. build a octree for the coarse-mesh element centroids.

2. perform a octree search to find the closest centroid to ’i’.

3. with the closest element centroid as start, do a local neighborhood search to find the element

containing ’i’. If the containing element is not found by the local search,the closest element

centroid is used as the containing element.

4. add all the nodes of containing element to the stencil; search stops here for linear basis.

5. do a directional search using the distances in x, y and z andadd the adjacent element nodes

till the required stencil size is met.

Since, the rectangular supports are in the boundary layer region, a 2:1 y-directional bias is used

when building the support for velocities and turbulent quantity. For density and pressure, a stencil

biased in x and z is built.



APPENDIX B

H-REFINEMENT TEMPLATES
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Hierarchical element subdivision, widely know as h-refinement is one of the easiest ways to

perform grid adaptation. Mesh enrichment is accomplished by subdividing the elements to form

smaller children elements based on predetermined refinement patterns. Typically, subdivision

rules are formulated to ensure valid element types are created during refinement. The isotropic

refinement of different elements is shown in Figs.(B.1), (B.2), (B.3) and (B.4). The isotropic

refinement of a tetrahedral, prism and hexahedral element results in 8 similar but smaller

tetrahedrals, prisms and hexahedrals respectively. The isotropic refinement of a pyramid element

results in 6 pyramids and 4 tetrahedral elements. In the present study, uniformly refined meshes

are generated by the isotropic refinement of the elements in the mesh based on Figs.(B.1), (B.2),

(B.3) and (B.4).

For adaptive mesh subdivision, only a limited number of refinement patterns are allowed.

Figs.(B.5) and (B.6) show the permitted subdivision types for triangular and quadrilateral faces.

The permitted subdivision types for tetrahedral elements is shown in Fig.(B.7). A tetrahedra may

be divided into 2, 4, or 8 children. The subdivision of tetrahedra into 2 or 4 elements helps to

stop additional mesh refinement. Fig.(B.8) shows the permitted subdivision types for prisms. A

prism may be divided into 2 or 4 children. Isotropic refinement of a prism is not performed and

instead, it is split into 4 new prisms. The refinement is allowed to propagate till the edge of the

boundary layer, but, streamwise propagation is stopped by the subdivision of neighboring prisms

into 2 new prisms. Though, the h-refinement module developedin the present study supports all

the refinement patterns/templates described in [87], only subdivision types used in the present

study are shown here.
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1 : 8

Figure B.1: Isotropic Refinement of Tetrahedra.

Figure B.2: Isotropic Refinement of Pyramid.

1 : 8

Figure B.3: Isotropic Refinement of Prism.
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1 : 8

Figure B.4: Isotropic Refinement of Hexahedra.

1 : 2

1 : 4

Figure B.5: Permitted subdivision types for Triangles in mesh adaptation.

1 : 2

Figure B.6: Permitted subdivision types for Quadrilaterals in mesh adaptation.
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1 : 2

1 : 4

1 : 8

Figure B.7: Permitted subdivision types for Tetrahedral elements in mesh adaptation.



133

1 : 2

1 : 4

Figure B.8: Permitted subdivision types for Prism elementsin mesh adaptation.
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