
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-9-2006

Clustering Multiple Contextually Related Heterogeneous Datasets Clustering Multiple Contextually Related Heterogeneous Datasets

Mahmood Hossain

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Hossain, Mahmood, "Clustering Multiple Contextually Related Heterogeneous Datasets" (2006). Theses
and Dissertations. 1073.
https://scholarsjunction.msstate.edu/td/1073

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1073?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1073&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

CLUSTERING MULTIPLE CONTEXTUALLY RELATED

HETEROGENEOUS DATASETS

By

Mahmood Hossain

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulf llment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2006

Copyright by

Mahmood Hossain

2006

CLUSTERING MULTIPLE CONTEXTUALLY RELATED

HETEROGENEOUS DATASETS

By

Mahmood Hossain

Approved:

Susan M. Bridges Julia E. Hodges
Professor of Computer Science and Professor of Computer Science and
Engineering Engineering, and Department Head
(Major Professor) (Committee Member)

Eric A. Hansen David A. Dampier
Associate Professor of Computer Science Associate Professor of Computer Science
and Engineering and Engineering
(Committee Member) (Committee Member)

Edward B. Allen Kirk H. Schulz
Associate Professor of Computer Science Dean of Bagley College of Engineering
and Engineering, and Graduate
Coordinator
(Committee Member)

Name: Mahmood Hossain

Date of Degree: December 8, 2006

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Susan M. Bridges

Title of Study: CLUSTERING MULTIPLE CONTEXTUALLY RELATED
HETEROGENEOUS DATASETS

Pages in Study: 149

Candidate for Degree of Doctor of Philosophy

Traditional clustering is typically based on a single feature set. In some domains,

several feature sets may be available to represent the same objects, but it may not be easy

to compute a useful and effective integrated feature set. We hypothesize that clustering

individual datasets and then combining them using a suitable ensemble algorithm will

yield better quality clusters compared to the individual clustering or clustering based on

an integrated feature set.

We present two classes of algorithms to address the problem of combining the results

of clustering obtained from multiple related datasets where the datasets represent identi-

cal or overlapping sets of objects but use different feature sets. One class of algorithms

was developed for combining hierarchical clustering generated from multiple datasets and

another class of algorithms was developed for combining partitional clustering generated

from multiple datasets. The f rst class of algorithms, called EPaCH, are based on graph-

theoretic principles and use the association strengths of objects in the individual cluster

hierarchies. The second class of algorithms, called CEMENT, use an EM (Expectation

Maximization) approach to progressively ref ne the individual clusterings until the mutual

entropy between them converges toward a maximum.

We have applied our methods to the problem of clustering a document collection

consisting of journal abstracts from ten different Library of Congress categories. After

several natural language preprocessing steps, both syntactic and semantic feature sets were

extracted. We present empirical results that include the comparison of our algorithms with

several baseline clustering schemes using different cluster validation indices. We also

present the results of one-tailed paired T-tests performed on cluster qualities. Our methods

are shown to yield higher quality clusters than the baseline clustering schemes that include

the clustering based on individual feature sets and clustering based on concatenated feature

sets. When the sets of objects represented in two datasets are overlapping but not identical,

our algorithms outperform all baseline methods for all indices.

ACKNOWLEDGMENTS

Praise be to God, Lord of the Worlds, The Benef cent, the Merciful. I express my

sincere gratitude to everyone who helped bring this dissertation to completion. First and

foremost, I acknowledge Dr. Susan Bridges, my major professor. I am deeply indebted

to her for her continuous guidance, encouragement, and patience throughout my Ph.D.

program. I also express my appreciation to other members of my committee, Dr. Julia

Hodges, Dr. Eric Hansen, Dr. David Dampier, and Dr. Ed Allen for their suggestions,

support, and availability. Special thanks to Dr. Yong Wang for sharing his document pre-

processing programs without which it would not have been possible to complete the work

by this time. I am grateful to my beloved wife Mimi for her endless emotional support

and my mother for giving me the inspiration throughout my life. Finally, I appreciate my

wonderful kids Raimah and Rameen who bring joy to my life.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ii

LIST OF TABLES . vi

LIST OF FIGURES . viii

CHAPTER

I. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Statement of Hypothesis . 4
1.3 Contributions . 5
1.4 Organization . 7

II. LITERATURE REVIEW . 8

2.1 Clustering Algorithms . 8
2.1.1 K-means Clustering . 8
2.1.2 Hierarchical Clustering . 9
2.1.3 Graph Theoretic Clustering . 11
2.1.4 EM Clustering . 14
2.1.5 Semi-Supervised Clustering . 15

2.2 Similarity/Distance Measures . 16
2.3 Cluster Ensemble . 18
2.4 Combining Phylogenetic Trees . 21
2.5 Clustering Heterogeneous Datasets . 24

III. CLUSTERING HETEROGENEOUS DATASETS 27

3.1 Problem Description . 27
3.2 Clustering Heterogeneous Datasets with Hierarchical Clustering 29

3.2.1 Hierarchical Clustering . 29
3.2.2 Hierarchical Clustering on Heterogeneous Datasets 33

3.3 Mapping between Heterogeneous Datasets 36

iii

CHAPTER Page

3.4 Combining Heterogeneous Cluster Hierarchies 38
3.4.1 Preliminary Def nitions . 38
3.4.2 Removing Leaves of a Dendrogram 41
3.4.3 Expanding Leaves of a Dendrogram 42
3.4.4 Cover of a Dendrogram . 43
3.4.5 Combining Dendrograms . 43

IV. ENSEMBLE ALGORITHMS FOR HIERARCHICAL CLUSTERING 47

4.1 Phylogenetic Tree Combination Methods 48
4.1.1 Consensus Tree . 48
4.1.2 Supertree . 49

4.2 Generating Partitional Clusters from Multiple Cluster Hierarchies 51
4.2.1 Algorithm Overview . 53
4.2.2 An Illustrative Example . 57
4.2.3 The EPaCH Algorithm . 61
4.2.4 Complexity of EPaCH . 61

4.3 EPaCHW - A Modif cation of EPaCH 69
4.3.1 Potential Problem with EPaCH 69
4.3.2 Overview of EPaCHW . 71

V. EXPERIMENTAL RESULTS . 73

5.1 Datasets . 73
5.2 Experimental Design . 75
5.3 Evaluation Methods . 78

5.3.1 Davies-Bouldin Index . 79
5.3.2 Entropy . 79
5.3.3 Purity . 80
5.3.4 F -measure . 80

5.4 A Modif ed DB-Index . 81
5.4.1 Simulation with MDB . 84

5.5 Results of Algorithm Evaluation . 86
5.5.1 Results with Datasets having Identical Sets of Objects 86
5.5.2 Results with Datasets having Overlapping Sets of Objects 96
5.5.3 Effect of Decreasing Overlap between Datasets 102

5.6 Summary . 105

VI. PARTITIONAL CLUSTERING OF HETEROGENEOUS DATASETS USING
MUTUAL ENTROPY . 107

iv

CHAPTER Page

6.1 Motivation . 107
6.2 An EM Algorithm for Clustering Heterogenous Datasets 109

6.2.1 Model-based Clustering . 109
6.2.2 Problem Def nition . 110
6.2.3 The Probability Function . 111
6.2.4 The Likelihood Function . 112
6.2.5 Algorithm Overview . 113
6.2.6 Complexity . 118

6.3 CEMENT2 - A Modif cation of CEMENT1 120
6.3.1 Algorithm Overview . 120
6.3.2 Complexity . 123

6.4 Results of Algorithm Evaluation . 125
6.4.1 Results with Datasets having Identical Sets of Objects 125
6.4.2 Results with Datasets having Overlapping Sets of Objects 133

6.5 Summary . 135

VII. CONCLUSIONS AND FUTURE WORK 137

7.1 Contributions . 137
7.2 Future Work . 141

REFERENCES . 144

v

LIST OF TABLES

TABLE Page

4.1 Strengths of association for different pairs of objects in Fig. 4.3 58

5.1 DB-Index values for perfect clustering . 83

5.2 Comparison of modif ed DB-Index for EPaCH algorithms 87

5.3 Comparison of entropy for EPaCH algorithms 88

5.4 Comparison of purity for EPaCH algorithms 89

5.5 Comparison of F -measure for EPaCH algorithms 90

5.6 The one-tailed T -test results for comparing EPaCH algorithms with other
clustering schemes where = 05 and Tcritical = 1 699 95

5.7 Comparison of modif ed DB-index for EPaCH algorithms - results are for
datasets with 50% of the objects randomly removed 98

5.8 Comparison of entropy for EPaCH algorithms - results are for datasets with
50% of the objects randomly removed 99

5.9 Comparison of purity for EPaCH algorithms - results are for datasets with 50%
of the objects randomly removed . 100

5.10 Comparison of F -measure for EPaCH algorithms - results are for datasets with
50% of the objects randomly removed 101

5.11 The one-tailed T -test results for comparing EPaCH algorithms with other
clustering schemes where = 05 and Tcritical = 1 699 - results are
for datasets with 50% of the objects randomly removed 104

6.1 Comparison of modif ed DB-index for CEMENT algorithms 127

vi

TABLE Page

6.2 Comparison of entropy for CEMENT algorithms 128

6.3 Comparison of purity for CEMENT algorithms 129

6.4 Comparison of F -measure for CEMENT algorithms 130

6.5 The one-tailed T -test results for comparing CEMENT algorithms with other
clustering schemes where = 05 and Tcritical = 1 699 132

vii

LIST OF FIGURES

FIGURE Page

2.1 Clusters as internal nodes in a dendrogram 10

3.1 The agglomerative clustering algorithm . 31

3.2 The average-link agglomerative clustering process 33

3.3 Datasets with identical objects but different feature sets 34

3.4 Dendrograms generated by the datasets of Figure 3.3 - Figure 3.3(a) generates
3.4(a) and Figures 3.3(b) and 3.3(c) generate 3.4(b). 35

3.5 Different types of mapping between the objects of two datasets 37

3.6 Clusters as internal nodes in a dendrogram 40

3.7 Removing a leaf from a dendrogram . 41

3.8 Expanding a leaf from a dendrogram . 42

3.9 The cover of a dendrogram . 44

3.10 Computing the ref nement of two dendrograms using a given mapping 46

4.1 Problem with the dendrogram generated by the supertree algorithm 52

4.2 Clusters as internal nodes in a dendrogram 54

4.3 The depths of sub-clusters in dendrograms 57

4.4 Cluster association graph . 59

4.5 Normalized cluster association graph . 60

viii

FIGURE Page

4.6 The EPaCH algorithm . 62

4.7 A cluster hierarchy with worst-case complexity for EPaCH 63

4.8 A cluster hierarchy with best-case complexity for EPaCH 65

4.9 Problem with EPaCH . 70

5.1 Problems with DB-Index . 82

5.2 Changes in original DB-Index and modif ed DB-Index against changes in F -
measure for synthetic distance matrices 85

5.3 Comparison of averages of different validation indices for EPaCH algorithms
and baseline clustering schemes . 94

5.4 Comparison of averages of different validation indices for EPaCH algorithms
and baseline clustering schemes - results are for datasets with 50% of the
objects randomly removed . 103

5.5 Changes in F -measure averages with decreasingly overlapped datasets 105

6.1 Computing seed clusters from two partitional clusterings 116

6.2 The CEMENT1 algorithm . 119

6.3 Adjustment of one clustering using another in CEMENT2 122

6.4 The CEMENT2 algorithm . 124

6.5 Comparison of averages of different validation indices for CEMENT algorithms
and baseline clustering schemes . 131

6.6 Comparison of averages of different validation indices for CEMENT algorithms
and baseline clustering schemes - results are for datasets with 50% of the
objects randomly removed . 134

ix

CHAPTER I

INTRODUCTION

Clustering is a well-studied data mining problem that has found applications in many

areas. Cluster analysis is the process of categorizing data into subsets that have meaning

in the context of a particular problem. There are different clustering algorithms each of

which may or may not be suited to a particular application. These algorithms are based on

discrete descriptions of the data and are designed to capture complex relationships between

data objects. The objective in any clustering application is to maximize the inter-cluster

differences and intra-cluster similarities.

1.1 Motivation

The focus of this dissertation is a set of new algorithms for clustering multiple het-

erogeneous datasets where the datasets are related but may represent different objects, the

datasets may represent different types of objects, and the attributes of the object sets may

differ signif cantly. For example, clustering can be used to partition a document collection

into well-separated groups based on different types of information derived using different

preprocessing techniques. Noun-phrase extraction allows us to generate a clustering of

documents based on the syntactic information contained in the data while sense disam-

biguation allows us to generate a clustering of documents based on semantic information.

1

2

It is likely that the results of clustering the documents based on these two types of informa-

tion will produce different clusterings of the data. Improved clustering would be expected

if both types of information are used.

As another example, consider the biology domain where scientists are interested in

identifying groups of genes that are expressed in similar patterns and thus may be co-

regulated. Expression of genes can be measured using mRNA levels (gene expression

data) or using protein expression levels. The methods differ in sensitivity and some genes

may be transcribed to mRNA that are not translated to proteins. In addition, changes in

protein levels are sometimes controlled using mechanisms other than gene expression. To

further complicate matters, both gene expression and protein expression datasets are noisy.

A unif ed clustering of these datasets can compensate for the noise and has the potential to

reveal new biological insight.

The traditional clustering paradigm pertains to a single dataset. In some problem do-

mains, multiple heterogeneous datasets may be available that can provide complementary

information. Clustering these datasets may reveal interesting relationships between ob-

jects. Fern and Brodley [19], Hu and Yoo [28], and Strehl and Ghosh [53] have developed

ensemble methods to combine the results from different clusterings. These algorithms

were designed to use a single dataset that is clustered using different algorithms or mul-

tiple runs of the same algorithm with different parameters or initial settings. In general,

these algorithms are not applicable for combining clustering results generated from differ-

3

ent datasets. In addition, they typically work only with partitional clustering and cannot

be used with popular hierarchical clustering approaches.

Recently, there has been some research in clustering multiple heterogeneous datasets.

The problem of clustering heterogeneous data can be solved in two general ways: (1) clus-

tering multiple datasets using an integrated feature space and (2) clustering the datasets

individually and then combining the clusters based on some mapping or correlation. Meth-

ods employing the f rst approach (e.g., Dagan, Marx, and Shamir [12], Pavlidis et al. [43])

typically require the heterogeneous data sets to be integrated into a unif ed feature space.

This can cause substantial sparseness in the integrated feature space. Also, there can be

signif cant differences in dimensionality of the datasets or the feature vectors for the dif-

ferent datasets can be of different types (e.g., one having continuous attributes, one having

categorical attributes, etc.). The feature space from one dataset might provide more infor-

mation than the feature space from another dataset and thus the latter may contribute noise

and the overall cluster quality can deteriorate. On the other hand, methods that cluster

the data sets independently and combine the clusters (e.g., Marx et. al. [39]) may require

some kind of similarity computation between pairs of heterogeneous data elements. But,

due to the heterogeneity of data across multiple datasets, computing such similarity may

not be trivial.

Even though there has been some research in clustering multiple datasets, this new

paradigm of clustering is still in its infancy. There is no concrete framework that can be

tailored to a specif c application. We argue that such a clustering framework should be

4

based on a mapping between the objects of two datasets. This mapping can be of different

types depending on how an object from one dataset is mapped to zero or more objects in

another dataset and vice-versa. This will allow us to take care of not only multiple datasets

consisting of different aspects of the same objects, but also multiple datasets consisting of

different object sets.

1.2 Statement of Hypothesis

For clustering tasks involving multiple contextually related datasets, we introduce an

approach that clusters the datasets individually using hierarchical or partitional cluster-

ing and combines the resulting sets of clusters using a mapping framework between the

datasets. We consider two datasets to provide complementary information when a map-

ping can be established between objects of the datasets and each feature set has relevance

in the context of the same clustering task. The hypothesis of this research is that when

multiple datasets provide complementary information, this ensemble approach can yield

improved clustering performance over clustering individual data sets. In cases where the

data sets differ in the number of objects they contain or the aspects of the objects repre-

sented in the feature sets, this approach can produce better results than clustering based

on a unif ed feature space.

5

1.3 Contributions

This dissertation describes a set of algorithms that have been developed for combining

the clustering results obtained from multiple contextually related datasets. In particular,

we have developed two families of algorithms. The f rst family is designed for use with

hierarchical clustering and the second one for use with partitional clustering.

Hierarchical clustering [25] is a powerful clustering method that generates a set of

nested clusters in the form of a tree. Previous ensemble approaches [19, 28, 53] have

been applied to combine partitional clustering results. One focus of this dissertation is

the design of an ensemble approach for combining multiple hierarchical clusterings. Tree

combination methods [7, 22, 24, 38, 44, 48, 49] have been studied primarily in the con-

text of phylogenetic trees where multiple trees are combined into a single representative

tree. A phylogenetic tree is used to represent the evolutionary relationships between dif-

ferent organisms. We demonstrate in this dissertation that phylogenetic tree combination

methods can be used for heterogeneous data clustering, but they have their limitations.

A clustering application involving multiple datasets may demand a partitional clus-

tering or a hierarchical clustering as the output. Phylogenetic tree combination methods

combine two or more individual cluster hierarchies to form another cluster hierarchy. Par-

titional clusters extracted by cutting the resulting cluster hierarchy may not be of satisfac-

tory quality. It is important, therefore, to explore methods for producing both hierarchical

and partitional clusterings from the combination of two hierarchical clusterings. Graph-

based methods can play an important role since the cluster membership of data points can

6

be captured in the adjacency relationship of a graph. Also, the phylogenetic methods con-

sider only the taxonomic structure of the original hierarchies and ignore the intra-cluster

similarity in the hierarchies. Incorporating the similarity measures associated with the

internal nodes of the cluster hierarchies can improve the process of combining them.

When two contextually related datasets are clustered individually, little may be known

about their respective distributions. Expectation Maximization (EM) algorithms are very

well known for their ability to estimate the parameters of unknown distributions. The EM

algorithm can be used to combine two individual clusterings obtained from two contextu-

ally related datasets.

The contributions of this research are the following:

 A new ensemble-based approach for combining the results of hierarchical clustering

of multiple heterogeneous datasets.

– A general mapping technique between hierarchical clusterings.

– Application of supertree and consensus tree methods from phylogenetics to

combine clusters from related heterogeneous datasets.

– A new family of graph-theoretic algorithms called EPaCH for combining hier-

archical clusters to produce partitional clusters.

 A new family of EM-type algorithms called CEMENT for combining the results of

partitional clustering of multiple heterogeneous datasets.

 An improved method for computing the DB-index [13] for evaluating cluster quality.

7

Our test domain consists of a large document collection. We have applied our meth-

ods to document clustering where the same document set is preprocessed using different

mechanisms to create different features [60]. We identif ed several baselines to compare

the performance of our algorithms using a number of different cluster validation indices.

1.4 Organization

This dissertation is organized as follows. In this chapter, we have introduced the

research problem, provided the hypothesis, and described the contributions of the disserta-

tion. In Chapter II, we provide a review of the background literature related to the current

work. In Chapter III, we describe the problem of clustering heterogeneous datasets, de-

velop the mathematical notation used to describe the problem and algorithms, and present a

mapping technique for combining multiple cluster hierarchies resulting from multiple con-

textually related datasets. In Chapter IV, we present a graph-theoretic algorithm EPaCH

for generating partitional clusters from multiple hierarchical clusters and also present a

variation, EPaCHW, that considers the intra-cluster similarity measures. In Chapter V, we

describe our datasets, present the baselines, and the experimental results for the algorithms

presented in Chapter IV. In Chapter VI, we present two EM-type algorithms (CEMENT1

and CEMENT2) for combining multiple partitional clusterings and the evaluation results

for these algorithms. Finally, we summarize the algorithms developed and their signif -

cance and discuss future extensions and possible applications of the research in Chapter

VII.

CHAPTER II

LITERATURE REVIEW

Clustering is an unsupervised data mining task used to partition a set of objects into

meaningful groups (clusters) such that the objects in a group are similar to each other and

dissimilar from objects in another group. Clustering algorithms can be categorized along

several dimensions, e.g., hierarchical and partitional, hard and soft, disjunctive and non-

disjunctive, deterministic and stochastic, etc. In this chapter, we present an overview of

the clustering literature that is relevant to our work.

2.1 Clustering Algorithms

2.1.1 K-means Clustering

K-means clustering [37] is a simple, but popular, form of cluster analysis. It is a

partitional clustering method that divides the instances into k clusters. Each instance is

initially randomly assigned to one of k clusters. The mean of each cluster is then computed

and each instance is reassigned to the cluster having the closest mean. This two-step

process is repeated until the newly computed means in one iteration become identical to

the means from the previous iteration or until another stopping criteria has been reached

(i.e., maximum number of iterations). The K-median clustering algorithm is a variation of

the K-means method that uses the median of each cluster rather than the mean. [25, 46]
8

9

K-means clustering is sensitive to the initial selection of clusters. To f nd an optimal

clustering, the algorithm is typically repeated a number of times and the solution with the

smallest sum of intra-cluster distances is selected. The K-means algorithm is based on

the assumption that each cluster comes from a normal density distribution. The algorithm

encounters problems when clusters are derived from distributions that are far from normal,

are of differing sizes, or that contain outliers.

The bisecting K-means algorithm [51] is a variant of K-means that can produce ei-

ther a partitional or a hierarchical clustering by recursively applying the basic K-means

method. It starts by considering the whole dataset to be one cluster. At each step, one

cluster (often the largest) is selected and divided into two sub-clusters using the basic K-

means algorithm. This process continues until the desired number of clusters or some

other specif ed stopping condition is reached.

2.1.2 Hierarchical Clustering

Hierarchical clustering is a powerful and useful method. The basic idea is to compute

a dendrogram (Figure 2.1) that assembles a set of instances into a tree. It can be performed

in two ways: bottom-up (agglomerative) and top-down (divisive) [25]. The bottom-up

approach works by placing each instance in its own cluster and then merging these atomic

clusters into progressively larger clusters until all the instances are in a single cluster or

some termination point is reached. The top-down approach works by placing all instances

In

tra
-C

lu
ste

r
Si

m
ila

rit
y

max

10

in one cluster and then subdividing this initial cluster into progressively smaller clusters

until each instance forms a cluster on its own or some termination point is reached.

In
tra

-C
lu

ste
r

Si
m

ila
rit

y

max

Figure 2.1 Clusters as internal nodes in a dendrogram

The agglomerative algorithm starts by computing a similarity matrix for all pairs of

instances. Then the two closest remaining instances/clusters are joined to create a new

node of the tree. The length of the branch is based on the similarity between the joined

items. The two joined items are replaced by the new node and the similarity matrix is

updated. The process is repeated n-1 times until there remains only one cluster of size n

[46].

There are three different ways of updating the similarity matrix: single-link, complete-

link, and average-link [17]. Single-link is based on the maximum similarity between the

instances of two clusters, complete-link is based on the minimum similarity between the

instances of two clusters, and average-link is based on the average similarity between the

instances of two clusters.

11

The strength of hierarchical clustering is that it does not require a parameter for the

number of clusters and any desired number of clusters can be obtained by cutting the den-

drogram at the proper level. It is also less susceptible to noise and outliers. In addition, the

structure of the dendrogram may correspond to meaningful taxonomies in some domains.

2.1.3 Graph Theoretic Clustering

The traditional clustering algorithms described above may have an unacceptable com-

putational cost in very high dimensional data spaces. Graph theoretic algorithms are based

on graph theory and can overcome the problem with high dimensionality by exploiting the

simplif ed structure of a graph. These algorithms also do not depend upon the geometric

structure of the clusters. There are many variations in the family of graph theoretic clus-

tering algorithms including minimal spanning tree (MST) based methods, clique based

methods, multilevel partitioning methods, hypergraph based methods, etc.

In general, the idea is to produce a graph where vertices correspond to data points and

an edge corresponds to the link between two similar data points [62]. Then an algorithm

is used to partition the graph into highly connected components based on some constraints

and each component refers to a cluster. Hartuv and Shamir [26] presented an algorithm

that converts the dataset into a similarity graph and then removes min cut edges (minimum

number of edges that disconnects a given connected graph) recursively from any subgraph

that is not highly connected (a subgraph whose edge connectivity is less than half the

number of nodes).

12

Minimal spanning trees provide eff cient ways for clustering objects in high-dimensional

spaces. A spanning tree is a subgraph of a graph that has the same set of vertices and does

not have a cycle and a minimal spanning tree is a spanning tree with the minimum total

edge-weight. Prim’s algorithm and Kruskal’s algorithm [11] are two widely used meth-

ods for computing minimal spanning trees in a graph. Prim’s algorithm builds upon a

single partial minimum spanning tree which is an arbitrary vertex at the beginning. The

algorithm repeatedly adds an edge connecting the vertex nearest to but not already in the

current partial minimum spanning tree. Kruskal’s algorithm maintains a set of partial min-

imum spanning trees (the set is called a forest) and repeatedly adds the shortest edge in the

graph whose vertices are in different partial minimum spanning trees.

In MST based clustering methods, each cluster corresponds to one subtree of the

MST. Xu, Olman, and Xu [65] presented MST based algorithms for clustering microarray

data. One algorithm constructs a weighted graph from the high-dimensional dataset and

creates a MST. Then it removes the k 1 largest edges, where k is the number of clusters.

The removal of an edge creates one new component and all the resulting components

correspond to the k clusters. Each of these clusters has a path that connects all vertices

within a cluster with a minimum cost. This simple algorithm is expected to work well if

the inter-cluster edge-distances outweigh the intra-cluster edge-distances.

Clustering can also be viewed as f nding large cliques (a clique is a complete subgraph

of a graph) in a graph. This is essentially identifying clusters of related objects using

complete-link hierarchical clustering. In each step of such a clustering, two clusters with

13

the smallest maximum pairwise distance are merged. Ben-Dor, Shamir, and Yakhini [5]

used cliques for clustering biological data. The input data is preprocessed to form an

undirected graph and then a stochastic bisection algorithm is used to compute cliques.

Karypis and Kumar [30] presented a multilevel graph partitioning algorithm that

works by recursively bisecting the graph until the desired number of subgraphs is reached.

At each level of recursion, a given graph (or subgraph) is transformed into a sequence

of successively coarser graphs by repeatedly merging pairs of connected nodes. A min-

imum edge-cut bisection of the coarsest graph is then computed so that each subgraph

contains approximately half of the vertex weight of the original graph. This bisection is

successively ref ned (by moving vertices among the partitions) back to the next level of

f ner graph in order to obtain a bisection of the original graph. Karypis and Kumar [32]

modif ed this recursive bisecting algorithm into a k-way partitioning algorithm where the

coarsest graph is directly partitioned into k subgraphs and these subgraphs are succes-

sively projected back to the original graph. This k-way partitioning results in a speedup

by a factor of O(log2 k).

Clustering problems have also been solved using hypergraph based approaches. A hy-

pergraph is a graph where an edge can connect more than two vertices, as opposed to regu-

lar graphs, where an edge connects only two vertices. One of the straightforward solutions

to hypergraph clustering is to convert the hypergraph to a graph where each hyperedge is

replaced by a set of regular edges (in a clique) and then to apply the regular multilevel

graph partitioning algorithm [2]. Karypis and Kumar [31] extended their multilevel graph

14

partitioning algorithm [32] to make it work for hypergraph partitioning where the goal is

to minimize the number of hyperedges connecting vertices from different components of

the hypergraph.

2.1.4 EM Clustering

Expectation Maximization (EM) is an approach for learning probabilistic models in

problems that involve hidden variables [15]. The EM algorithm works by approximat-

ing a probability function and is typically used to compute maximum likelihood estimates

from incomplete samples. When applied to clustering, EM views the dataset as incom-

plete and iteratively recomputes the hidden parameters until a desired convergence value

is achieved. An EM clustering starts by initializing the parameter vector, e.g., the mean for

each class. In the E-step, it computes the probability of an object belonging to a class. In

the M-step, the parameters for each class are adjusted. These EM steps are repeated un-

til convergence. As the algorithm progresses through different iterations of the E-step, it

does not actually assign an object to a cluster. But after the algorithm converges, based on

the largest probability, each object is actually assigned to a cluster. The k-means algorithm

is a special form EM clustering when the objects have a spherical Gaussian distribution

[9]. Fraley and Raftery [20] presented a comprehensive EM-based clustering framework

that uses a mean vector and a covariance matrix as the parameters to be estimated. An

agglomerative hierarchical clustering is used to generate the initial partition and compute

the initial parameters.

15

Two major drawbacks of EM clustering are its sensitivity to the selection of initial

parameters and the slow convergence rate. Different approaches have been proposed to

overcome these. Ordonez, Omiecinski, and Ezquerra [42] presented an eff cient EM clus-

tering algorithm that performs the initialization based on the global mean and the global

covariance. These values are computed in one extra pass. Caffo, Jank, Jones [8] presented

a fast EM clustering algorithm that uses only a subset of the entire dataset instead of mak-

ing a pass over all the objects. The sample size is increased gradually with the iterations so

that accuracy is not sacrif ced. Verbeek, Nunnink, and Vlassis [56] presented an acceler-

ated version of the EM clustering, where instead of computing the conditional expectation

of the missing data in the E-step for each object, it is computed for a group of objects.

2.1.5 Semi-Supervised Clustering

In general, semi-supervised learning deals with learning from independently sam-

pled labeled and unlabeled data. Prior knowledge plays a very important role in a semi-

supervised learning method. Even though clustering is traditionally perceived to be an

unsupervised process, in a semi-supervised clustering framework, the performance of an

unsupervised clustering algorithm can be improved with some supervision in the form

of some labeled data or constraints. Semi-supervised clustering involves two general ap-

proaches: constraint-based and distance-based [4].

In constraint-based approaches, the clustering algorithm itself is modif ed so that user-

provided labels or constraints can be used to obtain better results. Wagstaff et al. [59]

16

presented a constrained K-means algorithm that uses a set of “pairwise constraints” to

specify whether two data points should be in the same class (must-linked) or in different

classes (cannot-linked). Basu, Banerjee, and Mooney [3] use a set of initial seed clusters

generated from labeled data to perform subsequent iterations of the K-means algorithm.

In distance-based approaches, the distance measure used by the particular clustering al-

gorithm is trained to satisfy the labels or constraints in the supervised data. Skarmeta,

Bensaid, and Tazi [50] applied a semi-supervised framework for text categorization where

labeled data is used to tune the distance matrix and guide hierarchical clustering. Klein et

al. [33] used a shortest path algorithm to modify the distance metric based on pairwise con-

straints and applied a complete-link hierarchical algorithm on the modif ed metric. Xing et

al. [64] presented an iterative convergence algorithm that learns a distance metric based on

similar and dissimilar examples provided by the user. Bilenko, Basu, and Mooney [6] pro-

vided a K-Means-based semi-supervised clustering algorithm that integrates both metric

learning and pairwise constraints.

2.2 Similarity/Distance Measures

Most clustering algorithms use some notion of similarity (or distance) to determine

the closeness of objects. The choice of a particular measure may depend on the particular

application domain and the type of the objects. Nevertheless, the performance of a cluster-

ing algorithm for a particular domain depends on the selection of the particular measure.

The objects in a dataset are usually represented as a set of features. The features can be

17

of different types, e.g., continuous, categorical, nominal, binary etc. A desired property

of a similarity (or distance) measure is to be a metric. If the distance between two objects

is normalized between zero and one, then it is common to compute the distance between

two objects and then compute the similarity by subtracting the distance from one and vice-

versa. A distance function d(a b) between two objects a and b is called a distance metric,

if it satisf es the following properties:

 it is non-negative, i.e., d(a b) 0

 it is ref exive, i.e., d(a a) = 0

 it is symmetric, i.e., d(a b) = d(b a), and

 it follows triangular inequality, i.e., d(i j) d(i k) + d(k j)

A popular distance measure that is used in k-means type partitional clustering is the

Minkowski distance that is def ned by [25]:

m

nd(a b) = ai bi n

i=1

where m is the number of features. Two special cases of the Minkowski distance that are

commonly used are the Euclidean distance (n = 2) and the Manhattan distance n = 1.

Both are metrics and work well when the data objects are compact and clusters are well-

separated, but allow the larger-scaled features to dominate others. Normalization of the

features is used to overcome this problem.

Pearson’s coeff cient is a measure that is based on the correlation between the objects

of two datasets. It is commonly used for clustering gene expression data. Its main draw-

18

back lies in its inability to compute the magnitude of the difference between two objects.

Also, it is not a metric. Similarity is computed using Pearson’s coeff cient by [18]:

m
1 ai a bi b

s(a b) =
m a b

i=1

where a is the mean of a and a is the standard deviation of a given by:

 m (ai a)2
a =

m
i=1

Another important similarity metric frequently used for document clustering is cosine

similarity. The cosine measure is based on the notion of two vectors in an m-dimensional

space and is represented by the normalized dot product of the two vectors which is essen-

tially the cosine value of the angle between them. Mathematically, cosine similarity can

be written as: [60],

 m a b i=1 aibi s(a b) = = m 2 m b2 a b i=1 ai i=1 i

A common similarity measure that is used for binary features is the Jaccard coeff -

cient. It is computed as the ratio of the number of attributes that are present in both the

objects and the number of attributes that are present in at least one of the two objects [25].

2.3 Cluster Ensemble

Though different clustering algorithms are available, they can produce different clus-

tering results due to factors such as noise in the data, inconsistency among the algorithms,

19

data distribution, pre-processing procedures, size of data, etc. The diff culty of identify-

ing one particular technique as the best has motivated research into combining different

clustering results.

Fred and Jain [21] formulated the problem of combining different clustering results

as “evidence accumulation” where each clustering result is viewed as independent evi-

dence of data organization. Individual cluster sets are generated by different runs of the

K-means algorithm using random initializations. Then each clustering is mapped into a

coassociation matrix using a voting mechanism. The coassociation between two objects

is calculated by the frequency of their cooccurrences in the same cluster. The f nal clus-

ters are then obtained by applying a minimum spanning tree based clustering algorithm

on this matrix, cutting weak links at a threshold. This essentially carries out a single link

method by merging each pair of objects or the clusters they used to belong to if they pass

the threshold test.

Almost concurrently with this work, Strehl and Ghosh [53] introduced the notion of

a cluster ensemble whose goal is to combine the output of multiple clustering algorithms

to obtain better quality and more robust clustering results. Their framework is based on

transforming the set of clusterings into a hypergraph where an edge can connect more than

two vertices as opposed to regular graphs. The hypergraph represents each object as a ver-

tex and each cluster as a hyperedge. A concatenated hypergraph matrix is formed where

each column represents a hyperedge (essentially a 0/1 vector based on whether an object

belongs to the cluster). Three techniques are then used to generate the ensemble. With

20

the f rst one, called Cluster-based Similarity Partitioning Algorithm (CSPA), a similarity

matrix is constructed by def ning the similarity between two objects as the fraction of clus-

tering in which they belong to the same cluster. This similarity matrix is used to construct

a weighted similarity graph, where the vertices correspond to the data points and an edge

represents a high similarity (with respect to a threshold) between two data points. Then a

graph partitioning algorithm is used to extract clusters from the resulting graph. With the

second approach, called HyperGraph Partitioning Algorithm (HGPA), the hypergraph is

partitioned by cutting a minimal number of hyper-edges using a suitable hypergraph par-

titioning method. With the third approach, called Meta-Clustering Algorithm (MCLA), a

meta-cluster is formed by clustering the hyperedges and collapsing the related hyperedges.

A metagraph is constructed for this where each hyperedge becomes a vertex and the Jac-

card coeff cient is used to calculate the similarity between two hyperedges. Each object is

assigned to the collapsed hyperedge in which it participates most strongly.

Hu and Yoo [28] used an additive ensemble approach that is based on generating

different clustering results using various clustering algorithms on the same dataset. The

clustering result from each algorithm is used to construct a distance matrix using prob-

ability density functions. The individual distance matrices are added to build a master

distance matrix. This master distance matrix induces a weighted similarity graph and a

graph partitioning algorithm is used to partition the resulting graph into a set of clusters.

Fern and Brodley [19] used bipartite graph partitioning to solve the cluster ensemble

problem. They represented both data objects and clusters as vertices of the same graph.

21

This procedure does not encounter the problem of ignoring the cluster similarity while

computing the object similarity and vice versa, and both types of similarity calculation are

performed collectively. They used different runs of K-means on randomly sampled (both

vertically and horizontally) subsets of the original dataset to generate a set of individual

clusterings. When this set of clusterings is transformed into a graph, two vertices are made

adjacent only if one is an object and the other is a cluster that the object belongs to. If a new

clustering is added to the ensemble, a new set of cluster vertices are added to the graph and

each of them is connected to the constituent objects. The resulting graph is bipartite since

cluster vertices are connected only to object vertices and vice versa. Then this bipartite

graph is partitioned using a graph partitioning method where the objects and the clusters

are partitioned simultaneously and the resulting partition of the objects is output as the

f nal clustering.

2.4 Combining Phylogenetic Trees

A phylogenetic tree depicts the evolutionary relationships between different species

where each leaf represents a species, each internal node represents the most recent com-

mon ancestor of its descendants, and the root represents the common ancestor of all species

(http://en.wikipedia.org). If different datasets are used to build phylogenetic trees for the

same set of species, the resulting trees may show dissimilar evolutionary history. These

different views can be resolved by using a tree combination method that takes a collection

of phylogenetic trees and outputs a single representative tree.

http://en.wikipedia.org

22

Margush and McMorris [38] introduced the notion of “consensus tree” to combine

phylogenetic trees. There are different variations of the consensus tree methods [7]. The

strict consensus tree contains exactly those subtrees common to all the trees in the collec-

tion. The majority rule tree contains exactly those subtrees that appear in more than half of

the input trees. The greedy consensus contains subtrees ordered by decreasing frequency

of appearance in the input trees.

Gusf eld [24] presented a tree ref nement approach for combining phylogenetic trees

that can contain more than one object at each leaf. A phylogenetic tree is said to ref ne

another if the second one can be obtained by contracting a number of edges of the f rst

one, i.e., the f rst one will contain the evolutionary history contained in the second plus

some additional information. Two trees are said to be compatible if an agreement tree can

be found that ref nes both. The algorithm inspects each tree with respect to the other and

modif es each using the additional information found on the other. If the leaf containing

an object in one tree has more objects than the leaf containing the same object in the

other tree, then it replaces that leaf by a subtree from the other that consists of the same

objects. This is done for both the trees and the two modif ed trees are compared bottom-up

to check whether each possible pair of corresponding nodes in the two trees contains the

same objects in the leaves below.

The above methods may result in unresolved trees when two trees consist of overlap-

ping sets of objects. Another class of methods called “supertree” methods has been devel-

oped that can work with such trees. In phylogenetics, a supertree is def ned as a rooted

23

evolutionary tree that is assembled from smaller trees that share some but not necessarily

all leaf nodes in common. A supertree will consist of all the objects in the individual input

trees. The most straightforward approach is to combine the matrix representation of data

used to construct each input tree into a single supermatrix and construct the supertree from

the resulting matrix using a maximum parsimony algorithm [48].

Gordon [22] presented a pruned tree based approach that works by f rst pruning ob-

jects from the trees and then grafting the pruned objects back to create a new consensus

tree. A common pruned tree is def ned as a tree that can be derived by pruning edges

from two trees so that the reduced trees consist of the same possible subtrees. For exam-

ple, the common pruned tree for the trees (((a b) (c d)) e) and (((a d) (b c)) e) will

be ((a c) e). Gordon uses each subset of the common pruned tree to generate superse-

quences with respect to both the trees and those supersequences are used to generate a

supertree. For example, the supertree for the above example will be ((a b c d) e). This

algorithm runs in polynomial time, but does not generate a supertree with incompatible

trees and depends on the order of input trees.

Ragan [44] presented a technique called “Matrix Representation using Parsimony”

which is by far the most popular supertree algorithm used by the biologists. The internal

nodes of each tree are labeled with distinct characters and all the input trees are converted

into a composite binary encoded matrix based on those internal node labels. The supertree

is constructed from the resulting matrix using a maximum parsimony algorithm.

24

Semple and Steel [49] presented a graph-based algorithm for combining the input

trees into a supertree even if they are not compatible. It converts the input trees into a

composite weighted graph where each leaf node is represented by a vertex and the weight

of each edge is equal to number of occurrences of the corresponding pair of leaf nodes

in some proper clusters. The resulting graph is then modif ed by collapsing the edges

that have the same weight as the number of source trees, and the modif ed graph is parti-

tioned by cutting the edges that results in the minimum cut-edge weights. This process is

recursively applied until each lowest level subtree contains fewer than three leaves.

2.5 Clustering Heterogeneous Datasets

The traditional clustering paradigm pertains to a single dataset. Even with the ensem-

ble approach, different clusters are generated with multiple runs of the same algorithm or

different algorithms, but with the same dataset. Recently, there has been some research

in clustering multiple heterogeneous datasets where the datasets are related but contain

information about different types of objects and the attributes of the different object sets

differs signif cantly.

Marx et al. [39] presented a variant of traditional clustering, called coupled cluster-

ing, for revealing analogies between clusters from two distinct datasets. They formed a

one-to-one correspondence between two cluster sets so that each cluster is matched with

a counterpart in the other data set. Each pair of matched clusters is joined to form a

coupled cluster. This requires that the similarity values between heterogeneous pairs of

25

data elements be computed. They applied coupled clustering to a collection of text doc-

uments from two distinct domains that are characterized by their own terminology and

key-concepts.

Dagan, Marx, and Shamir [12] presented a framework for clustering multiple datasets

(related but distinct domains) such that each cluster includes elements from multiple datasets

and can capture a common theme. This approach is based on word co-occurrence statistics

within the analyzed datasets and essentially constructs a common feature set consisting of

frequent keywords from the datasets. A data instance is assigned to a cluster probabilisti-

cally using an annealing like process. They applied their approach to three sets of religion-

related keywords from three different religions to reveal common themes like scriptures,

rituals, etc. based on respective keyword clusters.

Pavlidis et al. [43] presented a support vector machine (SVM) based approach to

clustering objects using heterogeneous datasets. The SVM computes separate kernels for

each data type and combines them to construct an explicitly heterogeneous kernel function.

McClean, Scotney, and Robinson [40] presented a Hidden Markov Model (HMM) based

framework for clustering heterogeneous gene sequences. They cluster similar sequences

and then use the mappings between the states of each sequence in a cluster and the states

of an underlying hidden process to learn the probabilistic description of an HMM for each

cluster.

Dayanik and Manning [14] presented a clustering approach that is based on a rela-

tional representation of heterogeneous biological data, i.e., multiple datasets are related

26

by key attributes. The data points in one dataset contain references to the data points in

the other datasets. This mapping allows explicit links to be established between heteroge-

neous data points. These types of links are used to connect heterogeneous data objects in a

weighted undirected graph. A multilevel graph partitioning algorithm is used to generate

clusters from this graph. This approach was applied to biological data where scientif c

abstracts contain links to protein sequences and 3D protein structures and the 3D protein

structures are cross-referenced to the primary citations in the abstracts.

CHAPTER III

CLUSTERING HETEROGENEOUS DATASETS

The traditional clustering paradigm pertains to a single dataset. The overall objective

of the dissertation is to provide a framework and algorithms for clustering multiple het-

erogeneous datasets where the datasets are related but contain information about different

types of objects. The attributes of the different datasets can also differ signif cantly. In this

chapter we develop the mathematical notation for describing our clustering framework,

present the problem description, and also present a general approach for dealing with clus-

tering of heterogeneous datasets. Although the notation and approach will be described in

terms of combining clustering results from two datasets, both can be extended to deal with

more than two datasets.

3.1 Problem Description

We begin by def ning the problem of clustering heterogeneous datasets in general. Let

Fx = fx
1 f x 2 f xmx

 and Fy = f y
1 f y 2 f ymy

 be two sets of features. Values for

each feature will come from a specif ed domain. Let be the domain of fx
j . Then, we x

j

have two datasets Dx

belonging to Dx and oyj

and Dy . Let o be an object y
2

y
1

x
2

x
1

be an object belonging to Dy. Then, Dx

x
m

y
m

x
jx y

 and = ox 1 o x 2
x
no x

Dy = oy 1 o y 2 o yny
, where each dataset Di consists of ni objects.

27

28

Heterogeneity between two or more datasets can occur at the feature level, at the

object level, or both. At the feature level, there can be three cases. The datasets may have

the same features, i.e., Fx = Fy, some common features, i.e., (Fx Fy) (Fx Fy),

or no common feature, i.e., (Fx Fy) = . The same situation can occur at the object level,

i.e., Dx = Dy, (Dx Dy) (Dx Dy), or Dx Dy = . The ensemble algorithms

found in the literature [19, 53, 28] primarily deal with the situation when Fx = Fy and

Dx = Dy. In this dissertation, we will develop algorithms to deal with the situation when

Fx = Fy and Dx Dy .

Given Dx and Dy, we can create a unif ed dataset Dxy = Dx Dy. If we need

to build a non-overlapping set of partitional clusters from Dxy, then we can think of an

equivalence relation R on Dxy, where each relation pair represents two objects belonging

to the same cluster. The equivalence classes of Dxy with respect to R will form a parti-

x xtion of Dxy. If the equivalence class of oj is Ej , then the equivalence classes of Dx are

xEx = E1
x E2

x E and the equivalence classes of Dy are Ey = E1
y E2

y Ey .nx ny

Let us def ne a heterogeneous cluster Hj to be a set of objects consisting of objects from

both Dx and Dy. Then each equivalence class described above will represent a hetero-

geneous cluster Hj . Given all these def nitions, our clustering problem is to f nd a set of

heterogeneous clusters H, where H = H1 H2 Hk = Ex Ey.

The problem of clustering heterogeneous data can be solved in two general ways: (1)

clustering the multiple datasets using a unif ed feature space and (2) clustering the datasets

individually and then combining the resulting clusters based on some mapping. The f rst

29

approach will require us to integrate the heterogeneous data into a unif ed feature space and

then to perform the clustering on the integrated dataset. Essentially, the problem of clus-

tering heterogeneous datasets then becomes a function, Dx Dy H1 H2 Hk .

The second approach will require us to generate different sets of clusters from individ-

ual datasets. Then these can be combined using a meta-clustering scheme. For exam-

ple, we can apply a hierarchical clustering algorithm to cluster the individual datasets

xand then combine the corresponding dendrograms. If Cx = C1
x C2

x Cp and Cy =

yC1
y C2

y Cq are the sets of clusters computed from the individual datasets Dx and

Dy, then the problem of clustering heterogeneous data becomes a function, Cx Cy

H1 H2 Hk .

3.2 Clustering Heterogeneous Datasets with Hierarchical Clustering

Hierarchical clustering is a powerful clustering method that computes a dendrogram

to organize a set of objects into a tree. It is very important to have effective and eff cient

clustering algorithms that can provide intuitive browsing capabilities by organizing large

datasets into a set of meaningful clusters. Hierarchical clustering plays an important role

in providing a view of the data at different levels of granularity. The resulting hierarchies

allow for meaningful visualization and interactive exploration of a large set of objects.

3.2.1 Hierarchical Clustering

Hierarchical clustering is performed in a series of steps. The agglomerative version

starts with a number of singleton clusters and then proceeds by combining these singleton

30

clusters into successively larger sub-clusters. The divisive version starts with a single

cluster containing all the objects and then proceeds by partitioning this all-inclusive cluster

into successively smaller sub-clusters. The goal of any hierarchical algorithm to produce

a dendrogram as shown in Figure 2.1. Each leaf of the dendrogram represents a singleton

cluster and each internal node represents a sub-cluster. Since agglomerative methods are

more commonly used and we have used agglomerative methods in our work, we will

provide an overview of the basic agglomerative algorithm.

An agglomerative algorithm is based on a “metric” that is used to compute a prox-

imity matrix that initially contains the pair-wise similarities for all the data objects. This

proximity matrix is used to decide which two of the closest remaining clusters will be com-

bined at each step of the algorithm. At each step, the pair of clusters with the maximum

similarity (minimum distance) are combined to create a new cluster. Then the algorithm

computes the similarity between this new cluster to all other clusters and updates the ma-

trix by adding a new row and column corresponding to the new cluster and deleting the

rows and columns corresponding to the combined clusters. This process continues until

the similarity matrix is reduced to a single element. Figure 3.1 presents the agglomerative

clustering algorithm.

Different methods are used to compute the similarity between two clusters in step 10.

Three important methods are single-link, complete-link, and average-link. In the single-

link method, the similarity of two clusters is computed as the similarity between the closest

pair of objects in the two clusters. In the complete-link method, the similarity between

31

Input: A set of objects o1 o2 on

Output: A set of nested clustering C = C1 C2 Cn 1

1. for i 1 to n do

2. Ci
 oi

3. for i 1 to n do

4. for j 1 to n do

5. sij Similarity(Ci Cj
)

6. for i 1 to n 1 do
 7. C argmax C C n+i spq p q

8. CCi n+i

9. for j 1 to n + i do

10. Similarity(C C)sj(n+i) s(n+i)j j n+i

11. sjp spj sjq sqj 0

Figure 3.1 The agglomerative clustering algorithm

two clusters is computed based on the similarity between the two farthest objects. In the

average-link method, the similarity between two clusters is computed based on the average

distance between all pair of objects. Mathematically, the similarity between two clusters

Ci and Cj can be written as:

Similarity(Ci Cj) =

maxop Ci oq Cj
(spq) Single Link

minop Ci oq Cj
(spq) Complete Link

1 (spq) Average Link
Ci Cj op Ci oq Cj

32

The single-link method is sensitive to noise and outliers whereas the complete-link

method tends to break large clusters. The average-link is a compromise between the two.

Since we have used the average link similarity in our work, let us explain that with an

example. Figure 3.2(a) shows a set of objects a b c d e f in a two-dimensional space.

Each object is initialized as a singleton cluster. At this point, the maximum similarity is

between a and b, and a and b will be combined into C1. Now, the maximum similarity is

between c and d, and c and d will be combined into C2. In the next step, the maximum

similarity is between C1 and e (based on average similarity between them), and they will

be combined into C3. This process will continue until one big cluster is produced. The

corresponding dendrogram is shown in Figure 3.2(b). In step 10 of the agglomerative

algorithm (Figure 3.1), it is not necessary to perform O(n2) computations to compute the

similarity between a new cluster and all existing clusters. With the average-link method,

the similarity between an exiting cluster Cj and a new cluster Ck = Cp Cq is computed

as [18]:

npsjp + nqsjp
npnq

where np and nq are the number of objects in Cp and Cq respectively.

The time complexity of the single-link and complete-link methods are O(n2) and the

average-link method is O(n2 lg n). Since, the algorithm must maintain a similarity matrix,

the space complexity is O(n2).

f
C5

C2

c d

C3

a
C1

b

e
C4 a b e c d f

33

f
C5

C2

c d

C3

a
C1

b

e
C4 a b e c d f

(a) Nested clustering (b) The dendrogram

Figure 3.2 The average-link agglomerative clustering process

3.2.2 Hierarchical Clustering on Heterogeneous Datasets

As mentioned in the previous section, one way to cluster heterogeneous datasets is to

integrate them into a unif ed feature space and then perform the clustering [12, 16, 41, 43,

55]. This approach has some drawbacks. If the feature sets are complementary in nature,

then the ability of the feature sets to contribute different information may be lost. The

unif ed feature space may be biased towards the feature set consisting of more features.

Let us explain this with an example. Figure 3.3(a) shows a dataset D1 that has six

objects and three features. Figure 3.3(b) shows another dataset D2 that has the same six

objects but seven features that are different from features in the f rst dataset. If we use

the normalized Euclidean distance measure [61], we will obtain the dendrograms shown

in Figures 3.4(a) and 3.4(a) respectively from D1 and D2. It can be seen that the f rst

dendrogram provides clustering information that is somewhat different from the second

dendrogram. If we combine the two datasets by concatenating the feature sets, we will

34

obtain the dataset D3 as shown in Figure 3.3(c). Hierarchical clustering on D3 will yield

the same dendrogram as the one obtained from D2. So, the information provided by D1,

i.e., the ability of the dendrogram generated from D1 to interpolate, is lost here. The reason

is straightforward, the inf uence of D1 on the concatenated feature set, and hence on the

similarity (distance) matrix is overpowered by the inf uence of D2.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

o1 0.8 0.5 0.9 o1 0.8 0.7 0.9 0.6 0.8 0.7 0.8
o2 0.85 0.45 0.95 o2 0.75 0.65 0.85 0.55 0.75 0.65 0.75
o3 0.5 0.8 0.6 o3 0.9 0.8 0.75 0.7 0.65 0.8 0.65
o4 0.35 0.85 0.55 o4 0.6 0.5 0.6 0.4 0.5 0.55 0.45
o5 0.7 0.6 0.8 o5 0.45 0.35 0.45 0.25 0.35 0.4 0.3
o6 0.6 0.7 0.7 o6 0.55 0.4 0.5 0.35 0.45 0.45 0.35

(a) D1 - three features (b) D2 - seven features

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

o1 0.8 0.5 0.9 0.8 0.7 0.9 0.6 0.8 0.7 0.8
o2 0.85 0.45 0.95 0.75 0.65 0.85 0.55 0.75 0.65 0.75
o3 0.5 0.8 0.6 0.9 0.8 0.75 0.7 0.65 0.8 0.65
o4 0.35 0.85 0.55 0.6 0.5 0.6 0.4 0.5 0.55 0.45
o5 0.7 0.6 0.8 0.45 0.35 0.45 0.25 0.35 0.4 0.3
o6 0.6 0.7 0.7 0.55 0.4 0.5 0.35 0.45 0.45 0.35

(c) D3 - concatenated features

Figure 3.3 Datasets with identical objects but different feature sets

The above problem can be more complicated if the two datasets have some features

in common. Also, a unif ed feature space may cause substantial sparseness. This is true

in particular when two datasets do not represent exactly the same set of objects but have

o1 o2 o5 o3o6 o4 o1 o2 o3 o5o4 o6o1 o2 o5 o6 o3 o4

(a)

o1 o2 o3 o4 o5 o6

(b)

35

Figure 3.4 Dendrograms generated by the datasets of Figure 3.3 - Figure 3.3(a) generates
3.4(a) and Figures 3.3(b) and 3.3(c) generate 3.4(b).

some objects in common. If the individual feature sets consist of entirely different types,

e.g., one is nominal and the other is continuous, it may be diff cult to generate a unif ed

feature space.

Our research hypothesis is based on the other approach, i.e., to perform separate clus-

tering of the individual datasets based on their respective feature sets and then combine

these clustering results into a f nal set of clusters. This approach makes use of comple-

mentary information in each dataset and allows individual clusterings to be mutually in-

formative.

In this chapter, we provide a general approach to cluster heterogeneous datasets. This

approach is based on the hierarchical clustering of the individual datasets and is expected

to explore the contributing effect of heterogeneous datasets. Our approach is presented for

two datasets and assumes the notion of a mapping between the two datasets. In the next

section, we present the notion of mapping at an abstraction level that can be tailored to

specif c applications.

36

3.3 Mapping between Heterogeneous Datasets

It is very important to establish a mapping between the objects of two datasets when

the datasets are heterogeneous in nature. In this section, we use a bipartite graph to repre-

sent the mapping between the objects of two datasets. We f rst def ne “mapping” and then

examine the different types of mapping that ref ect the restrictions on how objects may be

related across heterogeneous datasets.

We def ne mapping as the number of possible objects in one dataset that may be

related to a single object in another datasets. A mapping represents a constraint on the way

heterogeneous objects are related. We represent the mapping between two datasets Dx and

Dy using a bipartite graph G = (Dx Dy E) such that E = a b a Dx b Dy .

Dx Dy is the set of vertices and E is the set of edges of G. We classify the mapping

between two heterogenous datasets based on three different situations and we name those

corresponding to the type of the bipartite graph. The three types of mapping are perfect,

bi-regular, and irregular.

 A mapping is perfect when a perfect matching exists in G. In this case, there is

a one-to-one correspondence between the objects of the two datasets and Dx =

Dy . This situation is depicted in Figure 3.5(a). Each dataset has f ve objects,

ox 1 o x 2 o x 3 o x 4 o x 5 and oy 1 o y 2
y
3 o y 4 o y 5 respectively. The object pairs that are o

mapped to each other are ox 1
y
3 , ox 2 o y 1 , ox 3 o y 4 , ox 4 o y 2 , and ox 5 o y 5 . It can o

be seen that each object is mapped to exactly one object in the other dataset.

37

 A mapping is bi-regular if every vertex in G has a degree of 0 or 1. In this case,

a data object in one dataset is mapped to one or no object in the other dataset and

the number of objects in the datasets may not be the same. This is shown in Figure

3.5(b). Dataset Dx has f ve objects and Dy has four objects, ox 1 ox 2 ox 3 ox 4 ox 5

and oy 1 oy 2 oy 3 oy 4 respectively. The object pairs that are mapped to each other are

ox 1 oy 1 , ox 2 oy 3 , and ox 4 oy 2 . The data objects ox 3 ox 5 and oy 4 are not mapped to

objects in the other dataset.

 A mapping is irregular if every vertex in G has a degree of 0 or more. In this case,

there is an m n mapping between the objects of the two datasets, where m n 0.

Again, the datasets may not have the same number of objects. This is shown in

Figure 3.5(c). The data object ox 1 is mapped to two different objects oy 1 and oy 2, oy 2 is

mapped to two objects ox 1 and ox 5 , and ox 4 is mapped to one object oy 3. On the other

hand, ox 2 , ox 3 , and oy 4 are not mapped to anything.

o1
x o2

x o3
x o4

x o5
x

o1
y o2

y o3
y o4

y o5
y

o1
x o2

x o3
x o4

x o5
x

o1
y o2

y o3
y o4

y o5
y

o1
x o2

x o3
x o4

x o5
x

o1
y o2

y o3
y o4

y

o1
x o2

x o3
x o4

x o5
x

o1
y o2

y o3
y o4

y

o1
x o2

x o3
x o4

x o5
x

o1
y o2

y o3
y o4

y

o1
x o2

x o3
x o4

x o5
x

o1
y o2

y o3
y o4

y

(a) A perfect mapping (b) A bi-regular mapping (c) An irregular mapping

Figure 3.5 Different types of mapping between the objects of two datasets

38

3.4 Combining Heterogeneous Cluster Hierarchies

Now that we have def ned the abstraction of mapping, we will describe how this map-

ping can be used to combine heterogeneous cluster hierarchies. We begin by introducing

mathematical notation related to dendrograms and then explain with examples how two

dendrograms can be ref ned for heterogeneous clustering.

3.4.1 Preliminary Def nitions

x x x yLet us assume that we have two datasets Dx = o1 o2 onx
 and Dy = oy 1 oy 2 ony

.

Let Di be the dendrogram generated by hierarchically clustering Di. Di consists of a set of

internal nodes and a set of external nodes (or leaves). We assume that Di has the properties

of a binary rooted tree, i.e., it has a distinct root and each internal node has exactly two

descendants.

We also assume that the leaves of Di are distinct. Let Li be the leaves of Di. Intu-

itively, we can say that the clustering is a mapping Di Di where Di = Li. Let the

i i iset of internal nodes be Ci = C C2 C . We def ne l(Np) and r(Np) to be 1 ni 1

the left and right descendants of the node Np. Alternatively, we also say Np . Nq if Nq

descends directly from Np. Conversely, we def ne (Np) to be the immediate ancestor of

Np. Also, we def ne (Np) to be the sibling of Np so that (Np) = ((Np)). Each Cj
i

39

represents a cluster that comprises all the external nodes that descend from Cj
i . We def ne

Cj
i recursively by,

Ci Ci
p q where 1 p q < j if l(C

i) Ci and r(C
i) Cij j

oi Ci
p q where 1 p ni and 1 q < j if l(C

i) Di and r(C
i) Cij j

Ci oi p q where 1 p < j and 1 q ni if l(C
i) Ci and r(C

i) Dij j

i io o p q where 1 p q ni if l(C
i) Di and r(C

i) Dij j

Ci = j

Having def ned Li and Ci, we can def ne a dendrogram as Di = (Ni Ei), where Ni is

the set of nodes given by Ni = Li Ci and Ei is the set of edges given by Ei = (a b) a b

Ni a.b . It should be noted that Li =ni, Ci =ni 1, Ni =2ni 1, and Ei =2ni 2.

The key feature of a dendrogram is that each leaf represents a singleton cluster and

each internal node represents a cluster that is formed by merging the clusters that appear

in its descendants with the root representing a cluster containing all the objects. For ex-

ample, as shown in Figure 3.6, the dendrogram represents a hierarchical clustering on the

object set a b c d e f g . It consists of the leaves L = a b c d e f g and the in-

ternal nodes C = C1 C2 C6 . The internal node C1 has descendants e and f both of

which are external nodes and thus represents the cluster e f . The internal node C4 has

descendants C1 and g and thus represents the cluster e f g . The internal node C6 has

descendants C4 and C5 and thus represents the cluster a b c d e f g .

We assume that each dendrogram Di has a similarity matrix [s pq i] associated with it,

where 1 p q 2ni 1. Each element of the matrix si represents the distance between pq

two nodes Np
i and Nq

i, where

https://C1,C2,...C6

40

a b dc e f g

C1
C2

C3

C4

C5

C6

a b dc e f g

C1
C2

C3

C4

C5

C6

Figure 3.6 Clusters as internal nodes in a dendrogram

N i = p

op
i if 1 p ni

C p
i

ni
if ni < p 2ni 1

We also assume that each internal node Cj
i has an intra-cluster similarity i

j associated

with it. i represents the similarity between the two descendants of Ci so that i = si ,j j j pq

where l(C
i) = N i and r(C

i) = N i .j p j q

With the above def nitions, we say that Ci is an ordered set given by Ci i i
j j 1 j

i
j+1 , i.e., the internal nodes (the clusters) are numbered based on the descending order

of the corresponding similarity values. For example, as shown in Figure 3.6, C1 has the

highest similarity associated with it and C6 has the lowest. We also impose a numbering

order on Ni = N1
i N2

i N2
i
ni 1 , where Nj

i = oij for 1 j ni and Nj
i = Cj

i for

ni < j 2ni 1.

Next, we present how two dendrograms can be ref ned by being mapped to each other.

Mapping a dendrogram to another dendrogram can be accomplished by a process of re-

moving and expanding leaves.

a b dc e ga b dc e f g

C1
C2

C3
C4

C6

C5

a b dc e f g

C1
C2

C3
C4

C6

C5

C2
C3

C4

C6

C5

C2
C3

C4

C6

C5

a b c d e g

41

3.4.2 Removing Leaves of a Dendrogram

One operation used when mapping one dendrogram onto another is removal of one (or

more) leaves of one dendrogram. After removal of a leaf, the edges connecting the leaf and

its sibling to its immediate ancestor are removed and the immediate ancestor is replaced by

the sibling of the removed leaf. Formally, we say that removing a leaf l from a dendrogram

D is the function l : D D , where D = (N E), D = (N E), N = L C ,

L = L l , C = C (l) , E = E (a b) a= (l) b= (l) (((l)) (l)) .

(a) Original dendrogram (b) Dendrogram after removing f

Figure 3.7 Removing a leaf from a dendrogram

Let us explain this with an example as shown in Figure 3.7. The dendrogram in

Figure 3.7(a) consists of seven objects a b c d e f g . If the leaf node f is removed

from the dendrogram, the edge connecting f and its the immediate ancestor C1 and the

edge connecting f ’s sibling e and C1 are removed. Also, C1 is replaced by the e. This

results in the dendrogram shown in Figure 3.7(b).

a b dc e f gha b dc e f g

C1
C2

C3
C4

C6

C5

a b dc e f g

C1
C2

C3
C4

C6

C5

C1
C2

C3
C4

C6

C5

C7

C1
C2

C3
C4

C6

C5

C7

a b c d e f h g

42

3.4.3 Expanding Leaves of a Dendrogram

Another operation used for mapping one dendrogram onto another is expansion of

one (or more) of its leaves. Consequently, the original leaf node is replaced by a new

internal node and two leaves are added as descendants of this new internal node resulting

in three new edges. One of the leaves is the original leaf and the other is a new leaf

node. The edge connecting the original leaf and its original immediate ancestor is also

removed. Formally, we say that expanding a leaf l of a dendrogram D with a new leaf

l is the function l l′ : D D , where D = (N E) and D = (N E). If Cp is the

original ancestor of l and Cq is the new ancestor of l, then Cq = l l , C = C Cq ,

N = L C , L = L l , E = E (Cq l) (Cq l) (Cp Cq) (Cp l) .

(a) Original dendrogram (b) Dendrogram after expanding f with h

Figure 3.8 Expanding a leaf from a dendrogram

Let us explain this with an example as shown in Figure 3.8. The dendrogram in Figure

3.8(a) consists of seven objects a b c d e f g . Assume that we are expanding the node

43

f using h. Consequently, a new internal node C7 = f h is added. Three new edges

are also added; an edge connecting f and C7, an edge connecting h and C7, and an edge

connecting C1 and C7. Also, the edge connecting C1 and f is removed. This results in the

dendrogram shown in Figure 3.7(b).

3.4.4 Cover of a Dendrogram

Let Q L be a set of leaf nodes of D and Q(D) be the dendrogram obtained by

removing the leaves of D that are not in Q, i.e., Q(D) = lm(l2(l1(D))), where

L Q = l1 l2 lm . We say that a dendrogram D covers another dendrogram D if

D can be reduced to D by removing the leaves that are not in D . Formally we say that

D D if L′(D) = D .

Let us consider the dendrograms shown in Figure 3.9. The dendrogram D1 can be

reduced to D2 by removing d and d is the only node that is in D1 but not in D2. Hence,

D1 covers D2. Similarly, the dendrogram D1 can be reduced to D3 by removing f and D1

covers D3.

3.4.5 Combining Dendrograms

Now we outline an approach for combining two given dendrograms. As introduced

earlier in this chapter, we can have three types of mapping between the objects of two het-

erogeneous datasets. Using the mapping, we will compute a ref nement of each dendro-

gram and then will apply a suitable ensemble algorithm. We def ne the relative ref nement

of a dendrogram as ref ning it with respect to another dendrogram by expanding each of its

a b dc e f g

a b c e f g a b dc e g

C1
C2

C3

C4

C5

C6

C1
C2

C3

C4

C5

C6

a b c d e f g

(a) D1

C1
C2

C4

C6

C5

C1
C2

C4

C6

C5

C2
C3

C4

C6

C5

C2
C3

C4

C6

C5

a b c e f g a b c d e g

(b) D2 - covered by D1 (c) D3 - covered by D1

44

Figure 3.9 The cover of a dendrogram

45

leaves using the notion of mapping described in section 3.3. If we have two dendrograms

Dx and Dy, we will compute the ref nement of Dx relative to Dy and the ref nement of Dy

relative to Dx. The ref nement of a dendrogram will satisfy the cover property, i.e., the

ref nement of a dendrogram will cover the dendrogram itself. Once the two dendrograms

are ref ned, a suitable tree combining algorithm (e.g., a supertree method) can be applied

on the two ref ned dendrograms.

Let us explain this with an example as shown in Figure 3.10. We consider two datasets

a1 b1 c1 d1 e1 f1 and a2 b2 c2 d2 e2 . Figure 3.10(a) shows an assumed mapping

between them. Figures 3.10(b) and 3.10(c) show the dendrograms generated from the re-

spective datasets. Using the mapping of Figure 3.10(a), the dendrogram of Figure 3.10(b)

is ref ned to the one shown in Figure 3.10(d) and the dendrogram of Figure 3.10(c) is

ref ned to the one shown in Figure 3.10(e).

a1 b1 c1 d1 e1 f1

a2 b2 c2 d2 e2

a1 b1 c1 d1 e1 f1

a2 b2 c2 d2 e2

(a) A mapping between two datasets D1 = a1 b1 c1 d1 e1 f1 and D2 = a2 b2 c2 d2 e2

a1 a2 b1 c1 d2 d1e1 c2 f1

a1 b1 c1 d1 e1 f1a1 b1 c1 d1 e1 f1

(b) The dendrogram D1 generated from D1

a2 b2 c2 d2 e2a2 b2 c2 d2 e2

(c) The dendrogram D2 generated from D2

b2 e2a1 a2 c2 e1 d2 c1

46

(d) The ref nement of D1 (e) The ref nement of D2

Figure 3.10 Computing the ref nement of two dendrograms using a given mapping

CHAPTER IV

ENSEMBLE ALGORITHMS FOR HIERARCHICAL CLUSTERING

The goal of this dissertation is to develop a framework and algorithms for discov-

ery of a single set of clusters from multiple related heterogeneous datasets. Clustering

of multiple related heterogeneous datasets can take different forms depending upon the

physical characteristics of data and the mapping cardinality among datasets. To test our

hypotheses, we will develop algorithms that can handle multiple datasets in two situations:

(1) two datasets with non-identical features that represent the same objects, i.e., there is a

perfect mapping between the objects and (2) two datasets with non-identical features and

overlapping sets of objects, i.e., there is a bi-regular mapping between the objects.

In this chapter, we will present algorithms for combining multiple hierarchical clus-

terings generated from heterogeneous datasets. First we describe the phylogenetic tree

combination methods that we have used in our experiments. Then we present an algo-

rithm for combining multiple hierarchical clusterings into a single partitional clustering.

Finally, we describe a variation of this algorithm that can more effectively combine multi-

ple cluster hierarchies. Even though we have used two cluster hierarchies in our examples,

the methods can handle multiple hierarchies.

47

48

4.1 Phylogenetic Tree Combination Methods

In addition to developing new algorithms for combining cluster hierarchies, we want

to investigate the applicability of phylogenetic tree combination methods in combining

multiple hierarchical clusterings. A phylogenetic tree represents the evolutionary history

of some objects where the root is the ancestral object. Phylogenetic trees built for the same

organisms but from different datasets may depict differing evolutionary history. These dif-

ferent or conf icting hypotheses about phylogenetic relationships for the same organisms

can be resolved by combining the individual evolutionary trees into a single representa-

tive tree. Two major approaches for tree combination have been developed in the f eld of

phylogenetic inference: consensus tree methods and supertree methods.

4.1.1 Consensus Tree

A consensus tree method [38] tries to retain the branching information from the in-

dividual trees as much as possible. There are two major types of consensus trees: strict

and majority rule [7]. The strict consensus tree contains only the subtrees that are com-

mon to all the input trees. If two subtrees contain the same objects but different taxo-

nomic relationship, then those are collapsed to appear at the same level. For example,

the strict consensus tree will be ((a b c) d e) for three given trees ((((a c) b) d) e),

(((a b) c) (d e)), and ((a (b c)) (d e)) since only the subsets a b c and a b c d e

appear in all the trees.

49

The majority rule tree contains exactly those subtrees that appear in more than half

of the input trees. Thus every subtree of the strict consensus tree will also be a subtree

of the majority rule tree. With only two input trees, the majority consensus tree is iden-

tical to the strict tree. For example, the majority rule tree is ((a b c) (d e)) for three

given trees ((((a c) b) d) e), (((a b) c) (d e)), and ((a (b c)) (d e)) since the subsets

a b c d e , a b c and d e appear in two or more trees out of three.

The well known phylogenetic package PHYLIP1 uses the greedy consensus tree al-

gorithm that allows additional subtrees to be included in the majority rule tree. It orders

all the subtrees based on their frequency in the input trees and then inserts them in or-

der of frequency. A tie between two subtrees having the same frequency is broken ar-

bitrarily. If a subtree is not compatible with the already existing subtrees, then it is not

included. For example, in a collection of three trees ((((a c) b) d) e), (((a b) c) (d e)),

and ((a (b c)) (d e)), a b c d e and a b c appear three times, d e appear two

times, and a b c d , a b , b c , and a c appear only once. The resulting greedy

consensus tree will be ((a (c b)) (d e)).

4.1.2 Supertree

The consensus tree methods cannot be used with input trees where the trees consist

of some common objects, but not all. This kind of trees can be combined with another

important class of methods called “supertree” methods. A supertree is def ned as a tree that

1http://evolution.genetics.washington.edu/phylip.html

https://1http://evolution.genetics.washington.edu/phylip.html

50

is built from input trees containing overlapping sets of objects. Some common approaches

for building a supertree are the supermatrix approach [48], matrix representation using

parsimony [44], pruned tree approach [22], etc.

Semple and Steel [49] presented a graph-based supertree algorithm that works even

with incompatible trees and can scale up to large datasets. It constructs a graph where two

nodes (objects) are connected if they are in a proper cluster in at least one of the input

trees. The edges having weight equal to the number of input trees are then collapsed and

the modif ed graph is partitioned using the minimum weight cut edges. The set of input

trees is then induced by each resulting component and the algorithm is called recursively

with each of these sets of subtrees until each set of subtrees contains fewer than three

leaves. A bottom-up approach is used to build the supertree by adding the trees at the end

of each recursive call to a new common root.

For example, let us consider two trees ((((a c) b) d) e) and (((a b) c) (d e)). A

graph will be constructed having the edges a b , a c , a d , b c , b d , c d ,

and d e . Only the edges a b and a c will have edge-weights of 2 since those

appear in both the clustering and they will be collapsed. This will result in the edges

a b , a c , a d , b c , b d , and c d being replaced by a single edge abc d

having an edge-weight of 1. Then the minimum weight cut set will be computed from

the modif ed graph producing three components having the vertices a b c , d , and e

respectively. The vertices a b c will induce the subtrees ((a b) c) and ((a c) b). The

above process will be recursively applied to these subtrees resulting in three components

51

having the vertices a , b , and c respectively. The bottom-up supertree building

process will f rst generate (a b c) and f nally ((a b c) d e).

4.2 Generating Partitional Clusters from Multiple Cluster Hierarchies

In a clustering application involving multiple related heterogeneous datasets, it may

be desirable to generate a partitional clustering as a result of combining the results of

the individual hierarchical clusterings. For example, it may not be possible or feasible

to access the original dataset after hierarchical clustering is performed. A phylogenetic

tree combination method can be used to combine the resulting dendrograms to generate a

single representative dendrogram [27] and then a bottom-up or top-down strategy can be

used to cut the output dendrogram and extract the desired number of partitional clusters.

However, this approach has some shortcomings. The phylogenetic tree combination

methods focus on taxonomic structures of the individual trees to determine the taxonomic

relationship of the objects in the f nal tree and they do not focus on a quantitative measure

of how closely the data objects are related. In addition, some of these algorithms, e.g., the

consensus tree method, cannot deal with datasets that have some common objects but not

all.

Also, it may be diff cult to generate the desired number of partitional clusters from

the dendrogram generated by the supertree or consensus tree methods. This is because the

output dendrogram will typically have clusters (internal nodes) consisting of more than

two sub-clusters (descendants). The consensus tree method may create a lot of singleton

c ea b g hd f ba c d he gf c ea b hd g f

52

clusters with objects that cannot be resolved. The supertree method merges more than two

sub-clusters when there is lack of compatibility between the sub-clusters. For example,

consider the dendrograms shown in Figure 4.1(a) and 4.1(b). The supertree algorithm will

generate the dendrogram shown in Figure 4.1(c). It is not possible to extract two partitional

clusters from the dendrogram in Figure 4.1(c). One solution can be four clusters, a b c ,

e , d g h , and f . Another solution can be one big cluster, a b c d e f g h .

a b c e d f g h a c b f e g d h a b c e d g h f

(a) (b) (c)

Figure 4.1 Problem with the dendrogram generated by the supertree algorithm

It is important, therefore, to develop methods for producing partitional clusters as

dendrograms are combined. In this section, we present a graph-based method EPaCH

(Ensemble method for generating Partitional clusters from multiple Cluster Hierarchies)

for combining multiple cluster hierarchies to yield a set of partitional clusters. Instead of

extracting partitional clusters from a combined dendrogram, this method directly generates

partitional clusters from two or more dendrograms by capturing the cluster membership of

data objects from multiple dendrograms into the adjacency relationship of a single graph.

53

4.2.1 Algorithm Overview

In a hierarchical clustering, each node in the tree corresponds to a cluster. If one

focuses on two data objects, both will be members of the cluster represented by the root,

but the objects may also both be elements of other sub-clusters. In a dendrogram, all the

proper sub-clusters (clusters other than the root) become part of successively coarser sub-

clusters as one travels from the leaves (representing singleton clusters) toward the root.

EPaCH works by f rst generating a graph using the strength of association of each

pair of objects in the dendrograms. The purpose is to bring together the objects that are

strongly associated with each other into the form of a subgraph. The EPaCH algorithm

is based on the assumption that the larger the number of common sub-clusters two data

objects belong to, the stronger their association. The strength of association is represented

as weighted edges between objects in a graph.

For example, let us consider the dendrogram of Figure 4.2. There are six objects,

i.e., a b c d e and f in the dendrogram. There are f ve sub-clusters, i.e., a b , a b c ,

a b c d , a b c d e f , and e f . According to our assumption, a and b are expected

to be more closely associated than a and c or c and d or e and f .

Def nition 1 Let C = C1 C2 Cn 1 be the set of nested clusters represented by the

dendrogram. Let Ai = Cp Ci Cp be the ancestral set of Ci, i.e., the set of sub-clusters

that contain Ci. We def ne di to be the depth of a sub-cluster Ci such that di = Ai . The

depth of the root is 0, i.e., dn 1 = 0.

54

{a,b,c,d}

{a,b,c}

C1

C2

C3

C4

C5

b c d e f

{a,b,c,d,e,f}

{e,f}
{a,b}

a

Figure 4.2 Clusters as internal nodes in a dendrogram

Given the def nition of di, we can restate our assumption by saying that two objects

that belong to a sub-cluster which is at a lower level (greater depth) in the tree are more

closely associated than those that are both members of sub-clusters at a higher level (lesser

depth). For example, let us consider the dendrogram of Figure 4.2. According to our

restated assumption, a and b are expected to be more closely associated than e and f .

Lemma IV.1 Let a, b, c, and d be four objects and Ci and Cj be the nearest common

ancestors of a b and c d respectively. Then, di > dj ab > cd, where ab is the

strength of association between a and b.

Consequently, a sub-cluster that contains two data objects and is at a lower level of

the dendrogram will contribute more to the strength of association of the two objects than

a sub-cluster that contains the same two objects and is at a higher level of the dendrogram.

For example, in Figure 4.2, the sub-cluster C1, i.e., a b will contribute more to the

strength of association of a and b compared to the sub-cluster C3, i.e., a b c and sub-

cluster C4, i.e., a b c d .

55

Based on this idea, we calculate the strength of association for each pair of data objects

from each dendrogram and then add the individual strengths of association to calculate the

combined strength. We assume that the strength of association can be considered to be a

measure of proximity of the two objects.

Def nition 2 Let a and b be two data objects and i be the strength of association of aab

and b in dendrogram Di. We def ne i
ab as the sum of the normalized depths of the proper

clusters that both a and b belong to. If di is the maximum depth of a proper cluster in a max

dendrogram Di and di is the depth of the cluster Cj
i, then i is def ned as: j ab

i = dij di ab max

a b Ci
j

Lemma IV.2 If i is the strength of association of a and b in dendrogram Di, then there ab

is a non-zero lower bound and a linear upper bound on i
ab.

Proof 1 The strength of association of two objects could be zero if the only sub-cluster

they belong to is the root of the dendrogram which is not a proper cluster. Since i
ab

only considers the proper clusters, it cannot be zero. Two objects can have the minimum

possible strength of association when the only sub-cluster they belong to is at a depth of

one and the corresponding strength of association is 1 di . max Two objects can have the

56

maximum possible strength of association when the lowest sub-cluster they belong to is at

a depth of di and the corresponding strength of association is: max

di di
max max j 1

= j
di di max max j=1 j=1

di (di1 max max + 1)
=

di 2 max

di + 1
= max

2

Thus, the lower bound and the upper bound can be written as,

1 di + 1 max i
ab

di 2 max

We normalize the contribution of each sub-cluster to the strength of association since

we want to ensure that the strength of association of two objects for each dendrogram

is appropriately weighted. For example, let us assume that two objects a and b that are

contained in two dendrograms D1 and D2. The lowest sub-cluster that a and b belong to

in both D1 and D2 has a depth of 2. Also, the maximum depth of D1 and D2 are 2 and

3 respectively. If the contribution of each sub-cluster to the strength of association is not

normalized, then the strength of association of a and b will be 2 + 2 = 4. This is not

appropriately weighted since D1 is expected to make more contributions to the strength

of association of a and b compared to D2. But if we normalize the contribution of each

sub-cluster as we def ned, we do not encounter this problem.

The strengths of association are used to construct an undirected weighted graph where

the vertices correspond to data objects and two vertices are connected by an edge having

weight equal to the strength of association of the two corresponding data objects. We call

0
1
2
3

feca b d

D2

ca b d

D1

0
1
2
3

fa b c d e

D2

0
1
2

f

0
1
2

feea b c d

D1

57

this the cluster association graph. Once the cluster association graph has been constructed,

a graph partitioning algorithm is used to extract clusters from the graph. We have used the

k-way graph partitioning algorithm given by Karypis and Kumar [32].

4.2.2 An Illustrative Example

Let us consider the dendrogram D1 of Figure 4.3 that has a maximum depth of 3. The

data objects a and b are in the proper clusters a b , a b c , and a b c d . The depths

of these proper clusters are 3, 2, and 1 respectively. Consequently, their contributions

3
3

2
3

1
3

to the strength of association of a and b are , and respectively. The individual,

contributions are used to calculate the overall strength of association for a and b, i.e., 1
ab

3
3

2
3

1
3
= 2. Table 4.1 shows the strength of association for each possible pair of= + +

objects in both dendrograms of Figure 4.3.

Figure 4.3 The depths of sub-clusters in dendrograms

The combined strength of association of each pair of data objects in both dendrograms

is used to construct the cluster association graph shown in Figure 4.4. Each node corre-

58

Table 4.1 Strengths of association for different pairs of objects in Fig. 4.3

D1 D2 Combined

ab + + = 21
3

2
3

3
3

1
2

+ = 1 52
2

3.5

ac + = 11
3

2
3

1
2
= 0 5 1.5

ad = 0 33 1
3

0 0.33

ae 0 0 0

af 0 0 0

bc
1
3

2
3
+ = 1 1

2
= 0 5 1.5

bd
1
3
= 0 33 0 0.33

be 0 0 0

bf 0 0 0

cd
1
3
= 0 33 0 0.33

ce 0 0 0

cf 0 0 0

de 0 1
2

2
2
+ = 1 5 1.5

df 0 1
2
= 0 5 0.5

ef
1
3
= 0 33 1

2
= 0 5 0.83

59

sponds to a data object and the combined strength of association of each pair is used as the

weight of the edge between the corresponding nodes. For example, 1 = 2 and 2 = 1 5. ab ab

Consequently, a and b will be connected by an edge having a weight of 3.5. Let us con-

sider another pair of objects a and f . It can be seen from Table 4.1 that 1 = 2 = 0. af af

Consequently, a and f will not be connected since the edge weight is 0.

a b

c

d

f

e

3.5

1.51.5

0.33

0.5

1.5

0.83 0.33

0.33

a b

c

d

f

e

3.5

1.51.5

0.33

0.5

1.5

0.83 0.33

0.33

Figure 4.4 Cluster association graph

For graph partitioning, we have used the METIS2 software. METIS has two graph

partitioning programs, pmetis (based on a two-way partitioning algorithm [30]) and

kmetis (based on a k-way partitioning algorithm [32]). The METIS programs require

the edge weights to be integer values. If we simply convert the edge weights in Figure

4.4 to integers, it will result in information loss. Rather, we decided to normalize the

combined strength of association of each pair of objects. We have proved previously that

the strength of association of two objects in a particular dendrogram is bounded on the

2http://www-users.cs.umn.edu/˜karypis/metis/metis/index.html

a b4a 4 b

c

d

f

e

22

1

2

1

c

d

f

e

22

1

2

1

60

lower side by the reciprocal of the maximum dendrogram depth. Hence, we normalize ab

by the harmonic sum of the maximum dendrogram depths, i.e.,

 1
ab = ab

di maxDi

This normalization results in a minimum edge weight of one. If we apply this normal-

ization, then the cluster association graph shown in Figure 4.4 will become the one shown

in 4.5. Note that the edges a d , b d , and c d have been dropped in the process. If

the desired number of clusters is two, then kmetis will give us the clusters a b c and

d e f as shown with the dotted ellipses in 4.5.

Figure 4.5 Normalized cluster association graph

61

4.2.3 The EPaCH Algorithm

The input to the EPaCH algorithm is a set of m dendrograms D1 D2 Dm and

the output of the algorithm is a set of k disjoint partitional clusters Cp1 Cp2 Cpk .

We will use L in our algorithm to represent the overall set of objects where L = m

i=1 Li.

Def nition 3 Let G = (V E) be a weighted undirected graph where V is the set of vertices

and E is the set of undirected edges. Let w : E R+ be the weight function associated

with the graph where each weight is a positive real number, so that for e E, w(e) R+ .

The algorithm is described in Figure 4.6. The algorithm f rst computes the strength

of association for each pair of objects (steps 2-11). Then it computes the cluster associa-

tion graph (steps 13-20). Finally, in step 22, it invokes a graph partitioning algorithm to

generate the clusters. Each connected component of the graph will represent a partitional

cluster.

4.2.4 Complexity of EPaCH

The complexity of EPaCH is essentially determined by the complexity of the opera-

tions that compute the strength of association of each pair of objects. In the worst case,

EPaCH will have to deal with a cluster hierarchy that has a maximum depth of n 2,

where n is the number of objects in the hierarchy. This will happen when just one node is

added to the next upper level sub-cluster as one travels from the deepest sub-cluster to the

all inclusive root cluster. For example, the cluster hierarchy shown in Figure 4.7 represents

the worst-case with six objects.

62

Input: A set of m dendrograms D1 D2 Dm

Output: A set of k disjoint partitional clusters Cp1 Cp2 Cpk

1. // compute strengths of association

2. for each pair of objects a b L do

3. ab 0

4. normalizer 0

5. for each dendrogram Di do

6. for each cluster Ci do j

i7. for each pair a b Cj do
i8. ab ab + dij dmax

9. normalizer normalizer + 1 di max

10. for each pair of objects a b L do

11. ab ab normalizer

12. // compute cluster association graph

13. V E

14. for each object a L do

15. V V a

16. for each object a L do

17. for each object b L do

18. if a = b and ab > 0 then

19. e a b w(e) ab

20. E E e

21. // partition graph

22. Cp1 Cp2 Cpk = PARTITIONGRAPH(k G)

Figure 4.6 The EPaCH algorithm

0

n-2

ca b d fe

0

n-2

a b c d e f

63

Figure 4.7 A cluster hierarchy with worst-case complexity for EPaCH

The total number of different pairs of objects in the entire hierarchy is essentially the

nnumber of 2-combinations of an n-element set, i.e.,
2

= n! (2!(n 2)!) = n(n 1) 2.

Intuitively, the worst-case complexity will be O(n3) since the upper bound on the number

of required node-visits for a pair of objects is n 1. An exact analysis of the worst-case

complexity follows.

In a worst-case hierarchy, the computation of the strength of association of the two

objects belonging to the lowest level sub-cluster will require n 1 node visits, the com-

putation of the strength of association of the two objects belonging to the sub-cluster just

above the lowest level one will require n 2 node visits, and so on. The total number of

different pairs of objets in the entire hierarchy is essentially the number of 2-combinations

nof an n-element set, i.e.,
2

= n! (2!(n 2)!) = n(n 1) 2. Out of these different pairs,

one will require n 1 node visits, two will require n 2 node visits, three will require

n 3 node visits, and so on. For example, in the hierarchy of Figure 4.7, the computation

of strength of association for only one pair of objects, i.e., a b , will require n 1 node

= (n 1)n + (n 2)(n 1) + (n 3)(n 2) + + 2 3 + 1 2
2

1
= 1 2 + 2 3 + + (n 2)(n 1) + (n 1)n

2

1 n(n 1)(n 2)
=

2 3

n(n2 1)
=

6

64

visits. The computation of strength of association for two pairs of objects, i.e., a c and

b c , will require n 2 node visits, and so on.

In the worst-case situation, the total number of node visits can be written as:

n 1
= i(n i)

i=1

n 1
= [(n i) + (i 1)(n i)]

i=1

n 1 n 1
= (n i) + (i 1)(n i)

i=1 i=1

n 1 n 1
= (i) + (i 1)(n i)

i=1 i=2

n 1 n 1
= (i) + [(n i) + (i 2)(n i)]

i=1 i=2

n 1 n 1 n 1
= (i) + (n i) + (i 2)(n i)

i=1 i=2 i=2

n 1 n 2 n 1
= (i) + (i) + (i 2)(n i)

i=1 i=1 i=3

...
n 1 n 2 n 3 2 1

= (i) + (i) + (i) + + (i) + (i)
i=1 i=1 i=1 i=1 i=1

(n 1)n (n 2)(n 1) (n 3)(n 2) 2 3 1 2
= + + + + +

2 2 2 2 2

1

0

lg n - 1

ca b d e hgf

0

lg n - 1

a b c d e f g h

65

(n3 n)
=

6

= O(n 3)

If there are k hierarchies, the complexity will be O(kn3). Since n k, we can take

the complexity to be O(n3).

EPaCH will have best-case complexity when the cluster hierarchy has a maximum

depth of lg n 1.3 This will happen when the hierarchy is fully balanced as shown in

Figure 4.8. In a best-case hierarchy, the computation of the strength of association of

the two objects belonging to the lowest level sub-cluster will require lg n node visits, the

computation of the strength of association of the two objects belonging to the sub-cluster

just above the lowest level will require lg n 1 node visits, and so on. Out of the total

n(n 1) 2 different pairs of objects in the entire hierarchy, n 2 will require lg n node

visits, n will require lg n 1 node visits, 2n will require lg n 2 node visits, and so on.

Figure 4.8 A cluster hierarchy with best-case complexity for EPaCH

3In this dissertation, we use lg to represent log
2
.

66

For example, in the hierarchy of Figure 4.8, the computation of strength of association

for all the lowest level pairs of objects, i.e., a b , c d , e f , and g h , will require

lg n node visits. The computation of strength of association for eight pairs of objects

belonging to the second lowest level, i.e., a c , a d , b c , b d , e g , e h ,

f g , and f h , will require lg n 1 node visits, and so on.

In the best-case situation, the total number of node visits can be written as:

n
lg n + n(lg n 1) + 2n(lg n 2) + + 2lg n 2 n 1

2

n
= lg n + n(lg n 1) + 2n(lg n 2) + + 2lg n 2 n(lg n (lg n 1))

2
 n

= lg n + n lg n + 2n lg n + + 2lg n 2 n lg n
2

n + 4n + + 2lg n 2(lg n 1)n

 n
= lg n + n lg n + 2n lg n + + 2lg n 2 n lg n

2

n 1 + 4 + + 2lg n 2(lg n 1)

Since

n
lg n + n lg n + 2n lg n + + 2lg n 2 n lg n

2

n
= lg n 1 + 2 + 22 + + 2lg n 1

2

n
= lg n 20 + 21 + 22 + + 2lg n 1

2

n
2lg n 1+1 1= lg n

2

n
2lg n 1= lg n

2

n
= lg n (n 1)

2

and

67

1 + 4 + + 2lg n 2(lg n 1)

= 1 + 2 2 + + 2lg n 2(lg n 1)

= 20 1 + 21 2 + 22 3 + + 2lg n 2(lg n 1)

= 2[20 1 + 21 2 + 22 3 + + 2lg n 2(lg n 1)]

[20 1 + 21 2 + 22 3 + + 2lg n 2(lg n 1)]

= [2 + 22 2 + 23 3 + + 2lg n 2(lg n 2) + 2lg n 1(lg n 1)]

[20 1 + 21 2 + 22 3 + + 2lg n 2(lg n 1)]

= [1 1 + 21 2 21 + 22 3 22 + +

2lg n 2(lg n 1) 2lg n 2 + 2lg n 1 lg n 2lg n 1]

[20 1 + 21 2 + 22 3 + + 2lg n 2(lg n 1)]

= 2lg n 1 lg n [1 + 2 + 22 + + 2lg n 2 + 2lg n 1]

2lg n

lg n [2lg n 1+1 1] =
2

n
= lg n 2lg n + 1

2

n
= lg n n + 1

2

the best-case complexity of EPaCH is:

 n n
lg n(n 1) n lg n n + 1

2 2
2 2n n n

= lg n lg n lg n + n 2 n
2 2 2

= O(n 2)

1 1 1 1

2 + + + +
1 2 3 n

1 1 1 1
2 + + + +

1 2 3 n
1 1 1 1 1 1 1 1

= 2 + + + + + + + +
1 2 3 4 5 6 7 n
1 1 1 1 1 1 1 1

 2 + + + + + + + +
1 2 2 4 4 4 4 n
1 1 1 1 1 1 1 1

= 2 + + + + + + + +
20 21 21 22 22 22 22 n

lg n 2i 1 1
= 2

2i
i=0 j=0

lg n
= 2 1 = 2 lg n

i=0

68

To compute the average-case complexity, we need to f nd an upper bound on the

average depth of each cluster hierarchy. We will use a simple intuitive probabilistic model

for this purpose. Let us assume that x is the deepest node in the hierarchy. To f nd the

expected depth of x, we need to consider the number of nodes that can appear in the path

from x to the root. If we count the probabilities for each one of the n nodes, the expected

number of nodes in a random permutation of n nodes can be written as:

1 1 1 1
+ + + +

1 2 3 n

Since each node can appear either as a left child or a right child along the path from x

to the root, the expected depth of the cluster hierarchy can be written as:

Let us assume that n = 2k , where k is an integer. Then, the upper bound on average

depth is:

69

So, we can see the upper bound on the average depth of a cluster hierarchy is O(lg n).

Intuitively, we can say the average-case complexity of EPaCH will be O(n2 lg n) since the

upper bound on the number of node-visits two objects may require is lg n and there are

n(n 1) 2 possible pairs of objects. We can conclude that the average-case complexity

of EPaCH is no worse than the complexity of building a single cluster hierarchy using the

average-link agglomerative algorithm.

4.3 EPaCHW - A Modif cation of EPaCH

The EPaCH algorithm does not consider the underlying similarity measures of the

input dendrograms. It works by considering only the taxonomic structure of the dendro-

grams. EPaCH was based on the assumption that the strength of association of two objects

is dependent on the depths of the sub-clusters these two objects belong to. Although this

notion can capture how closely two objects are related, the performance of EPaCH can be

improved by utilizing the underlying similarity measures. This will result in more infor-

mative combined dendrogram. In this section, we present a modif cation of EPaCH where

the similarity measures associated with each cluster are used to combine the dendrograms.

We call this algorithm EPaCHW (EPaCH-weighted).

4.3.1 Potential Problem with EPaCH

Let us f rst try to explain a potential problem with EPaCH. When the strength of as-

sociation is computed for a pair of objects, the only consideration is the depths of the sub-

clusters containing these objects, or equivalently, the number of sub-clusters containing

 C2

C3

C2
C4 a b dc e

C1

b

c

a
C1

C3

b

c

a
C1

C3

C4C4

C1

C2

C3

dd
C2

C4
ee a b c d e

(a) Nested Clustering (b) Dendrogram

70

these objects. This approach may result in two objects getting a lower value of strength of

association than another pair having a lower value of actual similarity (based on the metric

used to compute the original dendrogram).

Let us consider the f ve data objects in two dimensional space as shown in Figure

4.9(a) and the corresponding dendrogram computed by an average link agglomerative

method as shown in Figure 4.9(b). Even though objects a and b have the maximum

pairwise similarity and are combined into a sub-cluster in the very f rst iteration of the

agglomerative algorithm, EPaCH will assign a strength of association of 1/2 for a b and a

strength of association of 3/2 for c d. If we can incorporate the similarity measure associ-

ated with each sub-cluster, this can be overcome and the contribution of each sub-cluster

to the strength of association of each pair of objects can be more appropriately weighted.

Figure 4.9 Problem with EPaCH

71

4.3.2 Overview of EPaCHW

Each internal node of a dendrogram is associated with a similarity value that repre-

sents the intra cluster similarity for the corresponding cluster. Let i
j be the intra cluster

similarity for Ci
j, i.e., i

j is the similarity between its two descendants. We argue that the

strength of association of two objects should be correlated to the intra-cluster similarity

of the clusters to which they belong, i.e., if a pair of objects belong to a cluster having a

higher similarity, then their strength of association should be higher than the strength of

association of two objects belonging to a cluster having a smaller similarity.

For EPaCHW, we will redef ne the strength of association of two object with respect

to cluster Ci
j . Note that if average-link method is used to merge two sub-clusters, then the

intra-cluster similarity of a sub-cluster gives an estimate of the similarity between two ob-

jects in the sub-cluster. If the sub-cluster consists of only two objects, then the intra-cluster

similarity is essentially the actual similarity between them. As one travels upward from the

lowest sub-clusters that two objects belong to, the estimate of the similarity between the

two objects decrease monotonically. This is in accordance with our earlier assumption for

EPaCH that sub-clusters higher up the dendrogram should contribute less to the strength

of association of two objects.

To compute the strength of association of two objects with respect to a particular sub-

cluster Ci
j , instead of just taking dij di as we did in EPaCH, we will multiply the intra-max

72

cluster similarity i with di di . That requires us to redef ne the strength of association j j max

as:
 di i

i j j
= ab di

ia b C
max

j

Accordingly we will need to modify line 8 of EPaCH (Figure 4.6). Since the contribu-

tion of each sub-cluster is weighted by the intra-cluster similarity, we will normalize the

combined strength of association using the average intra-cluster similarity.

Since a dendrogram already includes the intra-cluster similarity associated with each

sub-cluster, no extra computation is needed to compute that. Therefore, the complexity of

EPaCHW will be the same as EPaCH, i.e., O(n2) in best-case, O(n2 lg n) in average-case

and O(n3) in worst-case. We argue that EPaCHW computes the strength of association of

two objects more appropriately compared to EPaCH. It is expected to capture the associ-

ation of objects in the input dendrograms better and this will result in a more informative

partitional clusters as output.

CHAPTER V

EXPERIMENTAL RESULTS

In Chapter IV, we presented the EPaCH family of algorithms that are used to gen-

erate a single set of partitional clusters from multiple heterogeneous datasets. Clustering

of multiple heterogeneous datasets can take different forms depending upon the physi-

cal characteristics of data and the type of mapping between datasets. In this chapter, we

present an evaluation of the effectiveness of the EPaCH algorithms in two situations. In

the f rst situation, two datasets are clustered that represent the same set of objects. In the

second situation, the datasets share some but not all objects - we call this situation dealing

with overlapping datasets. In this chapter, we describe the datasets used for the evaluation,

the experimental design, and the evaluation methods used to compare the effectiveness of

algorithms. We present the experimental results and provide an analysis of the results. We

also present a modif cation of one of the cluster evaluation measures, namely the Davies-

Bouldin Index.

5.1 Datasets

A document clustering problem was selected as the application domain. We used a

document collection compiled by Wang [60] consisting of ten thousand journal abstracts

that belong to ten different subject areas. The abstracts were divided evenly into f ve non-

73

74

overlapping subsets of two thousand where each subset contained two hundred abstracts

from each category. Basic natural language preprocessing steps were applied to all docu-

ments including sentence parsing, tokenization, morphological analysis and part-of-speech

tagging using the software developed by Wang [60].

Feature vectors were generated for each abstract using four different preprocessing

methods. One method extracts syntactic features and the other three methods extract se-

mantic features. Features extracted using each method were used to build a dataset for

each of the f ve document subsets resulting in a total of 20 data subsets. Each subset con-

sists of 2000 documents. Different preprocessing procedures can capture different aspects

of the documents and result in different feature spaces.

For syntactic preprocessing, Wang [60] used the Collins parser [10] to identify non-

recursive noun phrases. These non-recursive noun phrases were treated as keywords and

each abstract was treated as a “bag of keywords”. The cosine coeff cient method was

used to calculate the similarity between each pair of feature vectors. For constructing

semantic feature sets, Wang [60] used the WordNet semantic network1. The sense of each

word was identif ed with a sense disambiguation method based on the semantic relatedness

between senses. The relatedness of two senses in a semantic network can generally be

computed using node-based or edge-based methods [29]. A node-based method computes

the relatedness of two senses using the information content of each node in the semantic

network and an edge-based method uses the path length between them.

1http://wordnet.princeton.edu

https://1http://wordnet.princeton.edu

75

The WordNet::Similarity package2 implements a number of different node-based and

edge-based semantic relatedness measures. We used one node-based method (Word-

Net::Similarity::res), one edge-based method (WordNet::Similarity::lch), and one com-

bined node and edge based method (WordNet::Similarity::jcn) to extract semantic related-

ness. Feature vectors were then constructed as a “bag of senses” and the cosine coeff cient

method was again used to calculate the similarity between two feature vectors.

5.2 Experimental Design

A similarity matrix was computed from each set of syntactic feature vectors and from

each set of semantic feature vectors. Average-link hierarchical clustering was performed

using each similarity matrix. As mentioned earlier in Chapter III, our approach is based

on clustering the individual datasets and then combining the resulting clusterings.

To test the effectiveness of EPaCH and EPaCHW, we selected several baselines. One

of the baselines was the result of hierarchical clustering based on individual feature sets.

Another baseline was average-link agglomerative hierarchical clustering based on a con-

catenation of the feature vectors for the corresponding objects in each dataset. Ten clusters

were generated during each clustering because the datasets were known to have ten cate-

gories. There are two ways to extract partitional clusters from a dendrogram, cutting the

dendrogram at a given height or pruning the dendrograms by selecting clusters at differ-

ent heights [57]. We used a recursive bottom-up approach to extract partitional clusters

2http://search.cpan.org/dist/WordNet-Similarity

https://2http://search.cpan.org/dist/WordNet-Similarity

76

from the baseline dendrograms. We started by merging the lowest subclusters and stopped

when the number of clusters left in the dendrogram was equal to the expected number of

partitional clusters.

We also compared the performance of our algorithms against two phylogenetic tree-

combination methods, i.e., the consensus tree [7] and supertree [49] methods. For the con-

sensus tree, we used PHYLIP3 that provides an implementation of the greedy consensus

tree algorithm. For the supertree, we used an implementation of the MINCUT algorithm4.

Again, a bottom-up approach was used to extract partitional clusters from the combined

dendrograms.

We also compared our algorithm against partitional clusters generated by the k-means

algorithm and a graph-theoretic approach on concatenated feature vectors. For the graph-

based clustering, the similarity matrix generated from a dataset was converted into an

adjacency matrix for a graph before applying the graph-partitioning [62]. Each object was

treated as a vertex and each similarity value between a pair of objects was treated as the

weight of the edge between the two corresponding vertices. We used the kmetis module

from the state-of-the-art METIS5 software for the graph partitioning.

To test our research hypothesis and the effectiveness of our methods, we also wanted

to observe how the methods perform with related datasets that share some but not all

objects. This is a case of bi-regular mapping that we def ned in Chapter III. To generate

3http://evolution.genetics.washington.edu/phylip.html

4http://darwin.zoology.gla.ac.uk/cgi-bin/supertree.pl

5http://www-users.cs.umn.edu/˜karypis/metis/metis/index.html

https://4http://darwin.zoology.gla.ac.uk/cgi-bin/supertree.pl
https://3http://evolution.genetics.washington.edu/phylip.html

77

data for these experiments, the general approach was to select an exclusion percentage and

then randomly select that many objects for exclusion from each of the twenty datasets with

the constraint that each class remained equal sized. We randomly selected f fty percent of

the objects from each dataset for exclusion. On average, this resulted in an overlap of

approximately f fty percent between two datasets constructed from the same document

subset using different feature sets, i.e., each pair of combined datasets had approximately

f fteen hundred objects and each individual dataset had exactly one thousand objects.

When we were constructing a concatenated feature set using two overlapping object

sets, we had to deal with missing values for objects that appear only in one of the datasets.

There are two general methods for handling missing feature values in clustering: impu-

tation and marginalization [23]. With imputation, missing values are replaced by created

values. Some common approaches are to replace the missing values with zeros [1], replace

the missing values with the observed mean for that feature [54], and to infer the missing

values based on the objects observed features and its similarity to other objects [54]. With

marginalization, missing values are ignored and new values are not created. One possible

approach is to use only the features that have observed values for two objects when calcu-

lating their similarity (known as pairwise deletion) [63]. Another approach is to use the set

of missing features as constraints to decide how strongly a pair of objects is related [58].

In our document clustering domain, the feature space is extremely sparse and therefore

many of these methods will not be effective. We decided to employ marginalization with

pairwise deletion while dealing with the concatenated feature sets.

78

5.3 Evaluation Methods

In general, a cluster is interesting if it is valid and potentially useful. It is very impor-

tant to have an effective mechanism for evaluating the results of a clustering algorithm to

validate that the clusters have relevance in the context of the domain. While human inspec-

tion may sound like the most intuitive evaluation method since it compares the clustering

results with the user’s intention in a natural way, it lacks scalability and is not always desir-

able and feasible in real-life applications. Therefore, quantitative assessment of clustering

quality is of great importance for various clustering applications. Cluster evaluation, also

referred to as cluster validation, is a non-trivial task and can be performed with two broad

approaches: internal criteria and external criteria [28].

In an internal criteria based approach, the results of a clustering algorithm are eval-

uated in terms of quantities that involve the given data, e.g., the distance matrix. In an

external criteria based approach, the results of a clustering algorithm are evaluated based

on a pre-specif ed structure that ref ects our intuition about the clustering structure of the

data set. For example, category labels can be attached to the clusters and then some method

can be used to measure the discrepancy between the external categorization and the clus-

tering. Cluster evaluation based on Davies-Bouldin Index and Dunn’s Index are examples

of external approaches and cluster evaluation based on entropy, purity, F-measure, etc., are

examples of internal approaches. Regardless of the approach, the goal of any evaluation

mechanism is to assign better scores to a scheme that achieves high intra-cluster similar-

79

ity low inter-intra-cluster similarity. We used a modif ed Davies-Bouldin index, entropy,

purity, and F-Measure to compare our results.

5.3.1 Davies-Bouldin Index

The Davies-Bouldin index [13] is based on inter-cluster and intra-cluster distances.

Intuitively, the Davies-Bouldin index is the average similarity between each cluster and

its most similar one. Let (Ci Cj) be the distance between two clusters Ci and Cj and

(Ci) be the intra-cluster distance, i.e., the measure of dispersion of cluster Ci. Both

(Ci Cj) and (Ci) can be calculated based on the notion of shortest/longest/average

distance between cluster members. The goal is to have a DB index as small as possible

since the clusters should be internally compact and well separated from each other. The

Davies-Bouldin index is def ned as [13]:

p
1 (Ci) + (Cj)

max
p i=j (Ci Cj)

i=1

5.3.2 Entropy

Entropy gives a measure of how the various categories of objects are distributed within

each cluster. The goal is to minimize entropy and for a set of disjoint clusters, the entropy

should be 0. If ni
j is the number of objects of the jth category Cj

 that is assigned to Ci,

80

p is the number of clusters, and q is the number of actual categories6, then the entropy is

def ned as [66]:

p Ci
Entropy(C) = E(Ci)

D
i=1

where
q

1 ni
j ni

j

E(Ci) = log
log q Ci Ci

j=1

5.3.3 Purity

Purity gives a measure of how each cluster contains objects from primarily one cate-

gory. The goal is to maximize purity and for a set of disjoint clusters, the purity should be

 1. Using the notation for entropy, purity is def ned as [66]:

p
Ci

Purity(C) = P (Ci)

D
i=1

where

P (Ci) =
1

max(nj)
Ci j

i

5.3.4 F -measure

The F -measure [35] gives a measure of how the clustering f ts the actual classif cation

of data, i.e., how most elements in a cluster are from the same category and also how most

′6For describing the validation indices, we use Ci to represent a computed cluster and Cj to represent an
actual category.

81

elements from a category are grouped into the same cluster. The goal is to maximize the

F -measure and ideally it should be 1.

The F -measure of a cluster Ci with respect to an actual category C
j is calculated as

If pre ji is the the harmonic average of the precision and recall of Ci with respect to C .j

j
iprecision i.e., the fraction of the objects of Ci that belongs to Cj

 and rec is the recall,

i.e., the fraction of the objects of C

jreci

that is assigned to Ci, then the F -measure of Ci with
j

respect to Cj
 is def ned as [35]:

j
i 2 2 pre j

iF = =
(1 pre ji) + (1 rec ji) pre ji

j
i+ rec

j
i2 (n Ci) (n

Ci) + (n

j
i C

C j

j) 2 nij

 Ci + C
= =

j
i

j
i)(n

The F -measure for Cj
 is taken to be the maximum over all clusters and the weighted

j

sum of the individual F -measures for all the actual categories is calculated to obtain the

overall F -measure:

j2 nij

q
D 1 i p Ci + C

j=1

5.4 A Modif ed DB-Index

C
max

j

The goal of the DB-index is to produce better (low) values for a clustering with high

compactness among the objects of an individual cluster and high separation between clus-

ters themselves. This index is based on a geometric view of the clustering and works well

82

when the objects are distributed with a uniform density around cluster centers, e.g., when

clusters are of spherical shape. However, with real world data, this may not hold since

there can be large variability in cluster shapes.

For example, let us consider Figure 5.1 that shows three different instances of clus-

tering. Let us assume that all three clusterings are perfect with respect to the actual cat-

egorization of the objects but each is based on a different set of features. If we compare

Figure 5.1(b) with Figure 5.1(a), we can see that the DB-index will be higher (worse)

for the clustering in Figure 5.1(b) since the C2 will have a higher intra-cluster distance

compared to C2 in Figure 5.1(a). Note that the DB-index will be the ratio of the sum of

the intra-cluster distances of C1 and C2 and the inter-cluster distance between C1 and C2.

Again, if we compare Figure 5.1(c) with Figure 5.1(a), we can see that the inter-cluster

distance between C1 and C2 will be lower in Figure 5.1(c). Even though both clusterings

in Figures 5.1(b) and 5.1(c) are assumed to be perfect, the DB-index values will be higher

(worse) compared to the clustering in Figure 5.1(a).

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

(a) (b) (c)

Figure 5.1 Problems with DB-Index

83

In our initial experiments with document clustering datasets, the original DB-index

did not appear to give informative results. One would expect low DB-index values for

a perfect clustering of the data. However, when we evaluated the perfect partitional clus-

ters for the syntactically preprocessed and semantically preprocessed (node-based) subsets

with respect to the respective distance matrices, we obtained the DB-index values as shown

in Table 5.1. Note that DB-index lies between 0 and 2, with 0 being the best case. So,

even though we tested a perfect clustering, we obtained DB-index values close to the worst

possible case.

Table 5.1 DB-Index values for perfect clustering

Feature sets
Syntactic Semantic
1.95711 1.96472
1.95801 1.96411
1.95468 1.96167
1.95801 1.96459
1.95685 1.96399

To achieve a more informative DB-index, we have developed a modif ed def nition of

the DB-index. As mentioned earlier, the calculation of DB-index is based on the intra-

cluster and inter-cluster distances. These distances are calculated using a distance metric

applied on the actual feature space. We have modif ed the DB-index to use “expected”

intra-cluster and inter-cluster distances instead. This approach offsets the negative effect

of variability in the geometric shapes of clusters.

84

Def nition 4 Let Ci be a cluster, ni be the number of objects in Ci, and e(Ci) be the

expected intra-cluster distance of Ci. Then,

1
e(Ci) = e(a b)

(ni)2
a Ci b Ci

where

e(a b) =

1 if a and b belong to the same category

0 otherwise

Def nition 5 Let Ci and Cj be two clusters, ni and nj be the respective number of objects,

and e(Ci Cj) be the expected inter-cluster distance between Ci and Cj .Then,

1
e(Ci Cj) = e(a b)

ni nj
a Ci b Cj

Def nition 6 Given the def nitions of e(Ci) and e(Ci Cj), we def ne a modif ed Davies-

Bouldin index as:
p

MDB = max

e(Ci) + e(Cj)1

p i=j e(Ci Cj)
i=1

5.4.1 Simulation with MDB

In order to test the effectiveness of the modif ed DB-index, we generated simulated

distance matrices representing progressively “better” clusters. Thirty synthetic matrices

were generated where each matrix represented two thousand objects. We assumed that the

objects are distributed among ten categories. We performed average-link agglomerative

85

hierarchical clustering on all these distance matrices and then extracted ten partitional

clusters from each.

We computed the original DB-index, MDB, and F -measure for all the resulting clus-

ters. Figure 5.2 shows how the original DB-index and the modif ed DB-index change with

the F -measure. Note that the F -measure is known to yield appropriate values for different

clusters, i.e., high values for the higher quality clusters and low values for the lower qual-

ity clusters. It can be seen that the MDB yields progressively lower (better) values with

increasing F -measure values. For a perfect clustering, the F -measure yields a value of 1

and the MDB yields a value of 0. Moreover, the MDB changes almost linearly (with a

negative slope) with F -measure. On the other hand, the original DB-index does not yield

low values for high quality clusters, but tends to have values limited to a narrower range.

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

F-Measure

MDB
DB-Index

Figure 5.2 Changes in original DB-Index and modif ed DB-Index against changes in F -
measure for synthetic distance matrices

86

5.5 Results of Algorithm Evaluation

5.5.1 Results with Datasets having Identical Sets of Objects

The MDB, entropy, purity, and F-Measure were used to evaluate the quality of differ-

ent clustering algorithms. Ensemble clustering results using EPaCH and EPaCHW were

compared to baselines described in section 5.2. Table 5.2 - Table 5.5 present the eval-

uation results for the four different validation indices. Note that the results are for ten

partitional clusters generated using each clustering scheme. Each table presents the values

for a particular validation index for different clustering schemes. Each subset of f ve rows

represents a different combination of feature sets where each row represents the particular

index for one of the f ve document subsets. The clustering schemes used in the experiment

and the notation used in the tables to represent them are:

 Hierarchical clustering based on a single feature set (C1 C2)

 Hierarchical clustering with a concatenated feature set (Ccon)

 Clusters resulting from the combination of individual hierarchical clusterings using
the consensus tree method (Ccns)

 Clusters resulting from the combination of individual hierarchical clusterings using
the supertree method (Csup)

 k-means clustering with a concatenated feature set (Ckm)

 Graph-based clustering with a concatenated feature set (Cgr)

 Clusters resulting from the combination of individual hierarchical clusterings using
EPaCH (Cep)

 Clusters resulting from the combination of individual hierarchical clusterings using
EPaCHW (Cepw)

87

Table 5.2 Comparison of modif ed DB-Index for EPaCH algorithms

C1 C2 Ccon Ccns Csup Ckm Cgr Cep Cepw

Syntactic and node-based semantic feature sets
Dataset#1 1.27 1.64 1.46 1.61 1.46 0.75 0.70 0.83 0.79
Dataset#2 1.57 1.49 1.45 1.62 1.70 1.40 0.88 1.35 1.29
Dataset#3 1.60 1.26 1.32 1.67 1.28 1.27 0.64 0.79 0.69
Dataset#4 1.38 1.50 1.46 1.59 1.45 1.09 0.80 0.80 0.73
Dataset#5 1.25 1.58 1.34 1.78 1.62 0.93 0.78 1.23 0.76

Syntactic and edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

1.27
1.57
1.60
1.38
1.25

1.42
1.53
1.38
1.59
1.56

1.40
1.44
1.56
1.36
1.28

1.47
1.67
1.36
1.65
1.36

1.27
1.67
1.44
1.72
1.42

1.09
1.45
1.37
1.47
1.14

0.78
0.86
0.61
0.82
0.78

0.95
1.30
0.94
1.30
1.04

0.88
1.28
0.79
1.10
0.99

Syntactic and node-and-edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

1.27
1.57
1.60
1.38
1.25

1.32
1.63
1.45
1.55
1.50

1.47
1.60
1.38
1.32
1.33

1.45
1.48
1.47
1.40
1.29

1.53
1.58
1.49
1.61
1.51

1.49
1.41
1.43
1.50
1.21

0.77
1.00
0.60
0.77
0.62

0.70
1.32
0.97
1.38
0.85

0.72
0.92
0.80
0.91
0.80

Node-based and edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

1.64
1.49
1.26
1.50
1.58

1.42
1.53
1.38
1.59
1.56

1.49
1.33
1.27
1.50
1.48

1.68
1.49
1.29
1.30
1.28

1.65
1.67
1.36
1.64
1.70

1.26
1.38
1.28
1.44
1.48

0.77
0.92
0.58
0.71
0.72

1.03
0.98
0.72
1.32
1.03

0.78
0.84
0.72
0.81
0.95

Node-based and node-and-edge-based semantic feature sets
Dataset#1 1.64 1.32 1.47 1.72 1.36 1.31 0.71 0.76 0.77
Dataset#2 1.49 1.63 1.58 1.60 1.68 1.22 0.90 0.99 0.82
Dataset#3 1.26 1.45 1.24 1.32 1.60 1.12 0.55 1.24 0.73
Dataset#4 1.50 1.55 1.44 1.62 1.33 1.43 0.72 0.96 1.02
Dataset#5 1.58 1.50 1.37 1.57 1.58 1.14 1.36 0.77 0.80

Edge-based and node-and-edge-based semantic feature sets
Dataset#1 1.42 1.32 1.40 1.48 1.71 1.24 0.91 0.89 0.81
Dataset#2 1.53 1.63 1.51 1.45 1.66 1.32 0.96 1.15 0.80
Dataset#3 1.38 1.45 1.57 1.52 1.32 1.31 0.53 1.38 0.80
Dataset#4 1.59 1.55 1.38 1.35 1.55 1.65 0.74 1.34 0.95
Dataset#5 1.56 1.50 1.55 1.48 1.51 1.39 0.76 0.86 0.76

88

Table 5.3 Comparison of entropy for EPaCH algorithms

C1 C2 Ccon Ccns Csup Ckm Cgr Cep Cepw

Syntactic and node-based semantic feature sets
Dataset#1 0.41 0.54 0.36 0.50 0.54 0.19 0.23 0.25 0.21
Dataset#2 0.57 0.56 0.59 0.55 0.53 0.35 0.28 0.38 0.34
Dataset#3 0.57 0.36 0.37 0.46 0.43 0.33 0.22 0.24 0.22
Dataset#4 0.35 0.48 0.51 0.47 0.49 0.27 0.27 0.26 0.24
Dataset#5 0.39 0.42 0.41 0.55 0.43 0.24 0.24 0.32 0.24

Syntactic and edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

0.41
0.57
0.57
0.35
0.39

0.39
0.60
0.38
0.54
0.55

0.41
0.39
0.39
0.44
0.37

0.45
0.46
0.40
0.47
0.39

0.54
0.58
0.52
0.61
0.42

0.27
0.34
0.33
0.37
0.29

0.25
0.28
0.20
0.29
0.24

0.25
0.37
0.26
0.34
0.32

0.23
0.34
0.23
0.30
0.30

Syntactic and node-and-edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

0.41
0.57
0.57
0.35
0.39

0.47
0.69
0.36
0.56
0.42

0.41
0.46
0.44
0.35
0.39

0.34
0.45
0.39
0.40
0.39

0.47
0.66
0.43
0.61
0.46

0.40
0.33
0.37
0.32
0.28

0.25
0.30
0.21
0.25
0.21

0.21
0.36
0.28
0.38
0.28

0.20
0.28
0.23
0.27
0.25

Node-based and edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

0.54
0.56
0.36
0.48
0.42

0.39
0.60
0.38
0.54
0.55

0.54
0.44
0.34
0.54
0.61

0.46
0.46
0.35
0.39
0.35

0.56
0.55
0.46
0.53
0.64

0.33
0.33
0.31
0.40
0.36

0.25
0.29
0.19
0.25
0.24

0.26
0.30
0.23
0.33
0.35

0.22
0.26
0.22
0.25
0.30

Node-based and node-and-edge-based semantic feature sets
Dataset#1 0.54 0.47 0.48 0.49 0.49 0.28 0.24 0.22 0.21
Dataset#2 0.56 0.69 0.44 0.43 0.59 0.34 0.30 0.32 0.25
Dataset#3 0.36 0.36 0.36 0.33 0.47 0.24 0.21 0.29 0.22
Dataset#4 0.48 0.56 0.59 0.51 0.47 0.37 0.27 0.27 0.29
Dataset#5 0.42 0.42 0.50 0.38 0.60 0.27 0.34 0.24 0.25

Edge-based and node-and-edge-based semantic feature sets
Dataset#1 0.39 0.47 0.51 0.42 0.58 0.30 0.29 0.25 0.20
Dataset#2 0.60 0.69 0.41 0.37 0.76 0.31 0.29 0.33 0.26
Dataset#3 0.38 0.36 0.43 0.48 0.48 0.29 0.20 0.37 0.25
Dataset#4 0.54 0.56 0.51 0.41 0.42 0.52 0.26 0.37 0.26
Dataset#5 0.55 0.42 0.40 0.36 0.36 0.30 0.24 0.27 0.25

89

Table 5.4 Comparison of purity for EPaCH algorithms

C1 C2 Ccon Ccns Csup Ckm Cgr Cep Cepw

Syntactic and node-based semantic feature sets
Dataset#1 0.57 0.43 0.58 0.59 0.38 0.87 0.86 0.86 0.88
Dataset#2 0.45 0.43 0.39 0.50 0.46 0.72 0.84 0.70 0.75
Dataset#3 0.44 0.63 0.63 0.60 0.55 0.69 0.89 0.86 0.88
Dataset#4 0.64 0.51 0.43 0.60 0.53 0.80 0.84 0.84 0.86
Dataset#5 0.57 0.55 0.57 0.53 0.48 0.84 0.86 0.78 0.86

Syntactic and edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

0.57
0.45
0.44
0.64
0.57

0.57
0.41
0.63
0.40
0.43

0.57
0.61
0.56
0.49
0.65

0.61
0.63
0.68
0.61
0.66

0.39
0.45
0.45
0.30
0.55

0.77
0.66
0.71
0.64
0.76

0.85
0.84
0.89
0.84
0.86

0.83
0.73
0.84
0.75
0.81

0.84
0.76
0.87
0.81
0.81

Syntactic and node-and-edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

0.57
0.45
0.44
0.64
0.57

0.49
0.32
0.64
0.40
0.57

0.57
0.52
0.55
0.63
0.59

0.73
0.59
0.69
0.70
0.71

0.48
0.37
0.54
0.29
0.48

0.62
0.72
0.64
0.73
0.78

0.85
0.81
0.89
0.85
0.88

0.88
0.75
0.83
0.72
0.84

0.88
0.84
0.87
0.84
0.86

Node-based and edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

0.43
0.43
0.63
0.51
0.55

0.57
0.41
0.63
0.40
0.43

0.39
0.54
0.64
0.45
0.38

0.56
0.64
0.72
0.72
0.74

0.39
0.44
0.49
0.47
0.34

0.70
0.73
0.70
0.63
0.68

0.85
0.83
0.90
0.86
0.86

0.81
0.81
0.87
0.75
0.79

0.87
0.85
0.88
0.85
0.82

Node-based and node-and-edge-based semantic feature sets
Dataset#1 0.43 0.49 0.49 0.48 0.49 0.74 0.86 0.88 0.88
Dataset#2 0.43 0.32 0.52 0.64 0.37 0.73 0.82 0.80 0.86
Dataset#3 0.63 0.64 0.65 0.71 0.47 0.82 0.89 0.78 0.87
Dataset#4 0.51 0.40 0.38 0.53 0.54 0.67 0.85 0.83 0.81
Dataset#5 0.55 0.57 0.47 0.62 0.38 0.80 0.74 0.86 0.86

Edge-based and node-and-edge-based semantic feature sets
Dataset#1 0.57 0.49 0.47 0.67 0.39 0.77 0.82 0.84 0.88
Dataset#2 0.41 0.32 0.54 0.67 0.26 0.73 0.81 0.79 0.86
Dataset#3 0.63 0.64 0.56 0.56 0.49 0.75 0.90 0.73 0.85
Dataset#4 0.40 0.40 0.50 0.69 0.57 0.53 0.85 0.72 0.84
Dataset#5 0.43 0.57 0.56 0.70 0.58 0.72 0.86 0.84 0.86

90

Table 5.5 Comparison of F -measure for EPaCH algorithms

C1 C2 Ccon Ccns Csup Ckm Cgr Cep Cepw

Syntactic and node-based semantic feature sets
Dataset#1 0.65 0.51 0.68 0.54 0.51 0.86 0.86 0.86 0.88
Dataset#2 0.51 0.50 0.48 0.50 0.49 0.71 0.84 0.72 0.75
Dataset#3 0.51 0.71 0.69 0.56 0.64 0.72 0.89 0.86 0.88
Dataset#4 0.71 0.57 0.54 0.55 0.58 0.77 0.84 0.84 0.86
Dataset#5 0.66 0.63 0.64 0.50 0.60 0.84 0.86 0.78 0.86

Syntactic and edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

0.65
0.51
0.51
0.71
0.66

0.66
0.47
0.69
0.51
0.54

0.65
0.66
0.67
0.60
0.71

0.58
0.58
0.64
0.57
0.67

0.52
0.49
0.55
0.43
0.65

0.77
0.69
0.73
0.67
0.75

0.85
0.84
0.89
0.83
0.86

0.83
0.73
0.84
0.76
0.81

0.84
0.76
0.87
0.81
0.81

Syntactic and node-and-edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

0.65
0.51
0.51
0.71
0.66

0.57
0.40
0.70
0.51
0.64

0.65
0.61
0.64
0.71
0.65

0.69
0.59
0.67
0.67
0.71

0.58
0.42
0.64
0.43
0.59

0.63
0.70
0.65
0.74
0.79

0.85
0.81
0.89
0.85
0.88

0.88
0.75
0.83
0.74
0.84

0.88
0.84
0.87
0.84
0.86

Node-based and edge-based semantic feature sets
Dataset#1
Dataset#2
Dataset#3
Dataset#4
Dataset#5

0.51
0.50
0.71
0.57
0.63

0.66
0.47
0.69
0.51
0.54

0.51
0.60
0.72
0.52
0.47

0.57
0.62
0.68
0.70
0.72

0.49
0.49
0.53
0.52
0.42

0.69
0.72
0.71
0.60
0.64

0.85
0.82
0.90
0.86
0.86

0.81
0.82
0.87
0.76
0.79

0.87
0.85
0.88
0.85
0.82

Node-based and node-and-edge-based semantic feature sets
Dataset#1 0.51 0.57 0.57 0.50 0.56 0.74 0.86 0.88 0.88
Dataset#2 0.50 0.40 0.61 0.61 0.44 0.73 0.82 0.80 0.86
Dataset#3 0.71 0.70 0.71 0.71 0.58 0.83 0.89 0.79 0.87
Dataset#4 0.57 0.51 0.46 0.49 0.60 0.68 0.85 0.83 0.81
Dataset#5 0.63 0.64 0.56 0.62 0.46 0.77 0.75 0.86 0.86

Edge-based and node-and-edge-based semantic feature sets
Dataset#1 0.66 0.57 0.56 0.62 0.48 0.79 0.82 0.84 0.88
Dataset#2 0.47 0.40 0.64 0.67 0.35 0.74 0.81 0.79 0.86
Dataset#3 0.69 0.70 0.61 0.54 0.58 0.77 0.90 0.75 0.85
Dataset#4 0.51 0.51 0.55 0.67 0.64 0.54 0.85 0.73 0.84
Dataset#5 0.54 0.64 0.65 0.67 0.65 0.76 0.86 0.84 0.86

91

The information presented in Table 5.2 - Table 5.5 is summarized graphically in Figure

5.3 and results of paired T-tests for selected hypotheses are given in Table 5.6. If we com-

pare the performance (over all indices) of the clustering performed on the concatenated

feature sets with clustering based on individual feature sets, we can see that the concate-

nated feature set gives clusters that are typically intermediate in quality when compared

to the results based on individual feature sets. Only in a few instances does the clustering

on concatenated feature set outperform both clusterings based on individual feature sets.

This demonstrates that feature set concatenation does not necessarily take advantage of

the mutual information in the individual feature sets to give improved clustering. On the

other hand, if we compare EPaCH with both the clustering based on individual feature

sets and clustering based on concatenated feature sets, EPaCH consistently yields higher

quality clusters for all validation indices for all datasets. Also note that EPaCHW out-

performs EPaCH for all indices. This indicates that taking the intra-cluster similarity into

consideration provides critical information for improving the quality of the clusters.

EPaCH and EPaCHW also outperform the clustering based on phylogenetic tree com-

bination methods (consensus tree and supertree). The phylogenetic methods do not even

consistently outperform clustering based on individual features sets or the clustering based

on concatenated feature sets. In Chapter IV, we explained the drawbacks of the consensus

tree and supertree methods when the goal is to extract partitional clusters. We forced ten

clusters from each output dendrogram generated by the consensus tree and the supertree

method by putting all the small clusters into one big one. Also, the supertree algorithm is

92

not memory eff cient and becomes very time consuming when dealing with large datasets.

It recursively splits a graph (that contains all the objects) several times and keeps all the

sub-graphs in memory.

Finally, the quality of clusters generated by EPaCH and EPaCHW were compared

with the clusters generated by two partitional algorithms (k-means and graph-based) on

the concatenated feature sets. Since the performance of k-means depends on the random

selection of the initial cluster centers, we ran k-means f ve times and the results presented

are averages over f ve runs. Out of all thirty instances, only in four cases, EPaCH performs

worse than k-means for all validation indices. There are also six more instances when k-

means yields better entropy and two more instances when k-means yields better purity.

But, in general, EPaCH and EPaCHW yield higher quality clusters compared to k-means

with the concatenated feature sets.

On the f ip side, EPaCH does not compare well with the graph-based algorithm. Only

in four cases does EPaCH performs better than the graph-based clustering performed on

concatenated feature sets for all validation indices. EPaCHW is more competitive with the

graph-based clustering on concatenated feature sets although the latter still seems better

than EPaCHW. This is discussed further in terms of statistical tests of signif cance below.

Figure 5.3 shows a graphical representation of the comparison of different valida-

tion indices for the different clustering schemes. The results shown are averages over all

observations (thirty subsets) along with the standard deviations. For the individual clus-

terings, C1 represents the better of the two clusterings and C2 represents the worse of the

93

two clusterings. The graphs clearly indicate that EPaCH and EPaCHW yield higher qual-

ity clusters than the other approaches with the exception of the graph-based clustering

on concatenated feature sets. In addition to the average values, it can be seen that the

standard deviations are lower for EPaCH and EPaCHW than all the baselines except the

graph-based clustering on concatenated feature sets.

Table 5.6 show the results of paired T-tests for selected hypotheses. In the notation

used, Cx Cy means the index values for Cx are signif cantly better than those for Cy.

The clustering subscripts have been previously introduced. Cb represents the better of the

two individual clusterings and Cw represents the worse of the two individual clusterings.

Each row shows the T -test results for a particular validation index. The tests were per-

formed with = 05 and the corresponding Tcritical = 1 699 for one-tail tests. For each

hypothesis, there are two columns. The f rst column shows the value of the T-statistic and

the second column shows the p-values, i.e., the probability of error involved in accepting

the hypothesis. A T-statistic of 1.699 or higher and a p-value of 0.05 or lower provides

evidence that the hypothesis is true.

Note that these results again show that hierarchical clustering with the concatenated

feature set is signif cantly more effective than the worst individual clustering and signif -

cantly less effective than the best individual clustering. The T-test results verify our claim

that both EPaCH and EPaCHW signif cantly outperform clustering based on the individ-

ual feature sets. EPaCH and EPaCHW are consistently signif cantly better than the best

clustering based on individual feature sets and is also signif cantly better than clustering

	

� �

 9 4

2. 0 1. 0

1. 6 0. 8

1. 2 0. 6

0. 8 0. 4

0. 4 0. 2

0. 0 � � � � � � � � � � 0. 0 � � � � � � � � � �

� � � � � � � � � � �
�

�

� � � � � � � � �

˘ ˇ

ˆ ˙ ˝ � ˝ �
˛

(a) M D B (b) E ntr o p y

1. 0 1. 0

0. 8 0. 8

0. 6 0. 6

0. 4 0. 4

0. 2 0. 2

0. 0 0. 0° ˜ ° ° ° ° ° ° ° °

- . - - - - - - - -

' (

6 7
/

! " # ! # $ $ % &) * + & + &
,

0 1 0 3 4 8 : 52 3 9 :2 5
;

(c) P urit y (d) F- M e as ur e

Fi g ur e 5. 3 C o m p ari s o n of a v er a g es of diff er e nt v ali d ati o n i n di c es f or E P a C H al g orit h m s
a n d b as eli n e cl ust eri n g s c h e m es

5

95

Table 5.6 The one-tailed T -test results for comparing EPaCH algorithms with other
clustering schemes where = 05 and Tcritical = 1 699

Tstat PT t Tstat PT t Tstat PT t Tstat PT t

MDB
Ccon Cb

-1.32 0.097
Ccon Cw

6.38 2.85e-07
Cep Cb

9.42 1.26e-10
Cep Ccon

8.87 4.67e-10
Entropy
Purity
F-Meas

-0.55
-1.23
-0.87

0.294
0.114
0.196

4.22
3.92
3.98

0.0001
0.0003
0.0002

9.97
17.56
13.59

3.51e-11
2.71e-17
2.09e-14

9.56
16.34
13.45

9.18e-11
1.81e-16
2.68e-14

MDB
Ccns

-2.64
 Ccon
0.007

Csup
-3.69

 Ccon
0.0005

Cep
9.37

 Ccns
1.42e-10

Cep
12.48

 Csup
1.72e-13

Entropy
Purity
F-Meas

1.14
6.65
0.21

0.132
1.35e-07

0.418

-4.08
-4.18
-4.43

0.0002
0.0001

6.17e-05

9.81
10.77
12.75

5.07e-11
5.93e-12
1.02e-13

14.70
22.21
18.67

2.85e-15
4.71e-20
5.23e-18

MDB
Cep

5.95
 Ckm

9.16e-07
Cep

-5.21
 Cgr

7.07e-06
Cepw

5.21
 Cep

7.01e-06
Cepw

-2.40
 Cgr
0.011

Entropy
Purity
F-Meas

2.07
5.98
6.42

0.024
8.41e-07
2.53e-07

-4.34
-4.33
-4.34

7.92e-05
8.19e-05
7.87e-05

6.99
6.09
6.30

5.37e-08
6.23e-07
3.52e-07

-0.06
-0.48
-0.47

0.476
0.317
0.322

96

based on the concatenated feature sets using hierarchical clustering or k-means cluster-

ing. EPaCHW is always signif cantly better than EPaCH for all indices. It should also be

noted that the statistical tests produce very low p-values when EPaCH and EPaCHW are

compared against other baselines except the graph based clustering on concatenated fea-

ture sets. For our document datasets, EPaCH does not perform as well as the graph based

clustering on concatenated feature sets. EPaCHW performs slightly worse than the graph

based clustering on concatenated feature sets as indicated by the negative T-statistic, but

the differences are not signif cantly different.

5.5.2 Results with Datasets having Overlapping Sets of Objects

As described in Section 5.2, we generated overlapping datasets to evaluate the perfor-

mance of the EPaCH algorithms when the two datasets do not represent exactly the same

data objects but share some objects. These datasets were constructed by randomly remov-

ing 50% of the objects from each dataset. We have excluded the consensus tree, supertree,

and k-means from these experiments. The consensus tree method cannot be applied to

two dendrograms consisting of overlapping objects sets. The supertree method performed

worse than most other methods even in the case of identical objects sets and so was not

considered further. The performance of EPaCH and EPaCHW were compared with that of

the graph-based clustering for the concatenated feature sets since that in general performs

better than k-means.

97

Table 5.7 - Table 5.10 present the results for the different validation indices for 30

datasets. Each table presents a particular index for different clustering schemes. Each

subset of f ve rows represents a different combination of feature sets and each row repre-

sents the particular index for one of the f ve document subsets. The clustering schemes

are: hierarchical clustering based on individual feature sets (C1 C2), hierarchical cluster-

ing with concatenated feature sets (Ccon), graph-based clustering with concatenated feature

sets (Cgr), combination of individual hierarchical clusterings using EPaCH (Cep), and com-

bination of individual hierarchical clusterings using EPaCHW (Cepw). Figure 5.4 gives a

graphical summary of these results and Table 5.11 shows the results of paired T -tests done

on selected hypotheses with overlapping object sets.

As observed with the clustering done on identical object sets, in most instances, hi-

erarchical clustering with the concatenated feature sets performs worse than one of the

two individual clusterings. EPaCH yields better values for all of the validation indices

compared to the better of clusterings based on individual feature sets with the exception of

entropy. It is known that the entropy measure yields lower (better) values for a clustering

where each cluster has fewer objects with respect to a set of reference clusters. Note that

the reference clusters for the evaluations described here consist of objects appearing in

both the datasets under consideration. When these are used to measure the entropy, the

individual clustering, which has fewer objects than a clustering based on the combined

dataset, will result in lower (better) entropy values.

98

Table 5.7 Comparison of modif ed DB-index for EPaCH algorithms - results are for
datasets with 50% of the objects randomly removed

C1 C2 Ccon Cgr Cep Cepw C1 C2 Ccon Cgr Cep Cepw

Syntactic and node-based Node-based and edge-based
semantic feature sets semantic feature sets

#1 1.49 1.37 1.62 1.67 1.22 1.11 1.37 1.44 1.47 1.79 1.11 1.05
#2 1.56 1.64 1.79 1.70 1.30 1.23 1.64 1.64 1.62 1.70 1.48 1.16
#3 1.51 1.45 1.49 1.76 0.87 0.83 1.45 1.29 1.29 1.71 1.47 1.21
#4 1.31 1.61 1.57 1.72 1.28 1.13 1.61 1.59 1.72 1.76 1.50 1.29
#5 1.39 1.55 1.59 1.85 1.45 1.24 1.55 1.55 1.34 1.50 1.43 1.32

Syntactic and edge-based Node-based and node-and-edge-based
semantic feature sets semantic feature sets

#1 1.49 1.44 1.65 1.72 1.45 0.74 1.37 1.39 1.47 1.77 1.34 0.95
#2 1.56 1.64 1.57 1.70 1.47 1.35 1.64 1.44 1.71 1.61 1.54 1.10
#3 1.51 1.29 1.62 1.71 1.48 1.08 1.45 1.55 1.69 1.66 1.23 1.03
#4 1.31 1.59 1.60 1.62 1.39 1.31 1.61 1.52 1.73 1.63 1.41 1.15
#5 1.39 1.55 1.52 1.67 1.26 1.18 1.55 1.46 1.49 1.60 1.45 1.31

Syntactic and node-and-edge-based Edge-based and node-and-edge-based
semantic feature sets semantic feature sets

#1 1.49 1.39 1.56 1.71 1.31 1.01 1.44 1.39 1.51 1.66 1.33 0.82
#2 1.56 1.44 1.72 1.55 1.47 1.27 1.64 1.44 1.62 1.76 1.65 1.36
#3 1.51 1.55 1.48 1.58 1.35 1.03 1.29 1.55 1.45 1.66 1.30 1.32
#4 1.31 1.52 1.70 1.73 1.34 1.12 1.59 1.52 1.51 1.72 1.43 1.30
#5 1.39 1.46 1.74 1.60 1.32 1.10 1.55 1.46 1.67 1.67 1.45 1.38

Each row represents the modif ed DB-index for one of the f ve document subsets where
randomly selected 50% objects were excluded from each subset.

99

Table 5.8 Comparison of entropy for EPaCH algorithms - results are for datasets with
50% of the objects randomly removed

C1 C2 Ccon Cgr Cep Cepw C1 C2 Ccon Cgr Cep Cepw

Syntactic and node-based Node-based and edge-based
semantic feature sets semantic feature sets

#1 0.23 0.28 0.49 0.48 0.33 0.29 0.28 0.26 0.59 0.54 0.29 0.27
#2 0.29 0.36 0.66 0.53 0.41 0.36 0.36 0.36 0.63 0.50 0.45 0.35
#3 0.22 0.27 0.48 0.48 0.28 0.28 0.27 0.37 0.52 0.51 0.46 0.32
#4 0.30 0.37 0.52 0.51 0.41 0.34 0.37 0.42 0.56 0.52 0.45 0.37
#5 0.23 0.42 0.58 0.50 0.43 0.36 0.42 0.35 0.63 0.45 0.39 0.39

Syntactic and edge-based Node-based and node-and-edge-based
semantic feature sets semantic feature sets

#1 0.23 0.26 0.59 0.48 0.36 0.24 0.28 0.27 0.68 0.55 0.36 0.32
#2 0.30 0.36 0.61 0.53 0.45 0.40 0.36 0.45 0.63 0.49 0.49 0.32
#3 0.23 0.37 0.61 0.52 0.41 0.31 0.27 0.35 0.57 0.52 0.35 0.33
#4 0.30 0.42 0.55 0.46 0.44 0.40 0.37 0.27 0.65 0.52 0.46 0.31
#5 0.23 0.36 0.49 0.53 0.36 0.33 0.42 0.31 0.55 0.47 0.44 0.38

Syntactic and node-and-edge-based Edge-based and node-and-edge-based
semantic feature sets semantic feature sets

#1 0.23 0.28 0.52 0.50 0.36 0.28 0.26 0.27 0.63 0.53 0.35 0.26
#2 0.29 0.45 0.61 0.47 0.45 0.37 0.36 0.46 0.60 0.55 0.48 0.39
#3 0.23 0.35 0.49 0.46 0.38 0.27 0.38 0.35 0.44 0.48 0.36 0.33
#4 0.30 0.27 0.73 0.52 0.41 0.35 0.43 0.28 0.73 0.54 0.45 0.37
#5 0.23 0.31 0.49 0.50 0.37 0.34 0.35 0.31 0.70 0.53 0.46 0.41

Each row represents the entropy values for one of the f ve document subsets where randomly
selected 50% objects were excluded from each subset.

100

Table 5.9 Comparison of purity for EPaCH algorithms - results are for datasets with
50% of the objects randomly removed

C1 C2 Ccon Cgr Cep Cepw C1 C2 Ccon Cgr Cep Cepw

Syntactic and node-based Node-based and edge-based
semantic feature sets semantic feature sets

#1 0.45 0.38 0.50 0.55 0.75 0.80 0.38 0.38 0.42 0.50 0.79 0.81
#2 0.34 0.29 0.39 0.53 0.70 0.74 0.29 0.29 0.38 0.56 0.65 0.75
#3 0.42 0.41 0.54 0.54 0.84 0.85 0.41 0.28 0.48 0.50 0.65 0.77
#4 0.38 0.33 0.42 0.54 0.74 0.78 0.32 0.24 0.45 0.50 0.66 0.74
#5 0.44 0.25 0.45 0.49 0.65 0.75 0.25 0.31 0.34 0.62 0.67 0.72

Syntactic and edge-based Node-based and node-and-edge-based
semantic feature sets semantic feature sets

#1 0.44 0.38 0.47 0.56 0.69 0.86 0.38 0.37 0.35 0.51 0.70 0.80
#2 0.34 0.29 0.42 0.50 0.64 0.71 0.29 0.20 0.38 0.56 0.61 0.78
#3 0.42 0.29 0.44 0.49 0.69 0.81 0.41 0.29 0.45 0.53 0.75 0.80
#4 0.38 0.25 0.46 0.58 0.68 0.71 0.32 0.38 0.39 0.51 0.63 0.78
#5 0.44 0.31 0.51 0.54 0.73 0.78 0.25 0.36 0.52 0.59 0.67 0.72

Syntactic and node-and-edge-based Edge-based and node-and-edge-based
semantic feature sets semantic feature sets

#1 0.45 0.38 0.50 0.53 0.72 0.81 0.38 0.37 0.41 0.51 0.72 0.85
#2 0.34 0.20 0.42 0.55 0.66 0.74 0.29 0.20 0.41 0.50 0.56 0.71
#3 0.42 0.28 0.50 0.56 0.69 0.82 0.29 0.29 0.57 0.56 0.72 0.72
#4 0.37 0.38 0.30 0.49 0.71 0.78 0.25 0.39 0.33 0.48 0.66 0.73
#5 0.43 0.36 0.51 0.57 0.75 0.79 0.31 0.36 0.34 0.52 0.65 0.72

Each row represents the purity values for one of the f ve document subsets where randomly
selected 50% objects were excluded from each subset.

101

Table 5.10 Comparison of F -measure for EPaCH algorithms - results are for datasets
with 50% of the objects randomly removed

C1 C2 Ccon Cgr Cep Cepw C1 C2 Ccon Cgr Cep Cepw

Syntactic and node-based Node-based and edge-based
semantic feature sets semantic feature sets

#1 0.60 0.53 0.52 0.55 0.76 0.80 0.53 0.55 0.47 0.48 0.79 0.81
#2 0.50 0.44 0.42 0.53 0.70 0.74 0.44 0.44 0.44 0.56 0.65 0.75
#3 0.59 0.54 0.56 0.53 0.84 0.85 0.54 0.44 0.53 0.51 0.63 0.77
#4 0.52 0.45 0.52 0.54 0.74 0.78 0.44 0.38 0.47 0.50 0.66 0.74
#5 0.58 0.38 0.47 0.49 0.65 0.75 0.38 0.47 0.43 0.63 0.67 0.71

Syntactic and edge-based Node-based and node-and-edge-based
semantic feature sets semantic feature sets

#1 0.60 0.55 0.48 0.55 0.69 0.86 0.53 0.53 0.41 0.49 0.70 0.80
#2 0.50 0.45 0.48 0.49 0.65 0.71 0.44 0.31 0.41 0.56 0.61 0.78
#3 0.59 0.44 0.46 0.49 0.68 0.81 0.55 0.44 0.48 0.52 0.75 0.80
#4 0.52 0.39 0.49 0.57 0.68 0.72 0.44 0.53 0.39 0.51 0.63 0.78
#5 0.58 0.47 0.51 0.54 0.73 0.78 0.38 0.50 0.54 0.59 0.66 0.72

Syntactic and node-and-edge-based Edge-based and node-and-edge-based
semantic feature sets semantic feature sets

#1 0.60 0.54 0.54 0.51 0.73 0.82 0.55 0.53 0.45 0.51 0.72 0.85
#2 0.50 0.31 0.47 0.55 0.66 0.75 0.45 0.32 0.44 0.49 0.56 0.71
#3 0.59 0.44 0.54 0.55 0.67 0.82 0.44 0.44 0.59 0.57 0.73 0.72
#4 0.51 0.53 0.37 0.48 0.70 0.78 0.38 0.54 0.40 0.47 0.66 0.73
#5 0.58 0.50 0.52 0.58 0.75 0.79 0.47 0.49 0.37 0.51 0.64 0.71

Each row represents the F -measure values for one of the f ve document subsets where
randomly selected 50% objects were excluded from each subset.

102

EPaCH also outperforms clustering done on concatenated feature sets using the hier-

archical algorithm. Again, EPaCHW produces better quality clusters compared to EPaCH.

Both EPaCH and EPaCHW achieve signif cantly better performance than the graph based

clustering on concatenated feature sets for all the validation indices with all datasets.

The results in Table 5.11 showing paired T -tests done on selected hypotheses for

overlapping object sets conf rm our conclusions. It should be noted that the T -statistics

are higher compared to the T -statistics that we obtained when comparing algorithms with

identical object sets for (1) EPaCH and clustering on concatenated feature sets, (2) EPaCH

and graph-based clustering, and (3) EPaCHW and EPaCH. This implies the performance

improvement in more prominent when the algorithms are used with datasets with overlap-

ping objects. These results indicate that the EPaCH family of algorithms can effectively

handle related heterogenous datasets in which some of the objects represented are com-

mon, but some are not.

5.5.3 Effect of Decreasing Overlap between Datasets

Finally, we conducted an experiment to observe the effect of decreasing the amount

of overlap between datasets. Previously, the results we presented were based on datasets

having perfect mapping and bi-regular mapping with 49.7% overlap. We achieved that by

randomly removing 50% of the objects from each dataset. We also conducted experiments

by randomly removing 25% and 75% of the objects from each dataset. In the f rst case,

2. 0 1. 0

1. 6 0. 8

1. 2 0. 6

0. 8 0. 4

0. 4 0. 2

0. 0 0. 0
< < < < < <

>

? @ B D D FA C E EC 1 C 2 C c o n C gr C e p C e p w

(a) M D B (b) E ntr o p y

1. 0 1. 0

0. 8 0. 8

0. 6 0. 6

0. 4 0. 4

0. 2 0. 2

0. 0 0. 0
R R R R R R

G G G G G G

T

I

U W Y [Z [\V X Z

J K L M N O P O P Q

(c) P urit y (d) F- M e as ur e

 1 0 3

Fi g ur e 5. 4 C o m p ari s o n of a v er a g es of diff er e nt v ali d ati o n i n di c es f or E P a C H al g orit h m s
a n d b as eli n e cl ust eri n g s c h e m es - r es ult s ar e f or d at as et s wit h 5 0 % of t h e
o bj e ct s r a n d o ml y r e m o v e d

104

Table 5.11 The one-tailed T -test results for comparing EPaCH algorithms with other
clustering schemes where = 05 and Tcritical = 1 699 - results are for
datasets with 50% of the objects randomly removed

Tstat PT t Tstat PT t Tstat PT t

MDB
Ccon Cb

-6.32 3.34e-07
Ccon Cw

-1.91 0.0334
Cep Cb

2.19 0.018
Entropy
Purity
F-Measure

-20.76
4.69
-4.72

2.98e-19
2.95e-05
2.75e-05

-13.37
8.82
1.78

3.14e-14
5.22e-10
0.0425

-14.01
32.44
16.47

9.61e-15
1.21e-24
1.48e-16

MDB
Cep Ccon

6.94 6.33e-08
Cep Cgr

9.91 4.00e-11
Cepw Cep

7.52 1.37e-08
Entropy
Purity
F-Measure

13.70
20.67
20.01

1.71e-14
3.36e-19
8.14e-19

9.21
13.83
13.47

2.08e-10
1.34e-14
2.63e-14

8.88
9.34
8.89

4.51e-10
1.51e-10
4.47e-10

there was 74.8% overlap and in the second case, there was 25.6% overlap in the resulting

datasets.

Figure 5.5 shows the change in the average F -measure for different clustering schemes

with decreasing overlap between datasets. We chose F -measure because of its robustness.

We tested EPaCH and EPaCHW against hierarchical clustering on concatenated feature

sets and graph based clustering on concatenated feature sets. We selected the graph-based

clustering algorithm since it demonstrated the best performance among the baseline clus-

tering schemes.

It can be seen from 5.5 that although the graph based clustering on concatenated fea-

ture sets outperforms EPaCH and has performance similar to EPaCHW for identical object

sets, both EPaCH and EPaCHW start outperforming graph based clustering on concate-

105

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Overlap %

F-
m

ea
su

re

Ccon Cgr Cep Cepw

Ccon: Hierarchical clustering based on concatenated feature sets, Cgr: Graph-based clustering with
concatenated feature sets, Cep: Combination of individual hierarchical clusterings using EPaCH,
Cepw: Combination of individual hierarchical clusterings using EPaCHW

Figure 5.5 Changes in F -measure averages with decreasingly overlapped datasets

nated feature sets as the amount of overlap decreases. Only when the overlap among two

datasets reaches approximately 25%, the graph based clustering on concatenated feature

sets performs similar to EPaCH. But EPaCHW still outperforms the graph based clustering

on concatenated feature sets at that point.

5.6 Summary

In the document clustering domain, EPaCH and EPaCHW were seen to yield higher

quality clusters with heterogeneous datasets than hierarchical clustering based on individ-

ual datasets and hierarchical clustering based on concatenated feature sets. The algorithms

also outperform the supertree and consensus tree methods and k-means applied to concate-

106

nated feature sets. EPaCHW consistently outperforms EPaCH. Graph-based partitional

clustering with concatenated feature sets outperforms EPaCH when the datasets represent

the same set of objects. EPaCHW appears to be slightly worse than graph-based clustering

in this case, but the differences are not statistically signif cant. However, in cases where

the two heterogeneous datasets have only a subset of objects in common, both EPaCH and

EPaCHW signif cantly outperform all other methods including graph-based partitioning

for all indices.

Therefore, EPaCH and EPaCHW offer a new approach for making use of the comple-

mentary knowledge contained in two related heterogeneous datasets. The two algorithms

are particularly useful in cases where some objects are represented in both datasets, but

some are different.

CHAPTER VI

PARTITIONAL CLUSTERING OF HETEROGENEOUS DATASETS

USING MUTUAL ENTROPY

In chapter IV, we presented algorithms that can combine individual cluster hierarchies

built from related heterogenous datasets. In this chapter, we present a class of algorithms

called CEMENT (Cluster Ensemble using Mutual ENTropy) to address the problem of

clustering two related datasets where the datasets represent the same or overlapping sets

of objects but use different feature sets. These algorithms take the partitional clusters

generated from two datasets as input and use a constraint-based approach to generate a

single set of clusters. Our method uses an EM (expectation maximization) approach where

the objective function is the mutual entropy between the two sets of clusters. We also

present experimental results using the datasets described in chapter V and demonstrate the

effectiveness of the CEMENT algorithms.

6.1 Motivation

Even though clustering is traditionally perceived to be an unsupervised process, in

semi-supervised clustering [3, 6, 33, 50, 59, 64] framework, the performance of an unsu-

pervised clustering algorithm can be improved with some supervision in the form of some

107

108

labeled data or constraints. In constraint-based semi-supervised clustering approaches,

user-provided labels or some form of constraints are introduced using prior knowledge.

These labels or constraints are then used to guide the clustering process. In the context of

clustering heterogeneous datasets, once individual datasets are clustered, each clustering

can be used to mutually inform the clustering of the other to provide a combined clustering

of the two datasets.

The diff culty with many popular unsupervised clustering methods is that there is no

clear notion of what a cluster is. A model based method like Expectation Maximization

[47] treats the clustering problem as f nding a subpopulation with a certain distribution.

When dealing with two individual clusterings and performing further cluster assignments

based on constraints provided by mutual information, an EM approach can be used to

maximize an appropriate objective function.

In the context of clustering heterogeneous datasets, the purpose of the objective func-

tion is to allow each individual clustering to inform the cluster membership of objects in

the other clustering so that at the end of each iteration, the algorithm improves the overall

cluster quality. Mutual entropy [45, 34, 52, 36, 67] can be used to represent the infor-

mation contained in one random variable that can describe another random variable. A

high mutual entropy represents a high similarity between the two variables. Given two

individual clusterings, combining them to generate a single set of clusters can be viewed

as maximizing the mutual entropy between the individual clusterings.

109

6.2 An EM Algorithm for Clustering Heterogenous Datasets

6.2.1 Model-based Clustering

Expectation Maximization (EM) is a probabilistic approach used for f nding the max-

imum likelihood estimates of hidden or hypothetical variables of a model. In general, EM

algorithms use an iterative two-step process that converges after a number of E and M

steps. The E-step computes an expectation of the likelihood of the hidden variables and

the M-step maximizes the expected likelihood found in the E-step.

EM has been used in the context of model-based data clustering. Model based clus-

tering is based on the framework of density estimation and views clustering as identify-

ing the dense regions of the dataset. In model-based clustering, data are assumed to be

generated by a mixture of underlying probability distributions in which each model rep-

resents a different group or cluster. Let o1 o2 on be the set of n data points and

C1 C2 Ck be the set of k underlying groups. Let fj(oi j) be the density of a data

point oi from the jth group Cj, where j is the set of corresponding parameters, and j is

kthe probability that an observation belongs to the jth group (j 0 and j=1 k = 1).

Let = 1 1 k and = 1 1 k . By assuming that each data point is

contained in one of the groups, the goal of EM clustering is to maximize the likelihood

function [20]:

n k
l() = kfj(oi j)

i=1 j=1

110

The general approach is to initialize each model and then iteratively adjust the model

to f t known data. In the E-step, the probability fj(oi j) with which the object oi would

belong to class Cj is computed. In the M-step, the parameters of each class are adjusted so

that it increases the likelihood of all the objects belonging to some cluster. EM clustering

algorithms differ in the choice of the density function fj(oi j). The choice of objective

function is dependent on the form of the underlying probability distribution.

6.2.2 Problem Def nition

We will use some of the notation developed in Chapter III. Let us assume that we are

x x x ydealing with two datasets Dx = o1 o2 o and Dy = o1
y o2

y o that consist nx ny

of feature sets Fx and Fy. Here we will assume that Fx = Fy and Dx Dy , i.e., the

two datasets may consist of the same objects or they may share some common objects.

Let us assume that each object is represented by a unique index 1 n, where n is the

total number of objects from both datasets, i.e., n = Dx Dy . Using this indexing, we can

x x xwrite, Dx Dy = o1 o2 on . Let Vx = v1 v2 vn be an object representation

x xvector, where vi is one if oi is contained in Dx and vi is zero if oi is not contained in Dx.

Similarly, we def ne another object representation vector Vy corresponding to Dy.

xLet Cx = C1
x C2

x Ck and Cy = C1
y C2

y Ck
y be the sets of clusters com-

xputed from the individual datasets Dx and Dy respectively. Let Ax = Ax
1 A

x
2 Ak

x x x xbe the set of cluster assignment vectors for Cx, where Ax = ai1 ai2 a ; a is one i in ij

x xif the object oj is in cluster Ci and zero if object oj is not in Ci . Similarly, we def ne

111
y y y yx x xAy = A1

y A2
y Ak . Let 1 2 k and 1 2 k be the sets of mean

vectors for Cx and Cy respectively. Our goal is to compute a single set of k partitional

clusters C = C1 C2 Ck .

6.2.3 The Probability Function

For our approach, we will def ne the probability density function fj(oi j) of the EM

ualgorithm as a discrete probability function pj(oi u
j). For an object oi and class Cj , the

uprobability pj(oi u
j) is def ned as one if j is the closest mean to oi and zero otherwise.

The parameters u
j consist of the corresponding cluster assignment vector Au

j and the mean

uvector j . Mathematically,

pj(oi
u
j) =

u1 if argmaxk [s(oi k)] = j

u0 if argmaxk [s(oi k)] = j

uwhere s(oi k) is a similarity function between the object i and the mean vector for cluster

uCk . The following constraints are also imposed:

=1 =1 i j

n k

pj(oi
x
j) = nx

=1 =1 i j

n k

pj(oi
y
j) = ny

112

6.2.4 The Likelihood Function

The likelihood function we use is the mutual entropy between the two partitions. The

notion of mutual entropy is based on Shannon’s information theory and quantif es the

amount of information two random variables share with each other. If two random vari-

ables are independent, their mutual entropy is zero, i.e., none contains any information

about the other. If they are identical, then all the information conveyed by one is shared

by the other. The mutual entropy of two random variables X and Y is def ned using the

individual entropies and the joint entropy and can be written as [67]:

nx ny P (X = xi Y = yj)
P (X = xi Y = yj) log

P (X = xi)P (Y = yj)
i=1 j=1

In our case, each random variable is a given clustering and each possible value of a

random variable is a cluster assignment vector. P (X = xj) is estimated as the fraction

of the objects that are in a cluster in the f rst clustering and P (X = xi Y = yj) as the

xfraction of the objects that are common in two clusters from the two clusterings. Let ni

xbe the number of objects in cluster i in Cx, i.e., n = Cx and ny be the number of objects i i i

in Ci
y. Let nij be the number of objects that are common in cluster i of Cx and cluster j of

Cy, i.e., nij = Ci
x Cj

y .

Then the mutual entropy between the two clustering Cx and Cy can be written as:

k k k k nij nij n 1 nijn
log = nij log x y x yn (n n) n n n ni ni j ji=1 j=1 i=1 j=1

113

For brevity, we will use xy(t) to represent the mutual entropy between the two clus-

tering Cx and Cy in iteration t. The motivation for considering the mutual entropy as the

likelihood function stems from its ability to measure a general dependence among random

variables. In our case, when the mutual entropy between the two partitions is large, it

means they are more similar. The purpose of our algorithm will be to increase the value of

this mutual entropy through convergence so that we obtain more meaningful partitions in

the context of the two heterogeneous datasets.

6.2.5 Algorithm Overview

In this section, we present an overview of the f rst of our CEMENT algorithms. We

call this CEMENT1. Our algorithm is based on computing a set of seed clusters and then

recomputing each clustering around the seed clusters iteratively so that the mutual entropy

between the two clusterings converges. At the end, a f nal adjustment step is carried out to

generate a single set of clusters.

Def nition 7 Let Dx and Dx be two datasets and Dx Dy = o1 o2 on . We def ne

a set of seed clusters S = S1 S2 Sk where each seed cluster Si consists of objects

that are in both Dx and Dy, i.e., Si Dx Dy. Let Vs = vs1 vs2 vsn be an object

representation vector corresponding to S, where vsi is one if oi is contained in any of the

sseed clusters and vsi is zero if oi is not. Let As = As
1 As

2 Ak be the set of cluster

s s s sassignment vectors for S, where As
i = ai1 ai2 ain ; aij is one if the object oj is in

seed cluster Si and zero if object oj is not in Si.

114

The algorithm starts by computing two individual partitional clusterings using the

two different datasets. Each clustering is assumed to generate k clusters. We can use any

suitable partitional clustering algorithm for this purpose. Then we will generate k seed

clusters and further cluster ref nement will be performed using these seed clusters. An

important feature of an EM algorithm is that it does not put equal importance on all the data

points when computing a model. Similarly, in our method, we will only consider the pairs

of clusters from the two clusterings having a “good” match to compute the seed clusters.

We use the seed clusters as constraints to guide subsequent ref nement of each clustering.

In a particular iteration, we will not reassign any of the seed objects (objects belonging

to seed clusters). Rather, the non-seed objects will be reassigned to appropriate clusters.

After generating the seed clusters, the mean vectors are computed for both datasets based

on the seed objects.

To generate seed clusters, we identify k pairs of similar clusters from the two cluster-

ings. One straightforward approach for computing the similarity between two clusters is

to count the number of common objects shared between the clusters. However, this will

often create a tie between two pairs of clusters and may select large diverse clusters over

smaller purer clusters. Instead, we will use the following information theoretic measure to

compute the similarity between Cx
i and Cy

j :

2nij

+ nnx
i

y
j

115

This measure will give us a continuous value between 0 and 1. If there is no common

object between Cx
i and Cy

j , it will evaluate to 0, and if the clusters are exactly the same, it

will evaluate to 1. We need to compute the similarity between all pairs of clusters.

We considered two methods for pairing similar clusters from the two datasets. In

one approach, the seed clusters are based on the “best” matching pairs of clusters. Un-

fortunately, this is a combinatorial optimization problem and is therefore computationally

intensive if there are many clusters. Instead we have used a greedy approach for select-

ing cluster pairs where, for each of the k clusters from one clustering, we select the best

matching cluster from the other clustering that has not yet been paired with a cluster from

the f rst set of clusters. Once the k pairs of similar clusters are identif ed, the seed clusters

are computed from the intersection of each pair of clusters.

Let us explain the seed cluster computation with an example as shown in Figure 6.1.

There are two datasets, D1 = a b c d e f g h i and D2 = d e f g h i j k l .

The f rst set of clusters C1 consists of three clusters a d , b c e f , and g h i . The

second set of clusters C2 consists of three clusters f g j , e h i l , and d k . For

the f rst cluster on the f rst clustering, C1
1, the best match is the third cluster on the second

clustering, C3
2 . These two clusters will be used to generate the f rst seed cluster S1 =

C1
1 C3

2 = d . Then, for the second cluster on the f rst clustering, C2
1, the best match is

the f rst cluster on the second clustering, C1
2 . These two clusters will be used to generate

the second seed cluster S2 = C1 C2 = f . Finally, the only match for C1 is C2 and 2 1 3 2

S3 = C3
1 C2

2 = h i .

a d
e

b c

h i
g

fC1
1

C2
1

C3
1

a d
e

b c

h i
g

fC1
1

C1
1

C2
1

C2
1

C3
1

C3
1

d
el

h i
g

f
k

jC3
2

C2
2 C1

2

d
el

h i
g

f
k

jC3
2

C3
2

C2
2

C2
2 C1

2
C1

2

(a) The clustering C1 (b) The clustering C2

d

h i
fS1

S3
S2

d

h i
fS1

S3
S2

116

(c) The seed clusters S = S1 S2 S3

Figure 6.1 Computing seed clusters from two partitional clusterings

117

Once seed clusters have been computed, the algorithm progresses iteratively through

an E-step and an M-step. In the E-step, for each dataset, the discrete probability function

is computed for each non-seed object belonging to the dataset. In the M-step, for each

dataset, the cluster assignment vector is recomputed for each non-seed object belonging

to the dataset. Thus, in the maximization step, essentially each cluster mean makes a

shift towards the mean of the cluster expected to contain data elements in the context of

both datasets. Before the start of next E-step, seed clusters and the two mean vectors

are recomputed. These EM steps are repeated as long as the mutual entropy between the

two separate clusterings increases. We def ne a stopping criteria threshold , where is

the number of previous iterations for which xy(t) will be averaged to check for conver-

gence. These iterative EM steps will allow the individual clustering to be ref ned using the

information from each other.

Let us explain one EM iteration with the example shown in Figure 6.1. As explained

before, the initial seed clusters will be d , f , and h i . These will replace the existing

clusterings C1 and C2 and two sets of mean vectors will be computed. Then, each non-seed

object from D1, i.e., a, b, c, e, and g, will be assigned to one of the three initial clusters in

C1. Similarly, each non-seed object from D2, i.e., e, g, j, k, and l, will be assigned to one

of the three initial clusters in C2.

After the EM steps converge, the seed clusters will be computed one more time. There

will still be some objects in both the datasets that will not be in any of the seed clusters.

So, we will perform a f nal adjustment step that will assign each of these objects to one of

118

the seed clusters. In this step, there can be two situations. First, the non-seed object can be

in both the datasets. In this case, the object will be reassigned to the seed cluster that has

the closest mean based on both the datasets. Second, the non-seed object can be in one set

but not in the other. In this case, the object will be reassigned to the closest seed cluster

based on the dataset it comes from.

Even though the algorithm presented here is a specialized version of EM and deals

with hard clustering, it can be generalized to address probabilistic clustering where data

points can belong to multiple clusters with different probabilities. Figure 6.2 describes the

algorithm. The input to the algorithm is two sets of k partitional clusters computed using

two different datasets, Cx and Cy The output yC C C C 1 2 1 2
yxx

of the algorithm is a single set of k partitional clusters, C = C1 C2 Ck . Initially the

value of the number of iterations t is set to zero.

6.2.6 Complexity

In the initialization step of the algorithm, the computationally expensive operation

is the computation of seed clusters. There are k2 pairs of clusters where the k is the

number of clusters and the computation of the similarity between each pair of clusters

requires O((n k)2) operations. Hence, the computation of seed clusters requires O(n2)

operations. In the EM step, the algorithm needs to perform linear scans of all the objects

on a per-cluster basis. If n is the number of total objects from both the datasets and

k is the number of clusters, then the complexity of the EM step is O(2nk). If t is the

y
kC xk C = = .

119

1.Initialization:

(a) Compute S = S1 S2 Sk

(b) for i = 1 to n do

for j = 1 to k do
yx sa a aji ji ji

x x x y y y(c) Compute 1 2 and 1 2 k k

2.Expectation/Maximization:

(a) for i 1 to n do

if vsi = 0 then

for j 1 to k do
x xa v pj(oi

x)ji i j
y ya v pj(oi

y)ji i j

(b) t t + 1
1 t3.Repeat 1-2 while xy(t) > xy(i)i=t

4.Final Adjustment:

(a) Perform Step 1

(b) for j = 1 to k do

Cj Sj

(c) for i = 1 to n do

if vsi = 0 then
 y yx xp argmaxk max(vi s(oi) v s(oi)) k i k

Cp Cp oi

Figure 6.2 The CEMENT1 algorithm

120

number of iterations required for convergence, then the initialization and EM steps will

be performed t times, resulting in an overall complexity of O(t(2nk + n2)) for these two

steps. In the f nal adjustment step, the seed clusters will be computed once (O(n2)) and

each non-seed object will be assigned to a cluster (O(n)). Thus the overall complexity

is O(t(2nk + n2) + n2 + n). In general, n k and n t, and the complexity can be

formalized as O(n2).

6.3 CEMENT2 - A Modif cation of CEMENT1

Since the CEMENT1 algorithm works around a set of seed clusters, it does not take

full advantage of the distribution of the other dataset. We argue that a mutual cluster

ref nement, where one clustering can be ref ned using the distribution of objects within the

other cluster, can yield better quality clusters. Also, the computation of the seed clusters

at the beginning of each iteration in CEMENT1 requires O(n2) operations. In this section,

we present a variation of the CEMENT1 algorithm that will not require the computation

of seed clusters at each iteration. Rather the seed clusters need to be computed only once

during the f nal adjustment step. We call this algorithm CEMENT2.

6.3.1 Algorithm Overview

As with CEMENT1, this algorithm will start by collecting two sets of clusters gener-

ated from two datasets. In the EM step, it will make adjustments to the f rst set of clusters

using the second set of clusters. In order to do this, before the start of each EM-step, it will

create a temporary set of clusters. This temporary set of clusters will be initially empty

121

and will correspond to the clusters from the second set of clusters. A mean vector will be

computed for each of these initial clusters using only the objects that are in both datasets.

The mean computation will be based on the feature vectors of the f rst dataset. After the

mean vectors have been computed, the objects that are exclusively in the second dataset

will be added to the respective clusters. Then, each object that appears in the f rst dataset

will be added to the most similar temporary cluster. At the end of this, each temporary

cluster will consist of objects from both datasets and the set of temporary clusters will re-

place the existing clusters in the f rst set of clusters. The same process will be repeated for

the second set of clusters, i.e., the clusters in the second set of clusters will be recomputed

using the f rst set of clusters. This process is similar to a semi-supervised approach in the

sense that one set of clusters guides the computation of the other set of clusters.

At the end of each iteration, the mutual entropy between the two sets of clusters will

be computed. The EM iterations will continue as long as there is a positive change in

the mutual entropy. This will be performed the same way as CEMENT1. When the EM

iterations converge, the f nal adjustment step will be performed. The f nal adjustment step

will be similar to CEMENT1.

Let us explain the algorithm with the example shown in Figures 6.3(a) and 6.3(b).

The f rst set of clusters C1 consists of three clusters a d , b c e f , and g h i . The

second set of clusters C2 consists of three clusters f g j , e h i l , and d k . The

process will start by creating a set of three temporary clusters. The mean vectors will be

computed for these three clusters using f g , e h i , and d respectively. Once the

db ca d
ee l11 k

ffCC11
11h i h i22

11 j 22
22CC33 gCC22g CC11CC33 CC22

a b cd
ell kk

f
h i11

j g 1111 jCC33
CC11CC22

122

mean vectors are computed, as shown in Figure 6.3(c), the temporary clusters will consist

of j , l , and k since j, l, and k are the objects exclusively appearing in D2. Then,

each object of D1 will be assigned to one of the temporary clusters. Let us assume that

this reassignment results in the clustering shown if Figure 6.3(d). This is essentially the

readjustment of C1 using C2. The same process will be repeated to perform a readjustment

of C2 using the original C1. This process will be repeated until it converges and then the

f nal adjustment will be carried out as explained for CEMENT1.

a d b c d
e el1 kC1 f f

h i 1 2 h i
1 j 2g C2 C3 2 gC3 C1C2

(a) The clustering C1 (b) The clustering C2

a d b c
el lk k

f
1 h i

j C3 1 g j 1
C2 C1

(c) Creating temporary clusters from C2 (d) Adjusting C1 using temporary clusters

Figure 6.3 Adjustment of one clustering using another in CEMENT2

123

CEMENT2 can easily be used as an ensemble algorithm to deal with the same object

sets. In that case, the cluster assignment of one clustering will be used to compute a

set of mean vectors and the cluster assignment of the other clustering will be readjusted

using these mean vectors. Figure 6.4 describes the CEMENT2 algorithm. The input to

the algorithm is two sets of k partitional clusters computed using two different datasets,

y y yx x xCx = C1 C2 Ck and Cy = C1 C2 Ck . The output of the algorithm is a

single set of k partitional clusters, C = C1 C2 Ck . Initially the value of the number

of iterations t is set to zero. The algorithm uses two sets of temporary clusters Cx and Cy
1.

6.3.2 Complexity

In the initialization and EM step of the algorithm, the algorithm needs to perform

linear scans of all the objects on a per-cluster basis. If n is the number of total objects from

both the datasets, k is the number of clusters, and t is the number of iterations required

for convergence, then the overall complexity of these steps is O(2nkt). As in CEMENT1,

the f nal adjustment step will require O(n2) operations. Hence, the overall complexity

is O(n2). Even though CEMENT2 has the same complexity as CEMENT1 and does not

require the tn2 operations for the seed cluster generation in the convergence loop, it will be

a little bit slower. It will require a few more iterations for convergence since the f rst few

iterations may change the distribution of objects within each set of clusters signif cantly.

1For describing the CEMENT2 algorithm, we use x and y to represent the parameters corresponding to
the respective temporary clusterings.

124

1.Initialization:

(a) for i = 1 to n do

for j = 1 to k do

axji
 x

i ji
y yvi v a

y x y xa v v aji i i ji

x x x y y y(b) Compute 2 and 1 k 1 2 k

(c) for i = 1 to n do

for j = 1 to k do

axji
 x y(1 vi) aji

y y xa (1 v) aji i ji

2.Expectation/Maximization:

(a) for i 1 to n do

for j 1 to k do
x x x pj(oi)aji vi j
y y y a v pj(oi)ji i j

(b) for i = 1 to n do

for j = 1 to k do
x xaaji ji
y y a aji ji

(c) t t + 1
1 t3.Repeat 1-2 while xy(t) > xy(i)i=t

4.Final Adjustment:

(a) Compute S = S1 S2 Sk

(b) for i = 1 to n do

for j = 1 to k do
yx sa aaji ji ji

x x x y y(c) Compute and y
1 2 k 1 2 k

(d) for j = 1 to k do

Cj Sj

(e) for i = 1 to n do

if vsi = 0 then
 yxp argmaxk max(vi s(oi

x) v s(oi
y)) k i k

Cp Cp oi

Figure 6.4 The CEMENT2 algorithm

125

Also, after the f rst EM iteration, both sets of clusters will consist of the combined set of

objects. This will require CEMENT2 to reassign more objects to different clusters.

6.4 Results of Algorithm Evaluation

6.4.1 Results with Datasets having Identical Sets of Objects

Our experiments with the CEMENT algorithms were performed using the datasets

described in section 5.1. To test the effectiveness of these two algorithms, we used several

baselines. The f rst set of baselines was the partitional clusterings based on individual fea-

ture sets. For these baselines, we performed graph-based partitional clustering using the

METIS2 software. Another baseline was partitional clustering based on a concatenated

feature set obtained from the two respective feature sets and we used the same graph-

based approach for the clustering. We also compared the performance of the CEMENT

algorithms against the ensemble algorithm called Cluster-based Similarity Partitioning Al-

gorithm (CSPA) proposed by Strehl and Ghosh [53]. As done in the experiments presented

in Chapter V, ten clusters were generated during each clustering.

Table 6.1 - Table 6.4 present the evaluation results for the four different validation

indices. Each table presents a particular index for individual clustering (C1 C2), clustering

with concatenated feature sets (Ccon), combining individual clusterings using the CSPA

algorithm (Ccspa), CEMENT1 (Ccem1) and CEMENT2 (Ccem2). For each feature set or a

combination of feature sets, f ve subsets were used. Each row represents the particular

2http://www-users.cs.umn.edu/˜karypis/metis/metis/index.html

126

index for one of the f ve document subsets. Note that smaller values are better for DB-

index and entropy and larger values are better for purity and F-measure.

It can be seen from Table 6.1 - Table 6.4 that CEMENT1 and CEMENT2 outperform

the other baseline schemes for all four validation indices in all instances. CEMENT2 is

seen to perform slightly better than CEMENT1. It is also evident from the values of the

validation measures that the clusters produced by CEMENT1 and CEMENT2 are high-

quality clusters. If we consider the F-measure in Table 6.4, it can be seen that those values

for CEMENT1 and CEMENT2 are around 0.9. Note that the range of possible F-measure

is 0-1 with 1 being the best. If we consider the entropy measure in Table 6.2, it can be seen

that those are around 0.15 where the range is 0-1 with 0 being the best.

Figure 6.5 shows a graphical representation of the comparison of different validation

index for CEMENT1 and CEMENT2 with the baseline clustering schemes. The results

shown are averages over all observations (thirty subsets) along with the standard devia-

tion. Each subf gure shows the results for one of the four validation indices used in the

experiment. It can be seen that the CEMENT algorithms yield higher quality clusters.

Also, the standard deviations are lowest for CEMENT1 and CEMENT2 and this implies

the stability of their performance. Even though CEMENT2 demonstrates slightly better

performance compared to CEMENT1, it has a slightly higher standard deviation com-

pared to CEMENT1. Note that, as in previous experiments, clustering with concatenated

feature sets does not always produce higher quality clusters compared to clustering based

on individual data sets.

127

Table 6.1 Comparison of modif ed DB-index for CEMENT algorithms

C1 C2 Ccon Ccspa Ccem1 Ccem2

Syntactic and node-based semantic feature sets
Dataset#1 0.711 0.952 0.697 0.844 0.498 0.457
Dataset#2 0.888 0.872 0.877 0.906 0.649 0.635
Dataset#3 0.686 0.604 0.636 0.694 0.497 0.471
Dataset#4 0.708 0.791 0.802 0.777 0.551 0.540
Dataset#5 0.745 0.739 0.776 0.771 0.551 0.550

Syntactic and edge-based semantic feature sets
Dataset#1 0.711
Dataset#2 0.888
Dataset#3 0.686
Dataset#4 0.708
Dataset#5 0.745

0.861
0.928
0.632
0.708
0.707

0.776
0.860
0.612
0.822
0.782

0.887
0.929
0.641
0.755
0.750

0.533
0.658
0.430
0.538
0.535

0.484
0.632
0.431
0.486
0.546

Syntactic and node-and-edge-based semantic feature sets
Dataset#1 0.711 0.719 0.772 0.780 0.499 0.480
Dataset#2 0.888 0.908 0.998 0.908 0.617 0.641
Dataset#3 0.686 0.720 0.605 0.738 0.476 0.461
Dataset#4 0.708 0.808 0.772 0.796 0.561 0.541
Dataset#5 0.745 0.759 0.621 0.835 0.571 0.536

Node-based and edge-based semantic feature sets
Dataset#1 0.952 0.861 0.773 0.934 0.596 0.547
Dataset#2 0.872 0.928 0.916 0.921 0.654 0.620
Dataset#3 0.604 0.632 0.575 0.702 0.433 0.379
Dataset#4 0.791 0.708 0.711 0.759 0.528 0.490
Dataset#5 0.739 0.707 0.723 0.743 0.543 0.522

Node-based and node-and-edge-based semantic feature sets
Dataset#1 0.952 0.719 0.714 0.837 0.555 0.538
Dataset#2 0.872 0.908 0.901 0.901 0.651 0.610
Dataset#3 0.604 0.720 0.550 0.715 0.464 0.415
Dataset#4 0.791 0.808 0.719 0.824 0.589 0.575
Dataset#5 0.739 0.759 1.360 0.752 0.515 0.504

Edge-based and node-and-edge-based semantic feature sets
Dataset#1 0.861 0.719 0.905 0.846 0.564 0.540
Dataset#2 0.928 0.908 0.960 0.930 0.621 0.621
Dataset#3 0.632 0.720 0.527 0.666 0.423 0.394
Dataset#4 0.708 0.808 0.740 0.804 0.588 0.543
Dataset#5 0.707 0.759 0.759 0.738 0.510 0.487

Each row represents the modif ed DB-index for one of the f ve document subsets.

128

Table 6.2 Comparison of entropy for CEMENT algorithms

C1 C2 Ccon Ccspa Ccem1 Ccem2

Syntactic and node-based semantic feature sets
Dataset#1 0.229 0.286 0.235 0.274 0.165 0.143
Dataset#2 0.271 0.278 0.28 0.281 0.171 0.162
Dataset#3 0.211 0.205 0.216 0.217 0.141 0.126
Dataset#4 0.257 0.276 0.27 0.276 0.166 0.150
Dataset#5 0.233 0.239 0.236 0.244 0.157 0.150

Syntactic and edge-based semantic feature sets
Dataset#1 0.229
Dataset#2 0.271
Dataset#3 0.211
Dataset#4 0.257
Dataset#5 0.233

0.284
0.301
0.221
0.245
0.238

0.252
0.279
0.204
0.286
0.239

0.290
0.309
0.222
0.265
0.232

0.164
0.177
0.133
0.157
0.151

0.146
0.159
0.127
0.138
0.144

Syntactic and node-and-edge-based semantic feature sets
Dataset#1 0.229 0.239 0.245 0.252 0.160 0.150
Dataset#2 0.271 0.281 0.305 0.283 0.168 0.160
Dataset#3 0.211 0.233 0.206 0.235 0.144 0.135
Dataset#4 0.257 0.267 0.253 0.271 0.176 0.157
Dataset#5 0.233 0.255 0.213 0.251 0.163 0.145

Node-based and edge-based semantic feature sets
Dataset#1 0.286 0.284 0.246 0.300 0.183 0.169
Dataset#2 0.278 0.301 0.294 0.297 0.185 0.160
Dataset#3 0.205 0.221 0.194 0.233 0.136 0.114
Dataset#4 0.276 0.245 0.251 0.270 0.161 0.140
Dataset#5 0.239 0.238 0.237 0.244 0.175 0.160

Node-based and node-and-edge-based semantic feature sets
Dataset#1 0.286 0.239 0.236 0.273 0.177 0.167
Dataset#2 0.278 0.281 0.297 0.294 0.172 0.158
Dataset#3 0.205 0.233 0.209 0.237 0.144 0.123
Dataset#4 0.276 0.267 0.267 0.281 0.176 0.158
Dataset#5 0.239 0.255 0.344 0.253 0.161 0.153

Edge-based and node-and-edge-based semantic feature sets
Dataset#1 0.284 0.239 0.289 0.279 0.178 0.166
Dataset#2 0.301 0.281 0.286 0.303 0.176 0.161
Dataset#3 0.221 0.233 0.205 0.230 0.141 0.116
Dataset#4 0.245 0.267 0.259 0.268 0.170 0.149
Dataset#5 0.238 0.255 0.235 0.247 0.166 0.149

Each row represents the entropy for one of the f ve document subsets.

129

Table 6.3 Comparison of purity for CEMENT algorithms

C1 C2 Ccon Ccspa Ccem1 Ccem2

Syntactic and node-based semantic feature sets
Dataset#1 0.862 0.819 0.864 0.835 0.905 0.919
Dataset#2 0.839 0.835 0.836 0.835 0.897 0.903
Dataset#3 0.881 0.891 0.887 0.880 0.928 0.936
Dataset#4 0.853 0.841 0.844 0.842 0.909 0.918
Dataset#5 0.864 0.860 0.861 0.861 0.912 0.915

Syntactic and edge-based semantic feature sets
Dataset#1 0.862
Dataset#2 0.839
Dataset#3 0.881
Dataset#4 0.853
Dataset#5 0.864

0.828
0.823
0.883
0.859
0.864

0.848
0.835
0.890
0.835
0.858

0.823
0.820
0.882
0.845
0.865

0.904
0.895
0.934
0.914
0.917

0.918
0.904
0.937
0.926
0.920

Syntactic and node-and-edge-based semantic feature sets
Dataset#1 0.862 0.857 0.850 0.844 0.909 0.917
Dataset#2 0.839 0.835 0.812 0.835 0.902 0.903
Dataset#3 0.881 0.868 0.891 0.866 0.925 0.932
Dataset#4 0.853 0.843 0.852 0.842 0.902 0.914
Dataset#5 0.864 0.853 0.883 0.851 0.909 0.920

Node-based and edge-based semantic feature sets
Dataset#1 0.819 0.828 0.851 0.818 0.890 0.900
Dataset#2 0.835 0.823 0.825 0.827 0.893 0.906
Dataset#3 0.891 0.883 0.896 0.873 0.933 0.946
Dataset#4 0.841 0.859 0.857 0.844 0.914 0.925
Dataset#5 0.860 0.864 0.863 0.857 0.904 0.912

Node-based and node-and-edge-based semantic feature sets
Dataset#1 0.819 0.857 0.862 0.834 0.896 0.904
Dataset#2 0.835 0.835 0.819 0.826 0.899 0.907
Dataset#3 0.891 0.868 0.892 0.870 0.928 0.940
Dataset#4 0.841 0.843 0.851 0.837 0.904 0.914
Dataset#5 0.860 0.853 0.743 0.855 0.911 0.915

Edge-based and node-and-edge-based semantic feature sets
Dataset#1 0.828 0.857 0.820 0.831 0.897 0.905
Dataset#2 0.823 0.835 0.812 0.821 0.899 0.905
Dataset#3 0.883 0.868 0.896 0.877 0.930 0.944
Dataset#4 0.859 0.843 0.853 0.843 0.907 0.920
Dataset#5 0.864 0.853 0.859 0.860 0.912 0.921

Each row represents the purity for one of the f ve document subsets.

130

Table 6.4 Comparison of F -measure for CEMENT algorithms

C1 C2 Ccon Ccspa Ccem1 Ccem2

Syntactic and node-based semantic feature sets
Dataset#1 0.862 0.819 0.863 0.834 0.904 0.919
Dataset#2 0.839 0.835 0.836 0.834 0.896 0.902
Dataset#3 0.880 0.890 0.886 0.879 0.928 0.936
Dataset#4 0.853 0.840 0.843 0.841 0.909 0.917
Dataset#5 0.864 0.860 0.860 0.860 0.912 0.915

Syntactic and edge-based semantic feature sets
Dataset#1 0.862
Dataset#2 0.839
Dataset#3 0.880
Dataset#4 0.853
Dataset#5 0.864

0.828
0.822
0.882
0.858
0.863

0.848
0.835
0.890
0.834
0.857

0.822
0.819
0.881
0.845
0.864

0.903
0.894
0.934
0.914
0.917

0.918
0.903
0.937
0.926
0.919

Syntactic and node-and-edge-based semantic feature sets
Dataset#1 0.862 0.856 0.850 0.843 0.908 0.916
Dataset#2 0.839 0.835 0.812 0.834 0.902 0.902
Dataset#3 0.880 0.867 0.890 0.865 0.925 0.932
Dataset#4 0.853 0.843 0.851 0.841 0.901 0.913
Dataset#5 0.864 0.852 0.882 0.850 0.909 0.920

Node-based and edge-based semantic feature sets
Dataset#1 0.819 0.828 0.851 0.817 0.889 0.899
Dataset#2 0.835 0.822 0.825 0.826 0.892 0.906
Dataset#3 0.890 0.882 0.896 0.873 0.933 0.946
Dataset#4 0.840 0.858 0.857 0.843 0.914 0.925
Dataset#5 0.860 0.863 0.863 0.856 0.903 0.911

Node-based and node-and-edge-based semantic feature sets
Dataset#1 0.819 0.856 0.861 0.832 0.896 0.903
Dataset#2 0.835 0.835 0.818 0.825 0.899 0.907
Dataset#3 0.890 0.867 0.891 0.870 0.928 0.940
Dataset#4 0.840 0.843 0.851 0.836 0.903 0.914
Dataset#5 0.860 0.852 0.745 0.854 0.911 0.915

Edge-based and node-and-edge-based semantic feature sets
Dataset#1 0.828 0.856 0.819 0.831 0.896 0.904
Dataset#2 0.822 0.835 0.812 0.820 0.899 0.905
Dataset#3 0.882 0.867 0.896 0.876 0.930 0.944
Dataset#4 0.858 0.843 0.852 0.843 0.907 0.920
Dataset#5 0.863 0.852 0.859 0.859 0.911 0.921

Each row represents the purity for one of the f ve document subsets.

2. 0 1. 0

1. 6 0. 8

1. 2 0. 6

0. 8 0. 4

0. 4 0. 2

0. 0] ^]

_

]

` a b

]

` c d e

] ^

` f g

]

` f g

_

0. 0 h i h

j

h

k l m

h

k n o p

h i

k q r

h

k q r

j

(a) M D B (b) E ntr o p y

1. 0 1. 0

0. 8 0. 8

0. 6 0. 6

0. 4 0. 4

0. 2 0. 2

0. 0 0. 0 ~ � ~ ~ ~ ~ ~�

s t s s s s t s

• •

u u

† ‡ … † — – ƒ † ⁄ ‹ † ⁄ ‹

v x y { v | } | }w v z v

1 3 1

(c) P urit y (d) F- M e as ur e

Fi g ur e 6. 5 C o m p ari s o n of a v er a g es of diff er e nt v ali d ati o n i n di c es f or C E M E N T
al g orit h m s a n d b as eli n e cl ust eri n g s c h e m es

132

To test the statistical signif cance of our results, we performed one-tailed paired T-

tests. Table 6.5 shows the corresponding results. We used an value of .05 where

Tcritical = 1 699 for one-tail tests. The hypotheses tested are Ccem1 Cb meaning that

clusters generated by CEMENT1 are of signif cantly higher quality than clusters obtained

by clustering individual feature sets, Ccem1 Ccon meaning that clusters generated by

CEMENT1 are of signif cantly higher quality than clusters obtained using concatenated

feature sets, Ccem1 Ccspa meaning clusters generated by CEMENT1 are of higher qual-

ity than clusters produced by combining the individual clusterings using the similarity

partitioning ensemble algorithm, and Ccem2 Ccem1 meaning that clusters produced by

CEMENT2 are of higher quality than clusters produced by CEMENT1.

Table 6.5 The one-tailed T -test results for comparing CEMENT algorithms with other
clustering schemes where = 05 and Tcritical = 1 699

Tstat PT t Tstat PT t Tstat PT t Tstat PT t

DB-Index
Ccem1 Cb

25.24 1.37e-21
Ccem1 Ccon

19.56 1.51e-18
Ccem1 Ccspa

33.93 3.39e-25
Ccem2 Ccem1

6.77 9.96e-08
Entropy
Purity
F-Measure

30.23
32.92
34.00

8.86e-24
7.99e-25
3.21e-25

16.82
11.85
12.00

8.40e-17
6.15e-13
4.54e-13

35.11
38.55
39.35

1.30e-25
9.06e-27
5.06e-27

14.91
13.38
12.37

1.97e-15
3.06e-14
2.17e-13

Each row shows the T-test results for a particular validation index. For each hypoth-

esis, the f rst column shows the T-value and the second column shows the p-values. A

T-value of 1.699 or higher and a p-value of 0.05 or lower indicate evidence that the hy-

133

pothesis is true. The T-test results demonstrate that CEMENT1 and CEMENT2 are signif -

cantly better than the baseline clustering schemes and this holds true for all four validation

indices used in our experiment. Also, clustering based on a concatenated feature set does

not always give signif cantly better performance compared to the individual clustering.

Clustering based on a concatenated feature set outperforms the individual clusterings only

for the F -measure index.

6.4.2 Results with Datasets having Overlapping Sets of Objects

Our experiments presented in this dissertation were performed using (1) two datasets

having the same set of objects and (2) two datasets having some common objects. As done

in Chapter V, we also used overlapping datasets by randomly removing 50% of the objects

from each dataset. Figure 6.6 shows a graphical representation of the comparison of dif-

ferent validation index for CEMENT1 and CEMENT2 with clustering based on individual

and concatenated feature sets. As before, the results shown are averages over all obser-

vations (thirty subsets) along with the standard deviation. When compared to clustering

based on concatenated feature sets and the clustering generated by combining the individ-

ual clusterings using the similarity partitioning ensemble algorithm, we obtained higher

quality clusters with both CEMENT1 and CEMENT2. This is true for all four validation

indices. Also, CEMENT1 and CEMENT2 seem to have relatively low standard deviations

for all four validation indices.

2. 0 1. 0

1. 6 0. 8

1. 2 0. 6

0. 8 0. 4

0. 4 0. 2

0. 0 › − ›

‰

›

„ “ ”

›

„ ‘ ’ ‚

› −

„ ™ f

›

„ ™ f

‰

0. 0 f Ł f

Œ

f

Š Ÿ Ž

f

Š ı ł œ

f Ł

Š š ž

f

Š š ž

Œ

(a) M D B (b) E ntr o p y

1. 0 1. 0

0. 8 0. 8

0. 6 0. 6

0. 4 0. 4

0. 2 0. 2

0. 0 0. 0 ª « ª ª ª ª « ª

� € � � � � € �

¬ ¬

¡ ¡

� ® ¯ � ° ± ² � ´ � ³ ´³

¢ £ ¤ ¢ ¥ ¦ § ¢ ¨ © ¢ ¨ ©

1 3 4

(c) P urit y (d) F- M e as ur e

Fi g ur e 6. 6 C o m p ari s o n of a v er a g es of diff er e nt v ali d ati o n i n di c es f or C E M E N T
al g orit h m s a n d b as eli n e cl ust eri n g s c h e m es - r es ult s ar e f or d at as et s wit h 5 0 %
of t h e o bj e ct s r a n d o ml y r e m o v e d

135

When compared to the clustering based on the individual feature sets, the entropy

measure gives better values for the individual clustering. Note that when clustering with

the individual feature sets, we have 1000 objects in each datasets. On the other hand, when

we are dealing with all the objects in both the datasets, we have approximately 50% more

objects. This results in an increase of approximately 50% in the average cluster size. As

explained in Chapter V, the entropy measure favors smaller clusters. Also, the individual

clusterings are not actually compatible for performance comparison here. This is because

the clusterings based on the individual feature sets do not represent the wider group of

objects that our algorithm does.

If we compare Figure 6.5 and Figure 6.6, it is evident that CEMENT1 and CEMENT2

perform relatively better compared to the baseline clustering schemes when the two datasets

are not equal but contain some common objects. Also, CEMENT2 demonstrate slightly

better performance compared to CEMENT1. Even though CEMENT1 runs a little faster

than CEMENT2, both exhibit fast convergence. In our experiments with the original

datasets, for 30 different runs, CEMENT1 needed approximately 5 iterations on average

for convergence. On the other hand, CEMENT2 needed approximately 7 iterations on

average for convergence.

6.5 Summary

We presented a family of algorithms called CEMENT for combining partitional clus-

terings generated from heterogeneous datasets. These algorithms use mutual entropy to

136

converge towards having a maximal similarity between the two clusterings. We presented

experimental results that show the effectiveness of the algorithms. The results demon-

strated that for heterogeneous feature sets extracted from document collection, these algo-

rithms yield high quality clusters. CEMENT algorithms can quickly converge to a f nal

solution. The statistical tests also support our main research hypothesis that cluster com-

bination produces better quality clusters compared to individual clustering and clustering

based on concatenated feature sets. Even though the CEMENT algorithms were presented

for discrete cluster membership, they can easily be generalized to a probabilistic form us-

ing soft cluster membership. This approach is expected to generate interesting clustering

in some applications where the probability of membership in a cluster is meaningful.

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

The traditional notion of clustering is based on a single dataset. In this dissertation, we

addressed the problem of clustering multiple related heterogeneous datasets. This problem

can be tackled in two ways. One approach is to integrate the individual feature sets into a

unif ed feature space and then perform clustering on the unif ed feature space. The second

approach is to cluster the individual datasets using the respective feature sets and then

combine the resulting clusterings. The contribution of this dissertation was based on the

second approach. In some domains, several feature sets may be available to represent

the same objects, but it may not be easy to compute an integrated feature set. When

the individual feature sets are complementary, we demonstrated that the second approach

yields better quality clustering.

7.1 Contributions

This dissertation makes several contributions to the f eld of data mining. In partic-

ular, we developed general approaches and specif c algorithms to address the relatively

new problem of clustering heterogeneous datasets. Not only are these approaches and

algorithms expected to enrich the f eld of data mining, they can potentially have a signif -

137

138

cant impact in several application areas such as information retrieval, bioinformatics, and

computer security.

We developed a notational framework for the problem of clustering multiple related

heterogeneous datasets. To tackle this problem, we found it very important to introduce

the notion of a “mapping” between the objects of two heterogeneous datasets. We used a

bipartite graph to represent this mapping at a level of abstraction that describes different

ways heterogeneous objects can be related. We used the notion of “mapping” to describe

a general approach for combining heterogeneous cluster hierarchies that is based on the

mutual ref nement of cluster hierarchies.

Ensemble approaches described in existing literature primarily deal with partitional

clusterings. However, hierarchical clustering algorithms are very popular and the need to

combine information from two hierarchical clusterings motivated the development of our

methods for combining cluster hierarchies generated from heterogeneous datasets. We ap-

plied phylogenetic tree combination methods for combining hierarchical clusterings and

observed mixed results. Even though these algorithms can combine multiple cluster hier-

archies into a single dendrogram, they can not be effectively used to generate partitional

clusters from multiple cluster hierarchies.

We developed a class of algorithms called EPaCH for generating a single set of parti-

tional clusters from multiple hierarchical clusterings that can be used with heterogeneous

datasets. These algorithms use a graph theoretic approach for combining the multiple hi-

erarchies. They start by generating a weighted graph from the hierarchies based on the

139

association strengths of objects in the hierarchies. In the original version, called simply

EPaCH, association strengths are calculated based on co-occurrence of objects in sub-

clusters of the hierarchies. A graph partitioning algorithm is then applied to generate par-

titional clusters. In the second version, called EPaCHW, in addition to the co-occurrence

of objects, the intra-cluster similarity of each sub-cluster is also used to compute the asso-

ciation strength. We showed how EPaCHW can utilize the intra-cluster similarity values to

more effectively compute the association strength of objects and generate a more informa-

tive dendrogram compared to EPaCH. We have shown that the average-case complexity of

the EPaCH algorithms is O(n2 lg n) which is no worse than the complexity of the average-

link agglomerative clustering algorithm.

We tested the EPaCH algorithms empirically with a collection of documents from

ten different subject categories. Both syntactic and semantic feature sets were extracted

and the resulting datasets were clustered individually using average-link agglomerative

hierarchical clustering. EPaCH and EPaCHW were then used to generate a single set of

partitional clusters from the dendrograms. Our experiments were performed taking two

datasets at a time where each dataset was constructed from the same subset of documents

using a different feature set. We considered two experimental settings. In one setting, each

of the two datasets consisted of the same objects. In another setting, we randomly selected

50% objects from each dataset and excluded those objects.

In the document clustering domain, EPaCH algorithms were shown to yield higher

quality clusters than clustering based on a single feature set, hierarchical clustering based

140

on concatenated feature sets, and phylogeny-based ensemble methods. A graph-based

partitional algorithm using a concatenated feature set outperformed EPaCH when both

datasets represented the same set of objects. EPaCHW was marginally inferior to graph-

based partitional clustering on concatenated feature sets in the same situation. But, when

the two object sets were not the same but shared some common objects, EPaCH and

EPaCHW both signif cantly outperformed the graph-based clustering on concatenated fea-

ture sets. We also showed that as the overlap between two datasets decreases, EPaCH and

EPaCHW increasingly outperform the other clustering schemes.

We also developed a class of algorithms called CEMENT for combining partitional

clusterings generated from heterogeneous datasets. These algorithms are essentially ex-

pectation maximization methods and are based on maximizing an objective function. We

used the mutual entropy between two clusterings as the objective function. In the original

version, called CEMENT1, a set of seed clusters are generated from the two clusterings and

then subsequent cluster assignment is performed around the seed clusters. In the second

version, called CEMENT2, each clustering is used to ref ne the other clustering and this

mutual reinforcement process continues until convergence. We showed that the complex-

ity of these algorithms is O(n2). Empirical results showed that the CEMENT algorithms

produce better quality clusters compared to individual clusterings, clustering based on the

concatenated feature sets, and the well-studied CSPA (cluster-based similarity partition-

ing) ensemble algorithm.

141

We used several cluster validation indices to evaluate the cluster qualities. We showed

that one of these, the DB-index, has some limitations and can not be used effectively to

measure cluster quality when clusters are of non-spherical shape. We developed a modif ed

version of the DB-index that is based on the “expected” inter-cluster and intra-cluster

distances. Results of a simulation study suggested that the modif ed version gives more

accurate quality measures compared to the original one with arbitrary shaped clusters.

7.2 Future Work

The paradigm of clustering heterogeneous datasets is relatively new. There are many

additional issues that are worth investigating. We plan to extend this research along several

directions.

We applied our algorithms in the document clustering domain. We want to test our

algorithms using several datasets from the machine learning repository at UCI1. Some of

these datasets consists of multiple feature types. We want to split a feature set into two

and then construct two datasets based on the partial feature sets. These datasets can then

be used to evaluate the effectiveness of our methods.

We want to extend our work to the biological domain where multiple heterogeneous

datasets are all tightly bound and interconnected. With the availability of diverse biological

datasets through public databases, it has become essential to be able to perform an inte-

grated analysis of the data. The isolated clustering of the biological datasets tend to be less

1http://www.ics.uci.edu/˜mlearn/MLRepository.html

142

effective because of the presence of noise in the individual datasets. A unif ed clustering of

these datasets can compensate for the noise and has the potential to reveal completely new

biological information. This is expected to have far reaching consequences in discovering

biological pathways.

We presented two classes of novel algorithms in the dissertation. Even though our ex-

periments with the EPaCH algorithms were based on combining two datasets, EPaCH and

EPaCHW can handle multiple (more than two) datasets. We want to carry out experiments

to test the effectiveness of EPaCH and EPaCHW with more than two datasets. On the

other hand, the CEMENT algorithms have been presented in the context of “two” related

heterogeneous datasets. We want to generalize these so that they can be used with more

than two datasets.

The CEMENT algorithms have been developed to generate hard clustering by using

a discrete probability function for each object inside the EM loop. We want to modify the

probability function so that it becomes a continuous probability function and utilize this to

generate soft clustering where one object may belong to more than one clusters with certain

probability. This is expected to be a more natural way of dealing with heterogeneous

datasets.

The notion of mapping between two heterogeneous datasets was represented by a

bipartite graph. We want to extend this to more than two datasets by considering a multi-

layer abstraction, where each layer will represent one dataset. For obvious reasons, we

plan to use an n-partite graph for this purpose.

143

The CEMENT algorithms are based on the convergence of the mutual entropy. The

fact that these algorithms converge was based on an intuitive perspective and this was

supported by empirical evidence. Nevertheless, we plan to develop a mathematical proof

of convergence for the CEMENT algorithms.

We want to apply our methods in the computer security domain. Different intrusion

detection system (IDS) senors are used to analyze audit log that contains normal and ab-

normal activities over a network. The output of two such sensors represent two different

interpretations of the same set of events. We plan to apply different sensors on the pub-

licly available DARPA IDS evaluation data2 and then apply our methods on the resulting

datasets.

2http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html

https://2http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html

REFERENCES

[1] A. A. Alizadeh, M. Eisen, R. Davis, C. Ma, I. Lossos, A. Rosenwald, J. Boldrick,
H. Sabet, T. T. X. Yu, J. Powell, L. Yang, G. Marti, T. Moore, J. Hudson, L. Lu,
D. Lewis, R. Tibshirani, G. Sherlock, W. Chan, T. Greiner, D. Weisenburger, J. Ar-
mitage, R. Warnke, , R. Levy, W. Wilson, M. Grever, J. Byrd, D. Botstein, and P. B. L.
Staudt, “Distinct Types of Diffuse Large B-cell Lymphoma Identif ed by Gene Ex-
pression Prof ling,” Nature, vol. 403, no. (6769, 2000, p. 503511.

[2] C. J. Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel Circuit Partitioning,” Pro-
ceedings of 34th ACM/IEEE Conference on Design Automation, Anaheim, CA, June
9-13, 1997, pp. 530–533.

[3] S. Basu, A. Banerjee, and R. J. Mooney, “Semi-supervised Clustering by Seeding,”
Proceedings of 19th International Conference on Machine Learning (ICML-2002),
Sydney, Australia, July 8-12, 2002, pp. 19–26.

[4] S. Basu, M. Bilenko, and R. J. Mooney, “A Probabilistic Framework for Semi-
Supervised Clustering,” Proceedings of 10th International Conference on Knowledge
Discovery and Data Mining (KDD-2004), Seattle, WA, August 22-25, 2004, pp. 59–
68.

[5] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering Gene Expression Patterns,”
Journal of Computational Biology, vol. 6, no. 3/4, 1999, pp. 281–297.

[6] M. Bilenko, S. Basu, and R. J. Mooney, “Integrating Constraints and Metric Learning
in Semi-Supervised Clustering,” Proceedings of 21st International Conference on
Machine learning (ICML-2004), Banff, Alberta, July 4-8, 2004, pp. 81–88.

[7] D. Bryant, “A Classif cation of Consensus Methods for Phylogenetics,” Bioconsen-
sus, M. Janowitz, F. Lapointe, F. McMorris, B. Mirkin, and F. Roberts, eds., vol. 61 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS
Press, 2002, pp. 163–184.

[8] B. S. Caffo, W. Jank, and G. L. Jones, “Ascent-Based Monte Carlo EM,” Journal of
the Royal Statistical Society, Series B, vol. 67, no. 2, 2005, pp. 235–252.

[9] G. Celeux and G. Govaert, “A Classif cation EM Algorithm for Clustering and Two
Stochastic Versions,” Computational Statistics & Data Analysis, vol. 14, 1992, p.
315332.

144

145

[10] M. Collins, Head-Driven Statistical Models for Natural Language Parsing, doctoral
dissertation, University of Pennsylvania, 1999.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd edition, McGraw-Hill, Cambridge, MA, 2002.

[12] I. Dagan, Z. Marx, and E. Shamir, “Cross-dataset Clustering: Revealing Correspond-
ing Themes Across Multiple Corpora,” Proceedings of 6th Conference on Natural
Language Learning, Taipei, Taiwan, August 31 - September 1, 2002, pp. 15–21.

[13] D. Davis and D. Bouldin, “A Cluster Separation Measure,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 1, no. 2, 1979, pp. 224–227.

[14] A. Dayanik and C. Nevill-Manning, “Clustering in Relational Biological Data,”
http://www.cs.umd.edu/projects/srl2004/Papers/dayanik.pdf.

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incom-
plete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Series B,
vol. 34, 1977, pp. 1–38.

[16] I. S. Dhillon, “Co-clustering Documents and Words using Bipartite Spectral Graph
Partitioning,” Proceedings of 7th International Conference on Knowledge Discovery
and Data Mining (KDD-2001), San Francisco, CA, August 26-29, 2001, pp. 269–
274.

[17] M. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall, Upper
Saddle River, NJ, 2003.

[18] M. Eisen, P. Spellman, P. Brown, and D. Botstein, “Cluster Analysis and Display of
Genome-wide Expression Patterns,” Proceedings of National Academy of Sciences
USA, vol. 95, no. 25, 1998, pp. 14863–14868.

[19] X. Z. Fern and C. E. Brodley, “Solving Cluster Ensemble Problems by Bipar-
tite Graph Partitioning,” Proceedings of 21st International Conference on Machine
learning (ICML-2004), Banff, Alberta, July 4-8, 2004, p. 36.

[20] C. Fraley and A. E. Raftery, “How Many Clusters? Which Clustering Method?
Answers Via Model-Based Cluster Analysis,” The Computer Journal, vol. 41, no. 8,
1998, pp. 578–588.

[21] A. Fred and A. Jain, “Data Clustering Using Evidence Accumulation,” Proceedings
of 16 th International Conference on Pattern Recognition (ICPR’02), Quebec City,
August 11-15, 2002, pp. 276–280.

http://www.cs.umd.edu/projects/srl2004/Papers/dayanik.pdf

146

[22] A. D. Gordon, “Consensus Supertrees: The Synthesis of Rooted Trees Containing
Overlapping Sets of Labeled Leaves,” Journal of Classif cation, vol. 3, 1986, pp.
335–348.

[23] P. D. Green, J. Barker, M. P. Cooke, and L. Josifovski, “Handling Missing and
Unreliable Information in Speech Recognition,” Proceedings of Eighth International
Workshop on Artif cial Intelligence and Statistics, Key West, FLJanuary 4-7, 2001.

[24] D. Gusf eld, “Eff cient Algorithms for Inferring Evolutionary Trees,” Networks, vol.
21, 1991, pp. 19–28.

[25] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann,
San Franscisco, CA, 2001.

[26] E. Hartuv and R. Shamir, “A Clustering Algorithm Based on Graph Connectivity,”
Information Processing Letters, vol. 76, 2000, pp. 175–181.

[27] M. Hossain, S. Bridges, Y. Wang, and J. Hodges, “Combining Document Clusters
Generated from Syntactic and Semantic Feature Sets using Tree Combination Meth-
ods,” Proceedings of IEEE Workshop on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and Knowledge Sources, Houston,
TX, November 27, 2005, pp. 16–24.

[28] X. Hu and I. Yoo, “Cluster Ensemble and its Applications in Gene Expression Anal-
ysis,” Proceedings of 2nd Asia-Pacif c Bioinformatics Conference (APBC 2004),
Dunedin, New Zealand, January 18-22, 2004, pp. 297–302.

[29] J. Jiang and D. Conrath, “Semantic Similarity Based on Corpus Statistics and Lexical
Taxonomy,” Proceedings of International Conference on Research in Computational
Linguistics, Taiwan, 1997.

[30] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs,” Proceedings of International Conference on Parallel
Processing, 1995, pp. 113–122.

[31] G. Karypis and V. Kumar, “Multilevel k-way Hypergraph Partitioning,” Proceedings
of 36th ACM/IEEE Conference on Design Automation, New Orleans, LA, June 21-25,
1999, pp. 343–348.

[32] G. Karypis and V. Kumar, “Multilevel k-way Partitioning Scheme for Irregular
Graphs,” Journal of Parallel Distributed Computing, vol. 48, no. 1, 1998, pp. 96–
129.

[33] D. Klein, S. D. Kamvar, and C. D. Manning, “From Instance-Level Constraints to
Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering,”

147

Proceedings of 19th International Conference on Machine Learning (ICML-2002),
Sydney, Australia, July 8-12, 2002, pp. 307–314.

[34] A. Kraskov, H. Stögbauer, R. G. Andrzejak, and P. Grassberger, “Hierarchical Clus-
tering using Mutual Information,” Europhysics Letters, vol. 70, no. 2, 2005, pp.
278–284.

[35] B. Larsen and C. Aone, “Fast and Effective Text Mining Using Linear-Time Docu-
ment Clustering,” Proceedings of 5th International Conference on Knowledge Dis-
covery and Data Mining (KDD99), San Diego, CA, August 15-18, 1999, pp. 16–22.

[36] X. Liu, A. Krishnan, and A. Mondry, “An Entropy-Based Gene Selection Method
for Cancer Classif cation using Microarray Data,” BMC Bioinformatics, vol. 6, no.
76, 2005.

[37] J. B. MacQueen, “Some Methods for Classif cation and Analysis of Multivariate
Observations,” Proceedings of Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Berkeley, CA, June 21-July 18, 1965, vol. 1, p. 281297.

[38] T. Margush and F. R. McMorris, “Consensus n-Trees,” Bulletin of Mathematical
Biology, vol. 43, no. 2, 1981, pp. 239–244.

[39] Z. Marx, I. Dagan, J. M. Buhmann, and E. Shamir, “Coupled Clustering: A Method
for Detecting Structural Correspondence,” Journal of Machine Learning Research,
vol. 3, 2002, pp. 747–780.

[40] S. McClean, B. Scotney, and S. Robinson, “Conceptual Clustering of Heterogeneous
Gene Expression Sequences,” Artif cial Intelligence Review, vol. 20, no. 1-2, 2003,
pp. 53–73.

[41] S. I. McClean, B. W. Scotney, and F. Palmer, “Conceptual Clustering of Hetero-
geneous Sequences via Schema Mapping,” Proceedings of 13th International Sym-
posium on Foundations of Intelligent Systems, Lyon, France, June 27-29, 2002, pp.
85–93.

[42] C. Ordonez, E. Omiecinski, and N. Ezquerra, “A Fast Algorithm to Cluster High
Dimensional Basket Data,” Proceedings of IEEE International Conference on Data
Mining, San Jose, CA, November 29 - December 2, 2001, pp. 633–636.

[43] P. Pavlidis, J. Weston, J. Cai, and W. Grundy, “Gene Functional Classif cation from
Heterogeneous Data,” Proceedings of 5th International Conference on Computa-
tional Biology, Montreal, Canada, April 22-25, 2001, pp. 249–255.

[44] M. A. Ragan, “Phylogenetic Inference Based on Matrix Representation of Trees,”
Molecular Phylogenetics and Evolution, vol. 1, 1992, pp. 53–58.

148

[45] K. Robinson, D. Turgut, and M. Chatterjee, “Entropy based Clustering in Mobile Ad
Hoc Networks,” Proceedings of 2006 IEEE International Conference on Networking,
Sensing and Control (ICNSC), Ft. Lauderdale, FL, April 23-25, 2006, pp. 1–5.

[46] R. Roiger and M. Geatz, Data Mining: A Tutorial-Based Primer, Addison Wesley,
2003.

[47] S. J. Russell and P. Norvig, Artif cial Intelligence: A Modern Approach, 2nd edition,
Prentice Hall, Upper Saddle River, NJ, 2003.

[48] M. J. Sanderson, A. Purvis, and C. Henze, “Phylogenetic Supertrees: Assembling
the Trees of Life,” Trends in Ecology and Evolution, vol. 13, 1998, p. 105109.

[49] C. Semple and M. Steel, “A Supertree Method for Rooted Trees,” Discrete Applied
Mathematics, vol. 105, 2000, pp. 147–158.

[50] A. G. Skarmeta, A. Bensaid, and N. Tazi, “Data Mining for Text Categorization with
Semi-Supervised Agglomerative Hierarchical Clustering,” International Journal of
Intelligent Systems, vol. 15, no. 7, 2000, pp. 633–646.

[51] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison of Document Clustering
Techniques,” KDD-2000 Workshop on Text Mining, Boston, MA, August 20, 2000.

[52] R. Steuer, J. Kurths, C. Daub, J. Weise, and J. Selbig, “The Mutual Information:
Detecting and Evaluating Dependencies between Variables,” Bioinformatics, vol.
18, 2002, pp. S231–S240.

[53] A. Strehl and J. Ghosh, “Cluster Ensembles - A Knowledge Reuse Framework for
Combining Multiple Partitions,” Journal of Machine Learning Research, vol. 3,
2002, pp. 583–617.

[54] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Bot-
stein, and R. B. Altman, “Missing Value Estimation Methods for DNA Microarrays,”
Bioinformatics, vol. 17, no. 6, 2001, p. 520525.

[55] M. Trutsch, T. D. Dinkova, and R. E. Rhoads, “Application of Machine Learning and
Visualization of Heterogeneous Datasets to Uncover Relationships between Transla-
tion and Developmental Stage Expression of C. Elegans mRNAs,” Physioogical
Genomics, vol. 21, 2005, pp. 264–273.

[56] J. Verbeek, J. Nunnink, and N. Vlassis, “Accelerated EM-based Clustering of Large
Datasets,” Data Mining and Knowledge Discovery, vol. 13, no. 6, 2006, pp. 1–21.

[57] J. Vesanto and E. Alhoniemi, “Clustering of the Self-Organizing Map,” IEEE Trans-
actions on Neural Networks, vol. 11, no. 3, 2000, pp. 586–600.

149

[58] K. Wagstaff, “Clustering with Missing Values: No Imputation Required,” Pro-
ceedings of the Meeting of the International Federation of Classif cation Societies,
Chicago, IL, July 15-18, 2004, pp. 649–658.

[59] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrdl, “Constrained K-means Clustering
with Background Knowledge,” Proceedings of 18th International Conference on
Machine Learning (ICML-2001), Williamstown, MA, June 28 - July 1, 2001, pp.
577–584.

[60] Y. Wang, Incorporating Semantic and Syntactic Information into Document Repre-
sentation for Document Clustering, doctoral dissertation, Department of Computer
Science and Engineering, Mississippi State University, 2005.

[61] D. R. Wilson and T. R. Martinez, “Improved Heterogeneous Distance Functions,”
Journal of Artif cial Intelligence Research, vol. 6, no. 1, 1997, pp. 1–34.

[62] Z. Wu and R. Leahy, “An Optimal Graph Theoretic Approach to Data Clustering:
Theory and its Application to Image Segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15, no. 11, 1993, pp. 1101–1113.

[63] X. Xia and Z. Xie, “AMADA: Analysis of Microarray Data,” Bioinformatics, vol.
17, no. 6, 2001, p. 569570.

[64] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance Metric Learning, with
Application to Clustering with Side-Information,” Advances in Neural Information
Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, eds., MIT Press,
Cambridge, MA, 2003.

[65] Y. Xu, V. Olman, and D. Xu, “Minimum Spanning Trees for Gene Expression Data
Clustering,” Genome Informatics, vol. 12, 2001, pp. 24–33.

[66] Y. Zhao and G. Karypis, “Empirical and Theoretical Comparisons of Selected Cri-
terion Functions for Document Clustering,” Machine Learning, vol. 55, 2004, pp.
311–331.

[67] X. Zhou, X. Wang, E. R. Dougherty, D. Russ, and E. Suh, “Gene Clustering Based
on Clusterwide Mutual Information,” Journal of Computational Biology, vol. 11, no.
1, 2004, pp. 147–161.

	Clustering Multiple Contextually Related Heterogeneous Datasets
	Recommended Citation

