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Many types of devices based on power converters have been proposed and studied 

for utility applications. In recent years most of the control systems for these converters 

have been digital. Unfortunately, such digital controllers, which are often based on a 

digital signal processor (DSP), are difficult to model in simulation. Thus, hardware 

prototypes are usually required. This thesis presents a tool for fast prototyping that helps 

overcome these difficulties. Namely, a hardware-in-the-loop simulation is provided for 

the digital controller in order to evaluate control algorithms without the voltage source 

converter and power system. The controller in the loop design methodology is described 

and the division between the real-time power system model and the hardware controller 

with an interface is shown. Also, the modulation type, integration time step selection and 

synchronization between the controller and the real-time system simulation are discussed. 

The hardware configuration for the real-time simulator and the software implementation 

of the simulator is discussed.  



 

  

 

In this thesis an example application of a shunt active compensator following this 

formal procedure is presented. The active compensator prototyping was first developed in 

MATLAB/Simulink. Then, following a formal design procedure, the power system was 

modeled in a digital simulator and the controller was implemented in a digital controller 

board. Finally, a hardware-in-the-loop test was carried out to validate the performance of 

the hardware controller for the active compensator. Although the tools and methods 

presented here are aimed at shunt connected current controller application, they may be 

generalized for use in the development of any digitally controlled power electronic 

converter. 
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CHAPTER I  

INTRODUCTION 

Utility power systems have long been viewed as an important application area for 

power electronics. Many types of devices based on power converters have been proposed 

and studied for utility applications. The functions of these power electronic devices 

include such applications as power flow control, system stability and security 

enhancement, improving efficiency, power quality, and protection. Such devices for 

power system applications can be grouped as two types of power electronic converter 

systems based on converter topology: shunt connected current controllers and series 

connected voltage controllers. Active Compensator (shunt connected), Static 

Synchronous Compensator (STATCOM), and Mini-HVDC are common shunt connected 

current controllers for power system applications. Static Series Synchronous 

Compensator (SSSC), Dynamic Voltage Restorer (DVR) and Active Compensator (series 

connected) are common series connected voltage controllers for power system 

applications. Shunt connected current controllers can be grouped by applications where 

the bidirectional voltage source converter is the basic power electronic module. It is also 

the basic module for a series voltage controller.  

Advances in power conversion technologies are making it easier to build high 

power converters capable of handling the power level required for power system 

applications. In recent years, research related to the power electronics building block 
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2 
(PEBB) concept has attempted to categorize various power electronic converters and 

divide their function in an effort to standardize their design and construction. Thus 

PEBBs have been developed to achieve: increased power density, "user friendly" design, 

and multi-functionality.  

Generally, a PEBB can be considered as a circuit topology or a physical block. It 

is a basic function block and can be used for more complex applications. The AC switch, 

AC/DC voltage source converter, and DC/DC converter are three basic PEBBs for utility 

system controllers. Through different combinations of these blocks, it is possible to 

implement needed applications for utility power systems [12]. 

In conjunction with the development of PEBBs, digital controls, integrated with 

higher frequency and more robust power circuits, enable modular power systems with 

lower size, weight, and cost, while also increasing performance. The development of a 

digital control system in power application has resulted from the microelectronics 

revolution. Beginning with the use of discrete analog and digital components, the 

progression has been to microprocessor, microcontrollers and digital signal processors 

(DSP). Now, it is possible to implement complex control algorithm on-line for power 

electronics at a reasonable cost. It is possible to use different control algorithms including 

proportional integral (PI), fuzzy logic, deadbeat, and neural nets for improving the 

dynamic and steady state performance of a system controller.  

During power electronic converter design, various control strategies must be 

evaluated based on performance criteria before application in a real system. Due to the 

long periods of time often required for hardware prototyping the evaluation stage is 



   

 

    

 

 

3 
usually conducted in simulation. Unfortunately, the digital controller, which is often 

based on a DSP, is difficult to model accurately in simulation. The designer can not 

guarantee that the digital controller will perform as indicated in the simulation. Therefore, 

a controller-in-the-loop prototyping tool is the topic of this thesis, as it allows the 

developer to evaluate the performance of a DSP based digital controller without the need 

to complete the entire hardware prototype. 

In order to efficiently design power electronic devices for power applications, 

various design tools and procedures are employed. A formal procedure could help 

transfer the design from the model to the final hardware implementation.  First, the 

system controller can be modeled with the power system in software for prototyping. A 

purely software environment helps the designer focus on the algorithm implementation 

and analysis with ideal power equipment.  Then, the control subsystem can be exported to 

a DSP, and the power system can be modeled in a real-time system simulation. With data 

acquisition facilities at both sides, a hardware-in-the-loop environment can be 

established. When satisfactory performance is achieved through the hardware-in-the-loop 

test, the controller is ready to be inserted into the hardware of the real plant for the final 

test. Thus, the formal procedure guides the designer to develop the system controller in 

an efficient and economical way [10]. 

This thesis presents a design procedure for fast prototyping that helps overcome 

the difficulties. Namely, a hardware-in-the-loop simulation is provided for the digital 

controller in order to evaluate control algorithms without the voltage source converter 

and power system. In this thesis, an example application of a shunt active compensator 



   

 

 

 

 

4 
following the formal procedure is presented. The shunt active compensator is one 

common type of shunt connected current controller. Although the tools and methods 

presented here are aimed at shunt connected current controller applications, they may be 

generalized for use in the development of any digitally controlled power electronic 

converter. The active compensator prototyping is developed in MATLAB/Simulink. 

Then, following a formal design procedure, the power system is modeled in a digital 

simulator, and the controller is implemented in a digital controller board. Finally, a 

hardware-in-the-loop test is performed to validate the performance of the hardware 

controller for the active compensator.  

The structure of the thesis is as follows. Chapter II describes the controller in the 

loop design methodology. A typical system and interface are introduced. The division 

between the real-time power system model and hardware controller with interface is 

shown. Also, the modulation type, integration time step selection and synchronization 

between the controller and the real-time system simulation are discussed.  Chapter III 

presents the real-time system simulator design for the hardware-in-the-loop test. The 

hardware configuration for the real-time system simulator and the software 

implementation of the simulator are discussed. Chapter IV describes a shunt active 

compensator test system. The chapter gives a review of active compensators and 

describes the implementation of the active compensator used for the test. Chapter V 

presents the test results of a shunt active compensator. Test results include the results in 

the MATLAB simulation, hardware-in-the-loop test, and the results of a physical 

hardware test. Finally, Chapter VI concludes the thesis and proposes future work. 



 

 
 

 

 

 

 

 

CHAPTER II 

CONTROLLER IN THE LOOP DESIGN METHODOLOGY 

This chapter describes the controller-in-the-loop design methodology. A typical 

system, and interfaces are introduced, and the division between a real-time system model 

and a hardware controller with interface is shown. Also, the modulation type, integration 

time step selection, and synchronization between the controller and the real-time system 

simulation are discussed in this chapter. 

2.1 Typical System and Interface 

Based on topology, power electronic converters used in power systems can be 

divided into two categories [2][3][4][11]: shunt connected current controllers and series 

connected voltage controllers. Shunt connected current controllers are shunt connected to 

a power system with a voltage-fed PWM converter structure. Series connected voltage 

controllers are connected in series to a power system with a current-fed PWM converter 

structure. This thesis focuses on a shunt connected current controller and expects that the 

result will be extendable to series connected voltage controllers. An Active Compensator 

(shunt connected), a Static Synchronous Compensator (STATCOM), and a Mini-HVDC 

are some common applications of shunt connected current controllers for power systems. 

The commonality can be analyzed among various power electronics based controllers in 

utility power systems. The current controllers can be observed as having the same 
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7 
fundamental structure. The bidirectional voltage source converter is the basic power 

electronic module of the shunt connected current controllers. A generalized workflow can 

represent either a power electronic controller connected in a shunt, or a series 

configuration, depending on the connection with the system. The generalized workflow 

of a shunt-connected controller is shown in Figure 2.1.  

Figure 2.1    Generalized Workflow of a Shunt Current Controller 

Usually, the shunt current controller consists of an interface circuit, converter, and 

the control part. The control part is the heart of the power electronic controller and can be 

divided into three subsystems. The first subsystem performs data acquisition and signal 

processing, and the control reference is derived from the measured voltage and current 

signals. The second subsystem performs reference signal generation; compensating 



 

 

 

 

 

 

8 
commands in terms of current or voltage levels are derived based on application goals. 

The third subsystem is control and switch signal generation. The gating signals for the 

solid-state devices of the power electronic controller are generated and sent to the 

converter. 

The converter is controlled by the switching signals.  Thus, the shunt current 

controller can generate components in the current according to system states in time. The 

effectiveness of any shunt current controller relies on the selection of the configuration of 

the controller and the control strategy. For different applications, configurations with 

various control strategies have been proposed. The effectiveness of control strategies 

relies on the method used to obtain the compensating current reference, on the closed 

loop control strategy applied, and the modulation technique. 

In recent years, digital signal processors (DSP) have been widely applied to 

implement control algorithms for power electronics systems. It is possible to use different 

control algorithms for improving the dynamic and steady state performance of a shunt 

current controller. 

2.2 Division Between Real Time (RT) Model and Hardware Controller   

A real-time system simulator is a tool that will allow the control algorithms of a 

power electronic controller to be tested without the construction of the associated power 

electronics and system components. It is very useful for the testing of scenarios where the 

actual hardware may not be available.  

In order to accurately mimic the system response to the digital controller, the 

system simulation must run on a real-time operating system. A real-time system ensures 



 

 

 

 

 

 

 

9 
that responses will be deterministic, that is, the system calculation and operation will 

occur within a given time. With non-real-time systems, there is no way to ensure that the 

response will occur within any given time period, and calculations may finish later or 

earlier than expected, i.e., hard determinism is required. 

In order to perform a hardware-in-the-loop test, the control subsystem can be 

exported to the DSP, and the power system can be modeled in a real-time system 

simulation. With channels of Analog-to-Digital Converters (ADC), a DSP can process 

the measurements from current and/or voltage transducers. With the Pulse Width 

Modulation (PWM) unit, the DSP generates PWM signals and sends them to the 

converter. So, the power system with an converter and a data acquisition part is modeled 

in the Real-time system simulator. Signal Processing (A/D), Reference Signal 

Generation, and Control and Switch Signal Generation can be performed by a DSP. The 

interface of a DSP based shunt current controller is shown in Figure 2.2. 

In order to model the power electronic converter and simplified section of the 

power system, several functions of the real-time system simulator have been defined. 

Generally, they can be divided into three parts as shown in Figure 2.3. “Signal Read” 

reads the control signals, which could be PWM signals. “System Calculation” determines 

the response of the power system according to the control signals received. “System 

Measurement Write” outputs system measurements needed by the DSP. 



 

  

 
 
 
 

 

  
 

  
 

 

 

 
 

 

System
 Calculation 

PWM 
Signals 
Read 

System 
Elements 

Write  

DSP 

Real-Time System 
Simulator 

 

  
 

 
 
 

 

10 

Figure 2.2    Interface of DSP Based Shunt Current Controller 

Figure 2.3    Functions and Interface of the Real-time System Simulator   
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For a power electronic controller, the DSP must obtain system measurements at 

the start of each switching period and send out the transistor gate signals for the next 

period. The system simulator must read the PWM pulse in each switching period and 

send out power system measurement signals at the end of the switching period.  

2.3 Assumption of Modulation Type as Space Vector Modulation and 
Integration Time Step Selection 

2.3.1 Space Vector Modulation (SVM) 

Many modulation techniques are able to produce PWM. Carrier-based Pulse 

Width Modulation and Space Vector Modulation are two popular techniques for PWM 

control of three phase converters. In the past, Carrier-based Pulse Width Modulation 

methods were widely used in most applications [14][15][16][17]. However, since the 

Carrier-based Pulse Width Modulation is not suitable for the digital control, with the 

development of microprocessors, Space Vector Modulation has become one of the most 

important PWM methods. Space Vector Modulation uses the space vector concept to 

compute the duty cycle of the switches.  

In this thesis, the voltage space vector strategy is utilized and detailed analyses are 

presented in [14][15][16][17]. The sequencing strategy established makes symmetrical 

use of the states 0 and 7 as shown in Figure 2.4. For example, in sextant 1, the state 

sequence is 0-1-2-7-2-1-0, and the duration of each state is: 
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ta 

tb 

t0 

T 1 
= U( − U )α β2 3 

T 2 
= U β2 3 

T 
= − t − ta b2 (2.1) 

Where T is the switching period and Uα Uβ, are the α , β components of the 

input. 

Figure 2.4  Illustration of the Vector PWM a) Shows an Instantaneous Reference 
Vector in Sextant 1, and b) Shows the Resultant Switching Function 
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2.3.2  Time Step Selection 

After the system model is developed in the real time system simulator, an 

appropriate integration time-step is needed to solve the system mathematical model. The 

time-step should be selected to ensure the system solution’s accuracy and also meet the 

time constraints. Small time slicing will slow down the simulation while large time 

slicing may overlook an important point.  

There are many ways to select the time step for the mathematical model.  The 

period can be sliced into hundreds of even slots, or divide according to the states of the 

three-converter leg’s PWM signals. As the duty ratio of the PWM signals varies, to catch 

the state change of the PWM signal using even slicing, a much smaller time step is 

needed resulting in longer computation time.  Thus, slicing the switch period according to 

the PWM signal is preferred.  

As shown in Figure 2.5, the three PWM signals show that the switch states will 

change seven times in one cycle. To get accurate simulation results and spend less 

calculation time, in this test, one switching period is sliced into seven slots. After 

obtaining ta, tb and tc by “PWM Signal Read”, the switch status sequence (0,0,0), (1,0,0), 

(1,1,0), (1,1,1), (1,1,0), (1,0,0) and (0,0,0) can be deduced in a switching period.  Also, 

the time of each status can be calculated as t1, t2, t3, t4, t5, t6, and t7 respectively.  

Using t1, t2, t3, t4, t5, t6, and t7 as the time step for each switch state, the output 

voltage at the converter terminals can be calculated. 
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Figure 2.5    Time Step Slicing for PWM Signal 

2.3.3  Synchronization of DSP and Real-time System 

Precise control of timing and coordination of the DSP and real-time system 

simulator is needed to ensure that the DSP does not attempt to read the output of the real-

time system before it is ready. Synchronization of the DSP and real-time system can be 

implemented by the addition of a trigger signal. 

Since a power electronic controller is a device that usually has a high switching 

frequency, it puts strict time constraints on the real-time system simulator. For central 

aligned PWM, a trigger signal is introduced to synchronize the DSP with the system 

simulation as shown in Figure 2.6.   



 

 
 

 
 
 

 

 

  

15 

Figure 2.6    Configuration of Power Electronic Controller Design 

The trigger signal and PWM pulses are produced by the DSP. The rising edge of 

the trigger signal is used as a synchronization signal to identify the start of a switching 

period. When the rising edge of the trigger signal is detected, “Signal Read” blocks begin 

to count with 20MHz time base until the rising edge of the PWM signals is detected. 

Thus, ta, tb, and tc for three lower switches of the converter phase legs can be calculated. 

Then, the power system response to the PWM signals can be calculated and sent back to 

the DSP. These three functions will occur in sequence and remain coordinated with the 

DSP I/O. The system outputs are generated before the cycle ends. Then, the real time 

system simulator waits until the next rising edge of the trigger signal. In this way, one 

switching period is marked by the rising edge between consecutive trigger signals. 



 

16 
In this chapter, the division between a real-time system model and a hardware 

controller with interface has been described. According to the interface, the modulation 

type, integration time step selection, and synchronization between the controller and the 

real-time system simulation are discussed. Thus hardware-in-the-loop test can be set up 

based on the determined interface.  



 

 

 
 

 

 

 

CHAPTER III  

REAL-TIME SYSTEM SIMULATOR DESIGN 

This chapter introduces the real-time system simulator in the Hardware-in-the 

Loop (HIL) test. In this chapter, the hardware configuration for the real-time system 

simulator and the software implementation of the simulator will be discussed. 

3.1 Real-Time System 

A real-time system consists of software and hardware components. In the 

implementation described in this thesis, the software components include software 

implemented using the National Instruments LabVIEW platform. The software runs on 

the LabVIEW real-time operating system called the RT Engine. The hardware 

components of this real-time system include a host computer and an RT target.  

An RT target refers to RT Series hardware that runs the RT Engine and software 

created with LabVIEW. The RT Engine is a version of LabVIEW that runs on the RT 

target. The RT Engine runs the Virtual Instruments (VIs) downloaded to the RT target 

from the LabVIEW on the host computer.  

The RT Engine runs on a real-time operating system (RTOS), which ensures that 

the LabVIEW execution system and other operating system services adhere to real-time 

operation. When the LabVIEW program is running on the host computer, the program 

17 



   

    

 

 

 

 

 

 

 

18 
will be downloaded to the RT target and run on RT target.  

3.2  Hardware for the Real-Time System 

To fulfill the functions of the real-time system simulator described in chapter 2, 

the real-time system simulator is required to have the following properties: 

• It should have the ability to read PWM signals with acceptable error. 

• It needs high-speed digital inputs and analog outputs to match high switching 

frequency (up to 20KHZ) of the converter. 

• In one switching period, the simulator should finish the signal read, system 

calculation, and measurements write. 

Thus, a real-time operating system is required to simulate the power system and 

communicate with the DSP, such that the task can be executed precisely according to a 

specified time schedule. Also, high-speed digital and analog data acquisition devices are 

required. 

Figure 3.1 shows the hardware configuration used in the HIL test. The system 

simulator will simulate the behavior of the shunt current controller along with the entire 

supply and load system.  

To meet the real-time computations needed for this application, a PXI-8186RT 

controller from National Instruments is used. A PXI-6602 high-speed digital input device 

is selected to read the PWM signals, and a PXI-6733 high-speed analog output device is 

used to output the system quantities that are measured by the current controller.  These 

three devices are connected by a PXI chassis and use the same real-time clock. Figure 3.2 



   

    

 

 
 

 
 
 

 
 

 

19 
shows the devices used for the real-time system simulator, including PXI-8186RT, PXI-

6602, and PXI-6733 from National Instruments. 

Figure 3.1    Hardware Configuration for Shunt Current Controller HIL 

Figure 3.2  NI Devices PXI-8186, PXI-6602 and PXI-6733 
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3.3 Implementation of real-time system simulator 

To validate the function of the current controller, a real-time system simulator is 

developed to mimic the interaction of a current controller working with a power system. 

A general workflow of the real-time system simulator is presented in Figure 3.3.  

The program flow is divided into two distinct sections.  The first section describes 

the behavior of the power system without the shunt connected current controller, and the 

second section describes the behavior of the power system with an active shunt connected 

current controller. When the program begins, it is running in the first section. During that 

section, the current controller is not placed in operation, and the simulator simulates the 

power system with a voltage source and load. Thus, the simulator provides the DSP with 

the values of source voltage and load current through analog output. When the current 

controller is placed in operation, the program flow proceeds to the second section. During 

this section, the simulator mimics the power system with a voltage source, load, and 

current controller. The real-time system simulator will begin by reading the PWM signal, 

then it will calculate the power system model and output the values of source voltage, 

load current, current controller injected current, and capacitor voltage through the analog 

output. Until it reaches the user specified stop time, the simulator will continue running in 

the loop. 
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Figure 3.3    Workflow of the Real-time System Simulator 

3.3.1 PWM Signal Read 

The NI PXI-6602 is used for PWM signal reading. It is a timing and digital I/O 

module with eight 32-bit counter/timers and 32 lines of TTL/CMOS-compatible digital 

I/O. Also, it performs a wide variety of counter/timer tasks, including encoder position 

measurement, event counting, period measurement, pulse width measurement, pulse 
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22 
generation, pulse train generation, and frequency measurement. The brief product 

summary of PXI 6602 is available in Appendix A. In this thesis, PXI-6602 counters and 

digital I/O are configured to realize the function of pulse width measurement of the PWM 

signal. 

Since the signal arrangement as described in Chapter II is implemented, the two-

signal edge-separation measurement is used for pulse width measurement. In the two-

signal edge-separation measurement, two signals are used to identify the width of the 

pulse: Trigger Signal (AUX_LINE) and PWM signal (GATE). The counter uses 

SOURCE, the time base provided by the PXI-8186R, to measure the time between the 

two signals. Thus, the measurement of PWM signals begins when the rising edge of the 

trigger signal is detected and ends when the rising edge of the PWM signal is reached. 

The value of the counter will be latched into the HW Save register. Figure 3.4 shows an 

example of a two-signal edge-separation measurement. 

Figure 3.4    Two-Signal Edge-Separation Measurement 



   

    

 

 

 

 

 

 

 

 

 
 

 

23 
When t1, t2 and t3 for three phases are measured in this way, the switch “on” time 

of the upper leg Ta, Tb, and Tc of the PWM signal can be obtained from: 

Ta=T-2*t1; 

Tb=T-2*t2; 

Tc=T-2*t3; (3.1) 

where T is the switching period. 

PWM Signal Read Implementation in LabVIEW is shown in Figure 3.5. The node 

named “CI Two Edge Separation” will fulfill the function of measuring the amount of 

time between the rising edge of the trigger signal and the rising of the PWM signal. The 

node “Implicit” will configure the number of samples to acquire for each channel in the 

task. Then, “DAQmx Start Task” will transmit the task to the running state and begin the 

measurement. When the task is ready, “DAQmx Read” will read the PWM signal from 

the channel specified. When reading is finished, this VI stops the task, and if necessary, 

releases any resources that the task reserved. “DAQmx Clear Task” will clear the task. 

Figure 3.5    PWM Signal Measurement 
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3.3.2 System Calculation Model Design in LabVIEW 

A power system with a shunt current controller is shown in Figure 3.6. The 

voltage source is assumed to be ideal and balanced, and it is connected with a load. A 

shunt current controller consists of a three-phase voltage-fed PWM converter using 

IGBTs, a dc capacitor Cdc, three-phase interfacing inductors Lc, and resistors Rc. The 

current controller is connected in parallel with the load. 

Figure 3.6  Shunt Current Controller Connected to Power System 

3.3.2.1 System Model 

Using Kirchoff’s rule, we can obtain the equations relating the voltage and current 

at the common connection point of the current controller [1] 

V = L di / dt + R i + V + V1 c 1 c 1 1M MN 

V = L di / dt + R i + V + V  (3.2)2 c 2 c 2 2M MN 

V = L di / dt + R i + V + V3 c 3 c 3 3M MN 
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V1, V2 and V3 are the voltages at the connection point, i1, i2 and i3 are the currents 

fed by the shunt current controller. N is the neutral point of the voltage source and M is 

the down side of the active filter. As the AC supply voltage is balanced, from Equation 

(3.2), we can obtain the voltage between point M and point N: 

3 

mM 
m 1 
∑
= 

1 1V (V1 V V3 ) V= − = − (3.3)+ +MN M 2M M3 3 

In the converter, the state of the upper switch and lower switch of each phase leg 

should be opposite state. So, we take ck as 1 when the upper switch is closed and the 

lower switch is open. Otherwise, ck is 0 when the upper switch is open and the lower 

switch is closed.  

So, when ck is 1, VmM will be Vdc , and when ck is 0, VmM will be 0. Thus, 

Equation (3.3) could be written as: 

∑
= 

3 

k 1 

1V ckV= − (3.4)MN dc3 

Also, Equation (3.2) can be modified as: 

3dik Rc Vk 

Lc 

1 1⎡ ⎤ 
⎥
⎦ 
Vdc∑

=k 1 

c 

i= − − − (3.5)+c c⎢
⎣

k k kdt Lc Lc 3 

∑
= 

3 

m 1 

⎡ 1 ⎤Define the function dnk − , which is called switching state function.c= ⎢
⎣

⎥
⎦

k m3 

It could also be presented as: 

d 2 1 ⎤ 
⎥ 
⎥ 
⎥⎦ 

1 
1 

− −⎡ ⎡⎤ ⎡ ⎤c11n 
⎥ 
⎥ 
⎥⎦ 

= 1 
3 
⎢ 
⎢ 
⎢⎣ 

⎢ 
⎢ 
⎢⎣ 

⎢ 
⎢ 
⎢⎣ 

⎥ 
⎥ 
⎥⎦ 

d (3.6)1 2− − c2 2n 

d − 1 − 1 2 c3 3n 

For the converter capacitor, the voltage on the dc side follows the equation: 
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3 

m 
∑ 

1= 

dVdc 1 1i cmi  (3.7)= = dc mdt C C 

Because the system is balanced and the conversion of cm to dnk from Equation 

(3.6), Equation (3.7) can be: 

dV 1 1dc ) )d d i1 dn + dn i  (3.8)(2 ( 2+ += 1 2 1 2 2n ndt C C 

Thus, the complete model of the current controller in the abc reference frame can 

be obtained by the application of Equation (3.5) and the Equation (3.8) as: 

R dc n1− 0 −
Lc Lc 

n2 

⎡ ⎤ 
⎢
⎢
⎢
⎢
⎢
⎢ 

⎥
⎥
⎥
⎥
⎥
⎥ 

i1 i1 

V 

⎡ 
⎢ 
⎢ 
⎢⎣ 

⎤ ⎡ 
⎢ 
⎢ 
⎢⎣V 

⎤ 
+ 1 

Lc 

⎡ 
⎢ 
⎢ 
⎢⎣ 

V 
⎤V1Rc dd 

dt 
⎥ 
⎥ 
⎥⎦ 

⎥ 
⎥ 
⎥⎦ 

⎥ 
⎥ 
⎥⎦ 

i i0 − − (3.9)= 2 2 2 

0
Lc Lc 

2d + d d + 2dn1 n2 n1 n2
dc dc 

0
C C⎣ ⎦ 

3.3.2.2 Computational Model 

A system calculation model can be established based on Equation (3.9). To solve 

Equation (3.9) with given initial values, there are many numerical methods, such as the 

Euler method, Trapezoidal method, Runge-Kutta method, Gear’s method, and so on. The 

selection of the numerical method should consider computation time stability and 

accuracy. 

Compared with other methods, the Forward Euler is a single-step, explicit 

integration method. It is selected for our real-time simulation as long as solver stability 

(convergence) is guaranteed. Based on using forward Euler to discretize Equation (3.9), 

we can obtain the difference equation as: 
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⎡ ⎤R dc n1− 0 −
Lc Lc 

n 

) / h = 

⎢ 
⎢ 
⎢ 
⎢ 
⎢
⎢
⎢⎣ 

⎥ 
⎥
⎥ 
⎥ 
⎥ 
⎥
⎥⎦ 

⎡ i1 ⎡⎤ i1 ⎡ i1⎤ ⎤ ⎤V1⎡ 
V2 

R dc n2− 
c 

1i 
V 

⎢ 
⎢ 
⎢⎣ 

⎥ 
⎥ 
⎥⎦ n+1 

− i 
V 

⎢ 
⎢ 
⎢⎣ 

⎥ 
⎥ 
⎥⎦ 

i 
V 

⎢
⎢ 
⎢⎣ 

⎥
⎥ 
⎥⎦ 

⎥
⎥ 
⎥⎦ 

(3.10)( 0 − +2 

dc 

2 

dc 

2 

dc 

Lc L Lc 0 

⎢
⎢ 
⎢⎣2d + d d + 2dn1 n2 n1 n2 n n

0 
C C 

Where h is the time step. 

Equation (3.10) can be reorganized as: 

R dc n1− h +1 0 − h 
Lc Lc 

⎡ ⎤ 
⎢ 
⎢ 
⎢
⎢ 
⎢ 
⎢
⎢⎣ 

⎥ 
⎥ 
⎥
⎥ 
⎥ 
⎥
⎥⎦ 

⎡ i1 i1⎤ ⎡ ⎤ ⎤⎡V1R dn2h h 
c 

h 
Lc 

i 
V 

⎢ 
⎢
⎢⎣ 

⎥ 
⎥
⎥⎦ 

⎢ 
⎢
⎢⎣ 

i 
V 

⎥ 
⎥
⎥⎦ 

⎥ 
⎥
⎥⎦ 

V 
0 

(3.11)0 − 1 −c 

c 

+ += 2 

dc 

2 

dc 

2L L 
⎢ 
⎢
⎢⎣2d + d d + 2dn1 n2 n1 n2n+1 n n

h h 1
C C 

To obtain the stability index of the above equation, the eigenvalue of the iteration 

matrix in Equation (3.11) needs to be calculated by solving the Equation (3.12). 

R dn11 − λh + h0− −c 

Lc Lc 
d 2R 

1 − λh + h =0 (3.12)0 − −c n 

L Lc 

λ 
c 

2d + d d + 2dn1 n2 n1 n2h h 1− 
C C 

Expanding it yields: 

R d n R 2d n + d
h + 1 − λ )2 (1 − λ) − (− 1 1 n2 h)− λ)(h h +( )( 1− −c c 

L L L Cc c 

d d + 2d R (3.13)2 1 2 λh h h− (− )( )( + 1 ) = 0− −n n n c 

L C Lc c 

By organizing the Equation (3.13), we can get: 

c 
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Rc Rc h2
2 2(− h +1− λ)((− h +1− λ)(1 − λ) + (2d + 2d d + 2d )) = 0  (3.14)n1 n1 n2 n2L L L * Cc c c 

Thus, eigenvalues can be obtained as: 

Rcλ1 = 1− h ; (3.15)
Lc 

Rc Rc 2 h2
2 2h + ( h) − 4 (2d + 2d d + 2d )n1 n1 n2 n2L L L *Cc c cλ2 = 1− ; (3.16)

2 

Rc Rc 2 h2
2 2h − ( h) − 4 (2d + 2d d + 2d )n1 n1 n2 n2L L L *Cc c cλ3 = 1− ; (3.17)

2 

As 2d 2 + 2d d + 2d 2 responds to the switch status, when c1=0,c2=0,c3=0 or n1 n1 n2 n2 

c1=1,c2=1,c3=1, it equals 0, and at other switch status it equals 2/3. When it equals 0, 

λ = 1 λ2 = 1− 
Rc 

Lc 

,h λ3 = 1 . Equation (3.11) is stable when | λ1 |≤ 1 . i.e. h ≤ 
2Lc 

Rc 

. 

When 22d 1n + 2d d1n n2 + 22dn2 equals 2/3, If 
Rc( 
Lc 

2 ≥h) 
28* h 

3* L *Cc 

, λ , λ1 2 ,λ3 are 

less than 1. Equation (3.11) is stable if | |λ ≤ 1 . When 

2Lc1) λ1 ≤ 1 , requires h ≤ ;
Rc 

2Lc2) λ2 ≤ 1, requires h ≤ ;
Rc 

4Lc3) λ3 ≤ 1 , requires h ≤ .
Rc 
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2LcThat is, the Equation (3.11) will be stable when h ≤ ;
Rc 

Rc 8* h2 

If ( h)2 < , λ2 ,λ3 have the imaginary part. Equation (3.11) is stable 
Lc 3* Lc *C 

when 

2Lc1) λ1 ≤ 1 . So h ≤ ;
Rc 

3* Rc *C
2) λ2 ≤ 1 and λ3 ≤ 1 , that is h ≤ 

2 

2L 3* R *C
So, when h ≤ c  and h ≤ c  will be stable. 

Rc 2 

Thus, the stability of the solution is constrained by the time step, the interface 

parameter Lc, Rc, and the capacitor. When the forward Euler method is selected for 

modeling, the selected parameters need to be tested in order to ensure that the 

computation is stable.  With the forward Euler method, the truncation error is O (h2). 

When the switching period is very small, the error can be neglected. 

3.3.2.3 Current Controller Model Implementation 

The LabVIEW application was developed with the NI LabVIEW Real-Time 

Module for Windows and then downloaded to a NI PXI-8186 RT embedded controller 

via the Ethernet. The brief product summary of PXI-8186 is available in Appendix B. 

The embedded code executes on a real-time operating system. Thus, all of the powerful, 

flexible development tools of LabVIEW are used to build reliable real-time solutions. 



   

    

 

 

 

 

 
 

  

30 
The Formula Node block in LabVIEW is used to perform mathematical model 

computation. It is a convenient text-based node used to perform mathematical operation 

on the block diagram. Thus, the mathematic model of the power system with converter 

can be realized in LabVIEW. Figure 3.7 shows the computational program for the power 

system with the current controller in a real-time system simulator.  

The program is a two layer “for” loop. The outer “for” loop associates with the 

number of running iterations, and iteration corresponds to a switch period. The inner 

“for” loop associates with the time step. When the time step is selected according to 

PWM signal statuses, there are seven iterations for the “for” loop. The computation 

process is implemented in the inner “for” loop. 

Figure 3.7    Implementation of Power System with Controller in LabVIEW 
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3.3.3 System Measurements Write  

In this thesis, the National Instruments PXI-6733 is selected for system 

measurement write. It can deliver high-performance, reliable, high-speed analog outputs 

to meet a wide range of application requirements. This card provides eight analog output 

channels at 1 MS/s per channel, 16-bit resolution, and digital triggering. The module uses 

the PXI trigger bus to synchronize with additional data acquisition, motion, and vision 

products, so that engineers can use this device with LabVIEW Real-Time in order to 

perform real-time control, including hardware-in-the-loop simulation and rapid-control 

prototyping. The brief product summary of PXI-6733 is available in Appendix C.  In this 

thesis, PXI-6733 analog output channels will be configured for the output of system 

measurements to DSP.  

The implementation of System Measurements Write in LabVIEW is shown in 

Figure 3.8. Node “DAQmx Task” is used to create channels to output analog signals. 

Then, “DAQmx Start Task” will transmit the task to the running state to begin the 

generation.  When the task is established, “DAQmx Write” writes a single sample 

separately to each channel in a task that contains analog output channels. After the 

writing is completed, this VI stops the task, and, if necessary, releases any resources the 

task reserved. “DAQmx Clear Task” will clear the task. To send the system 

measurements simultaneously, “DAQmx Timing” is used and the property of 

“SimultaneousAOEnable” is enabled. Thus, channels are enabled to output analog signal 

simultaneously. 
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Figure 3.8    System Components Write 

In this chapter the real-time system simulator in the Hardware-in-the Loop (HIL) 

test was introduced. The hardware configuration for the real-time system simulator and 

the software implementation of the simulator were discussed. Shunt connected active 

compensator is a common application of shunt connected current controller. As an 

example, the HIL design of shunt connected active compensator will be described in next 

chapter. 



    

 

  
 

 

 

 

 

 

 

CHAPTER IV 

SHUNT ACTIVE COMPENSATOR TEST SYSTEM 

This chapter presents a shunt active compensator test system. The shunt active 

compensator is one common type of shunt connected current controller. This chapter will 

give a review of active compensators and describe the implementation of the active 

compensator used for the test. 

4.1 Introduction of Active Compensator 

Active compensators for harmonic compensation have become a topic of 

increasing interest over the past decade. Based on different hardware and control 

strategies, active compensators can fulfill a combination of functions such as harmonic 

elimination, unity power factor compensation, unbalance compensation, and neutral 

current compensation.   

Based on converter topology, active compensators can be classified as a series or 

as a shunt compensator. Figure 4.1 is an example of a shunt active compensator, which is 

most widely used to eliminate current harmonics, reactive power compensation, and 

balancing unbalanced currents. Mainly active compensators are used at the load end 

because nonlinear loads inject current harmonics. An active compensator injects equal 

compensating currents, opposite in phase, to cancel harmonics or reactive components of 

33 



   

    

 

 
 

 
 
 

 

 

 

 

 

34 
the nonlinear load current at the connecting point. 

Figure 4.1    Shunt Active Compensator 

4.2 Active Compensator Design 

When a power system is connected with a nonlinear load, the supply current is 

distorted. To compensate for the distorted components of the current, a shunt active 

compensator may be used. In a balanced system, the active compensator acts as a current 

source connected in parallel with the nonlinear load, and it is controlled to produce the 

harmonic currents required for the load. In this way, the ac supply needs only to produce 

the fundamental currents. 

In order to compensate the harmonic current, the current control strategy of active 

compensator is developed. For the test system in this thesis, the control strategy described 

in [1][5][6][7][8][9] is used. Figure 4.2 shows the global schematic diagram of a shunt 

active compensator with the nonlinear control. d-q theory is selected for reference 

generation. PI control will be used in control parameter generation. Space Vector 

Modulation will be implemented in PWM generation.  
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Assuming the power system is balanced, dq theory could be used to derive 

reference with the aim of reducing the control complexity. A nonlinear control technique 

is used to achieve better performance, while the separation of internal and external loop 

dynamics is realized. A decoupled current control using PI-type compensators is utilized 

to let the currents injected by the compensator rapidly track their references. The dc 

voltage level is regulated using a PI-type nonlinear compensator. Finally, PWM 

switching signals for the converter are obtained by the space vector modulation. Figure 

4.2 illustrates the global schematic diagram of a shunt active compensator with the 

nonlinear control. 

Figure 4.2    Global Schematic Diagram of Shunt Active Compensator with Nonlinear 
Control 
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4.2.1 Control Reference Generation 

In the synchronous d–q reference frame controllers, voltage and current signals 

are transformed to a synchronously rotating frame, in which fundamental quantities 

become dc quantities, and the harmonic compensating commands are extracted. The 

required compensation harmonic current is obtained by filtering out the fundamental part 

with a low pass filter.  

⎡i ⎤ ⎡i ⎤d 12 1
⎢ ⎥ = Cdq ⎢ ⎥ (4.1)  
i i⎣ q ⎦ ⎣ 2 ⎦ 

The transformation matrix is 

12 ⎡ cos(θ −π / 6) sinθ ⎤Cdq = 2⎢ ⎥ 
⎣− sin(θ −π / 6) cosθ ⎦ 

(4.2)

The abc-dq transformation is fulfilled by the function node in Figure 3. As the 

active compensator is modeled in the stationary abc frame, current reference is derived 

based on the system measurement iL1, iL2. After d-q transformation, the low pass filter is 

used to obtain the harmonic. As the fundamental is constant in d-q plan, the cut point of 

the low pass filter is set at 25 HZ. Thus, the harmonic component is extracted from the 

system measurement by subtracting the constant from the original current. Figure 4.3 

below shows the diagram of reference signal derivation. 

As the requirement of the current control, seven system signals will be acquired 

by the controller: system voltage vs1, vs2, load current iL1, iL2, capacitor voltage vdc and 

compensation current i1, i2. 
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Figure 4.3     Harmonic Current Reference Generation 

4.2.2  Control Parameter Generation 

A decoupled current control using PI-type compensators are utilized to allow the 

currents injected by the compensator track rapidly their references. The dc voltage level 

is regulated using a PI-type nonlinear compensator. 

As the d-q transformation, the current reference is extracted in (d, q) plane. So, 

the coupled dynamics of the currents tracking problem, have been transformed into 

decoupled dynamics. Hence, the currents id and iq, can be controlled independently by 

acting upon inputs ud and uq, respectively. Furthermore, by using PI-type compensators, a 

fast dynamic response and zero steady state errors can be achieved.  

4.2.2.1  Inner Control Loop 

The inner current loop is simplified as: the error, between the reference and the 

measured inductor current, is amplified by the current controller Gi, which will produce 

the control voltage. According to the control voltage, PWM produces the switching signal 

at the switching frequency fs. 

When the harmonic current reference is generated, the error can be obtained by 

comparing the references with the actual compensation current.  In the simulation, the 



   

    

 

                 

 

 
 

  
 
 

   

 

 

38 
current controller using PI-type compensators is utilized to allow the currents injected by 

the active compensator track their reference rapidly.  

The transfer function of the PI compensators is given by: 

s + k / k
Gi(s) = k p 

i p  (4.3)
s 

where: 

Kp= 2ξω L − R  and ki=ω 2 L  ;ni c c ni c 

The transient response of the current will be affected by the presence of the zero 

in transfer function. In order to eliminate the zero in the close loop transfer function, a 

prefilter is added 

1Gp(s) =  (4.4)
1 + (k p / ki )s 

Below is the figure of the inner control loop of the current iq: 

Figure 4.4  The Inner Control Loop of Current iq 

4.2.2.2 Outer Control Loop 

The dc capacitor voltage vdc on the dc side of the active compensator is detected 

and then compared with the dc voltage reference Vdc
*. The difference signal between vdc 
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and Vdc

* is amplified by a dc voltage controller. Consequently, a small amount of active 

power is absorbed or released to the dc capacitor so as to regulate vdc. 

The transfer function of the PI compensators is given by: 

s + k2 / k1Gv(s)= k1  (4.5)
s 

where: 

k1= 2ξω C  and k2=ω 2Cnv nv 

Figure 4.5 shows the outer control loop of the dc voltage. 

Figure 4.5  The Outer Control Loop of dc Voltage 

Thus, with the structure of a fast inner loop, current tracking loop, and a slow 

outer loop, and a dc voltage regulation loop, a fast dynamic response of harmonic 

compensation is obtained. As the d-q transformation, the current reference is extracted in 

the (d, q) plane. So, the coupled dynamics of the currents tracking problem have been 

transformed into decoupled dynamics. The currents id and iq can be controlled 

independently by acting upon inputs ud and uq, respectively. 
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Figure 4.6    SVM Function Flow Chart 

4.2.3 Space Vector Modulation 

After the reference terminal voltage is obtained, it is used to generate the PWM 

signal by the SVM algorithm as required by the constraints outlined in Chapter II. 

Furthermore, the space vector modulation strategy suits the digital implementation well.  
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Also, some physical device will be selected as the switch of the converter, and its 

physical characters must be considered. When the insulated-gate-bipolar transistor 

(IGBT) converter is used, the turnoff characteristic of the IGBT model is approximated 

by two segments, the fall time (Tf) and the tail time (Tt). These two time parameters 

determine the transition time needed for the converter to switch from a leg. To avoid the 

dead time of an IGBT, it is necessary to adjust the duty ratio of a PWM signal. Thus, the 

SVM function flow chart in application can be modified as shown as in Figure 4.6.  

Shunt active compensator is one common type of shunt connected current 

controller. In this chapter a shunt active compensator test system was presented. The 

control algorithm implemented in shunt connected current controller was described. The 

functionality of the compensator will be validated in next chapter. 



    

 

 

 
 

 

  
 

 

CHAPTER V 

SHUNT ACTIVE COMPENSATOR TEST RESULTS 

This chapter presents the test results of a shunt active compensator. Test results 

include the results in MATLAB simulation, hardware-in-the-loop test, and the results of a 

physical hardware test. 

5.1 System Parameters 

A simple power system with a shunt current compensator is shown in Figure 5.1. 

The voltage source is assumed to be ideal and balanced. The nonlinear load is a 6-pulse 

converter with an inductor and a resistor. A shunt current controller, acting as an active 

compensator, is connected and consists of a three-phase voltage-fed PWM converter 

using IGBT, a dc capacitor C, three-phase interfacing inductors Lc, and resistors Rc.  

Figure 5.1    Power System with a Shunt Current Compensator   

42 
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The system parameters are listed in Table 5.1. First, the shunt active compensator 

is simulated in the MATLAB, and then a hardware-in-the- loop test is performed to 

validate the performance of the hardware control part for the active compensator. Finally, 

the shunt active compensator is performed in the real plant.  

Table 5.1    System Parameters 

V RL f LL  Lc C Rc  Vdc 

121v 12 Ω , 60Hz 0.1mh 1 mh 820uF 0.1 Ω  500 v 

This system implements the d-q synchronous reference frame method to derive 

the reference, uses PI control to track the reference, and uses SVM to generate the PWM 

pulses. The control parameters in the control loop are listed in Table 5.2. 

Table 5.2   Control Parameters for Shunt Active Compensator 

Kp  Ki  K1  K2 

12.8 12000 0.1408 1.8 

5.2 Active compensator simulation in MATLAB  

The system was built and simulated in the MATLAB/ Simulink environment shown in 

Figure 5.2. 
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Figure 5.2    Configuration of Active Compensator in MATLAB/Simulink 
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Figure 5.3 shows the supply current and load current of the power system and the 

compensation current of the active compensator. Before compensation, the supply current 

should be as same as the load current. After compensation, the supply current is near 

sinusoid, meaning that the compensation current has compensated most of the harmonic 

current. Current spikes, which are due to the limited transient response of PI controllers, 

might be observed at supply current waveform. 

Figure 5.3    Simulated Active Compensator Behavior with α =0 

In steady state operation, the total harmonic distortion (THD) of the non-linear 

load is 27.69%. After compensation, the THD of the supply current is 6.92%. Table 5.3 
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illustrates the individual amplitude of low order harmonics in the supply currents in 

percentages of the fundamental component (load firing angle is 0 degrees).  

Table 5.3    Harmonic Contents in Supply Currents 

Harmonic Order 1 5 7 11 13 

Before 
Compensation 

100 22.30 10.70 7.94 7.93 

After 
Compensation 

100 3.82 2.58 3.19 2.15 

The control algorithms used in the shunt active compensator have been validated 

in simulation.  The control algorithms will be implemented in a DSP, and the 

functionality of that DSP will be validated in HIL test.  

5.3 Hardware-in-the-Loop Test  

Figure 5.4 shows equipment used for the shunt current controller HIL, including 

a DSP, a real-time system simulator and a host computer.  A PXI-8186RT controller from 

National Instruments was selected as the RT target. A PXI-6602 and a PXI-6733 were 

selected as data acquisition facilities. Also, the high-performance Motorola DSP56F807 

shown in Figure 5.5 was used in the Hardware-in-the-loop test. The control algorithm 

was coded in C++ language, using the Metrowerks Code Warrior IDE and implemented 

in the DSP as part of an associated project [13]. 
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Figure 5.4  Hardware for Shunt Current Controller HIL 

Figure 5.5  DSP56F807 

Figure 5.6 shows the LabVIEW program for the HIL test. In the program, three 

channels of PXI-6602 are used for PWM signal reading. Seven channels of PXI-6733 are 

selected to output system components. Also, the mathematic model of the shunt current 
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compensator is performed in for loop. The detailed program for the mathematic model is 

listed in the Appendix D. 

Figure 5.6    LabVIEW Program for HIL Test 
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Figure 5.7    Load Current (red) and Compensation Current (white) 

Figure 5.8  Supply Current 

Figure 5.7 shows the load current (red) and compensation current (white), and 

Figure 5.8 shows the supply current. Although there are some high frequency 

components in the supply current, the supply current is very close to the sinusoid. With 

the control algorithm implemented in the DSP, the functionality of DSP has been 
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validated in the HIL test. Now, the DSP is ready to be inserted into the hardware of the 

real plant for the final test. 

5.4 Hardware Test 

The power circuit of the converter is adopted from the commercial PEBB 

PM1000, developed by American Superconductor. The 240V three-phase industrial 

power supply is connected in series with the load.  To check the performance of the 

compensator, the commercial 6RA70 thyristor control rectifier (TCR) from SIEMENS 

was employed.  Figure 5.9 shows the laboratory experimental setup. 

Figure 5.9    Experimental Setup. (PM1000-left, TCR load-right) [13] 

Experimental results for the compensation current, supply current and load 

current [13] are presented in Figure 5.10. 
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Figure 5.10 Experimental Results for the Compensator Current, Supply Current and 
Load Current [13] 

Experimental results show that with the control algorithm applied in DSP, the 

shunt active compensator can compensate the harmonics current caused by nonlinear 

load. With the formal procedure, the design of the shunt current compensator is finished. 



    

 

 

 

 

 

 

CHAPTER VI 

CONCLUSION 

This thesis presents a real-time controller-in-the-loop test system for a digital 

controller design in power system applications. A formal procedure to develop a shunt 

current controller is presented from software simulation to hardware implementation. To 

efficiently evaluate the various digital controller designs for a shunt current controller, a 

controller-in-the-loop simulator for the DSP controller is beneficial. Requirements for a 

real-time system simulator for a shunt current controller are discussed, and a hardware 

implementation is presented. The results demonstrate the following contributions of this 

work: 

1) A formal procedure to develop a digital controller is given. 

2) A hardware-in-the-loop simulation is provided for the digital controller in 

order to evaluate control algorithms without the voltage source converter and 

power system 

3) Simulation models for the example system are presented, along with an 

implementation of that system in the real-time system simulator. An active 

compensator prototype is first developed in MATLAB/Simulink. Then, 

following a formal design procedure, the power system is modeled in a digital 

simulator, and the controller is implemented in a digital controller board. 

Finally, a hardware-in-the- loop test is performed to validate the 
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performance of the hardware controller for the active compensator. 

4) Experimental results show that following the formal procedure, it is able to 

verify the design of digital controller prior to full hardware development. 

In the future, the performance comparison of the hardware-in-the-loop test with 

the physical system test can help to refine the models in the digital simulator. The load 

current is simplified and needs to be simulated by more appropriate mathematical models 

that reflect real devices. 

The models also need to be validated in other applications with other different 

environments, such as different loads and controls. As mentioned before, this research 

work has simplified the model of the power circuit to achieve fast simulation speed. 

Obviously, in order to facilitate the test with different power system configurations, a 

comprehensive common model is needed to describe every aspect in the power system. 

This work needs to be extended to other components of power systems. Finally, 

considering some new features provided by MATLAB/Simulink to transfer the power 

system model in Simulink to LabVIEW callable code, it might be possible to build any 

complex power system in Simulink and make it executable in a digital simulator. This is 

a future goal that would make the real-time system simulation more flexible. 
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APPENDIX A 

NATIONAL INSTRUMENTS PXI-6602 
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The NI PXI-6602 is a timing and digital I/O module with eight 32-bit 

counter/timers and 32 lines of TTL/CMOS-compatible digital I/O. Eight digital I/O lines 

are dedicated and the remaining 24 are shared with the counter/timers. a wide variety of 

counter/timer tasks can be performed with the NI PXI-6602, including encoder position 

measurement, event counting, period measurement, pulse width measurement, pulse 

generation, pulse train generation, and frequency measurement. A specification of NI 

PXI-6602 related in the thesis experiment is summarized as below. For detail 

specification of NI PXI-6602, please check the website of ni.com 

NI PXI-6602 
Timing I/O 
General-Purpose Up/Down Counter/Timers 
Number of channels......................................... 8 up/down counters 
Counter size/number of bits............................. 32 bits 

Digital logic levels 

Level Minimum Maximum 
Input low voltage -0.3 V 0.8 V 
Input high voltage 2.0 V 5.25 V 

Base clocks............................................ ..........100 kHz, 20 MHz, and 80 MHz 
Base clocks accuracy....................................... ±0.005% 

Data Transfers 
Transfer modes................................................. DMA, interrupts, programmed I/O 

Transfer rates 

DMA Interrupt 
Continuous 
Operation 

Buffer Size (MS/s) Rate (ks/s) Buffer Size (MS/s) Rate (ks/s) 
50 28 50 28 

DMA channels......................................... ......... 3 

Digital I/O 
Number of channels......................................... Up to 32 input/output 
Compatibility ...................................................5 V TTL/CMOS 
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Digital logic levels 

Level Minimum Maximum 
Input low voltage -0.3 V 0.8 V 
Input high voltage 2.0 V 5.25 V 

PXI Trigger Bus 
Trigger lines...................................................... 6 
Star trigger ....................................................... 1 
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NATIONAL INSTRUMENTS NI PXI-8186 
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The National Instruments PXI-8186 is a high-performance Pentium 4 embedded 

controller for use in any PXI or CompactPCI system. The NI PXI-8186 is ideal for 

applications requiring intensive analysis or software development. A PXI-8186 

embedded controller in PXI chassis offers a compact, high-performance PC platform for 

modular instrumentation and data acquisition applications. The feature of NI PXI-8186 

Embeded controller is listed below: 

NI PXI-8186 

CPU 2.2 GHz Pentium 4-M 

On-die cache 512 KB 

DDR RAM 256 MB, standard 1 GB, maximum 

Hard drive 30 GB, minimum 

100 Base TX2  Ethernet Yes 

GPIB {IEEE 488.2} interface Yes 

Serial ports 2 

Parallel port Yes 

USB 2.0 ports 2 

PXI trigger bus input/output Yes 

Operating system Windows 2000/XP, LabVIEW Real-Time 
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NATIONAL INSTRUMENTS PXI-6733 
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The National Instruments PXI-6733 delivers high-performance, reliable, high-

speed analog outputs to meet a wide range of application requirements. It provides eight 

analog output channels at 1 MS/s per channel, 16-bit resolution, and digital triggering. In 

addition, the module can perform high-speed digital pattern generation/detection up to 10 

Mwords/s. The module uses the PXI trigger bus to synchronize with additional data 

acquisition, motion and vision products, so users can create custom measurement 

solutions to test innovative designs. The NI PXI-6733 is ideal for applications such as 

stimulus-response tests, including acoustic distortion testing, and open-loop simulation, 

including 3-phase power simulation. This device can also be used with LabVIEW Real-

Time to perform real-time control, including hardware-in-the-loop simulation and rapid-

control prototyping. A specification of NI PXI-6602 related in the thesis experiment is 

summarized as below. For detail specification of NI PXI-6602, please check the website 

of ni.com 

NI PXI-6733 
Analog Output 
Output Characteristics 
Number of channels ................................... 8 voltage outputs 
Resolution....................................................16 bits, 1 in 65,536  

Maximum Update Rate of NI PXI-6733 

Number of Channels Using Local FIFO (ks/s) Using Host FIFO (ks/s) 
1 1000 1000 
2 1000 1000 
3 1000 1000 
4 1000 1000 
5 1000 1000 
6 952 1000 
7 833 869 
8 740 769 

FIFO buffer size.................................................16,384 samples 
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Voltage Output 
Ranges.............................................................. ±10.0 V, ±AO EXT REF 
Output coupling ................................................ DC 
Protection ......................................................... Short-circuit to ground 

Digital I/O 
Number of channels.........................................  8 input/output 
Compatibility .................................................... 5 V TTL/CMOS 
Power-on state .................................................  Input (high-impedance) 
Data transfers ..................................................  Programmed I/O, DMA, interrupts 
Input buffer....................................................... 2048 bytes 
Output buffer .................................................... 2048 bytes 
Transfer rate ..................................................... 10 Mwords/s 

Timing I/O 
General-Purpose Up/Down Counter/Timers 
Number of channels.........................................   2 
Resolution......................................................... 24 bits 
Compatibility .................................................... 5 V TTL/CMOS 
Digital logic levels 

Level Minimum Maximum 
Input low voltage 0 V 0.8 V 
Input high voltage 2 V 5 V 
Output low voltage (Iout = 5 mA) – 0.4 V 
Output high voltage (Iout = -3.5 mA) 4.35 V – 

Base clocks available....................................... 20 MHz and 100 kHz 

Digital Trigger 
Purpose 

Analog output ............................................   Start trigger, gate, clock 
General-purpose counter/timers ............... Source, gate 

Source............................................................... PFI <0...9>, RTSI <0...6>  
Slope................................................................. Positive or negative; software selectable 
Compatibility .................................................... 5 V TTL/CMOS 
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Formula Node in LabVIEW is used to perform computation of active 

compensator mathematical model. Active compensator mathematical model is set up with 

Equation 3.9. For formula node, it gets variables values from input terminals for 

calculation and sends out the values of variables through output terminals.  

For the formula node, input terminals are Rc, Lc, C, V, w, i1_pre, i2_pre, 

Vdc_pre, t_pre, b1, b2, b3, T. Where Rc is the interface resistance; Lc is the interface 

inductance; C is the capacitor capacity; V is the magnitude of the source voltage; w=2* 

Pi*f, where f is the source frequency; i1_pre, i2_pre are the compensation currents for 

phase a, b at previous time step; Vdc_pre is the capacitor voltage at previous time step; 

t_pre is the time of at previous time step; b1, b2, b3 are the measurements of PWM 

signals; T is time step. 

Output terminals of the formula node are i1_now, i2_ now, Vdc_ now, t_ now, 

v3, v4, i1_load, and i2_load. Where i1_now and i2_ now are the compensation currents 

for phase a, b at current time step; Vdc_ now is the capacitor voltage at current time step; 

t_ now is the time of at current time step; v3 and v4 are the source voltages of phase a 

and b at current time step; i1_load, i2_load are the load currents of phase a, b at current 

time step.  

The program in the formula node is as follows: 

//Calculate the slot time according to PWM signals reading; 
float x[3]; 
x[0] =b1/4.0; 
x[1] =b2/4.0; 
x[2] =b3/4.0; 

int y[3]; 
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int i, j, k, m; 
float n; 
for (i = 0; i < 3; i ++) 
{ 

j = 2-i; 
for (k = 0; k< j; k ++) 
{ 

if (x[k] > x[k+1]) 
{ 

               n = x[k];  x[k] = x[k+1];  x[k+1]=n; 
m = y[k]; y[k] = y[k+1]; y[k+1]=m;  

} 
} 

} 

int brig[3]; 
for (i = 0; i < 3; i ++) 
{ 
    m = y[i]; 
    brig[m] = i; 
} 

int c[3][7]; 
for (i = 0; i < 3; i ++) 
{ 

for (j= 0; j < 7; j ++) 
{ 

        c[i][j] = z[brig[i]][j];
 } 

} 

float t[7]; 
t[0]=t[6]=x[0]; 
t[1]=t[5]=x[1]-x[0]; 
t[2]=t[4]=x[2]-x[1]; 
t[3]=T-x[2]*2; 

//according to the slot time, calculate the system elements; 

float delta_i1,delta_i2,delta_Vdc,v1,v2; 
float dn1,dn2; 

for (i = 0; i < 7; i ++) 
{ 
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 dn1=(2*c[0][i]-c[1][i]-c[2][i])/3; 
dn2=(2*c[1][i]-c[0][i]-c[2][i])/3; 

v1=sqrt(2)*V*cos(w*t_pre); 
v2=sqrt(2)*V*cos(w*t_pre-2*pi/3); 

     delta_i1=((-Rc*i1_pre-dn1*Vdc_pre)+v1)/Lc; 
     delta_i2=((-Rc*i2_pre-dn2*Vdc_pre)+v2)/Lc; 
     delta_Vdc=((2*dn1+dn2)*i1_pre+(dn1+2*dn2)*i2_pre)/C; 

Vdc_pre=Vdc_pre+delta_Vdc*t[i]; 
i1_pre=i1_pre+delta_i1*t[i]; 
i2_pre=i2_pre+delta_i2*t[i]; 

     t_pre=t_pre+t[i]; 
} 

// program does not calculate at the first period to avoid dynamic state; 
if (count <1000) 

{ 
i1_now=0; 
i2_now=0; 
Vdc_now=300; 
} 
else 
{ 
i1_now=i1_pre; 
i2_now=i2_pre; 
Vdc_now=Vdc_pre; 
} 
t_now=t_pre; 

v3=sqrt(6)*V*cos(w*t_now+pi/6); 
v4=sqrt(6)*V*cos(w*t_now-pi/2); 

 i1_load=0.5*(20*cos(w*t_now)-4*cos(5*w*t_now)+20/7*cos(7*w*t_now)-
20/11*cos(11*w*t_now)+20/13*cos(13*w*t_now)-
20/17*cos(17*w*t_now)+20/19*cos(19*w*t_now)-
20/23*cos(23*w*t_now)+20/25*cos(25*w*t_now)-
20/29*cos(29*w*t_now)+20/31*cos(31*w*t_now)-
20/35*cos(35*w*t_now)+20/37*cos(37*w*t_now)-
20/41*cos(41*w*t_now)+20/43*cos(43*w*t_now)-
20/47*cos(47*w*t_now)+20/49*cos(49*w*t_now)-
20/53*cos(53*w*t_now)+20/55*cos(55*w*t_now)); 
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i2_load=0.5*(20*cos(w*t_now-2*pi/3)-4*cos(5*w*t_now-
10*pi/3)+20/7*cos(7*w*t_now-14*pi/3)-20/11*cos(11*w*t_now-
22*pi/3)+20/13*cos(13*w*t_now-26*pi/3)-20/17*cos(17*w*t_now-
34*pi/3)+20/19*cos(19*w*t_now-38*pi/3)-20/23*cos(23*w*t_now-
46*pi/3)+20/25*cos(25*w*t_now-50*pi/3)-20/29*cos(29*w*t_now-
58*pi/3)+20/31*cos(31*w*t_now-62*pi/3)-20/35*cos(35*w*t_now-
70*pi/3)+20/37*cos(37*w*t_now-74*pi/3)-20/41*cos(41*w*t_now-
82*pi/3)+20/43*cos(43*w*t_now-86*pi/3)-20/47*cos(47*w*t_now-
94*pi/3)+20/49*cos(49*w*t_now-98*pi/3)-20/53*cos(53*w*t_now-
106*pi/3)+20/55*cos(110*w*t_now)); 
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