
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-6-2005

Algorithms for stochastic finite memory control of partially Algorithms for stochastic finite memory control of partially

observable systems observable systems

Gaurav Marwah

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Marwah, Gaurav, "Algorithms for stochastic finite memory control of partially observable systems" (2005).
Theses and Dissertations. 433.
https://scholarsjunction.msstate.edu/td/433

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/433?utm_source=scholarsjunction.msstate.edu%2Ftd%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

ALGORITHMS FOR STOCHASTIC FINITE MEMORY CONTROL

OF PARTIALLY OBSERVABLE SYSTEMS

By

Gaurav Marwah

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2005

ALGORITHMS FOR STOCHASTIC FINITE MEMORY CONTROL

OF PARTIALLY OBSERVABLE SYSTEMS

By

Gaurav Marwah

Approved:

Eric A. Hansen
Associate Professor of Computer Science
and Engineering
(Major Professor)

Julian Boggess
Associate Professor of Computer Science
and Engineering
(Committee Member)

Lois Boggess
Professor Emerita of Computer Science
and Engineering
(Committee Member)

Edward Allen
Associate Professor of Computer Science
and Engineering
Graduate Coordinator
Department of Computer Science and En-
gineering

Kirk H. Schulz
Dean of the College of Engineering

Name: Gaurav Marwah

Date of Degree: August 08, 2005

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Eric A. Hansen

Title of Study: ALGORITHMS FOR STOCHASTIC FINITE MEMORY CONTROL
OF PARTIALLY OBSERVABLE SYSTEMS

Pages in Study: 46

Candidate for Degree of Master of Science

A partially observable Markov decision process (POMDP) is a mathematical frame-

work for planning and control problems in which actions have stochastic effects and ob-

servations provide uncertain state information. It is widely used for research in decision-

theoretic planning and reinforcement learning. To cope with partial observability, a policy

(or plan) must use memory, and previous work has shown that a finite-state controller pro-

vides a good policy representation. This thesis considers a previously-developed bounded

policy iteration algorithm for POMDPs that finds policies that take the form of stochas-

tic finite-state controllers. Two new improvements of this algorithm are developed. First

improvement provides a simplification of the basic linear program, which is used to find

improved controllers. This results in a considerable speed-up in efficiency of the original

algorithm. Secondly, a branch and bound algorithm for adding the best possible node to

the controller is presented, which provides an error bound and a test for global optimality.

Experimental results show that these enhancements significantly improve the algorithm’s

performance.

DEDICATION

To my mother.

ii

ACKNOWLEDGMENTS

I am grateful to Dr. Eric Hansen for his continuous support and help during the course

of this thesis. It has been a privilege working with him, and a good learning experience

both technically and morally.

I am also thankful to Dr. Lois Boggess and Dr. Gene Boggesss for their kind support

all along.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

I. INTRODUCTION . 1

II. BACKGROUND . 4

2.1 Overview . 4
2.2 Markov Decision Processes . 4

2.2.1 Model . 4
2.2.2 Complexity . 6
2.2.3 Performance criteria . 6
2.2.4 Policy Representation . 8
2.2.5 Policy Evaluation . 10

2.3 Related Work . 11
2.3.1 Hansen’s Policy Iteration Algorithm 11

2.3.1.1 Policy Evaluation . 12
2.3.1.2 Policy Improvement . 12

2.3.2 Stochastic Finite State Controllers (SFSC) 16
2.3.3 Platzman’s algorithm . 17

2.3.3.1 Platzman’s Linear Program 17
2.3.3.2 De-randomization technique 20

2.3.4 Bounded Policy Iteration . 23
2.3.4.1 Linear program for removing jointly dominated nodes . . 24
2.3.4.2 Poupart and Boutlier’s improved linear program 24

III. IMPROVEMENTS TO BOUNDED POLICY ITERATION 26

iv

CHAPTER Page

3.1 Overview . 26
3.2 Simplified Linear Program . 26
3.3 Branch and Bound algorithm . 29

3.3.1 Preprocessing step . 31
3.3.1.1 Building the search tree 32
3.3.1.2 Action-Observation pruning 32
3.3.1.3 Heuristic function . 33

3.3.2 Lower bound . 33
3.3.3 Check for dominance at decision nodes 34
3.3.4 Variations of branch and bound algorithm 35

3.4 Improved bounded policy iteration . 35
3.4.1 Removing dominated nodes . 36

3.4.1.1 Removing pointwise dominated nodes 36
3.4.1.2 Removing jointly dominated nodes 37

3.4.2 Improvement with constant memory 37
3.4.2.1 Improvement by de-randomization 37
3.4.2.2 Improvement by randomization 37

3.4.3 Improvement by adding memory 38
3.4.3.1 Platzman escape technique 38
3.4.3.2 Global search using branch and bound algorithm 38

IV. RESULTS . 40

4.1 Overview . 40
4.2 Reduction in the number of variables . 41
4.3 Pruning using branch and bound . 41
4.4 Timing results . 42

V. CONCLUSION AND FUTURE WORK . 44

REFERENCES . 45

v

LIST OF TABLES

TABLE Page

2.1 Linear program to test for dominance . 13

2.2 Hansen’s Policy Iteration Algorithm . 14

2.3 Algorithm for calculating Bellman residual 15

2.4 Platzman’s linear program. 18

2.5 Platzman’s linear program for each memory state. 19

2.6 Poupart’s efficient linear program . 25

3.1 Linear program to test for dominance of action-observation value vectors 28

3.2 Stochastic Policy Iteration . 39

4.1 Benchmark problems . 40

4.2 Reduction in the number of variables . 41

4.3 Pruning using branch and bound . 42

4.4 Timing results for the algorithm (in CPU seconds) 43

vi

LIST OF FIGURES

FIGURE Page

1.1 Feedback required by the MDP to model the effect of agent actions 2

2.1 Policy Improvement by de-randomization . 22

vii

CHAPTER I

INTRODUCTION

The term planning refers to the formulation of a sequence of actions that fulfills a well-

defined objective. Planning problems have traditionally generated lots of interest for re-

searchers in the field of artificial intelligence (AI).

Complex planning problems involve actions that have stochastic effects, and planning

in general involves uncertainties at several levels. This has led AI researchers to adopt al-

gorithms from the field of decision-theoretic planning that make use of probability theory

to model the uncertainties. The uncertainties require the models to have some mecha-

nism for achieving feedback about the effect of actions taken by the agent. Markov deci-

sion processes (MDPs) provide a framework to model a feedback controller for decision-

theoretic planning problems. Figure 1.1 provides an intuition about the role of MDPs in

modeling planning problems.

There is an important class of MDPs where actions performed by the agent have sto-

chastic effects, but there is no uncertainty in the information provided by the sensors. In

other words, the agent has perfect knowledge about the current environmental state it is in.

This class of MDPs is referred to as a completely observable Markov decision processes

(COMDPs). There are various problem domains where this assumption is true, but in

1

2

 World

 Feedback of the Action taken
effect of agent action by the agent

Agent

Figure 1.1 Feedback required by the MDP to model the effect of agent actions

general the sensors might not provide accurate information about the current environmen-

tal state. Another class of MDPs called partially observable Markov decision processes

(POMDPs) serve as a useful framework for modeling these more difficult planning prob-

lems.

POMDPs assume that the agent’s actions have stochastic effects as in COMDPs, and in

addition, that the true state of the environment is hidden from the agent. This is because

the sensors provide uncertain state information. This provides a more generalized frame-

work for planning that encompasses both classical planning and COMDP. However, this

drastically increases the computational complexity of the problem. This is because of the

added task of information gathering that the agent has to perform. Most exact algorithms

for solving POMDP problem instances can do so only for relatively simple problems.

The POMDP model is applicable to a large number of real world problems. Problems

such as pursuit evasion [6], dialog management [13], robot navigation [14] and medical

diagnosis are examples of problems with high practical significance which have made use

3

of the POMDP model. However, most of these problems are very hard to solve exactly and

therefore provide motivation for approximate solutions to POMDPs.

In this thesis, we will present two new techniques that improve the performance of

the current state-of-the-art approximate algorithm for solving POMDP problems. The first

technique reduces the size of the central linear program used by this algorithm. This results

in huge speed up in efficiency. The second technique helps the original algorithm to break

out of the local optima. Given enough resources, this enhancement essentially converts the

approximate algorithm into an exact algorithm.

The rest of this document is organized as follows; Chapter 2 provides background in-

formation about MDP and describes the use of stochastic finite state controllers (SFSCs) as

a method for policy representation and associated algorithms. This is followed by chapter

3, which describes some new techniques to make policy improvement using SFSC more

efficient. Chapter 4 presents and discusses the results obtained. This is followed by the

conclusion and future work.

CHAPTER II

BACKGROUND

2.1 Overview

This chapter presents some background information about Markov decision processes (MDPs).

As previously mentioned, MDPs provide a useful framework for decision theoretic plan-

ning. This chapter starts with a brief description of the basic POMDP model. It then

discusses various ways to represent policies (or plans) for POMDP problems. In addition,

various algorithms for solving POMDPs are discussed. The chapter concludes with a brief

discussion on the complexity of the POMDP problem and the algorithms used to solve it.

2.2 Markov Decision Processes

2.2.1 Model

MDPs provide a mathematical framework for planning and control problems involving

agents whose actions have stochastic effects. If, in addition, the observations available to

the agent provide uncertain state information, then the problem is categorized as a POMDP

problem; otherwise it is categorized as a completely observable MDP (COMDP). The MDP

model is widely used for research in decision-theoretic planning and reinforcement learn-

ing. This work concentrates on the POMDP model for planning.

4

5

A POMDP [16] is formally defined as a six-tuple(S,O,A, B, T,R) where:

• S is a finite set of possible states.

• O is a finite set of observations that provide incomplete information about the under-
lying states.

• A is a finite set of actions.

• T represents a state transition function that mapsS × A into discrete probability
distributions overS; let Pr(s′ | s, a) represents the probability that states′ ∈ S is
reached as a result of taking actiona ∈ A in states ∈ S.

• R is the reward function that mapsS × A into real numbers that represents the ex-
pected reward of taking an actiona ∈ A in a given states ∈ S.

• B is an observation function that mapsS × A into discrete probability distributions
overO; let Pr(o | s, a) represents the probability that observationo ∈ O is observed
when actiona ∈ A is taken and states ∈ S is obtained as a result.

It is important to notice here that a POMDP provides a more general framework than a

COMDP. In fact, any COMDP problem can be modelled as a POMDP without the obser-

vation functionB as defined above. Or, to be more precise, a COMDP can be modeled as

a POMDP having the same set for observationsO and statesS and an observation function

B with probability distribution as defined below:

Pr(o | s, a) =





1 if o = s;

0 if o 6= s.





This simplification results in significant reduction in complexity for the COMDP model

as compared to the POMDP model.

Since the true state is only partially observable in the POMDP framework, the agent

uses the current observation together with the information of the previous history of actions

and observations to obtain estimates of the possible current state. Based on this information

6

it takes an action that maximizes its expected reward, which leads the agent into another

hidden state.

2.2.2 Complexity

The general POMDP problem has been proven to be PSPACE-Complete for finite horizon

POMDPs, and for infinite-horizon POMDPs, the problem is undecidable [7, 4].

2.2.3 Performance criteria

The reward function specifies the one-step consequences of an agent’s actions. However,

planning in general requires optimizing over multiple action choices for a substantial (pos-

sibly infinite) length of time. This is where the concept of performance criteria acquires

significance. It provides a sense of the long term effect of taking an action in a given state.

There are several choices for the performance criteria, which affects the complexity of the

problem and also can potentially provide different policies. Before explaining the differ-

ent performance criteria in detail, it will be useful to get more insight into the two aspects

related to planning using the POMDP model as explained next.

First, because of the inherent uncertainty in the POMDP model, some way to represent

the previous history of actions and observations is required. This will provide probabilistic

information about the current state of the system (πs will represent the probability of the

state s being the current environment state). This aspect is discussed in detail in the section

on policy representation. All these representations require memory in one form or another.

7

Secondly, performance criteria by definition require some way to look ahead to the

possible expected cumulative reward of taking an action at the present instance. This is

possible using probability theory over the transition, observation and reward functions.

However, the extent of look ahead may differ for different performance criteria, some of

which are described next.

Some of the most widely used performance criteria include expected cumulative re-

wards over a finite horizon, over an infinite horizon and over an indefinite horizon. All

these are explained briefly below. Apart from these some other criteria such as average

reward per time step are also possible.

Performance over a finite horizon involves a look ahead to a finite length of time steps,

which provides substantial computational leverage. The expected cumulative reward of

taking an action in the present state assuming a finite horizon is given by:

Eπ0

[
H∑

t=0

r(st, at)

]
(2.1)

On the other hand, performance over an infinite horizon does not limit the look ahead

to a finite number of time steps. Instead, it uses a discount factor to reduce the effect of

actions at distant time steps. This generalization increases the complexity of the problem.

The expected cumulative reward of taking an action assuming an infinite horizon and a

discount factorβ is given by:

Eπ0

[∞∑

t=0

βtr(st, at)

]
(2.2)

8

The discount factor takes a value between 0 and 1 which ensures that at every time step

the effect of an action decreases geometrically.

Expected cumulative reward over an indefinite horizon is closely related to that over an

infinite horizon. It assumes the presence of stopping or absorbing states which can provide

a limit to the amount of look ahead.

One important subtlety worth mentioning here is that for this work we will model the

problem in discrete time steps. There are other methods that work with continuous time

models.

2.2.4 Policy Representation

As there is uncertainty in the underlying state of a POMDP, a policy for a POMDP would

need some way to estimate the underlying state of the system. One way to do this might

be to store the entire history of actions and observations, and to use this in order to esti-

mate the hidden state. Such policies are known as history policies [10]. The number of

possible histories grows exponentially with the horizon and as such these policies become

intractable for reasonably large horizon length.

One way to avoid the problems related to explicit storage of action-observation history

is to use Bayesian updating of probability distributions over underlying states, called infor-

mation states. The information state will be represented byπ whereπ(s) will represent the

probability of s being the underlying state. Depending on the action taken in the current

information state and the resulting observation, a simple probabilistic update will convert

9

it into a new information state. The information state provides a sufficient statistic in the

sense that the POMDP model can be represented as a Markov chain with the information

states as the states of the chain. However, the information state space is continuous and

therefore there are an infinite number of information states and corresponding states in the

Markov chain.

Other schemes for policy representation use memory in some form or other to cope

with partial observability. This is not the case with policies for COMDP, which can be rep-

resented by deterministic memoryless or reactive policies. The choice of action for such

policies depends on the current state only. The reason behind the applicability of determin-

istic memoryless policies to COMDP is that they can be represented by Markov chains,

where each state of the chain corresponds to an actual environment state, and therefore

the choice of action depends on the current state only, which is completely observable in

COMDPs.

However, because of the uncertainty associated with hidden states in a POMDP, deter-

ministic memoryless policies are not very useful for POMDPs. Littman [8] and Singh [15]

experimented with the use of memoryless stochastic policies for POMDP. Their approach

induces randomization into a policy by randomly choosing among different actions on the

same observation. It has been shown to perform better than a deterministic memoryless

policy that always performs the same action on same observation. In addition, stochastic

memoryless policies do not get trapped in deterministic loops, which means they can get

out of a repetitive sequence of actions that does not lead towards the goal. However, in most

10

cases a stochastic memoryless policy cannot perform better than an optimal deterministic

policy given sufficient memory. Nevertheless, given the same amount of memory a sto-

chastic policy performs at least as well or better than a deterministic policy and this forms

the motivation for this work [8]. The reason behind this is that use of a stochastic controller

adds randomization to a policy. In the case of complete absence of knowledge, randomiza-

tion may be the best strategy to follow. In our case, where there is lack of knowledge (due

to uncertainty), some amount of randomization may help.

One way to provide memory is to use a finite state controller to represent a policy for

a POMDP problem. Several approaches for generating policies for a POMDP (such as

Hansen’s policy iteration [4]) make use of deterministic finite state controllers for repre-

senting memory. However, the complexity of these algorithms depends on the size of the

controllers, which can become very large for moderately hard problems.

An intuitive approach to deal with limitations of memory may be to use a stochastic

finite state controller for policy representation which may help in scaling up the algorithms

for POMDPs [11]. This is the idea pursued in this thesis.

2.2.5 Policy Evaluation

Having gotten an insight into various criteria to judge the expected future cumulative effect

of taking an action at the present time step, the next step is to describe ways to judge the

complete policy as a whole. This aspect is covered under policy evaluation, and provides a

mechanism to compare policies with a view to finding the optimal one.

11

Policy evaluation for a POMDP uses the concept of a value function. A value function

can be obtained for each possible policy in the policy space; the objective is to find the

optimal policy using these value functions. A value function for an arbitrary policyδ in the

POMDP policy space provides a value for each possible information state.

For this work, we will deal with policy evaluation of a policy represented as a finite

state controller. It is important to mention here that the memory states of the finite state

controller together with the underlying states of the POMDP problem form a cross product

MDP [4]. That is they form a Markov chain where each possible pair of a memory state

and an underlying state represent a unique state of the chain. IfN represents the set of

memory states in the controller, then there will be| N || S | states in the Markov chain. A

value will be defined for each of these states in the Markov chain. This can be represented

by use of an| S | dimensional vector corresponding to each of the memory states. More

specific details are provided in the section on related work.

2.3 Related Work

2.3.1 Hansen’s Policy Iteration Algorithm

Hansen [4, 5] developed a policy iteration algorithm that uses a deterministic finite state

controllers to represent policies. In addition to computational benefits, this algorithm con-

siderably simplifies the process of policy evaluation. The algorithm performs a dynamic

programming update on the value functionV δ, representing the current controllerδ, to

obtain all possible vectors that can possibly improve the controller. Each of these vectors

12

corresponds to a memory state that can be added to the controller. The algorithm iteratively

improves the value function by improving the finite state controller in accordance to this

newly obtained set of vectors. At each iteration, the previous controller is converted into an

improved controller by utilizing three operations: merging, adding, and pruning of memory

nodes from previous iteration. The algorithm is described in Table 2.2.

2.3.1.1 Policy Evaluation

Hansen’s algorithm considerably simplifies the process of policy evaluation. Using this al-

gorithm, policy evaluation is equivalent to solving the following system of linear equations,

wherei is the index of the memory state,α(i) is the action taken by the deterministic con-

troller in memory statei andτ(i, o) gives the final memory state after the transition from

memory statei on observing observationo.

γi(s) = r(s, α(i)) + β
∑

s′∈S,o∈O

Pr(s′ | s, α(i))Pr(o | s′, α(i))γτ(i,o)(s
′) (2.3)

The value function can then be defined for each possible information state and will

be given by following equation, where the setΓ is the set of| S | dimensional vectors

corresponding to each memory state.

V (π) = max
γ∈Γ

∑

s∈S

π(s)γ(s) (2.4)

2.3.1.2 Policy Improvement

As discussed in the section on policy evaluation, the value function can be represented by

a finite number of vectors, each of which can be represented by a memory state of a finite

13

state controller. The dynamic programming (DP) update involves converting a given set of

these vectors into another set of vectors that improves the value function for at least some

of the information states and does not decreases it for any of the information states. The

DP update forms the basis of the iterative algorithms for solving POMDPs.

Variables:ε, bs, ∀ s ∈ S

Maximize: ε

Constraints:ε ≤ ∑
s∈S bs · V n(s)−∑

s∈S bs · V ′
(s),∀n ∈ N

∑
s∈S bs = 1,

bs ≥ 0,∀s ∈ S

Table 2.1 Linear program to test for dominance

Hansen’s policy iteration algorithm takes the DP update a step further. Instead of inter-

preting it as a method of adding nodes, it interprets the DP update as an improvement of

the finite state controller by using three operations: changing, pruning and adding nodes.

The algorithm uses incremental pruning [3] as the default method for generating a list of all

possible nodes that can be added to the controller. Incremental pruning is widely accepted

as the most efficient method in practice for DP update over a variety of problems. The

algorithm will work with any method of performing complete or partial DP update.

The algorithm primarily has to make two decision choices at each iteration. Firstly, it

has to decide which of the new nodes obtained as a result of DP update will replace the

14

1. Input : An initial finite state controllerδ, a parameterε providing bound on
optimality of the policy represented by the controller.

2. Policy evaluation: Using equation 2.3 compute the value functionV δ represent-
ing controllerδ.

3. Policy Improvement:

(a) Perform dynamic update onV δ to obtain a set of vectorsΓ′ representing a
new value functionV ′.

(b) For each vectorγ′ in Γ′:

i. If the action and successor links associated with it are same as those
of any other memory state already inδ, then keep that memory state
in δ′.

ii. Else if the vectorγ′ pointwise dominates any other vector associated
with a memory state inδ, then change the action and successor links
associated with that memory state to those that correspond toγ′(If it
pointwise dominates more than one memory state inδ then merge all
those memory states).

iii. Else add a single memory state toδ′ that has action and successor links
associated withγ′.

(c) Prune any memory state ofδ′ for which there is no corresponding vector in
Γ′, only if it is not reachable from any other vector inΓ′.

4. Termination test: Calculate the Bellman residue according to 2.3, if it is less
than or equal toε(1− β)/β, then go to step 5. Else setδ to δ′. If some node was
changed in step 3b, go to step 2; otherwise go to step 3.

5. Output : Anε -optimal finite state controller.

Table 2.2 Hansen’s Policy Iteration Algorithm

earlier nodes. For this, it utilizes the concept of pointwise dominance. A node pointwise

dominates another memory node if its value function vector provides a higher value for all

the underlying states. A node that pointwise dominates another node can replace that node

without decreasing the value function of the controller. Most of the time, however, a new

15

vector improves the value function for a part of the belief region only. In this case, it is

simply added to the controller without replacing any other node.

The second decision that the algorithm has to make is the point of termination of the

algorithm. For this purpose, the algorithm makes use of the Bellman residual (see Table

2.3) to decide onε optimality [16, 4]. If the best improvement for all of the nodes in the

controller is less thanε(1−β)/β, then the policy represented by the controller is guaranteed

to beε-optimal.

One bottleneck of this algorithm is that the complexity of the algorithm depends upon

the number of nodes in the controller, which can become very large or possibly infinite.

Therefore, some way to reduce the number of memory states could be useful. The algo-

rithms described in the next section can potentially achieve this objective.

1. Input : A set of vectorsΓn representing value functionV n and a set of vectorsΓn−1

representing value functionV n−1.

2. residual := 0

3. For eachγ in Γn

(a) Solve the linear program of Table 2.1 with inputsγ andΓn−1.

(b) If (d > residual) then residual := d

4. Output : residual

Table 2.3 Algorithm for calculating Bellman residual

16

2.3.2 Stochastic Finite State Controllers (SFSC)

There is some evidence in theory which suggests that, given the same amount of memory,

a stochastic finite state controller can perform better than a deterministic finite state con-

troller [8, 11]. Therefore, use of a stochastic finite state controller may help in scaling up

algorithms for POMDPs.

This section will discuss some of the algorithms that find stochastic policies for POMDPs.

Not much work has been done to obtain randomized policies in the form of stochastic finite

state controllers. The two approaches in the literature are attributed to Meuleau’s [9] and

Baxter’s [1] gradient based approach that does not require a model, and Platzman’s [11] and

Poupart’s [12] linear programming based approach which does. Since we are considering

planning with a model, we will concentrate on the latter approach.

Before going into details of the algorithm it is worth mentioning the difference in policy

representation of a determinstic controller vs. a stochastic controller. Each node in a deter-

ministic controller performs an actiona ∈ A, and based on observationz ∈ Z, it makes

a deterministic transition to a noden ∈ N . The stochastic controller consists of stochas-

tic nodes which perform a probabilistic action based on distribution over a set of possible

actions|A|. For each observation, the node transitions are also governed by probability

distribution over set of nodesN .

Comparing the two methods of policy representation, it can be seen that any stochastic

node can be represented as a convex combination of all the possible deterministic nodes

that can be present in the controller. This number equals|A| |N ||Z|

17

If a stochastic finite state controller is used instead of a deterministic one then policy

evaluation requires solving a set of equations, where each equation is given by:

γi(s) =
∑

a∈A

α(a, i)r(s, a)+β
∑

a∈A

α(a, i)
∑

s′∈S,z∈Z

(Pr(s′ | s, a)Pr(z | s′, a)
∑

j∈N

τ(i, z, j)γj(s
′)))

(2.5)

Here,α(a, i) represents the action probability and is the probability of taking actiona

in memory statei, andτ(i, z, j) is the node transition probability which is the probability

of making a transition to memory statej on observing observationz in memory statei.

2.3.3 Platzman’s algorithm

Platzman devised a linear programming based algorithm that provides a sub-optimal sto-

chastic policy for POMDP [11]. The algorithm uses a linear program to improve each

memory node of the controller, until it gets into a local optimum. At this point it adds a

node to the controller using an escape technique based on what we call de-randomization,

described latter. If this fails to find an improvement, then this algorithm uses systematic

enumeration to break out of the local optimum, which is not very attractive. The algorithm

also provides an error bound on performance.

2.3.3.1 Platzman’s Linear Program

Table 2.4 provides the mathematical formulation of Platzman’s linear program. The vari-

ableφn
j represents the probability of occurrence of eventj ∈ J in memory staten. A

18

Variables:ε, φn
j , ∀ n ∈ N andj ∈ J.

Maximize: ε

Constraints:ε ≤ ∑
j∈J φn

j V
n
s,j, ∀s ∈ S, n ∈ N

∑
j∈J φn

j = 1, ∀n ∈ N

φn
j ≥ 0, ∀j ∈ J, n ∈ N

Table 2.4 Platzman’s linear program.

memberj of the event setJ for a memory state signifies the choice of an immediate action

a ∈ A followed by the next memory staten ∈ N for each of the observationsz ∈ Z.

This representation combines the action and node transition probabilities into an event.

The cardinality of the event set is| A || N ||Z|. The linear program tries to optimize over

all the elements of the event set for each memory state. Platzman also describes a way to

divide this linear program into a separate, smaller linear program for each memory state

which considerably simplifies the complexity of the linear program. This simplified linear

program is given in Table 2.5, which needs to be solved for each memory state.

The linear program tries to maximize the value of variableε that represents, for a given

memory state, the minimum improvement possible in the value for any of the underlying

states.Vs,j represents the maximum improvement in state s that is possible if eventj is cho-

sen deterministically in the given memory node. The variableφj represents the probability

of taking eventj in the current memory state. The productφjVs,j, therefore represents the

19

expected improvement for states if the eventj is chosen with a probabilityφj from the set

of eventsJ .

Variables:ε, φj, ∀ j ∈ J.

Maximize: ε

Constraints:ε ≤ ∑
j∈J φjVs,j, ∀s ∈ S

∑
j∈J φj = 1

φj ≥ 0, ∀j ∈ J

Table 2.5 Platzman’s linear program for each memory state.

A closer look at the constraints in Platzman’s linear program reveals that it adjusts these

probability parameters in a way that maximizes the improvement in the value function for

any one or more of the underlying states without decreasing it for any other. If the program

is successful, then it finds a new set of probability values for the event parameters of the

current memory node. In that case, the resulting value function vector for the current mem-

ory node will pointwise dominate the previous vector for the current node. The constraint

for pointwise dominance, however, puts a strong restriction on the linear program, which

may affect its ability to find an improved vector.

Another point worth mentioning here is that Platzman’s program follows an iterative

approach to improve the controller. At each iteration, the linear program causes a local

improvement to the value function. Therefore, the use of Platzman’s algorithm for obtain-

20

ing the best stochastic controller will require executing the linear program given in Table

2.5 | N | number of times at each iteration. The number of iterations cannot be known in

advance.

Each eventj corresponds to a deterministic node that possibly could be added to the

controller as a result of a DP update. Since the linear program tries to find an optimal

probability distribution over the event set, this means that the linear program is trying to

find a convex combination of nodes that would be generated as a result of DP back up

without actually performing the DP update.

Platzman’s linear program has|S| + 1 constraints and|A| |N ||Z| + 1 variables. This

clearly makes the program intractable for a moderately large number of memory states, and

some way to simplify this linear program is needed.

2.3.3.2 De-randomization technique

The discussion in this section, at first, might appear contrary to the fact stated in the previ-

ous section that randomization in general can improve the controller without adding mem-

ory. Although this is true, it does not mean that ”any” stochastic controller will have that

property. What it means is that an ”optimal” stochastic controller would be no worse than

an optimal deterministic controller of the same size. This becomes interesting in view of

the fact that stochastic controllers obtained as a result of linear programs explained in the

previous sections are locally optimal. This locally optimal controller might have some

redundant randomization that could be removed which can possibly improve the controller.

21

An important realization that helps to understand the point made above is that the linear

program described in the previous section imposes tough constraints on improvement. It

tries to improve a node by finding a convex combination that would guarantee improvement

for each of the belief states. These tough constraints guarantee that the value function of the

controller will not decrease at any iteration. However, it seems that such constraints may

sometimes cause the linear program to fail to find an improvement, when an improvement

in the overall value function is in fact possible.

Recall that each node of the controller corresponds to an|S|-dimensional vector. The

controller as a whole represents a value function obtained as a result of these vectors. This

value function is piecewise linear and convex. When this is viewed along with the linear

programs to improve the stochastic nodes, it implies that we do not have to improve a

stochastic node for each possible belief state. Instead, if we can improve it in a belief

region where it already dominates, that will give a guaranteed overall improvement. This

will also relax the constraints on the linear program, thereby increasing the chances of

finding an improvement.

Based on the reasoning given above, an alternative way of improving the controller is

also possible and is described next. Figure 2.1 helps in illustrating this point. It represents

the value function for a two state POMDP problem. There are three nodes in the controller

represented by vectorsV 1, V 2 andV 3. These vectors are convex combinations of vectors

V 1′, V 2′, V 3′ andV 4′ which represent the nodes obtainable after DP update that would

improve the controller for some belief region. Notice that the current controller (shown

22

in leftmost diagram) has achieved a local optimum here and no convex combination can

further improve any of the nodes for all the belief states.

V1

V1’

V2’V3’

V4’

V2

V3

V1V2’V3’

V4’

V2

V3

V4

V1V2’V3’

V4’

V2

V3

V4

Figure 2.1 Policy Improvement by de-randomization

Now consider the situation shown in the middle diagram in Figure 2.1. The only differ-

ence in this controller is that the DP updatable nodeV 1′ from the earlier controller is one

of the nodes in the present controller and is represented asV 4. V 2′, V 3′ andV 4′ are the

three nodes possible after DP update. Notice that the controller is still in a local optimum.

None of the nodes can be improved by using a linear program that tries to improve it for all

possible belief states.

However, notice that vectorV 1 is a convex combination ofV 4 andV 2′. Since vector

V 4 is already present in the current controller, we can still obtain guaranteed improvement

by improvingV 1 for all the belief regions, except those whereV 4 dominatesV 1. One

simple way of achieving this might be to remove the deterministic component correspond-

ing to vectorV 4 from the probability distribution of vectorV 1 and normalizing it over the

remaining vectors involved in the convex combination.

The rightmost diagram in Figure 2.1 represents vectorV 1 after normalization. Notice

thatV 1 is now same as vectorV 2′. Also, sinceV 2 is now a convex combination ofV 1 and

23

V 3′, it can also be improved along the same lines. The same could be done forV 3 as well

at the next step.

The above technique takes into account the piecewise linear and convex property of the

value function and tries to improve the upper surface of this function. However, there is

still one issue that needs some clarification. Consider the middle diagram in Figure 2.1

again. Notice that although we have achieved overall improvement, the value of vector

V 1 has decreased for some of the belief regions. Any vector in the controller that has a

component corresponding to vectorV 1 in its probability distribution can still possibly lose

value in those belief regions. This problem can however be easily overcome by following

this technique with the linear program described in previous section. In such a scenario,

we would be able to find an improved probability distribution for all the negatively affected

vectors. The new probability distribution will have a component corresponding to vector

V 4 in addition to others that were previously there.

Lastly, it was assumed that the controller had a deterministic node likeV 4 on which the

derandomization technique is based. However, if such a node is not present then we can

always add it to the controller and the rest of the procedure remains same.

2.3.4 Bounded Policy Iteration

Recently, Poupart and Boutlier [12] proposed a Bounded Policy Iteration algorithm that

uses linear programs along the same lines as Platzman. There are three important contri-

butions of this work. Firstly they provide a simple linear program that could be used to

24

remove jointly dominated nodes from the controller. Secondly they provide a much more

efficient linear program then Platzman’s linear program for improving nodes for all belief

states. Thirdly they provide an escape technique to break out of local optima.

2.3.4.1 Linear program for removing jointly dominated nodes

This linear program is the dual of the linear program to test for dominance given in Ta-

ble 2.1. The original linear program checks each node to test if it dominates in any belief

region. The dual will test if the node is dominated by other nodes in the controller, and

if so the solution of the dual will provide a convex combination that gives maximum im-

provement. We can replace every dominated node by this convex combination for all node

transitions, without losing the quality of the policy.

2.3.4.2 Poupart and Boutlier’s improved linear program

Poupart and Boutlier provide two linear programs for improving a node in the controller.

The naive linear program proposed by them is the same as that given in Table 2.5. They

also provide an efficient linear program to improve a node in the controller. The modified

linear program reduces the number of variables significantly from|A| |N ||Z| to |A| |N | |Z|.

Table 2.6 provides details of this linear program. The new linear program achieves

efficiency by segregating and rearranging the components of the event setJ of Platzman’s

algorithm. The main idea is that every event in Platzman’s algorithm can be represented

25

as a sum of|A||N |Z| different vectors. Therefore, we can rearrange them to dramatically

reduce the number of variables.

Variables:ε, φa,nz , ∀, a ∈ A, n ∈ N , z ∈ Z

Maximize: ε

Constraints:ε ≤ ∑
a∈A,n∈N,z∈Z φa,nz · Vs,a,nz , ∀s ∈ S

∑
a∈A,n∈N,z∈Z φa,nz)

= 1

φa,nz ≥ 0,∀a ∈ A, n ∈ N, and, z ∈ Z

Table 2.6 Poupart’s efficient linear program

The variableφa,nz represents the probability of taking actiona and making a transition

to noden on observingz.

CHAPTER III

IMPROVEMENTS TO BOUNDED POLICY ITERATION

3.1 Overview

This chapter presents some enhancements of the bounded policy iteration algorithm (BPI).

The first enhancement concerns the linear program given in Table 2.6, which is the single

most time consuming step in BPI. A simplification of the linear program is presented that

results in a considerable speed-up in efficiency. The second enhancement concerns the

method used to break out of the local optimum by adding a node to the controller. A

branch and bound algorithm is presented that adds the best possible node to the controller,

and also provides an error bound and a test for global optimality.

3.2 Simplified Linear Program

This section presents a technique that reduces the number of variables in the linear pro-

gram given in Table 2.6. Recall that this linear program finds, for each node, an improved

probability distribution over the nodes created by the DP update, without performing the

DP update as mentioned in the section on bounded policy iteration in Chapter 2. The lin-

ear program considers all possible transitions for each action and observation pair. That

is why the number of variables in the linear program is|A||N ||Z|. In other words, there

26

27

are |N | variables for each action-observation pair. However, the number of variables for

each action-observation pair that will have non-zero values in the improved distribution is

bounded by the number of underlying states. This is because if there are more than|S|

non-zero variables for any action-observation pair then the number of analogous non-zero

variables in Platzman’s linear program would be more than|S|. But this is not possible

because the number of non-zero variables is bounded by the minimum of the number of

variables or the number of constraints in the linear program. In Platzman’s linear program,

the number of constraints is equal to the number of states. Therefore, another way to look

at this is that the degree of randomization is limited by the number of states. For exam-

ple, for a controller with 100 nodes, 3 actions, 2 observations and 4 states, the number

of variables in Poupart’s linear program would be 600. However, the number of non-zero

variables would be at most 24 (and usually is much less than that). This provides the main

motivation behind this simplification. It is worth clarifying that the above example does

not suggest that the number of variables in the linear program is bounded by the maxi-

mum number of non-zero variables. In this example, the number of actual variables could

be more than 24. In the worst case, it could be 600. However, the maximum number of

non-zero variables is not a lower bound on the number of variables either. It is possible to

reduce the number of variables below 24 as well.

The main idea behind this technique is that the test for dominance presented in Chapter

2 (see Table 2.1) can be extended to each action-observation pair. In other words, for

each action-observation pair, it is possible that the partial value functions corresponding to

28

several variables could be dominated by other variables for that action-observation. There

is no need to include such variables in Poupart’s linear program.

Theorem 1The removal of variables corresponding to dominated partial vectors for each

action-observation will not reduce the maximum improvement found by the linear program.

Proof: It can be shown that none of the variables removed in such a way will have non-

zero value in the solution of the original linear program. If this were not true, than we

could always replace such variables with a convex combination that dominates it, and find

a better improvement. Since the linear program has already found the best improvement

this is contradictory. Therefore, it may be deduced that removed variables will always have

zero values in the solution of the linear program. Therefore, their removal will not make

any difference to the quality of the solution. Q.E.D.

The linear program to test for dominance of value vectors for a particular action-

observation is given in Table 3.1.

Variables:ε, bs, ∀ s ∈ S

Maximize: ε

Constraints:ε ≤ ∑
s∈S bs · V m

a,z(s)−
∑

s∈S bs · V ′
a,z(s),∀m ∈ δ

∑
s∈S bs = 1,

bs ≥ 0,∀s ∈ S

Table 3.1 Linear program to test for dominance of action-observation value vectors

29

In practice, a large number of variables can be pruned using this approach and it pro-

vides considerable speed up in solving the linear program. However, there are two potential

drawbacks of this approach. The first one is that in the worst case none of the variables can

be pruned. But experiments described in Chapter 4 show that usually there is a considerable

reduction in the number of variables. A second potential drawback is that this technique

requires solving additional linear programs (one per variable); in fact, it requires solving

|A||N ||Z| linear programs. However, these linear programs are much smaller; the number

of variables is equal to the number of underlying states, and thus they can be solved rel-

atively quickly. Moreover, these linear programs need to be solved only once for all the

nodes in the controller. In effect, the added number of linear programs is|A||Z| per node.

Chapter 4 provides empirical results that show the effectiveness of this technique.

3.3 Branch and Bound algorithm

As described in Chapter 2, the linear program for pointwise improving each node of the

controller, while keeping other nodes fixed, can get the controller into a local optimum.

There are several ways to break out of the local optimum, such as Platzman’s de-randomization

technique and Poupart’s single-step look ahead search for improvement at tangent belief

states. However, none of these escape techniques guarantees improvement, when in fact

the policy can be improved. This problem particularly becomes interesting when all the

nodes in the locally optimal controller are deterministic. This point gains more importance

in view of the fact that a truly stochastic controller can never be optimal. A truly stochastic

30

controller is one in which there is at least one node which is represented as a convex com-

bination of more than one deterministic node. Therefore it is reasonable to conclude that

the controllers tend to become deterministic as they reach near-optimality. However, at this

moment this idea requires further thought and is left as a future work.

Theorem 2A truly stochastic finite state controller can never be optimal provided there

are no dominated nodes in the controller.

Proof: Let us assume that such a controller is optimal. Then, by definition there is at least

one node in the controller, which is represented as a convex combination of more than one

deterministic node. Therefore, for every belief point, this node would be dominated by

at least one of the deterministic nodes in the convex combination. Therefore, adding all

such deterministic nodes will result in overall improvement of the policy, provided that the

stochastic node itself dominates for some belief region as stated in the theorem. Q.E.D.

Another limitation is that these methods do not provide an error bound or a test of

convergence to global optimality. A full DP-update provides an error bound and test of

convergence to optimality by finding all the deterministic nodes that can be added to the

current controller. However, in our case, we are interested in finding the best single node

which will help us to break out of the local optimum and also provide an error bound and

convergence test. In fact, considering that the global search is a computationally expen-

sive step, we can terminate the search as soon as we find the first node that improves the

controller for some belief state. This will also provide a loose upper bound on optimality.

31

A naive way of doing global search is systematic enumeration of all the deterministic

nodes that can be added to the controller. This makes it possible to compute an error bound

and test for global optimality in the course of searching for the single best node. The depth

of the search tree is1 + |Z| since we need to make a decision about the action to be taken

and a decision about node transition for each observation. The branching factor at depth

one would be|A| and for the rest of the tree the branching factor would be|N |, since for

each observation we can make a transition to any of the|N | nodes. The number of leaf

nodes in this tree is|A||N ||Z|.

The same tree can be searched more efficiently using depth first branch and bound to

prune branches of the tree that cannot lead to an improved node. The branch and bound

algorithm is described in the following sections. Its time complexity depends on the number

of nodes visited, which in the worst case is equal to the number of leaf nodes as given above.

However, a lot of pruning is usually possible. The details of the algorithm are described

next.

3.3.1 Preprocessing step

The preprocessing step creates the search tree, performs action-observation pruning, and

calculates the heuristic function. These preprocessing steps are described below.

32

3.3.1.1 Building the search tree

The search tree could be thought of as a tree with|A||Z| decision nodes, corresponding

to each action-observation pair. At each decision node, we have to decide the choice of

memory node in the current controller that the new node would transit to for the action-

observation corresponding to that decision node. In the most naive form, this step would

have to maintain a list of all the current memory nodes for choice at each decision node.

However, we combine this step with action-observation pruning as described next which

makes the search much more efficient. Note that the size of the search tree is relatively

small.

3.3.1.2 Action-Observation pruning

As mentioned before, for each observation there are|δ| branches emerging from the cor-

responding decision node in the search tree. However as explained in the section 3.2, for

each action-observation pair a lot of branches, whose corresponding partial value vectors

are dominated, could be pruned. We could use the same linear program used to reduce

the number of variables in (Table 3.1), to perform this pruning. In fact we do not have

to perform this step again as it was performed for reducing the number of variables. The

linear programs would have to be performed again, if there is any change in the controller.

Since in our algorithm provided in 3.2 the branch and bound algorithm would be used only

when all other methods have failed to find an improvement, we can assume that there is no

33

change in the controller. Another point to mention is that the amount of pruning obtained

would be exactly same as the pruning in the number of variables defined in section 3.2.

3.3.1.3 Heuristic function

The heuristic function would provide an upper bound on the improvement that could be

obtained by following the rest of the search path from a particular decision node. This upper

bound will help in further pruning the search tree. We use anS dimensional heuristic. For

each action-observation pair, we assign the value function of the best node that can be added

for each environmental state s, to thesth dimension in the heuristic function for that action-

observation. The heuristic function at any decision node would be the sum of the heuristics

for each observation yet to be expanded. The heuristic function defined in such a manner

will make sure that no matter what the optimal node is, its value function for any action-

observation could not be better than the heuristic for any state. The reason behind this is

that none of the partial value vectors for any action-observation can pointwise dominate a

convex combination of nodes with maximum values at underlying environmental states.

3.3.2 Lower bound

In addition to action-observation pruning, a second level of pruning could be obtained

by using a lower bound on improvement. As soon as we get the first node that finds an

improvement for some belief state, we can use its improvement as a lower bound to prune

the search tree. The lower bound will increase every time we find a better node. In fact,

34

given that everything else remains the same, much more pruning could be obtained if we

expand the best nodes early in the search. There might be some ways possible that could

be considered in future work.

3.3.3 Check for dominance at decision nodes

A third level of pruning could be obtained at each decision node. The key point here is

that we can prune a branch of the search tree if the maximum possible improvement from

that branch is less than the current lower bound. The test to decide whether to explore a

branch in the search tree any further will use this principle along with the heuristic defined

above. This test is exactly same as the linear program to test for dominance of a memory

node 2.1. However, since we have not generated the deterministic node completely we do

not know the true value function to be tested. Recall that the value function for each node

is an |S| dimensional vector, with each vector element representing the value of being in

that node in that state. At any decision node in the search tree, we have a partial value

function for the decision nodes preceding that node. In addition, an upper bound on the

partial value function for the rest of the decision nodes in that branch could be obtained

by summing their heuristic for each state. The sum of the partial value function for the

expanded decision nodes and the upper bound for the unexpanded nodes will give an upper

bound for the value for all the states. We will then create an imaginary node with this

relaxed value function and test it for dominance in the current controller. If the imaginary

35

node is dominated, then all the leaf nodes in that branch will be dominated and therefore

we can prune it.

3.3.4 Variations of branch and bound algorithm

There are several variations possible to the basic branch and bound algorithm described

above. One such variation is that we can perform a full DP update instead of adding only

the best node. Approaches such as incremental punning usually perform very well for doing

a full DP update. One interesting comparison would be to compare the branch and bound

with incremental pruning when we want to add only the best node. This is left as future

work. Another variation is to return with the first node that finds an improvement over the

current controller. This could potentially provide a great deal of speed-up especially when

the number of such nodes is very large. The improvement found by this node will still

provide an upper bound on the Bellman residual, and therefore will provide a bound on the

quality of the controller.

3.4 Improved bounded policy iteration

In this section we present a generalized bounded policy iteration algorithm. Several varia-

tions of this basic algorithm are possible, and many of them are explained. The algorithm

is given in Table 3.2. The basic idea of the algorithm is to find an improvement using the

least computationally expensive method. However, such a method when used alone can

get stuck in a local optimum. In such a case the next more expensive method is tried. If

36

everything else fails a global branch and bound algorithm would be used which will provide

global improvement if it is possible. Since the complexity of the algorithm depends upon

the number of nodes, we want to keep it to as low as possible. Therefore, the algorithm tries

to improve the controller as much as possible for a given number of memory states before

adding new memory states. The algorithm utilizes three methods to improve the controller

as described next, in increasing order of computational complexity.

3.4.1 Removing dominated nodes

This step removes any unnecessary nodes from the controller. The algorithm uses two

methods to do that: an efficient method (as given in Table 2.2 to remove pointwise domi-

nated nodes and a method that requires solving a linear program but removes jointly domi-

nated nodes (see Table 2.6). Note that the latter is a more general case.

3.4.1.1 Removing pointwise dominated nodes

This was described in the last chapter in the section on Hansen’s policy iteration algorithm.

For each memory statem in δ, this technique checks to see if the vector associated with

memory statem pointwise dominates any other vector associated with a memory state in

δ, and if so then change the action and node transition probabilities associated with that

memory state to those that correspond tom. (If it pointwise dominates more than one

memory state inδ then merge all those memory states).

37

3.4.1.2 Removing jointly dominated nodes

This method is described in Section 2.3.4.2 for removing jointly dominated nodes. This

method solves the linear program in Table 2.6 for each memory statem in δ; and if the

vector associated withm is dominated by any convex combination of other memory states

in δ, then it replaces the node transition probabilities for all the transitions that point tom

with the probabilities obtained in the convex combination.

3.4.2 Improvement with constant memory

3.4.2.1 Improvement by de-randomization

This method is described in Section 2.3.3.2 . This method tries to find whether there are

some deterministic memory nodes in the controller, and there are memory states inδ that

have probabilistic components to those deterministic modes. If it finds such a case, then we

can remove such probabilities and normalize the difference over the rest of the components.

3.4.2.2 Improvement by randomization

If all the previous methods fail then, for each memory state inδ, we solve the linear program

from Table 2.6 with set of variables obtained from Table 3.1 to improve the value function

associated with it for each state. If we find an improvement then we change the action and

node transition probabilities associated with that memory state to those that correspond to

improved values. This will guarantee improvement without making the controller worse

for any belief state.

38

3.4.3 Improvement by adding memory

If all the previous methods fail to find an improvement then we try to improve the controller

by adding more memory. This will break the controller out of the local optimum and then

we can continue with the least expensive steps again.

3.4.3.1 Platzman escape technique

The method is described in the previous chapter. The technique checks whether there are

any stochastic nodes in the controller which are represented as a convex combination of

more than one deterministic node. If this is the case, then we can add one of those deter-

ministic nodes to the controller, and normalize the event probabilities for stochastic nodes

having non-zero probability for that deterministic component. A point worth mentioning

here is that we are assuming that in the previous step we have already performed deran-

domization. This is important; otherwise there is a possibility of adding a duplicate node.

3.4.3.2 Global search using branch and bound algorithm

If all previous methods fail then we perform the branch and bound algorithm described in

Section 3.3, to find the node that gives maximum improvement for any belief state. We

can also try some of the variations of the algorithm described in the section on the branch

and bound algorithm. If we don’t find an improvement then that guarantees anε-optimal

controller.

39

1. Input : An initial stochastic finite state controllerδ, a parameterε providing
bound on optimality of the controller.

2. Policy evaluation: Using Equation 2.5 compute the value functionV δ for con-
troller δ.

3. Policy Improvement by removing dominated nodes:

(a) Remove pointwise dominated nodes

(b) Remove jointly dominated nodes

(c) If none of the nodes were changed in step 3(a) or 3(b) then goto step 4.
Else prune any memory state ofδ which is not reachable from any other
vector inδ, goto step 2.

4. Policy Improvement without adding memory

(a) Improve policy by de-randomization. If none of the nodes were changed
then goto step 4(b). Else, goto step 2.

(b) Improvement by randomization:

i. For each memory state inδ, use the linear program from Table 2.6
with set of variables obtained from Table 3.1 to improve the value
function associated with it for each state. Change the action and node
transition probabilities associated with that memory state to those that
correspond to improved values.

ii. If the linear program achieves some improvement for any memory
state, then modifyδ and go to step 2, else go to step 5.

5. Policy improvement by adding memory:

(a) Efficient escape technique : If there are any stochastic nodes in the con-
troller which are represented as a convex combination of more then one
deterministic node. Then add one of those deterministic nodes to the con-
troller, and normalize the event probabilities for stochastic nodes having
non-zero probability for that deterministic component. Goto step 2.

(b) Global search using branch and bound algorithm : If all the nodes in the
current controller are deterministic, perform the branch and bound algo-
rithm described in Section 3.3, to find the node that gives maximum im-
provement for any belief state (or alternatively find a node that gives im-
provement for any belief state).

(c) Termination test: Calculate the Bellman residual from the improvement
obtained using branch and bound, if it is less than or equal toε(1 − β)/β,
then go to step 6. Else setδ to δ′ and go to step 2.

6. Output : Anε -optimal stochastic finite state controller.

Table 3.2 Stochastic Policy Iteration

CHAPTER IV

RESULTS

4.1 Overview

This chapter presents some results of testing the techniques described in the previous chap-

ter. The test results are for five benchmark POMDPs used widely in the literature. Some

characteristics of the problems are described in Table 4.1.

Problem Num States Num Actions Num observations

Tiger 2 3 2

Cheese 11 4 7

Network 7 4 2

Aircraft 12 6 5

Shuttle 8 3 5

Table 4.1 Benchmark problems

40

41

S.No. Problem largest LP vars in ILP largest ILP vars in LP

1 Tiger 1620 76 76 1620

2 Cheese 1316 35 42 1232

3 Network 2256 150 150 2256

4 Shuttle 3855 111 111 3855

5 Aircraft 2520 618 618 2520

Table 4.2 Reduction in the number of variables

4.2 Reduction in the number of variables

Table?? shows how much the simplification technique reduces the number of variables in

Poupart’s LP. These problems have varying degrees of hardness, and therefore we tested

these problems with different error bounds. The column labeled ”vars in LP” shows the

number of variables in the largest linear program solved for that problem. The column

labeled ”vars in ILP” shows the number of variables remaining after applying the reduction

technique for that instance. The next two entries in the table show the number of variables

in the largest linear program that the simplified linear program had to solve, and the cor-

responding number of variables in the original linear program. As these results show, the

simplification technique dramatically reduces the size of the LP.

4.3 Pruning using branch and bound

Table 4.3 shows the amount of pruning achieved by the branch and bound algorithm.

42

Problem Max num LP Actual number of LP solved

Tiger 217083 1299

Cheese 313457000000 49

Network 287296 1708

Aircraft 23634200000 9234

Table 4.3 Pruning using branch and bound

The column labeled ”max num LP” shows the maximum number of deterministic nodes

that could be added to the controller, and corresponds to the number of linear programs that

would need to be solved in enumerating all possibilities in searching for the best node. The

last column shows the number of linear programs actually solved by the branch-and-bound

algorithm. The results are for the largest size controller for each instance. They clearly

show the effectiveness of pruning.

4.4 Timing results

Table 4.4 shows the relative time taken by using Poupart’s LP to improve a controller

without adding a node, compared to the time taken by branch and bound to add a node, in

solving each of these problems.

43

S.No. Problem Time taken by linear programTime taken by branch and bound

1 Tiger 2134 615

2 Cheese 446 11

3 Network 13863 1610

4 Shuttle 15495 1156

5 Aircraft 3072 1800

Table 4.4 Timing results for the algorithm (in CPU seconds)

CHAPTER V

CONCLUSION AND FUTURE WORK

This thesis considers a bounded policy iteration algorithm for POMDPs that improves

a policy that takes the form of a stochastic finite-state controller, and presents two improve-

ments of this algorithm. The first improvement provides a simplification of the basic linear

program, which is used to find improved controllers. This results in a considerable speed-

up in efficiency of the original algorithm. The second enhancement concerns the method

used to break out of the local optimum by adding a node to the controller. A branch and

bound algorithm is presented that adds the best possible node to the controller, and also

provides an error bound and a test for global optimality.

Several additional improvements seem possible, and would be investigated in future.

Some of them are mentioned as follows:

1. A new improved linear program: In the current linear program in Table 2.6, we try to
find a pointwise improvement for each node. This imposes tough constraints on the
linear program. We are analyzing a new linear program that will have more relaxed
constraints.

2. It also seems possible to find heuristic functions that will provide a tighter upper
bound than the present heuristic function used.

3. Finally, these techniques can be applied to a bounded policy iteration algorithm for
multi-agent POMDPs [2].

44

REFERENCES

[1] J. Baxter, Gradient-Based Learning of Controllers with Internal State, technical
report, Research School of Information Science and Engineering, Australian National
University, Australia, 2000.

[2] D. Bernstein, E.Hansen, and S. Zilberstein, “Bounded Policy Iteration for Decentral-
ized POMDPs,”To appear in Proceedings of the 19th International Joint Conference
on Artificial Intelligence(IJCAI-05), 2005.

[3] A. Cassandra, M. Littman, and N. Zhang, “Incremental Pruning: A Simple, Fast,
Exact Method for Partially Observable Markov Decision Processes,”Proceedings
of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI–
97), D. Geiger and P. P. Shenoy, eds., San Francisco, CA, 1997, pp. 54–61, Morgan
Kaufmann Publishers.

[4] E. Hansen,Finite Memory Control of Partially Observable Systems, doctoral dis-
sertation, Department of Computer Sciences, University of Massachusetts, Amherst,
Massachusetts, 1998.

[5] E. Hansen, “Solving POMDPs by Searching in Policy Space,”Proceedings of the
eighth International Conference on Uncertainty in Artificial Intelligence, Madison,
WI, 1998, pp. 211–219.

[6] J. Kim, “A Hierarchical Approach to Probabilistic Pursuit Evasion Games with Un-
manned Ground and Aerial Vehicles,”Proceedings of the 40th International Confer-
ence on Decision and Control, 2001.

[7] M. Littman, T. Dean, and L. Kaelbling, “On the Complexity of Solving Markov Deci-
sion Problems,”Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence. 1995, AAAI Press.

[8] M. L. Littman, “Memoryless policies: Theoretical limitations and practical results,”
From Animals to Animats 3: Proceedings of the Third International Conference on
Simulation of Adaptive Behavior, D. Cliff, P. Husbands, J.-A. Meyer, and S. W. Wil-
son, eds., Cambridge, MA, 1994, The MIT Press.

[9] N. Meuleau, K. Kim, L. Kaelbling, and A. Cassandra, “Solving POMDPs by Search-
ing the Space of Finite Policies,”Proceedings of the Fifteenth Conference on Un-

45

46

certainity in Artificial Intelligence, San Francisco, CA, 1999, pp. 284–292, Morgan
Kaufmann.

[10] L. Platzman,Finite-memory Estimation and Control of Finite Probabilistic Systems,
doctoral dissertation, Massachusetts Institute of Technology, Massachusetts, 1977.

[11] L. K. Platzman, A Feasible Computational Approach to Infinite-Horizon Partially-
Observed Markov Decision Problems, technical report, School of Industrial and Sys-
tems Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1981.

[12] P. Poupart and C. Boutlier, “Bounded Finite State Controllers,”In Proceedings of the
Conference on Neural Information Processing Systems(NIPS-03), 2003.

[13] N. Roy, J. Pineau, and S. Thrun, “Spoken Dialogue Managment using Probabilistic
Reasoning,”Proceedings of the 38th Annual Meeting of the Association of Computa-
tional Linguistics, 2000.

[14] N. Roy and S. Thrun, “Coastal navigation with mobile robots,” 1999.

[15] S. P. Singh, T. Jaakkola, and M. Jordan, “Learning Without State-Estimation in Par-
tially Observable Markovian Decision Processes,”Proceedings of the Eleventh Ma-
chine Learning Workshop, 1994, pp. 284–292.

[16] E. Sondik,The Optimal Control of Partially Observable Markov Decision Processes,
doctoral dissertation, Stanford University, Stanford, California, 1971.

	Algorithms for stochastic finite memory control of partially observable systems
	Recommended Citation

	tmp.1625165283.pdf.akv0K

