
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

8-6-2005 

First-Principles Study Of Semiconductor And Metal Surfaces First-Principles Study Of Semiconductor And Metal Surfaces 

Sungho Kim 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Kim, Sungho, "First-Principles Study Of Semiconductor And Metal Surfaces" (2005). Theses and 
Dissertations. 2302. 
https://scholarsjunction.msstate.edu/td/2302 

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2302?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


FIRST-PRINCIPLES STUDY OF SEMICONDUCTOR AND METAL SURFACES 

By 

Sungho Kim 

A Dissertation 
Submitted to the Faculty of 
Mississippi State University 

in Partial Fulf llment of the Requirements 
for the Degree of Doctor of Philosophy 

in Engineering Physics 
in the Department of Physics and Astronomy 

Mississippi State, Mississippi 

August 2005 



Copyright by 

Sungho Kim 

2005 



FIRST-PRINCIPLES STUDY OF SEMICONDUCTOR AND METAL SURFACES 

By 

Sungho Kim 

Approved: 

Seong-Gon Kim John T. Foley 
Assistant Professor of Physics and Professor of Physics and 
Astronomy Astronomy 
(Major Professor) (Committee Member) 

Henk F. Arnoldus R. Rainey Little 
Associate Professor of Physics and Associate Professor of 
Astronomy Computer Science and Engineering 
(Committee Member) (Committee Member) 

Vivien G. Miller Thomas Philip 
Associate Professor of Mathematics Professor of Computer Science and 
(Committee Member) Engineering 

(Committee Member) 

Kirk Schulz 
Dean of the Bagley College of Engineer-
ing 



Name: Sungho Kim 

Date of Degree: August 6, 2005 

Institution: Mississippi State University 

Major Field: Engineering Physics 

Major Professor: Dr. Seong-Gon Kim 

Title of Study: FIRST-PRINCIPLES STUDY OF SEMICONDUCTOR AND METAL 
SURFACES 

Pages in Study: 95 

Candidate for Degree of Doctor of Philosophy 

In this dissertation, we study the electronic and geometric structure of semiconductors 

and metal surfaces based on quantum mechanical f rst-principles calculations. 

We determine the geometry of vacancy defects of hydrogen adsorbed on a Pd(111) 

surface by treating the motion of a hydrogen atom, in addition to electrons, quantum me-

chanically. The calculated ground state wave function has high probability density in the 

hcp site located at the center of the vacancy instead of the fcc sites where the potential is 

minimum and hydrogen atoms on a Pd(111) surface normally adsorb. The geometry of 

quantum mechanically determined divacancy provides a simple and clear explanation for 

the scanning tunneling microscopy (STM) images of these defects that appear as three-

lobed objects as observed in recent experiments [Mitsui, et al, Nature 422, 705 (2003)]. 

We employ the same principle to successfully elucidate the STM images of larger size 

vacancy defects. Our model also provides a compelling argument to explain the unusual 



recent experimental result that aggregates of three or more hydrogen vacancies are much 

more active in adsorption of hydrogen molecules while two-vacancy defects are never 

inactive. 

The InAs (110) surfaces appear lower than GaSb in STM images. This height dif-

ference is caused primarily by differences in the electronic structure of the two materials 

according to our calculations in a good agreement with measurements. In contrast, local 

variations in the apparent height of (110) surface atoms at InSb- or GaAs-like interfaces 

arise primarily from geometric distortions associated with local differences in bond length. 

The arsenic atoms adsorb preferably at the bridge sites between the dimerized Sb atoms 

on Sb-terminating (001) surfaces. Indium atoms, on the other hand, have somewhat equal 

probabilities at a few different sites on Ga-terminating (001) surfaces. Our calculated en-

ergies for atomic intermixing indicate that anion exchanges are exothermic for As atoms 

on Ga-terminating (001) interfaces but endothermic for In atoms on Sb-terminating (001) 

interfaces. This difference may explain why GaAs interfaces are typically more disordered 

than InSb interfaces in these heterostructures. 
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CHAPTER I 

INTRODUCTION 

The formulation and development of quantum theory in the f rst half of the 20th century 

has led to a revolution in our understanding of fundamental physics. Quantum theory has 

demonstrated a surprising accuracy and predictive power, and the importance of quantum 

theory in the pure and applied sciences is virtually unchallenged. If we are to attempt 

to model real processes and real materials the relevant equation to be solved is clearly 

the Schrödinger equation. Unfortunately, however, the Schrödinger equation cannot be 

solved analytically for any practical system but a few trivial ones. In order to make useful 

progress the Schrödinger equation must be solved numerically with rigorously controlled 

approximations. 

Density functional theory (DFT) [62, 48, 52, 40] is widely used in condensed matter 

physics and computational chemistry. DFT provides a formal foundation that the total 

energy of many-electron system is a unique functional of the electron density[62]. Fur-

thermore, Kohn-Sham theory allows us to replace the many-electron problem by a set of 

Schrödinger-like self-consistent single-electron equations[48]. 

We use DFT to study metal surfaces and their interaction with adsorbates. In particu-

lar, we determine the ground-state geometry of vacancy defects of H atoms adsorbed on 
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Pd(111) surface. Due to special circumstances in the vicinity of these defects, H atoms 

need to be treated fully quantum mechanically to obtain correct ground-state geometry of 

these defects and the results explain many unexpected and yet interesting experimental ob-

servations. Therefore, we go beyond conventional DFT methods employed in condensed 

matter physics and developed our own new software package to obtain the quantum me-

chanical behavior of H atoms as well as electrons. 

We also apply f rst-principle calculations based on density functional theory to study 

the surface of various semiconductors. In particular, we determine the structure of inter-

faces between several III-V heterostructure semiconductors such as GaAs, GaSb, InAs, 

and InSb. 

1.1 Overview 

The dissertation is organized as follows. In Chapter 2, we review the fundamentals of 

the density functional theory introduced by Hohenberg, Kohn and Sham during the sixties. 

In Chapter 3, we describe how we treat hydrogen atom quantum mechanically on Pd(111) 

surface and introduce the program APPSES we developed. In Chapter 4, f rst-principles 

study of metal surfaces is presented. In Chapter 5, f rst-principles study of semiconductor 

surfaces is presented. 



CHAPTER II 

DENSITY FUNCTIONAL THEORY 

Density functional theory (DFT) is widely used in condensed matter physics and, due 

to its tremendous success, is emerging as a de facto standard to solve many-body problem 

of electrons in atomic scale systems [62, 48, 52, 40]. The Born-Oppenheimer approxi-

mation, discussed in Section 2.1, is used to separate the dynamics of the ions from the 

electrons. DFT is motivated by the Hohenberg-Kohn (HK) theorem[62], derived in Sec-

tion 2.2, which maps the N-interacting electron problem into a variational problem cast in 

terms of the ground state single particle density ρ(r). The Kohn-Sham (KS) equation[48], 

derived in Section 2.3, describes the system in terms of a set of auxiliary functions {Ψi}

which are solutions to a non-linear, self-consistent single-particle Schrödinger-like equa-

tion. These variational principles provide a well-def ned and well-tested means to study 

atomic scale systems by minimizing a total energy functional. Unfortunately, the total 

energy depends on an unspecif ed exchange-correlation energy functional EXC. Despite 

the fact that little is known about EXC, well-controlled approximations to EXC have been 

surprisingly successful and have been applied to a wide range of systems. An overview 

of EXC functionals in popular use is given in Section 2.4. To a large extent, the properties 

of an atomic system are determined by the electrons in the valence shell of the constituent 
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atoms. The pseudopotential approximation, described in Section 2.5, formalizes this idea 

by replacing the core electrons and the nucleus with a pseudopotential that describes the 

effective interaction of the valence and core electrons. A numerical solution of the KS-

equations is based on the choice of an appropriate basis to represent the electronic wave 

functions. An overview of bases is given in Section 2.6. A brief description of the self-

consistent solution procedure is given in Section 2.7. 

2.1 Born-Oppenheimer Approximation 

The ions in a solid tend to move slower than the electrons because mion ˛ melectron. In 

the Born-Oppenheimer approximation, the electrons are assumed to move instantaneously 

to their ground state and the ions can be treated as classical objects with a def nite position 

RK and velocity VK , experiencing a classical force FK due to the potential generated by 

electrons and other ions. The elctrons themselves move in an external potential Vion−el 

generated by the nuclear cores: 

ZKVion−el(r) = ∑ . (2.1) |r −RK|K 

In Section 2.5, this external potential is modif ed to include the core states and nonclassical 

effects. Within this approximation, the nuclei are replaced by pseudo-ions that generate 

the external potential Vion−el(r). 

In the Born-Oppenheimer approximation, the total energy corresponds to the energy 

of a system of electrons in the presence of a collection of nuclei: E({RI}). To study an 

atomic scale system, it is natural to relax the ionic coordinates so that they minimize the 
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5 
dE total energy on the Born-Oppenheimer surface E({RI}) and forces FI = [23] on the dRI 

ions at RI disappear. These forces may be calculated ab-initio from the electronic ground 

state using the Hellman-Feynman theorem. [23, 62, 35] 

There are several approaches to go beyond the Born-Oppenheimer approximation. A 

natural extension would be to include electron-phonon coupling. While electron-phonon 

coupling constants have been estimated a posteriori from DFT analyses [13], they have 

not been included in a self-consistent DFT analysis. 

2.2 Hohenberg-Kohn Theorem 

The basis for DFT is the Hohenberg-Kohn (HK) theorem [62] which reduces the fully 

interacting N-electron problem to determining the ground state of single particle density 

ρ(r): The non-degenerate ground state energy of an N electron system, EN, is a unique, 

universal functional of the single-particle density ρ(r): 

EN = EN [ρ(r)]. (2.2) 

This may be proven as follows. For an interacting system of electrons: 

N −∇2 
i 1

H = ∑ +∑ +Vext (r) (2.3) 
2 ri − r ji=1 i 6= j 

The external potential Vext (r) and the number of electrons N uniquely determine the sys-

R 

tem. The density determines the number of electrons by N = drρ(r). The proof will 

demonstrate that there is also a one-to-one mapping between the external potential Vext (r)
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and the ground-state density ρ(r). Thus, the system is uniquely determined by ρ(r), in-

cluding the wave function and total energy EN . 

Suppose there are two different potentials Vext (r) and Vext (r0) with the same ground-

state density ρ(r). These diferent potentials are associated with energies E and E 0, Hamil-

tonians H and H 0 and wave functions Ψ and Ψ0, respectively. Using the fact that Ψ is the 

non-degenerate ground state of H, we obtain 

hΨ|H|Ψi < hΨ0|H|Ψ0i,

E < hΨ0|H 0|Ψ0i+ hΨ0|H −H 0|Ψ0i,
Z 

E < E 0+ drρ(r)(Vext 
0 (r)−Vext (r)).

Similarly, 

hΨ|H 0|Ψi < hΨ|H 0|Ψi,

E 0 < hΨ|H|Ψi+ hΨ0|H 0 −H|Ψ0i,
Z 

E 0 < E + drρ(r)(Vext 
0 (r)−Vext (r)).

Adding these two equations together results in the contradiction E +E 0 < E +E 0. Thus, 

for a non-degenerate ground state, there cannot be two potentials Vext (r) and Vext 
0 (r) with 

the same ground state density ρ(r) and ρ(r) uniquely determines Vext (r), N, and , con-

sequently, all properties of the system. Although this proof was developed for a non-

degenerate ground state, DFT can be formulated in such a way that the HK-theorem holds 

even for systems with degenerate ground states [64]. 
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Since all properties are determined by the ground-state density, any system can be stud-

ied by minimizing a unique, universal total-energy functional E[ρ]. This is the motivating 

result of DFT. The central problem of DFT is thus to determine the form of the energy 

functional E[ρ]. Unfortunately, the exact form is not known but one can formally write 

Z Z1 ρ(r)ρ(r0)0E[ρ] = T [ρ]+ drdr + drρ(r)Vext(r)+EXC[ρ], (2.4) 
2 |r − r0|

where T [ρ] is the kinetic energy and the next two terms represent the mean-f eld interaction 

energy and the energy due to the external potential, Vext , respectively. All non-classical 

corrections and many-body effects are included in the exchange-correlation functional 

EXC[ρ]. These corrections include both exchange effects (X), due to interactions between 

parallel spins, and correlation effects (C), due to interactions between opposite spins. In 

practice, one chooses among a set of standard approximate forms of EXC[ρ]. Some popular 

choices are described in Section 2.4. 

2.3 Kohn-Sham Equation 

Many applications of DFT are based on the Kohn-Sham (KS) equations which are 

derive from the Hohenberg-Kohn theorem. Similar to the Hartree-Fock method, Kohn and 

Sham [48] introduced a non-interacting reference density built of auxiliary functions {ψi}: 

N 
ρ(r) = ∑(ψi(r))�ψi(r), (2.5) 

i=1 

hψi|ψ ji = δi j. (2.6) 
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The Kohn-Sham kinetic energy is given by 

N −δ2 
TKS = ∑hψi|

2 
i |ψii. (2.7) 

i=1 

The true kinetic energy T [ρ] is not equal to the KS kinetic energy TKS. However, this 

difference can again be absorbed into the exchange-correlation functional by redef ning 

EXC: 

EXC[ρ]� T [ρ]−TKS[ρ]+EX [ρ]+EC[ρ]. (2.8) 

The basic idea behind the Kohn-Sham equation is to start with a good approximation to the 

knetic energy, which is a large part (˘ 50%) of the total energy, and absorb the presumably 

small non-classical correction into EXC(˘ 10%) of the total energy[40]. 

In the ground state, the variation of the total energy is stationary with respect to the 

functions {ψi(r)}
δE[ρ]

= 0. (2.9) 
δψi(r0)

The orthogonality conditions are maintained by introducing the Lagrange multipliers Ei j 

δE[ρ] −Ei jψ j = 0, (2.10) 
δψi(r0)

which leads to 

Z∇
( +

2 
ρ(r0)

Ei jψ j(r),dr +Vext (r)+VXC(r))ψi(r) =|r − r0| (2.11) 

where VXC is the exchange-correlation potential: 

δEXC[ρ]VXC[ρ)]� .
δρ(r)

(2.12) 
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The matrix Ei j can be diagonalized, leading to the Kohn-Sham equation: 

Z∇ ρ(r0)
( + dr +Vext (r)+VXC(r))ψi(r) = Eiψi(r). (2.13) 

2 |r − r0|

The interacting many-electron problem has thus been reduced to a set of self-consistent 

one-electron (interacting with others through a mean-f eld potential) Schrödinger-like equa-

tions. It is emphasized that exact knowledge of the functional EXC[ρ] whould yield the 

exact ground state energy. Thus, the Kohn-Sham equations prove the existence of an ex-

act mean f eld theory. However, the exact functional VXC[ρ] is not known and one must 

choose an approximate form. It is also noted that the Kohn-Sham Hamiltonian in Eq. 2.13 

depends on the solutions {ψi} through the density. The KS equations are thus a non-linear 

self-consistent eigenvalue problem which will require much computational effort to solve. 

2.3.1 Total Energy Functional 

The ground state energy can be written: 

Z Z Z1 ρ(r)ρ(r0)0Etot = TKS + drdr + drρ(r)Vion−el(r)+ drρ(r)Vext +Eion−ion[{RI}],2 |r − r0|
(2.14) 

where we have explicitly included the external potential due to the interaction with the 

atomic cores Vion−el . The total energy can be rewritten: 

Etot = EBS −δEH +δUXC +Eion−ion[{RI}], (2.15) 

where 

N 
EBS = ∑ Ei ,

i=1 
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δEH =

Z1 −
2 

ρ(r)ρ(r0)
drρ(r) ,|r − r0|

δUXC =
Z EXC(ρ(r))drρ(r)( −VXC(ρ(r))),ρ(r)

Eion−ion = ∑ ZIZJ 
,|RI −RJ|I 6=J 

and the Kohn-Sham eigenvalues Ei are 

Z Z−∇2 ρ(r)
Ei = dr(ψi(r))�{ + dr +VXC(ρ(r))Vion−el(r)+Vext (r)}ψi(r). (2.16) 

2 |r − r0|

There are two long-ranged potentials in the KS equations that cancel each other at large 

separation R: 
Z 

0 ρ(r) N −N 
VH = dr ˘ Vion−el ˘ . (2.17) |r − r0| R R 

These potentials may be screened by adding and subtracting the Hartree potential due 

R 

drρNA(r −RI) = ZI .to a neutral charge density This leaves a screened ion-electron 

interaction or neutral atom potential, V NA , and a Hartree correction VδH which satisfy: 

∇2VδH = 4π[ρ(r)−∑ρNA(r −RI)] (2.18) 
I 

and 

Z ρNA,K(r0 −RK)V NA V NA,K(r −RK)
0= ∑ = ∑ ion−el(r −RK)+ }. (2.19) {V K dr |r − r0|K K 

The KS Hamiltonian is now of the form: 

−∇2 
H = +∑V NA,K(r −RK)+VδH (r)+VXC(r)+Vext(r). (2.20) 

2 K 
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There are also long-ranged terms in the total energy: the ion-ion interaction, Eion−ion, and 

Hartree correction δEH . These terms can again be screened by adding and subtracting 

ρNA(r) so that the total energy is now written [60]: 

Etot = EBS +δEδH +δUXC +ESR, (2.21) 

where we have introduced the Hartree correction δEδH 

Z Z 

drVδH (r)ρNA(r)− 1 
drVδH [ρ(r)−ρNA(r)]δEδH � (2.22) 

2 

and the short-ranged (SR) ionic interaction energy ESR: 

1 � EIESR ∑ SR + 2 ∑VSR(|RI −RJ|),
I i 6= j 
Z Z ρNA,K(r)ρNA,K(r0)1 0EI = drdr ,SR 2 |r − r0|

Z Z ρNA,K(r −RI)ρNA,J(r −RJ)ZIZJ 0VSR(|RI −RJ|) = − drdr .|RI −RJ| |r − r0|

2.3.2 Comments on Density Functional Methods 

The great advantage of the HK theorem and KS equations is that they reduce the fully 

interacting N-particle problem to solving a set of self-consistent single-particle equations. 

In principle, the fully interacting N-particle problem can be solved exactly given the en-

ergy functional E[ρ]. Unfortunately, the exact form is unknown. However, with the use 

of a minimal number of well-controlled approximations, it is found that density functional 

theory is surprisingly accurate and has been successfully applied to a wide range of sys-

tems. 
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Several reasons for this surprising success have been proposed[40]. It can be shown 

that the exchange-correlation energy can be written in terms of a mean-f eld interaction 

with an exchange-correlation hole ρXC [64]: 

Z1 0ρXC(r,r − r0)ρ(r0)
EXC = drdr . (2.23) 

2 |r − r0|

In particular, EXC depends only on the spherical average of 1 , weighted with the ex-|r−r0|

change correlation hole ρXC. Thus, it can be expected that the exchange-correlation energy 

depends only weakly on the details of ρXC [40]. 

The Kohn-Sham eigenvalues {Ei} were introduced as Lagrange multipliers in Eq. 2.13. 

Their physical meaning is not clear, but it is standard practice in condensed matter physics 

to assume they represent real quasi-particle eigenvalues. It has been found that the eigen-

values near the Fermi energy are reasonably close to the real excitation energies[40]. In 

any case, there is no simple alternative and we will proceed to interpret the eigenvalues 

and eigenstates as those of real quasi-particles. 

2.4 Energy Functionals 

The central challenge of DFT is to determine the energy functional E[ρ]. Little is 

known about the exact form of E[ρ], but several well-controlled approximations, based 

upon analyses of the homogeneous electron gas of density ρ(r) = ρ0, have been used with 

varying degrees of success. 
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2.4.1 Thomas-Fermi Theory 

The earliest density functional theory, Thomas-Fermi (TF) theory [64], was developed 

before the HK theorem was proven. The TF total energy functional is derived from a 

homogeneous non-interacting electron gas: 
Z Z Z3(3π2)2/3 1 ρ(r)ρ(r0)0ET F [ρ] = drρ5/3(r)+ drdr + drρ(r)V (r). (2.24) 

10 2 |r − r0|

Thomas-Fermi-Dirac (TFD) theory[64] adds a correction due to exchange effects 
Z Z 

� �1/3 Z Z3(3π2)2/3 1 ρ(r)ρ(r0) 3 30ET FD[ρ] = drρ5/3 + drdr − drρ1/3 + drρ(r)V (r).
10 2 |r − r0| 4 π

(2.25) 

These functionals have well known problems. For example, it can be shown that no bond-

ing of molecules is predicted within Thomas-Fermi theory[64]. 

2.4.2 Local Density Approximation 

The local density approximation (LDA) is often used in solutions of the Kohn-Sham 

equations.1 When solving the KS equations, only the non-classical corrections EXC[ρ] =

T [ρ]−TKS[ρ]+Ex[ρ]+Ec[ρ] must be approximated. These are, presumably, small cor-

rections to the Kohn-Sham non-interacting energy and can be calculated accurately for 

the high and low-density limits of the homogeneous electron gas[15] and interpolated as a 

function of ρ0. The result, interpolated for numerical covenience, is given by the rational 

polynomial[29]. 

1While the Thomas-Fermi approximation is a local density approximation also, the term LDA is normally 
used when local approximations are made for EXC, as in Kohn-Sham theory, and not the total energy Etot , as 
in TF theory. 
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Within LDA, the energy of an inhomogeneous electron gas is calculated using the 

following local approximation: 

Z 

EXC[ρ(r)] = drρ(r)εXC 
ρ0 (ρ(r)),

ερ0 EXC(ρ0)
XC �

ρ0 
.

2.4.3 Beyond the Local Density Approximation 

A natural way to extend the LDA is to include information about inhomogeneities. 

The magnitude of the local gradient |∇ρ(r)| is a measure of the inhomogeneity and can 

be included in the exchange-correlation functional: EXC(r) = EXC(ρ(r), |∇ρ(r)|). Early 

attempts suggested that a naive expansion in orders of |∇ρ(r)| was less accurate than the 

original LDA[65]. This can be understood in terms of exact sum rules and constraints on 

EXC derived form the exchange-correlation hole[65]. It turns out that naive gradient expan-

sions violated some of these constraints while the LDA does not. The interpretation is that 

LDA corresponds to an approximate, but physical system, while the gradient expansions 

correspond to unphysical systems. The Generalized Gradient Approximation (GGA) was 

introduced by explicitly constructing a functional that met many of the known constraints 

imposed on ρXC[65]. This illustrated the importance of sum rules and constraints in DFT 

and demonstrated that increasingly accurate functionals may be constructed by deriving 

more stringent constraints and constructing functionals that satisfy them. 
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2.5 Pseudopotential Approximation 

Once the exchange-correlation functional has been chosen, the system is def ned up 

to an external potential Vext (r). In ab-initio analyses, one important component of the 

external potential is generated by the nuclear cores {RK}, as in Eq. 2.1. These potentials 

are singular near the cores and some care must be taken when solving the Kohn-Sham 

equations, particularly when using a real-space basis. 

When atoms come together to form a solid, the core electrons, localized around each 

atom, will only interact weakly with the core electrons of other atoms. In the pseudopo-

tential approximation, the core electrons are assumed to be frozen. As such, they act much 

like the nuclear core in generating an external potential. The total external potential of the 

original reference or all-electron (AE) atom, including the nuclear core and the core elec-

trons, is then replaced by a smooth, non-singular potential known as the pseudopotential 

(PS) which only acts on the valence electrons. The pseudopotential can be constructed to 

satisfy a number of transferability conditions so that it may be used in a variety of different 

chemical environments. 

When the core electrons are removed, a large part of the total energy is ignored, thus 

only changes in the total energy due to rearrangement of the valence charege have meaning 

in pseudopotential calculations. This is acceptable so long as the atomic cores interact 

weakly with neighbouring atoms and are not sensitive to their environment. 

Because the core states have been effectively removed from the problem, the eigen-

states of the pseudopotential, or pseudoorbitals, need not be orthogonal to the core elec-
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trons and are therefore nodeless in the core region, r < rc. As a result, the pseudoorbitals 

are generally smoother and easier to represent on a numerical grid than the orbitals of the 

original all-electron atom. Outside the core region, r > rc, the pseudopotential and the 

pseudoorbitals are identical to the corresponding all-electron potential and orbitals. 

Empirical pseudopotentials are based on f ts to bulk properties of a system and, not sur-

prisingly, agree well with expermental results for bulk systems. However, these potentials 

are not very transferable, meaning that they may not work when used to model systems 

with chemical environments different from the bulk. The development of ab-initio, norm-

conserving, pseudopotentials by Hamman, Schlüter and Chiang (HSC)[32, 7] allows for a 

systematic construction of transferable pseudopotentials. 

The HSC pseudopotential is referred to as an ab-initio pseudopotential because it is 

derived from an ab-initio density functional calculation of the properties of a single ref-

erence atom. The f rst step is to solve the Kohn-Sham problem for an all-electron atom, 

including core states and valence states. This yields the all-electron wave functions {ψAE }

and the all-electron potential V AE (r). The pseudopotential V PS is designed to satisfy the 

following constraints: 

1. The all-electron eigenvalues are equal to the pseudopotential eigenvalues: 

EAE EPS = . (2.26) 

2. The potential outside a cutoff radius rc is identical to the all-electron potential: 

V PS(r > rc) V AE (r > rc).= (2.27) 

3. The pseudoorbitals (eigenstates of the pseudopotential) are identical to the all elec-
tron eigenstates outside the cutoff radius rc: 

ψPS(r > rc) ψAE (r > rc).= (2.28) 
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4. The charge inside rc is the same for the pseudopotential and all-electron potential: 
Z Zrc 2 rc 2 

drr2 ψPS(r) = drr2 ψAE (r) . (2.29) 
0 0 

The f rst constraint ensures that the pseudoatom and the all-electron atom have the same 

spectra at the valence energies. The second constraint ensures that the potential outside 

the core region is not changed by the pseudopotential approximation. The third and fourth 

constraints ensure that the logarithmic derivatives of the all-electron atom and the pseu-

doatom agree to f rst order outside the cutoff radius rc. Since the logarithmic derivative is 

related to the phase shift of a free electron scattering off a radial potential, this ensures that 

the scattering properties of the pseudoatom match those of the all-electron atom. When 

the pseudoatom is placed in a different chemical environment , the levels will shift due to 

bonds or interactions with other atoms. In order for a pseudopotential to be transferable, 

the pseudopotential must mimic the all-electron atoms for a wide range of energies and 

not just at the eigenenergies. In fact, numerical calculations show that the scattering prop-

erties of the all-electron potential and the pseudopotential are identical over a wide range 

of energies[32]. 

The accuracy of the HSC pseudopotential is controlled by the cutoff radius rc. In 

general, the smaller the cutoff-radius, the more transferable the pseudopotential. However, 

as the cutoff-radius is decreased, the pseudopotential becomes “harder” in the sense that a 

f ner grid and more plane waves are necessary to represent the pseudopotential accurately. 

This is of particular concern in plane-wave approaches to solving the KS equations[52]. In 
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this work, the pseudopotential matrix elements are pre-tabulated and can be calculated on 

a f ne grid and we are not concerned with optimizing the softness of the pseudopotential. 

A limitation of the HSC pseudopotential is that it represents a linearization of the 

exchange-correlation potential: 

V PS VXC(ρvalence).= (2.30) XC(r)

This may be corrected using a non-linear core correction when calculating the exchange-

correlation potential[8]. 

The construction introduced by HSC to satisfy the above constraints is not unique and 

other norm-conserving pseudopotentials may be constructed but the HSC pseudopotential 

is by far the most popular. 

2.5.1 Non-Local Pseudopotentials 

In order to ensure that the phase shift of the pseudopotential is correct for all angu-

lar momentum eigenstates l, one must in general use a non-local pseudopotential that is 

angular momentum dependent: 

VNL = ∑ |liVlhl|. (2.31) 
l 

The semi-local HSC pseudopotential involves a projection over the solid angle Ωr0: 

VHSC(r,r0) = ∑ |Ylm(Ωr)iVl(r)δ(r − r0)hYlm(Ωr0)|. (2.32) 
lm 
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An alternative construction, due to Kleinman and Bylander (KB) [46], introduces a sepa-

rable form in which the projection is over both the radial and angular component: 

hψl|Vl(r)|ψliVKB(r,r0) = ∑ |Ylm(Ωr)Wl(r)iεlhWl(r0)Ylm(Ωr0)|Wl(r)�Vl(r)ψl(r)ε � .hψl|Vl 
2(r)|ψlilm 

(2.33) 

The projection in Eq. 2.33 is generally easier to calculate than the projection over solid 

angle in Eq. 2.32. However, the Kleinman-Bylander transformation can lead to unphysical 

ghost states [30] in which the lowest p state is lower than the lowest s There exist, in the 

literature, lists of Kleinman-Bylander potentials that have been checked for ghost states. 

2.6 Basis Sets 

Given the appropriate exchange-correlation potential and pseudopotential, the Kohn-

Sham Hamiltonian, Eq. 2.13, is well def ned except for boundary conditions on the Hartree 

potential and explicit external potentials Vext (r). To solve the Kohn-Sham equations nu-

merically, one must employ a set of basis functions in order to eff ciently represent the 

electronic wave functions. Several factors determine the choice of basis including ease 

of implementation, speed, accuracy, and geometry of the system. In general, one chooses 

between a plane-wave basis, localized in k-space, or a basis that is localized in real space. 
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2.6.1 Plane-Wave Calculations 

Plane wave methods are very accurate and relatively simple to implement compared 

to real space techniques. The starting point for a plane-wave calculation is an expansion 

of the wave functions in terms of a sum of plane waves: 

i −ik·rψi = ∑cke . (2.34) 
k 

Such expansions are ideal for studying systems with periodic boundary conditions because 

only the reciprocal lattice vectors {G} need to be included in the expansion in terms of 

basis functions [4]. In practice, a f nite set of {k} is chosen suff cient so that the wave 

function can be expressed accurately. This accuracy can also be increased in a controlled 

fashion by restricting the wave vectors such that their magnitude is less than a specif ed 

cutoff |k|< kcuto f f , in order to capture oscillations on the scale of ∇r ˇ π . The resolu-kcuto f f 

tion and accuracy of the expansion can be systematically increased by increasing kcuto f f . 

For these reasons, plane wave based calculations are common in condensed matter physics. 

An excellent review is given by Payne et al [52]. 

The number of plane waves is generally much larger than the number of electrons: 

Nbasis ˛Nel. In the literature, there exist well-known preconditioners and eff cient iterative 

techniques to solve the KS equations for such large basis sets [52]. 
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2.6.2 Bloch’s Theorem 

Bloch’s theorem states that in a periodic solid each electronic wave function can be 

written as the product of a cell-periodic part and a wave-like part [4], 

Ψi(r) = eik·r fi(r). (2.35) 

The cell-periodic part of the wave function can be expanded using a basis set consisting 

of a discrete set of plane waves whose wave vectors are reciprocal lattice vectors of the 

crystal, 

fi(r) = ∑ci,GeiG·r , (2.36) 
G 

where the reciprocal lattice vectors G are def ned by G · l = 2πm for all l where l is a lattice 

vector of the crystal and m is an integer. Therefore each electronic wave function can be 

written as a sum of plane waves, 

i(k+G)·rΨi(r) = ∑ci,k+Ge . (2.37) 
G 

2.6.3 Plane-Wave Representation of Kohn-Sham Equations 

When plane waves are used as a basis set for the electronic wave functions, the Kohn-

Sham equations get a particularly simple form. Substitution of Eq. 2.37 into 2.13 

� � 

1∑ ( |k +G|2δGG0 +Vion(G −G0)+VH (G −G0)+VXC(G −G0) ci,k+G0 = εici,k+G.
2G0

(2.38) 
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In this form, the kinetic energy is diagonal, and the various potentials are described in 

terms of their Fourier transforms. 

2.7 Solution of the Kohn-Sham Equations 

The single-particle Hamiltonian that appears in the Kohn-Sham equations depends on 

its solutions {ψi} through the density: H = H [ρ(r)]. Thus, it is a non-linear eigenvalue 

equation which must be solved self-consistently. This self-consistent iteration starts with 

an initial guess for the density matrix. Given an input density matrix, the KS Hamiltonian 

may be constructed. From the KS Hamiltonian, an output density matrix is calculated and 

compared to the input density matrix. If the two density matrices do not match, a new 

input density is formed based on the output density matrix. This process is repeated until 

self-consistency is achieved at which point the iteration stops, data analysis is performed 

and physical quantities are calculated form the electronic ground state. Then, the exter-

nal variables, such as the nuclear positions {RK } are updated and a new self-consistent 

calculation is performed. Each step is brief y outlined below. 

2.7.1 Initialize Density 

The f rst step in solving the KS equations is to choose an initial trial density ρ0(r). A 

natural choice is a superposition of neutral atom densities: ρ0(r) = ∑I ρNA(r−RI). On the 

other hand, a reasonable guess at the self-consistent density based on a previous solution 

of the KS equations may be available. For example, in a molecular dynamics simulation or 
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another simulation that evolves incrementally from time t to time t +1, the self-consistent 

density at time t can be used as an input to the self-consistent iteration at time t + 1. 

The method described in this work is not sensitive to the initial choice of density ρ0 but 

other methods, such as the iterative solution method used in plane wave calculations, may 

not converge to the correct result if the initial density is not chosen properly [52]. Some 

methods are known to diverge for inappropriate choices of initial density [11, 61]. 

2.7.2 Constructing the Hamiltonian 

The Hamiltonian matrix H = A [ρ] depends on ρ(r) through the effective potential 

V e f f [ρ(r)]: 

V e f f (r) =VH [ρ(r)]+VXC(ρ(r)). (2.39) 

The Hartree potential, Eq 2.18, is obtained by solving the Poisson equation with suitable 

boundary conditions on the surface S: 

∇2VH = 4πρ(r)VH |S =VS. (2.40) 

The choice of boundary conditions may depend on the method used to solve the Poisson 

equation. For example, a Fourier transform solution to the Poisson equation, 

4πρ(k)
VH (k) = (2.41) |k|2 

introduces an implicit periodic boundary condition. Of course, for bulk systems, this 

choice is appropriate. For molecules, the choice is less clear. Provided the simulation box 

is large enough so that the molecule does not interact with its images, the above Fourier 
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transform method may be used to determine VH . Alternatively, the Poisson equation may 

be solved in real space. In this case, appropriate boundary conditions must be chosen for 

VH . For example, if the simulation box is large enough, homogeneous boundary conditions 

may be assumed 

VH |S = 0 (2.42) 

or a multipole expansion may be performed [38]. Given the effective potential V e f f (r), 

the matrix elements must be calculated in the chosen basis set. This is a well-def ned 

procedure and, depending on the basis set, may be more or less complicated. 



CHAPTER III 

QUANTUM TREATMENT OF HYDROGEN 

3.1 Why Do We Need a New Program? 

There are many software packages such as VASP, ABINIT, SIESTA that performs ab 

intio calculations based on DFT. These programs, however, treat only electrons quantum 

mechanically but nuclei classically. In most cases, it is an acceptable approximation due to 

large mass of nuclei compared to electron mass. Quantum treatment of nuclei gives small 

improvement in energies, but no qualitatively different results. Usually the improvement 

is insignif cant and thus it is not worth the efforts. 

As our results demonstrate, however, a special circumstance arises for H atoms in the 

vicinity of vacancy defects on metal surfaces. Surface metal atoms and neighboring H 

atoms form a potential well that traps H atoms and enhances the quantum effect on their 

wave functions. The correct geometry of vacancy defects on metal surfaces cannot be 

obtained without full consideration of quantum effect on H atoms. None of the readily 

available software packages go beyond the classical treatment of nuclei. 

We developed our new software package APPSES for this particular purpose in mind. 

This program solves the Schrödinger’s equation for a single particle in arbitrary potential 

with periodic boundary conditions. 

25 
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To use this code effectively, we need to construct potential energy surface for a nucleus 

very carefully based on rigorous ab initio methods. For a single particle, as the H atom 

in two-vacancy defect on a Pd(111) surface, the potential is 3-dimensional. The potential 

energy surface (PES) is explored and mapped out by calculating the adsorption energy Ea 

of the H atom under consideration. Each point of the potential energy surface requires a 

full DFT calculation with large unit cell and hundreds of atoms and several times more 

electrons. 

3.2 Bloch Theorem 

F. Bloch proved that the solutions of the Schrödinger equation for a periodic potential 

must be of a special form[4]: 

Ψk(r) = uk(r)e
ik·r , (3.1) 

where uk(r) has the period of the crystal lattice with uk(r) = uk(r + T). The result 

expresses the Bloch theorem: 

The eigenfunctions of the wave equation for a periodic potential are the prod-
uct of a plane wave eik·r times a function uk(r) with the periodicity of the 
crystal lattice. 

3.3 Schrödinger Equation for a Particle in a Periodic Potential 

We need to solve the Schrödinger equation 

� � 

h2̄ 
HΨ = − ∇2 +U(r) Ψ = εΨ (3.2) 

2m 
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when the potential is periodic in space. 

Let U(r) denote the potential energy of a particle in a lattice of lattice translation 

vector T. We know that the potential energy is invariant under a crystall lattice translation: 

U(r) =U(r+T). A function invariant under a crystall lattice translation may be expanded 

as a Fourier series in the reciprocal lattice vector G. We write the Fourier series for the 

potential energy as 

U(r) = ∑UGeiG·r . (3.3) 
G 

The values of the coeff cients UG for actual crystal potentials tend to decrease rapidly with 

increasing magnitude of G. For a bare coulomb potential UG decreases as 1/G2. 

The wave function Ψ(r) may be expressed as a Fourier series summed over all values 

of the wavevector permitted by the boundary conditions, so that 

Ψ = ∑Cqeiq·r (3.4) 
q 

We now place the expansions Eq. 3.3 and Eq. 3.4 into Schrödinger equation Eq. 3.2. The 

kinetic energy term gives 

2p h̄2 h̄2 
Ψ =− ∇2Ψ = ∑ q2Cqeiq·r . (3.5) 

2m 2m 2mq 

The term in the potential energy can be written 

! ! 

iG·r iq·rUΨ = ∑UGe ∑Cqe (3.6) 
qG 

i(G+q)·r iq0·r = ∑ UGCqe = ∑ UGCq0−Ge . (3.7) 
Gq Gq0
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We change the names of the summation indices from G and q0, to G0 and q so that the 

Schrödinger equation becomes 
8 9 

� � 

< =¯ ∑eiq·r h2 
q2 − ε Cq +∑UG0Cq−G0 = 0. (3.8) 

: 2m ;q G0

Since the plane waves satisfying the boundary condition are an orthogonal set, the coef-

f cient of each separate term in Eq. 3.8 must vanish, and therefore for all allowed wave 

vector q, 
� � 

h̄2 
q2 − ε Cq +∑UG0Cq−G0 = 0. (3.9) 

2m G0

It is convenient to write q in the form q = k −G, where G is a reciprocal lattice vector 

chosen so that k lies in the f rst Brillouin zone. The equation above becomes 

� � 

h2̄ 
(k −G)2 − ε Cq +∑UG0Ck−G−G0 = 0. (3.10) 

2m G0

or, if we make the change of variables G0 ! G0 −G, 

� � 

h2̄ 
(k −G)2 − ε Ck−G +∑UG0 = 0 (3.11) 

2m G0 −GCk+G0

If we make the change of variables G0 ! −G0 and G !−G 

� � 

h2̄ 
(k +G)2 − ε = 0 (3.12) 

2m
Ck+G +∑

G0
UG−G0Ck+G0

This equation are nothing but restatements of the Schrödinger equation in momentum 

space, simplif ed by the fact that because of the perriodicity of the potential, Uk is nonva-

nishing only when k is a vector of the reciprocal lattice. 



CHAPTER IV 

FIRST PRINCIPLE STUDY OF METAL SURFACES 

4.1 Introduction 

The dissociative adsorption of the diatomic molecule H2 is a central step in many 

industrially important catalytic processes specially in the fuel cell technology. The in-

teraction of hydrogen with transition-metal surfaces has been extensively investigated in 

recent years[68, 2, 69, 27, 72, 66, 79, 59, 81, 34, 42, 63, 53, 43]. First-principles calcu-

lations at a high coverage have found that hydrogen adsorbs in the threefold hollow fcc 

site on Pt(111)[63], Ni(111)[69, 53] and Pd(111)[59, 81, 34] surfaces. Hydrogen is also 

found to diffuse easily with relatively small energy barriers via the activated tunneling 

mechanism rather than classical hopping[68, 43, 53]. 

Despite these extensive investigations, the exact nature of vacancy defects of H atoms 

on metal surfaces was not fully understood to date. Recently, from the scanning tun-

neling microscopy (STM) experiment, Mitsui et al reported the discovery of new and 

somewhat unexpected facts about hydrogen adsorption on palladium[76, 77]. Their ob-

servation raised two main questions that have not yet been answered satisfactorily. (1) 

A two-vacancy defect appears as a bright triangle occupying three nearest-neighbor fcc 

sites in the observed STM image. In their original dissertation, the authors gave a simple 

29 
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explanation interpreting the image as the time average of a single H atom moving around 

rapidly via thermally activated diffusion among three fcc sites connected by a central hcp 

site. Although, this model of classical hoping of hot H atom can explain the STM image 

of a two-vacancy defect, it quickly runs into diff culty in explaining similar images for 

larger vacancy defects. As analyzed later in Sec. 4.3.3 in details, this classical motion 

of H atoms requires an extraordinary coordination among H atoms moving around—fast 

enough to blur the image of the entire region—inside vacancy defects. Consequently, the 

motion of H atoms becomes severely restricted as the number of H atoms need to move 

around increases. (2) Mitsui et al also reported that two-vacancy sites are virtually inactive 

and aggregates of three or more hydrogen vacancies are required for eff cient H2 dissoci-

ation. This is totally contrary to the conventional Langumir principle that two active sites 

in close proximity should be suff cient to facilitate the dissociation of a H2 molecule con-

taining two H atoms. Lopez and co-workers proposed one explanation using chemical 

poisoning of Pd around the active sites by calculating activation energies associated with 

reaction paths[57]. This calculation, however, is based on the geometry of two- and three-

vacancy defects that contains exactly two and three empty fcc sites. As our results indicate, 

these are not correct structures for two- and three-vacancy defects. Each of these conf gu-

ration is only one of many possible conf gurations that are changing rapidly. Furthermore, 

a three-vacancy defect, for example, involves the triangular area covering six fcc sites. 

Understanding the precise ground state geometry of two- and three-vacancy defect 

aggregates is therefore one of the most crucial steps in understanding these intriguing 
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observations. The process of dissociative adsorption cannot be understood or even be 

calculated without the correct structures to start with. Furthermore, due to its small mass, 

hydrogen atom is known to exhibit considerable quantum effects on metal surfaces. Källén 

and et al treated 1/4 monolayer of hydrogen atoms adsorbed on a Pt(111) surface quantum 

mechanically and found its wave function to be delocalized around the hollow fcc sites 

where potential energy is minimum[31]. Puska and et al interpreted vibrational excitations 

from the delocalization of chemisorbed hydrogen atom on Ni(100) surface[53]. As our 

results show, the vacancy defects on Pd(111) create a special circumstance that requires 

quantum treatment of H atoms in vacancy defects. 

In this letter we address all of these issues by treating the motion of a hydrogen atom 

in the vicinity of vacancy defects quantum-mechanically. The potential for the quantum 

mechanical calculations is mapped out by careful f rst-principles electronic structure cal-

culations. We f nd the quantum effects to be critical in changing the hollow hcp sites to 

be energetically more favorable than hollow fcc sites. Consequently, hydrogen atoms in 

the vicinity of vacancy defects become delocalized and concentrate more in the hcp sites 

to lower the kinetic energy by maximizing their symmetry and thus lower the total energy. 

We then demonstrate that the same quantum effect elegantly explains the STM images of 

vacancy defects without resorting to classical thermal diffusion of hydrogen atoms. More 

importantly, our ground state geometry of vacancy defects also provides a compelling ar-

gument for the eff cacy of three-vacancy defects and inertness of two-vacancy defects in 

adsorbing H2 molecules. 
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4.2 Methods and Computational Details 

4.2.1 Methods 

The static potential energy surface in the vicinity of vacancy defects is mapped out 

by the electronic structure calculations based on the f rst principles density-functional the-

ory [24, 62, 48]. The interaction between valence electrons and positive ions shielded by 

core electrons are represented by ultra-soft pseudo-potentials[16, 26]. The wave function 

of electrons are expanded in terms of plane-wave basis set and all plane waves that have 

kinetic energy less than 250 eV are included in expanding the wave functions. Exchange 

correlation effects were treated within the local-density approximation (LDA) based on the 

quantum Monte Carlo simulations of Ceperly and Alder[15] as parametrized by Perdew 

and Zunger[36]. For the determination of the self-consistent electron density 6×6×1 

Monkhorst-Pack k-point set has been used. The structure optimizations were performed 

until the energy difference between successive steps becomes less than 10−3 eV. 

4.2.2 Bulk 

The bulk calculations were performed to obtain the optimized lattice constant for Pd 

crystall in FCC structure. The convergence of the total energy was carefully monitored 

to ensure that the energy cut-off and the k point sampling we had chosen were adequate. 

The equilibrium lattice constant we obtained from this bulk calculation was 3.86 A.° Con-

sidering the fact that LDA calculations consistently predict smaller values within 1% of 
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experimentally measured lattice constants, our result is in an excellent agreement with the 

experimental value of 3.89 A[12].° 

4.2.3 Slab 

Once the equilibrium lattice constant is determined, we construct a slab supercell 

representing the unreconstructed (111) surface. This was done by periodically replicating 

the unit cell with optimum lattice constant obtained in the bulk calculation. As shown in 

Fig. 4.1, we separated adjacent slabs by a vacuum region of 12 A,° which we conf rmed 

was more than suff cient to make the interaction between neighboring slabs negligible. 

Figure 4.1 The 3×3 surface unit-cell used in this dissertation. The slab of Pd has 4 layers. 
The hydrogen layer is located just above the top Pd layer which has 9 Pd atoms and 9 fcc 
sites. These hydrogen atoms are absorbed in fcc site on Pd surface. The vacuum region is 
12 A.° The simulated STM image shown over the hydrogen layer. 
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To ensure that we have adequate number of layers in the Pd slab we calculated the 

adsorption energy of H as a function of the number of Pd layers. Our results are summa-

rized in Table 4.1. During the calculations we keep the Pd atoms f x at the positions of a 

relaxed clean Pd(111) surface. The Pd atoms in the f rst layer in the bottom are held in 

place during structure optimization to simulate the bulk substrate layers. The adsorption 

energy is computed through[59] 

1
Ea = (4.1) Eform(Pd +H)−Eform(Pd)− Ebind(H2),2 

where Eform is the formation energy of the hydrogen covered and bare Pd slabs. We 

obtained the formation energy for H2 molecule to be -4.54 eV, which is comparable to 

experimental value of -4.75 eV[49] and also compares well with previously reported cal-

culated values[66]. 

Table 4.1 Results for the test of number of Pd atom layers in the slab geometry. ∆Ea(H2) 
is obtained from the adsorption energy of H2 into a 3VHvacancy defect. All values are 
given in eV. 

Ea(H) ∆Ea(H2) 
3 layers of Pd -4.28 1.71 
4 layers of Pd -4.31 1.83 
5 layers of Pd -4.28 1.74 
6 layers of Pd -4.28 1.84 
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We found that the adsorption energies for the top, hcp, fcc, and bridge sites are well 

converged at four layers, conf rming that the thickness of the slab in our calculations was 

suff cient to reduce the interaction between the atoms in the images of the slab due to 

periodic boundary conditions we employed to a negligible level. Our results compares 

well with previous calculations with similar number of layers[59, 34]. Our results are also 

consistent with several experimental observations[9, 44, 47, 75]. 

4.2.4 Vacancy Defect Conf gurations 

Fig. 4.2 shows the hydrogen vacancy conf gurations on Pd(111) surface considered 

in the present study. Pd atoms are represented by larger white circles and H atoms are 

represented by small black circles. The smaller white circles represent empty fcc sites. 

The quantum mechanically delocalized H atoms are represented by magenta (color) or 

gray (black and white) circles. Fig. 4.2(a) shows a fully hydrogenated Pd(111) surface. 

In this conf guration, labeled as 0V, all fcc sites on Pd(111) surface are occupied by H 

atoms. No hcp site is occupied. Fig. 4.2(b) shows a single hydrogen atom vacancy defect 

(1V). Fig. 4.2(c) and Fig. 4.2(d) show the conventional models for two- and three-vacancy 

hydrogen defects. They are labeled as 2V and 3VH. The subscript “H” indicates that the 

trimer contains an hcp site in the middle. However, as we demonstrate later in this disser-

tation, these are not ground-state conf gurations when full quantum mechanical treatment 

is given to hydrogen atom motion. A two-vacancy defect in ground-state (2VQ) is shown 

in Fig. 4.2(e) where one delocalized hydrogen atom occupies the central hcp site leaving 
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three fcc sites unoccupied. The subscript “Q” indicates its quantum mechanical origin. 

Fig. 4.2(f) shows a three-vacancy hydrogen defect (3VQ) in the ground-state. It contains 

three delocalized hydrogen atoms concentrated on three hcp sites while leaving six fcc 

sites unoccupied. 

The f rst step in addressing many intriguing observations associated with multi-vacancy 

defects is to understand the simplest non-trivial vacancy defects. In our case, that would be 

a two-vacancy defect. As we show later, the quantum effects manifested in the structure 

of two-vacancy defect enables us to elucidate many puzzling observations with simple 

reasonings. Therefore, in this dissertation we focus mainly on the determination of the 

ground-state conf guration of a two-vacancy defect. 

4.2.5 Static Potential Energy Surface 

To determine a minimum energy structure of a two-vacancy defect quantum mechan-

ically, we need to construct potential energy surface for hydrogen atoms. Since each point 

in this multi-dimensional vector space requires a full DFT calculation with the slab super-

cell we constructed, it is impractical to treat many hydrogen atoms. Fig. 4.3 and Fig. 4.4 

are the plots of the potential energy surface (3-dimensional in this case) in the vicinity of 

3VH defect. From these plots, we can easily conclude that any pathway for hydrogen atom 

other than from unoccupied fcc site to unoccupied hcp site requires overcoming large po-

tential barriers. It also should be clear from Fig. 4.2(e) that there is no low energy barrier 

pathway for neighboring H atoms to move into the defect region. Therefore, we can con-
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(a) (b)

H/Pd(111)−0V H/Pd(111)−1V

(c) (d)

H/Pd(111)−2V H/Pd(111)−3Vh

(e) (f)

H/Pd(111)−2Vq H/Pd(111)−3Vq

Figure 4.2 The hydrogen vacancy conf gurations considered in the present study. Pd atoms 
are represented by larger white circles and H atoms are represented by black circles. The 
smaller white circles represent empty fcc sites. The magenta (color) or gray (black and 
white) circles represent delocalized H atoms in the hcp sites. (a) No vacancy (0V), (b) 
single vacancy (1V), (c) two-vacancy (2V), (d) three-vacancy containing a single hcp site 
in the middle (3VH). (e) two-vacancy defect (2VQ) in the ground state. (f) Three-vacancy 
defect (3VQ) in the ground state. 2VQ contains three unoccupied fcc sites and one de-
localized hydrogen atom occupies the central hcp site. 3VQ contains six unoccupied fcc 
sites and three delocalized H atoms occupy three hcp sites. 
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f dently conclude that all hydrogen atoms in Fig. 4.2(e) other than the one in the middle of 

the vacancy defect are “locked” in their places and do not move other than making usual 

thermal oscillations about their equilibrium positions. Therefore, it is a very reasonable 

approximation that the problem of determining the minimum energy conf guration of a 

two-vacancy defect is equivalent to solving Schrödinger equation for a single hydrogen 

atom moving in an external potential provided by H and Pd atoms in the conf guration of 

3VH in Fig. 4.2(d). 

The 3-dimensional potential energy surface (PES) is explored and mapped out by cal-

culating the adsorption energy Ea of the H atom in question adsorbed at different positions 

over a 3VH conf guration. Since we need a potential representing an isolated 3VH con-

f guration, we constructed a 3VH in a periodic 3×3 surface unit cell, which is bigger than 

any of the unit cell used in previous calculations that treated H atoms on metal surfaces 

quantum mechanically [31, 53]. The potential energy surface is explored according to 

the importance of each region: sample points are heavily populated near the “points of 

interest” such as the fcc sites, the hcp sites, and along the pathway between them while 

we sample less points away from these locations. Altogether over 3500 energy points 

populated in over 60 planes parallel to the Pd(111) surface are calculated. The planes are 

separated by 0.1 A.° 

Fig. 4.3 and Fig. 4.4 show the PES for a single hydrogen formed by a 3VH defect on 

Pd(111) surface. Fig. 4.3 is the contour plot of potential energy on a horizontal slice plane 

through the fcc adsorption site at which the global minimum is attained. 
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Figure 4.3 The potential energy on a horizontal slice plane through the fcc adsorption site 
at which the global minimum is attained. The potential is shown over 3×3 surface unit 
cell. 
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Figure 4.4 The potential energy on a vertical slice plane through the fcc adsorption site 
and hcp adsorption site. The minimum to the right is the fcc site and the minimum to the 
left is the hcp site. Local minimum energy sites in the sub-surface layer are also visible. 

Fig. 4.4 shows the potential energy on a vertical slice plane through the fcc adsorption 

site and the hcp adsorption site. The PES is complex and highly anharmonic and possesses 

C3 symmetry about the hcp site. There are four minima: at the hcp site in the middle and 

three fcc sites connected by narrow valleys. As given in Table 4.1, the minimum potential 

at the fcc site is lower than that of the hcp site by about 40 meV. Similar results are reported 

by previous calculations [59, 34] and our results are consistent with several experimental 

observations [9, 44, 47, 75]. 
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4.2.6 Solving Schrödinger Equation 

The Schrödinger equation for H atom is solved numerically in the momentum space. 

Although we are simulating a H atom moving in an isolated 3VH defect, we still use 

periodic boundary conditions to take advantage of the Bloch theorem and the convenience 

of using plane waves as basis. To minimize the computational requirement in solving 

Schrödinger equation, we construct our unit cell to retain the full C3 symmetry as well as 

the translational symmetry. As we report later, the wave functions for H atom in this unit 

cell is well conf ned inside of the potential well and has no tail across the barriers def ning 

the potential well, thus indicating that the 3×3 surface unit cell we use is large enough to 

suppress the inf uence of neighboring cells to the H atom. 

The wave function for the H atom is expanded in plane waves with kinetic energies 

up to 0.3 eV that includes 4529 plane waves. Due to large mass of H atom compared to 

electron mass, this cutoff energy is equivalent to more than 550 eV for electronic band 

structure calculations. Our tests show that the eigenvalues of H atom wave functions are 

well converged with this energy cutoff. As we simulate an isolated 3VH defect with a large 

unit cell, the Brillouin zone is very small and k point sampling is not important. Indeed 

the eigenvalues for different k point shown in Fig. 4.5 exhibit very little dispersion. 
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Figure 4.5 The eigenvalues on six different points in the Brillouin zone of an H atom 
chemisorbed inside of 3VH vacancy defect. Eigenvalues are displaced horizontally to 
distinguish the degenerate eigenvalues. 
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4.3 Results and Discussions 

4.3.1 Wave Functions for H Atom 

Upon solving the Schrödinger equation for H atom moving in the potential well 

formed by 3VH defect, we f nd wave functions showing substantial quantum effects as 

shown in Fig. 4.6 and Fig. 4.7. First few of the zero-point energy, measured from the bot-

tom of the potential, for each state are 0.29 eV, 0.31 eV (triplet), and 0.37 eV (doublet). 

These values are comparable, but somewhat larger than the values previously reported un-

der different conf gurations. For example, the ground state zero-point energy of 0.14 eV 

for nearly isolated H atoms on Pd(111) in 1/4 monolayer coverage has been reported by 

Källén and et al[31]. It is interesting, however, that the excitation energies for excited 

states computed from the zero-point energies are 20 meV and 80 meV. These values are 

smaller than 44 meV and 65 meV for H atoms in 1/4 monolayer coverage. 

4.3.2 Ground State Structure for Vacancy Defects 

However, the more interesting aspect of our result is the nature of the wave functions 

for the H atom. First, the ground state is broadly localized over the hcp site, not the fcc 

site where the potential is lower. Second, with small excitation energy of 20 meV, the H 

atom wave function can become a linear combination of the ground state and the excited 

states, which can be delocalized over the entire defect region. 
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Figure 4.6 Real component of the wave functions for hydrogen atom on a horizontal slice 
plane through the fcc adsorption site: (a) ground state (φ0) and (b-d) excited states (φ1, φ2, 
φ3). All imaginary components are zero. The wave functions are evaluated at the center 
of the Brillouin zone. The eigenvalues for each state measured from the bottom of the 
potential are (a) 0.29 eV, (b-d) 0.31 eV with triple degeneracy. Pd atoms and H atoms are 
represented by gold and blue spheres, respectively. 
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Figure 4.7 Real component of the wave functions for hydrogen atom on a horizontal slice 
plane through the fcc adsorption site: (a) fourth (φ4) and (b) f fth (φ5) excited state. All 
imaginary components are zero. The wave functions are evaluated at the center of the 
Brillouin zone. The eigenvalues for each state measured from the bottom of the potential 
are 0.37 eV with double degeneracy. Pd atoms and H atoms are represented by gold and 
blue spheres, respectively. 
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The fact that the ground state is localized in the hcp site rather than fcc site can be 

easily understood in terms of symmetry. Since the potential generated by 3VH defect 

has C3 symmetry about the hcp site, the ground state wave function must be an even and 

nodeless function with full C3 symmetry about that point. With this symmetry, the ground-

state wave function can minimize the kinetic energy by reducing the gradient of the wave 

function and overcome the def cit in potential energy. On the other hand, a wave function 

localized in one of the fcc sites, which can be constructed from the linear combination of 

the triplet excited states, has a nodal surface and therefore has higher kinetic energy. 

Figure 4.8 Examples of a linear combination of eigenstates. Real components of wave 
1 1functions are shown. Imaginary componets are zero. (a) p2 (φ0 +φ1), and (b) p2 (φ0 −φ1). 

Pd atoms and H atoms are represented by gold and blue spheres, respectively. 
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The excitation energy of 20 meV is not much smaller than 37 meV, the differnece 

between the adsorption energy for fcc site and hcp site, which normally drives H atoms 

to occupy fcc sites instead of hcp sites. Therefore, we conclude that the ground-state 

structure for two-vacancy defect is the 2VQ structure shown in Fig. 4.2(e). In other words, 

in a two-vacancy defect that has three unoccupied fcc sites and one hcp sites, the H atom 

occupies the hcp site and maximize its symmetry. 

Given small excitation energy, the H atom wave function can acquire components of 

excited states. In Fig. 4.8 we show two examples of wave functions constructed from the 

linear combination of the ground state (φ0) and one of the f rst triplet excited state (φ1). 

4.3.3 STM Image of Two-Vacancy Defects 

Once the ground-state geometry is determined, it is very straightforward to interpret 

the STM image of two-vacancy defects. In fact, our model provides a very simple and 

direct explanation without resorting to the conventional thermal motion of H atoms be-

tween three fcc sites. We note that the H atom in Fig. 4.2(f) or Fig. 4.6(a) moves “out of 

the way” between STM tip and the fcc sites where, collectively, the tunneling current is 

strongest, partly due to the space left open by unoccupied fcc sites and partly due to the 

contribution from Pd atoms directly below the fcc sites. This enables STM tip to “see” all 

three fcc sites. Thus, the vacancy pair has the appearance of a bright triangle occupying 

three nearest neighbor fcc sites [76, 77]. 
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4.3.4 Larger Vacancy Defects 

The quantum effects that determined the ground-state goemetry of two-vacancy defect 

can now be generalized to determine the optimum structure of larger vacancy defects. 

Fig. 4.2(f) shows, for example, our model for the ground-state structure of a three-vacancy 

defect. There are six fcc sites and three hcp sites. Again, to maximize the symmetry 

and minimize the kinetic energy of the system the wave function of three H atoms will 

concentrate in the hcp sites. It is straight forward to show that for an n-vacancy defect, 

we will have nfcc = n(n +1)/2 fcc sites empty and nhcp = n(n −1)/2 hcp sites occupied 

by H atoms and their difference is nfcc −nhcp = n. Obviously, a rigorous way to verify 

our model for the gorund-state structure of a three-vacancy defect is to treat all three H 

atoms quantum mechanically in a potential formed by Pd atoms and neighboring H atoms 

in a 6VH conf guration. However, this potential energy surface is 9-dimensional (three for 

each H atom) and the surface unit cell needs to be at least four times bigger than the one 

used for the present study to adequately simulate an isolated triangular region created by 

six unoccupied fcc sites. Presently, this is impractically too large a calculation for today’s 

computers. However, we have following two experimantal evidences that strongly support 

the validity of our proposed ground-state geometry of larger vacancy defects. 

4.3.5 STM Image of Three-Vacancy Defects 

First, our model again gives an excellent explanation for the observed STM images 

of three-vacancy defects. In a three-vacancy defect 3VQ as shown in Fig. 4.2(f), all three 
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H atoms occupy the hcp sites leaving six fcc sites unoccupied. Again, the STM tip sees 

six “holes”, which correspond to six bright spots in STM images. The great advantage of 

this model compared to previously proposed rapid thermal motion of H atoms is that our 

model is based on the ground state structure of the defects themselves. STM images of 

defects are not the blurs caused by slow “shutter speed”, but they are what they actually 

look like. 

Furthermore, the thermal motion model runs into a serious diff culty as the size of a 

defect increases. Let’s consider a three-vacancy defect according to this model as shown 

in Fig. 4.9. One possible starting conf guration for 3V is shown in Fig. 4.9(a) where all 

H atoms are located at far corners away from each other. This is the only conf guration 

that allows all three H atoms to have equal chance to make next move. In all other conf g-

urations, some atoms cannot move without going over large energy barrier. This energy 

barrier should be large enough to keep the H atoms on the edge of the triangular region 

from joining in and making the walls of the defect region to collapse. The fact that we can 

make well def ned STM images of 3V defects ensures us that this is the case. 

One of the next possible conf guration is shown in Fig. 4.9(b) that is obtained when the 

lower left H atom (2) moves f rst into the left-middle position and then the right lower H 

atom (3) moves into the middle-bottom position as indicated by the arrows, in the correct 

order. At this conf guration, only the H atom 3 can make the next move. All other atoms 

are locked in their places. So far, only H atom 2 and 3 have been moving. To argue that the 

random thermal motion of H atoms are the cause of six-ball triangular pattern for 3V, all 
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(a)
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(b)

1

3

2

H/Pd(111)−3Vk H/Pd(111)−3Vk−2

Figure 4.9 Diff culty in hydrogen vacancy defect model employing random thermal motion 
of H atoms. Pd atoms are represented by larger white circles and H atoms are represented 
by black circles. The smaller white circles represent empty fcc sites. The magenta (color) 
or gray circles represent hot H atoms moving around in the defect. (a) A possible start-
ing conf guration for 3V defect. All H atoms are located at far corners away from each 
other where they don’t interfere with the movement of other H atoms. (b) Next possible 
conf guration when the lower left H atom (2) moves f rst into the left-middle position and 
then the right lower H atom (3) moves into the middle-bottom position as indicated by the 
arrows, in the correct order. At this conf guration, only the H atom 3 can make the next 
move. All other atoms are locked in their places. 
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three atoms must move around equally. Before H atom 1 can have any opportunity to make 

a move, both H atom 2 and 3 must move back to the bottom positions. In order for that 

to happen, in the fewest moves, H atom 3 must undo his move and go back to his original 

place f rst and them H atom 2 can choose the middle or left bottom position. This requires 

extraordinary coordination among H atoms and severly limit the frequency that all six fcc 

sites are visited uniformly. According to this model, it should be possible that some H 

atoms do not get to move much and we should occasionally observe a 3V defect assumes 

an elongated shape rather than a perfect equilateral triangular shape. However, none of the 

previously reported STM images show any other shape than a perfect equilateral triangular 

shape[76, 77]. 

4.3.6 Inactivity of Two-Vacancy Defects 

The second experimental evidence that supports our model is related to the dissociative 

adsorption of H2 molecules via vacancy defects on a Pd(111) surface. 

In fact, the most unexpected result of the experiment by Mitsui and et al was that aggre-

gates of three or more hydrogen vacancies are far more eff cient in H2 dissociation while 

two-vacancy sites are virtually inactive[76, 77]. This is totally contrary to conventional 

Langumir principle that two active sites in close proximity should be suff cient to facilitate 

the dissociation of a H2 molecule containing two H atoms. This has been baff ing many 

scientists and yet no clear answer has been put forward to date. Our quantum mechanical 
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model for the ground-state structure for vacancy defects provides a clear answer to this 

puzzle. 

Fig. 4.10 demonstrates the difference between two-vacancy defects and larger vacancy 

defects. According to our quantum calculations, the H atoms in the defect occupy the hcp 

sites and its ground state wave function is localized in the hcp sites. However, the wave 

function is rather broad and delocalized over substantial area reaching to the fcc sites as 

shown in Fig. 4.6(a). Furthremore, with small excitation energy, the f rst triplet excited 

states can be mixed in the H atom wave function. One such example is shown in Fig. 4.8. 

Although the main portion of this wave function is concentrated in the hcp site, it covers 

the most of the entire triangular region. Therefore, we can say that the delocalized H atom 

in the hcp site “occupies” the entire triangular area def ned by three fcc sites around the 

hcp site. 

In Fig. 4.10, we indicated the region occupied by each of the delocalized H atom in 

the hcp sites. Immediately a clear picture emerges. In 2VQ defect, the entire defect area 

is occupied by the H atom in the hcp site. In 3VQ defect, three H atoms occupy three 

triangular regions, but leave a big hole in the middle. The area left “unoccupied” is one 

fourth of the total defect area. Furthermore, the center of this unoccupied area is the top 

site that has the highest symmetry providing an ideal location for a H2 molecule to be 

physisorbed and form a precursor state. Once a precursor state is formed, H2 molecule 

has very high probability to be adsorbed into the defect. The fact that the exposed area 

contains the top site is also very signif cant. Dong and et al used the f rst-principles method 
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to study the dissociative adsorption of a single H2 molecule on a clean Pd(111) surface and 

reported that they found the existence of a precursor state over the top site[81]. Olsen and 

et al reported that the adsorption path of H2 molecule on Pt(111) surface over the top site 

has no barrier to hydrogen dissociation[66, 3]. 

On the contrary, for a 2VQ defect, the point of highest symmetry is already taken 

and there is no particular point that stands out as a candidate for H2 molecule attachment. 

In this regard, 2VQ defect is so symmetric and widely covered by H atom, it can be 

considered even less active than a single-vacancy defect, which is practically inactive for 

H2 dissociation and adsorption. 

4.4 Summary 

We determined the ground state structure of two-vacancy defect of H atom on a 

Pd(111) surface by treating the motion of a H atom quantum mechanically in the vicinity 

of the defect. We solved Schrödinger equation for a single H atom moving in static poten-

tial energy surface that has been mapped out by f rst-principles density-functional theory 

calculations. We f nd that a H atom in the vicinity of a two-vacancy defect experiences 

substantial quantum effects and its wave functions are delocalized over large portion of the 

defect. Our results indicate that the ground-state wave function is concentrated in the hcp 

site rather than the fcc site where H atoms normally settle. We show that symmetry plays 

a major role in the reversal of the order of the most enegetically favorable site. Our results 

explain the STM images of two- and multi-vacancy defects with ground-state properties 
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of the defects. More importantly, our model also provides a simple and clear argument in 

elucidating the high activity of three- or larger defects in hydrogen molecule dissociation 

and the inactivity of two-vacancy defects. 



CHAPTER V 

FIRST PRINCIPLE STUDY OF SEMICONDUCTOR SURFACES 

5.1 Introduction 

The surface reconstruction and adsorption of atoms on reconstructed surfaces play piv-

otal roles in understanding the epitaxial growth of semiconducting materials [80, 56, 82]. 

The III-V semiconductors have a zinc-blend crystal structure made of group-III atoms and 

group-V atoms. One particular family of III-V semiconductors—namely, InAs, GaSb, 

AlSb, and their related alloys—is called “6.1 A”° semiconductors because they all have 

lattice parameters very close to this value. When thin layers of different III-V semicon-

ductors are grown in an alternating fashion using techniques such as molecular beam epi-

taxy (MBE), the materials scientists classify them as III-V semiconductor heterostructures. 

Because of their near-match lattice parameters and the same crystal structure, materials 

scientists can combine different sets of III-V semiconductors to produce materials with a 

variety of band alignments. The “6.1 A”° family of semiconductors are combined to het-

erostructures to fabricate a variety of technologically important devices such as f eld effect 

transistors [39], resonant tunneling structures [20, 41], infrared lasers [55], and infrared 

detectors [21]. 

56 
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Cross-sectional scanning tunneling microscopy (XSTM) has emerged as a powerful 

technique to characterize III-V semiconductor heterostructures [58, 70, 67, 1, 33, 22, 37, 

56, 14, 71, 6]. Precise characterization of these materials is made possible by the fact 

that a zinc-blend III-V crystal readily cleaves along the {110} faces, producing a nearly 

defect-free surface that presents a cross-sectional view through a single lattice plane of 

structures grown on (001) substrates.[58] Tunneling microscopy is particularly useful for 

III-V (110) surfaces because of the simple surface structure, illustrated in Fig. 5.1(a). 

The III atoms relax towards the surface and V atoms away, shifting charge between the 

atoms and leaving the III dangling bond essentially empty and the V surface orbital f lled. 

Because the STM surface topography in constant-current images approximately corre-

sponds to contours of constant integrated charge density, only the III dangling bonds are 

seen in empty-state images of III-V {110} surfaces, while V orbitals are seen in f lled-state 

images.[22, 19] Therefore, XSTM images provide an apparently straightforward chemical 

identif cation of the atoms observed. 

Since the f rst report of atom-selective STM images of GaAs(110),[22] and the obser-

vation of a heterostructure using XSTM,[58] a major issue has been delineating between 

electronic and geometric sources of height contrast. For nominally homogeneous mate-

rials where isolated impurity atoms are observed, such as dopants or substitutional de-

fects, electronic origins of contrast have dominated the discussions.[18] For heterostruc-

tures, there are three contrast issues to be considered. First, the different III-V mate-

rials in a heterostructure usually have a different topographic height in f lled-state im-
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Figure 5.1 (a) Relaxed geometry of a III-V (110) surface. d0 denotes the bond length in the 
bulk, d1 the out-of-plane III-V bond length indicated, and d2 the height difference between 
III and V surface atoms. (b) Constant-current, f lled-state XSTM image of an InAs/GaAs 
superlattice. 
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ages. Until the past few years,[22, 37, 56, 14, 71] discussion of this difference focused on 

electronic effects, specif cally on the band gaps and band alignments (for f lled states, 

the valence band maximum), and the associated number of bands contributing to the 

tunneling.[58, 70, 67, 1, 33] The second contrast issue is related to the relative appear-

ance of point defects associated with inter-diffusion between the materials. For example, 

Harper et al. originally described As defects in GaSb as appearing lower in height be-

cause of the position of the As HOMO.[33] Finally, there is the local height of interfacial 

bonds to consider. For systems without a common anion, such as InAs/GaSb, two differ-

ent types of interfacial bonds are possible (InSb and GaAs bonds in this case), and it has 

recently been proposed, based on crystallographic arguments, that the local XSTM height 

is primarily determined by local bond lengths.[37, 56] 

It is a well documented fact that the compositional and structural variations at the 

interfaces can dramatically affect the transport and optical properties of semiconducting 

heterostructures [28, 5, 10]. The atomic-scale understanding of the formation of interfaces 

in III-V heterostructures, such as GaSb/InAs, is critically important for the advancement 

of the micro-electronic device technology. This knowledge will allow us to control the 

composition of interfacial bond types and reduce defects at interface. The adsorption of 

As and In atoms on the surfaces of GaSb semiconductor is very much relevant to the initial 

stage of molecular beam epitaxy (MBE) growth of an InAs f lm on a GaSb substrate. The 

full understanding of adsorption process, in turn, cannot be obtained without extensive 

knowledge of the structure of the surfaces where these adsorption processes take place. 
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In this work we use f rst-principles methods to describe the electronic and geometric 

structure of the (110) surfaces of InAs/GaSb superlattices. We f nd that the apparent sur-

face height difference between the two materials is primarily an electronic structure effect, 

but the local height differences observed for InSb and GaAs interfacial bonds are mostly 

geometric in nature. In addition, the calculations reveal that atomic intermixing lowers the 

energy of GaAs interfaces, favoring disorder. We also study the atomic-scale structures 

that determine the reconstruction of the (001) surfaces of GaSb semiconductors and the 

adsorption of In and As atoms on these surfaces. Surface reconstruction on two differ-

ent types of (001) surfaces, namely Ga- and Sb-terminating surfaces, are considered. We 

observed that both surfaces showed strong dimerization of surface atoms. Ga-terminating 

surfaces exhibited substantial buckling of surface atoms, while Sb-terminating surfaces did 

not show any appreciable buckling. Our calculations showed that arsenic atoms would be 

preferably adsorbed at the bridge site between the dimerized Sb atoms on Sb-terminating 

surfaces. On Ga-terminating surfaces, on the other hand, In atoms were observed to have 

more or less equal probabilities to be adsorbed at several different sites. Our calculated 

energies for atomic inter-diffusion indicate that anion exchanges are exothermic for As 

atoms on Ga-terminating (001) interfaces but endothermic for In atoms on Sb-terminating 

(001) interfaces. This difference is consistent with the experimental observation that GaAs 

interfaces are typically more disordered than InSb interfaces in III-V heterostructures. 
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5.2 Experimental Method 

The XSTM measurements were performed in ultra-high vacuum using InAs/GaSb 

superlattice samples grown by solid-source molecular beam epitaxy, as described in detail 

previously.[56] All images presented here are of (110) surfaces recorded with f lled states 

at constant current (2.2–2.5 V, 150–200 pA). 

Fig. 5.1(b) shows a typical f lled-state XSTM image for a (110) surface. In our theo-

retical work, we focus on three aspects of this representative image. First, the large-scale 

topography shows an alternating pattern of brighter and darker bands (higher and lower 

apparent heights) corresponding to GaSb and InAs layers, respectively. Second, a higher 

Sb row is evident at InSb interfaces in this f gure, whereas a lower As row is evident at 

the GaAs interface. Third, the degree of atomic disorder at the two interfaces is qualita-

tively different: InSb interfaces typically appear atomically abrupt, in contrast to GaAs 

interfaces which often exhibit signif cant disorder. 

5.3 Computational Method and Details 

Our calculations are based on the f rst principles density-functional theory (DFT) 

[62, 48], using ultrasoft pseudopotentials as implemented in the VASP code.[16, 25, 24] 

Exchange-correlation effects were treated within the local-density approximation (LDA) 

as parametrized by Ceperly and Alder [15]. The wave function of electrons are expanded 

in terms of plane-wave basis set [52], and all plane waves that have kinetic energy less 

than 150 eV are included in expanding the wave functions. The structure optimizations 
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were performed until the energy difference between successive steps becomes less than 

10−4 eV. 

5.4 Cross-Sectional STM Calculations 

Our sampling of the Brillouin zone for cross-sectional STM calculations was equiv-

alent to using 64 k-points in the full zone of the primitive fcc cell. We used supercell 

geometries to represent the InAs/GaSb heterostructures. Because of the importance of in-

terfacial strain in this material system, we constructed supercells with starting geometries 

that minimized, as much as possible, any artif cial strain at the interfaces. Our procedure 

consisted of the following three steps. (1) Bulk calculations were performed to obtain the 

optimized lattice parameters for four different types of zinc-blend III-V semiconductor 

crystals: InAs, GaSb, InSb, and GaAs. (2) For each of these four different homogeneous 

materials, we constructed slab supercells representing the unreconstructed (110) surfaces. 

This was done by periodically replicating the unit cells obtained in the previous step four 

times along the (110) direction, resulting in slabs containing eight atomic layers. We sep-

arated adjacent slabs by a vacuum region corresponding to f ve atomic layers, which we 

conf rmed was suff cient to make the interaction between slabs negligible. All of the atoms 

within each slab were then relaxed within the constraint of the f xed in-plane lattice con-

stant determined from the previous step. (3) Next we periodically replicated the relaxed 

slabs six times along the (001) direction, and joined two such extended slabs together to 

form various III-V heterostructures with (001) interfaces and exposed (110) surfaces. For 
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each interfacial bond case (InSb and GaAs), the two slabs were joined at a distance cho-

sen as to allow every interfacial bond to have a bond length corresponding to the bulk 

lattice constant computed in step (1). The resulting supercells each contained a total of 96 

atoms, with four different atomic species, corresponding to a (001) superlattice period of 

24 atomic layers. Finally, the positions of all atoms were completely relaxed within the 

constraints of f xed superlattice period and f xed lattice constant along [110]. 

Table 5.1 Lattice constants, a0, and bond lengths, di, of the relevant III-V materials, in A.° 
See Fig. 5.1(a) for def nitions of the different bond lengths. a0

1 indicates lattice constant 
from this work, a0

2 indicates experimental lattice constant. 

1a0 
2a0 d0 d1 d2 

InAs 6.01 6.06 2.60 2.62 0.77 
GaSb 6.04 6.10 2.62 2.65 0.76 
InSb 6.43 6.47 2.78 2.80 0.86 
GaAs 5.60 5.65 2.42 2.44 0.70 

The equilibrium lattice constants calculated in step (1) are listed, along with their ex-

perimental values, in the f rst two columns of Table 5.1. The agreement is very good, with 

all errors less than 1%. The relaxed (110) surfaces of the four homogeneous materials, as 

obtained from step (2), show the surface buckling obtained in many previous studies[19]. 

The calculated buckling, illustrated in Fig. 5.1(a) and tabulated in the last three columns 

of the table, is in good quantitative agreement with experiment; in particular, the height 
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difference between III and V atoms for InAs is 0.77 A,° in excellent agreement with the 

° 

After relaxing the various III-V heterostructures described in step (3), we simulated 

XSTM images using the method of Tersoff and Hamann. [78] To simulate f lled-state 

images, we integrated the local density of states (LDOS) from 1 eV below the Fermi level 

up to the Fermi level; the surface of constant integrated LDOS then corresponds to the 

ideal STM topography. 

Our results for InAs/GaSb heterostructures with InSb interfacial bonds are shown in 

Fig. 5.2. The geometry of the fully relaxed (110) surface is displayed in Fig. 5.2(b). As in 

the case of homogeneous structures, the surface atoms buckle, causing the Group-V atoms 

(As and Sb) to move outward and the Group-III atoms (In and Ga) to move inward. At the 

interface, Sb atoms relax still further outward so as to partially relieve compressive strain 

in the InSb bonds. The resulting simulated XSTM image closely resembles the measured 

image, as indicated by the inset of Fig. 5.2(a) and the calculated XSTM prof le across the 

row maxima shown in Fig. 5.2(c). Away from the interface, the topographic maxima (from 

the integrated LDOS) are 0.15 °

value of 0.78 A determined by low-energy electron diffraction [54]. 

A higher on the GaSb than on the InAs, in good agreement 

with the height difference of about 0.2 A typically observed in XSTM images. ° 

Interestingly, the difference in height between the actual Sb and As atoms associated 

with the topography is much smaller, 0.06 A,° demonstrating that the XSTM height dif-

ference is primarily caused by the surface electronic structure. Based on the calculated 

structure, the opposite appears true for the local topographic height difference observed at 
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Figure 5.2 (a) XSTM image of an InAs-GaSb interface with InSb interfacial bonds. IN-
SET: Simulated XSTM image of this structure. Both gray scales span about 1 A.° (b) Side 
view of the fully relaxed surface geometry for this interface. (c) Line prof le for the simu-
lated image along the [001] direction (across the row maxima). Circles denote the relaxed 
positions of the surface As and Sb atoms. (d) Line prof le for a simulated image of two 
homogeneous structures joined together at their ideal lattice positions and allowed to relax 
the electronic but not the geometric structure. 
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the InSb interface. The Sb row forming InSb bonds is geometrically higher by about 0.2 A° 

than the Sb atoms on the GaSb surface, essentially the same height difference that occurs 

in the integrated LDOS, demonstrating that the observed height difference in this case is 

associated with the geometric structure. 

In order to more explicitly delineate the relative contributions of geometric and elec-

tronic structure relaxation on the apparent STM topography, we calculated the electronically-

relaxed structure of an “ideal” InAs/GaSb heterostructure, with all interfacial atoms frozen 

at ideal positions. In this ideal geometry all atoms in the top layer have exactly the same 

height, and thus differences in heights across the computed topography originate from 

purely electronic effects. As shown in Fig. 5.2(d), the electronic structure alone creates a 

difference in height of 0.13 ° °A between the InAs and GaSb surfaces, close to the 0.15 A 

difference calculated with full relaxation, further supporting our conclusion that electronic 

structure underlies the measured height difference between the two materials. 

Our analogous results for InAs/GaSb heterostructures with GaAs interfacial bonds are 

summarized in Fig. 5.3, with the calculated topography again in qualitatively good agree-

ment with that observed experimentally. At this interface the structural relaxation is quite 

different from the InSb case. As shown in Table 5.1, GaAs bonds have the shortest surface 

bond length, d1, and thus As atoms near the interface relax even further inward than Sb 

relaxes outward at InSb interfaces. The resulting geometric height of the As row at the 

GaAs interface is 0.24 A lower than the As atoms far from the interface. However, as we ° 

saw at the InSb interface, the computed topographic height difference is almost identical, 
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Figure 5.3 (a) XSTM image of an InAs/GaSb interface with GaAs interfacial bonds. IN-
SET: Simulated image of this structure. (b) Side view of the fully relaxed surface geometry 
for this interface. (c) Line prof le for the simulated image along the [001] direction. 
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0.23 A,° indicating that the local depression of the GaAs interface is almost completely 

geometric in origin. 

Finally, we address why interfacial roughness appears to depend on the interfacial bond 

type, with GaAs interfaces generally observed to be more disordered. Experimentally, 

most defects occur close to the interfaces, suggesting that they arise from simple Ga-In 

or As-Sb exchanges across the interface, rather than from bulk defects such as vacancies 

or cation-anion antisites. An example of an apparent Sb atom observed in an As site at 

a GaAs interface is highlighted in Fig. 5.4(a). To conf rm the structural assignment of 

such features, we theoretically modeled such a defect by replacing one of the surface As 

atoms at a GaAs interface with an Sb atom, as illustrated in Fig. 5.4(b). The simulated 

XSTM image for this structure, shown in the inset of Fig. 5.4(a), closely resembles the 

experimental result. 

To investigate the energetics of anion interfacial defects, we consider the simplest de-

fects that both preserve the global stoichiometry and satisfy local chemical bonding re-

quirements, As-for-Sb exchanges. Such exchanges represent a simple mechanism for in-

terfacial disorder at a nominally abrupt interface. We studied the energetics of exchanging 

adjacent As and Sb atoms both at an InSb interface and at a GaAs interface, as shown in 

Figs. 5.4(c) and 5.4(d), respectively. The structures were fully relaxed before and after 

the exchange and the change in the total energy then computed. At the InSb interface, the 

exchange raised the total energy by 7 meV. Surprisingly, at the GaAs interface, the same 

process actually lowered the total energy by 22 meV; i.e., the formation of such defect 
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Figure 5.4 (a) XSTM image of InAs/GaSb with a GaAs interface. An apparent Sb atom 
in an As site at the interface is circled. INSET: Simulated XSTM image for such a defect. 
(b) Top view of the Sb-in-As-site defect model structure, with the top-layer atoms shown 
larger. (c) Model used to calculate the energetics of an As-Sb exchange across an InSb 
interface. (d) Model for an As-Sb exchange across a GaAs interface. 
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pairs is exothermic. This result implies that abrupt GaAs interfaces are thermodynami-

cally unstable. Therefore, although kinetic barriers may suppress anion exchanges, one 

should generally expect GaAs interfaces to be more disordered than InSb interfaces (as 

widely observed). This point will be further elaborated in Sec. 5.5.3 when we investigate 

the inter-atomic exchange diffusion during thin f lm growth process. 

5.5 Adsorption on Interface Surfaces 

Our sampling of the Brillouin zone for these calculations was equivalent to using 231 

k-points in the full zone of the primitive fcc cell. We used supercell geometries to represent 

a GaSb semiconductor slab containing two different surfaces as illustrated in Fig. 5.5. 

Figure 5.5 Supercell geometry containing GaSb semiconductor slab. A fully optimized 
structure is shown. The solid line rectangular box indicates the unit cell used for present 
calculations. Blue (lighter gray in gray scale f gures) spheres represent Sb atoms while 
black spheres represent Ga atoms. 
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Again, the supercell was carefully prepared to have a starting geometry with minimum 

artif cial strain. Using the optimum bulk structure obtained in the previous calculations, we 

f rst constructed slab supercells representing the unreconstructed (001) surfaces. This was 

done by periodically replicating the unit cell used in the GaSb bulk structure calculation 

along the [001] direction, resulting in slabs containing twelve atomic layers. 

We separated adjacent slabs by a vacuum region corresponding to twelve additional 

atomic layers, which we conf rmed was more than suff cient to make the interaction be-

tween neighboring slabs negligible. To ensure we had enough layers of atoms across each 

slab, we inserted an additional pair of atomic layers of GaSb and repeated the same cal-

culation for surface reconstruction. The added layers made no appreciable changes to all 

relevant physical quantities we monitored, conf rming that the thickness of the slab was 

suff cient to reduce the interaction between the atoms on opposite sides of the same slab 

to a negligible level. 

Fig. 5.6 shows the size of the unit cells in (001) planes. The unit cell contains enough 

atomic layers in lateral directions, [110] and [110], to allow up to (2×2) surface recon-

struction. This was achieved by periodically replicating the unit cells along both [110] and 

[110] directions twice. 

5.5.1 Surface Reconstruction 

By having an even number of atomic layers in the slab, as shown in Fig. 5.5, we were 

able to simulate the reconstruction of two different types of surfaces of GaSb semiconduc-
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Figure 5.6 Reconstructed surfaces viewed from the top([001] direction). (a) The Ga-
terminating surface and (b) Sb-terminating surface. The shaded areas indicate the (2×2) 
unit cells used for present work. Marked positions are four of the typical adsorption sites: 
(B) “bridge” site, (P) “pedestal” site, (C) “cave” site, and (S) “saddle” site. See text for 
detailed def nition of each site. There are second sets of these four adsorption sites (not 
marked) in the other halves of the unit cells making the total of eight available adsorption 
sites. Refer the caption of Fig. 5.5 for coloring scheme. 
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tors at the same time. We found that Ga-terminating surfaces, the left side surfaces of the 

slabs in Fig. 5.5, exhibit dimerization. Fig. 5.6(a) also shows the top view of the recon-

structed but bare Ga-terminating surface. Pairs of surface Ga atoms form dimers doubling 

the periodicity along [110] direction. These dimers also tend to tilt from (001) planes by 

about 15� causing the surface to buckle. As a result, one of the Ga atoms was pulled in 

toward the plane of the underlying Sb atomic layer and formed a planar structure with two 

Sb atoms and the other Ga atom. 

Sb-terminating surfaces, the right side surfaces of the slabs in Fig. 5.5, also show 

dimerization. The top view of the Sb-terminating surface is shown in Fig. 5.6(b). Sb 

dimers on Sb-terminating surfaces, however, behave quite differently in terms of buckling. 

The Sb dimers do not tilt from (001) planes and stay parallel to the surface. These behav-

iors can be explained by considering the average number of valence electrons associated 

with surface atoms and the formation of hybrid orbitals. Ga atoms are group III atoms with 

three valence electrons, while Sb atoms are group V atoms with f ve valence electrons. In 

bulk GaSb semiconductor, Ga and Sb atom pairs pool their valence electrons together, 

eight electrons for two atoms, and form sp3 hybrid orbitals with tetrahedral coordination 

for zinc-blend crystal structure. Commonly, for counting purpose, Ga atoms are thought 

to be contributing 3
4 electron toward each bond with Sb atom, while Sb atoms contribute 

5 3 
4 electron toward each bond with Ga atom. Ga atoms on the surface dispense 2 � 3 =4 2 

electrons to bond with Sb atoms in the inner layer. Finding no more Sb atoms to bond 

with, Ga atoms join together to form dimers, dispensing one additional electron per each 
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Ga atom. Now we have 1
2 (= 3−2� 4

3 −1) electron left for each atom in Ga-dimers, or one 

electron in total. Consequently, one of the Ga atoms forms a sp2-like hybrid orbital (with 

empty pz orbital) and gives its 1 electron to the other Ga atom [19, 51, 17, 45, 74]. On 2 

the other hand, the other Ga atom forms a sp3-like hybrid orbital and f lls the last dangling 

bond with one remaining electron. This will create a half-f lled sp3 band and it will cause 

the Ga-terminating surface to be weakly metallic [50]. Consequently, one of the Ga atoms 

moves down to attain a planar three-fold coordination for itself and tetrahedral four-fold 

coordination for the other, preferred by sp2-like and sp3-like hybrid orbitals, respectively. 

We observed the angle θ1 in Fig. 5.6(a) to be 123.8�, clearly showing the two signature 

characteristics of the sp2-like hybrid orbitals—planar coordination and 120� bond angles. 

Bond angle θ2 in Fig. 5.6(a) was measured to be 99.2�. Although it is distorted slightly 

beyond the ideal tetrahedral bond angle 109.5�, it certainly shows its preference. 

Sb atoms on Sb-terminating surfaces also form dimers in a similar attempt to reduce 

dangling bonds. We again can count the valence electrons associated with the dimers in 

similar manners. Out of f ve of its valence electrons, Sb atoms on the surface dispense 

52 � 5 = electrons to bond with Ga atoms in the inner layer. The lack of neighbors on the 4 2 

surface causes Sb atoms to join together to form dimers, dispensing one additional electron 

per each Sb atom. Now we have 32 (= 5−2� 4
5 −1) electron left for each atom in Sb-dimers, 

or three electrons in total. Unlike the case of Ga-dimers, one atom cannot take all three 

electrons into the last sp3-like orbital. Thus, both atoms retain their electrons and f ll each 

3 
2 electrons into the last dangling bond of sp3-like hybrid orbital. In other words, formation 
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of sp2-like hybrid orbitals is suppressed because in that case, the remaining 3
2 electrons 

must occupy pz-like band with higher energy, and the band structure energy would be 

more costly. Therefore, the dimers on Sb-terminating surfaces should be parallel to (001) 

planes as illustrated in Fig. 5.5. We observed the bond angles θ1 and θ2 in Fig. 5.6(b) to 

be 102.6� and 100.0�, respectively. Wave functions for the unpaired 3
2 electrons tend to 

take up more space than those of bonding electrons and cause these angles to be somewhat 

smaller than the ideal tetrahedral angle 109.5�. 

5.5.2 Adsorption of In2 and As2 Molecules 

In this section, we report the result of our simulations of adsorption of In2 and As2 

molecules on the surfaces of GaSb semiconductors. We have investigated both the adsorp-

tion of In and As atoms and In2 and As2 molecules in order to reproduce the experimental 

deposition process more closely. The added atoms are deposited initially in the form of 

molecules on the surfaces, but they may break up into individual atoms and settle into dif-

ferent adsorption sites. As mentioned previously in Sec. 5.1, the ultimate purpose of these 

simulations is to obtain the atomic-scale understanding of the formation of interfaces in 

III-V heterostructures, such as GaSb/InAs. Therefore, the adsorption of In atoms was 

done on an Sb-terminating surface, while As atoms were adsorbed on an Ga-terminating 

surface. These processes simulate the formation of interfaces with two different types of 

bond types–InSb and GaAs. We use the optimized slab geometries obtained in Sec. 5.5.1 

as the starting conf gurations. These surfaces can have many different reconstructed sur-
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face structures depending on the size of the surface unit cells. Obviously, bigger periodic 

unit cells will produce more variety of complex adsorption patterns. In this report, how-

ever, we will consider up to (2×2) surface reconstructions only. Since we are mostly 

concerned with the adsorption of individual molecules, this unit cell will be adequate to 

capture the main effects relevant to the interface formation process during molecular beam 

epitaxy heterostructure crystal growth. 

In Fig. 5.6, we show the (2×2) reconstructed Ga- and Sb-terminating surfaces, re-

spectively, viewed from the top. Four most typical lateral locations where we placed the 

adsorbed atoms initially are also shown. There are second sets of these four adsorption 

sites (not marked) in the other halves of the unit cells making the total of eight available 

adsorption sites. We chose the initial height of the adsorbed atom so that the distance to 

the closest surface atom was the bond length between those atoms in the bulk. 

Before we continue, we will def ne the adsorption sites as labeled in Fig. 5.6(a). We 

call the site “bridge” (B) site: the As atom is placed over the midpoint of Ga dimers. The 

site P is called “pedestal” site: the As atom is placed between the two neighboring dimers 

and above Ga atom in the third top layer. The site C is the “cave” site and the added As 

atom is placed in the caved region, created by Ga atoms moving away due to dimerization. 

The site S is called “saddle” site. The Ga atom directly underneath this site has one bond 

bent upward and another bond bent downward in the perpendicular direction, hence the 

name. The adsorption sites for In atoms on Sb-terminating surface are labeled in a similar 

fashion as illustrated in Fig. 5.6(a). 
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In both cases of bridge (B) and cave (C) sites, the As atom is placed directly above 

the fourth top layer consisting of Sb atoms. These sites are considered as the “proper” 

sites because they are the correct places for As atoms to sit if we were to grow an InAs 

semiconductor f lm on GaSb substrate with an ideal interface. In the cases of pedestal (P) 

and saddle (S) sites, on the other hand, As atoms are placed directly above the third top 

layer consisting of Ga atoms. These sites can be considered as the “wrong” sites because 

the As atoms on these sites have to move eventually to the “proper” sites in order to grow 

a new InAs semiconductor f lm with an ideal interface. 

After the atoms to be adsorbed are placed at candidate sites, we relax the entire system– 

the slab plus the adsorbed atoms. Once the system settles down to an optimized conf g-

uration, we calculate the relative energy Erel by comparing the total energy to that of the 

reference conf guration, E0, 

Erel = Etot −E0. (5.1) 

We choose the conf guration with lowest energy (except the ones with inter-atomic ex-

changes) to be the reference conf guration for each surface we study. 

Table 5.2 lists relative energies of some of the best adsorption structures for As2 and 

In2 molecules. 

Our calculation predicts that As atoms are most likely to be adsorbed at bridge sites 

on Ga-terminating surfaces. The optimized geometry of the As molecule adsorbed on 

Ga-terminating surface in the lowest energy conf guration is shown in Fig. 5.7. 
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Table 5.2 Relative energies (in eV) of As2 and In2 molecules on Ga- and Sb-terminating 
surfaces, respectively. The adsorption sites are def ned in Fig. 5.6: B-bridge, P-pedestal, 
C-cave, and S-saddle position. The short-hand notations x, y, and z are the directions 
the adsorbed molecules are more or less parallel and represent [110], [110], and [001] 
directions, respectively. The third group with “exch” suff x represents the conf gurations 
with the inter-atomic exchange diffusion. Bold face 0.0 indicates reference conf guration. 

conf guration As2 In2 
B+B 0.0 0.36 
B+P 0.54 0.04 
B+C 2.13 0.47 
B+S 1.44 0.14 
P+P 5.11 0.0 
P+S 3.14 0.14 
C+C 0.74 0.60 
C+S 2.48 0.06 
S+S 2.32 0.24 
P-z 0.50 0.16 
C-x 2.47 0.82 

B+B exch -0.55 0.62 
C+C exch 0.03 0.29 
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Figure 5.7 The optimized geometry of As atoms adsorbed in the B+B conf guration on 
Ga-terminating surface. Refer the caption of Fig. 5.5 for coloring scheme. White spheres 
represent the adsorbed As atoms. 
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° °The bond length between As and Ga atom is 2.31 A compared to its bulk value, 2.42 A 

[73]. It is worthwhile to note that the adsorption of As atom reversed the trend of buckling: 

the dimers of Ga atoms are now parallel to (001) planes. Our calculation on In atom ad-

sorption on Sb-terminating surfaces, on the other hand, predicts that there are at least three 

(possibly four) equally favorable conf gurations. B+P, B+S, P+P, and C+S conf gurations 

have virtually same relative energies for In atom adsorptions. The optimized geometry of 

the In atoms adsorbed in the reference conf guration (P+P) on Sb-terminating surface is 

shown in Fig. 5.8. 

The bond length between In and closest Sb atom is 2.74 A° compared to its bulk value, 

2.78 °A [73]. It is a well-known fact that the atoms in molecules or on surfaces bind more 

tightly. We should also note that As molecules favor the “proper” adsorption sites (see 

paragraph above for its meaning), bridge sites. Therefore, as next As molecules come in, 

they will be most likely adsorbed at cave sites. As both bridge and cave sites are occupied 

by As atoms, the distortion due to dimerization will be completely removed, and an ideal 

interface will be formed. 

The relative energies of adsorption of In molecules on Sb-terminating surfaces seem 

to predict that In atoms have equal probabilities to be adsorbed in a few different con-

f gurations containing both “proper” and “wrong” sites. The relative energies of these 

conf gurations are very close. Under the high temperature condition relevant to epitaxial 

growth process (about 450 �C), these differences would not have a signif cant effect. Sim-

ilar to the case of As molecule adsorption on Ga-terminating surfaces, when the next In 
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Figure 5.8 The optimized geometry of In atoms adsorbed at in the P+P conf guration on 
Sb-terminating surface. Refer the caption of Fig. 5.5 for coloring scheme. White spheres 
represent the adsorbed In atoms. 
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molecule joins in, In atoms are mostly likely to occupy the “proper” sites and defect-free 

interface will be formed in general. 

5.5.3 Inter-atomic Exchange Diffusion 

We also investigated the possibility of atomic intermixing during adsorption of As 

and In molecules. Fig. 5.9 shows the optimized geometry of As molecules adsorbed on 

Ga-terminating surface and undergone through inter-atomic diffusion. 

In this case, As atoms replaced Sb atoms in the second atomic layer from the top and 

the displaced Sb atoms are in the B+B conf guration on Ga-terminating surface. Fig. 5.10 

shows the optimized geometry of In molecules adsorbed on Ga-terminating surface and 

undergone inter-atomic diffusion process. 

In this case, In atoms replaced Ga atoms in the second atomic layer from the top and 

the displaced Ga atoms are in the C+C conf guration on Sb-terminating surface. The last 

group of numbers in Table 5.2 summarizes our results. It is very interesting to note that 

As-for-Sb exchange on Ga-terminating (001) surface is en exothermic process with the 

energy gain of more than 0.5 eV. On the contrary, In-for-Ga exchange on Sb-terminating 

(001) surface is an endothermic process with the energy cost of nearly 0.3 eV. This result is 

very consistent with the result on the inter-atomic exchange diffusion process in the bulk 

environment [73]. This difference is also consistent with the experimental observation 

that interfaces with GaAs-type bonds are typically more disordered than interfaces with 

InSb-type bonds in InAs/GaSb III-V heterostructures. Furthermore, this result provides 
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Figure 5.9 The optimized geometry of As-for-Sb inter-atomic diffusion on Ga-terminating 
surface of GaSb semiconductor. As atoms replaced Sb atoms in the second atomic layer 
from the top and the displaced Sb atoms are in the B+B conf guration on Ga-terminating 
surface. Refer the caption of Fig. 5.5 for coloring scheme. White spheres represent the 
adsorbed As atoms. 
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Figure 5.10 The optimized geometry of In-for-Ga inter-atomic diffusion on Sb-terminating 
surface of GaSb semiconductor. In atoms replaced Ga atoms in the second atomic layer 
from the top and the displaced Ga atoms are in the C+C conf guration on Sb-terminating 
surface. Refer the caption of Fig. 5.5 for coloring scheme. White spheres represent the 
adsorbed In atoms. 
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very strong evidence that the interfacial disorders are caused mainly by the interactomic 

diffusions occuring during the heterostructure growth process. 

To give a complete and def nite argument, however, a more complete study involv-

ing the kinetic effect and barrier estimation by identifying the minimum energy reaction 

path. A further research along this line will provide valuable information in attaining 

the complete understanding of interface formation during molecular beam epitaxy (MBE) 

heterostructure growth. 

5.6 Summary 

In summary, we have used f rst-principles electronic-structure methods to clarify the 

interpretation of XSTM images of (110) surfaces on cleaved InAs/GaSb heterostructures, 

focusing on the differences between interfaces with InSb versus GaAs bonds. We f nd that 

the apparent height differences between the InAs and GaSb surfaces are largely associated 

with the electronic structure, whereas the local height differences at the InSb and GaAs 

interfaces are caused by geometric relaxation from the partial relief of local bond strain. 

We also investigated the atomistic process relevant to the formation of GaAs and InSb 

bond-type interfaces: the adsoprtion of In or As atoms on (001) surfaces of GaSb semi-

conductors. We observed that both Ga- and Sb-terminating surfaces showed dimerization 

of surface atoms. One of the Ga atoms of the dimers formed sp2 hybrid orbitals while 

the other formed sp3 hybrid orbitals. This caused Ga-dimers to tilt out of the (001) planes 

and the Ga-terminating surface to buckle. On the other hand, both atoms in Sb dimers 



86 

formed sp3 hybrid orbitals and consequently the Sb-terminating surfaces did not show any 

buckling. Our calculations also predict that arsenic atoms would be preferably adsorbed 

at the bridge site between the dimerized Sb atoms on Sb-terminating (001) surfaces. In-

dium atoms, on the other hand, were observed to have somewhat equal probabilities to be 

adsorbed at several different sites on Ga-terminating (001) surfaces. When In atom was 

adsorbed on Ga-dimers, we observed that the surface buckling was nullif ed and the dimers 

reverted back to horizontal positions. Finally, our calculations of the energies associated 

with interfacial exchange of anions reveal that As-for-Sb exchanges on Ga-terminating 

surfaces are exothermic at GaAs bond-type interfaces, but In-for-Ga exchanges on Sb-

terminating surfaces are endothermic at InSb bond-type interfaces. This result is consis-

tent with the experimental observation that GaAs bond-type interfaces are typically more 

disordered than InSb bond-type interfaces in the InAs/GaSb heterostructures. 



CHAPTER VI 

CONCLUSIONS 

In this dissertation we studied the surfaces of metals and semiconductors, particularly 

palladium and III-V semiconductors, by using f rst-principle calculation method based on 

density functional theory. Our main results can be summarized as follows. 

In the f rst principle calculations of metal surfaces, we determined the ground-state 

structure of two-vacancy defect of H atom on Pd(111) surface by treating the motion of a H 

atom quantum mechanically in the vicinity of the defect. We solved Schrödinger equation 

for a single H atom moving in static potential energy surface that has been mapped out by 

f rst-principles density-functional theory calculations. We f nd that a H atom in the vicinity 

of a two-vacancy defect experiences substantial quantum effects and its wave functions are 

delocalized over large portion of the defect. Our results indicate that the ground-state wave 

function is concentrated in the hcp site rather than the fcc site where H atoms normally 

settle on Pd(111) surfaces. We show that symmetry plays a major role in the reversal of the 

order of the most enegetically favorable sites. Our results explain the STM images of two-

and multi-vacancy defects with ground-state properties of the defects. More importantly, 

our model also provides a compelling argument in elucidating the high activity of three-
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or larger defects in hydrogen molecule dissociation and the inactivity of a two-vacancy 

defect. 

In the f rst principle calculations of semiconductor surfaces, we determined that the 

apparent height differences between the InAs and GaSb surfaces are largely associated 

with the electronic structure, whereas the local height differences at the InSb and GaAs 

interfaces are caused by geometric relaxation from the partial relief of locl bond strain. 

Both Ga- and Sb-terminating surfaces show dimerization of surface atoms. One of the 

Ga atoms of the dimers formed sp2 hybrid orbitals while the other formed sp3 hybrid or-

bitals. This causes Ga dimers to tilt out of the (001) planes and the Ga-terminating surface 

to buckle. On the other hand, both atoms in Sb dimers formed sp3-hybrid orbitals and 

consequently the Sb-terminating surfaces does not show any buckling. Our calculations 

also predict that arsenic atoms would be preferably adsorbed at the bridge site between the 

dimerized Sb atoms on Sb-terminating (001) surfaces. Indium atoms, on the other hand, 

are observed to have somewhat equal probabilities to be adsorbed at several different sites 

on Ga-terminating (001) surfaces. When an In atom is adsorbed on Ga dimers, we observe 

that the surface buckling is nullif ed and the dimers revert back to horizontal positions. 

Our calculations of the energies associated with interfacial exchange of anions reveal that 

As-for-Ga exchanges on Sb-terminating surfaces are endothermic at InSb bond-type in-

terfaces. This result is consistent with the experimental observation that GaAs bond-type 

interfaces are typically more disordered than InSb bond-type interfaces in the InAs/GaSb 

heterostructures. 
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