
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

8-6-2005 

Improving Instruction Fetch Rate with Code Pattern Cache for Improving Instruction Fetch Rate with Code Pattern Cache for 

Superscalar Architecture Superscalar Architecture 

Azam Muhammad Beg 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Beg, Azam Muhammad, "Improving Instruction Fetch Rate with Code Pattern Cache for Superscalar 
Architecture" (2005). Theses and Dissertations. 2655. 
https://scholarsjunction.msstate.edu/td/2655 

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2655?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2655&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


 

 

 

 

 

 

 

 

        

   

 

 

 

 

   

 

 

 

 

 

  

    

  

     

     

   

       

 

 

   

 

  

IMPROVING INSTRUCTION FETCH RATE WITH CODE PATTERN CACHE 

FOR SUPERSCALAR ARCHITECTURE 

By 

Azam Muhammad Beg 

A Dissertation 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

in Computer Engineering 

in the Department of Electrical and Computer Engineering 

Mississippi State, Mississippi 

August 2005 



 

  

 

   

 

 

Copyright by 

Azam Muhammad Beg 

2005 



 

        

   

 

 

 

   

 

 

 

 

 

 

 

  

 

  

    

   

   

 

  

    

   

 

 

 

 

   

    

  

  

  

 

 

   

   

  

 

 

 

 

 

 

    

      

        

 

 

_______________________________ _______________________________ 

_______________________________ _______________________________ 

_______________________________________ 

IMPROVING INSTRUCTION FETCH RATE WITH CODE PATTERN CACHE 

FOR SUPERSCALAR ARCHITECTURE 

By 

Azam Muhammad Beg 

Approved: 

Yul Chu Justin Davis 

Assistant Professor of Electrical Assistant Professor of Electrical 

and Computer Engineering and Computer Engineering 

(Director of Dissertation) (Committee Member) 

Nicolas H. Younan Susan M. Bridges 

Professor of Electrical and Professor of Computer Science 

Computer Engineering and Engineering 

(Committee Member/Graduate (Committee Member) 

Program Director) 

Kirk H. Schulz 

Dean of the Bagley College of Engineering 



 

 

    

 

     

 

   

 

    

 

     

 

       

     

 

   

 

   

 

 

       

      

      

        

      

         

         

     

      

      

Name: Azam Muhammad Beg 

Date of Degree: August 6, 2005 

Institution: Mississippi State University 

Major Field: Computer Engineering 

Major Professor: Dr. Yul Chu 

Title of Study: IMPROVING INSTRUCTION FETCH RATE WITH CODE-

PATTERN CACHE FOR SUPERSCALAR ARCHITECTURE. 

Pages in Study: 125 

Candidate for Degree of Philosophy 

In the past, instruction fetch speeds have been improved by using 

cache schemes that capture the actual program flow. In this dissertation, 

we present the architecture of a new instruction cache named code 

pattern cache (CPC); the cache is used with superscalar processors. 

CPC’s operation is based on the fundamental principles that: 

common programs tend to repeat their execution patterns; and efficient 

storage of a program flow can enhance the performance of an instruction 

fetch mechanism. CPC saves basic blocks (sets of instructions separated 

by control instructions) and their boundary addresses while the code is 

running. Basic blocks and their addresses are stored in two separate 



 

          

      

          

         

     

       

         

        

        

       

      

         

     

       

        

       

        

       

        

    

           

 

structures, called block pointer cache (BPC) and basic block cache (BBC), 

respectively. Later, if the same basic block sequence is expected to 

execute, it is fetched from CPC, instead of the instruction cache; this 

mechanism results in higher likelihood of delivering a larger number of 

instructions in every clock cycle. 

We developed single and multi-threaded simulators for TC, BC, 

and CPC, and used them with 10 SPECint2000 benchmarks. The 

simulation results demonstrated CPC’s advantage over TC and BC, in 

terms of trace miss rate and average trace length. Additionally, we used 

cache models to quantify the timing, area, and power for the three cache 

schemes. Using an aggregate performance index that combined the 

simulation and modeling results, CPC was shown to perform better than 

both TC and BC. 

During our research, each of the TC-, BC-, or CPC-configurations 

took 4-6 hours to simulate, so performance comparison of these caches 

proved to be a very time-consuming process. Neural network models 

(NNM’s) can be time-efficient alternatives to simulations, so we studied 

their feasibility to represent the cache behavior. We developed two 

NNM’s, one to predict the trace miss rate and the other to predict the 

average trace length for the three caches. The NNM’s modeled the caches 

with reasonable accuracy, and produced results in a fraction of a second. 



 

 
    

 

 

 

 

 

 

 

 

 

 

 

       

DEDICATION 

I dedicate this research to my loving parents and wife. 

-ii-



 

 
    

 

 

 

 

 

 

 

 

 

 

 

 

         

       

    

           

          

         

       

          

         

   

        

      

      

           

         

        

       

ACKNOWLEDGMENTS 

First and foremost, I thank Allah, the God, the Most Merciful, the 

Beneficent for blessing me with the countless bounties of abilities and 

resources in this life. 

I feel highly indebted to my advisor Dr. Yul Chu for providing me 

with constant guidance and supervision and for pushing me, at times to 

accomplish more than what I would have otherwise settled for. I thank 

my committee members Drs. Younan, Davis, and Bridges for their 

insightful commentary on my research. I am thankful to the ECE 

department for the much needed financial support in the last phase of 

my research. 

I owe my deepest gratitude to my parents for the values they 

instilled in me while bringing me up and for teaching me the lessons 

about hard work and persistence. 

I would also like to thank my wife Shabana; without her support 

and patience, it would have not been possible to complete this arduous 

journey. I appreciate my whole family including my children Raahim and 

Rahma for letting me busy with my studies during many, many evenings 

-iii-



 

 
    

 

 

 

 

          

     

         

        

           

           

 

 

 

and nights in the last 8 years, especially during the last few months of 

my PhD program. 

I also value the “Just Do It” words of encouragement, I often 

received from my friends Drs. Amr and Ashraf. 

Finally, I would also like to say a word of appreciation to everyone 

who helped me with my PhD degree in one way or other. 

-iv-



 

 
    

 

 

 

 

 

 

 

 

 

   

 

  

  

  

    

    

  

    

     

      

        

     

       

      

     

      

     

     

     

     

       

      

      

      

     

      

     

      

      

      

TABLE OF CONTENTS 

Page 

DEDICATION.................................................................................... ii 

ACKNOWLEDGMENTS ..................................................................... iii 

LIST OF TABLES .............................................................................. viii 

LIST OF FIGURES ............................................................................ ix 

CHAPTER 

I. INTRODUCTION...................................................................... 1 

1.1 Background ................................................................... 3 

1.1.1 Microprocessor Performance................................. 3 

1.1.2 Overview of Thread-Level Parallelism .................... 5 

1.1.3 Basic Blocks......................................................... 11 

1.1.4 Conventional Instruction Cache............................ 13 

1.2 Related Works................................................................ 17 

1.2.1 Trace Cache ......................................................... 17 

1.2.2 Block Caches........................................................ 20 

1.2.3 Modeling Techniques ............................................ 23 

1.3 Motivation...................................................................... 26 

1.4 Contributions ................................................................ 29 

1.5 Performance Evaluation ................................................. 30 

1.6 Organization of this Dissertation.................................... 32 

II. CODE PATTERN CACHE ......................................................... 33 

2.1 CPC Overview ................................................................ 33 

2.2 CPC-ST Architecture ...................................................... 38 

2.2.1 Storage Module..................................................... 38 

2.2.2 Trace Build Engine ............................................... 42 

2.2.3 Merging Buffer...................................................... 42 

2.2.4 Branch Predictor .................................................. 43 

2.3 CPC-ST Operation.......................................................... 44 

2.3.1 Trace Assembly Mode ........................................... 48 

-v-



 

 
    

 

 

 

 

   
 

      

       

      

      

      

        

     

      

      

            

      

     

      

      

      

      

       

       

                                   

       

                    

      

                                    

       

      

     

     

     

     

      

     

       

         

      

     

        

     

     

           

CHAPTER Page 

2.3.2 Trace Delivery Mode ............................................. 49 

2.3.3 Branch Prediction-Related Cases .......................... 50 

2.3.4 Miss Rate Related Cases ....................................... 50 

2.3.5 Cache Replacement Policy .................................... 53 

2.3.5.1 BPC Line Replacement.............................. 53 

2.3.5.2 BBC-Way Selection & Replacement........... 54 

2.3.6 Cache Structure Indexing ..................................... 56 

2.4 CPC-MT Architecture ..................................................... 60 

2.5 CPC-MT Operation......................................................... 61 

III. CODE PATTERN CACHE SIMULATION & MODELING ............. 63 

3.1 CPC Simulation ............................................................. 63 

3.1.1 Sim-CPC............................................................... 63 

3.1.2 Benchmark Programs ........................................... 66 

3.1.3 Workload Mixes .................................................... 66 

3.1.4 Simulation Results ............................................... 67 

3.1.4.1 Miss Rates in Single-ThreadedEnvironment 68 

3.1.4.2 Miss Rates in Multi-Threaded Environment 69 

3.1.4.3 Trace Length in Single-Threaded 

Environment .......................................... 70 

3.1.4.4 Trace Length in Multi-Threaded 

Environment ......................................... 71 

3.1.4.5 CPC’s Overall Gains in Trace Miss Rate 

and Trace Length ................................... 72 

3.1.4.6 Design Space Study ................................. 73 

3.2 CPC Modeling ................................................................ 78 

3.2.1 CACTI................................................................... 78 

3.2.2 Using CACTI......................................................... 79 

3.2.3 Modeling Results .................................................. 80 

3.2.3.1 Access Time.............................................. 80 

3.2.3.2 Consumed Power ...................................... 81 

3.2.3.3 Area.......................................................... 83 

3.3 Combining Simulation and Modeling Results ................. 84 

IV. NEURAL NETWORK MODELS FOR CACHES........................... 86 

4.1 Neural Networks ............................................................ 86 

4.1.1 Processing Elements............................................. 86 

4.1.2 A 3-Layer NN Topology.......................................... 89 

4.1.3 Learning Mechanism ............................................ 90 

4.1.4 Motivation ............................................................ 92 

4.2 Neural Network Modeling for TC, BC, and CPC............... 92 

-vi-



 

 
    

 

 

 

 

   
 

      

      

      

        

       

     

         

     

     

       

        

       

  

       

  

 

 

 

 

 

 

CHAPTER Page 

4.2.1 Experimental Methodology.................................... 92 

4.2.2 Input-Output Definition........................................ 93 

4.2.3 Data Pre-Processing.............................................. 95 

4.2.4 Neural Network Training and Testing.................... 96 

4.2.5 Experimental Results and Analysis....................... 98 

4.3 Conclusions................................................................... 100 

V. CONCLUSIONS & FUTURE RESEARCH ................................... 102 

5.1 Conclusions................................................................... 103 

5.2 Future Research ............................................................ 107 

5.2.1 CPC Architecture & Simulations ........................... 107 

5.2.2 Power, Area, and Access Time Modeling................ 107 

5.2.3 Neural Network Modeling...................................... 108 

APPENDIX 

SPECINT2000 BENCHMARKS ................................................ 109 

REFERENCES .................................................................................. 118 

-vii-



 

 
    

 

 

 

 

 

 

 

 

   

 

   

          

  

         

        

  

        

  

        

  

           

         

     

       

     

          

  

     

    

         

        

    

         

 

 

 

LIST OF TABLES 

TABLE Page 

1 Configuration parameters for Sim-TC, Sim-BC, and 

Sim-CPC............................................................................. 65 

2 Benchmarks for comparing CPC with TC and BC..................... 66 

3 Integer workload mixes for single and multi-threaded 

simulations ........................................................................ 67 

4 Miss rate comparison for single and multi-threaded 

environments ..................................................................... 72 

5 Trace length comparison for single and multi-threaded 

environments ..................................................................... 73 

6 CACTI model parameters for TC, BC, and CPC ........................ 80 

7 Aggregate performance index (API) for different cache 

sizes - CPC vs. TC............................................................... 85 

8 Aggregate performance index (API) for different cache 

sizes - CPC vs. BC .............................................................. 85 

9 Neural Network Configurations - Input and Output 

Neurons ............................................................................. 94 

10 Training performance for trace miss-rate NNM 

(“Configuration-2”): optimum results were achieved 

with a 4-layer (6-5-5-1) NNM (shown in bold)*..................... 97 

11 Training performance for trace-length NNM 

(“Configuration-4”): optimum results were achieved 

with a 4-layer (6-15-10-1) NNM (shown in bold) .................. 98 

-viii-



 

 
    

 

 

 

 

 

 

 

   

 

  

           

    

           

       

     

           

      

            

         

       

    

    

         

      

     

           

          

    

    

  

          

         

         

         

      

     

 

 

LIST OF FIGURES 

FIGURE Page 

1 States of 4 execution units of a superscalar processor 

executing a single thread (T1) ............................................. 8 

2 States of 4 execution units of a fine-grain MT processor 

executing 3 threads (T1, T2, T3); threads switch in 

round-robin fashion every cycle. ......................................... 8 

3 States of 4 execution units of coarse-grain MT processor 

executing two threads (T1 and T2); thread switches from 

T1 to T2 in cycle n+3 due to long stall on thread T1. .......... 9 

4 States of 4 execution units of a simultaneous multi-threading 

(SMT) processor; based on the availability of execution 

units, instructions from one or more threads are allowed 

to execute every cycle. ........................................................ 10 

5 Four basic blocks from a sample program are shown. Block 

beginnings (heads) and (tails) are also identified. (Addresses 

are shown in hexadecimal format)....................................... 12 

6 A superscalar processor with an instruction cache (IC) ............ 14 

7 Basic blocks in the lines of an IC: 5 cycles are required to 

fetch the non-contiguous basic blocks due to taken 

branches. (The arrows show the sequence of instruction 

execution)........................................................................... 15 

8 A superscalar processor with a trace cache (TC) ...................... 18 

9 Basic blocks in the lines of a trace cache (TC): A maximum 

of 16 instructions or 3 basic blocks are stored in a TC 

line. ‘Instruction holes’ are left at the end of the first cache 

line. In cycle-1, 3 basic blocks are delivered. (The arrows 

show the sequence of instruction execution). ...................... 19 

-ix-



 

 
    

 

 

 

 

   

           

          

        

       

       

   

       

   

           

          

             

        

     

           

       

        

   

           

   

      

       

        

        

    

           

        

       

   

          

      

 

 

 

FIGURE Page 

10 A superscalar processor with a block cache (BC) ..................... 21 

11 Basic blocks in block cache (BC): 3 blocks are fetched per 

cycle; each block is up to 6 instructions long. As compared 

to TC, there is a potential increase in block fragmentation, 

as well as in more ‘instruction holes’ being left in block 

cache lines. (Block execution sequence is the same as the 

examples of Figure 7 and Figure 9, but has been omitted 

here for clarity). .................................................................. 22 

12 Block length distribution in different SPECint2000 benchmarks 27 

13 A superscalar processor with code pattern cache (CPC) ........... 33 

14 CPC’s “multiple-entry, multiple-exit” nature: A hit to a CPC trace 

is possible for any of three basic blocks (Block 0, Block 1, and 

Block 2). So, the trace line in this example has three entry 

points, Entry 0, Entry 1, and Entry 2. An exit happens when 

any of three blocks has a mispredicted branch at its tail. 

Possible exit points are marked as Exit 0, Exit 1, and 

Exit 2. ................................................................................ 35 

15 TC’s “single-entry, multiple-exit” nature: A hit to a TC trace is 

possible only when the trace starting address (meaning 

Block 0’s head address) matches. So, the trace line in this 

example has only one entry point, Entry 0. An exit happens 

when any of three blocks has a mispredicted branch at 

its tail. Possible exit points are marked as Exit 0, Exit 1, 

and Exit 2. ......................................................................... 36 

16 Basic blocks in CPC’s BBC structure: up to 3 blocks can be 

fetched per cycle. The ability to store and fetch variable 

block lengths can make a CPC-trace exceed TC and 

BC-traces in size................................................................. 37 

17 Overall view of the CPC-ST architecture................................... 38 

18 BPC-BBC interconnection ....................................................... 39 

-x-



 

 
    

 

 

 

 

   

          

    

       

  

        

  

       

    

          

          

  

        

       

   

            

  

        

   

           

     

    

          

   

          

        

           

     

     

        

        

  

 

FIGURE Page 

19 BPC trace line: The line includes block head and tail addresses, 

and the ID’s of BBC-ways where basic blocks are stored. 

Other fields include thread-ID, branch status, and LRU 

bits..................................................................................... 40 

20 BBC Data Array: The array stores the basic blocks of varying 

lengths. .............................................................................. 41 

21 BBC Tag Array: Tag matching is done to determine presence of 

basic blocks in a BBC-way.................................................. 41 

22 Trace build buffer: The buffer entry is completed upon detection 

of end of block condition and after the block-end branch 

status is known. ................................................................. 42 

23 Merging buffer: Blocks retrieved from different BBC-ways are first 

re-arranged (in execution order) and aligned before being sent 

for execution....................................................................... 43 

24 Branch predictor implemented in the form of a branch history 

table................................................................................... 44 

25 CPC's two modes of operation: trace assembly mode and trace 

delivery mode ..................................................................... 45 

26 A high-level view of the functions performed by CPC: Tasks 

specific to the two operating modes are enclosed in the 

larger outer boxes............................................................... 47 

27 Information for a single trace that has four basic blocks of 

different lengths ................................................................. 51 

28 A BPC line that contains trace information for the trace in 

Figure 27. Only the first BPC line contains a valid trace...... 52 

29 Placement of 4 basic blocks for a single trace in BBC: 2 basic 

blocks are in the same way while other two basic blocks land 

in their own BBC-ways. ...................................................... 52 

30 Three valid traces in BPC: There is one basic block (highlighted) 

that appears twice in the first trace and again in the 3rd 

trace................................................................................... 53 

-xi-



 

 
    

 

 

 

 

   

 

             

              

        

           

          

    

           

      

    

          

            

     

       

       

     

  

          

      

      

        

         

         

     

         

         

     

           

       

        

          

       

        

FIGURE Page 

31 BPC LRU after n, n+1, and n+2 hits on BPC-line 2 .................. 54 

32 BBC LRU fields are 3 bits wide. Each way has its own set of 

LRU bits (Tag and data fields are not shown for clarity)....... 55 

33 Changes in BBC LRU values after 3 hits to the same BBC-way 56 

34 Examples of BBC addressing fields: Tag and index information 

for 3 blocks is shown. ......................................................... 58 

35 Block placement in BBC: The index values of Figure 34 

determine block locations in BBC. Way-selection is done 

using the LRU bits (not shown). .......................................... 59 

36 Overall view of a CPC-MT-based system................................... 60 

37 Sim-CPC simulator with inputs and outputs: A single set of 

inputs (address and instruction) is read from the trace file 

every cycle. At the end of the simulation, the outputs (trace 

miss rate and average trace length) are saved in a log file. 

Sim-TC and Sim-BC operate on the same principles as 

Sim-CPC............................................................................. 64 

38 Sim-CPC simulation using ModelSim: An address (addr) and an 

instruction (instr) are read from the benchmark trace file every 

clk cyle. A trace hit causes operation-mode switch from trace 

assembly to trace delivery (supply) at 61530 ns................... 65 

39 CPC's miss rate comparison with TC and BC in single-threading 

environment. On average, CPC is 73.7% better than TC and 

22.7% better than BC. ........................................................ 69 

40 CPC's miss rate comparison with TC and BC in multi-threading 

environment. On average, CPC is 85.7% better than TC and 

36% better than BC. ........................................................... 70 

41 CPC's trace length comparison with TC and BC in single-

threading environment. On average, CPC is 79.7% better 

than TC and 106.1% better than BC. .................................. 71 

42 CPC's trace length rate comparison with TC and BC in multi-

threading environment. On average, CPC is 86.1% better 

than TC and 98.4% better than BC..................................... 72 

-xii-



 

 
    

 

 

 

 

   

 

           

        

    

           

      

   

           

        

      

          

      

    

   

            

        

   

            

      

    

           

            

            

          

        

        

        

           

FIGURE Page 

43 Effect of varying CPC cache (BPC) size (shown on horizontal 

axis) on miss rate: A drop in miss rate happens with increase 

in BPC capacity. ................................................................. 73 

44 Effect of varying CPC cache (BPC) size (shown on horizontal 

axis) on trace length. The trace length is relatively insensitive 

to cache size. ...................................................................... 74 

45 Effect of varying CPC-BBC associativity on miss rate: After an 

initial drop in miss rate, it flattens out with increase in 

associativity. (Horizontal axis shows number of BBC-ways.) 75 

46 Effect of varying CPC-BBC associativity of trace length: The 

trace lengths are not affected very noticeably with the 

change in BBC-associativity. (Horizontal axis shows number 

of BBC-ways.) ..................................................................... 76 

47 Effect of varying thread count on miss rate: Miss rates do not 

seem to have a consistent correlation with the thread count. 

(Horizontal axis represents thread-count.) .......................... 77 

48 Effect of varying thread count on trace length: No clear 

relationship between thread count and trace lengths is 

visible. (Horizontal axis represents thread-count.)............... 77 

49 Access time (ns) comparison for TC, BC, and CPC ................... 81 

50 Power comparison (nJ) for TC, BC, and CPC............................ 82 

51 Area comparison (cm^2) for TC, BC, and CPC.......................... 83 

52 Processing element – building block of a neural network.......... 87 

53 A step activation function........................................................ 88 

54 A ramp activation function ...................................................... 88 

55 A sigmoid activation function .................................................. 88 

56 Topology of a 3-Layer Feed-Forward Neural Network................ 89 

-xiii-



 

 
    

 

 

 

 

 

   

            

        

       

    

  

            

         

       

    

       

FIGURE Page 

57 For a program with arbitrarily chosen ‘block size distribution’ 

{0.80, 0.17, 0.03, 0.02}, miss-rate NNM was used to predict 

the values for TC, BC, and CPC. The horizontal axis shows 

cache size in KB and the vertical axis represents miss rate 

percentages. ....................................................................... 99 

58 For a program with arbitrary chosen ‘block size distribution’ 

{0.80, 0.17, 0.03, 0.02}, trace-length NNM was used to 

predict the values for TC, BC, and CPC. The horizontal axis 

shows cache size in KB and the vertical axis represents the 

trace length in terms of number of instructions. ................. 100 

-xiv-



 

 

 

 

 

 

  

 

 

         

       

          

            

          

         

         

       

        

    

     

         

      

         

     

      

CHAPTER I 

INTRODUCTION 

Stated simply, the steps in a program execution are: (1) fetching an 

instruction; (2) reading the related data; (3) performing calculations; (4) 

and storing the results (to memory or register file, if needed); then going 

back to the 1st step to fetch the next instruction [Hennessy & Patterson 

2003]. In order to perform these tasks, a modern processor can be 

organized as a structure that is divided into an instruction fetch unit 

(called producer) and an instruction execution unit (called consumer). 

The producer and the consumer are separated by instruction issue 

buffers (collectively called the instruction window). The goal is that the 

producer issues the instructions at the highest possible rate while the 

consumer attempts to execute the instructions as fast as it can 

[Hennessy & Patterson 2003]. With the ongoing validity of nearly 40-year 

old Moore’s Law [Moore 1965], an ever-increasing number of devices are 

available to the processor designers, who are faced with the constant 

challenge of balancing the performance, design complexity, testability, 

manufacturability, and all the related costs. 

-1-



 

 

        

        

       

       

 

         

   

        

 

      

        

      

       

      

 

      

 

       

       

         

  

-2-

In this dissertation, we present a new method of improving 

producer performance by introducing a new instruction cache, called 

code pattern cache (CPC). CPC’s functionality is based on the execution 

patterns (dynamic nature) of programs. In plain terms, CPC’s salient 

features are: 

• It exploits the empirical observation that a program’s sets of 

instructions (blocks) come in varying sizes 

• It does not require that the same set of instructions be stored in 

multiple locations 

• It does not need to replicate the cache structures 

• It makes use of the (traditional) principle of cache associativity 

• It increases the likelihood of finding previously executed sequences 

of instructions (traces) inside the cache, and every time it finds a 

sequence, CPC-traces tend to contain more instructions than 

existing schemes 

• It maintains its ability to deliver traces even while serving multiple 

consumers 

The other contribution of this dissertation is the creation of neural 

network models (NNM’s) for CPC and similar cache schemes. The models 

can be used to perform what-if analyses of cache design space without 

running the time-consuming simulations. 



 

 

  

       

        

      

     

    

     

      

         

   

  

          

        

      

         

     

         

        

       

        

      

-3-

CPC’s performance measures are: 

• The likelihood of finding instructions (hits) in cache 

• The number of instructions found with each hit 

• The die area it takes to implement the cache 

• The power consumed by the cache 

• The time it takes to access the cache 

This chapter first broadly covers the aspects of microprocessor 

performance and different approaches for its improvement, and then 

discusses the motivation and contributions of this dissertation in detail. 

1.1 Background 

1.1.1 Microprocessor Performance 

In order to speed up program execution, one may simply use larger 

or faster semiconductor circuits that make use of newer and smaller 

transistors. One use of increased availability of transistors is to increase 

the number of instruction execution units. The number of execution 

units determines the maximum number of instructions that can be 

issued by the producer in one processor clock cycle [Hennessy & 

Patterson 2003]. A processor with multiple execution units is called a 

superscalar processor. Using a larger number of execution units results 

in increased die size and power consumption, which may not be 

desirable for cost-effective designs. Besides utilizing faster circuits, 



 

 

   

      

        

         

       

     

         

       

       

        

       

        

         

      

      

         

           

       

     

      

         

-4-

today’s high-performance processors use many techniques, such as 

caching and branch prediction; these two techniques make use of the 

pragmatic behavior of the programs, which assume that their execution 

behavior is not random, and that it follows certain patterns. The branch 

prediction helps fetch instructions from memory (and sometimes even 

execute them) in advance without knowing the outcome of the current 

instruction [Hennessy & Patterson 2003]. In other words, branch 

prediction exploits the regularity in the program flow. Caching operation 

is based on the observation that the programs tend to access contiguous 

locations in memory (spatial locality) or the recently accessed memory 

locations repetitively (temporal locality) [Hennessy & Patterson 2003]. 

This program behavior results in low latency (how fast the memory 

contents are available) and higher bandwidth (how much data is readily 

available) for caches. Effectively, the caches try to approximate the 

availability of ideally large memory that the programmers expect 

[Hennessy & Patterson 2003]. Another reason why the memory latency is 

critical is that the processor speed has risen at a rate much higher than 

memory speed. This increasing gap is a constant challenge for processor 

system designers. The issue is particularly significant for applications 

that require large memory bandwidth, such as digital image-processing, 

especially if the data needs to be transferred over a simple, standard 



 

 

       

    

      

      

         

        

      

          

         

     

        

          

           

      

     

          

       

      

         

        

       

-5-

interface. So the issue of memory latency becomes ever more important 

[McBader & Lee 2003]. 

One or more levels of caches can be used between the processor 

and the main memory; placing fast caches close to the processor reduces 

memory latency by storing frequently or recently accessed data and 

instructions. The caches closest to the processor are fast but small in 

size, whereas longer latency caches are larger in size and store less 

frequently accessed data and instructions [Shanley & Anderson 1995]. 

The caches go only so far with the alleviation of memory latency 

constraints because of cache misses and the resulting processor stalls. 

So it becomes imperative to manage the caches efficiently. Two important 

aspects of cache management are: (1) when and how much data to bring 

into cache (pre-fetching); and (2) what to retain in cache and what to 

replace [Hennessy & Patterson 2003]. 

1.1.2 Overview of Thread-Level Parallelism 

Kavi et al. (1995) define a thread as a set of instructions that starts 

execution at its first instruction and continues execution without 

interruption. A single program can be executed on multiple processors 

that have shared code and (most of the) address space. Sharing of code 

and data in this manner is traditionally called threading. These days, 

threading also refers to execution in multiple locations even when the 



 

 

        

        

         

         

      

     

       

        

         

      

       

     

          

     

      

     

        

     

        

         

        

-6-

address space is not shared [Hennessy & Patterson 2003]. A programmer 

can identify independent threads or he can use a compiler for this 

purpose. Threads can be large, fully independent programs or parts of a 

single program (for example, parallel iterations in a loop). Parallelism is 

defined as the potential of simultaneous execution and thread-level 

parallelism (TLP) is “logically structured as separate threads of 

execution.” The exploitation of thread-level parallelism is an effective way 

of overcoming the limitations of memory latency [Hennessy & Patterson 

2003]. Instruction level parallelism (ILP), in contrast, exploits the ability to 

issue multiple instructions in a cycle. In hardware-related 

implementation, opportunities for ILP are identified and scheduled by 

hardware; whereas, software-centric ILP depends on static scheduling by 

a (very long instruction word) compiler. ILP’s main advantage is that it 

makes use of parallelism without requiring re-writing of the existing 

programs [Schlansker et al. 1997]. 

Multi-threading (MT) is a technique that allows multiple threads to 

share the execution units of a single processor in a parallel fashion. The 

hardware must support the switching of threads efficiently. To enable 

MT, some components of a processor (for example, the register file and 

the program counter) need to be replicated. Sharing of memory can be 

done via the virtual memory technique [Hennessy & Patterson 2003]. 



 

 

        

        

       

       

  

         

        

       

      

         

        

       

       

         

          

         

         

          

          

             

    

-7-

(Virtual memory (VM) automates the job of moving program and data 

between the main memory and secondary storage. One of VM’s 

advantages is the ease for a programmer, especially, when his program 

code and data sizes exceed the physically available memory [Jacob & 

Mudge 1998]). 

Fine-grain MT and coarse-grain MT are two main approaches to MT. 

Fine-grain MT allows switching of threads on every instruction, in a 

round-robin fashion (while skipping any stalled threads). On the other 

hand, coarse-grain MT switches threads when the currently executing 

thread stalls for many cycles due to for example, a miss on the cache 

closest to the main memory [Hennessy & Patterson 2003]. 

Figure 1 shows the states of 4 execution units (EU1-EU4) of a 

(single-threaded) superscalar processor in several cycles. Different 

executions units are used every cycle for the same thread T1. A used 

execution unit is represented by a box containing letter T followed by the 

thread number; an unused execution is shown as an empty box (Figure 

2, Figure 3, and Figure 4 also follow the same conventions). In Figure 1, 

we see that in cycle n, EU1 and EU2 are used, while EU3 and EU4 

remain unused; in cycle n+1, EU2 and EU3 are used, while EU1 and 

EU4 remain unused; and so on. Due to a stall on T1 during cycle n+4, all 

four execution units remain unused. 



-8-

The states of execution units in a fine-grain MT processor are 

shown in Figure 2. 

E
x
e

c
u

ti
o

n
 u

n
it
s
 

 

 

E
x
e

c
u

ti
o

n
 u

n
it
s
 

EU4 

EU3 

T2 T1 T3 

T3 T2 T1 T3 

EU2 T1 T2 T3 

 

 

T1 T3 

EU1 T1 T2 T3 T1 T3 

cycle 
n n+1 n+2 n+3 n+4 n+5 

 

 

 

 

            

   

 

 

       

    

 

 

             

      

     

 

 

         

           

       

     

Figure 1. States of 4 execution units of a superscalar processor 

executing a single thread (T1) 

Figure 2. States of 4 execution units of a fine-grain MT processor 

executing 3 threads (T1, T2, T3); threads switch in round-

robin fashion every cycle. 

Three threads T1, T2, T3 get executed on the processor. In 

cycle n, two executions EU1 and EU2 are used by thread T1; in the next 

cycle n+1, T2 uses the same execution units; and so on. This thread-

switching continues in a round-robin fashion, unless some thread is 



-9-

skipped due to a stall; this happens in cycle n+5, where T2 is passed over 

by T3. 

Figure 3. States of 4 

 

 
 

E
x
e
c
u
ti
o

n
 u

n
it
s
 

execution 

 

 

         

  

 

            

       

          

 

 

      

        

         

           

     

      

      

      

           

       

      

units of coarse-grain MT processor 

executing two threads (T1 and T2); thread switches from T1 

to T2 in cycle n+3 due to long stall on thread T1. 

The coarse-grained MT does not switch from the currently running 

thread to the next unless there is a long (multi-cycle) stall on the current 

thread. For example, in Figure 3, thread T1 keeps occupying different 

execution units during n, n+1, and n+2 cycles, until a stall on T1 causes 

T2 to start executing in cycle n+3. 

In the case of simultaneous multi-threading (SMT), TLP and ILP 

techniques are combined concurrently [Hennessy & Patterson 2003]. 

SMT allows multiple issues of independent threads to multiple execution 

units per cycle [Tullsen et al. 1995]. Processor resources in an SMT 

processor are shared among threads on per-cycle basis. But, as the 

processor has to hold instructions from multiple threads, larger issue 



 

 

EU2 T1 T3 T2 T1 T1 

T1 

T3 

EU1 T1 T3 T2 T2 T3 E
x
e

c
u

ti
o

n
 u

n
it
s
 

T2 T1 T1 T2 EU4 

EU3 T2 T3 T3 T1 T3 

cycle 
n n+1 n+2 n+3 n+4 n+5 

 

 

        

      

     

        

           

        

          

            

       

 

 

          

      

     

     

 

 

       

      

      

         

-10-

instruction queues may be required [El-Moursy & Albonesi 2003]. 

(Instructions are held in an instruction queue before being sent to 

execution units). The term Hyper-Threading is used for the 

implementation of dual-thread SMT on Intel’s Pentium-4 and Xeon 

processors [Intel 1997], [Intel 2001], [Marr 2002]. The SMT processor of 

Figure 4 shows that during a given cycle, more than one thread is 

allowed to execute. For example, T1 and T2 execute simultaneously in 

cycle n, T1 and T3 execute in cycle n+1, and so on. The result can be 

better utilization of execution (‘consumer’) resources. 

Figure 4. States of 4 execution units of a simultaneous multi-

threading (SMT) processor. Based on the availability of 

execution units, instructions from one or more threads are 

allowed to execute every cycle. 

An MT processor alters the way the memory is accessed. Cache 

effectiveness is reduced because of the changed locality of reference 

[Lioupis & Milios 1997]. To address this issue, an MT architecture 

presented by Govindarajan et al. (1995) had separate instruction and 



 

 

          

          

      

     

  

        

         

           

         

          

         

      

-11-

data caches. Lioupis & Milios (1997) studied behavior of a single-thread 

in an MT processor with different cache configurations. They proposed a 

pipelined interface between the cache and the rest of the memory 

hierarchy for better cache performance. 

1.1.3 Basic Blocks 

A basic block is a set of contiguous instructions that contains only 

a single control instruction such as a conditional or an unconditional 

jump, a return, or a call. The control instruction is the last instruction of 

a basic block, and is also called the block tail. The beginning of a basic 

block is called its block head. Block head is also the destination of a 

control transfer instruction [Ozturk et al. 2005]. In this dissertation, 

basic blocks have no size limitations other than the cache capacity. 



 

 

 

   

            

   

          

   

   

     

   

     

   

          

   

   

     

   

   

   

           

   

     

          

 

           

     

     

 

 

     

       

        

       

         

       

           

        

         

-12-

Address Instruction Comments 

0000 ADD 
st 

Block 0 head on the 1 instruction of the program 

0008 ADD 

0010 BNE Block 0 tail due to a conditional jump 

: 

: 

0030 ADD Block m head 

0038 SUB 

0040 ADD 

0048 DIV 

0050 J Block m tail due to an unconditional jump 

: 

: 

0058 ADD Block n head 

0060 MULT 

0068 OR 

0070 ADD 

0078 BEQ Block n tail due to a conditional jump 

1000 SUB Block x head 

1008 HLT Block x tail; halt instruction terminates the program 

Figure 5. Four basic blocks from a sample program are shown. Block 

beginnings (heads) and (tails) are also identified. (Addresses 

are shown in hexadecimal format). 

A sample assembly program with some control instructions is 

shown in Figure 5. The program contains conditional and unconditional 

jumps. The beginning and the end of each block is also indicated. The 

code in this example shows four basic blocks. Basic block 0 starts with 

the 1st instruction of the program and ends with a conditional branch 

(BNE). The head address of this block is 0000 and the tail address is 

0010. The length of this block is 3 instructions. The head of block m at 

address 0030 is the destination of a conditional or unconditional jump 

from (the same or a different) basic block. The tail of this block at address 



 

 

         

           

        

           

    

       

        

        

         

           

       

            

        

        

        

          

        

           

          

   

-13-

0050 is determined by an unconditional jump instruction (J). The length 

of this block is 5 instructions. Similarly, block n has its head and tail at 

addresses 0058 and 0078, respectively. The last block x starts at address 

1000; the block ends with a halt (HLT) instruction at address 1008. 

1.1.4 Conventional Instruction Cache 

The basic data unit of conventional instruction cache (IC) is a 

cache line that stores a set of memory-adjacent instructions. The usual 

cache line lengths are 16 to 64 bytes. IC, although simple to implement, 

tends to exhibit high latency and low bandwidth. Typically single-ported 

reads limit IC bandwidth to a single basic block because of a jump to a 

non-adjacent memory location. This type of jump is called a taken-

branch. A simplified block diagram of a superscalar processor with an IC 

is shown in Figure 6 [Hennessy & Patterson 2003]. The instructions are 

provided from the IC to the decoder. Only one cache line can be delivered 

per cycle. The basic blocks beyond a taken-branch are fetched in the 

following cycle as illustrated by block #5 in cycle 2 in Figure 7. (In Figure 

7, Figure 9, and Figure 11, a number before an ‘x’ represents the 

instruction count in a basic block. The upper case ‘A’ or ‘B’ used as a 

suffix to a block number indicates that the block is split over two cache 

lines. The arrows indicate the instruction flow.) 



 

 

 

 

  
 

 

    

  

 
 

            

 

 

      

        

      

         

-14-

Branch predictor 

Instruction 

cache 

Unified level-2 

cache 

Data 

cache 

Buffer 

Decoder 

Register renaming 

F. P. 

registers 

Integer 

registers 

F.P. exec 

units 

Int. exec. 

units 

Ld/St exec. 

units 

Figure 6: A superscalar processor with an instruction cache (IC) 

Assuming that no pre-fetch buffer is present, the example in 

Figure 7 requires 5 cycles to fetch the two contiguous blocks (#0, #1) and 

three non-contiguous blocks (#5, #6, #10). Note that block #10 straddles 

across 2 cache lines. So the fetching of this block is split over two cycles. 



-15- 

 

 

 
 

            

   

    

 

 

 

     

           

        

        

     

         

    

          

         

       

Figure 7. Basic blocks in the lines of an IC: 5 cycles are required to 

fetch the non-contiguous basic blocks due to taken 

branches. (The arrows show the sequence of instruction 

execution). 

Much research has been done on techniques that improve 

bandwidth beyond IC. For example, Dutta & Franklin (1995) (1999) used 

a tree-like subgraph for an executed program to predict multiple 

branches in a single prediction. Hao, et al’s (1996) block-based 

architecture depended on compile-time and hardware-based solutions. 

However, they introduced redundancy in storage when they combined 

basic blocks to create larger blocks. 

As mentioned earlier, branches can make a program jump out of a 

cache line. When taken, the branches in the middle of a cache line leave 

many unexecuted instructions and hence cost additional read cycles to 



 

 

        

       

        

        

          

         

          

          

        

     

      

           

       

       

          

         

      

          

           

   

-16-

fetch another line. (A taken-branch usually jumps to a non-contiguous 

program location). Keeping this IC behavior in view, techniques for 

improved instruction fetching have been presented by Conte et al. (1995), 

Hily & Seznec (1996), McFarling (1993), Wallace & Bagherzadeh (1998), 

and Yeh & Patt (1992). Conte et al’s (1995) collapsing buffer scheme was 

able to align non-adjacent basic blocks up to 90% of the time. McFarling 

(1993) combined different branch predictors in such a way that only the 

most accurate prediction was used for a branch. Hily & Seznec’s (1996) 

study on three common branch predictors included use of branch history 

tables whose sizes proportionally increased with the number of programs 

executing in parallel. Wallace & Bagherzadeh’s (1998) instruction fetch 

mechanism involved a dual branch target buffer that tried to predict the 

starting addresses of the next two cache lines. Yeh & Patt’s (1992) 

adaptive branch prediction scheme used two levels of branch prediction 

by looking at the n-level history of the last few branches. All of these 

techniques still limited the instructions fetched per cycle to one or two 

basic blocks. For better performance, more basic blocks need to be 

fetched every cycle which is possible in Rotenberg et al’s (1999) trace 

cache (TC) and other follow-up schemes [Black et al. 1999], [Jourdan et 

al. 2000]. 



 

 

   

   

        

          

         

     

       

       

    

         

          

             

              

-17-

1.2 Related Works 

1.2.1 Trace Cache 

Rotenberg, et al’s (1999) TC bypassed IC’s fundamental instruction 

limit due to taken branches and resulted in increased bandwidth and 

reduced latency of instruction decoding. TC also addressed some of the 

issues present in the previous schemes (refer to previous section) [Conte 

et al. 1995]. TC captured instructions as they were executed. The 

matching of the starting address of a TC line and the predictions for 

branches inside the line are the two conditions that cause the delivery of 

instructions (to the instruction decoder) from TC, instead of IC. TC made 

it possible to fetch multiple basic blocks in one cycle (Refer to Figure 9) 

[Black et al. 1999], [Gummaraju & Franklin 2000], [Howard & Lipasti 

1999], [Jourdan et al. 2000], [Patel et al. 1998], [Patel et al. 1999]. 



 

 

 

 
 

          

 

 

        

        

        

         

    

-18-

Figure 8. A superscalar processor with a trace cache (TC) 

The block diagram of a TC-based superscalar microarchitecture is 

shown in Figure 8. A single TC-trace may contain more than one block. 

When there is a TC-hit, more than one basic block can be delivered to 

the decoder in the same cycle. In case of a miss on TC, a cache line is 

brought from the IC. 



-19- 

 

 

 
 

            

        

         

     

    

 

 

         

          

       

         

          

      

           

Figure 9. Basic blocks in the lines of a trace cache (TC): A maximum of 

16 instructions or 3 basic blocks are stored in a TC line. 

‘Instruction holes’ are left at the end of the first cache line. In 

cycle-1, 3 basic blocks are delivered. (The arrows show the 

sequence of instruction execution). 

In the TC in Figure 9, a cache line contains a maximum of 3 basic 

blocks or 16 instructions. Blocks #0, #1, and #5 are all fetched in one 

cycle. Three blocks in the first line have only 12 instructions, so space 

for three instructions is left unused. In other words, three ‘instruction 

holes’ are left at the end of the cache line. Although block #10 still 

happens to cross the cache line boundary, fetching of up to 16 

instructions is now possible in cycle 2. In case of TC, only 3 (instead of 5) 



 

 

      

     

   

         

       

       

       

        

      

          

      

       

       

           

         

     

     

-20-

cycles are needed to fetch the same set of instructions as the 

conventional IC (of Figure 7). 

1.2.2 Block Caches 

A variation of TC was Black, et al’s (1999) cache scheme called 

block cache (BC). The scheme included identification of individual blocks 

in the stored traces. The block identifiers (pointers) were used to 

assemble the traces, on a trace hit. In BC, two separate cache structures 

were used, one (called block cache) to store the basic blocks and the other 

(called trace table) to store the block pointers. The blocks were replicated 

4 times in Black et al’s (1999) scheme. Each line in the block cache 

stored a single basic block. The assumption that basic blocks were all 

the same width caused an increase in the likelihood of block 

fragmentation. (Refer to Figure 11 for the examples of fragmented 

blocks). Black et al. (1999) reported that, with perfect branch prediction, 

BC helped a processor complete 7% more instructions per cycle than TC. 

However, they did not compare BC’s trace miss rate and average trace 

length with TC. 



 

 

  

 
 

          

 

 

         

          

        

     

       

 

-21-

Figure 10. A superscalar processor with a block cache (BC) 

The block diagram in Figure 10 shows a superscalar processor 

connected to BC. The trace table is used to determine a BC-hit or a miss. 

On a hit, the basic blocks are fetched from the block cache. A complete 

trace is built by passing instructions through the merge/align buffer 

being sent to the decoder. A BC-miss causes delivery of instructions from 

the IC. 



-22- 

 

 
 

         

        

       

       

   

        

 

 

 

          

         

       

      

          

          

Figure 11. Basic blocks in block cache (BC): 3 blocks are fetched per 

cycle; each block is up to 6 instructions long. As compared 

to TC, there is a potential increase in block fragmentation, as 

well as in more ‘instruction holes’ being left in block cache 

lines. (Block execution sequence is the same as the examples 

of Figure 7 and Figure 9, but has been omitted here for 

clarity). 

In Figure 11, three blocks are fetched every cycle with each block 

containing a maximum of 6 instructions. All blocks that are longer than 

6 instructions have to be split over more than one block cache line. 

When blocks are not multiples of 6 instructions, instruction holes are 

encountered at the end of block cache lines. In Figure 11, there are two 

fragmented blocks (#6 and #10) (vs. the TC of Figure 9 that has only one 



 

 

         

         

           

        

         

           

       

        

        

          

          

           

  

   

      

          

         

          

       

       

     

-23-

such block, i.e., block #10). Also, one can observe the redundancy of 

storage; each basic block must be stored in 3 identical cache structures. 

A scheme similar to BC was proposed in a Jourdan, et al. (2000). 

Their scheme, called extended block (XB) cache, stored the instructions 

(uops) in reverse sequence, giving them the ability to extend any existing 

XB’s. They reported reduced block fragmentation. Black et al. (1999) and 

Jourdan et al. (2000) reported cache performance results only for single-

threaded environments. The XB bandwidth was similar to TC. Due to 

this marginal improvement over TC and due to XB’s significantly complex 

implementation logic, we will limit our discussion of XB to this section 

only and will not use XB for performance comparison in our research. 

Unlike TC, no follow-up research has been reported on either BC or XB, 

since their introduction. 

1.2.3 Modeling Techniques 

Simulation models provide a faster method of studying the design 

or operation of a system compared to actual implementation [Smith 

1994]. Usually, mathematical or analytical models comprise a set of 

mathematical equations. NNM’s, on the other hand, are made up of a set 

of weights that are applied to the model inputs to calculate the outputs. 

(Chapter IV discusses NNM’s in detail). Mathematical models based on 

response curves (polynomial, spline, etc.) are ineffective with highly non-



 

 

       

        

        

       

        

      

          

         

         

   

     

       

           

          

      

         

         

         

       

        

       

-24-

linear systems, while NNM’s excel with large number of parameters 

[Stegmayer & Chiotti 2004]. NNM’s are robust and provide a good 

alternative to lookup methods that require storage of all data points in a 

given data space [Simpson et al. 1997]. 

In the past, mathematical models and NNM’s have been used to 

model electronic systems and sub-systems. A few examples of 

mathematical or analytical models are: the model of a program behavior 

to predict the miss ratio of a fully-associative cache [Singh et al. 1992]; 

the model of a superscalar processor that included interaction of 

parallelisms in programs and machines as a performance measure 

[Noonburg & Shen’s 1994); the model for instruction-fetch performance 

of superscalar processors [Wallace & Bagherzadeh 1998); the miss-ratio 

model for set associative caches [Harper, et al. 1999); and the model for 

TC [Hossain et al. 2002). Examples of NNM’s are: the NN-based controller 

to adjust the memory resources in a multi-programming system [Bigus 

1994]; the model for analog component behavior [Sobecks et al. 1998]; 

and the analysis tool that finds bottlenecks in a computer system, such 

as memory, network, processor, etc. [Gruen & Kubota 2002]. 

Only in recent years has some research been published dealing 

with NNM’s application to the field of computer architecture. One such 

example is Jimenez & Lin’s (2001) NN-based branch predictor; it does not 



 

 

       

   

       

         

       

   

    

       

        

        

       

          

        

   

      

    

            

          

         

       

-25-

suffer from the drawbacks of a conventional branch predictor whose 

hardware requirements rise exponentially when the branch histories are 

lengthened. The other example is an NNM for a cache replacement 

scheme presented by Khalid (1996), and Khalid & Obaidat (2000). The 

authors used an NNM for predicting the pattern of memory references 

made by the processor. 

The effectiveness with which the NNM’s usually model the non-

linear and multi-variate systems and the ease of NNM creation are the 

primary reasons for their use for cache modeling in this dissertation. 

CACTI is an analytical model for estimating the area, power, and 

timing for caches [Wilton & Jouppi 1996]. Since its introduction, CACTI 

has been used as an estimation tool by several researchers. For example, 

Batson & Vijaykumar (2001) used this tool to estimate the hit-time for 

reactive-associative cache; the cache scheme implemented flexible 

associativity by placing most blocks in direct-mapped positions and 

reactively displacing only conflicting blocks to set-associative positions. 

Banakar et al. (2002) used CACTI to compute area and energy for their 

proposed scratch pad memory, an alternative to cache. Sangireddy et al. 

(2004) used CACTI to study a low-power technique for cache-based 

reconfigurable architecture. In our research, we use CACTI to compare 



 

 

       

   

  

     

      

         

        

      

       

          

         

       

     

     

  

       

        

     

       

                                       

                  

                    

                

-26-

the area, power, and timing requirements for cache structures in TC, BC, 

and CPC. 

1.3 Motivation 

Below, we have identified several issues with the current trace-

based schemes, namely, TC and BC: 

• There is a tendency for TC to have the same set of instructions (full 

or partial basic blocks) appear in multiple traces. A few examples 

of percentages of instructions overlapping among traces (for the 

SPEC2000int [Spec 2000] benchmark programs) are1: crafty = 

25.1%, mcf = 38.5%, bzip = 79.5%. Redundancy of traces between 

IC and TC was addressed by Ramirez et al’s (2000) scheme, but 

redundancy of instructions stored in the TC itself was not 

considered. If the storage redundancy is removed, the cache could 

be used to store more traces, and hence the miss rate could be 

reduced. 

• TC uses only the beginning address of a trace for matching. Blocks 

other than the beginning block are not identifiable, so even if the 

required instructions are present in the trace, the trace is declared 

a ‘miss’ and a new trace build is initiated. This rebuilding requires 

1 
The traces were extracted from a TC built by modifying sim-cache (of SimpleScalar 3.0 tool suite) [Burger 

1997], [Burger & Austin 1997]. TC size was fixed at 64 traces while each trace had a maximum of 16 

instructions or 4 basic blocks. The benchmark programs [Spec 2000] were run for 200 million instructions. 



 

 

       

      

      

      

      

      

          

           

        

         

        

 
 

         

 

 

 

                                                                                                                  

 

-27-

unnecessary switching from trace utilization mode to build mode. (In 

trace utilization mode, the instructions are delivered from TC; and 

in the build mode, the instructions fetched from the IC are 

executed and the traces are built/stored in TC). If this mode-

switching is reduced, the average number of instructions fetched 

per cycle can be improved. 

• TC traces can leave unused spaces at the end of cache lines if a 

program (or part of a program) is made up of smaller basic blocks. 

Cache space can be more efficiently used if the stored traces are of 

variable, rather than fixed lengths (as in BC), and if the trace 

lengths can exceed the usual limit of a cache line width. 

70% 

75% 

80% 

85% 

90% 

95% 

100% 

b
z
ip

c
ra

ft
y

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

v
o
rt

e
x

v
p
r 

13+ 

9-12 

5-8 

1-4 

Figure 12. Block length distribution in different SPECint2000 

benchmarks 



 

 

    

        

      

       

        

          

         

         

    

       

       

        

        

         

       

      

       

      

     

-28-

• BC scheme suffers block fragmentation because the basic blocks 

are assumed to be of fixed length. With the blocks sizes (4-6 

instructions per block) assumed in TC/BC designs, some 

instruction fetch capability may remain under-utilized because, as 

we can see in Figure 12, up to 23% of the blocks contain more 

than 4 instructions, and up to 11% of the blocks contain more 

than 6 instructions. For example, bzip has nearly 13% of the 

blocks longer than 4 instructions, and crafty has 19% such blocks. 

Figure 12 shows the percentage values of block sizes and counts 

for different SPECint2000 benchmark runs. 

• BC potentially has more block-level fragmentation with smaller 

block sizes (of 4 or so instructions). The fragmentation also 

happens when a logical basic block that is wider than the block 

cache width is split into more than one physical block [Black et al. 

1999]. (Refer to the example of Figure 11). 

• BC requires storage of same basic blocks in multiple places. Black, 

et al’s (1999) research has BC replicating the blocks 4 times. 

Redundancy of cache structures, if removed, could reduce the die 

area and the consumed power. 



 

 

   

      

       

     

    

         

      

      

       

      

      

      

      

     

      

         

       

    

        

       

           

-29-

1.4 Contributions 

In this research, we focus on the implementation of new 

instruction cache architecture that improves the fetch rates beyond what 

existing trace-based caches have reportedly attained. The following are 

the salient contributions of this dissertation: 

(1) We introduce a new instruction cache scheme called code pattern 

cache (CPC); some of the current trace-based instruction issues 

that CPC addresses are: (a) eliminating TC’s redundancy of 

instruction storage; (b) removing BC’s duplication of caches (thus 

reducing consumed power and die area); (c) including way-

associativity instead of BC’s single-way structures; (d) resolving the 

issue of BC’s block fragmentation; (e) allowing the traces to be of 

variable length; and (f) improving access time (over BC) by enabling 

simultaneous access to basic blocks and their pointers. 

(2) We have developed functional simulators for existing trace-based 

schemes (TC and BC) and CPC, operating in single-threaded mode. 

The simulators were developed in VHDL and provided a means to 

compare the performance of different caches. 

(3) We have enabled multi-threaded operation on the VHDL-based 

simulators for TC, BC, and CPC. The simulators allow instantiation 

of any number of threads; the only limitation may be the ability of 



 

 

        

     

          

      

   

        

    

     

        

        

     

        

         

      

        

       

 

   

         

       

    

-30-

a simulation platform (VHDL simulator) to complete simulations in 

a reasonable amount of time. 

(4) We have studied the implementation aspects of TC, BC, and CPC, 

such as power, area, and access time. Comparisons were made for 

different cache capacities. 

(5) We propose an aggregate performance index that combines the 

simulation results (trace miss rate, average trace length) and 

modeling results (power, area, access time). The index provides the 

means to compare the overall performance of TC, BC, and CPC. 

(6) We have developed two NNM’s for modeling caches, one for 

predicting their miss rates, and the other for predicting average 

trace lengths. Each NNM collectively models the behavior of TC, 

BC, and CPC. The NNM’s provide a method that is several orders-

of-magnitude faster than simulation for exploring the design space 

of the three caches. (Until the time of this writing, no other such 

models for any cache scheme have been reported in the research 

publications). 

1.5 Performance Evaluation 

In order to compare TC and BC with CPC, we use several 

performance metrics. Two of the metrics are: trace miss rate and average 

trace length. These metrics are considered to be among the most 



 

 

       

     

        

        

      

      

    

         

         

       

         

        

    

        

     

       

    

     

   

      

     

-31-

appropriate in the context of trace-based caches (TC, BC, etc.). Trace 

miss rate is the percentage of references when a requested trace was not 

found in the cache. A smaller value of trace miss rate represents a lower 

average latency for cache data fetching. Average trace length can be 

considered to be a measure of how efficiently the cache storage space is 

being utilized. The longer the traces, the larger the number of 

instructions fetchable per cycle. 

We use only one level of cache in our functional simulators since 

the main focus of our research is the cache’s own performance rather 

than that of a complete processor system. Simulating only the cache 

functionality also means that no direct method of calculating the 

processor-related instructions completed per cycle metric is available. 

We study the trace miss rate and average trace length by using the 

instruction traces saved from runs for each of the ten SPECint2000 

benchmarks [Spec 2000] on single-threaded cache simulators. The saved 

traces have a maximum length of 10 million instructions. Multi-

threading workload mixes have been created using the traces from the 

same 10 benchmarks. (Details about the benchmarks and the simulator 

configurations are given later). 

In addition to trace miss rate and average trace length, we used 

area, power, and access time, as the performance metrics for cache 



 

 

        

        

   

        

    

     

     

       

       

        

        

          

     

 

-32-

implementation. Calculation of these 3 parameters is done using a 

readily-available cache analytical model called CACTI [Shivakumar & 

Jouppi 2001]. 

To make an overall comparison of different cache schemes, an 

aggregate performance index that combines the simulation and modeling 

results has also been used. 

1.6 Organization of this Dissertation 

The rest of this dissertation is organized as follows: Chapter II 

covers the CPC architecture and operation. Chapter III contains CPC 

simulation and modeling, and CPC’s performance comparison with TC 

and BC. Chapter IV explains the use of NNM’s for modeling the behavior 

of CPC and other caches. Finally, Chapter V presents the conclusions 

and suggests areas for future research. 



 

 

 

 

 

 

  

   

 

    

      

       

          

      

 

 
 

         

 

 

       

        

CHAPTER II 

CODE PATTERN CACHE 

2.1 CPC Overview 

CPC stores sequences of instructions as they execute. When the 

same instruction sequence is encountered later, it is fetched from CPC 

instead of IC. Figure 13 shows the overall block diagram of CPC 

connected to a superscalar processor. 

Figure 13. A superscalar processor with code pattern cache (CPC) 

Unlike TC, the basic blocks that may appear in multiple traces 

are stored only once in CPC. The basic blocks are stored in basic block 

-33-



 

 

     

         

     

          

            

        

       

      

          

     

         

      

     

     

          

     

       

  

      

   

       

-34-

cache (BBC), and the starting and ending addresses of the basic blocks 

are stored in a separate structure called block pointer cache (BPC). Each 

line in BPC represents a single trace by storing multiple sets of basic 

block (start and end) addresses. A merge-and-align buffer is used to 

‘assemble’ a trace, before it is sent to the decoder and execution engine. 

The BPC lines also store the BBC way-number if BBC is configured as an 

n-way associative structure. Unlike BC, storage and retrieval of block 

sizes of varying lengths are allowed by CPC. Combined effects of 

variability of block sizes and set-associativity in BBC tend to lower the 

trace miss rate. CPC’s average number of instructions stored per trace is 

generally higher than both TC and BC. Cache storage in CPC is more 

efficient than BC because the former needs replication of cache 

structures. TC uses only the beginning address for trace matching. 

Because blocks other than the beginning block are not identifiable, the 

trace is declared a ‘miss’ and a new trace build is initiated even if the 

required instructions are present in the trace. CPC avoids this 

unnecessary switching from trace utilization mode to build mode by 

allowing hits on intra-trace blocks; this helps improve the trace miss 

rate. Fixed-length BC lines may increase the chances of basic block 

fragmentation, i.e., the blocks straddling across multiple cache lines and 

leaving unused spaces at the end of the lines (instruction holes); CPC is 



 

 

   

   

   

 

Block 0 Block 1 Block 2 

ADD ADD BNE SUB DIV OR 

Exit 0 Exit 1 Exit 2 

Entry 0 Entry 1 Entry 2 

BEQ AND BEQ 

 

 

        

         

     

         

        

         

            

          

 

           

      

      

           

       

        

   

 

 

        

         

          

  

-35-

likely to have fewer instruction holes than TC. CPC’s implementation in 

hardware is only slightly more complex than TC but is simpler than BC. 

Multiple branch predictions for end-of-block addresses are also required 

in a manner similar to TC and BC. 

CPC is a “multiple-entry, multiple-exit” cache (Figure 14). This 

means that a CPC trace can start execution from any of its basic blocks 

instead of just the first one and exits can happen when a branch at the 

end of any basic block does not match the outcome of branch prediction. 

Figure 14. CPC’s “multiple-entry, multiple-exit” nature: A hit to a CPC 

trace is possible for any of three basic blocks (Block 0, Block 

1, and Block 2). So, the trace line in this example has three 

entry points, Entry 0, Entry 1, and Entry 2. An exit happens 

when any of three blocks has a mispredicted branch at its 

tail. Possible exit points are marked as Exit 0, Exit 1, and 

Exit 2. 

In comparison, TC is a “single-entry, multiple-exit” cache (Figure 

15) [Rotenberg et al. 1999]. In TC, the execution of a trace always starts 

at the beginning instruction of a trace and can terminate on any of its 

intra-line branches. 



 

   

 

   

 

Block 0 Block 1 Block 2 

ADD ADD BNE SUB DIV OR 

Entry 0 

Exit 0 Exit 1 Exit 2 

BEQ AND BEQ 

 

 

 

           

  

      

       

       

        

  

 

 

        

   

-36-

Figure 15. TC’s “single-entry, multiple-exit” nature: A hit to a TC trace 

is possible only when the trace starting address (meaning 

Block 0’s head address) matches. So, the trace line in this 

example has only one entry point, Entry 0. An exit happens 

when any of three blocks has a mispredicted branch at its 

tail. Possible exit points are marked as Exit 0, Exit 1, and 

Exit 2. 

In the example of Figure 16, up to three blocks can be fetched 

every cycle. 



-37-

Figure 16. Basic blocks in CPC’s BBC structure: up to 3 blocks 

 

 

 
 

           

        

      

  

 

 

         

       

       

       

     

      

 

 

can be 

fetched per cycle. The ability to store and fetch variable block 

lengths can make a CPC-trace exceed TC and BC-traces in 

size. 

The blocks in a trace may contain a different number of 

instructions. The traces are allowed to exceed BBC line width. CPC is 

expected to have less block fragmentation than CPC. 

The CPC architecture can be used both in single-threading and 

multi-threading modes. CPC’s single-threaded version is called CPC-ST, 

and the multi-threaded version is called CPC-MT. 



 

 

    

           

 

 

 

   
 

 

 

  

 

 

         

 

 

     

  

    

      

         

     

        

-38-

2.2 CPC-ST Architecture 

An overall view of the CPC-ST architecture is shown in Figure 17. 

Instruction 

Cache 

Mux 

Execution Engine(s) 

Branch 

Predictor 

BHT 

CPC Trace Build 

Engine 

Built 

Trace 

Branch Info 

Branch prediction 

BPC 

BBC 

Way-1 

Way-3 

Way-2 

Way-0 

CPC Storage 

Module 

Merging 

Buffer 

Figure 17. Overall view of the CPC-ST architecture 

The building blocks of this architecture are explained in detail in 

the following sections. 

2.2.1 Storage Module 

As mentioned earlier, the CPC storage module consists of two 

cache structures: BPC and BBC. The full address is used for BPC lookup, 

whereas BBC lookup is done using tag and index fields. Interconnections 

of BPC and BBC are shown in Figure 18. 



 

 

 
 

     

 

 

       

          

        

          

           

      

         

        

-39-

Figure 18. BPC-BBC interconnection 

A single BPC-line is shown in Figure 19. Each of the lines 

corresponds to a single trace. BPC is made up of an array of these lines. 

BPC keeps track of valid basic blocks resident in the BBC. BPC starts 

with a state where all entries are marked invalid. Upon detection of a 

block tail, full linear addresses for both block head and block tail are 

placed in a BPC line. The ID’s of BBC-ways where the basic blocks reside 

are also saved. Once all entries are populated, conflicts start to occur and 

certain lines have to be replaced. LRU fields in BPC determine which BPC 



-40-

line will be evicted when there is a need to do so. Branch status bits store 

the taken or not-taken status of the branches at the ends of basic blocks. 

In the BPC line in Figure 19, three branch-status bits are assigned to the 

first 3 blocks in the trace. Branch status for the 4th block is not saved. 

(In the CPC-MT, the thread-ID field identifies which thread the trace 

belongs to). 

0 0 0 

Tail 

2 2 2 

        

  

 

 

 
 

 

 
 

 

  
 

 

 
 

 

 
 

 

  
 

 

 
 

 

 
 

 

  
 

 

 
 

 

 
 

 

  
 

 

 

 

 

 

Tail Head Tail Way Head Way Head Tail Way Head 
Trace 

Block Block ID Block Block ID Block Block ID Block Block 
Valid 

1 1 1 3 3 

Way 

ID 
3 

Branch 

Status 

Trace 

LRU 

 

 

          

       

        

          

       

  

 

         

    

      

   

 

 

 

Figure 19. BPC trace line. The line includes block head and tail 

addresses and the ID’s of BBC-ways where basic blocks are 

stored. Other fields include thread-ID, branch status, and 

LRU bits. 



-41-

BBC is composed of two arrays: the BBC Data Array (Figure 20) 

and the BBC Tag Array (Figure 21). The BBC tag array stores tags and 

performs tag-matching; whereas the BBC data array stores basic blocks 

and supplies them when needed. Basic blocks can be of any size; the 

sizes are only limited by the number of lines in a BBC-way. 

 

 

         

       

     

        

          

 

 
 

 

 

 

      

 

 

 

 

 

     

 

 

  

 

 

 

           

          

          

       

        

Figure 20. BBC Data Array: The Figure 21. BBC Tag Array: Tag 

array stores the basic matching is done to 

blocks of varying determine presence of 

lengths. basic blocks in a BBC-

way. 

In order to locate a basic block in BBC, the values of index and set 

are derived from the block head address in BPC. The BBC-way, in which 

a basic block resides, is also saved in BPC. In this research, we chose 16 

instructions to be the maximum number of instructions that could be 

fetched in one cycle from BBC. As all 16 instructions can potentially 



 

 

      

        

      

    

       

         

        

         

     

        

         

  

 
      

  
         

         

    

 

   

       

        

          

       

-42-

reside in the same BBC-way, the width of the read ports on these ways 

has to be 16 instructions. Any traces that are longer than 16 instructions 

are fetched in two or more cycles. 

2.2.2 Trace Build Engine 

Functionally, the trace build engine is quite simple and primarily 

consists of a buffer called the trace build buffer (TBB) (Figure 22). While 

CPC is in trace assembly mode (explained later), the head address is 

stored in TBB, one cycle after the previous block ends. Tail address is the 

address of the control instruction that terminates the executed basic 

block. If a conditional branch ends the block, the branch status gets 

filled. After all TBB fields have been filled, TBB contents are copied into 

BPC. 

Head Address Tail Address Branch Status 

Figure 22. Trace build buffer: The buffer entry is completed upon 

detection of end of block condition and after the block-end 

branch status is known. 

2.2.3 Merging Buffer 

A single trace is made up of basic blocks that can be stored in one 

or more ways. Basic blocks read from BBC are first rearranged in the 

execution order and then aligned in the merging buffer (Figure 23) before 

being sent to the decoder and the execution engine. Depending on the 



 

 

        

   

 

 

 

 

    

   

 

 

       

       

    

 

  

          

        

          

           

       

  

-43-

implementation, the merging buffer can perform its function on a single 

trace in one cycle. 

Data from BBC data array 

Way 0-3 Way 0-3 Way 0-3 Way 0-3 

Mux Mux Mux Mux 

Block0 Block1 Block2 Block3 

Block0 Block1 Block2 Block3 

Rearranging 

basic blocks 

Merging 

basic blocks 

Figure 23. Merging buffer: Blocks retrieved from different BBC-ways are 

first re-arranged (in execution order) and aligned before 

being sent for execution. 

2.2.4 Branch Predictor 

A branch predictor is implemented in the form of a branch history 

table (BHT) with 2-bit counters (Figure 24). In this research, BHT size is 

fixed at an arbitrary value of 1024 entries. Bits 12:3 of an address are 

called masked address and are used to index into BHT. (In our 

addressing scheme, bits 2:0 are always zero and are not used for 

indexing). 



 

 

 

 

           

  

 

 

       

            

           

       

       

  

    

       

          

       

      

-44-

Figure 24. Branch predictor implemented in the form of a branch 

history table. 

Two-bit saturating counters are incremented on a taken branch 

and decremented on a not-taken branch. A counter value of 2 or 3 

predicts that a branch will be taken while a value of 0 or 1 predicts that 

the branch will not be taken. The branch predictor provides multiple 

predictions in a cycle; n-1 predictions are made for an n-block trace 

(BPC-line). 

2.3 CPC-ST Operation 

A CPC-based system essentially operates in two modes: trace 

assembly mode and trace delivery mode (Figure 25). This means that CPC 

is either supplying instructions to the decoder and the execution engine 

or is assembling the traces for storage in BPC and BBC. While trace 



 

 

     

  

  

 

 
 

        

  

 

 

      

        

          

 

       

      

        

       

     

  

-45-

assembly takes place, the instructions are fetched from IC. The logic 

inside a CPC-storage module is responsible for deciding CPC’s operating 

mode. 

Figure 25. CPC's two modes of operation: trace assembly mode and 

trace delivery mode 

A high-level view of functions performed during trace assembly 

mode and trace delivery mode is shown below (Figure 26). 

A CPC trace miss can happen due to one or both of the following 

reasons: 

(1) A trace miss occurs in BPC because the trace was not built 

or was overwritten by another trace, or 

(2) A block miss occurs in BBC because the block was never 

stored or because it was over-written was another block 

A CPC trace hit occurs when the following three conditions are 

met: 



 

 

          

  

         

           

  

(1) 

-46-

The current address matches a block head address in BPC, 

and 

(2) A tag match happens in BBC, and 

(3) The branch bits (in BPC) of all hit blocks match their tail 

branch predictions. 



 

 

 

 

 

          

     

   

 

-47-

Figure 26. A high-level view of the functions performed by CPC: Tasks 

specific to the two operating modes are enclosed in the larger 

outer boxes. 



 

 

    

      

         

           

   

       

       

       

         

         

          

      

             

      

         

     

         

          

       

        

       

-48-

2.3.1 Trace Assembly Mode 

When the program initially starts running, there are misses on 

both CPC and IC and the instructions are fetched from the main 

memory. CPC does not contain any valid data at this time and CPC is in 

trace assembly mode. 

As instructions execute, they are stored at selected locations in the 

BBC structure inside the CPC storage module. Concurrently, head and 

tail addresses of basic blocks are identified and stored in the trace build 

buffer (TBB) in the CPC trace build engine. After an end-of-block 

condition is recognized, contents of TBB (head address, tail address, and 

branch taken/not-taken status bit) are written out to a BPC line. The ID 

of the BBC-way in which this block’s instructions are stored is also 

placed in BPC. After a fixed number of TBB writes to BPC line is done, 

the trace is considered built. In this research, four TBB writes are 

required to build one trace. One can note that at the beginning of an 

assembly process, two additional tasks are done: 

(1) Finding a line in BPC for trace placement, and 

(2) Finding a way for basic block placement in BBC. 

When a program starts running, there are enough empty BPC lines 

to save the traces. However, as the program execution continues, all BPC 

lines become occupied and some trace needs to be evicted to make room 



 

 

       

           

    

        

       

         

           

  

        

        

           

              

        

         

            

       

        

           

        

 

-49-

for a new trace. BPC-line and BBC-way replacement policies are 

discussed in Section 2.3.5.1 and Section 2.3.5.2, respectively. 

2.3.2 Trace Delivery Mode 

Upon a trace hit, CPC switches to trace delivery mode and 

instructions from BBC are supplied to the decoder and the execution 

engine. During the trace delivery mode, the LRU bits for BPC lines and 

BBC ways are also updated. (Refer to Sections 2.3.5.1 and 2.3.5.2 for 

details). 

When an address matches any block head address in BPC, branch 

predictions are performed for the hit block and for all other blocks 

(except the last block) that follow the hit block. For example, if there is a 

hit on the 1st block in BPC, the branch-bit in BPC at the end of the block 

must match the branch-prediction for the block’s tail address. Any 

mismatch of predicted branch bit with stored branch bit causes the trace 

to be cut-off at that point, which is called a partial trace hit. In other 

words, a head address is searched as the first requirement in 

determining a trace hit or miss; and as the second requirement, tail 

address of a hit block is used for looking up the branch history table for 

a branch prediction. A few cases are analyzed in the following two 

sections. 



 

 

    

  

      

       

        

         

        

  

       

      

          

        

  

   

          

        

           

    

         

      

         

-50-

2.3.3 Branch Prediction-Related Cases 

(1) Case 1: 

Assume that branch status bits in BPC are [not taken]-[not taken]-

[taken] and predicted branches are [not taken]-[not taken]-[taken]. In this 

case, all branch predictions match the branch status bits, so there is a 

full-trace hit. In BPC, the full trace contains all 4 blocks; the blocks still 

have to be located in BBC for a complete hit. 

(2) Case 2: 

Now consider a case where branch status bits in BPC are [not 

taken]-[not taken]-[taken] and predicted branches are [not taken]-[not 

taken]-[not taken]. Here, there is a misprediction on the 3rd branch, so it 

is considered a partial trace hit. The trace effectively contains only 3 

blocks. 

(3) Case 3: 

Consider an example where there is a hit on the 2nd block in BPC 

and there is a branch prediction mismatch with a current block’s status 

bit. In this case, the partial hit part is limited to only one block. 

2.3.4 Miss Rate Related Cases 

Basic blocks found in BBC may reside in one or more ways in a 

multi-way BBC configuration. The merging buffer is used to assemble 

these basic blocks into a full trace (as discussed in Section 2.3.1). The 



 

 

        

    

   

         

       

        

 
    

 

  

 

  

 

  

      

      

       

       

 
 

         

  

 

 

          

       

      

           

-51-

method with which basic blocks are accessed from BPC and BBC is 

explained in the following examples. 

(1) Case 1: 

Assume a 4-way BBC has started executing a program and has 

caused a trace miss. As the code execution proceeds, the 4 basic blocks 

shown in Figure 27 are identified for the trace. 

Block number Block head 

address 

Block tail 

address 

Number of 

instructions 

Branch status 

0 0020 0030 3 Taken (T) 

1 0050 0058 2 Taken (T) 

2 01B8 01F8 9 Not taken (NT) 

3 0200 0228 6 Don’t care (X) 

Figure 27. Information for a single trace that has four basic blocks of 

different lengths 

The state of BPC after placement of the trace in BPC is shown in 

Figure 28. The first line shows the current trace with the trace valid bit 

set. Other traces are marked invalid. Storage of these basic blocks 

(designated by Block 0-Block 3) in BBC is shown in Figure 29. 



           

       

        

        

       

       

       

        

        

       

       

       

       

Way 0 Way 1 Way 2 Way 3 

Block 0 

Block 1 

Block 2 

Block 3 

 

 

 
  

 

 

 
 

 

 
 

 

  
 

 

 
 

 

 
 

 

  
 

 

 
 

 

 
 

 

  
 

 

 
 

 

 
 

 

  
 

 

 

 

 

               

               

               

               

 
 

         

         

 

 

 
 

           

     

     

 

 

   

           

          

        

         

          

-52-

Trace 

Valid 

Head 

Block 
0 

Tail 

Block 
0 

Way 

ID 
0 

Head 

Block 
1 

Tail 

Block 
1 

Way 

ID 
1 

Head 

Block 
2 

Tail 

Block 
2 

Way 

ID 
2 

Head 

Block 
3 

Tail 

Block 
3 

Way 

ID 
3 

Branch 

Status 

Trace 

LRU 

1 0020 0030 0 0050 0058 1 01B8 01F8 2 0200 0228 2 TTN 100 

0 0000 0000 0 0000 0000 0 0000 0000 0 0000 0000 0 TTT 000 

0 0000 0000 0 0000 0000 0 0000 0000 0 0000 0000 0 TTT 000 

0 0000 0000 0 0000 0000 0 0000 0000 0 0000 0000 0 TTT 000 

Figure 28. A BPC line that contains trace information for the trace in 

Figure 27. Only the first BPC line contains a valid trace. 

Figure 29. Placement of 4 basic blocks for 

blocks are in the same way whi

in their own BBC-ways. 

a 

le 

single trace in BBC: 2 basic 

other two basic blocks land 

(2) Case 2: 

Assume that there are 3 valid traces (traces 0, 1, and 2) in BPC of 

Figure 30. Block 3 of trace 0 is common to multiple traces; the same 

block also represents blocks 1 and 3 of trace 2. (The common blocks are 

highlighted with thick borders). As mentioned previously, a block that 

appears repeatedly in BPC is stored only once in BBC. 



 

 

 
 
  

  
 

 
 

 

 
 

 

 
  

 

 
 

 

 

  

 
  

 

 
 

 

 
 

 

 
  

 

 
 

 

 
 

 

 
  

 

 
 

 
 

                

                

                

                

                

                

 
 

        

      

    

 

    

   

       

       

             

           

            

         

       

      

         

           

       

-53-

Trace 
number 

0 

1 

2 

N-1 

N 

Trace 
Valid 

1 

Head 
Block 

0 

0020 

Tail 
Block 

0 

0030 

Way 
ID 

0 

0 

Head 
Block 

1 

0050 

Tail 
Block 

1 

0058 

Way 
ID 

1 

1 

Head 
Block 

2 

01B8 

Tail 
Block 

2 

01F8 

Way 
ID 

2 

2 

Head 
Block 

3 

0200 

Tail 
Block 

3 

0228 

Way 
ID 

3 

2 

Branch 
Status 

TTN 

Trace 
LRU 

100 

1 00F0 00F8 2 0310 0320 2 0050 0058 1 0390 0418 2 TNT 010 

1 1098 10A0 3 0200 0228 2 1098 10A0 3 0200 0228 2 TTT 110 

0 0000 0000 0 0000 0000 0 0000 0000 0 0000 0000 0 TTT 000 

0 0000 0000 0 0000 0000 0 0000 0000 0 0000 0000 0 TTT 000 

Figure 30. Three valid traces in BPC: There is one basic block 

(highlighted) that appears twice in the first trace and again 

in the 3rd trace. 

2.3.5 Cache Replacement Policy 

2.3.5.1 BPC Line Replacement 

The least recently used (LRU) replacement scheme is used for 

replacing traces (lines) in BPC. The LRU bits specific to each trace are 

updated upon a partial or full hit of the trace. In the beginning, all LRU 

bits are set to 0. On a trace hit, LRU bits for all BPC lines are shifted 

right by a bit. LRU MSB’s for all but the hit line are filled with 0; the hit-

line is assigned a 1 in its LRU’s MSB. When the need arises for a trace 

eviction from BPC, the line with the lowest LRU value is chosen. The 

following example further explains the workings of the BPC-LRU scheme. 

One can assume an 8-line BPC with a 3-bit LRU field. At the 

beginning of a program, all lines in BPC LRU are set to 000. Suppose, 

later during the program execution, BPC LRU field values are as shown 



 

 

          

            

         

            

        

              

       

 

 

           

 

                   

 

                   

 
n hits n+1 hits n+2 hits 

  

            

 

      

      

          

            

-54-

in Figure 31 (a). (Block head, tail, and way-ID fields are omitted for 

simplicity). If there is a hit on a block in BPC-line 2 (or trace 2), LRU bits 

for all traces are shifted one bit to the right. The MSB of the hit block’s 

LRU field is set to 1. Updated LRU fields are shown in Figure 31 (b). Yet 

another hit to the same trace changes LRU fields as given in Figure 31 

(c). In Figure 31 (c), lines 0, 3, 4 and 7 have the lowest LRU value, so any 

one of them can be used for BPC line eviction. 

Figure 31. BPC LRU after n, n+1, and n+2 hits on BPC-line 2 

2.3.5.2 BBC-Way Selection & Replacement 

The LRU replacement scheme has also been used for replacing 

basic blocks in BBC. LRU status for a BBC line is stored in its own LRU 

field. On the onset of code execution, all LRU bits are set to 0’s. On every 



 

 

          

         

 

 
 

            

         

 

 

        

           

       

         

          

       

   

        

          

-55-

access to BBC, all LRU status bits are shifted right by one bit with MSB 

being 0. But the line in the hit trace has its LRU’s MSB set to 1. 

Figure 32. BBC LRU fields are 3 bits wide. Each way has its own set of 

LRU bits (Tag and data fields are not shown for clarity). 

One can assume a 4-way BBC structure with each way composed 

of 8 lines. The 3-bit LRU fields are shown in Figure 32. (Tag and data 

fields have been omitted to simplify the figure). One can suppose a 

moment in time during a program run at which the LRU fields hold the 

values shown in the figure. Whenever there is a need to evict line-3 from 

BBC, Way-2 would be replaced because its LRU value is the smallest of 

the four. 

We will look at another example to show how the LRU fields are 

updated when we have a block hit in BBC. For this example, LRU fields 



 

 

     

           

             

       

 

            
 

         

 

 

     

       

     

-56-

for only one BBC-line are shown in Figure 33. The figure shows changes 

in LRU bits as a result of two hits on Way-3. The state of Way-3 LRU 

changes from “001” to “100” on first hit, and to “110” on the second hit. 

Note that lines other than the hit line remain unchanged. 

Figure 33. Changes in BBC LRU values after 3 hits to the same BBC-

way 

2.3.6 Cache Structure Indexing 

Structurally, BPC is fully-associative, and BBC is n-way set 

associative. Looking up BPC simply involves comparing the current 



 

 

          

     

     

      

          

        

         

      

   

       

 

     

       

      

       

    

    

        

            

       

         

-57-

instruction with the head addresses stored in BPC lines. Head and tail 

address fields in BPC store full addresses. This type of cache 

configuration has higher performance than other schemes (such as set-

associative) [Rotenberg et al. 1999] but its drawback is full-address 

lookup instead of just the tag. This drawback, however, is not considered 

a major performance issue in CPC because of the limited number of trace 

lines being stored in BPC. Note that in BBC, new blocks can potentially 

overwrite the already present block(s). This clobbering of blocks can 

cause some performance degradation. 

Indexing into BBC is demonstrated by a sample BBC configuration 

as follows: 

(1) BBC has 4 ways 

(2) Each BBC way has 512 lines 

(3) Each BBC line is one instruction wide 

(4) Each instruction takes up 8 bytes 

(5) Addresses are 16 bits wide 

(6) Instructions are 8 bytes long 

For block storage in BBC, addresses are split into index and tag 

fields. The BBC-way length of 512 means the index field is log2(512) = 9 

bits wide. As the 3 least significant bits in an address are always zero, 

these bits do not need to be stored. The remaining 16-9-3 = 4 bits form 



 

 

       

  

 

 
 

        

       

 

 

         

      

        

          

         

         

-58-

the tag field. Three addresses split into tag and index fields are shown in 

Figure 34. 

Figure 34. Examples of BBC addressing fields: Tag and index 

information for 3 blocks is shown. 

Block-0 with a head address of 13E0 has an index of 

(0_0111_1100)2 = (124)10. So the block’s starting location is the 124th line 

in the selected BBC-way. Similarly, Block-1 with head address A7B8 is 

placed at location with index 0_1111_0111)2 = (247)10. Note that Blocks-2 

and -3 have the same index, so they occupy different BBC ways. 

Placement of Figure 34’s blocks in BBC is shown in Figure 35. 



 

 

 
 

          

      

    

 

 

 

-59-

Figure 35. Block placement in BBC: The index values of Figure 34 

determine block locations in BBC. Way-selection is done 

using the LRU bits (not shown). 



 

 

 

 

  

 

 

 

   

 

   

 

 

 

 

 

 

 

 

  

 

 

         

 

Instruction 

Cache 

Mux-1 Mux-0 

Execution Engine(s) 

Branch 

Predictor - 0 

BHT-0 

1 

0 

Built 

CPC Trace Build Trace -

Engine - 1 

BPC 

BBC 

Way-1 

Way-3 

Way-2 

Way-0 

CPC Storage 

Module 

Merging 

Buffer-0 

Merging 

Buffer-1 

Built 

CPC Trace Build Trace -

Engine - 0 

Branch prediction-0 

Branch prediction-1 

Branch Info Branch Info 

Branch 

Predictor - 1 

BHT-1 

Figure 36. Overall view of a CPC-MT-based system 

 

 

    

         

         

        

      

         

   

 

     

  

-60-

2.4 CPC-MT Architecture 

An overall view of CPC-MT architecture is shown in Figure 36. BPC 

and BBC are the only structures in CPC-MT that are shared among 

threads. The threads are assigned their own dedicated lines in BPC, so 

the threads do not overwrite each other’s traces. BBC, however, is 

common to all threads and the basic blocks from a thread can clobber 

other thread’s blocks. 

The following sections of CPC architecture depend on thread 

multiplicity: 



 

 

          

 

          

   

        

        

        

  

         

   

     

      

     

        

        

     

     

      

          

        

     

-61-

• BPC: An additional field thread-ID field identifies which thread a 

trace belongs to 

• BBC: An additional field thread-ID field identifies which thread a 

basic block belongs to 

• Trace build engine: Each thread needs its own trace build engine 

• Merging buffer: This buffer is also replicated for every thread 

• Branch predictor: Multiple branch predictors are used, one for 

each thread. 

• Branch history table: Every thread has its own branch history 

table. 

2.5 CPC-MT Operation 

CPC’s operation in a multi-threaded mode is similar to the single-

threaded mode. As mentioned earlier, the difference here is that multi-

threads get the basic blocks built in their own trace build engines. Each 

thread also gets its own branch history table and branch predictor. The 

multiplicity of some resources makes trace assembly and the branch 

prediction process thread-independent. The CPC storage module may see 

simultaneous write and read requests, so the module processes them in 

a round-robin fashion. In our study, we allocated dedicated BPC lines to 

threads, but we kept BBC as a thread-shared resource. A thread-

dedicated BBC configuration would have made the CPC-MT 



 

 

     

  

 

-62-

implementation function like completely independent instantiations of 

CPC-ST. 



 

 

 

 

 

 

  

      

   

       

      

        

     

   

       

        

        

           

         

       

      

       

         

       

CHAPTER III 

CODE PATTERN CACHE SIMULATION & MODELING 

3.1 CPC Simulation 

In this section, we first discuss the simulators for TC, BC, and 

CPC. Then we cover the topics such as simulation parameters and 

benchmarks. After that, we go over the simulation results. Finally, we 

present the outcome of CPC’s design space study. 

3.1.1 Sim-CPC 

We created a VHDL-based cache simulator called Sim-CPC to 

study the CPC architecture. Sim-CPC enabled functional simulation for 

CPC, but did not include any timing information such as cache latency. 

A high-level block diagram for Sim-CPC is shown in Figure 37. Every 

simulation cycle, one set of address and instruction is read from a 

benchmark’s trace file until the end of the file is reached to end the 

simulation. After the simulation is completed, the final values of trace 

miss rate and average trace length are saved in a log file. We developed 

two more functional simulators similar to Sim-CPC: Sim-TC for TC 

simulation, and Sim-BC for BC simulation. 

-63-



 

 

 
 

           

      

      

      

    

  

 

 

      

     

     

        

 

-64-

Figure 37. Sim-CPC simulator with inputs and outputs: A single set of 

inputs (address and instruction) is read from the trace file 

every cycle. At the end of the simulation, the outputs (trace 

miss rate and average trace length) are saved in a log file. 

Sim-TC and Sim-BC operate on the same principles as Sim-

CPC. 

We wrote a Perl script to create many variations of the three 

simulators (Sim-TC, Sim-BC, and Sim-CPC) using the parameters listed 

in Table 1. We ran all three simulators using V-System’s ModelSim 

(version 4.f), on a Pentium-4, 2.4 GHz MS-Windows-XP-based personal 

computer. 



 

 

             

 

 
    

             

             

    

 
   

     

   
       

   
    

 

    

 

    

 

         
  

  

                   

    

 
   

    

   
    

   

  

  

   

   

  
   

 

       

        

           

  

 
 

         

      

      

         

 

 

-65-

Table 1. Configuration parameters for Sim-TC, Sim-BC, and Sim-

CPC 

Parameter TC BC CPC 

Number of lines in BPC N/A 64, 256, 512 64, 256, 512 

Max number of traces 64, 256, 512 64, 256, 512 64, 256, 512 

Number of ways in 

TC/BPC 
1 1 1 

Number of lines in each 

BBC way 
N/A 512, 1024, 2048 512, 1024, 2048 

Cache capacity (KB) 
1K, 2K, 4K, 8K, 

16K 

1K, 2K, 4K, 8K, 

16K 

1K, 2K, 4K, 8K, 

16K 

TC/BBC associativity 1 way (direct) 1 way (direct) 
1-way (direct), 2-

way, 4-way 

Number of threads 1, 2, 4, 8, 16 1, 2, 4, 8, 16 1, 2, 4, 8, 16 

Max basic blocks per 

trace 
4 4 4 

Max possible number of 

instructions per trace 
16 16 Not limited 

Max number of 

instructions delivered 

per cycle 

16 16 16 

Entries in branch 

history table 
1024 1024 1024 

A sample ModelSim simulation screen for Sim-CPC is shown in 

Figure 38. A new address-instruction set (addr and instr) is read every clk 

cycle. 

Figure 38. Sim-CPC simulation using ModelSim: An address (addr) and 

an instruction (instr) are read from the benchmark trace file 

every clk cycle. A trace hit causes operation-mode switch 

from trace assembly to trace delivery (supply) at 61530 ns. 



 

 

   

        

      

       

          

  

            

 
     

   

     

     

     

   

    

    

     

    

 
    

 
  

       

   

        

    

       

       

-66-

3.1.2 Benchmark Programs 

For performance comparison of the caches, we used 10 benchmark 

programs (listed in Table 2) from the SPECint2000 suite [Spec 2000]. The 

programs were compiled with gcc compiler (version 2.7.2.2 using -O0 

option). Refer to Appendix for a detailed description of the 10 

benchmarks. 

Table 2. Benchmarks for comparing CPC with TC and BC 

Benchmark Description Input Data Set 

bzip Compression input.random 

crafty Game playing: chess crafty.in 

gap Group theory, interpreter test.in 

gcc C language compiler cccp.i 

gzip Compression input.compressed 

mcf Combinatorial optimization inp.in 

parser Word processing test.in 

perlbmk PERL language test.pl, test.in 

vortex Object-oriented database lendian.raw 

vpr 
FPGA circuit placement & 

routing 
net.in, arch.in 

3.1.3 Workload Mixes 

Using the integer benchmarks of Table 2, we created ST and MT-

workloads (Table 3). WL0a-WL0j are single-threaded workloads and WL1-

WL9 are multi-threaded workload mixes. Note that for the 16-thread 

configuration, some benchmarks were run on more than one thread. 



 

 

            

 

 
 

  

 
 

 

 

 

 

 

       

   

    

    

    

    

      

      

  
       

 

  
       

 

  

       

       

  

          

   

        

          

        

            

          

            

      

         

       

            

-67-

Table 3. Integer workload mixes for single and multi-threaded 

simulations 

Workload/ 

Mix # 

Thread 
Count 

Benchmarks 

WL0a-WL0j 1 bzip, crafty, gap, gcc, gzip, mcf, parser, 

perlbmk, vortex, vpr 

WL1 2 bzip, crafty 

WL2 2 gap, gcc 

WL3 2 parser, perlbmk 

WL4 2 vortex, vpr 

WL5 4 bzip, crafty, gap, gcc 

WL6 4 gap, gcc, gzip, mcf 

WL7 8 
bzip, crafty, gap, gcc, gzip, mcf, parser, 

perlbmk 

WL8 8 
gap, gcc, gzip, mcf, parser, perlbmk, vortex, 

vpr 

WL9 16 

bzip, crafty, gap, gcc, gzip, mcf, parser, 

perlbmk, gap, gcc, gzip, mcf, parser, perlbmk, 

vortex, vpr 

3.1.4 Simulation Results 

We ran simulations for different configurations of TC, BC, and CPC 

(already described in Section 3.1.1) to collect the performance data. In 

order to make reasonable comparisons of TC with BC and CPC, we 

simulated similar sizes of caches. For example, a CPC (BBC) of 1K 

capacity was compared with the TC of 1K capacity and with the BC 

(block cache) of 1K capacity. We ran simulations for 1K, 2K, 4K, 8K and 

16K caches, in single-way configurations. 

The ST notations (for example, in Figure 39) can be understood 

with these two examples: “bzip 1K” represents the miss rate or trace 

length comparison for bzip benchmark when run on a 1K cache; “crafty 



 

 

       

          

       

        

        

            

          

      

    

            

        

        

    

        

        

         

   

          

       

          

         

-68-

8K” represents the miss rate comparison for crafty benchmark when run 

on an 8K cache. Similarly, the MT notations (for example, in Figure 40) 

can be explained with these two examples: “WL1_2thd_1K” stands for the 

relative miss rate or trace length when a WL1 (2-thread) workload is run 

on a 1K cache, and “WL7_8thd_8K” stands for the relative miss rate or 

trace length for a WL7 (8-thread) workload when run on an 8K cache. 

The same (ST and MT) notations will be used through out Section 3.1.4. 

3.1.4.1 Miss Rates in Single-Threaded Environment 

For ST-workloads (WL0a-WL0j in Table 3), the trace miss rates are 

shown in Figure 39. In the ST environment, CPC’s miss rate reduction 

over TC varied from 43% to 95%, whereas CPC’s miss rate reduction 

compared to BC was between 5% and 48%. The miss rate reduction 

percentages dropped slightly when cache sizes were increased. As cache 

sizes grew, the gap between CPC and BC miss rates was smaller than the 

gap between CPC and TC miss rates. CPC’s miss rates for larger-block 

benchmarks (e.g., crafty, gcc, gzip, perlbmk) seem to be better than 

smaller-block benchmarks. 

CPC’s miss rate gains over TC can be attributed to the reduction in 

the block overlap among the CPC traces. Being able to hold blocks that 

are longer than what fixed-width BC would store made it possible for 

CPC to have lower miss rates than BC. CPC, with 1K trace capacity, has 



 

 

          

       

           

         

    

 

        

  

    

 

    

 

    

 

    

 

    

 

    

 

    

     

 

    

 

  

  

 
 

         

      

       

 

     

      

    

        

      

           

        

     

-69-

miss rates comparable to 16K TC or to 8K BC. However, if we keep 

increasing TC and BC’s cache capacity, their performance gap with CPC 

will start to shrink. Hossain (2002) suggested using 98% or higher 

accuracy of branch prediction to utilize the full potential of TC. The same 

recommendation could also improve CPC’s performance. 

0.0% 

10.0% 

20.0% 

30.0% 

40.0% 

50.0% 

60.0% 

70.0% 

80.0% 

90.0% 

100.0% 

b
z

ip
 

1
K

 

b
z

ip
 

2
K

 

b
z

ip
 

4
K

 

b
z

ip
 

8
K

 

b
z

ip
 

1
6

K

c
ra

ft
y 

1
K

 

c
ra

ft
y 

2
K

 

c
ra

ft
y 

4
K

 

c
ra

ft
y 

8
K

 

c
ra

ft
y 

1
6

K

g
a

p 
1

K
 

g
a

p 
2

K
 

g
a

p 
4

K
 

g
a

p 
8

K
 

g
a

p 
1

6
K

g
c

c 
1

K
 

g
c

c 
2

K
 

g
c

c 
4

K
 

g
c

c 
8

K
 

g
c

c 
1

6
K

g
z

ip
 1

K
 

g
z

ip
 2

K
 

g
z

ip
 4

K
 

g
z

ip
 8

K
 

g
z

ip
 1

6
K

m
c

f 
1

K
 

m
c

f 
2

K
 

m
c

f 
4

K
 

m
c

f 
8

K
 

m
c

f 
1

6
K

p
a

rs
e

r 
1

K
 

p
a

rs
e

r 
2

K
 

p
a

rs
e

r 
4

K
 

p
a

rs
e

r 
8

K
 

p
a

rs
e

r 
1

6
K

p
e

rl
b

m
k 

1
K

 

p
e

rl
b

m
k 

2
K

 

p
e

rl
b

m
k 

4
K

 

p
e

rl
b

m
k 

8
K

 

p
e

rl
b

m
k 

1
6

K
 

v
o

rt
e

x 
1

K
 

v
o

rt
e

x 
2

K
 

v
o

rt
e

x 
4

K
 

v
o

rt
e

x 
8

K
 

v
o

rt
e

x 
1

6
K

v
p

r 
1

K
 

v
p

r 
2

K
 

v
p

r 
4

K
 

v
p

r 
8

K
 

v
p

r 
1

6
K

 

CPC vs TC 

CPC vs BC 

Figure 39. CPC's miss rate comparison with TC and BC in single-

threading environment. On average, CPC is 73.7% better 

than TC and 22.7% better than BC. 

3.1.4.2 Miss Rates in Multi-Threaded Environment 

The miss rate comparisons for MT-workloads (WL1-WL9 in Table 3) 

are shown in Figure 40. With these workloads, CPC consistently 

performed better than TC, with trace miss rate improvements ranging 

from 69% to 95%. CPC had somewhat similar miss rates as BC for WL2 

and WL3 workload mixes; whereas for other 8 workloads, CPC’s miss 

rate was much better than BC. 



 

 

       

   

       

          

 

  

  

 
 

         

      

        

 

     

     

       

         

         

         

         

       

    

-70-

CPC-MT’s miss rate gains over TC-MT can be ascribed to reduction 

in overlapping instructions among the traces. Similarly, CPC’s 

accommodation of variable length blocks, as compared to BC’s fixed 

length blocks, seems to have helped CPC offer better miss rates than BC. 

0.0% 

10.0% 

20.0% 

30.0% 

40.0% 

50.0% 

60.0% 

70.0% 

80.0% 

90.0% 

100.0% 

W
L

1
_

2
th

d
_

1
K

 

W
L

1
_

2
th

d
_

2
K

 

W
L

1
_

2
th

d
_

4
K

 

W
L

1
_

2
th

d
_

8
K

 

W
L

1
_

2
th

d
_

1
6

K
 

W
L

2
_

2
th

d
_

1
K

 

W
L

2
_

2
th

d
_

2
K

 

W
L

2
_

2
th

d
_

4
K

 

W
L

2
_

2
th

d
_

8
K

 

W
L

2
_

2
th

d
_

1
6

K
 

W
L

3
_

2
th

d
_

1
K

 

W
L

3
_

2
th

d
_

2
K

 

W
L

3
_

2
th

d
_

4
K

 

W
L

3
_

2
th

d
_

8
K

 

W
L

3
_

2
th

d
_

1
6

K
 

W
L

4
_

2
th

d
_

1
K

 

W
L

4
_

2
th

d
_

2
K

 

W
L

4
_

2
th

d
_

4
K

 

W
L

4
_

2
th

d
_

8
K

 

W
L

4
_

2
th

d
_

1
6

K
 

W
L

5
_

4
th

d
_

1
K

 

W
L

5
_

4
th

d
_

2
K

 

W
L

5
_

4
th

d
_

4
K

 

W
L

5
_

4
th

d
_

8
K

 

W
L

5
_

4
th

d
_

1
6

K
 

W
L

6
_

4
th

d
_

1
K

 

W
L

6
_

4
th

d
_

2
K

 

W
L

6
_

4
th

d
_

4
K

 

W
L

6
_

4
th

d
_

8
K

 

W
L

6
_

4
th

d
_

1
6

K
 

W
L

7
_

8
th

d
_

1
K

 

W
L

7
_

8
th

d
_

2
K

 

W
L

7
_

8
th

d
_

4
K

 

W
L

7
_

8
th

d
_

8
K

 

W
L

7
_

8
th

d
_

1
6

K
 

W
L

8
_

8
th

d
_

1
K

 

W
L

8
_

8
th

d
_

2
K

 

W
L

8
_

8
th

d
_

4
K

 

W
L

8
_

8
th

d
_

8
K

 

W
L

8
_

8
th

d
_

1
6

K
 

W
L

9
_

1
6

th
d

_
1

K
 

W
L

9
_

1
6

th
d

_
2

K
 

W
L

9
_

1
6

th
d

_
4

K
 

W
L

9
_

1
6

th
d

_
8

K
 

W
L

9
_

1
6

th
d

_
1

6
K

 

CPC vs TC 

CPC vs BC 

Figure 40. CPC's miss rate comparison with TC and BC in multi-

threading environment. On average, CPC is 85.7% better 

than TC and 36% better than BC. 

3.1.4.3 Trace Length in Single-Threaded Environment 

For single-threaded workloads (WL0a-WL0j in Table 3), the trace 

length comparisons are shown in Figure 41. Trace length gains varied 

widely in the ST-environment. TC’s trace lengths ranged from -10% to 7% 

of the CPC traces for five of the workloads; for the other five workloads, 

the trace length gains of CPC were up to 254% of the TC trace lengths. 

CPC traces were up to 265% longer than BC’s traces. CPC’s ability to 

hold the blocks that are not length-limited seems to be the reason for the 

higher value of trace lengths. 



 

 

        

  

    

 

    

 

    

 

    

 

    

 

    

 

    

     

 

    

 

  

  

 
 

          

      

        
 

     

      

        

          

       

         

           

         

         

      

    

 

-71-

-20.0% 

10.0% 

40.0% 

70.0% 

100.0% 

130.0% 

160.0% 

190.0% 

220.0% 

250.0% 

280.0% 

b
z

ip
 

1
K

 

b
z

ip
 

2
K

 

b
z

ip
 

4
K

 

b
z

ip
 

8
K

 

b
z

ip
 

1
6

K

c
ra

ft
y 

1
K

 

c
ra

ft
y 

2
K

 

c
ra

ft
y 

4
K

 

c
ra

ft
y 

8
K

 

c
ra

ft
y 

1
6

K

g
a

p 
1

K
 

g
a

p 
2

K
 

g
a

p 
4

K
 

g
a

p 
8

K
 

g
a

p 
1

6
K

g
c

c 
1

K
 

g
c

c 
2

K
 

g
c

c 
4

K
 

g
c

c 
8

K
 

g
c

c 
1

6
K

g
z

ip
 1

K
 

g
z

ip
 2

K
 

g
z

ip
 4

K
 

g
z

ip
 8

K
 

g
z

ip
 1

6
K

m
c

f 
1

K
 

m
c

f 
2

K
 

m
c

f 
4

K
 

m
c

f 
8

K
 

m
c

f 
1

6
K

p
a

rs
e

r 
1

K
 

p
a

rs
e

r 
2

K
 

p
a

rs
e

r 
4

K
 

p
a

rs
e

r 
8

K
 

p
a

rs
e

r 
1

6
K

p
e

rl
b

m
k 

1
K

 

p
e

rl
b

m
k 

2
K

 

p
e

rl
b

m
k 

4
K

 

p
e

rl
b

m
k 

8
K

 

p
e

rl
b

m
k 

1
6

K
 

v
o

rt
e

x 
1

K
 

v
o

rt
e

x 
2

K
 

v
o

rt
e

x 
4

K
 

v
o

rt
e

x 
8

K
 

v
o

rt
e

x 
1

6
K

v
p

r 
1

K
 

v
p

r 
2

K
 

v
p

r 
4

K
 

v
p

r 
8

K
 

v
p

r 
1

6
K

 

CPC vs TC 

CPC vs BC 

Figure 41. CPC's trace length comparison with TC and BC in single-

threading environment. On average, CPC is 79.7% better 

than TC and 106.1% better than BC. 

3.1.4.4 Trace Length in Multi-Threaded Environment 

Trace length comparisons for MT workloads (WL1-WL9 in Table 3) 

are shown in Figure 42. CPC’s trace length improvement over TC ranged 

from -3% to 293%; improvements over BC were from -4% to 315% 

(Figure 42). While multi-threading, BPC is equally divided among the 

threads. For example, for dual threads, half the BPC lines are dedicated 

to one thread and the other half to the other thread. On the other hand, 

all BBC lines are open to all threads, which can cause the traces from 

different threads to clobber each other. The combination of reduced BPC 

capacity per thread and inter-thread trace collisions are the apparent 

reasons for a wide variation of performance results while multi-

threading. 



Figure 42. CPC's trace length rate comparison with TC and BC in multi-

threading environment. On average, CPC is 86.1% better 

than TC and 98.4% better than BC. 

3.1.4.5 CPC’s Overall Gains in Trace Miss Rate and Trace Length 

The average values of trace miss rates and trace lengths are shown 

in Table 4 and Table 5. In all cases, CPC’s average values of miss rate 

and trace length are better than those of TC and BC. 

Table 4. Miss rate comparison for single and multi-threaded 

environments 

 

 

  

  

 
 

          

       

        

 

        

   

          

         

 

          

 

 

 
  

  
  

  
  

  

 
  

 
   

 
  

 
   

   

 

-72-

-30.0% 

0.0% 

30.0% 

60.0% 

90.0% 

120.0% 

150.0% 

180.0% 

210.0% 

240.0% 

270.0% 

300.0% 

330.0% 

W
L

1
_

2
th

d
_

1
K

 

W
L

1
_

2
th

d
_

2
K

 

W
L

1
_

2
th

d
_

4
K

 

W
L

1
_

2
th

d
_

8
K

 

W
L

1
_

2
th

d
_

1
6

K
 

W
L

2
_

2
th

d
_

1
K

 

W
L

2
_

2
th

d
_

2
K

 

W
L

2
_

2
th

d
_

4
K

 

W
L

2
_

2
th

d
_

8
K

 

W
L

2
_

2
th

d
_

1
6

K
 

W
L

3
_

2
th

d
_

1
K

 

W
L

3
_

2
th

d
_

2
K

 

W
L

3
_

2
th

d
_

4
K

 

W
L

3
_

2
th

d
_

8
K

 

W
L

3
_

2
th

d
_

1
6

K
 

W
L

4
_

2
th

d
_

1
K

 

W
L

4
_

2
th

d
_

2
K

 

W
L

4
_

2
th

d
_

4
K

 

W
L

4
_

2
th

d
_

8
K

 

W
L

4
_

2
th

d
_

1
6

K
 

W
L

5
_

4
th

d
_

1
K

 

W
L

5
_

4
th

d
_

2
K

 

W
L

5
_

4
th

d
_

4
K

 

W
L

5
_

4
th

d
_

8
K

 

W
L

5
_

4
th

d
_

1
6

K
 

W
L

6
_

4
th

d
_

1
K

 

W
L

6
_

4
th

d
_

2
K

 

W
L

6
_

4
th

d
_

4
K

 

W
L

6
_

4
th

d
_

8
K

 

W
L

6
_

4
th

d
_

1
6

K
 

W
L

7
_

8
th

d
_

1
K

 

W
L

7
_

8
th

d
_

2
K

 

W
L

7
_

8
th

d
_

4
K

 

W
L

7
_

8
th

d
_

8
K

 

W
L

7
_

8
th

d
_

1
6

K
 

W
L

8
_

8
th

d
_

1
K

 

W
L

8
_

8
th

d
_

2
K

 

W
L

8
_

8
th

d
_

4
K

 

W
L

8
_

8
th

d
_

8
K

 

W
L

8
_

8
th

d
_

1
6

K
 

W
L

9
_

1
6

th
d

_
1

K
 

W
L

9
_

1
6

th
d

_
2

K
 

W
L

9
_

1
6

th
d

_
4

K
 

W
L

9
_

1
6

th
d

_
8

K
 

W
L

9
_

1
6

th
d

_
1

6
K

 

CPC vs TC 

CPC vs BC 

Average TC Average BC Average CPC 
miss rate miss rate miss rate 

Single-threaded 
workload 15.6% 7.7% 4.4% 
(WL0a-WL0j) 

Multi-threaded 
workload 45.8% 21.8% 5.9% 
(WL1-WL9) 



 

 

            

 

 
   

  
  

  
  

  

 
  

 
   

 
  

 

   

  

 

   

      

       

          

  

 

   

 
 

          

       

     

 

 

       

      

-73-

Table 5. Trace length comparison for single and multi-threaded 

environments 

Average TC Average BC Average CPC 
trace length trace length trace length 

Single-threaded 
workload 12.5 11.1 24.3 
(WL0a-WL0j) 

Multi-threaded 
workload 
(WL1-WL9) 

12.6 11.9 24.0 

3.1.4.6 Design Space Study 

As the subject of this research is CPC itself, we conducted 

additional simulations to study CPC’s own design space. We explored 

sensitivity of CPC’s performance to BPC size, BBC size, and thread 

count. 

Miss Rate (%) 

5.9 

5.1 

4.1 

3.6 

3.1 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

1K 2K 4K 8K 16K 

Figure 43: Effect of varying CPC cache (BPC) size (shown on horizontal 

axis) on miss rate: A drop in miss rate happens with increase 

in BPC capacity. 

As expected, the results (Figure 43) showed us that increase in 

BPC size improved the miss rate. The average trace lengths, however, 



 

 

       

         

          

       

  

 

  

 
 

          

     

   

 

 

         

       

        

   

-74-

remained nearly unaffected by the size variation (Figure 44). Currently, 

even a single block hit (partial hit) is considered a trace hit. Changing the 

definition of partial hits to two or more blocks may result in higher 

averages of trace lengths; although this redefinition of partial hits may 

reduce the trace miss rate. 

Trace length (instructions) 

23.9 24.3 24.4 24.4 24.4 

10.0 

15.0 

20.0 

25.0 

30.0 

35.0 

1K 2K 4K 8K 16K 

Figure 44. Effect of varying CPC cache (BPC) size (shown on horizontal 

axis) on trace length. The trace length is relatively insensitive 

to cache size. 

We observed that increasing BBC associativity from 1 to 2 had the 

largest miss rate improvement, but the gains flattened out with higher 

associativities of 4 and 8 (Figure 45); the trend resembles the familiar 

cache-associativity curve. 



 

 

   

 
 

          

         

      

 

 

     

      

         

     

-75-

Miss Rate (%) 

5.9 

4.8 4.7 4.7 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

1 2 4 8 

Figure 45. Effect of varying CPC-BBC associativity on miss rate: After 

an initial drop in miss rate, it flattens out with increase in 

associativity. (Horizontal axis shows number of BBC-ways.) 

The trace lengths were not affected significantly by changing the 

BBC-associativity (Figure 46). The reason for this may be that the storage 

of a basic block is not spread over multiple ways, so the higher 

associativity does not help increase the trace lengths. 



 

 

  

 
 

         

     

     

 

 

 

     

         

        

       

          

       

         

  

-76-

Trace length (instructions) 

23.9 24.3 24.2 24.3 

10.0 

15.0 

20.0 

25.0 

30.0 

35.0 

1 2 4 8 

Figure 46. Effect of varying CPC-BBC associativity of trace length: The 

trace lengths are not affected very noticeably with the change 

in BBC-associativity. (Horizontal axis shows number of BBC-

ways.) 

Results for the sensitivity of miss rate (Figure 47) and trace 

length’s sensitivity to thread count (Figure 48) did not exhibit a 

consistent upward or downward pattern which may be because multiple 

threads can change the locality of reference in BBC, a shared-memory 

structure. A future in-depth study of: (a) benchmarks’ branch behavior 

(type, taken/not-taken frequency, etc.) and (b) inter-thread clobbering 

effect, may help improve our understanding of the performance of CPC in 

multi-threading environments. 



 

 

   

 
 

           

        

    

 

 

  

 
 

           

     

    

 
 

 

-77-

Miss Rate (%) 

4.4 

5.9 

7.1 

4.3 

7.3 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

1 2 4 8 16 

Figure 47. Effect of varying thread count on miss rate: Miss rates do not 

seem to have a consistent correlation with the thread count. 

(Horizontal axis represents thread-count.) 

Trace length (instructions) 

24.3 

14.7 

31.6 

34.2 

25.9 

10.0 

15.0 

20.0 

25.0 

30.0 

35.0 

1 2 4 8 16 

Figure 48. Effect of varying thread count on trace length: No clear 

relationship between thread count and trace lengths is 

visible. (Horizontal axis represents thread-count.) 



 

 

    

           

       

        

    

  

        

     

       

         

        

      

     

     

       

       

        

         

     

       

         

-78-

3.2 CPC Modeling 

In this section, we start with a brief introduction to CACTI, a tool 

for modeling cache power, area, and access time. Then, we cover CACTI’s 

application to the study of trace and block-caches. And finally, we 

discuss the results from CACTI runs. 

3.2.1 CACTI 

For design optimization, it is helpful to quantify the relationship 

between the cache configuration factors, such as cache size, cache 

associativity, and block width. The physical parameters such as aspect 

ratio and sub-blocking are also important [Shivakumar & Jouppi 2001]. 

(Aspect ratio is calculated by dividing cache’s total height by width; sub-

blocking means division of the cache into independent banks to allow 

simultaneous, multiple accesses). Another important metric for cache 

performance is the access time. Wada’s [Wada et al. 1992] cache access-

time model described an analytical method for studying design space 

without the need for time-consuming SPICE simulations. Amrutur & 

Horowitz (2000) presented models for analyzing access time, power, and 

area for SRAM’s. The CACTI tool [Shivakumar & Jouppi 2001] provides 

means for more comprehensive cache studies and allows integration of 

models for access time (cycle time), area, aspect ratio, and power. 

Bringing together these models provides an efficient way of closing in on 



 

 

        

          

        

   

      

        

      

          

           

         

      

           

      

      

       

         

       

       

            

      

-79-

design configurations that are reciprocally consistent. Hanson et al. 

(2003) used CACTI to conduct their study of reduced static energy 

consumption in on-chip level-1 and level-2 caches. 

3.2.2 Using CACTI 

This dissertation utilizes the CACTI (version 3.0) model for 

comparing the access time, consumed power, and die area for TC, BC, 

and CPC. To make the comparison meaningful, storage capacities of 

cache structures in TC, BC, and CPC were kept the same. For example, a 

32K TC was compared with 32K BC and 32K CPC. One can note that the 

equivalents of BC’s trace table and CPC’s BPC do not exist in TC; this 

observation has to be considered while comparing TC’s power and area 

with BC and CPC. Both BC and CPC have additional structures used for 

merging and re-arranging the blocks fetched from the block cache (in BC) 

and BBC (in CPC). The implementation of these merging structures uses 

many fewer transistors than the caches themselves, so they are currently 

being ignored. Cache capacities of 1K, 2K, 4K, 8K, 16K, and 32K were 

used in comparing all three cache schemes. In this chapter, we use the 

CACTI model parameters that are listed in 

Table 6. A point to note is that for a similar amount of trace capacity, 

CPC’s BPC is twice in size as the trace table in BC; CPC stores both 



 

 

         

        

 

             

 
    

      

     

     

     

     

     

   

    
     

      

   

   
   

   

   

    

  

     

   

    

  

               

   

   

   

        

       

        

       

       

   

-80-

block-head and tail addresses, while BC only stores head addresses. (In 

this dissertation, the BC design is assumed to have no renaming table). 

Table 6. CACTI model parameters for TC, BC, and CPC 

Parameter TC BC CPC 

Technology (um) * 0.18 0.18 0.18 

RWP * 1 1 1 

RP * 1 1 1 

WP * 1 1 1 

NBanks * 1 1 1 

Associativity * 1 1 1 

BBC (or equivalent 

cache) line size (bytes) 
64 4 x 64 64 

Number of lines/traces 128 128 128 

BPC (or equivalent 

cache) size (KB) 
N/A 2K 4K 

BBC (or equivalent 

cache) size (KB) 

1K, 2K, 4K, 8K, 

16K, 32K 

4 x (1K, 2K, 4K, 

8K, 16K, 32K) 

1K, 2K, 4K, 8K, 

16K, 32K 

* Refer to [Shivakumar & Jouppi 2001] for detailed explanations of CACTI parameters. 

3.2.3 Modeling Results 

3.2.3.1 Access Time 

Once can note that BC access requires a search for an address in 

the trace table followed by the actual basic block lookup in the block 

cache. So the total access time is the sum of the two accesses. CPC 

accesses both BPC and BBC structures in parallel, so CPC’s access time 

is the longer of the two access times for BPC and BBC. The time 

calculations are done using these equations: 



 

 

         

        

        

  

       

          

         

      

 

 
 

           

  

    

        

          

     

-81-

TC access time = TC access time {1} 

BC access time =� (trace table access time, block cache access time) {2} 

CPC access time = max (BPC access time, BBC access time) {3} 

The access time of all three caches increases as the cache size is 

increased (Figure 49). TC and CPC have the same access times, which is 

lower than that of BC. With an increase in cache size, BC access time 

increases at a faster rate than CPC and TC because of the sequential 

access of BC’s larger trace table and block cache structures. 

0.000 

0.500 

1.000 

1.500 

2.000 

2.500 

3.000 

3.500 

1K 2K 4K 8K 16K 32K 

TC 

BC 

CPC 

Figure 49. Access time (ns) comparison for TC, BC, and CPC 

3.2.3.2 Consumed Power 

As we pointed out in earlier discussions, TC had only one cache 

structure, while BC and CPC had two such structures. So, the power 

calculations for the three types of caches are done as follows: 



 

 

        

       

       

        

     

         

 

 
 

            

 

  

        

         

  

-82-

TC power = TC cache power {4} 

BC power =� (trace  table power, block cache power) {5} 

CPC power =� (BPC power, BBC power) {6} 

Power consumption graphs (in Figure 50) show that the power 

consumption rises as cache sizes increase. BC’s power, however, 

increases at a higher rate than TC and CPC. 

0.000 

0.500 

1.000 

1.500 

2.000 

2.500 

3.000 

3.500 

1K 2K 4K 8K 16K 32K 

TC 

BC 

CPC 

Figure 50. Power comparison (nJ) for TC, BC, and CPC 

Multiplicity of block cache structures in BC is the reason for the 

marked difference in the power consumption among BC and other two 

cache schemes. 



 

 

  

     

       

     

          

         

        

        

          

       

   

 

 
 

            

  

 

 

-83-

3.2.3.3 Area 

Just like the power calculations, the additional areas of BC’s trace 

table and CPC’s BPC have to be taken into account when calculating the 

die area. So the area calculations are performed as follows: 

TC area = TC cache area {7} 

BC area =� (trace  table area, block cache area) {8} 

CPC area =� (BPC area, BBC area) {9} 

As we can see in Figure 51, the area for TC and CPC increases 

somewhat linearly, while the total area for BC increases at a faster rate. 

The redundancy of block cache in BC contributes significantly to the 

additional area. 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

1K 2K 4K 8K 16K 32K 

TC 

BC 

CPC 

Figure 51. Area comparison (cm^2) for TC, BC, and CPC 



 

 

      

        

             

       

        

     

         

  

               

           
  

         

          

        

          

      

      

        

       

         

  

-84-

3.3 Combining Simulation and Modeling Results 

So far, we have studied simulation and modeling outcomes for TC, 

BC, and CPC, separately. But in order to compare the three caches in a 

mutually consistent manner, we need a single performance measure. So 

we introduce a metric called aggregate performance index (API) that 

brings together the simulation and modeling results. Equal weights are 

assigned to all parameters that make up the API. The API is defined by 

the following equation: 

API = (% miss rate gain) + (% trace length gain) + (% power gain) 
{10} 

+ (% area gain) + (% access time gain) 

How CPC compares with the same-sized TC is shown in Table 7. 

Similarly, CPC’s comparison with BC is given in Table 8. Although CPC 

consumes more power and area than TC, the lower miss rate and longer 

trace lengths give CPC an overall lead over TC. API for TC increases as 

the cache size increases, which is due to the relative reduction in CPC’s 

area and power when the cache size increases. Redundant cache 

structures in BC prove to be a significant disadvantage when power and 

area comparisons are made with CPC, so CPC’s API figures are 

considerably better than BC. Here again, CPC’s API is higher for larger 

cache sizes. 



 

 

           

          

     

 

            

   

 

  
  

 
 

  
       

       

       

       

       

       

     

 

              

   

 

  
  

 
 

  
       

       

       

       

       

       

  

-85-

On average, CPC has 62% higher API than TC, and 254% higher 

API than BC. We can therefore say that CPC is an overall better cache 

scheme than TC and BC. 

Table 7. Aggregate performance index (API) for different cache sizes -

CPC vs. TC 

Cache size 
Miss rate 

gain 
Trace 

length gain 
Power gain Area gain Time gain API 

1KB 74.0% 77.5% -81.8% -17.6% 0.0% 52.1% 

2KB 73.6% 80.3% -76.9% -23.6% 0.0% 53.3% 

4KB 73.7% 80.3% -72.8% -24.7% 0.0% 56.6% 

8KB 73.2% 80.1% -66.7% -21.8% 0.0% 64.9% 

16KB 73.8% 80.1% -54.1% -16.8% 0.0% 82.9% 

Table 8. Aggregate performance index (API) for different cache sizes -

CPC vs. BC 

Cache size 
Miss rate 

gain 
Trace 

length gain 
Power gain Area gain Time gain API 

1KB 29.8% 103.3% 11.4% -5.5% 48.1% 187.0% 

2KB 20.2% 106.7% 17.5% 43.6% 47.8% 235.9% 

4KB 21.1% 106.5% 30.2% 44.9% 52.0% 254.7% 

8KB 20.6% 107.2% 40.6% 68.3% 55.3% 292.0% 

16KB 21.8% 107.1% 45.7% 70.3% 56.6% 301.5% 



 

 

 

 

 

 

  

     

   

          

      

     

        

        

         

 

   

        

        

           

       

     

         

     

CHAPTER IV 

NEURAL NETWORK MODELS FOR CACHES 

4.1 Neural Networks 

Neural networks (NN’s) mimic the ability of a human brain to find 

patterns and uncover hidden and relationships in data. NN’s are more 

effective than statistical techniques for organizing data and predicting 

results and are very efficient in modeling non-linear systems. In general, 

substantially fewer resources and time are required to build an NNM 

when compared to a mathematical model [Caudill 1990], [Uhrig 1995], 

[Yale 1997]. 

4.1.1 Processing Elements 

A neural network (NN) is defined as a computational system 

comprised of simple but highly interconnected processing elements (PE’s) 

(Refer to Figure 52 and Figure 56) [Stegmayer & Chiotti 2004]. PE’s are 

neural network equivalents of biological neurons. Similarly, neural 

network interconnections are equivalents of synapses that connect a 

neuron to others. Information is processed by the PE’s by dynamically 

responding to their inputs. Unlike conventional computers that process 

-86-



 

 

          

           

    

 

 

 

          

 

 

        

       

         

         

          

        

-87-

instruction and data stored in the memory in a sequential manner, the 

NN’s produce outputs based on a weighted sum of all inputs in a parallel 

fashion [Caudill 1990]. 

Figure 52. Processing element – building block of a neural network 

In Figure 52, the inputs (i(0..n-1)) to a PE are scaled with weights 

(w(0..n-1)) and summed before being passed through an activation 

function. The activation function determines whether a PE fires or not. 

The input-output relationship of an activation function may be linear or 

non-linear. Two linear functions, linear and ramp, are shown in Figure 53 

and Figure 54, with outputs in the [-1, 1] range. 



 

 

 

 

 

      

 

 

 

 

 
 

      

 

        

       

   

    

 
 

       

 

 

 

 

-88-

Figure 53. A step activation Figure 54. A ramp activation 
function function 

A sigmoid (non-linear) activation function has an s-shaped output 

between the limits [0, 1]. The function is defined as follows and is shown 

in Figure 55 [UTexas 2005]: 

1 
y = {11} -x(1+ e ) 

Figure 55. A sigmoid activation function 



 

 

    

        

        

       

        

 

 
 

          

 

 

         

     

            

      

-89-

4.1.2 A 3-Layer NN Topology 

Figure 56 shows the topology of a simple feed-forward NN with 4 

inputs (i(0)..i(3)) and 2 outputs (y(0)..y(1)). The NN has 4 input neurons 

(PE(i,0)..PE(i,3)), one hidden layer with 5 neurons (PE(h,0)..PE(h,4)), and 

one output layer (PE(o,0)..PE(o,1)) with 2 neurons [Caudill 1990]. 

Figure 56. Topology of a 3-Layer Feed-Forward Neural Network 

Each input of an NN corresponds to a single attribute, such as the 

cache size, cache associativity, etc. The type of inputs determine whether 

their values are discrete (e.g., 1 or 0 representing yes or no, true or false 

values) or continuous (e.g., 0.27 representing cache miss rate). The 



 

 

         

    

   

      

         

      

      

        

          

        

       

      

     

       

     

       

         

     

         

         

           

-90-

output of an NN is the prediction we are trying to make. Just like inputs, 

the outputs can be discrete or continuous. 

4.1.3 Learning Mechanism 

The weights correspond to the relative strength (or numerical 

values) assigned to the NN inputs or the connections that transfer data 

from one neuron layer to the other. Iterative adjustments of weights 

make NN’s learn. NN’s use different types of learning (or training) 

mechanisms, the most common of them being supervised learning. In 

this method of learning, a set of inputs is provided to the NN and its 

output is compared with the desired output. The difference of actual and 

desired outputs is used to adjust the connection weights to different 

elements in the network. (The weights are commonly set randomly at the 

beginning of the learning process). The process of adjusting weights is 

repeated until the output falls within an acceptable range. Depending on 

the application, the training phase may require a lot of computing 

resources or time. The structure of a NN and the initial conditions are 

also important parameters for NN training efficiency [Caudill 1990]. 

Just like other data-processing tools, the age-old principle of 

“garbage-in, garbage-out” applies to NN’s. To ensure a robust NN design, 

the set of input data and corresponding output data must be chosen 

carefully. The input-output data set for an NN is called a training set. 



 

 

       

       

        

         

      

    

      

       

        

     

     

          

     

          

       

     

   

    

        

       

-91-

Additionally, special attention must be paid to the formatting and scaling 

for the data for effective NN training [Caudill 1990]. 

The available data is divided into training and validation sets. An 

NN is only trained with the training data. Validation data is run on the 

NN to verify that the inputs are producing desirable outputs. If the 

validation phase produces large deviations, the training set or the 

network structure needs to be re-examined; re-training is required in this 

case. Sometimes, the examination of weights may reveal the reasons for 

undesirable outputs. Selected test data can be used to make sure that 

the proper neurons are firing correctly [Caudill 1990]. 

The learning process is also dependent on the learning rule; one 

such common rule is the delta rule that states that if there is a difference 

between the actual outputs and the desired outputs during training, 

adjust the weights to reduce the difference. With an input X, if we get Y 

as the actual output; and Z is the desired output, then we use the 

following equation to change weights, according to the delta rule 

[UHouston 2005]: 

w = w +l * (Y − Z ) * X new old {12} 

where l is the learning rate (e.g., 0.1); wold and wnew are the weights 

before and after the adjustment, respectively. 



 

 

  

         

         

     

       

         

        

   

        

   

     

          

         

     

        

        

     

       

    

         

        

-92-

4.1.4 Motivation 

The typical simulation time for each TC, BC, or CPC configuration 

is between 2-6 hours (on a Windows-XP based, 2.4 GHz Pentium-4 

personal computer). This means that hundreds of machine-hours may be 

spent simulating a reasonable number of cache configurations. In this 

dissertation, we show that it is feasible to produce NNM’s that let a user 

study the cache performance in seconds (instead of days or weeks) 

[Caudill 1990]. 

4.2 Neural Network Modeling for TC, BC, and CPC 

4.2.1 Experimental Methodology 

We used an NN-modeling software package called Brain Maker 

(version 3.75) [CalSci 1998] to create and test our NNM’s. The software 

was run on a Windows-XP based, 2.4 GHz Pentium-4 personal computer. 

Brain Maker’s back-propagation NN’s were ‘fully connected’, meaning all 

inputs were connected to all hidden neurons, and all hidden neurons 

were connected to the outputs. The activation function for hidden and 

output layers was a sigmoid function. The difference between the 

network’s actual output and the desired output is treated as the error 

that is to be minimized. 

We acquired a total of 150 samples (also called facts/training facts) 

during our simulations for single-threaded versions of TC, BC, and CPC. 



 

 

    

         

    

      

         

   

    

      

        

         

       

    

      

           

       

      

        

          

                  

        

         

-93-

120 samples were used as the training set, while the remaining 30 were 

used as the validation set. We stopped an NN training session, when one 

of these two conditions was met: 

(1) Epoch count reached 30000 

(2) Ninety percent of the facts were learnt with less than 5% mean 

squared error 

Thirty thousand epochs were used as the training limit because 

most of the properly converged NN’s attained the desired training 

accuracy before this epoch limit. The use of 90% accuracy allowed us to 

keep the NN topologies relatively small in size. The 90% threshold also 

enabled the NN’s to achieve generalized instead of ‘rote’ learning. 

4.2.2 Input-Output Definition 

The purpose of the NNM’s in this research is to predict the values 

of two parameters for TC, BC, and CPC: trace miss rate and average 

trace length. These two parameters would be the NNM outputs. Inputs to 

the NNM’s are (1) counts of blocks of different sizes, representing a 

program (benchmark), (2) cache size, and (3) cache type. Cache type is a 

symbol, rather than a value, so we used 3 discrete inputs to represent 

the cache types: TC = {1, 0, 0}; BC = {0, 1, 0}; CPC = {0, 0, 1}. For the 

purposes of creating NNM’s, we kept BBC size and associativity constant 

so these parameters did not need to be included as NNM inputs. 



 

 

      

        

       

        

        

         

      

       

          

        

 

            

 

         

              

         

  

      

  

      

  

      

  

         

  

      

  

      

  

      

  

             

  

          

  

            

   

         

   

                   

               

             

         

       

-94-

Regarding the properties of a benchmark as input parameters, our 

initial attempts involved using a single value for the average block size 

(for the complete run). But, we discovered that block size averages among 

the benchmarks were not distinct enough to properly represent the latter 

for the purposes of NN-training. So, for each benchmark, we used more 

than one value of block count. (Block sizes and count distribution are 

shown in Figure 12 on page 27). 

Four of the several NNM configurations, we experimented with are 

shown in Table 9. We selected Configurations 2 and 4 for the final 

NNM’s due to their higher test accuracy. 

Table 9. Neural Network Configurations - Input and Output Neurons 

Neurons Configuration 1 Configuration 2 Configuration 3 Configuration 4 

Output trace miss rate trace miss rate average trace length average trace length 

Input 1 % of blocks with 1 to 

4 instructions 

% of blocks with 1 to 

4 instructions 

% of blocks with 1 to 

4 instructions 

% of blocks with 1 to 

4 instructions 

Input 2 % of blocks with 5 or 

more instructions 

% of blocks with 5 to 

8 instructions 

% of blocks with 5 or 

more instructions 

% of blocks with 5 to 

8 instructions 

Input 3 cache type is TC % of blocks with 9 to 

12 instructions 

cache type is TC % of blocks with 9 to 

12 instructions 

Input 4 cache type is BC % of blocks with 13 

or more instructions 

cache type is BC % of blocks with 13 

or more instructions 

Input 5 cache type is CPC cache type is TC cache type is CPC cache type is TC 

Input 6 cache size cache type is BC cache size cache type is BC 

Input 7 cache type is CPC cache type is CPC 

Input 8 cache size cache size 



 

 

   

   

       

        

       

        

        

      

  

     

     

  

   

        

      

       

        

      

           

    

-95-

4.2.3 Data Pre-Processing 

Pre-processing the training and validation sets takes a 

considerable amount of resources for a practical and reliably functioning 

NN [Lawrence 1994], [Yale 1997]. In our research, the first data pre-

processing step was to apply z-score normalization, a statistical 

technique of specifying the degree of deviation of a data value from the 

mean. Stated alternately, z-score places different data on a common 

scale. Z-score is calculated by this formula [Meas 2005]: 

(x − x)
Z = {13} 

s

where x is the sample mean, and s is the sample standard 

deviation defined as [Triola 1994]: 

�(x − x)2 

s =
n −1 

{14} 

where n is the sample size 

As a 2nd step of pre-processing, we normalized the training set to 

the range [0, 1]; normalization was done to ensure equitable distribution 

of importance among inputs. In other words, the larger absolute values 

of an input should not have more influence than the inputs with smaller 

magnitudes [Masters 1994]. Similarly, we also normalized the outputs to 

the [0, 1] range [Wolfe & Vemuri 2003]. For n samples, the [0, 1] 

normalization was a 2-step process: 



 

 

           

         

    

           

           

      

   

      

       

              

          

         

      

      

   

     

       

    

         

     

-96-

x
i 
' 

= x
i − xmin , i = 0 .. n -1 {15} 

" ' ' 
x = x / x , i = 0 .. n -1 {16} 
i i max 

For the cache-size input values that are multiplicative in nature 

(i.e., 1K, 2K, 4K …), we used log2 transformation prior to normalization 

[Masters 1994]. One should, in order to ‘use’ or ‘run’ a trained NN, de-

normalize (and de-transform, if needed) the predicted outputs to the 

original ranges. 

4.2.4 Neural Network Training and Testing 

To find the optimum topologies for our NNM’s, we experimented 

with up to 3 hidden layers; each layer consisted of a different number of 

neurons. A general rule is that an increase in a number of hidden layers 

increases as the prediction performance goes up to a certain point, after 

which the NNM performance starts to deteriorate [Caudill 1990]. The 

details of some of our NNM’s experiments are listed in Table 10 (trace 

miss rate) and 

Table 11 (average trace length). The performance metric for an 

NNM was the percentage of “training facts” learned with <5% accuracy. 

For Configuration-2, the training accuracy we were able to achieve was 

91%; whereas, Configuration-4 was only able to train with 82% accuracy. 

Similarity in the values of block-size parameters in the training set seems 



 

 

        

   

  

      

      

      

 
  

  
        

  

  
        

  

          

  

          

  

 

 

  
        

 

           
 

 

 

 

 

 

        

 

          

 

               

                

 

  

 

 

 

 

-97-

to be the reason for difficulty in training the Configuration-4 NN with 

higher accuracy. 

Table 10. Training performance for trace miss-rate NNM 

(“Configuration-2”): optimum results were achieved with a 

4-layer (6-5-5-1) NNM (shown in bold)* 

NN size 

(neurons) 

Input 

layer 
6 6 6 6 6 6 6 6 

Hidden 

layer 1 
10 20 10 7 5 10 15 10 

Hidden 

layer 2 
5 5 5 10 10 10 

Hidden 

layer 3 
5 

Output 

layer 
1 1 1 1 1 1 1 1 

Stop 

training 

when 

Epoch 30000 30000 14500 30000 16471 2900 5167 3008 

90% 

good 

facts 

no no yes no yes yes yes Yes 

Training accuracy 71% 69% 91% 71% 91% 91% 91% 91% 

* Brain Maker training parameters: Training tolerance = 0.1; testing tolerance = 0.1; learning rate 

(initial value) = 0.1; learning rate adjustment type = exponential (Refer to [CalSci 1998] for details) 



 

 

 

         

     

      

 
 

  
        

  

  
        

  

          

  

          

 
 

 

 
        

 

           
 

 

 

 

 

 

        

 

          

 

               

                

 

  

    

       

          

      

     

          

          

          

-98-

Table 11. Training performance for trace-length NNM 

(“Configuration-4”): optimum results were achieved with a 

4-layer (6-15-10-1) NNM (shown in bold) 

NN size 
(neurons) 

Input 

layer 
6 6 6 6 6 6 6 6 

Hidden 

layer 1 
10 20 10 7 5 10 15 10 

Hidden 

layer 2 
5 5 5 10 10 10 

Hidden 

layer 3 
5 

Output 

layer 
1 1 1 1 1 1 1 1 

Stop 

training 

when 

Epoch 30000 30000 30000 30000 30000 30000 30000 30000 

90% 

good 

facts 

no no no no no no no no 

Training accuracy 78% 35% 68% 37% 37% 76% 82% 62% 

* Brain Maker training parameters: Training tolerance = 0.1; testing tolerance = 0.1; learning rate 

(initial value) = 0.1; learning rate adjustment type = exponential (Refer to [CalSci 1998] for details) 

4.2.5 Experimental Results and Analysis 

Due to the inherent nature of an NNM approach, the input values 

used for running an NNM should be kept somewhat close to, but not 

necessarily the same as, the input values in the training set. Significant 

deviations of the running set from the training set can provide misleading 

results [Caudill 1990]. We used an arbitrary set of values for block sizes 

{0.80, 0.17, 0.03, 0.02} (that was different from any of the benchmarks’ 

block sizes), and used it to predict the miss rate and trace length for 



 

 

         

      

     

      

      

       

          

  

 

 
 

          

      

        

     

  

 

 

 

-99-

different sizes of TC, BC, and CPC. Time to run the NNM’s for the above 

set of inputs was less than a second. 

The predicted values of the miss rate are shown in Figure 57. 

These values resemble the miss rates observed in actual simulations. For 

the block sizes used with these NN runs, we see that miss rates improve 

as cache size increases, but the improvement tends to flatten out after 

8K cache size. CPC offers better miss rates than TC and BC for all cache 

sizes. 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

12.00 

14.00 

1K 2K 4K 8K 16K 

TC BC CPC 

Figure 57. For a program with arbitrarily chosen ‘block size 

distribution’ {0.80, 0.17, 0.03, 0.02}, miss-rate NNM was 

used to predict the values for TC, BC, and CPC. The 

horizontal axis shows cache size in KB and the vertical 

axis represents miss rate percentages. 



 

 

     

         

          

 

 

           

       

        

     

     

  

 

  

      

    

        

          

       

      

-100-

NNM predictions for trace lengths, when cache sizes vary, are 

shown in Figure 58. Trace lengths for a given cache scheme remain 

relatively stable, while CPC maintains its lead over both TC and BC. 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

12.00 

14.00 

16.00 

1K 2K 4K 8K 16K 

TC BC CPC 

Figure 58. For a program with arbitrary chosen ‘block size 

distribution’ {0.80, 0.17, 0.03, 0.02}, trace-length NNM was 

used to predict the values for TC, BC, and CPC. The 

horizontal axis shows cache size in KB and the vertical axis 

represents the trace length in terms of number of 

instructions. 

4.3 Conclusions 

The results from NNM experiments demonstrate that the NNM are 

capable of learning the trace-based caches’ input-output mapping 

functions, in the encoded form of the weights of the neurons. We can 

also say that an NNM can be used as a time-efficient alternative to 

simulations. Further research and investigation into trace-based cache 

NNM’s can be conducted using more input parameters, as well as a 



 

 

      

      

-101-

larger training set. Branch types and frequencies for benchmarks (or 

programs) can be used as additional inputs. 



 

 

 

 

 

 

  

    

 

          

         

          

        

          

        

        

        

       

      

        

       

    

  

CHAPTER V 

CONCLUSIONS & FUTURE RESEARCH 

In Section 5.1 of this last chapter, we summarize our findings, and 

in Section 5.2, we present our research contributions. Then, we conclude 

by proposing a number of ideas for extending this research. 

With the ongoing availability of a larger number of faster 

transistors to a designer, it may be a challenge to make judicious use of 

these newer devices, primarily because of power consumption and clock 

speed limitations. In this context, we have presented a better scheme for 

the utilization of resources by introducing a new instruction cache 

architecture. The cache is used with superscalar processors and is called 

code pattern cache (CPC). CPC operates on the basic principles that 

common programs tend to exhibit repeatability in their execution 

patterns, and that making efficient use of captured dynamic instruction 

sequences can enhance the performance of the instruction fetch 

mechanisms. 

-102-



 

 

  

       

        

       

          

       

         

       

         

       

       

      

       

     

      

       

      

        

         

        

     

-103-

5.1 Conclusions 

In this dissertation, we demonstrated that a larger instruction 

fetch bandwidth could be achieved with less complexity and smaller 

cache capacity. In short, the following techniques were used to attain 

higher performance: (1) removal of redundancy of instruction storage, 

inherent to trace cache; (2) accommodation of basic blocks of varying 

lengths (vs. the fixed length blocks of block cache); (3) reduction of die 

area and resulting power consumption by storing basic blocks in only 

one place, instead of multiple locations, as in block cache; (4) inclusion 

of (traditional) way-associativity; and (5) accessing basic block data 

pointers and data arrays simultaneously to reduce latency. In the 

following paragraphs, we list the conclusions: 

• We have presented CPC, a new instruction cache architecture for 

improving instruction fetch rates beyond current trace-based 

cache schemes (TC and BC). CPC stores basic blocks that are not 

fixed in size in the BBC structure. The boundary addresses that 

are used to form traces are stored in a separate set-associative 

structure called BPC. Both BPC and BBC are looked up 

concurrently to determine a trace hit. In CPC, basic block 

overlapping that is inherent to TC has been eliminated and CPC 

does not need the redundant cache storage (and related hardware 



 

 

     

    

      

       

       

    

       

      

       

        

       

     

        

        

    

           

      

     

        

       

      

-104-

complexity) that BC does. Multi-threading capabilities have been 

incorporated into CPC. 

• We developed functional simulators for three cache schemes: TC, 

BC and CPC. The simulators were developed in VHDL and were 

used to run single-threaded SPECint2000 benchmark programs. 

Simulators were flexible enough to accommodate variability in 

cache size, block size and count or trace size, way-associativity, 

etc. The simulators did not include any instruction execution 

capability and functioned by reading in program traces pre-saved 

from a simulator such as sim-cache [Burger & Austin 1997]. The 

simulators produced two statistics at the end of a simulation: trace 

miss rate and average trace length. From the simulation results, 

we showed that CPC had better trace miss rates and longer 

average traces than both TC and BC. For 10 SPECint2000 

benchmarks we used in this research, CPC’s average miss rate was 

better than TC by 73.7%, and was 22.7% better than BC. On 

average, CPC’s traces were 79.7% longer than TC’s traces, and 

106.1% longer than BC’s traces. 

• The multi-threaded versions of our TC, BC, and CPC simulators 

allowed instantiation of any number of threads, as long as the 

simulation platform performed simulations in a reasonable amount 



 

 

           

     

      

     

      

     

       

      

      

     

       

         

       

          

         

       

          

        

            

       

    

-105-

of time. Our research utilized 2, 4, 8, and 16-threaded versions of 

all three caches. The simulation times of multi-threaded caches 

were significantly longer than their single-thread counterparts. We 

created 10 different multi-threaded workloads by running 

SPECint2000 benchmarks on multiple threads. When measured in 

terms of trace miss rate and average trace length, CPC sustained 

its performance lead over TC and BC in multi-thread 

configurations. CPC, generally, exhibited higher performance gain 

over other caches while multi-threading than it did while single-

threading. CPC’s miss rate reduction as compared to TC was 

85.7%, and 36% as compared to BC. CPC’s traces were 86.1% 

longer than TC’s traces, and 98.4% longer than BC’s. 

• We used CACTI, a readily available modeling tool, to compare the 

power, area, and access times of TC, BC, and CPC. BC was found 

to be behind TC and BC in terms of three modeled parameters; the 

main reason for the lag was the (4x) replication of block cache 

structures in BC. CPC had higher power consumption and took up 

more die area than TC; CPC had comparable access time with TC. 

• In order to perform a mutually consistent comparison of TC, BC, 

and CPC, a new metric called aggregate performance index (API) 

was introduced. The metric combined the simulation and modeling 



 

 

        

            

      

          

      

        

       

       

      

      

       

          

      

     

    

           

            

       

    

    

  

-106-

results. Although CPC had higher power consumption and more 

die area than TC, API showed that CPC still had better overall 

performance than both TC and BC. 

• We created unified NNM’s for TC, BC, and CPC to demonstrate an 

NNM’s feasibility as an alternative to cache simulations (As of the 

time of writing of this dissertation, no other such models for 

caches had been reported in the research publications). One NNM 

was used to predict the trace miss rate for all three caches, and the 

other to predict the average trace length. Training accuracy of the 

miss-rate-NNM was 91%; trace-length-NNM was only able to train 

with 82% accuracy. With these accuracies, the NNM’s provided a 

good estimation of non-linear behavior of TC, BC, and CPC, 

without delving into the details of the caches’ internal working. The 

NNM’s seemed to be a viable substitute to the otherwise very time-

consuming simulations. The NNM’s produced modeling results in a 

fraction of a second, as compared to 4 to 6-hour simulation time of 

a given cache. For a program represented by an arbitrary set of 

input values (of block size distribution and cache size), we used the 

NNM’s to predict the cache performance. The trends in cache 

performance predicted by the NNM’s resembled the simulation 

results. 



 

 

     

         

  

    

       

        

        

       

   

       

     

    

      

     

      

      

           

       

      

       

  

-107-

5.2 Future Research 

Below we have listed some areas in which the research on CPC can 

be extended: 

5.2.1 CPC Architecture & Simulations 

• Our research employed simulations involving only a single-cache 

hierarchy. In the future, a full-processor model could be developed 

to study other aspects of CPC performance such as IPC. 

• More advanced branch prediction schemes could be used to 

further enhance CPC’s miss rate performance. 

• Characterization of branch types and taken/not-taken frequencies 

in the benchmarks could help further analyze the simulation 

results for miss rates and trace lengths. 

• Multi-threading studies could be further expanded to include the 

effect of thread-shared BPC. 

• To better understand CPC’s performance in multi-threaded 

environment, an in-depth study of the cross-thread clobbering 

effect (in thread-shared BPC and/or BBC) could be performed. 

5.2.2 Power, Area, and Access Time Modeling 

• Power, area, and timing models could be made more accurate with 

the inclusion of auxiliary logic required for cache operation, e.g., 

CPC’s merging buffer. 



 

 

       

       

       

   

     

          

      

     

        

        

 

-108-

• Effect of sub-banking, read-write port-counts on the power, area, 

and timing aspects of a cache could be studied. 

• Access time and miss rates for different caches could be used to 

calculate consumed energy. 

5.2.3 Neural Network Modeling 

• The training set for NNM could be expanded to include a larger set 

of input parameters, for example, cache-associativity, trace 

capacity, thread count, etc. 

• Simulation results from benchmarks, other than the 10 that we 

used in this research, could be included in the training set. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

APPENDIX 

SPECINT2000 BENCHMARKS 

-109-



 

 

      

         

     

 

   

 

        

        

        

      

       

 

 

    

 

     

         

           

          

           

    

   

-110-

We used ten programs from SPEC 2000 integer benchmarks suite 

in our simulations of TC, BC, and CPC. The programs were listed in 

Table 2 (page 66) and are described here [Spec 2000]. 

256.bzip2 

Type: Compression 

Description: 

“256.bzip2 is based on Julian Seward's bzip2 version 0.1. The only 

difference between bzip2 0.1 and 256.bzip2 is that SPEC's version of 

bzip2 performs no file I/O other than reading the input. All compression 

and decompression happens entirely in memory which helps isolate the 

work done to only the CPU and memory subsystem.” 

186.crafty 

Type: Game playing program (plays chess) 

Description: 

“Crafty is a high-performance Computer Chess program that is 

designed around a 64-bit word. It runs on 32 bit machines using the 

"long long" (or similar, as _int64 in Microsoft C) data type. It is primarily 

an integer code, with a significant number of logical operations such as 

and, or, exclusive or and shift. It can be configured to run a reproducible 

set of searches to compare the integer/branch prediction/pipe-lining 

facilities of a processor.” 



 

 

  

 

     

 

       

       

  

 

    

 

       

        

    

         

           

        

   

      

     

  

 

      

-111-

254.gap 

Type: Group theory, interpreter 

Description: 

“It implements a language and library designed mostly for 

computing in groups (GAP is an acronym for Groups, Algorithms and 

Programming).” 

176.gcc 

Type: C Language optimizing compiler 

Description: 

“176.gcc is based on gcc Version 2.7.2.2. It generates code for a 

Motorola 88100 processor. The benchmark runs as a compiler with many 

of its optimization flags enabled. 176.gcc has had its inlining heuristics 

altered slightly, so as to inline more code than would be typical on a 

UNIX system in 1997. It is expected that this effect will be more typical of 

compiler usage in 2002 which was done so that 176.gcc would spend 

more time analyzing it's source code inputs, and use more memory. 

Without this effect, 176.gcc would have done less analysis, and needed 

more input workloads to achieve the run times required for 

SPECint2000.” 

181.mcf 

Type: Combinatorial optimization / Single-depot vehicle scheduling 



 

 

 

         

      

       

      

   

      

       

      

        

    

        

   

        

        

       

     

  

       

          

       

-112-

Description: 

“A benchmark derived from a program used for single-depot vehicle 

scheduling in public mass transportation. The program is written in C; 

the benchmark version uses almost exclusively integer arithmetic.” 

“The program is designed for the solution of single-depot vehicle 

scheduling (sub-) problems occurring in the planning process of public 

transportation companies. It considers one single depot and a 

homogeneous vehicle fleet. Based on a line plan and service frequencies, 

so-called timetabled trips with fixed departure/arrival locations and 

times are derived. Each of these timetabled trips has to be serviced by 

exactly one vehicle. The links between these trips are so-called dead-

head trips. In addition, there are pull-out and pull-in trips for leaving 

and entering the depot.” 

“Cost coefficients are given for all dead-head, pull-out, and pull-in 

trips. It is the task to schedule all timetabled trips to so-called blocks 

such that the number of necessary vehicles is as small as possible and, 

subordinate, the operational costs among all minimal fleet solutions are 

minimized.” 

“For simplification in the benchmark test, we assume that each 

pull-out and pull-in trip is defined implicitly with duration of 15 minutes 

and a cost coefficient of 15.” 



 

 

      

      

          

      

         

       

        

         

       

     

         

    

  

   

  

        

            

         

    

         

       

-113-

“For the considered single-depot case, the problem can be 

formulated as a large-scale minimum-cost flow problem that we solve 

with a network simplex algorithm accelerated with a column generation. 

The core of the benchmark 181.mcf is the network simplex code "MCF 

Version 1.2 - A network simplex implementation". For this benchmark, 

MCF is embedded in the column generation process.” 

“The network simplex algorithm is a specialized version of the well 

known simplex algorithm for network flow problems. The linear algebra 

of the general algorithm is replaced by simple network operations such 

as finding cycles or modifying spanning trees that can be performed very 

quickly. The main work of our network simplex implementation is pointer 

and integer arithmetic.” 

197.parser 

Type: Word processing 

Description: 

“The Link Grammar Parser is a syntactic parser of English, based 

on link grammar, an original theory of English syntax. Given a sentence, 

the system assigns to it a syntactic structure, which consists of set of 

labeled links connecting pairs of words.” 

“The parser has a dictionary of about 60000 word forms. It has 

coverage of a wide variety of syntactic constructions, including many rare 



 

 

        

        

        

     

   

 

  

 

        

       

       

       

   

 

  

  

     

         

         

        

  

-114-

and idiomatic ones. The parser is robust; it is able to skip over portions 

of the sentence that it cannot understand, and assign some structure to 

the rest of the sentence. It is able to handle unknown vocabulary, and 

make intelligent guesses from context about the syntactic categories of 

unknown words.” 

253.perlbmk 

Type: Programming language 

Description: 

“253.perlbmk is a cut-down version of Perl v5.005_03, the popular 

scripting language. SPEC's version of Perl has had most of OS-specific 

features removed. In addition to the core Perl interpreter, several third-

party modules are used: MD5 v1.7, MHonArc v2.3.3, IO-stringy v1.205, 

MailTools v1.11, TimeDate v1.08.” 

255.vortex 

Type: Database 

Description: 

“VORTEx is a single-user object-oriented database transaction 

benchmark which exercises a system kernel coded in integer C. The 

VORTEx benchmark is a derivative of a full OODBMS that has been 

customized to conform to SPEC CINT2000 (component measurement) 

guidelines.” 



 

 

         

       

  

      

      

          

   

 

      

    

  

  

       

        

        

        

        

      

  

      

        

-115-

“The benchmark 255.vortex is a subset of a full object oriented 

database program called VORTEx. (VORTEx stands for "Virtual Object 

Runtime EXpository.")” 

“Transactions to and from the database are translated though a 

schema. (A schema provides the necessary information to generate the 

mapping of the internally stored data block to a model viewable in the 

context of the application.)” 

175.vpr 

Type: Integrated Circuit Computer-Aided Design Program 

(More specifically, performs placement and routing in Field-

Programmable Gate Arrays) 

Description: 

“VPR is a placement and routing program; it automatically 

implements a technology-mapped circuit (i.e. a netlist, or hypergraph, 

composed of FPGA logic blocks and I/O pads and their required 

connections) in a Field-Programmable Gate Array (FPGA) chip. VPR is an 

example of an integrated circuit computer-aided design program, and 

algorithmically it belongs to the combinatorial optimization class of 

programs.” 

“Placement consists of determining which logic block and which 

I/O pad within the FPGA should implement each of the functions 



 

 

       

        

       

          

            

          

     

         

        

       

  

     

       

        

         

       

       

       

        

     

-116-

required by the circuit. The goal is to place pieces of logic which are 

connected (i.e. must communicate) close together in order to minimize 

the amount of wiring required and to maximize the circuit speed. This is 

basically a slot assignment problem - assign every logic block function 

required by the circuit and every I/O function required by the circuit to a 

logic block or I/O pad in the FPGA, such that speed and wire-

minimization goals are met. VPR uses simulated annealing to place the 

circuit. An initial random placement is repeatedly modified through local 

perturbations in order to increase the quality of the placement, in a 

method similar to the way metals are slowly cooled to produce strong 

objects.” 

“Routing (in an FPGA) consists of determining which 

programmable switches should be turned on in order to connect the pre-

fabricated wires in the FPGA to the logic block inputs and outputs, and 

to other wires, such that all the connections required by the circuit are 

completed and such that the circuit speed is maximized. The connections 

required by the circuit are represented as a hypergraph, and the possible 

connections of wire segments to other wires and to logic block inputs and 

outputs are represented by (a different) directed graph, which is often 

called a "routing-resource" graph.” 



 

 

       

          

       

       

      

 

-117-

“VPR uses a variation of Dijkstra's algorithm in its innermost 

routing loop in order to connect the terminals of a net (signal) together. 

Congestion detection and avoidance features run "on top" of this 

innermost algorithm to resolve contention between different circuit 

signals over the limited interconnect resources in the FPGA.” 



 

 

 

 

 

 

 

            

        

         

            

        

      

      

       

          

    

      

     

       

      

      

    

            

      

       

          

       

     

    

     

        

          

    

REFERENCES 

[1] [Amrutur & Horowitz 2000] Amrutur, B. S., and M. A. Horowitz, 

“Speed and power scaling of SRAM's,” IEEE Journal of Solid-State 

Circuits, Vol. 35, Issue 2, Feb. 2000, pp. 175-85. 

[2] [Banakar et al. 2002] Banakar, R., S. Steinke, L. Bo-Sik, M. 

Balakrishnan, and P. Marwedel, “Scratchpad memory: a design 

alternative for cache on-chip memory in embedded systems,” 

Proceedings of the 10th International Symposium on 

Hardware/Software Codesign, May 2002, pp. 73-78. 

[3] [Batson & Vijaykumar 2001] Batson, B., and T.N. Vijaykumar, 

“Reactive-associative caches,” Proceedings of the International 

Conference on Parallel Architectures and Compilation Techniques, 

Sep. 2001, pp. 49–60. 

[4] [Bigus 1994] Bigus, J.P., “Applying neural networks to computer 

system performance tuning,” Proceedings of IEEE International 

Conference on Computational Intelligence, Neural Networks, Vol. 

4, Jul. 1994. 

[5] [Black et al. 1999] Black, B., B. Rychlick, and J. Shen, “The 

block-based trace cache,” Proceedings of the 26th International 

Symposium on Computer Architecture, 1999, pp. 196–207. 

[6] [Burger & Austin 1997] Burger, D., and T. Austin, “The 

SimpleScalar Tool Set, Version 2.0,” University of Wisconsin-

Madison Computer Sciences Department Technical Report 

#1242, Jun. 1997. 

[7] [CalSci 1998] “BrainMaker – User’s Guide and Reference 

Manual,” 7th ed., California Scientific Software Press, Jun. 1998. 

[8] [Caudill 1990] Caudill, M., “AI Expert: Neural Network Primer,” 

Miller Freeman Publications, 1990. 

-118-



 

 

             

      

       

     

            

     

       

     

            

     

         

    

           

      

       

     

          

        

       

     

            

      

     

          

       

      

    

             

       

       

         

 

                

    

       

-119-

[9] [Conte et al. 1995] Conte, T., K. Menezes, P. Mills, and B. Patel, 

“Optimization of instruction fetch mechanisms for high issue 

rates,” 22nd International Symposium on Computer Architecture, 

Jun. 1995, pp. 333-344. 

[10] [Dutta & Franklin 1995] Dutta, S., and M. Franklin, “Control flow 

prediction with tree-like sub-graphs for superscalar processors,” 

Proceedings of the 28th Annual International Symposium on 

Microarchitecture, 1995, pp. 258–263. 

[11] [Dutta & Franklin 1999] Dutta, S., and M. Franklin, “Control flow 

prediction schemes for wide-issue superscalar processors,” IEEE 

Transactions on Parallel and Distributed Systems, Vol. 10, Issue 4, 

Apr. 1999, pp. 346–359. 

[12] [El-Moursy & Albonesi 2003] El-Moursy, A., and D. H. Albonesi, 

“Front-end policies for improved issue efficiency in SMT 

processors,” Proceedings of the Ninth International Symposium on 

High-Performance Computer Architecture, Feb. 2003. 

[13] [Govindarajan et al. 1995] Govindarajan, R., S. S. Nemawarkar, 

and P. LeNir, “Design and performance evaluation of a 

multithreaded architecture,” Proceedings of First IEEE Symposium 

on High-Performance Computer Architecture, Jan. 1995. 

[14] [Gruen & Kubota 2002] Gruen, R., and T. Kubota, “A neural 

network approach to system performance analysis,” Proceedings 

of IEEE SoutheastCon, Apr. 2002. 

[15] [Gummaraju & Franklin 2000] Gummaraju, J., and M. Franklin, 

“Branch prediction in multi-threaded processors,” Proceedings of 

International Conference on Parallel Architectures and Compilation 

Techniques, Oct. 2000. 

[16] [Hanson et al. 2003] Hanson, H., M. S. Hrishikesh, V. Agarwal, S. 

W. Keckler, and D. Burger, “Static energy reduction techniques 

for microprocessor caches,” IEEE Transactions on Very Large 

Scale Integration (VLSI) Systems, Vol. 11, Issue 3, Jun. 2003, pp. 

303–313. 

[17] [Hao et al. 1996] Hao, E., P. Y. Chang, M. Evers, and Y. N. Patt, 

“Increasing the instruction fetch rate via block-structured 

Instruction Set Architectures,” Proceedings of the 29th Annual 



 

 

      

  

            

    

         

          

      

      

           

     

      

    

      

       

   

               

     

       

      

            

      

      

      

        

  

       

     

  

 

           

        

  

           

      

-120-

IEEE/ACM International Symposium on Microarchitecture, pp. 191– 

200, 1996. 

[18] [Harper et al. 1999] Harper, J.S., D.J. Kerbyson, and G.R. Nudd, 

“Analytical modeling of set-associative cache behavior,” IEEE 

Transactions on Computers, Vol. 48, Issue 10, Oct. 1999. 

[19] [Hennessy & Patterson 2003] Hennessy, J., and D. Patterson, 

“Computer Architecture: A Quantitative Approach,” 3rd ed., 

Morgan Kaufman Publishers, Inc, CA, 2003. 

[20] [Hily & Seznec 1996] Hily, S., and A. Seznec, “Branch prediction 

and simultaneous multithreading”, Proceedings of the 1996 

Conference on Parallel Architectures and Compilation Techniques, 

Oct. 1996, pp.169–173. 

[21] [Hossain 2002] Hossain, A., “Trace Cache in Simultaneous Multi-

threading,” PhD dissertation, Dept. of Computer Engineering, 

Syracuse University, 2002. 

[22] [Hossain et al. 2002] Hossain, A., D. J. Pease, J. S. Burns, and N. 

Parveen, “Trace cache performance parameters,” Proceedings of 

IEEE International Conference on Computer Design, VLSI in 

Computers and Processors, Sep. 2002. 

[23] [Howard & Lipasti 1999] Howard, D. L., and M. H. Lipasti, “The 

effect of program optimization on trace cache efficiency,” 

Proceedings of International Conference on Parallel Architectures 

and Compilation Techniques, 1999, pp. 256–261. 

[24] [Intel 1997] “Pentium II Processor Developer’s Manual,” Intel 

Corporation, 1997. 

[25] [Intel 2001] “Multi-Threaded Programming for Next Generation 

Multi-Processing Technology,” Intel Corporation, Aug. 2001. 

[Online]. Available: 

http://www.intel.com/technology/hyperthread 

[26] [Jacob & Mudge 1998] Jacob, B. and T. Mudge, “Virtual memory: 

issues of implementation”, Computer, Vol. 31, Issue 6, Jun. 1998, 

pp. 33–43. 

[27] [Jimenez & Lin 2001] Jimenez, D. A., and C. Lin, “Dynamic 

branch prediction with perceptrons,” The Seventh International 

http://www.intel.com/technology/hyperthread


 

 

     

    

            

          

      

    

              

       

      

       

  

             

      

         

         

      

      

          

  

       

     

   

         

   

     

        

      

       

  

  

       

         

         

     

        

-121-

Symposium on High-Performance Computer Architecture, Jan. 

2001, pp. 197–206. 

[28] [Jourdan et al. 2000] Jourdan, S., L. Rappoport, Y. Almog, M. 

Erez, A. Yoaz, and R. Ronen, “Extended block cache,” Proceedings 

of Sixth International Symposium on High-Performance Computer 

Architecture, Jan. 2000. 

[29] [Kavi et al. 1995] Kavi, K. M., A. R. Hurson, P. Patadia, E. 

Abraham, and P. Shanmugam, “Design of cache memories for 

multi-threaded dataflow architecture,” Proceedings of the 22nd 

Annual International Symposium on Computer Architecture, Jun. 

1995. 

[30] [Khalid & Obaidat 2000] Khalid, H., and M. S. Obaidat, “KORA: a 

new cache replacement scheme,” Computers & Electrical 

Engineering, Vol. 26, Issues 3-4, Apr. 2000, pp. 187-206. 

[31] [Khalid 1996] Khalid, H., “A neural network-based replacement 

strategy for high performance computer architectures,” PhD 

dissertation, Department of Electrical Engineering, City 

University of New York, The City College, New York, USA, Jun. 

1996. 

[32] [Lawrence 1994] Lawrence, J., “Introduction to Neural Networks – 

Design, Theory and Applications,” California Scientific Software 

Press, 1994. 

[33] [Lioupis & Milios 1997] Lioupis, D., and S. Milios, “The effects of 

cache architecture on the performance of operating systems in 

multi-threaded processors,” Proceedings of Ninth Euromicro 

Workshop on Real-Time Systems, Jun. 1997, pp. 72-79 

[34] [Marr 2002] Marr, D., “Hyper-Threading Technology Architecture 

and Microarchitecture,” Intel Technology Journal, Q1 2002. 

[Online]. Available: 

http://www.intel.com/technology/hyperthread/ 

[35] [Masters 1994] Masters, T., “Signal and Image Processing with 

Neural Networks,” John Wiley & Sons, Inc., 1994. 

[36] [McBader & Lee 2003] McBader, S., and P. Lee, “Reducing 

memory bottlenecks in embedded, parallel image processors,” 

Electronics Letters, Vol. 39, Issue 1, Jan. 2003. 

http://www.intel.com/technology/hyperthread


 

 

      

         

    

  

      

          

         

     

       

        

             

      

         

  

              

    

      

       

             

      

        

    

           

      

     

     

           

     

         

  

            

  

        

      

-122-

[37] [McFarling 1993] McFarling, S., “Combining branch predictors,” 

Tech. Report TN-36, Digital Western Lab, Jun. 1993. 

[38] [Meas 2005] [Online]. Available: 

http://www.measuringusability.com/z.htm 

[39] [Moore 1965] Moore, G. E., “Cramming more components onto 

integrated circuits”, Electronics, Vol. 38, No. 8, Apr. 1965. 

[40] [Noonburg & Shen 1994] Noonburg, D.B., and J.P. Shen, 

“Theoretical modeling of superscalar processor performance,” 

Proceedings of the 27th Annual International Symposium on 

Microarchitecture, MICRO-27, 30 Nov.-2 Dec. 1994, pp. 52–62. 

[41] [Ozturk et al. 2005] Ozturk, O., M. Kandemir, M.; M. J. Irwin, 

“BB-GC: basic block level garbage collection”, Proceedings of 

Design, Automation and Test in Europe, March 2005, pp. 1032– 

1037. 

[42] [Patel et al. 1998] Patel, S. J., M. Evers, and Y. N. Patt, 

“Improving trace cache effectiveness with branch promotion and 

trace packing,” Proceedings of 25th Annual International 

Symposium on Computer Architecture, 1998, pp. 262–271. 

[43] [Patel et al. 1999] Patel, S., D. Friendly, and Y. N. Patt, 

“Evaluation of design option for the trace cache fetch 

mechanism,” IEEE Transactions on Computers, Vol. 48, Issue 2, 

Feb. 1999, pp. 193–204. 

[44] [Ramirez et al. 2000] Ramirez, A., J. Larriba-Pey, and M. Valero, 

“Trace cache redundancy: red and blue traces,” Proceedings of 

Sixth International Symposium on High-Performance Computer 

Architecture, Jan. 2000, pp. 325–333. 

[45] [Rotenberg et al. 1999] Rotenberg, E., S. Bennett, and J. E. 

Smith, “A trace cache microarchitecture and evaluation,” IEEE 

Transactions on Computers, Vol. 48, Issue 2, Feb. 1999, pp. 111– 

120. 

[46] [Sangireddy et al. 2004] Sangireddy, R., H. Kim, and A. K. 

Somani, “Low-power high-performance reconfigurable computing 

cache architectures,” IEEE Transactions on Computers, Vol. 53, 

Issue 10, Oct. 2004, pp. 1274-1290. 

http://www.measuringusability.com/z.htm


 

 

           

          

         

   

           

    

  

            

         

       

      

     

             

         

   

       

    

               

        

      

     

           

      

     

     

           

     

       

      

    

 

          

     

      

    

-123-

[47] [Schlansker et al. 1997] Schlansker, M., T.M. Conte, J. Dehnert, 

K. Ebcioglu, J. Z. Fang, and C. L. Thompson, “Compilers for 

instruction-level parallelism,” Computer, Vol. 30, Issue 12, Dec. 

1997, pp. 63–69. 

[48] [Shanley & Anderson 1995] Shanley, T., and D. Anderson, “ISA 

System Architecture,” Addison-Wesley Publishing Company, 

1995. 

[49] [Shivakumar & Jouppi 2001] Shivakumar, P., and N. P. Jouppi, 

“CACTI 3.0: An Integrated Cache Timing, Power, and Area Model,” 

Technical Report, WRL Research Report 2001/2, Compaq 

Western Research Laboratory, Aug. 2001. 

[50] [Simple 2005] [Online]. Available: http://www.simplescalar.com 

[51] [Simpson et al. 1997] Simpson, T. W., J. Peplinski, P. N. Koch, 

and J. K. Allen, “On the use of statistics in design and the 

implications for deterministic computer experiments,” 

Proceedings of ASME Design Engineernig Technical Conferences, 

Sep. 14-17, 1997. 

[52] [Singh et al. 1992] Singh, J. P., H. S. Stone, and D. F. Thiebaut, 

“A model of workloads and its use in miss-rate prediction for fully 

associative caches,” IEEE Transactions on Computers, Vol. 

41, Issue 7, Jul. 1992. 

[53] [Smith 1994] Smith, A. J., “The need for measured data in 

computer system performance system analysis,” Proceedings of 

Eighteenth Annual International Computer Software and 

Applications Conference, Nov. 1994. 

[54] [Sobecks et al. 1998] Sobecks, B., J. Nevin, and A. Helmicki, 

“Performance modeling of analog circuits via neural networks: the 

design process view,” Proceedings of Midwest Symposium on 

Circuits and Systems, Aug. 1998. 

[55] [Spec 2000] [Online]. Available: 

http://www.spec.org/cpu2000/CINT2000/ 

[56] [Stegmayer & Chiotti 2004] Stegmayer, G., and O. Chiotti, “The 

Volterra representation of an electronic device using the Netural 

Network parameters,” Latin American Conference on Informatics 

(CLEI’2004), Sep. 2004. 

http://www.spec.org/cpu2000/CINT2000
http://www.simplescalar.com


 

 

         

   

               

   

       

    

     

 

         

        

      

     

    

 

              

      

         

 

         

     

       

         

             

       

         

           

      

      

          

  

-124-

[57] [Triola 1994] Triola, M., “Elementary Stastictics,” 6th ed., 

Addison-Wesley Publishing Co, 1994. 

[58] [Tullsen et al. 1995] Tullsen, D. M., S. J. Eggers, and H. M. Levy, 

“Simultaneous multi-threading: maximizing on-chip parallelism,” 

Proceedings of the 22nd Annual International Symposium on 

Computer Architecture, Jun. 1995. 

[59] [UHouston 2005] [Online]. Available: 

http://www2.cs.uh.edu/~vilalta/courses/machinelearning/neur 

alnetworks1.ppt 

[60] [Uhrig 1995] Uhrig, R. E., “Introduction to artificial neural 

networks,” Proceedings of the 1995 IEEE IECON 21st International 

Conference on Industrial Electronics, Control and Instrumentation, 

Vol. 1, Nov. 1995. 

[61] [UTexas 2005] [Online]. Available: 

http://www.eco.utexas.edu/faculty/Kendrick/frontpg/NeuralNet 

s.htm 

[62] [Wada et al. 1992] Wada, T., S. Rajan, and S. A. Przybylski, “An 

analytical access time model for on-chip cache memories,” IEEE 

Journal of Solid-State Circuits, Vol. 27 Issue 8, Aug. 1992, pp. 

1147-1156. 

[63] [Wallace & Bagherzadeh 1998] Wallace, S., and N. Bagherzadeh, 

“Modeled and measured instruction fetching performance for 

superscalar microprocessors,” IEEE Transaction on Parallel and 

Distrubuted Systems, Vol. 9, No. 6, Jun. 1998. 

[64] [Wilton & Jouppi 1996] Wilton, S. J., and N. P. Jouppi, “CACTI: 

an enhanced cache access and cycle time model,” IEEE Journal of 

Solid-State Circuits, Vol. 31, Issue 5, May 1996, pp. 677–688. 

[65] [Wolfe & Vemuri 2003] Wolfe, G., and R. Vemuri, “Extraction and 

use of neural network models in automated synthesis of 

operational amplifiers,” IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, Vol. 22, Issue 2, Feb. 

2003. 

http://www.eco.utexas.edu/faculty/Kendrick/frontpg/NeuralNet
http://www2.cs.uh.edu/~vilalta/courses/machinelearning/neur


 

 

        

         

  

           

    

       

 

 

 

-125-

[66] [Yale 1997] Yale, K., “Preparing the right data for training neural 

networks,” IEEE Spectrum, Vol. 34, Issue 3, Mar. 1997, pp. 64-

66. 

[67] [Yeh & Patt 1992] Yeh, T., and Y. N. Patt, “Alternative 

implementations of two-level adaptive branch prediction,” 

Proceedings of ISCA, 1992, pp. 124-134. 


	Improving Instruction Fetch Rate with Code Pattern Cache for Superscalar Architecture
	Recommended Citation

	Microsoft Word - DissFinal_rev_Lib3.doc

