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In recent years, distributed framework has become a widely accepted platform 

for implementation of human language technology. The Defense Advanced Research 

Program Agency (DARPA) Communicator program has been highly successful in 

implementing this distributed approach. The program has fueled the design and 

development of impressive human language technology applications with complex 

inter-process communication between modules. 

This latter feature, though beneficial, introduces complexities which reduce 

overall system robustness to failure. In addition, the ability to handle multiple users 

and multiple applications is not innately supported. This thesis describes the 

enhancements to the original Communicator architecture that address robustness 

issues and provide a multiple multi-user application environment by enabling 

automated server startup, error detection and correction. Extensive experimentation 

and analysis were performed and a 7.2% improvement in robustness was achieved on 



   

the address querying task, which is the most complex task in the human language 

technology system. 
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CHAPTER I 

INTRODUCTION 

Humans have long dreamt of creating machines which rival their own intellectual 

abilities. The invention of the typewriter was a step forward in the interaction between 

humans and computers. In the years following World War II, a fervent search began for 

alternative methods for human computer interaction. Speech recognition appeared to 

offer a promising alternative. In the late 1980s, the first successful speech recognition 

systems were deployed. Current commercial systems offer performance that has 

improved upon these earlier systems, but none can adequately handle natural, 

spontaneously spoken language. This capability remains the provenance of research, in 

systems, which though predominantly prototypes, have become increasingly powerful 

and complex. As their complexity has increased, however, robustness to failure has 

presented significant obstacles. In addition, the execution of simultaneous multiple multi-

user prototype applications is not readily supported. This thesis has identified and 

addressed critical barriers to the development of robust multi-user, multiple application 

prototype systems for human language technology (HLT). 

Initial HLT systems, like many software systems of the same era, were designed 

in a monolithic fashion [1]. As these systems became more complex, development and 

maintenance requirements made this design approach untenable for progress in the field. 

This led to the concept of distributed processing in which this monolithic structure was 
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2 
decomposed into a number of functional components that could interact through a 

common protocol [1]. This distributed framework was readily accepted by the research 

community and has been the cornerstone for the advancement in cutting edge HLT 

systems. 

The Defensive Advanced Research Projects Agency (DARPA) Communicator 

program has been highly successful and many state-of-the-art systems have been built on 

this architecture [1]. The DARPA Communicator architecture was developed and 

optimized for HLT systems. Though the DARPA program has concluded, the 

Communicator architecture is available in the public domain and provides a feasible 

environment for long-term research in HLT [2]. Many labs including Carnegie Mellon 

University (CMU) [3], Center for Spoken Language Processing (CSLR) [4] and 

SRI [5], [6] continue to conduct fundamental HLT research using complex systems 

designed on this open source architecture. The plug-and-play ability facilitates 

intermixing of components developed by different sites. It has a programmable hub that 

allows flexible control over the interaction between servers. These notable features made 

the DARPA Communicator a viable architecture for the implementation of HLT systems.  

Despite the DARPA Communicator’s advantages, it suffered critical robustness 

issues which grew in magnitude as more complex systems were developed. Also, multi-

user and multiple application capability were innately supported. This thesis has 

addressed these issues by incorporating a series of enhancements that were implemented 

and formally evaluated on a prototype HLT system that consists of four main 

applications. Details of experiments conducted to measure and evaluate enhancements 

are given in Chapter IV. 



   

  

 

 
 

 

 

 

 

3 
The prototype HLT system consists of four major components: speech analysis, 

automatic speech recognition (ASR), speaker verification and a dialog system. The 

speech analysis component records and plays back audio and displays the waveform, 

spectrogram, and energy. The speaker verification component verifies the authenticity of 

the speaker by comparing a statistical model [7] of the test utterance to a model of the 

claimed speaker’s voice. The dialog system component is a navigation system [9] that 

responds to queries about directions and places at Mississippi State University (MSU) 

and the adjacent city of Starkville, Mississippi. All these applications use a public 

domain, hidden Markov model (HMM)-based speaker-independent continuous speech 

ASR system [1], [11], [12] developed by the Institute for Signal and Information 

Processing (ISIP) at Mississippi State University. 

1.1 Thesis Scope and Contribution 

In the past decade, advances in distributed computing technologies have led to the 

realization of complex HLT systems. The distributed framework of the Communicator 

architecture has supported the development of systems with highly complex 

communication among software modules and processes. While this has increased the 

overall power and capability of HLT systems, the complexity of the inter-process 

communication has decreased robustness and significantly degraded the performance of 

the systems built on this framework. Further, the Communicator architecture does not 

inherently support the ability to handle multiple users running multiple applications from 

a common interface. Multi-user and multiple-application capability are crucial to 

widespread acceptance of this technology. 



   

 

 

  

 

 

 

 

 

4 
The main goals of the thesis were to identify and address the critical barriers to 

the development of robust multi-user HLT systems. The key contributions of the thesis 

include: 

1.1.1 Robustness Enhancements 

A finite state machine architecture and a basic handshaking protocol were 

incorporated into the original Communicator architecture to address robustness issues. 

Experiments conducted to quantify the robustness improvements are discussed in detail 

in Chapter IV. The robustness enhancements are as follows: 

• State Machine Architecture: The servers were redesigned to use a state machine 

architecture to explicitly monitor the invocation process. The flow of the invocation 

process was partitioned into stages which correspond to finite states in the server. At 

each state, the server expects to receive a specific message in the form of a 

Communicator frame, from a specific server. If the message received at a given state 

is different from the expected message, the server generates an error and exits the 

program. If the correct message is received, the server transitions to the next state 

and waits for further invocation. This architecture detects errors more readily and 

allows for more graceful error recovery. It also helps in debugging as information 

about the state and message that caused the error can be retrieved from the server. 

This enhancement is discussed in detail in Chapter III. 

• Basic Handshaking: The state machine architecture and basic handshaking, which 

work hand in hand, have proven effective in detecting errors. The states are defined 

on the basis of the different stages of handshaking between the servers. The 



   

 

 

  

 

 

 

5 
Communicator architecture provides a basic structure called a “frame” for 

communication among servers and processes. This structure implicitly allows a strict 

handshaking protocol, but does not require or provide an implementation of such a 

protocol. Implementing and enforcing such a protocol became critical for system 

robustness as the number and complexity of the applications increased in magnitude. 

The system was redesigned to include basic handshaking capabilities in the client-

server communication. Chapter III discusses these enhancements in detail. 

1.1.2 Qualitative Enhancements 

Enhancements that provided automated handling of multiple users and multiple 

applications were also introduced. Scenarios further detailing these enhancements and 

their evaluation are discussed in detail in Chapter IV. The qualitative enhancements are 

as follows:  

• Multi-user Capability: The system architecture has been redesigned to support 

simultaneous execution of multiple multi-user applications. The DARPA 

Communicator package includes a Python interface called the “Process Monitor.” It 

provides a visual interface to observe the processes, and terminate/restart them when 

necessary. Though a useful interface, it required human observation of processes and 

manual termination and restarting of processes if problems were observed. 

Overcoming this disadvantage required developing a process manager module with 

intelligence to automatically detect failed processes and initiate restarts. The process 

manager controls all the processes running on the server side, by encapsulating them 

in a Java™ process [13] object. This empowers the process manager to create a 



   

 

 

 

 
  

 

 

 

6 
process, wait on a process, perform input/output on a process, check the exit status 

on a process and terminate a process. The process manager enables a multiple-user 

capability by keeping track of client and server associations. It also handles port 

allocation which is necessary when different processes need to communicate through 

ports. 

• Multiple-application Capability: The demo selector is the client user interface 

module which allows the user to choose from multiple applications. Once the user 

chooses an application, the demo selector invokes the user interface needed for the 

corresponding application. The demo selector also notifies the process manager of 

the application chosen by the user. The process manager responds to the demo 

selector by creating the needed servers for the application. It continually tracks the 

status of these servers and notifies the client program of any developments. 

1.2 Structure of the Thesis 

Chapter II describes the original DARPA Communicator architecture, including 

basic terminology, functionality, and architectural strengths. The chapter concludes by 

discussing vulnerabilities in the architecture that affect the robustness of large, multi-

application demonstrations. Chapter III presents in detail the enhancements to the system 

architecture to address these vulnerabilities, including the addition of multi-user and 

multiple-application capabilities, the redesign of the servers to include a state machine 

architecture, and the addition of basic handshaking to the client-server communication. 

Chapter IV presents evaluation data that measures improvements in the robustness of the 
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HLT system, built on the enhanced architecture. Chapter V presents conclusion and 

future areas of research. 



 

  

 

 

 

 

  

 

 

 

CHAPTER II 

THE ORIGINAL DARPA COMMUNICATOR 

Once distributed systems became the widely accepted implementations of human 

language technologies, there arose a need for a common architecture that would support 

reusability and compatibility between modules developed at different sites. Many 

projects were conducted with the goal of creating a common open source platform for 

HLT. Some notable projects which were initiated in the mid-1990s included the 

Advanced Language Engineering Platform (ALEP) [14] the General Architecture for 

TEXT Engineering (GATE) [15] and the TIPSTER project [16]. The common goal of 

these projects was to produce a common architecture which would improve document 

processing efficiency and cost effectiveness for a diverse range of text-based applications 

such as information retrieval, information extraction and automatic text summarization. 

The Communicator program was funded by DARPA for the purpose of creating 

an open source architecture for spoken language applications. It was one of the first 

architectures to provide a conversational and multi-modal interface for human language 

technologies [17]. The Communicator architecture was designed using the MIT Galaxy II 

system [19]. The wide availability of Communicator compatible components, such as 

speech recognition, dialog management and a spoken telephone interface [20] made it 

valuable to speech researchers. Its success is evident from the wide variety of 

applications that were developed using the Communicator architecture, which include 

8 



   

 

 

 
 

 

9 
navigation systems [9], weather information systems [21] and travel planning 

systems [22]. 

Most of the abovementioned architectures have been predominantly 

research-oriented. Widespread commercialization of HLT has led to web-based 

technology platforms. Some examples of successful technology include Nuance’s 

SpeechObjects [23], which is based on VoiceXML [24], and Philip’s SpeechMania [25], 

which is an online architecture based Philip’s special purpose programming language 

known as the High-level Dialogue Definition Language (HDDL) [26]. 

2.1 Communicator Architecture 

The DARPA Communicator architecture was developed and optimized for HLT systems. 

The Communicator has a “hub and spoke” architecture with a programmable hub that 

allows flexible control of interaction among servers. Figure 1 illustrates the architecture 

of the prototype dialog system. The servers include the speech recognition [9], database 

and dialog management servers [9], all developed at the MSU Center for Advanced 

Vehicular Systems (CAVS) and the natural language parser [27] developed at CSLR, 

University of Colorado. The plug-and-play capability of the Communicator architecture 

is well known for reducing prototype development time by enabling sharing of 

components across sites. It also provides a standard platform for evaluation of systems 

developed by different laboratories. 
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Figure 1 A common architecture for a dialog system. 

2.2 Basic Terminology 

This section introduces terminology specific to the Communicator architecture, as 

well as its usage specific to the demonstration system. Some terminology that will be 

used frequently in this thesis includes: 

• Server: Any process that communicates with another process through a hub is called 

a server. All processes running in the prototype system are servers.  

• Client: This thesis uses the term “client” to denote the user interface module on the 

user’s machine (e.g. laptop). Note that Communicator views all processes as servers 

irrespective of their functionalities. 

• Hub: The hub is the backbone of the Communicator architecture. The hub routes 

messages from one server to another making it possible for the servers to 

communicate. 



   

 

 

 

 

 

 

 

11 
• Frame: The hub monitors all communication among servers. Supporting this 

communication requires a standard protocol, which for the Communicator 

architecture is based on an entity called a frame. A Communicator frame is a data 

structure consisting of a name, a set of key-value pairs [28]. By convention the keys 

start with a colon followed by a name for the key. The key can be assigned any 

standard data types such as integer, float, string, frame, list, etc. 

• Message: A message is a frame which is passed from a server to the hub or vice 

versa. A message can trigger a new message or can simply be an acknowledgement 

of a message received. When a message is sent to the hub, the rule corresponding to 

that message is triggered. This rule, in turn, triggers a new message which is sent to 

the recipient servers. 

• Dispatch Function: A function that can be directly invoked from the hub is called a 

dispatch function. When the hub receives a message, it looks for the appropriate rule 

and invokes the dispatch function of the intended server. In most cases, the dispatch 

function sends back a new message which triggers further communication. 

• Token: A token is a copy of the incoming message stored in the hub to keep track of 

the messages it receives. Once the hub finds a dispatch function corresponding to the 

message, it sends the message to the appropriate server and deletes the token.  

• Hub Rule: When the hub starts up, it reads a program file called the hub script. The 

hub script has the list of servers, port numbers and logging instructions. It also has a 

set of rules which the hub uses as guidelines to take the appropriate action for a 

given message frame. These rules are called hub rules and they dictate the response 

of the hub. 
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Figure 2 A server dispatch functio n is called by the hub. 

2.3 The Invocation Process 

When a hub sends a message to the server, this message also includes a dispatch 

function which is supported by the server and needs to be invoked by the hub. Usually 

the name of the dispatch function matches the name of the message sent by the hub.  

A message is called qualified if it has the information about which server should receive 

the message. Messages can be unqualified in some cases. Figure 2 illustrates the 

invocation process. It can be noted that the message from the hub contains information on 

the server for which the message is intended and corresponding dispatch function that 

needs to be invoked. 

Figure 3 shows a sample hub rule which has information about the dispatch 

function to invoke, in which server to invoke it, and the keys that need to be sent to the 

server. There are usually two modes of interaction for the hub. In a scripted interaction, 

the hub searches for the hub program which matches the name of the incoming message.  
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Figure 3 Illustration of a hub triggering an appropriate hub rule. 

If the hub cannot find a hub program which matches the name of the incoming 

message, it tries to find a dispatch function in one of its servers. This is called scriptless 

interaction. If no hub script or dispatch function is found with the specified name, the 

message is discarded with a warning. Figure 3 illustrates a scriptless interaction. The 

user-interface server sends a message frame containing the key “:audio_ready” to the 

hub. The hub searches the hub script and finds a rule for a frame with “:audio_ready” 

key. The rule invokes the receive_signal function of the data recorder server. 

2.4 Initiation of the Communicator System 

This section discusses the series of actions that are triggered when the 

Communicator system is started. To start the system, the hub can be invoked first 

followed by the servers or vice versa. In the initial prototype system, the servers were 

invoked first followed by the hub. 



   

 

  

 

 

 

 

 

14 
Figure 4 illustrates the steps involved in starting the Communicator system. The 

following describes the most common sequence of steps by which the Communicator 

system can be invoked and executed: 

• Step 1: All the servers are started. The servers listen to the port waiting for 

communication from the hub. 

• Step 2: The hub is started. The hub reads the hub script file. From the hub script, the 

hub gets information about the servers it needs to contact, port information and the 

location it needs to write the log files. 

• Step 3: The hub initiates a connection with the servers. During this initialization 

message, it invokes the “reinitialize” dispatch function in the servers. 

• Step 4: At this instant, all the servers are initialized and are in their ready states 

waiting for message frames. Usually the trigger comes from an event invoked by the 

user from the user interface server. For example in case of the speech analysis 

application, pressing of the record button initiates the control flow. 

2.4.1 Initial Prototype System Servers 

The final demonstration system described in Chapter I was designed and 

developed iteratively. Figure 1 shows the initial prototype system, a spoken language 

dialog navigation and information system, that was the first phase of an iterative design 

and development process. The success achieved in developing this system created a 

foundation for building a speaker verification system which authenticates users using the 

voice samples. The following subsections describe the different servers in the initial 

prototype system. 
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Figure 4 Steps involved in starting the Communicator system. 

2.4.2  Audio Server 

The Audio server that was used in the initial prototype was developed by 

MITRE Corporation. The Java™ Desktop Audio Server (JDAS) [20] was intended to 

provide a cross-platform, Communicator-compliant, desktop audio interface to the speech 

recognition and synthesis servers. JDAS features an event-driven, multi-threaded 

architecture which interacts appropriately with legacy servers and introduces the 

capability of sending and receiving audio in a variety of formats supported by the Java™ 

Sound API [30]. Telephony support is simulated using a keypad graphical user interface 

(GUI). 
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Figure 5 The block diagram of the recognition process. 

2.4.3 Recognition Server 

The speech recognition server uses a public domain HMM-based speaker-

independent continuous speech recognition system [31] which is based on a generalized 

hierarchical time-synchronous Viterbi beam search decoder [32]. Figure 5 shows the 

different components that are used in the recognition server. The front end block is 

responsible for feature extraction which is the process of extracting mel-frequency 

cepstral coefficients (MFCCs) [33] from the speech signal. The acoustic model is trained 

using state-of-the-art statistical techniques to learn the characteristics of the speech 

signal [34]. The search module uses the Viterbi algorithm and determines the best 

hypotheses. A language model is used to guide the search process with prior information 

about the language. 

2.4.4 Natural Language Parser Server 

The natural language parser server uses the Phoenix parser [35], an open source 

software developed by CSLR, University of Colorado. The grammar and the dialog 

manager code were developed at CAVS to post-process the natural language parser 

output. The parser attempts to map the decoded output to a set of semantic frames. A 

frame is a named set of slots [9]. Each slot has a context-free grammar (CFG) that 
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specifies a word sequence. The grammars are compiled into recursive transition 

networks. 

An example of a frame requesting for driving information is shown below: 

FRAME: Drive 

[route] 

[distance] 

The [route] slot is used to fit in the queries related to specific routes. The [distance] slot 

accommodates distance queries from one place to another. A subset of CFG rules are 

shown below [9]: 

[route] 

(*IWANT * [go_verb] [arriveloc]) 

IWANT 

(I want *to) (I would *like *to) (I will) (I need *to) 

[go_verb] 

(go) (drive *to) (get) (reach) 

[arriveloc] 

[*to [placename] [cityname]] 

This type of grammar is useful for HLT systems because spontaneous spoken language is 

often ungrammatical. 

2.4.5 The Dialog Manager 

The dialog manager coordinates the activities between the speech recognition, 

parser and back-end application servers [9]. The dialog manager obtains the N-best parse 



   

 

 

 

 

 

18 
from the natural language parser and selects the best parse by scoring the slots. The 

information is merged with a set of context frames. The dialog manager attempts to 

resolve the user’s request by creating a database query. The database server responds to 

the database query by retrieving the reply from the SQL database. The reply is formatted 

by the dialog manager and sent to the client program to be displayed in the user interface. 

If the dialog manager does not understand the query or if the query is ambiguous, it 

prompts the user for the missing information. 

2.4.6 Back-end Application Server 

The back-end application server consists of a Structured Query Language (SQL) 

database and a generic interface to access the internet to retrieve the requested 

information. Geographic resource sites such as Travelocity [36], Expedia [37] and 

Mapquest [38] are widely used in the research community especially for navigation [39] 

and Geographical Information Systems (GIS) [40] research. The server uses Mapquest as 

Mapquest is more suited for the address and direction querying functionality of the dialog 

system application.  

The dialog manager sends the query frame to the database server. The records in 

the database are searched for a response using basic SQL commands. If no match is 

found, an HTTP-based request is submitted to a travel website via the Internet. A Perl 

script performs the function of logging onto the website and parsing the results from the 

HTML page. The records obtained from querying the website are inserted as rows into 

the SQL database. In case the same query is made by the user, the server need not contact 

the travel website as it can be found in its database. 
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2.4.7 Speaker Verification Server 

Functionally, the speaker verification server is similar to the recognition server. 

The audio data is converted to features and are processed to obtain likelihood scores. 

These likelihood scores are calculated based on a set of trained models on a per frame 

basis [7]. The likelihood scores are then combined via an HMM to yield an overall 

utterance score, which is a value used by the system to make a decision on whether to 

accept or reject the claimed identity. The server maintains two speaker models, i.e., 

authorized user and imposter. The overall utterance scores obtained from both models are 

compared using a simple threshold test. The server outputs an acceptance or rejection 

hypotheses based on this threshold test. Figure 6 shows the block diagram of the speaker 

verification server. 

Once the initial prototype system was extended to accommodate two applications, 

there arose a need for a more multi-user/application-friendly architecture. This issue 

along with other disadvantages in the original architecture provided a strong case for a 

transition to an enhanced, more robust architecture. 

Figure 6 The block diagram of the speaker verification process. 
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2.5 Disadvantages of the Prototype System 

During the initial design phase, communication deadlocks among servers were 

common as were memory management issues that were difficult to debug. Basic logging 

mechanisms were provided to address some of these issues, but certain desirable features 

were not available, such as automated server startup, error detection and correction. The 

original DARPA architecture did not have an interface to choose from different 

applications and had to be manually started. The original architecture serviced multiple 

users, but required manual server startup, including manual port allocation to avoid port 

conflicts. It was anticipated that such issues would grow in number and complexity as 

multiple multi-user applications were added. The following subsections discuss the three 

major issues which required immediate attention. 

2.5.1 Deadlocks in Communication between Servers 

Frequent deadlocks in the communication between servers were experienced in 

the initial prototype. The two main reasons for these deadlocks were server failures and 

misfiring of user interface events. The system also lacked a mechanism for logging 

communications between servers, which made debugging very cumbersome. This created 

a requirement for restructuring the servers and modules to monitor and detect server 

failures. To support this requirement, a more organized mechanism of logging the 

communication between servers was needed. 
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2.5.2 Automated Recovery from Server Failures 

The client and the servers of the prototype system ran on different machines and 

communicate through sockets. When a process failed on the server side, the user has to 

manually restart the process. Even though Galaxy’s process monitor provided an 

interface to start and terminate the servers, it required manual monitoring. This led to the 

necessity of a module with the intelligence to start servers, check their status and 

terminate all processes when the application is closed. 

2.5.3 Multiple Simultaneous Users 

One of the main disadvantages of the DARPA Communicator system is that there 

was no mechanism to handle multiple users. The appropriate servers for each user had to 

be manually started and ports manually allocated to ensure no port conflicts occurred. 

This disadvantage acted as a barrier for multiple user support. This led to the need for 

modules that can keep track of the client-server association and automatically allocate 

ports for an application started by the user. 

2.5.4 A Common User Interface 

Supporting multiple applications required a common interface that allows the user 

to choose from a host of applications and coordinates interprocess communication 

between servers and the client process. Each of these applications had its own user 

interface and set of computational servers. The original architecture lacked modules 

which can offer a common interface and subsequently start the appropriate user interface 

depending on the chosen application. 
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These disadvantages made the transition to a more automated and robust 

architecture inevitable. Chapter III discusses in detail the different enhancements that 

were made to overcome the above mentioned issues. 



 

 

 

 

 

 

 

CHAPTER III 

ENHANCEMENTS TO THE COMMUNICATOR ARCHITECTURE 

To overcome the disadvantages discussed in Chapter II, careful redesign of the 

architecture was necessary followed by implementation and rigorous testing. There arose 

a need for a simple application that could serve as a test bed. This led to the 

implementation of the speech analysis application which is a basic audio 

recording/playback utility with some enhanced features such as energy, waveform and 

spectrogram plots. Figure 7 shows the control flow of the speech analysis application. 

The following sections discuss the various modular and architectural enhancements that 

were initially implemented on the speech analysis application and later extended to 

complex applications such as the dialog system. 

Figure 7 Control flow in the speech analysis application. 
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3.1 Modularity Enhancements 

The knowledge gained from implementing and testing the initial prototype system 

enabled the identification of certain modules to be added or removed to address the 

deficiencies found in the prototype system. The following subsections discuss the added 

modules in detail. 

3.1.1 Audio Server 

The JDAS audio server which was used in the initial prototype had cross-platform 

compatibility issues [20] . MITRE corporation abandoned the development and 

subsequent support of the JDAS server. This led to the development of an indigenous 

Java™-based Audio server with record/playback capabilities. It uses Java™ Sound 

package [30] to interact with the audio hardware and is integrated into the client 

programs of each application.  

3.1.2 Data Recorder 

The data recorder works in unison with the audio server. While the audio server is 

a Java™ program that interacts with the audio hardware on the client side, the data 

recorder is responsible for collecting the audio samples and writing it to disk. This is a 

C++ program that uses ISIP Foundation classes (IFC) [42] and supports most of the 

commonly used audio formats including Sof [43], which is an ISIP internal format. 
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Figure 8 Overall energy and waveform plots, along with utterance endpoints. 

3.1.3 Signal Detector 

The JDAS audio server had the ability to detect audio activity but did not provide 

an efficient and flexible mechanism to control its utterance detection algorithm. The 

replacement of JDAS server by an indigenous audio server led to the need for a speech 

activity server to perform utterance detection. The signal detector server performs this 

function by employing basic digital signal processing algorithms, i.e., energy and zero 

crossing to detect the audio signal. 

During the recording process, the audio server streams the audio data in real time 

to the signal detector server. The signal detector server computes the energy of each 

audio frame and assigns it an energy state [44]. The signal detector keeps track of these 

energy states and uses these states to identify changes in speech activity. This process is 

depicted in Figure 8. The energy and the waveform plots are shown for a typical speech 

utterance. The white vertical lines represent the start and end of utterance as determined 

by the signal detector. We refer to these time coordinates of these marks as the utterance 
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endpoints. The signal detector computes these endpoints in real time as audio data is 

streamed to it, and hence allows downstream applications in the demo system to begin 

processing data as soon as these endpoints are located. The net effect of this server is to 

give the demonstration system the ability to do voice-actuated recording and processing. 

3.1.4 Display Module 

The display module provides the ability to plot the energy, waveform and the 

spectrogram of the recorded audio data. A common constraint while plotting the signal is 

that the number of pixels on the screen is usually less than the number of samples to be 

plotted. In rare cases, the reverse is also possible. The display algorithm adapts to these 

changes by calculating the pixel to sample ratio and then branching to the appropriate 

display algorithm depending on the ratio. The energy is plotted by computing the root 

mean square of the sample values for each frame of audio data. The waveform is drawn 

by plotting the minimum and maximum amplitudes in a frame of audio data.  

The spectrogram [34], [45] is more computationally intensive than the energy and 

the waveform plots. The audio data is windowed, zero padded and the Fast Fourier 

Transform (FFT) [46] of every audio frame is computed. These spectral magnitudes are 

transformed into the log domain and the decibel (dB) values are normalized to a specific 

range of colors specified by the color map. The display module can operate in two 

modes, real-time and overall. For the energy and the waveform plots, the real-time and 

overall modes differ only in the amount of data plotted on the screen, with no significant 

differences otherwise. In the case of the spectrogram plots, the real-time and overall plots 

have some fundamental differences which are explained below in detail.  
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One major issue addressed in the spectrogram implementation is the 

normalization of the dB range to the number of distinct colors in the color map. In 

real-time mode, as there is no knowledge regarding the dB range of the audio data, 

default values with a dynamic range of 60 dB are used. These ranges can defined by the 

user by varying the minimum and maximum spectral magnitude values. The spectrogram 

scaling can be varied by changing parameters such as brightness, contrast, minimum and 

maximum spectral magnitudes which user definable using the configuration menu.  

Figure 9 shows the configuration menu which enables the user to alter the default 

configurations of the audio and display settings. The following equation scales the dB 

spectral values to corresponding color maps: 

a = (b - c ) * (( d * (e + 0 .5) /(( f + g ) − (h + g ))) 
where, 
a 
b 
c 
d 
e 
f 
h 
g 

→
→
→
→
→
→
→
→ 

computed colormap 
spectral magnitude in Decibels 
minimum spectral magnitude in Decibels 
color levels in the choosen color map  , (1) 

contrast value in (0,1) range 
maximim spectral magnitude in Decibels 
brightness in Decibels 
minimum spectral magnitude in Decibels 

Changing the brightness produces a shift in the maximum and minimum spectral 

ranges while contrast produces a linear compression within the range. As dB values are 

calculated in real-time mode, a probability distribution function of the dB values is 

computed. Once the mode switches to overall mode, the cumulative distribution of dB 

values is computed and a user-specified percentage is used to calculate the weighted 
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minimum and maximum dB range. The overall plot uses these weighted spectral 

magnitudes instead of user defined magnitudes which are used in real-time plotting.. 

Figure 10 shows the overall spectrogram plot of the word “drown” pronounced by 

a female speaker. Extensive memory optimization was performed to make the plots 

computationally less intensive during the real-time mode. 

3.2 Architectural Enhancements 

Among the numerous disadvantages discussed in the previous chapter, the most 

critical were automating server startup, error detection and correction, and application 

control from a single common interface. In addition, automating the server startup and 

adding the multiple user and multiple application capability emphasized the need for 

improved debugging capabilities. 

Figure 9 The configuration menu 
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Figure 10 Spectrogram of the word “drown” pronounced by a female speaker. 

3.2.1  Automated Server Management 

Automated server management became critical with the requirement to run 

multiple applications simultaneously [47]. Though Communicator’s process monitor 

provides an interface to start and terminate servers, it requires manual monitoring. To 

address this issue, a process manager module was designed to automatically start and 

control all server processes in the prototype system architecture. Figure 11 shows an 

overview of the multi-user architecture for multiple applications. The process manager 

controls and monitors all server applications. The user’s client application must contact 

the process manager to start the required servers, before directly establishing connections 

with them. When the user begins interacting with the common interface, the client 

program displays the different applications from which the user can choose. When the 

user selects a certain application, the client program requests the process manager to start 

the respective servers and the hub. The process manager maintains information about 

what servers are required for each application. 
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Figure 11 The process manager managing different users requesting different HLT 
applications. 

The process manager starts these processes by encapsulating them in a Java™ 

Process Object. The Java™ Process Object enables the process manager module to 

control all the server processes. The Process Object gives a host of capabilities by which 

the processes can be monitored. Java provides methods to send inputs to the process, pipe 

an output stream from the process, and detect errors that occurred in the process. It even 

provides a “wait for” feature where the current thread that is running waits until the 

process is executed (i.e., the main thread is blocked until the process has finished 

executing). By tapping into these capabilities, the process manager can create a process, 

wait on a process, perform input/output on the process and also check the exit status of 

the process. If a server process fails for any reason, the process manager detects the 

failure and terminates the cluster of servers associated with the failed process. It also 
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sends a message to the corresponding client application forcing the user to close an 

application and restart it. 

As can be seen in Figure 11, in a multi-user environment, many processes are 

running and communicating with each other through sockets [48]. One major issue in 

such an environment is port allocation. Any two servers trying to listen to the same port 

may lead to server failures or unpredictable behavior of the applications. The process 

manager handles port allocation by making sure each new process created listens to a port 

number unique to itself. 

3.2.2 Common Application Interface 

Support for multiple applications required providing a common interface from 

which users could select an application of interest [47]. The demo selector module was 

designed to provide the desired interface and coordinate with the process manager 

module to start the required servers. The demo selector interface displays a single screen 

with icons for each of the four applications. Once the user selects an application, the 

demo selector loads and displays the appropriate user interface. Though each user 

interface is designed to fit the needs of the specific application, they each share common 

modules including the display module and the configuration menus which allow the user 

to change the default settings of the application. 

Figure 12 shows the demo selector interface for the four applications, 

superimposed with the user interface for the speech analysis application, after it has been 

selected. The client program sends a Communicator frame with a key-value pair 

containing the name of the application that was selected. The process manager has prior 
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information about each application and the corresponding servers needed to run the 

particular application. Upon receiving the message in this frame, the process manager 

extracts the application name from the Communicator frame and starts the required 

servers. Once the user closes a certain application, the demo selector window is displayed 

again. The user can either choose another application or simply exit from the interface.  

Figure 12 Demo selector and speech analysis user interface. 

The demo selector also has a network configuration menu as referenced in Figure 

13. The client application must have the IP addresses of the machine in which the process 

manager and the hub are running. The network configuration gives the user the capability 

to change these default settings. As discussed earlier, the port allocation between 
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different servers are handled by the process manager, but the user must specify the port 

number through which the client application can communicate with the process manager. 

Similarly, the user must specify the port number the client application has to listen to for 

further communication.  

Figure 13 The network configuration menu. 

The original Communicator architecture allows a given process to act as a server 

or a client. This mode can be reversed by using the network configuration window. 

3.2.3 Improvements to System Robustness 

Improving system robustness with respect to system failure is the primary focus 

of the thesis. For the foundation of the redesign strategy, a simple application, speech 

analysis was targeted. The approach taken for the demonstration system entailed using 

the implicit capabilities of the Communicator to enhance reliability of inter-process 

communication between clients and servers [49]. This section describes how a state 

machine architecture [50], [51] was implemented to support a basic handshaking protocol 
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between the client and servers using frames. Figure 14 shows an overall view of the 

client-server modules for speech analysis. Note that even this simple application requires 

two servers, audio recorder and signal detector.  

Figure 14 Speech analysis application (client and server). 

Figure 15 shows the state machine architecture and basic handshaking supported 

between the speech analysis client and the signal detector server. A simple handshaking 

protocol was implemented with signals and acknowledgements, each implemented as 

Communicator frames sent via the hub. The states and handshaking protocol support 

three major interaction phases between client and server, 1) preparing for data transfer; 2) 

data transfer itself, and 3) end of data transfer. For Phase 1, the client begins in the 

Initialization state, during which it establishes a connection with the hub. It then 

transitions to the Audio_Ready state and sends an Audio_Ready signal to the signal 
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detector server to prepare it for audio data transfer. The client then waits for an 

acknowledgement of the Audio_Ready signal from the signal detector server, and once it 

is received, it transitions to the Audio_Ready_Ack state.  

Figure 15 Handshaking between the speech analysis client program and the signal 
detector server. 

In Phase 2, data transfer begins when the client transitions to the Data_Transfer 

state and sends packets of audio data in Communicator frames to the server. For each 

frame of data sent, the client waits for an acknowledgement from the server, which 

checks each for validity. If the server receives a frame that is invalid, it does not send an 
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acknowledgement signal, but generates an error message, written to a log file. The client 

will not send further data until it receives an acknowledgement.  

Figure 16 Block diagram of the dialog system. 

If data transfer completes successfully, the signal detector server detects 

endpoints and passes the endpointed data to the client. The client then sends an end of 

utterance signal to the signal detector server and waits for an acknowledgement. On 

receiving the end-of-utterance signal, the signal detector server sends an 

acknowledgement signal to the client and resets itself to the initial state. The handshaking 

protocol described in this example is implemented for all applications and has eliminated 

server failures and deadlocks due to communication errors. 

The abovementioned mechanism that was illustrated for a simple application was 

extended to more complex applications such as the dialog and the speaker verification 

systems. Figure 16 illustrates a block diagram of the servers involved in the dialog 
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application. Figure 17 shows the states associated with each of these servers. The speech 

analysis and the dialog system application have similar communication patterns during 

the recording process. Once the recording ends, the speech recognition server transitions 

to the Data_Processing state and decodes the utterance. Once the utterance is decoded, 

the decoded text is sent to the natural language parser and the speech recognition server 

resets to its initial state.  

Figure 17 The state machine architecture of the dialog system servers. 
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The parser transitions to the Text_Processing state and computes a parse for the 

decoded utterance. Usually, the parser can generate more than one parse for a query. The 

parser can be run in an N-best mode where a list of best parses are generated and the 

dialog manager is used to select the best parse depending upon a given criteria. The 

parser sends the parsed output to the dialog manager and resets to the initial state. The 

dialog manager computes the best parse after transitioning to the Processing_Parse state. 

Once the query is formulated, the dialog manager transitions to the Wait_for_Database 

state and sends the query to the database server. 

The database server branches to Processing_Sql_Query or 

Processing_Web_Query depending on the query type. Once the database server sends the 

response to the dialog manager, it resets to the initial state. The dialog manager receives 

the database response and transitions to the Processing_DB_Result state. The dialog 

manager sends the response to the user interface and resets to the initial state. This 

systematic handling of communication has improved the robustness of complex 

applications such as the dialog system. 

In this chapter, the modular and the architectural enhancements that were made to 

the original architecture were discussed in detail. In order to evaluate the robustness 

improvements achieved by these enhancements, experiments were designed to formally 

evaluate and compare the performance of both the architectures. Chapter IV discusses the 

experiments that were conducted to evaluate the enhanced architecture. The results of 

these experiments are further analyzed and inferences about the efficacy of the 

architecture are drawn. 



 

 

 

 

 
 

 

 

 

CHAPTER IV 

RESULTS AND ANALYSIS 

This chapter analyzes the enhancements made to the original DARPA 

architecture. The first section describes experiments that were conducted to measure the 

improvement in the robustness of the architecture due to the enhancements. The second 

section presents scenarios that demonstrate better error handling and debugging 

capabilities. 

4.1 Quantitative Analysis 

The following section consists of four experiments that were conducted to 

measure the quantitative improvements in the robustness of the system. The first 

experiment consists of comparing the results obtained by testing utterances from the 

extended pilot database on the original and the enhanced architecture. In the second 

experiment, a set of tasks were randomly selected from a pool and tested on the original 

and the enhanced architecture. The third experiment consists of tasks performed under a 

series of scenarios by the user for specific time duration on both architectures. 

Robustness improvements in the enhanced architecture are measured by comparing the 

number of interactions that were successfully completed. The fourth experiment consists 

of users performing tasks in specific scenarios using the dialog system with spoken 

language input, the most complex application interaction in the HLT system. 

39 
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4.1.1 Pilot Corpus Experiment  

As mentioned earlier, our initial prototype system consisted of automatic speech 

recognition (ASR), natural language processing (NLP), dialog management (DM), and a 

database back-end. The language model and grammar for the ASR and NLP systems 

were derived from a pilot corpus that consisted of 276 queries spontaneously entered by 

users over a series of three experiments. After initial prototyping, a series of pilot 

experiments were conducted on the original DARPA architecture. These pilot 

experiments consisted of first testing the system on the collected data, then making the 

necessary modifications to the grammar/language model and retesting the system. 

During this phase, the NLP system was iteratively refined with a simulated ASR 

system using a series of Wizard of Oz (WOZ) experiments [52], [53]. The refinements 

showed improvements on the error rates, especially for the utterances containing out of 

vocabulary words (OOVs). The pilot corpus was extended by adding the utterances 

collected during the WOZ experiments. These refinements were tested using 403 

utterances from the extended pilot corpus which spanned 10 different categories that 

included Address (98), Direction (219), Distance (23), List of places (36), Building (10), 

Turn (5), Bus (7), Intersection (2), Which Way (2) and Special (1). During these 

experiments conducted for the original architecture, approximately 4% of the utterances 

resulted in a server error or a deadlock. 

Procedure 

Once the enhancements discussed in Chapter III were made to the DARPA 

architecture, each of the 403 utterances from the pool was retested using the enhanced 
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architecture. These utterances were tested by one non-native male speaker with the dialog 

system running in text mode. All the utterances were successfully queried using the 

enhanced architecture while only 386 utterances were successfully queried in the original 

architecture. Table 1 shows the server errors and deadlocks in the original and the 

enhanced architecture. In the original architecture, it can be noted that approximately 4% 

of overall failures occurred due to system failures and deadlocks. 

Table 1 Performance data for the dialog application. 

Before Enhancements After Enhancements 

Queries 
# of 
utter-
ances 

Passed 
(%) 

Failed (%) 
Passed 

(%) 

Failed (%) 
Server 
Errors 

Deadl-
ocks 

Server 
Errors 

Deadl-
ocks 

Address 98 100.00 0.00 0.00 100.00 0.00 0.00 
Direction 219 95.43 2.28 2.28 100.00 0.00 0.00 
Distance 23 91.31 8.70 0.00 100.00 0.00 0.00 
List of 
places 36 100.00 0.00 0.00 100.00 0.00 0.00 

Building 10 100.00 0.00 0.00 100.00 0.00 0.00 
Turn 5 100.00 0.00 0.00 100.00 0.00 0.00 
Bus 7 57.15 42.85 0.00 100.00 0.00 0.00 
Interse-
ction 2 0.00 100.00 0.00 100.00 0.00 0.00 

Which 
way 2 100.00 0.00 0.00 100.00 0.00 0.00 

Special 1 100.00 0.00 0.00 100.00 0.00 0.00 
Total 403 95.78 2.97 1.24 100.00 0.00 0.00 

Conclusions 

Results for the enhanced architecture show a reduction in server errors and 

deadlocks. Although server errors and deadlocks were eliminated on this specific test set, 
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this clearly cannot be argued in general. Nonetheless, it demonstrates the overall 

occurrence of errors has been reduced and further, handling of errors is improved.  

For example, for the address query “Give me directions from Bryan Field to 

Hunter Henry Center”, the dialog manager fails as it does not have the capability to 

handle this query. In the original architecture, this server error leads to a system failure. 

In the case of the enhanced architecture, the process manager detects the error and reports 

these errors to the client process. The enhanced architecture also takes the necessary steps 

to restart the servers. Thus the server errors are gracefully handled by preventing a failure 

of the entire system. 

One limitation of the experiment is that it tested the system against baselines 

established early in the original architecture development using only text mode (i.e., the 

NLP modules). Though necessary to test against these established baselines first, these 

baselines are not sufficient results to fully measure overall robustness improvements, 

including for example, those for the signal detector, data recorder and speech recognition 

servers. The data transfer stage requires more inter-process communication and is thus 

vulnerable to inter-process communication errors; therefore experimental testing of these 

features is imperative. 

The utterances used in these experiments were collected from users by giving 

them a general scenario and asking them to fill the details. A sample scenario is shown 

below: 

“You’ve arrived at the Golden Triangle Airport, gotten a rental car and must get 
to your first meeting of the day.  Your meeting is at the _____________. You’re 
at the airport exit onto Highway 82. “ 
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The user was given a list of places from which to choose for the meeting place in the 

above scenario. Due to this restriction, all these queries had only place names, hotel 

names, and restaurant names for which the system had prior knowledge. This limitation 

was overcome in the following experiments by allowing the user to freely query the 

system. 

4.1.2 Task Pool Experiment 

The second experiment consists of one speaker performing a set of tasks which 

were randomly selected from a task pool. In this experiment, a task consisted of one or 

more interactions of the user with the system. An example of a task is “Use speech mode 

in the dialog system to query the distance between two places.” The pool includes all 

tasks from anticipated and observed usage over the development of the system. Of most 

importance to the experiment, it includes two major categories: 

1) Tasks which were hypothesized to result in server errors which will lead to 

system failures for the original architecture, but hypothesized to generate just 

server errors under the enhanced architecture. These tasks were basic recording 

and querying tasks which were performed under certain system specifications [see 

Appendix A]. Examples of the system specifications include trying to write to a 

location that does not exist, receiving an inappropriate frame during data transfer, 

a buffer overflow during data transfer and attempting to access a null frame. 

There were eight such tasks in the pool. 

2) Tasks that were hypothesized not to result in server errors or system failures 

under neither the original nor the enhanced architectures. Examples of these tasks 
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included recording tasks for varying time durations and a wide range of address-

querying tasks. Figure 18 shows the sub categorization of these tasks. There were 

30 such tasks in the pool. 

The second experiment overcame the limitations of the previous experiment by 

allowing a wide range of tasks which tested both the spoken and natural language 

processing capabilities of the system. The experiment was conducted by one user who 

had prior experience using the HLT system. Unlike the first experiment, the user did not 

have any constraints or prior information guiding him/her through these tasks. 

Dialog System 

Speech 
Mode 

Text 
Mode 

Address 
Direction 
Distance 

List of places 
Building 

Basic Recording 

Address 
Direction 
Distance 

List of places 
Building 

Can be further sub divided 
depending on whether these 
queries access the MySql 
database or the website. 

Figure 18 Categorization tree of the scenarios. 
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Procedure 

Again, the pool consisted of 38 total tasks which tested a wide range of 

capabilities. The tasks were numbered in order [see Appendix A] and a random number 

generator was used to select a number that corresponds to a specific task on the list. For 

example, consider that the number 10 was randomly generated on a certain trial. The 

number 10 corresponds to a recording task for time duration of 5 seconds [see Appendix 

A], which the user performed. This process was repeated until 30 trials were performed. 

These trials were performed by one non-native, male speaker. In this experiment each 

task corresponds to one interaction between the user and the system. 

Results and Analysis 

All 30 tasks passed the enhanced architecture. In the case of the original 

architecture, 24 tasks passed while the other 6 resulted in a server error. The 24 tasks that 

did not generate errors under the original architecture included those for recording for 

varying time durations and querying the dialog system. The six tasks that failed under the 

original architecture involved programmer errors which led to a system failure.  

One such task consists of basic recording under the system specification that the 

signal detector server receives an inappropriate frame during data transfer. This 

inappropriate frame can be defined as any frame that does not contain audio data during 

the data transfer stage. This inappropriate frame can be received by the server due to 

inter-process communication error or a programmer error in setting the hub rules. In the 

original architecture, the signal detector server tries to extract data from the frames. Since 

the inappropriate frame does not have any audio data, the server errors and exits. 
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Because there is no functionality in the original architecture to detect the server error, a 

system failure occurs. 

For the enhanced architecture as the states are well defined, the signal detector 

server checks whether the frame contains audio data before it is extracted. Even in the 

worst case scenario, if the server errors and exits, the process manager provides a 

graceful handling of the error and prevents a system failure. 

Conclusions 

As can be seen in Table 2, 24 tasks passed the original architecture while six 

failed. The six tasks that failed belonged to task set from the pool that was expected to 

fail in the original architecture. This experiment confirmed that these tasks did fail in the 

original architecture. In this experiment, a random number generator was used to produce 

an unbiased selection of tasks from the pool. Though this removes a level of bias, it is not 

based on observed system usage, and, as such, does not necessarily capture typical usage 

patterns. The tasks which failed could constitute a greater percentage of typical daily 

usage. Another limitation of this experiment was that the system was tested by a single 

user. 

Table 2 Performance results for task pool experiment. 

Number of tasks that 
passed the test 

Number of tasks that failed 
the test 

Original architecture 24 6 

Enhanced architecture 30 0 
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4.1.3 General Usage Scenarios Experiment 

In this experiment, five different users performed tasks pertaining to 24 usage scenarios. 

The terms scenario, task and interactions are used frequently in this section, thus their 

meanings should be clearly defined. A scenario is a general situation under which the 

user is asked to use the system. A scenario may require performing one or more tasks. 

For example, consider a user is planning a vacation to the city of his/her choice. She 

needs to decide on a travel itinerary by using the system. This is a general scenario and 

the user may choose to accomplish this by performing several tasks using the system.  

Each task may require a single query or multiple queries to accomplish. This is 

referred to as an interaction which is defined as one response from the system to 

accomplish a specific task. All results in the following experiments have been tabulated 

in terms of the number of interactions. All participants of this experiment were first time 

users of the HLT system and had little or no knowledge of this technology. Users were 

not restricted in their queries so that the queries more closely resemble the usage patterns 

of a typical user. 

Procedure 

Five users were asked to engage in 24 usage scenarios using the original and the 

enhanced architecture [see Appendix B]. Among the five users, there were three males 

and two females. The user pool consisted of one native speaker and four non-native 

speakers. These usage scenarios required performing such tasks as recording for varying 

time durations and querying for information. The scenarios were carefully drafted not to 

prompt the user for a specific query. For example, the user is asked to role play that she is 
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attending a conference in a big city, and to assume she wants to visit sites of interest after 

that day’s conference proceedings. She has no prior knowledge about the layout of the 

city or a city map. She is asked to use the system to plan her visits.  

Before participating in the experiment, each user was presented with a set of 

instructions, which introduced them to the system [see Appendix C]. Each user was 

allowed a 10-minute practice session to get familiar with the functionality of the system. 

The practice session included basic recording sessions and dialog tasks related to some 

predefined queries that the user can use to gain familiarity with the system. Once the 

practice session was over, the user engaged in the usage scenarios for the experiment, 

using both architectures, with a time limit of 30 minutes for each. The user performed the 

tasks, first on the enhanced architecture followed by the original architecture to prevent 

any robustness improvement trend that may occur due to user’s familiarity with the 

system. The entire experiment took approximately 1 hour and 30 minutes. The user was 

asked to cease testing if there was a system failure or she exceeded the allotted time of 

30 minutes. 

Results and Analysis 

Table 3 tabulates the number of interactions that were successfully completed by 

each user, for each of the architectures. It can be noted that a total of 129 interactions 

were successfully completed using the enhanced architecture while only 76 interactions 

could be performed successfully using the original architecture.  
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Table 3 The number of interactions that passed the original and the enhanced 
architecture in general usage scenarios experiment. 

Users Number of interactions 
that were successfully 
attempted in the 
Enhanced architecture 

Number of interactions that 
were successfully 
attempted in the Original 
architecture 

User 1 22 23 
User 2 26 24 
User 3 23 10 
User 4 32* 11 
User 5 26 8 

Total number of 
interactions that were 
successfully attempted 

129 76 

* indicates that a server error was experienced but the enhancements prevented a 
system failure. 

The entries that are highlighted in Table 3 failed during the testing process. The 

system failed three times due to a server error in the original architecture. A server error 

was experienced once during use of the enhanced architecture but was appropriately 

handled by the process manager to prevent a system failure. The scenarios that led to a 

system failure were reconstructed and analyzed. The server errors that occurred during 

the experiment were traced to two types of scenarios. They included: 

1) Inter-process Communication Error: While the user records audio data, the signal 

detector detects the endpoints. The speech recognition server decodes the 

endpointed audio data and the decoded text is sent to the natural language parser. 

The dialog manager receives the parsed output and queries the database for a 

response. If no record was found, the Mapquest website is queried. While the 

dialog manager was querying the Mapquest database, the user attempted to record 
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another utterance which in turn triggered a new set of communication. The dialog 

manager failed as it was in a different state still querying for a response. The 

system failed twice during execution of this scenario using the original 

architecture. Even though this scenario occurred once during use of the enhanced 

architecture, the process manager detected the error and prevented a system 

failure. 

2) Hub Connection Error: The hub experienced a connection error while contacting 

the servers. The DARPA Communicator documentation states this error can occur 

if the hub cannot connect to a server or if the number of connections has exceeded 

the maximum value. This is an internal error with the Communicator’s hub. Even 

though this error did not occur during the testing of the enhanced architecture, the 

process manager should be able to gracefully handle this error.  

In order to further analyze the results, the 24 usage scenarios were categorized on 

the basis of its purpose. Figure 18 shows the sub-categorization of these scenarios. 

Though the scenarios were carefully written to avoid prompting or biasing the user to 

issue a specific query, they were also crafted to elicit and test all capabilities of the 

system, from basic recording to the most complex dialog response capabilities. The 

scenarios can be categorized into the following major categories: 

1) Basic recording capabilities 

2) Dialog response capabilities - speech mode 

3) Dialog response capabilities - text mode 

Among the 24 different scenarios, six scenarios belonged to the “Basic 

Recording” category and the other 18 scenarios belonged to the “Dialog system: Speech/ 



   

  

 
 

     

          

 

51 
Text mode” category. The data presented in Table 4 shows no improvement for the 

“Basic Recording” and “Dialog system: Text mode” category as no system failure was 

experienced in these categories for either architecture. The data only indicate robustness 

improvements in the “Dialog system: Speech mode” category using the enhanced 

architecture. 

Table 4 Three categories of experimental data. 

Catego-
ry 

Number of 
interactions 
successfully 
attempted 
by User 1 

Number of 
interactions 
successfully 
attempted 
by User 2 

Number of 
interactions 
successfully 
attempted by 
User 3 

Number of 
interactions 
successfully 
attempted by 
User 4 

Number of 
interactions 
successfully 
attempted by 
User 5 

E O E O E O E O E O 
Basic 

record-
ing 

9 8 8 6 7 6 12 8 9 8 

Dialog 
system: 
Speech 
mode 

8 7 9 9 9 4 12 3 9 0 

Dialog 
system: 

Text 
mode 

5 8 9 9 7 0 8 0 8 0 

Total 
number 

of 
interact 
-ions 

22 23 26 24 23 10 32 11 26 8 

E – Enhanced architecture , 0 – Original architecture 

To analyze these improvements in greater depth, the scenario categories were 

further subdivided into different levels of inter-process communication needed to 

successfully complete an interaction. Table 5 summarizes the number of interactions per 
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category. Table 6 tabulates the different communication levels needed to complete an 

interaction in each of the three major categories. It can be noted that among the different 

categories, the “Dialog system: Speech mode” category is the most complex and accounts 

for the maximum number of inter process communication exchanges. Therefore, more 

failures are to be expected in scenarios from the “Dialog system: Speech mode” category 

compared to other categories. 

Table 5 Summary of experimental data for the three categories. 

Categories Enhanced Architecture Original architecture 

Basic Recording 45 36 
Dialog system:  
Speech mode 

47 23 

Dialog system:  
Text mode 

37 17 

Total number of 
interactions that were 
successfully attempted 

129 76 

Conclusions 

The results of this experiment have shown an evident improvement in robustness 

of the enhanced architecture over the original architecture. Table 5 shows that 129 

interactions successfully passed the enhanced architecture while only 76 interactions 

passed the original architecture. This shows a 37% improvement in robustness compared 

to the original architecture on this specific dataset. Further categorization of these results 

illustrates that for the “Dialog system: Speech mode” category, only 23 interactions 

successfully completed during tests using the original architecture while 47 interactions 
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successfully completed during tests using the enhanced architecture. This shows a 51% 

improvement in the robustness of the system on this specific dataset.  

These numbers may overstate the actual improvement in robustness as the user 

was asked to abort the experiment following a system failure which prevented him/her 

from performing the subsequent tasks. Since this was more likely to occur in the original 

architecture, this could significantly reduce the number of interactions on that 

architecture. To obtain a more focused measure of robustness improvement, further 

experimentation was needed to target the “Dialog system: Speech mode” category since it 

scenarios from this category require execution of the most complex tasks in the HLT 

system, and results show a notable variation in the performance between the two 

architectures. Therefore, an additional experiment was required to allow the user to 

continue performing all the listed scenarios irrespective of system failures. 

Table 6 The different stages of communication needed to complete successfully an 
interaction in three major categories. 

Category List of sub interactions in each category 
Basic Recording 1) The user records and the audio data is transferred to 

the server. 
2) The end points are detected and the recording ends. 

Dialog system: Speech 
mode 

1) The user records and the audio data is transferred to 
the server. 

2) The end points are detected and the recording ends. 
3) The utterance is decoded. 
4) The decoder output is parsed. 
5) The query response is retrieved and sent to the user 

interface. 
Dialog system: Text 
mode 

1) The user queries the system in text mode. 
2) The query is parsed. 
3) The query response is retrieved and sent to the user 

interface. 
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4.1.4 Dialog System-Speech Mode Experiment 

This experiment was designed to target the “Dialog system: Speech mode” 

category to measure the robustness improvement on the most complex tasks in the HLT 

system. The limitations of previous experiment were overcome by asking the user to 

request a system restart in the event of a system failure and to continue testing for the full 

30 minutes. 

Procedure 

Five users were asked to perform nine usage scenarios restricted to the “Dialog 

system: Speech mode” category [see Appendix B]. Among the five users, there were four 

males and one female. The user pool consisted of one native speaker and four non-native 

speakers. Each user was provided with a series of scenarios originating from the user’s 

visit to Starkville from his/her city of residence. The users were initially presented with a 

set of instructions, which introduced him/her to the system [see Appendix B]. The user 

was allowed to take a 10-minute practice session to get familiar with the functionality of 

the system. The user performed tasks from nine different scenarios with a maximum time 

duration of 30 minutes per session on each architecture. The user first performed the 

tasks on the enhanced architecture followed by the original architecture to prevent any 

robustness improvement trend that may occur due to user’s familiarity with the system. In 

case of a system failure, the user sought assistance in restarting the application and 

continued testing the system. 
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Results and Analysis 

Table 7 tabulates the number of interactions that could be completed successfully 

using each of the architectures. The system experienced a server error twice during use of 

the enhanced architecture but the process manager module prevented a system failure. 

The system failed three times during experiments in which the original architecture was 

used. The scenarios for these failures were reconstructed and are discussed in detail. The 

two error scenarios were: 

Table 7 The number of interactions that passed the original and the enhanced 
architecture in dialog system-speech mode experiment. 

Users Number of interactions 
that passed successfully 
the Enhanced 
architecture 

Number of interactions that 
passed successfully the 
Original architecture 

User 1 10 8 
User 2 10 11 
User 3 9* 9 
User 4 16* 13 
User 5 10 10 

Total number of 
interactions that passed 
successfully 

55 51 

* indicates that a server error was experienced but the enhancements prevented a 
system failure. 

1) Inter-process Communication Error: This is the same error that was mentioned in 

the analysis section of previous experiment. This error occurs when the user 

attempts to record when the dialog manager is still attempting to respond to the 

previous query. This occurred once during use of the original architecture which 

led to a system failure. Though this occurred during use of the enhanced 
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architecture, the process manager provided a graceful handling of the error and 

prevented a system failure. 

2) Dialog Manager Error: The dialog manager errors and exits while trying to send 

the query results to the client process for display to the user. Once the database 

server returns the query results for the direction query, the dialog manager wraps 

the results in a Communicator frame and sends it to the hub. In this specific case, 

the query result contained more than 200 lines of instructions which were 

retrieved from the database tables. The string that holds these results were not 

dynamically allocated to fit any size and resulted in a failure of the dialog 

manager. This can be classified as a programmer error. This error was 

experienced twice during the testing of the original architecture. This error 

occurred once in the enhanced architecture and was gracefully handled by the 

process manager. 

4.1.5 Conclusions on Quantitative Analysis 

To obtain a quantitative measure on the robustness improvements, 10 different 

users were asked to perform approximately 200 interactions on each of the architectures 

with a total experimentation time of around 10 hours. There were two native speakers and 

eight non-native speakers in the user pool. Among the 10 different users there were seven 

males and three females. On the fourth and final experiment, 55 interactions were 

completed successfully using the enhanced architecture while only 51 interactions were 

completed successfully using the original architecture. All experiments were designed 

using scenarios carefully crafted to elicit the most natural, spontaneous interaction from 
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users on the widest range of system functionality. Quantitative results of the final 

experiment show a 7.2% improvement in robustness on the most complex set of tasks 

defined for the HLT system. It can be concluded that the enhanced architecture has 

provided a lower bound of 7% improvement in the robustness of the system. 

Though allowing users exposure to the system continuously for longer time 

periods would yield additional data, this would not necessarily yield more meaningful 

data without carefully designed and controlled experiments,. All facets of this 

experimental design, including subject selection techniques and scenario design and 

presentation, can serve as a critical foundation for more comprehensive studies. 

4.2 Qualitative Analysis 

Most of the enhancements to the DARPA architecture were developed out of 

necessity for a better error handling and debugging capabilities. This section discusses 

the various qualitative enhancements made to the original architecture and describes two 

scenarios where these enhancements have improved error handling and debugging 

capabilities of the system. Although most of the enhancements discussed in Chapter III 

contribute in some way to the qualitative enhancement of the system, discussed below are 

the two main qualitative enhancements to the system. They include: 

• Process Manager Module: The process manager is a powerful module that enables 

automated server management. The ability of the process manager to keep track of 

servers and handle port allocation has provided a better platform for spoken language 

applications. The enhanced architecture provides a built-in capability to handle 

multiple users, which was not supported in the original architecture. The demo 



   

  

 

 

 

 

 

58 
selector interface provides a simple interface for the user to choose from a host of 

applications, while the original architecture needed manual assistance to accomplish 

this capability. 

• Improved Debugging: The enhanced architecture has provided better logging of 

communication which, along with the state machine architecture and basic 

handshaking capabilities, has provided a more efficient debugging paradigm for the 

system. Each server including the hub logs all the communication it sends/receives 

and also logs information related to states and subsequent state transitions. These 

logs can be used to reconstruct the specific scenario in case of a server or system 

failure. The debug window, a component of the user interface module, records all 

communication that is routed through the hub. This provides an excellent interface 

for the user to debug the system when she has no access to the log files on the server 

side. 

To demonstrate these capabilities, two scenarios are presented that illustrate 

improvement in error handling and debugging capabilities of the system. 
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Figure 19 The process manager handling server errors. 

4.2.1 Server Management and Error Handling 

Figure 19 illustrates a case where the signal detector errors out due to an 

inter-process communication error. In this scenario, the signal detector server receives 

two Audio_Ready signals which occurred due to a programming error. Initially, the user 

starts a speech analysis application and the client process contacts the process manager to 

start the required servers. On client’s request, the process manager starts the data recorder 

and the signal detector server along with the hub. Once the recording starts, the client 

process sends the Audio_Ready signal to inform the servers that the recording has started. 

As mentioned earlier, in this particular scenario, the signal detector server 

receives two Audio_Ready signals. This can happen due to a programming error in the 

client process or because the hub script has been inappropriately programmed to send two 

Audio_Ready signals to the signal detector. When the signal detector receives the first 
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Audio_Ready signal from the client process, it sends back an Audio_Ready_Ack signal 

and transitions to Data_Transfer state. Due to a programming error, the signal detector 

gets another Audio_Ready signal. Given the state of the server, the state machine 

architecture in the signal detector server detects the received signal as an inappropriate 

signal. The signal detector server errors and exits with an appropriate error message. The 

process manager detects the server error, terminates the associated processes and informs 

the client to restart the application. Thus, the process manager prevents a system failure 

and provides a graceful handling of the errors. 

Figure 20 A debug window showing an audio data transfer error. 

4.2.2 The Debug Window 

The debug window was designed as an integral part of the user interface to help 

the user debug the system from the client process. This is a critical feature when the user 



   

 

 

  

 

 

 

61 
is not at close proximity to the server machine or she does not have authorized access to 

the server machine. Figure 20 illustrates a scenario where an inter-process 

communication error occurs during data transfer. 

During the data transfer, the recipient server acknowledges every packet of data 

sent by the client process. In this scenario, an inter-process communication error occurs 

as the recipient server could not respond with an acknowledgement or the 

acknowledgement did not reach the client process. The user can view the debug window 

and browse through Communicator messages to reconstruct the exact scenario that led to 

the failure. Thus the debug window provides a debugging interface for the user which 

never existed in the original architecture. 

4.2.3 Conclusions on Qualitative Analysis 

The scenarios discussed above have illustrated the various qualitative 

enhancements performed on the original architecture. The qualitative enhancements 

include first a multi-user and multiple application capability that were not available in the 

original architecture. Therefore, these two enhancements cannot be evaluated against a 

baseline. Nonetheless, these capabilities clearly extend the complexity of applications 

that can be deployed, and thereby, the fundamental research issues that can be 

investigated using this architecture.  

The enhancements related to better debugging capabilities were achieved through 

rigorous design meetings and reviews. In addition, the user interface was designed with a 

team including experts in human computer interaction and graphic design. Further, both 

the debugging and user interface enhancements were reviewed and evaluated by two 
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categories of users respectively, 1) software developers programming this technology and 

2) principle investigators who presented these technologies to research sponsors. 

Additional feedback and evaluations will be collected from other end users of the HLT 

system as well as developers who will apply this enhanced architecture for future 

software development.  

4.3 Overall Conclusions 

The quantitative results discussed in this chapter provide evidence that the 

enhancements to the original architecture have improved the robustness of the system. 

The results show a 7.2% improvement in robustness on the most complex task in the 

HLT system. The qualitative enhancements, which may not directly contribute to 

robustness, have contributed to improvements in the overall functioning of the system. 

Therefore, though more difficult to quantify, it can be viably argued that these 

enhancements to the original architecture have also indirectly contributed to enhanced 

system robustness.  



 

 

 

 

 

 

 
 

 

 

CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

The fundamental modularity and extensibility of the DARPA Communicator 

architecture marked a new era in HLT research and significantly advanced the 

complexity of problems which could be studied. It also provided a capability for 

evaluating and comparing research results that did not previously exist. Nonetheless, it 

suffered many critical robustness issues. In addition, a multiple multi-user application 

capability was innately supported. This thesis has identified and addressed these issues 

and experimental analysis discussed in Chapter IV has shown a 7.2% improvement in 

robustness on the most complex task in the HLT system. 

5.1 Thesis Contributions 

As discussed in Chapter IV, essential qualitative and quantitative enhancements 

were implemented. The key contributions of the thesis include: 

• The robustness of the system has shown significant improvements under the 

enhanced architecture. Chapter IV discusses a series of experiments that were 

conducted to measure the improvement in robustness of the system. The experiments 

show an improvement of 7.2% on the address querying task which is the most 

complex task in the HLT system. 

• The initial architecture required the user to possess detailed knowledge about each 
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application. It involved manual startup of the servers and manual allocation of ports. 

Modular enhancements such as the process manager have eliminated the need for 

manual assistance in starting and managing the servers.  

• The enhanced architecture provides a carefully designed graphical interface for the 

user to choose among different applications with a mouse-click; all subsequent tasks, 

from server startup to port allocation, are automated. When the user exits the 

application, all related processes are terminated automatically. 

• Debugging complex HLT applications has always been challenging. Most of the 

client applications are multithreaded, making it difficult to retrace the events and 

isolate the bug. This problem increases in magnitude in a multi-user environment. In 

the enhanced architecture, servers have been redesigned as state machines with basic 

handshaking incorporated in the communication between servers. These 

enhancements have been successful in trapping server errors and provide 

functionality for effective tracing of potential bugs. 

5.2 Future Work 

Further experiments should be conducted to obtain additional measures of the 

robust improvements due to the enhanced architecture. These experiments should include 

at least 20 additional users unfamiliar with the system and allow the system to respond to 

user queries continuously for prolonged time periods. These prolonged experiments must 

be carefully controlled using scenarios that properly exercise system functionality, such 

as those in the third and fourth experiments conducted for this thesis, so that meaningful 

data are collected. This data would give more insight into the robustness of the system to 
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complex inter-process communication for an extended period of time. Due to the 

constraints of the original architecture, experiments comparing its performance to the 

enhanced architecture can be performed only on a single-user platform. 

Performance improvements to our initial prototype dialog system were made by 

running a series of pilot experiments followed by a set of Wizard of Oz experiments. 

Modifications were made to the grammar and the language model that improved the 

performance of the system to queries with OOVs. Further experiments can be performed 

to improve the grammar and the language model which will allow the dialog system to 

handle a wider range of user queries. 

Improvements can also be made to the way the context information is currently 

used in the dialog system. The availability of state-of-the-art statistical techniques has 

made a significant impact on the way natural language processing works. Statistical 

parsers have attracted extensive attention because of their performance and ability to 

adapt to different data sets with ease. However, the availability of data sets to train these 

statistical models has always proved to be an obstacle. A future enhancement would be to 

extend the dialog system to accommodate a statistical parser which can be trained on any 

data set. This feature will expand our query response capabilities. 

Under the current architecture, the HLT system runs on a distributed framework 

where a single client communicates with a single server machine or multiple clients 

communicate with a single server machine. The process manager has not been tested to 

manage multiple clients communicating with multiple server machines. The system also 

needs to be tested on supercomputer clusters. This would enhance application execution 
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speed as the computational power available for each application would be considerably 

increased. 

In conclusion, this thesis has addressed vulnerabilities in the DARPA 

Communicator architecture through several important enhancements, including increased 

system robustness to failure, automated server startup, error detection and correction, 

support for multiple multi-user applications, and improved debugging capabilities. Future 

work includes experimentation to validate the enhanced architecture and building other 

robust, complex, state-of-the-art human language technologies on this enhanced platform. 
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Table 8 List of tasks 

Serial 

No. 

User Tasks System Specifications 

1 Choose one of these tasks: 
1) Use the Speech Analysis application to record 
audio data. 
2) Use Dialog system to get a response to your 
query. 

The Data Recorder server tries to 
write to a location that does not exist 
(programmer error).  

2 Choose one of these tasks: 
1) Use the Speech Analysis application to record 
audio data. 
2) Use Dialog system to get a response to your 
query. 

Server is tries to read a parameter 
file that does not exist (programmer 
error). 

3  Choose one of these tasks: 
1) Use the Speech Analysis application to record 
audio data. 
2) Use Dialog system to get a response to your 
query. 

A buffer overflow during the data 
transfer in the recording stage 
(programmer error). 

4  Choose one of these tasks: 
1) Use the Speech Analysis application to record 
audio data. 
2) Use Dialog system to get a response to your 
query. 

The server tries to access a null 
Communicator frame and extract a 
value that does not exist 
(programmer error). 

5 Choose one of these tasks: 
1) Use the Speech Analysis application to record 
audio data. 
2) Use Dialog system to get a response to your 
query. 

During data transfer, the program 
creates an audio communicator 
frame but does not wrap the audio 
data inside the frame (programmer 
error). 

6 Choose one of these tasks: 
1) Use the Speech Analysis application to record 
audio data. 
2) Use Dialog system to get a response to your 
query. 

The server gets an inappropriate 
frame (programmer error). 

7 Choose one of these tasks: 
1) Use the Speech Analysis application to record 
audio data. 
2) Use Dialog system to get a response to your 
query. 

Communicator frame that does not 
have any hub rule pertaining to it 
(programmer error). 

8 Choose one of these tasks: 
1) Use the Speech Analysis application to record 
audio data. 
2) Use Dialog system to get a response to your 
query. 

An error in setting a hub rule 
(programmer error). 
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Table 8 (continued) 
Serial 

No. 

Tasks System Specifications 

9 Speech Analysis Application: 
Recording task: 
time duration: 1 second 

Normal operating 
conditions 

10 Speech Analysis Application: 
Recording task: 
time duration: 5 second 

Normal operating 
conditions 

11 Speech Analysis Application: 
Recording task: 15 seconds 
time duration: 15 second 

Normal operating 
conditions 

12 Speech Analysis Application: 
Record and playback alternatively in the following sequence. 
record -> playback 

Normal operating 
conditions 

13 Speech Analysis Application: 
Record and playback alternatively in the following sequence. 
record -> playback-> record -> playback 

Normal operating 
conditions 

14 Speech Analysis Application: 
Record and playback alternatively in the following sequence. 
record -> record -> playback-> playback 

Normal operating 
conditions 

15 Dialog system Application: 
Try recording for different time durations (refer task 9, 10, 11). 

Normal operating 
conditions 

16 Dialog system Application: 
Try recording and playback alternatively (refer task 12, 13, 15). 

Normal operating 
conditions 

17 Dialog system Application: 
Try recording an utterance that is not part of the model (an 
utterance that does not relate to address-queries) and test how the 
recognition module handles it. 

Normal operating 
conditions 

18 Dialog system Application: 
Use the text mode, and try parsing a string that does not belong 
to an address query. 

Normal operating 
conditions 

19 Dialog system Application: 
Use “Text input” mode to query an address which uses the SQL 
database for retrieving a response. 

Normal operating 
conditions 

20 Dialog system Application: 
Use “Text input” mode to query an address which uses Mapquest 
for retrieving a response. 

Normal operating 
conditions 

21 Dialog system Application: 
Use “Text input” mode to query a direction which uses SQL 
database for retrieving a response. 

Normal operating 
conditions 

22 Dialog system Application: 
Use “Text input” mode to query a direction which uses Mapquest 
for retrieving a response. 

Normal operating 
conditions 
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Table 8 (continued) 
Serial 
No. 

Tasks System Specifications 

23 Dialog system Application: 
Use “Text input” mode to query a direction which uses 
context information. 

Normal operating 
conditions 

24 Dialog system Application: 
Use “Text input” mode to query the distance which 
uses SQL database for retrieving a response. 

Normal operating 
conditions 

25 Dialog system Application: 
Use “Text input” mode to query a distance which uses 
Mapquest for retrieving a response. 

Normal operating 
conditions 

26 Dialog system Application: 
Use “Text input” mode to query a direction which uses 
context information. 

Normal operating 
conditions 

27 Dialog system Application: 
Use “Text input” mode to query a list of places which 
uses Mapquest for retrieving a response. 

Normal operating 
conditions 

28 Dialog system Application: 
Use “Text input” mode to query for building 
information which uses SQL database for retrieving a 
response. 

Normal operating 
conditions 

29 Dialog system Application: 
Use “Text input” mode to query an address which uses 
the SQL database for retrieving a response. 

Normal operating 
conditions 

30 Dialog system Application: 
Use “Text input” mode to query an address which uses 
Mapquest for retrieving a response. 

Normal operating 
conditions 

31 Dialog system Application: 
Use “Text input” mode to query a direction which uses 
SQL database for retrieving a response. 

Normal operating 
conditions 

32 Dialog system Application: 
Use “Text input” mode to query a direction which uses 
Mapquest for retrieving a response. 

Normal operating 
conditions 

33 Dialog system Application: 
Use “Text input” mode to query a direction which uses 
context information. 

Normal operating 
conditions 

34 Dialog system Application: 
Use “Text input” mode to query the distance which 
uses SQL database for retrieving a response. 

Normal operating 
conditions 

35 Dialog system Application: 
Use “Text input” mode to query a distance which uses 
Mapquest for retrieving a response. 

Normal operating 
conditions 

36 Dialog system Application: 
Use “Text input” mode to query a direction which uses 
context information. 

Normal operating 
conditions 
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Table 8 (continued) 
Serial 

No. 

Tasks System Specifications 

37 Dialog system Application: 
Use “Text input” mode to query a list of places which uses 
Mapquest for retrieving a response. 

Normal operating 
conditions 

38 Dialog system Application: 
Use “Text input” mode to query for building information 
which uses SQL database for retrieving a response. 

Normal operating 
conditions 



 

 

 

 

APPENDIX B 

LIST OF SCENARIOS 

77 



   

 

 

 

 

 

 

 

 

 

 

 

 

78 

List of Scenarios 

Speech Analysis Application Tasks: 

Task 1: 

Record your voice for varying time durations. 

1) 1 second 

2) 5 seconds 

3) 15 seconds 

Task 2: 

Try recording your voice and play it back. Repeat this in different sequences. 

1) record -> playback 

2) record -> playback -> record -> playback 

3) record -> record -> playback -> playback 

Dialog Systems Application Tasks: 

Task 1: 

Record your voice for varying time durations (similar to Task 1 in the Speech Analysis 

application). 

1) 1 second 

2) 5 seconds 
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3) 15 seconds 

Task 2: 

Try recording your voice and play it back. Repeat this in different sequences (similar to 

Task 2 in the Speech Analysis application). 

1) record -> playback 

2) record -> playback -> record -> playback 

3) record -> record -> playback -> playback 

Task 3: 

Imagine you are in a big city to attend a conference. Once the conference proceedings are 

over for the day, you want to visit some sites of interest. You don’t have a map with you 

and have no idea about the layout of the city. Use the system to plan your trip. 

Task 4: 

1) Imagine you are working in a big city for quite a few years. You plan to make a 

visit to Starkville. So you start on a road trip from your city. You are almost near 

Starkville when you find that you are really low on gas. Use the system to make a 

decision on whether you can make it without filling gas. 

2) You decide on filling gas. Use the system to locate a gas station. 

3) You reach your hotel. You need to visit your friend’s place. Use the system to get 

to his place. 

4) You and your friend want to go to your favorite restaurant. Your friend is unsure 

whether the restaurant still exists. Use the system to verify this. 
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5) You are happy to find that the restaurant still exists. Use the system to reach the 

restaurant. 

6) Once you had lunch, you want to return to your hotel. Use the system to get back 

to your hotel. 

7) You are planning to eat your favorite cuisine for dinner. Use the system to help 

you in choosing a restaurant. 

8) Tomorrow, you plan to visit your department. In a casual chat with your friend 

you learn that your department has been moved to a different location. Use the 

system to get the exact location. 

All the tasks listed above were spoken by you through the voice interface. You need to 

use a text interface for the tasks mentioned below. Click the “show text input” option 

from the menu. You will get a text input box at the bottom of the interface. Use this input 

box to enter your text queries for the tasks mentioned below. 

Task 5: 

You want to watch your favorite TV show and cannot find it on any of the channels. Use 

the system to get the channel/timing information. 

Task 6: 

Repeat all the subdivisions in task 4. Remember to type in your queries this time instead 

of speaking the queries. 
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Instructions 

This experiment has a series of tasks that test the improvement on the robustness 

of our HLT system. The experiment has a collection of scenarios under which you will be 

asked to use the system to accomplish a given task. In order to measure the robustness 

improvement, you will have to repeat the tasks in the experiments twice 1) On the 

enhanced system and 2) On the original system. For both the experiments, you will be 

given maximum time duration of 30 minutes. During the experiment, you will be using 

the Speech Analysis and Dialog system application. The Speech Analysis application is a 

basic recording application. The Dialog system is an address querying system which will 

assist you in navigation. Please inform us immediately, if you feel the application is not 

responding to your queries. 

Warm up exercises 

1) Open the Speech Analysis application, which is the first item, listed on the Demo 

Selector. Try recording your utterance and playing it back. Repeat this if necessary. 

2) Open the Dialog system application. You will be prompted for username and 

password. Please seek assistance in filling these fields. Once you have successfully 

logged in, you can try some of the queries listed below. 

1) Where is Walmart? 

2) Where is Simrall? 

3) How can I go from Simrall to Butler? 

4) How far is Walmart from ERC? 
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5) You can also try some queries on you own. 

Once you are comfortable with the system, you can start the experiment. Please 

remember to ask for assistance if needed. 
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