
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-5-2006

A Robust Architecture For Human Language Technology Systems A Robust Architecture For Human Language Technology Systems

Theban Stanley

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Stanley, Theban, "A Robust Architecture For Human Language Technology Systems" (2006). Theses and
Dissertations. 249.
https://scholarsjunction.msstate.edu/td/249

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/249?utm_source=scholarsjunction.msstate.edu%2Ftd%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

A ROBUST ARCHITECTURE FOR HUMAN LANGUAGE

TECHNOLOGY SYSTEMS

By

Theban Stanley

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

August 2006

Copyright by

Theban Stanley

2006

_________________________________ _________________________________

_________________________________ _________________________________

A ROBUST ARCHITECTURE FOR HUMAN LANGUAGE

TECHNOLOGY SYSTEMS

By

Theban Stanley

Approved:

Julie Baca Joseph Picone
Research Professor at Center for Professor of Electrical and
Advanced Vehicular Systems Computer Engineering
(Co-Major Advisor and Director of Thesis) (Major Advisor)

Georgios Lazarou Nicholas H. Younan
Assistant Professor of Electrical and Professor of Electrical and
Computer Engineering Computer Engineering
(Committee Member) (Graduate Coordinator)

Roger L. King
Associate Dean for Research and
Graduate Studies

Name: Theban Stanley

Date of Degree: August 5, 2006

Institution: Mississippi State University

Major Field: Electrical Engineering

Major Professor: Dr. Joseph Picone

Pages in Study: 83

Title of Study: A ROBUST ARCHITECTURE FOR HUMAN LANGUAGE
TECHNOLOGY SYSTEMS

Candidate for Degree of Master of Science

In recent years, distributed framework has become a widely accepted platform

for implementation of human language technology. The Defense Advanced Research

Program Agency (DARPA) Communicator program has been highly successful in

implementing this distributed approach. The program has fueled the design and

development of impressive human language technology applications with complex

inter-process communication between modules.

This latter feature, though beneficial, introduces complexities which reduce

overall system robustness to failure. In addition, the ability to handle multiple users

and multiple applications is not innately supported. This thesis describes the

enhancements to the original Communicator architecture that address robustness

issues and provide a multiple multi-user application environment by enabling

automated server startup, error detection and correction. Extensive experimentation

and analysis were performed and a 7.2% improvement in robustness was achieved on

the address querying task, which is the most complex task in the human language

technology system.

 DEDICATION

I would like to dedicate this work to my family and friends for their support and

encouragement in all my endeavors.

ii

ACKNOWLEDGMENTS

This thesis would never have been possible without the constant support and

guidance from Dr. Julie Baca, especially during the final stages of my work. I would to like

to thank Dr. Joseph Picone for his constant mentoring through my masters program which

has instilled a sense of professionalism in the work I do. I am really grateful to have had an

opportunity to be a part of an elite team which always showed a passion for excellence. I

also would like to thank Dr. Georgios Lazarou for his support whenever it was needed.

I am deeply grateful to Hualin Gao who mentored me during my initial stages as a

graduate assistant at the Institute of Signal and Information Processing (ISIP). He had

worked with me to revamp our human language technology package which is the basis of

my thesis. I would like to thank Naveen Parihar and Sridhar Raghavan for their support and

help during my graduate program. I extend my thanks to all the members of the Intelligent

Electronic Systems (IES) program and friends who have made my graduate studies

memorable.

I sincerely thank the Center for Advanced Vehicular System (CAVS) for funding

and supporting the In-Vehicle Dialog Systems project.

iii

TABLE OF CONTENTS

Page
DEDICATION... ii

ACKNOWEDGEMENTS ... iii

LIST OF TABLES... vii

LIST OF FIGURES ... viii

CHAPTER

I. INTRODUCTION... 1

1.1. Thesis Scope and Contribution ... 3
1.1.1. Robustness Enhancements .. 4
1.1.2. Qualitative Enhancements .. 5

1.2. Structure of the Thesis .. 6

II. THE ORIGINAL DARPA COMMUNICATOR... 8

2.1. Communicator Architecture.. 9
2.2. Basic Terminology.. 10
2.3. The Invocation Process ... 12
2.4. Initiation of the Communicator System.. 13

2.4.1. Initial Prototype System Servers... 14
2.4.2. Audio Server ... 15
2.4.3. Recognition Server.. 16
2.4.4. Natural Language Parser Server ... 16
2.4.5. The Dialog Manager ... 17
2.4.6. Back-end Application Server.. 18
2.4.7. Speaker Verification Server.. 19

2.5. Disadvantages of the Prototype System.. 20
2.5.1. Deadlocks in Communication between Servers 20
2.5.2. Automated Recovery from Server Failures .. 21
2.5.3. Multiple Simultaneous Users.. 21
2.5.4. A Common User Interface .. 21

iv

CHAPTER Page

III. ENHANCEMENTS TO THE COMMUNICATOR ARCHITECTURE......... 23

3.1. Modularity Enhancements .. 24
3.1.1. Audio Server ... 24
3.1.2. Data Recorder ... 24
3.1.3. Signal Detector.. 25
3.1.4. Display Module... 26

3.2. Architectural Enhancements ... 28
3.2.1. Automated Server Management ... 29
3.2.2. Common Application Interface... 31
3.2.3. Improvements to System Robustness ... 33

IV. RESULTS AND ANALYSIS .. 39

4.1. Quantitative Analysis.. 39
4.1.1. Pilot Corpus Experiment... 40

Procedure ... 40
Conclusions.. 41

4.1.2. Task Pool Experiment... 43
Procedure ... 45
Results and Analysis .. 45
Conclusions.. 46

4.1.3. General Usage Scenarios Experiment... 47
Procedure ... 47
Results and Analysis .. 48
Conclusions.. 52

4.1.4. Dialog System-Speech Mode Experiment .. 54
Procedure ... 54
Results and Analysis .. 55

4.1.5. Conclusions on Quantitative Analysis .. 56
4.2. Qualitative Analysis.. 57

4.2.1. Server Management and Error Handling .. 59
4.2.2. The Debug Window.. 60
4.2.3. Conclusions on Qualitative Analysis .. 61

4.3. Overall Conclusions.. 62

V. CONCLUSIONS AND FUTURE WORK .. 63

5.1. Thesis Contributions ... 63
5.2. Future Work .. 64

REFERENCES .. 67

v

APPENDIX Page

A. List of tasks .. 72

B. List of scenarios ... 77

C. Instructions and warm up exercises ... 81

vi

LIST OF TABLES

TABLE Page

1 Performance data for the dialog application... 41

3 The number of interactions that passed the original and the enhanced

6 The different stages of communication needed to complete successfully an

7 The number of interactions that passed the original and the enhanced

2 Performance results for task pool experiment .. 46

 architecture in general usage scenarios experiment... 49

4 Three categories of experimental data ... 51

5 Summary of experimental data for the three categories 52

 interaction in three major categories.. 53

 architecture in dialog system-speech mode experiment 55

8 List of tasks... 73

vii

LIST OF FIGURES

FIGURE Page

1 A common architecture for a dialog system .. 10

11 The process manager managing different users requesting different

15 Handshaking between the speech analysis client program and

2 A server dispatch function is called by the hub ... 12

3 Illustration of a hub triggering an appropriate hub rule................................. 13

4 Steps involved in starting the Communicator system.................................... 15

5 The block diagram of the recognition process... 16

6 The block diagram of the speaker verification process 19

7 Control flow in the speech analysis application .. 23

8 Overall energy and waveform plots, along with utterance end-points 25

9 The configuration menu... 28

10 Spectrogram of the word “drown” pronounced by a female speaker 29

HLT applications ... 30

12 Demo selector and speech analysis user interface ... 32

13 The network configuration menu... 33

14 Speech analysis application (client and server) ... 34

the signal detector server ... 35

16 Block diagram of the dialog system... 36

17 The state machine architecture of the dialog system servers......................... 37

viii

FIGURE Page

18 Categorization tree of the scenarios... 44

19 The process manager handling server errors ... 59

20 A debug window showing an audio data transfer error 60

ix

CHAPTER I

INTRODUCTION

Humans have long dreamt of creating machines which rival their own intellectual

abilities. The invention of the typewriter was a step forward in the interaction between

humans and computers. In the years following World War II, a fervent search began for

alternative methods for human computer interaction. Speech recognition appeared to

offer a promising alternative. In the late 1980s, the first successful speech recognition

systems were deployed. Current commercial systems offer performance that has

improved upon these earlier systems, but none can adequately handle natural,

spontaneously spoken language. This capability remains the provenance of research, in

systems, which though predominantly prototypes, have become increasingly powerful

and complex. As their complexity has increased, however, robustness to failure has

presented significant obstacles. In addition, the execution of simultaneous multiple multi-

user prototype applications is not readily supported. This thesis has identified and

addressed critical barriers to the development of robust multi-user, multiple application

prototype systems for human language technology (HLT).

Initial HLT systems, like many software systems of the same era, were designed

in a monolithic fashion [1]. As these systems became more complex, development and

maintenance requirements made this design approach untenable for progress in the field.

This led to the concept of distributed processing in which this monolithic structure was

1

2
decomposed into a number of functional components that could interact through a

common protocol [1]. This distributed framework was readily accepted by the research

community and has been the cornerstone for the advancement in cutting edge HLT

systems.

The Defensive Advanced Research Projects Agency (DARPA) Communicator

program has been highly successful and many state-of-the-art systems have been built on

this architecture [1]. The DARPA Communicator architecture was developed and

optimized for HLT systems. Though the DARPA program has concluded, the

Communicator architecture is available in the public domain and provides a feasible

environment for long-term research in HLT [2]. Many labs including Carnegie Mellon

University (CMU) [3], Center for Spoken Language Processing (CSLR) [4] and

SRI [5], [6] continue to conduct fundamental HLT research using complex systems

designed on this open source architecture. The plug-and-play ability facilitates

intermixing of components developed by different sites. It has a programmable hub that

allows flexible control over the interaction between servers. These notable features made

the DARPA Communicator a viable architecture for the implementation of HLT systems.

Despite the DARPA Communicator’s advantages, it suffered critical robustness

issues which grew in magnitude as more complex systems were developed. Also, multi-

user and multiple application capability were innately supported. This thesis has

addressed these issues by incorporating a series of enhancements that were implemented

and formally evaluated on a prototype HLT system that consists of four main

applications. Details of experiments conducted to measure and evaluate enhancements

are given in Chapter IV.

3
The prototype HLT system consists of four major components: speech analysis,

automatic speech recognition (ASR), speaker verification and a dialog system. The

speech analysis component records and plays back audio and displays the waveform,

spectrogram, and energy. The speaker verification component verifies the authenticity of

the speaker by comparing a statistical model [7] of the test utterance to a model of the

claimed speaker’s voice. The dialog system component is a navigation system [9] that

responds to queries about directions and places at Mississippi State University (MSU)

and the adjacent city of Starkville, Mississippi. All these applications use a public

domain, hidden Markov model (HMM)-based speaker-independent continuous speech

ASR system [1], [11], [12] developed by the Institute for Signal and Information

Processing (ISIP) at Mississippi State University.

1.1 Thesis Scope and Contribution

In the past decade, advances in distributed computing technologies have led to the

realization of complex HLT systems. The distributed framework of the Communicator

architecture has supported the development of systems with highly complex

communication among software modules and processes. While this has increased the

overall power and capability of HLT systems, the complexity of the inter-process

communication has decreased robustness and significantly degraded the performance of

the systems built on this framework. Further, the Communicator architecture does not

inherently support the ability to handle multiple users running multiple applications from

a common interface. Multi-user and multiple-application capability are crucial to

widespread acceptance of this technology.

4
The main goals of the thesis were to identify and address the critical barriers to

the development of robust multi-user HLT systems. The key contributions of the thesis

include:

1.1.1 Robustness Enhancements

A finite state machine architecture and a basic handshaking protocol were

incorporated into the original Communicator architecture to address robustness issues.

Experiments conducted to quantify the robustness improvements are discussed in detail

in Chapter IV. The robustness enhancements are as follows:

• State Machine Architecture: The servers were redesigned to use a state machine

architecture to explicitly monitor the invocation process. The flow of the invocation

process was partitioned into stages which correspond to finite states in the server. At

each state, the server expects to receive a specific message in the form of a

Communicator frame, from a specific server. If the message received at a given state

is different from the expected message, the server generates an error and exits the

program. If the correct message is received, the server transitions to the next state

and waits for further invocation. This architecture detects errors more readily and

allows for more graceful error recovery. It also helps in debugging as information

about the state and message that caused the error can be retrieved from the server.

This enhancement is discussed in detail in Chapter III.

• Basic Handshaking: The state machine architecture and basic handshaking, which

work hand in hand, have proven effective in detecting errors. The states are defined

on the basis of the different stages of handshaking between the servers. The

5
Communicator architecture provides a basic structure called a “frame” for

communication among servers and processes. This structure implicitly allows a strict

handshaking protocol, but does not require or provide an implementation of such a

protocol. Implementing and enforcing such a protocol became critical for system

robustness as the number and complexity of the applications increased in magnitude.

The system was redesigned to include basic handshaking capabilities in the client-

server communication. Chapter III discusses these enhancements in detail.

1.1.2 Qualitative Enhancements

Enhancements that provided automated handling of multiple users and multiple

applications were also introduced. Scenarios further detailing these enhancements and

their evaluation are discussed in detail in Chapter IV. The qualitative enhancements are

as follows:

• Multi-user Capability: The system architecture has been redesigned to support

simultaneous execution of multiple multi-user applications. The DARPA

Communicator package includes a Python interface called the “Process Monitor.” It

provides a visual interface to observe the processes, and terminate/restart them when

necessary. Though a useful interface, it required human observation of processes and

manual termination and restarting of processes if problems were observed.

Overcoming this disadvantage required developing a process manager module with

intelligence to automatically detect failed processes and initiate restarts. The process

manager controls all the processes running on the server side, by encapsulating them

in a Java™ process [13] object. This empowers the process manager to create a

6
process, wait on a process, perform input/output on a process, check the exit status

on a process and terminate a process. The process manager enables a multiple-user

capability by keeping track of client and server associations. It also handles port

allocation which is necessary when different processes need to communicate through

ports.

• Multiple-application Capability: The demo selector is the client user interface

module which allows the user to choose from multiple applications. Once the user

chooses an application, the demo selector invokes the user interface needed for the

corresponding application. The demo selector also notifies the process manager of

the application chosen by the user. The process manager responds to the demo

selector by creating the needed servers for the application. It continually tracks the

status of these servers and notifies the client program of any developments.

1.2 Structure of the Thesis

Chapter II describes the original DARPA Communicator architecture, including

basic terminology, functionality, and architectural strengths. The chapter concludes by

discussing vulnerabilities in the architecture that affect the robustness of large, multi-

application demonstrations. Chapter III presents in detail the enhancements to the system

architecture to address these vulnerabilities, including the addition of multi-user and

multiple-application capabilities, the redesign of the servers to include a state machine

architecture, and the addition of basic handshaking to the client-server communication.

Chapter IV presents evaluation data that measures improvements in the robustness of the

7
HLT system, built on the enhanced architecture. Chapter V presents conclusion and

future areas of research.

CHAPTER II

THE ORIGINAL DARPA COMMUNICATOR

Once distributed systems became the widely accepted implementations of human

language technologies, there arose a need for a common architecture that would support

reusability and compatibility between modules developed at different sites. Many

projects were conducted with the goal of creating a common open source platform for

HLT. Some notable projects which were initiated in the mid-1990s included the

Advanced Language Engineering Platform (ALEP) [14] the General Architecture for

TEXT Engineering (GATE) [15] and the TIPSTER project [16]. The common goal of

these projects was to produce a common architecture which would improve document

processing efficiency and cost effectiveness for a diverse range of text-based applications

such as information retrieval, information extraction and automatic text summarization.

The Communicator program was funded by DARPA for the purpose of creating

an open source architecture for spoken language applications. It was one of the first

architectures to provide a conversational and multi-modal interface for human language

technologies [17]. The Communicator architecture was designed using the MIT Galaxy II

system [19]. The wide availability of Communicator compatible components, such as

speech recognition, dialog management and a spoken telephone interface [20] made it

valuable to speech researchers. Its success is evident from the wide variety of

applications that were developed using the Communicator architecture, which include

8

9
navigation systems [9], weather information systems [21] and travel planning

systems [22].

Most of the abovementioned architectures have been predominantly

research-oriented. Widespread commercialization of HLT has led to web-based

technology platforms. Some examples of successful technology include Nuance’s

SpeechObjects [23], which is based on VoiceXML [24], and Philip’s SpeechMania [25],

which is an online architecture based Philip’s special purpose programming language

known as the High-level Dialogue Definition Language (HDDL) [26].

2.1 Communicator Architecture

The DARPA Communicator architecture was developed and optimized for HLT systems.

The Communicator has a “hub and spoke” architecture with a programmable hub that

allows flexible control of interaction among servers. Figure 1 illustrates the architecture

of the prototype dialog system. The servers include the speech recognition [9], database

and dialog management servers [9], all developed at the MSU Center for Advanced

Vehicular Systems (CAVS) and the natural language parser [27] developed at CSLR,

University of Colorado. The plug-and-play capability of the Communicator architecture

is well known for reducing prototype development time by enabling sharing of

components across sites. It also provides a standard platform for evaluation of systems

developed by different laboratories.

10

Figure 1 A common architecture for a dialog system.

2.2 Basic Terminology

This section introduces terminology specific to the Communicator architecture, as

well as its usage specific to the demonstration system. Some terminology that will be

used frequently in this thesis includes:

• Server: Any process that communicates with another process through a hub is called

a server. All processes running in the prototype system are servers.

• Client: This thesis uses the term “client” to denote the user interface module on the

user’s machine (e.g. laptop). Note that Communicator views all processes as servers

irrespective of their functionalities.

• Hub: The hub is the backbone of the Communicator architecture. The hub routes

messages from one server to another making it possible for the servers to

communicate.

11
• Frame: The hub monitors all communication among servers. Supporting this

communication requires a standard protocol, which for the Communicator

architecture is based on an entity called a frame. A Communicator frame is a data

structure consisting of a name, a set of key-value pairs [28]. By convention the keys

start with a colon followed by a name for the key. The key can be assigned any

standard data types such as integer, float, string, frame, list, etc.

• Message: A message is a frame which is passed from a server to the hub or vice

versa. A message can trigger a new message or can simply be an acknowledgement

of a message received. When a message is sent to the hub, the rule corresponding to

that message is triggered. This rule, in turn, triggers a new message which is sent to

the recipient servers.

• Dispatch Function: A function that can be directly invoked from the hub is called a

dispatch function. When the hub receives a message, it looks for the appropriate rule

and invokes the dispatch function of the intended server. In most cases, the dispatch

function sends back a new message which triggers further communication.

• Token: A token is a copy of the incoming message stored in the hub to keep track of

the messages it receives. Once the hub finds a dispatch function corresponding to the

message, it sends the message to the appropriate server and deletes the token.

• Hub Rule: When the hub starts up, it reads a program file called the hub script. The

hub script has the list of servers, port numbers and logging instructions. It also has a

set of rules which the hub uses as guidelines to take the appropriate action for a

given message frame. These rules are called hub rules and they dictate the response

of the hub.

12

Figure 2 A server dispatch functio n is called by the hub.

2.3 The Invocation Process

When a hub sends a message to the server, this message also includes a dispatch

function which is supported by the server and needs to be invoked by the hub. Usually

the name of the dispatch function matches the name of the message sent by the hub.

A message is called qualified if it has the information about which server should receive

the message. Messages can be unqualified in some cases. Figure 2 illustrates the

invocation process. It can be noted that the message from the hub contains information on

the server for which the message is intended and corresponding dispatch function that

needs to be invoked.

Figure 3 shows a sample hub rule which has information about the dispatch

function to invoke, in which server to invoke it, and the keys that need to be sent to the

server. There are usually two modes of interaction for the hub. In a scripted interaction,

the hub searches for the hub program which matches the name of the incoming message.

13

Figure 3 Illustration of a hub triggering an appropriate hub rule.

If the hub cannot find a hub program which matches the name of the incoming

message, it tries to find a dispatch function in one of its servers. This is called scriptless

interaction. If no hub script or dispatch function is found with the specified name, the

message is discarded with a warning. Figure 3 illustrates a scriptless interaction. The

user-interface server sends a message frame containing the key “:audio_ready” to the

hub. The hub searches the hub script and finds a rule for a frame with “:audio_ready”

key. The rule invokes the receive_signal function of the data recorder server.

2.4 Initiation of the Communicator System

This section discusses the series of actions that are triggered when the

Communicator system is started. To start the system, the hub can be invoked first

followed by the servers or vice versa. In the initial prototype system, the servers were

invoked first followed by the hub.

14
Figure 4 illustrates the steps involved in starting the Communicator system. The

following describes the most common sequence of steps by which the Communicator

system can be invoked and executed:

• Step 1: All the servers are started. The servers listen to the port waiting for

communication from the hub.

• Step 2: The hub is started. The hub reads the hub script file. From the hub script, the

hub gets information about the servers it needs to contact, port information and the

location it needs to write the log files.

• Step 3: The hub initiates a connection with the servers. During this initialization

message, it invokes the “reinitialize” dispatch function in the servers.

• Step 4: At this instant, all the servers are initialized and are in their ready states

waiting for message frames. Usually the trigger comes from an event invoked by the

user from the user interface server. For example in case of the speech analysis

application, pressing of the record button initiates the control flow.

2.4.1 Initial Prototype System Servers

The final demonstration system described in Chapter I was designed and

developed iteratively. Figure 1 shows the initial prototype system, a spoken language

dialog navigation and information system, that was the first phase of an iterative design

and development process. The success achieved in developing this system created a

foundation for building a speaker verification system which authenticates users using the

voice samples. The following subsections describe the different servers in the initial

prototype system.

15

Figure 4 Steps involved in starting the Communicator system.

2.4.2 Audio Server

The Audio server that was used in the initial prototype was developed by

MITRE Corporation. The Java™ Desktop Audio Server (JDAS) [20] was intended to

provide a cross-platform, Communicator-compliant, desktop audio interface to the speech

recognition and synthesis servers. JDAS features an event-driven, multi-threaded

architecture which interacts appropriately with legacy servers and introduces the

capability of sending and receiving audio in a variety of formats supported by the Java™

Sound API [30]. Telephony support is simulated using a keypad graphical user interface

(GUI).

16

Figure 5 The block diagram of the recognition process.

2.4.3 Recognition Server

The speech recognition server uses a public domain HMM-based speaker-

independent continuous speech recognition system [31] which is based on a generalized

hierarchical time-synchronous Viterbi beam search decoder [32]. Figure 5 shows the

different components that are used in the recognition server. The front end block is

responsible for feature extraction which is the process of extracting mel-frequency

cepstral coefficients (MFCCs) [33] from the speech signal. The acoustic model is trained

using state-of-the-art statistical techniques to learn the characteristics of the speech

signal [34]. The search module uses the Viterbi algorithm and determines the best

hypotheses. A language model is used to guide the search process with prior information

about the language.

2.4.4 Natural Language Parser Server

The natural language parser server uses the Phoenix parser [35], an open source

software developed by CSLR, University of Colorado. The grammar and the dialog

manager code were developed at CAVS to post-process the natural language parser

output. The parser attempts to map the decoded output to a set of semantic frames. A

frame is a named set of slots [9]. Each slot has a context-free grammar (CFG) that

17
specifies a word sequence. The grammars are compiled into recursive transition

networks.

An example of a frame requesting for driving information is shown below:

FRAME: Drive

[route]

[distance]

The [route] slot is used to fit in the queries related to specific routes. The [distance] slot

accommodates distance queries from one place to another. A subset of CFG rules are

shown below [9]:

[route]

(*IWANT * [go_verb] [arriveloc])

IWANT

(I want *to) (I would *like *to) (I will) (I need *to)

[go_verb]

(go) (drive *to) (get) (reach)

[arriveloc]

[*to [placename] [cityname]]

This type of grammar is useful for HLT systems because spontaneous spoken language is

often ungrammatical.

2.4.5 The Dialog Manager

The dialog manager coordinates the activities between the speech recognition,

parser and back-end application servers [9]. The dialog manager obtains the N-best parse

18
from the natural language parser and selects the best parse by scoring the slots. The

information is merged with a set of context frames. The dialog manager attempts to

resolve the user’s request by creating a database query. The database server responds to

the database query by retrieving the reply from the SQL database. The reply is formatted

by the dialog manager and sent to the client program to be displayed in the user interface.

If the dialog manager does not understand the query or if the query is ambiguous, it

prompts the user for the missing information.

2.4.6 Back-end Application Server

The back-end application server consists of a Structured Query Language (SQL)

database and a generic interface to access the internet to retrieve the requested

information. Geographic resource sites such as Travelocity [36], Expedia [37] and

Mapquest [38] are widely used in the research community especially for navigation [39]

and Geographical Information Systems (GIS) [40] research. The server uses Mapquest as

Mapquest is more suited for the address and direction querying functionality of the dialog

system application.

The dialog manager sends the query frame to the database server. The records in

the database are searched for a response using basic SQL commands. If no match is

found, an HTTP-based request is submitted to a travel website via the Internet. A Perl

script performs the function of logging onto the website and parsing the results from the

HTML page. The records obtained from querying the website are inserted as rows into

the SQL database. In case the same query is made by the user, the server need not contact

the travel website as it can be found in its database.

19
2.4.7 Speaker Verification Server

Functionally, the speaker verification server is similar to the recognition server.

The audio data is converted to features and are processed to obtain likelihood scores.

These likelihood scores are calculated based on a set of trained models on a per frame

basis [7]. The likelihood scores are then combined via an HMM to yield an overall

utterance score, which is a value used by the system to make a decision on whether to

accept or reject the claimed identity. The server maintains two speaker models, i.e.,

authorized user and imposter. The overall utterance scores obtained from both models are

compared using a simple threshold test. The server outputs an acceptance or rejection

hypotheses based on this threshold test. Figure 6 shows the block diagram of the speaker

verification server.

Once the initial prototype system was extended to accommodate two applications,

there arose a need for a more multi-user/application-friendly architecture. This issue

along with other disadvantages in the original architecture provided a strong case for a

transition to an enhanced, more robust architecture.

Figure 6 The block diagram of the speaker verification process.

20
2.5 Disadvantages of the Prototype System

During the initial design phase, communication deadlocks among servers were

common as were memory management issues that were difficult to debug. Basic logging

mechanisms were provided to address some of these issues, but certain desirable features

were not available, such as automated server startup, error detection and correction. The

original DARPA architecture did not have an interface to choose from different

applications and had to be manually started. The original architecture serviced multiple

users, but required manual server startup, including manual port allocation to avoid port

conflicts. It was anticipated that such issues would grow in number and complexity as

multiple multi-user applications were added. The following subsections discuss the three

major issues which required immediate attention.

2.5.1 Deadlocks in Communication between Servers

Frequent deadlocks in the communication between servers were experienced in

the initial prototype. The two main reasons for these deadlocks were server failures and

misfiring of user interface events. The system also lacked a mechanism for logging

communications between servers, which made debugging very cumbersome. This created

a requirement for restructuring the servers and modules to monitor and detect server

failures. To support this requirement, a more organized mechanism of logging the

communication between servers was needed.

21
2.5.2 Automated Recovery from Server Failures

The client and the servers of the prototype system ran on different machines and

communicate through sockets. When a process failed on the server side, the user has to

manually restart the process. Even though Galaxy’s process monitor provided an

interface to start and terminate the servers, it required manual monitoring. This led to the

necessity of a module with the intelligence to start servers, check their status and

terminate all processes when the application is closed.

2.5.3 Multiple Simultaneous Users

One of the main disadvantages of the DARPA Communicator system is that there

was no mechanism to handle multiple users. The appropriate servers for each user had to

be manually started and ports manually allocated to ensure no port conflicts occurred.

This disadvantage acted as a barrier for multiple user support. This led to the need for

modules that can keep track of the client-server association and automatically allocate

ports for an application started by the user.

2.5.4 A Common User Interface

Supporting multiple applications required a common interface that allows the user

to choose from a host of applications and coordinates interprocess communication

between servers and the client process. Each of these applications had its own user

interface and set of computational servers. The original architecture lacked modules

which can offer a common interface and subsequently start the appropriate user interface

depending on the chosen application.

22
These disadvantages made the transition to a more automated and robust

architecture inevitable. Chapter III discusses in detail the different enhancements that

were made to overcome the above mentioned issues.

CHAPTER III

ENHANCEMENTS TO THE COMMUNICATOR ARCHITECTURE

To overcome the disadvantages discussed in Chapter II, careful redesign of the

architecture was necessary followed by implementation and rigorous testing. There arose

a need for a simple application that could serve as a test bed. This led to the

implementation of the speech analysis application which is a basic audio

recording/playback utility with some enhanced features such as energy, waveform and

spectrogram plots. Figure 7 shows the control flow of the speech analysis application.

The following sections discuss the various modular and architectural enhancements that

were initially implemented on the speech analysis application and later extended to

complex applications such as the dialog system.

Figure 7 Control flow in the speech analysis application.

23

24
3.1 Modularity Enhancements

The knowledge gained from implementing and testing the initial prototype system

enabled the identification of certain modules to be added or removed to address the

deficiencies found in the prototype system. The following subsections discuss the added

modules in detail.

3.1.1 Audio Server

The JDAS audio server which was used in the initial prototype had cross-platform

compatibility issues [20] . MITRE corporation abandoned the development and

subsequent support of the JDAS server. This led to the development of an indigenous

Java™-based Audio server with record/playback capabilities. It uses Java™ Sound

package [30] to interact with the audio hardware and is integrated into the client

programs of each application.

3.1.2 Data Recorder

The data recorder works in unison with the audio server. While the audio server is

a Java™ program that interacts with the audio hardware on the client side, the data

recorder is responsible for collecting the audio samples and writing it to disk. This is a

C++ program that uses ISIP Foundation classes (IFC) [42] and supports most of the

commonly used audio formats including Sof [43], which is an ISIP internal format.

25

Figure 8 Overall energy and waveform plots, along with utterance endpoints.

3.1.3 Signal Detector

The JDAS audio server had the ability to detect audio activity but did not provide

an efficient and flexible mechanism to control its utterance detection algorithm. The

replacement of JDAS server by an indigenous audio server led to the need for a speech

activity server to perform utterance detection. The signal detector server performs this

function by employing basic digital signal processing algorithms, i.e., energy and zero

crossing to detect the audio signal.

During the recording process, the audio server streams the audio data in real time

to the signal detector server. The signal detector server computes the energy of each

audio frame and assigns it an energy state [44]. The signal detector keeps track of these

energy states and uses these states to identify changes in speech activity. This process is

depicted in Figure 8. The energy and the waveform plots are shown for a typical speech

utterance. The white vertical lines represent the start and end of utterance as determined

by the signal detector. We refer to these time coordinates of these marks as the utterance

26
endpoints. The signal detector computes these endpoints in real time as audio data is

streamed to it, and hence allows downstream applications in the demo system to begin

processing data as soon as these endpoints are located. The net effect of this server is to

give the demonstration system the ability to do voice-actuated recording and processing.

3.1.4 Display Module

The display module provides the ability to plot the energy, waveform and the

spectrogram of the recorded audio data. A common constraint while plotting the signal is

that the number of pixels on the screen is usually less than the number of samples to be

plotted. In rare cases, the reverse is also possible. The display algorithm adapts to these

changes by calculating the pixel to sample ratio and then branching to the appropriate

display algorithm depending on the ratio. The energy is plotted by computing the root

mean square of the sample values for each frame of audio data. The waveform is drawn

by plotting the minimum and maximum amplitudes in a frame of audio data.

The spectrogram [34], [45] is more computationally intensive than the energy and

the waveform plots. The audio data is windowed, zero padded and the Fast Fourier

Transform (FFT) [46] of every audio frame is computed. These spectral magnitudes are

transformed into the log domain and the decibel (dB) values are normalized to a specific

range of colors specified by the color map. The display module can operate in two

modes, real-time and overall. For the energy and the waveform plots, the real-time and

overall modes differ only in the amount of data plotted on the screen, with no significant

differences otherwise. In the case of the spectrogram plots, the real-time and overall plots

have some fundamental differences which are explained below in detail.

27
One major issue addressed in the spectrogram implementation is the

normalization of the dB range to the number of distinct colors in the color map. In

real-time mode, as there is no knowledge regarding the dB range of the audio data,

default values with a dynamic range of 60 dB are used. These ranges can defined by the

user by varying the minimum and maximum spectral magnitude values. The spectrogram

scaling can be varied by changing parameters such as brightness, contrast, minimum and

maximum spectral magnitudes which user definable using the configuration menu.

Figure 9 shows the configuration menu which enables the user to alter the default

configurations of the audio and display settings. The following equation scales the dB

spectral values to corresponding color maps:

a = (b - c) * ((d * (e + 0 .5) /((f + g) − (h + g)))
where,
a
b
c
d
e
f
h
g

→
→
→
→
→
→
→
→

computed colormap
spectral magnitude in Decibels
minimum spectral magnitude in Decibels
color levels in the choosen color map , (1)

contrast value in (0,1) range
maximim spectral magnitude in Decibels
brightness in Decibels
minimum spectral magnitude in Decibels

Changing the brightness produces a shift in the maximum and minimum spectral

ranges while contrast produces a linear compression within the range. As dB values are

calculated in real-time mode, a probability distribution function of the dB values is

computed. Once the mode switches to overall mode, the cumulative distribution of dB

values is computed and a user-specified percentage is used to calculate the weighted

28
minimum and maximum dB range. The overall plot uses these weighted spectral

magnitudes instead of user defined magnitudes which are used in real-time plotting..

Figure 10 shows the overall spectrogram plot of the word “drown” pronounced by

a female speaker. Extensive memory optimization was performed to make the plots

computationally less intensive during the real-time mode.

3.2 Architectural Enhancements

Among the numerous disadvantages discussed in the previous chapter, the most

critical were automating server startup, error detection and correction, and application

control from a single common interface. In addition, automating the server startup and

adding the multiple user and multiple application capability emphasized the need for

improved debugging capabilities.

Figure 9 The configuration menu

29

Figure 10 Spectrogram of the word “drown” pronounced by a female speaker.

3.2.1 Automated Server Management

Automated server management became critical with the requirement to run

multiple applications simultaneously [47]. Though Communicator’s process monitor

provides an interface to start and terminate servers, it requires manual monitoring. To

address this issue, a process manager module was designed to automatically start and

control all server processes in the prototype system architecture. Figure 11 shows an

overview of the multi-user architecture for multiple applications. The process manager

controls and monitors all server applications. The user’s client application must contact

the process manager to start the required servers, before directly establishing connections

with them. When the user begins interacting with the common interface, the client

program displays the different applications from which the user can choose. When the

user selects a certain application, the client program requests the process manager to start

the respective servers and the hub. The process manager maintains information about

what servers are required for each application.

30

Figure 11 The process manager managing different users requesting different HLT
applications.

The process manager starts these processes by encapsulating them in a Java™

Process Object. The Java™ Process Object enables the process manager module to

control all the server processes. The Process Object gives a host of capabilities by which

the processes can be monitored. Java provides methods to send inputs to the process, pipe

an output stream from the process, and detect errors that occurred in the process. It even

provides a “wait for” feature where the current thread that is running waits until the

process is executed (i.e., the main thread is blocked until the process has finished

executing). By tapping into these capabilities, the process manager can create a process,

wait on a process, perform input/output on the process and also check the exit status of

the process. If a server process fails for any reason, the process manager detects the

failure and terminates the cluster of servers associated with the failed process. It also

31
sends a message to the corresponding client application forcing the user to close an

application and restart it.

As can be seen in Figure 11, in a multi-user environment, many processes are

running and communicating with each other through sockets [48]. One major issue in

such an environment is port allocation. Any two servers trying to listen to the same port

may lead to server failures or unpredictable behavior of the applications. The process

manager handles port allocation by making sure each new process created listens to a port

number unique to itself.

3.2.2 Common Application Interface

Support for multiple applications required providing a common interface from

which users could select an application of interest [47]. The demo selector module was

designed to provide the desired interface and coordinate with the process manager

module to start the required servers. The demo selector interface displays a single screen

with icons for each of the four applications. Once the user selects an application, the

demo selector loads and displays the appropriate user interface. Though each user

interface is designed to fit the needs of the specific application, they each share common

modules including the display module and the configuration menus which allow the user

to change the default settings of the application.

Figure 12 shows the demo selector interface for the four applications,

superimposed with the user interface for the speech analysis application, after it has been

selected. The client program sends a Communicator frame with a key-value pair

containing the name of the application that was selected. The process manager has prior

32
information about each application and the corresponding servers needed to run the

particular application. Upon receiving the message in this frame, the process manager

extracts the application name from the Communicator frame and starts the required

servers. Once the user closes a certain application, the demo selector window is displayed

again. The user can either choose another application or simply exit from the interface.

Figure 12 Demo selector and speech analysis user interface.

The demo selector also has a network configuration menu as referenced in Figure

13. The client application must have the IP addresses of the machine in which the process

manager and the hub are running. The network configuration gives the user the capability

to change these default settings. As discussed earlier, the port allocation between

33
different servers are handled by the process manager, but the user must specify the port

number through which the client application can communicate with the process manager.

Similarly, the user must specify the port number the client application has to listen to for

further communication.

Figure 13 The network configuration menu.

The original Communicator architecture allows a given process to act as a server

or a client. This mode can be reversed by using the network configuration window.

3.2.3 Improvements to System Robustness

Improving system robustness with respect to system failure is the primary focus

of the thesis. For the foundation of the redesign strategy, a simple application, speech

analysis was targeted. The approach taken for the demonstration system entailed using

the implicit capabilities of the Communicator to enhance reliability of inter-process

communication between clients and servers [49]. This section describes how a state

machine architecture [50], [51] was implemented to support a basic handshaking protocol

34
between the client and servers using frames. Figure 14 shows an overall view of the

client-server modules for speech analysis. Note that even this simple application requires

two servers, audio recorder and signal detector.

Figure 14 Speech analysis application (client and server).

Figure 15 shows the state machine architecture and basic handshaking supported

between the speech analysis client and the signal detector server. A simple handshaking

protocol was implemented with signals and acknowledgements, each implemented as

Communicator frames sent via the hub. The states and handshaking protocol support

three major interaction phases between client and server, 1) preparing for data transfer; 2)

data transfer itself, and 3) end of data transfer. For Phase 1, the client begins in the

Initialization state, during which it establishes a connection with the hub. It then

transitions to the Audio_Ready state and sends an Audio_Ready signal to the signal

35
detector server to prepare it for audio data transfer. The client then waits for an

acknowledgement of the Audio_Ready signal from the signal detector server, and once it

is received, it transitions to the Audio_Ready_Ack state.

Figure 15 Handshaking between the speech analysis client program and the signal
detector server.

In Phase 2, data transfer begins when the client transitions to the Data_Transfer

state and sends packets of audio data in Communicator frames to the server. For each

frame of data sent, the client waits for an acknowledgement from the server, which

checks each for validity. If the server receives a frame that is invalid, it does not send an

36
acknowledgement signal, but generates an error message, written to a log file. The client

will not send further data until it receives an acknowledgement.

Figure 16 Block diagram of the dialog system.

If data transfer completes successfully, the signal detector server detects

endpoints and passes the endpointed data to the client. The client then sends an end of

utterance signal to the signal detector server and waits for an acknowledgement. On

receiving the end-of-utterance signal, the signal detector server sends an

acknowledgement signal to the client and resets itself to the initial state. The handshaking

protocol described in this example is implemented for all applications and has eliminated

server failures and deadlocks due to communication errors.

The abovementioned mechanism that was illustrated for a simple application was

extended to more complex applications such as the dialog and the speaker verification

systems. Figure 16 illustrates a block diagram of the servers involved in the dialog

37
application. Figure 17 shows the states associated with each of these servers. The speech

analysis and the dialog system application have similar communication patterns during

the recording process. Once the recording ends, the speech recognition server transitions

to the Data_Processing state and decodes the utterance. Once the utterance is decoded,

the decoded text is sent to the natural language parser and the speech recognition server

resets to its initial state.

Figure 17 The state machine architecture of the dialog system servers.

38
The parser transitions to the Text_Processing state and computes a parse for the

decoded utterance. Usually, the parser can generate more than one parse for a query. The

parser can be run in an N-best mode where a list of best parses are generated and the

dialog manager is used to select the best parse depending upon a given criteria. The

parser sends the parsed output to the dialog manager and resets to the initial state. The

dialog manager computes the best parse after transitioning to the Processing_Parse state.

Once the query is formulated, the dialog manager transitions to the Wait_for_Database

state and sends the query to the database server.

The database server branches to Processing_Sql_Query or

Processing_Web_Query depending on the query type. Once the database server sends the

response to the dialog manager, it resets to the initial state. The dialog manager receives

the database response and transitions to the Processing_DB_Result state. The dialog

manager sends the response to the user interface and resets to the initial state. This

systematic handling of communication has improved the robustness of complex

applications such as the dialog system.

In this chapter, the modular and the architectural enhancements that were made to

the original architecture were discussed in detail. In order to evaluate the robustness

improvements achieved by these enhancements, experiments were designed to formally

evaluate and compare the performance of both the architectures. Chapter IV discusses the

experiments that were conducted to evaluate the enhanced architecture. The results of

these experiments are further analyzed and inferences about the efficacy of the

architecture are drawn.

CHAPTER IV

RESULTS AND ANALYSIS

This chapter analyzes the enhancements made to the original DARPA

architecture. The first section describes experiments that were conducted to measure the

improvement in the robustness of the architecture due to the enhancements. The second

section presents scenarios that demonstrate better error handling and debugging

capabilities.

4.1 Quantitative Analysis

The following section consists of four experiments that were conducted to

measure the quantitative improvements in the robustness of the system. The first

experiment consists of comparing the results obtained by testing utterances from the

extended pilot database on the original and the enhanced architecture. In the second

experiment, a set of tasks were randomly selected from a pool and tested on the original

and the enhanced architecture. The third experiment consists of tasks performed under a

series of scenarios by the user for specific time duration on both architectures.

Robustness improvements in the enhanced architecture are measured by comparing the

number of interactions that were successfully completed. The fourth experiment consists

of users performing tasks in specific scenarios using the dialog system with spoken

language input, the most complex application interaction in the HLT system.

39

40
4.1.1 Pilot Corpus Experiment

As mentioned earlier, our initial prototype system consisted of automatic speech

recognition (ASR), natural language processing (NLP), dialog management (DM), and a

database back-end. The language model and grammar for the ASR and NLP systems

were derived from a pilot corpus that consisted of 276 queries spontaneously entered by

users over a series of three experiments. After initial prototyping, a series of pilot

experiments were conducted on the original DARPA architecture. These pilot

experiments consisted of first testing the system on the collected data, then making the

necessary modifications to the grammar/language model and retesting the system.

During this phase, the NLP system was iteratively refined with a simulated ASR

system using a series of Wizard of Oz (WOZ) experiments [52], [53]. The refinements

showed improvements on the error rates, especially for the utterances containing out of

vocabulary words (OOVs). The pilot corpus was extended by adding the utterances

collected during the WOZ experiments. These refinements were tested using 403

utterances from the extended pilot corpus which spanned 10 different categories that

included Address (98), Direction (219), Distance (23), List of places (36), Building (10),

Turn (5), Bus (7), Intersection (2), Which Way (2) and Special (1). During these

experiments conducted for the original architecture, approximately 4% of the utterances

resulted in a server error or a deadlock.

Procedure

Once the enhancements discussed in Chapter III were made to the DARPA

architecture, each of the 403 utterances from the pool was retested using the enhanced

41
architecture. These utterances were tested by one non-native male speaker with the dialog

system running in text mode. All the utterances were successfully queried using the

enhanced architecture while only 386 utterances were successfully queried in the original

architecture. Table 1 shows the server errors and deadlocks in the original and the

enhanced architecture. In the original architecture, it can be noted that approximately 4%

of overall failures occurred due to system failures and deadlocks.

Table 1 Performance data for the dialog application.

Before Enhancements After Enhancements

Queries
of
utter-
ances

Passed
(%)

Failed (%)
Passed

(%)

Failed (%)
Server
Errors

Deadl-
ocks

Server
Errors

Deadl-
ocks

Address 98 100.00 0.00 0.00 100.00 0.00 0.00
Direction 219 95.43 2.28 2.28 100.00 0.00 0.00
Distance 23 91.31 8.70 0.00 100.00 0.00 0.00
List of
places 36 100.00 0.00 0.00 100.00 0.00 0.00

Building 10 100.00 0.00 0.00 100.00 0.00 0.00
Turn 5 100.00 0.00 0.00 100.00 0.00 0.00
Bus 7 57.15 42.85 0.00 100.00 0.00 0.00
Interse-
ction 2 0.00 100.00 0.00 100.00 0.00 0.00

Which
way 2 100.00 0.00 0.00 100.00 0.00 0.00

Special 1 100.00 0.00 0.00 100.00 0.00 0.00
Total 403 95.78 2.97 1.24 100.00 0.00 0.00

Conclusions

Results for the enhanced architecture show a reduction in server errors and

deadlocks. Although server errors and deadlocks were eliminated on this specific test set,

42
this clearly cannot be argued in general. Nonetheless, it demonstrates the overall

occurrence of errors has been reduced and further, handling of errors is improved.

For example, for the address query “Give me directions from Bryan Field to

Hunter Henry Center”, the dialog manager fails as it does not have the capability to

handle this query. In the original architecture, this server error leads to a system failure.

In the case of the enhanced architecture, the process manager detects the error and reports

these errors to the client process. The enhanced architecture also takes the necessary steps

to restart the servers. Thus the server errors are gracefully handled by preventing a failure

of the entire system.

One limitation of the experiment is that it tested the system against baselines

established early in the original architecture development using only text mode (i.e., the

NLP modules). Though necessary to test against these established baselines first, these

baselines are not sufficient results to fully measure overall robustness improvements,

including for example, those for the signal detector, data recorder and speech recognition

servers. The data transfer stage requires more inter-process communication and is thus

vulnerable to inter-process communication errors; therefore experimental testing of these

features is imperative.

The utterances used in these experiments were collected from users by giving

them a general scenario and asking them to fill the details. A sample scenario is shown

below:

“You’ve arrived at the Golden Triangle Airport, gotten a rental car and must get
to your first meeting of the day. Your meeting is at the _____________. You’re
at the airport exit onto Highway 82. “

43
The user was given a list of places from which to choose for the meeting place in the

above scenario. Due to this restriction, all these queries had only place names, hotel

names, and restaurant names for which the system had prior knowledge. This limitation

was overcome in the following experiments by allowing the user to freely query the

system.

4.1.2 Task Pool Experiment

The second experiment consists of one speaker performing a set of tasks which

were randomly selected from a task pool. In this experiment, a task consisted of one or

more interactions of the user with the system. An example of a task is “Use speech mode

in the dialog system to query the distance between two places.” The pool includes all

tasks from anticipated and observed usage over the development of the system. Of most

importance to the experiment, it includes two major categories:

1) Tasks which were hypothesized to result in server errors which will lead to

system failures for the original architecture, but hypothesized to generate just

server errors under the enhanced architecture. These tasks were basic recording

and querying tasks which were performed under certain system specifications [see

Appendix A]. Examples of the system specifications include trying to write to a

location that does not exist, receiving an inappropriate frame during data transfer,

a buffer overflow during data transfer and attempting to access a null frame.

There were eight such tasks in the pool.

2) Tasks that were hypothesized not to result in server errors or system failures

under neither the original nor the enhanced architectures. Examples of these tasks

44
included recording tasks for varying time durations and a wide range of address-

querying tasks. Figure 18 shows the sub categorization of these tasks. There were

30 such tasks in the pool.

The second experiment overcame the limitations of the previous experiment by

allowing a wide range of tasks which tested both the spoken and natural language

processing capabilities of the system. The experiment was conducted by one user who

had prior experience using the HLT system. Unlike the first experiment, the user did not

have any constraints or prior information guiding him/her through these tasks.

Dialog System

Speech
Mode

Text
Mode

Address
Direction
Distance

List of places
Building

Basic Recording

Address
Direction
Distance

List of places
Building

Can be further sub divided
depending on whether these
queries access the MySql
database or the website.

Figure 18 Categorization tree of the scenarios.

45
Procedure

Again, the pool consisted of 38 total tasks which tested a wide range of

capabilities. The tasks were numbered in order [see Appendix A] and a random number

generator was used to select a number that corresponds to a specific task on the list. For

example, consider that the number 10 was randomly generated on a certain trial. The

number 10 corresponds to a recording task for time duration of 5 seconds [see Appendix

A], which the user performed. This process was repeated until 30 trials were performed.

These trials were performed by one non-native, male speaker. In this experiment each

task corresponds to one interaction between the user and the system.

Results and Analysis

All 30 tasks passed the enhanced architecture. In the case of the original

architecture, 24 tasks passed while the other 6 resulted in a server error. The 24 tasks that

did not generate errors under the original architecture included those for recording for

varying time durations and querying the dialog system. The six tasks that failed under the

original architecture involved programmer errors which led to a system failure.

One such task consists of basic recording under the system specification that the

signal detector server receives an inappropriate frame during data transfer. This

inappropriate frame can be defined as any frame that does not contain audio data during

the data transfer stage. This inappropriate frame can be received by the server due to

inter-process communication error or a programmer error in setting the hub rules. In the

original architecture, the signal detector server tries to extract data from the frames. Since

the inappropriate frame does not have any audio data, the server errors and exits.

46
Because there is no functionality in the original architecture to detect the server error, a

system failure occurs.

For the enhanced architecture as the states are well defined, the signal detector

server checks whether the frame contains audio data before it is extracted. Even in the

worst case scenario, if the server errors and exits, the process manager provides a

graceful handling of the error and prevents a system failure.

Conclusions

As can be seen in Table 2, 24 tasks passed the original architecture while six

failed. The six tasks that failed belonged to task set from the pool that was expected to

fail in the original architecture. This experiment confirmed that these tasks did fail in the

original architecture. In this experiment, a random number generator was used to produce

an unbiased selection of tasks from the pool. Though this removes a level of bias, it is not

based on observed system usage, and, as such, does not necessarily capture typical usage

patterns. The tasks which failed could constitute a greater percentage of typical daily

usage. Another limitation of this experiment was that the system was tested by a single

user.

Table 2 Performance results for task pool experiment.

Number of tasks that
passed the test

Number of tasks that failed
the test

Original architecture 24 6

Enhanced architecture 30 0

47
4.1.3 General Usage Scenarios Experiment

In this experiment, five different users performed tasks pertaining to 24 usage scenarios.

The terms scenario, task and interactions are used frequently in this section, thus their

meanings should be clearly defined. A scenario is a general situation under which the

user is asked to use the system. A scenario may require performing one or more tasks.

For example, consider a user is planning a vacation to the city of his/her choice. She

needs to decide on a travel itinerary by using the system. This is a general scenario and

the user may choose to accomplish this by performing several tasks using the system.

Each task may require a single query or multiple queries to accomplish. This is

referred to as an interaction which is defined as one response from the system to

accomplish a specific task. All results in the following experiments have been tabulated

in terms of the number of interactions. All participants of this experiment were first time

users of the HLT system and had little or no knowledge of this technology. Users were

not restricted in their queries so that the queries more closely resemble the usage patterns

of a typical user.

Procedure

Five users were asked to engage in 24 usage scenarios using the original and the

enhanced architecture [see Appendix B]. Among the five users, there were three males

and two females. The user pool consisted of one native speaker and four non-native

speakers. These usage scenarios required performing such tasks as recording for varying

time durations and querying for information. The scenarios were carefully drafted not to

prompt the user for a specific query. For example, the user is asked to role play that she is

48
attending a conference in a big city, and to assume she wants to visit sites of interest after

that day’s conference proceedings. She has no prior knowledge about the layout of the

city or a city map. She is asked to use the system to plan her visits.

Before participating in the experiment, each user was presented with a set of

instructions, which introduced them to the system [see Appendix C]. Each user was

allowed a 10-minute practice session to get familiar with the functionality of the system.

The practice session included basic recording sessions and dialog tasks related to some

predefined queries that the user can use to gain familiarity with the system. Once the

practice session was over, the user engaged in the usage scenarios for the experiment,

using both architectures, with a time limit of 30 minutes for each. The user performed the

tasks, first on the enhanced architecture followed by the original architecture to prevent

any robustness improvement trend that may occur due to user’s familiarity with the

system. The entire experiment took approximately 1 hour and 30 minutes. The user was

asked to cease testing if there was a system failure or she exceeded the allotted time of

30 minutes.

Results and Analysis

Table 3 tabulates the number of interactions that were successfully completed by

each user, for each of the architectures. It can be noted that a total of 129 interactions

were successfully completed using the enhanced architecture while only 76 interactions

could be performed successfully using the original architecture.

49

Table 3 The number of interactions that passed the original and the enhanced
architecture in general usage scenarios experiment.

Users Number of interactions
that were successfully
attempted in the
Enhanced architecture

Number of interactions that
were successfully
attempted in the Original
architecture

User 1 22 23
User 2 26 24
User 3 23 10
User 4 32* 11
User 5 26 8

Total number of
interactions that were
successfully attempted

129 76

* indicates that a server error was experienced but the enhancements prevented a
system failure.

The entries that are highlighted in Table 3 failed during the testing process. The

system failed three times due to a server error in the original architecture. A server error

was experienced once during use of the enhanced architecture but was appropriately

handled by the process manager to prevent a system failure. The scenarios that led to a

system failure were reconstructed and analyzed. The server errors that occurred during

the experiment were traced to two types of scenarios. They included:

1) Inter-process Communication Error: While the user records audio data, the signal

detector detects the endpoints. The speech recognition server decodes the

endpointed audio data and the decoded text is sent to the natural language parser.

The dialog manager receives the parsed output and queries the database for a

response. If no record was found, the Mapquest website is queried. While the

dialog manager was querying the Mapquest database, the user attempted to record

50
another utterance which in turn triggered a new set of communication. The dialog

manager failed as it was in a different state still querying for a response. The

system failed twice during execution of this scenario using the original

architecture. Even though this scenario occurred once during use of the enhanced

architecture, the process manager detected the error and prevented a system

failure.

2) Hub Connection Error: The hub experienced a connection error while contacting

the servers. The DARPA Communicator documentation states this error can occur

if the hub cannot connect to a server or if the number of connections has exceeded

the maximum value. This is an internal error with the Communicator’s hub. Even

though this error did not occur during the testing of the enhanced architecture, the

process manager should be able to gracefully handle this error.

In order to further analyze the results, the 24 usage scenarios were categorized on

the basis of its purpose. Figure 18 shows the sub-categorization of these scenarios.

Though the scenarios were carefully written to avoid prompting or biasing the user to

issue a specific query, they were also crafted to elicit and test all capabilities of the

system, from basic recording to the most complex dialog response capabilities. The

scenarios can be categorized into the following major categories:

1) Basic recording capabilities

2) Dialog response capabilities - speech mode

3) Dialog response capabilities - text mode

Among the 24 different scenarios, six scenarios belonged to the “Basic

Recording” category and the other 18 scenarios belonged to the “Dialog system: Speech/

51
Text mode” category. The data presented in Table 4 shows no improvement for the

“Basic Recording” and “Dialog system: Text mode” category as no system failure was

experienced in these categories for either architecture. The data only indicate robustness

improvements in the “Dialog system: Speech mode” category using the enhanced

architecture.

Table 4 Three categories of experimental data.

Catego-
ry

Number of
interactions
successfully
attempted
by User 1

Number of
interactions
successfully
attempted
by User 2

Number of
interactions
successfully
attempted by
User 3

Number of
interactions
successfully
attempted by
User 4

Number of
interactions
successfully
attempted by
User 5

E O E O E O E O E O
Basic

record-
ing

9 8 8 6 7 6 12 8 9 8

Dialog
system:
Speech
mode

8 7 9 9 9 4 12 3 9 0

Dialog
system:

Text
mode

5 8 9 9 7 0 8 0 8 0

Total
number

of
interact
-ions

22 23 26 24 23 10 32 11 26 8

E – Enhanced architecture , 0 – Original architecture

To analyze these improvements in greater depth, the scenario categories were

further subdivided into different levels of inter-process communication needed to

successfully complete an interaction. Table 5 summarizes the number of interactions per

52
category. Table 6 tabulates the different communication levels needed to complete an

interaction in each of the three major categories. It can be noted that among the different

categories, the “Dialog system: Speech mode” category is the most complex and accounts

for the maximum number of inter process communication exchanges. Therefore, more

failures are to be expected in scenarios from the “Dialog system: Speech mode” category

compared to other categories.

Table 5 Summary of experimental data for the three categories.

Categories Enhanced Architecture Original architecture

Basic Recording 45 36
Dialog system:
Speech mode

47 23

Dialog system:
Text mode

37 17

Total number of
interactions that were
successfully attempted

129 76

Conclusions

The results of this experiment have shown an evident improvement in robustness

of the enhanced architecture over the original architecture. Table 5 shows that 129

interactions successfully passed the enhanced architecture while only 76 interactions

passed the original architecture. This shows a 37% improvement in robustness compared

to the original architecture on this specific dataset. Further categorization of these results

illustrates that for the “Dialog system: Speech mode” category, only 23 interactions

successfully completed during tests using the original architecture while 47 interactions

53
successfully completed during tests using the enhanced architecture. This shows a 51%

improvement in the robustness of the system on this specific dataset.

These numbers may overstate the actual improvement in robustness as the user

was asked to abort the experiment following a system failure which prevented him/her

from performing the subsequent tasks. Since this was more likely to occur in the original

architecture, this could significantly reduce the number of interactions on that

architecture. To obtain a more focused measure of robustness improvement, further

experimentation was needed to target the “Dialog system: Speech mode” category since it

scenarios from this category require execution of the most complex tasks in the HLT

system, and results show a notable variation in the performance between the two

architectures. Therefore, an additional experiment was required to allow the user to

continue performing all the listed scenarios irrespective of system failures.

Table 6 The different stages of communication needed to complete successfully an
interaction in three major categories.

Category List of sub interactions in each category
Basic Recording 1) The user records and the audio data is transferred to

the server.
2) The end points are detected and the recording ends.

Dialog system: Speech
mode

1) The user records and the audio data is transferred to
the server.

2) The end points are detected and the recording ends.
3) The utterance is decoded.
4) The decoder output is parsed.
5) The query response is retrieved and sent to the user

interface.
Dialog system: Text
mode

1) The user queries the system in text mode.
2) The query is parsed.
3) The query response is retrieved and sent to the user

interface.

54
4.1.4 Dialog System-Speech Mode Experiment

This experiment was designed to target the “Dialog system: Speech mode”

category to measure the robustness improvement on the most complex tasks in the HLT

system. The limitations of previous experiment were overcome by asking the user to

request a system restart in the event of a system failure and to continue testing for the full

30 minutes.

Procedure

Five users were asked to perform nine usage scenarios restricted to the “Dialog

system: Speech mode” category [see Appendix B]. Among the five users, there were four

males and one female. The user pool consisted of one native speaker and four non-native

speakers. Each user was provided with a series of scenarios originating from the user’s

visit to Starkville from his/her city of residence. The users were initially presented with a

set of instructions, which introduced him/her to the system [see Appendix B]. The user

was allowed to take a 10-minute practice session to get familiar with the functionality of

the system. The user performed tasks from nine different scenarios with a maximum time

duration of 30 minutes per session on each architecture. The user first performed the

tasks on the enhanced architecture followed by the original architecture to prevent any

robustness improvement trend that may occur due to user’s familiarity with the system. In

case of a system failure, the user sought assistance in restarting the application and

continued testing the system.

55
Results and Analysis

Table 7 tabulates the number of interactions that could be completed successfully

using each of the architectures. The system experienced a server error twice during use of

the enhanced architecture but the process manager module prevented a system failure.

The system failed three times during experiments in which the original architecture was

used. The scenarios for these failures were reconstructed and are discussed in detail. The

two error scenarios were:

Table 7 The number of interactions that passed the original and the enhanced
architecture in dialog system-speech mode experiment.

Users Number of interactions
that passed successfully
the Enhanced
architecture

Number of interactions that
passed successfully the
Original architecture

User 1 10 8
User 2 10 11
User 3 9* 9
User 4 16* 13
User 5 10 10

Total number of
interactions that passed
successfully

55 51

* indicates that a server error was experienced but the enhancements prevented a
system failure.

1) Inter-process Communication Error: This is the same error that was mentioned in

the analysis section of previous experiment. This error occurs when the user

attempts to record when the dialog manager is still attempting to respond to the

previous query. This occurred once during use of the original architecture which

led to a system failure. Though this occurred during use of the enhanced

56
architecture, the process manager provided a graceful handling of the error and

prevented a system failure.

2) Dialog Manager Error: The dialog manager errors and exits while trying to send

the query results to the client process for display to the user. Once the database

server returns the query results for the direction query, the dialog manager wraps

the results in a Communicator frame and sends it to the hub. In this specific case,

the query result contained more than 200 lines of instructions which were

retrieved from the database tables. The string that holds these results were not

dynamically allocated to fit any size and resulted in a failure of the dialog

manager. This can be classified as a programmer error. This error was

experienced twice during the testing of the original architecture. This error

occurred once in the enhanced architecture and was gracefully handled by the

process manager.

4.1.5 Conclusions on Quantitative Analysis

To obtain a quantitative measure on the robustness improvements, 10 different

users were asked to perform approximately 200 interactions on each of the architectures

with a total experimentation time of around 10 hours. There were two native speakers and

eight non-native speakers in the user pool. Among the 10 different users there were seven

males and three females. On the fourth and final experiment, 55 interactions were

completed successfully using the enhanced architecture while only 51 interactions were

completed successfully using the original architecture. All experiments were designed

using scenarios carefully crafted to elicit the most natural, spontaneous interaction from

57
users on the widest range of system functionality. Quantitative results of the final

experiment show a 7.2% improvement in robustness on the most complex set of tasks

defined for the HLT system. It can be concluded that the enhanced architecture has

provided a lower bound of 7% improvement in the robustness of the system.

Though allowing users exposure to the system continuously for longer time

periods would yield additional data, this would not necessarily yield more meaningful

data without carefully designed and controlled experiments,. All facets of this

experimental design, including subject selection techniques and scenario design and

presentation, can serve as a critical foundation for more comprehensive studies.

4.2 Qualitative Analysis

Most of the enhancements to the DARPA architecture were developed out of

necessity for a better error handling and debugging capabilities. This section discusses

the various qualitative enhancements made to the original architecture and describes two

scenarios where these enhancements have improved error handling and debugging

capabilities of the system. Although most of the enhancements discussed in Chapter III

contribute in some way to the qualitative enhancement of the system, discussed below are

the two main qualitative enhancements to the system. They include:

• Process Manager Module: The process manager is a powerful module that enables

automated server management. The ability of the process manager to keep track of

servers and handle port allocation has provided a better platform for spoken language

applications. The enhanced architecture provides a built-in capability to handle

multiple users, which was not supported in the original architecture. The demo

58
selector interface provides a simple interface for the user to choose from a host of

applications, while the original architecture needed manual assistance to accomplish

this capability.

• Improved Debugging: The enhanced architecture has provided better logging of

communication which, along with the state machine architecture and basic

handshaking capabilities, has provided a more efficient debugging paradigm for the

system. Each server including the hub logs all the communication it sends/receives

and also logs information related to states and subsequent state transitions. These

logs can be used to reconstruct the specific scenario in case of a server or system

failure. The debug window, a component of the user interface module, records all

communication that is routed through the hub. This provides an excellent interface

for the user to debug the system when she has no access to the log files on the server

side.

To demonstrate these capabilities, two scenarios are presented that illustrate

improvement in error handling and debugging capabilities of the system.

59

Figure 19 The process manager handling server errors.

4.2.1 Server Management and Error Handling

Figure 19 illustrates a case where the signal detector errors out due to an

inter-process communication error. In this scenario, the signal detector server receives

two Audio_Ready signals which occurred due to a programming error. Initially, the user

starts a speech analysis application and the client process contacts the process manager to

start the required servers. On client’s request, the process manager starts the data recorder

and the signal detector server along with the hub. Once the recording starts, the client

process sends the Audio_Ready signal to inform the servers that the recording has started.

As mentioned earlier, in this particular scenario, the signal detector server

receives two Audio_Ready signals. This can happen due to a programming error in the

client process or because the hub script has been inappropriately programmed to send two

Audio_Ready signals to the signal detector. When the signal detector receives the first

60
Audio_Ready signal from the client process, it sends back an Audio_Ready_Ack signal

and transitions to Data_Transfer state. Due to a programming error, the signal detector

gets another Audio_Ready signal. Given the state of the server, the state machine

architecture in the signal detector server detects the received signal as an inappropriate

signal. The signal detector server errors and exits with an appropriate error message. The

process manager detects the server error, terminates the associated processes and informs

the client to restart the application. Thus, the process manager prevents a system failure

and provides a graceful handling of the errors.

Figure 20 A debug window showing an audio data transfer error.

4.2.2 The Debug Window

The debug window was designed as an integral part of the user interface to help

the user debug the system from the client process. This is a critical feature when the user

61
is not at close proximity to the server machine or she does not have authorized access to

the server machine. Figure 20 illustrates a scenario where an inter-process

communication error occurs during data transfer.

During the data transfer, the recipient server acknowledges every packet of data

sent by the client process. In this scenario, an inter-process communication error occurs

as the recipient server could not respond with an acknowledgement or the

acknowledgement did not reach the client process. The user can view the debug window

and browse through Communicator messages to reconstruct the exact scenario that led to

the failure. Thus the debug window provides a debugging interface for the user which

never existed in the original architecture.

4.2.3 Conclusions on Qualitative Analysis

The scenarios discussed above have illustrated the various qualitative

enhancements performed on the original architecture. The qualitative enhancements

include first a multi-user and multiple application capability that were not available in the

original architecture. Therefore, these two enhancements cannot be evaluated against a

baseline. Nonetheless, these capabilities clearly extend the complexity of applications

that can be deployed, and thereby, the fundamental research issues that can be

investigated using this architecture.

The enhancements related to better debugging capabilities were achieved through

rigorous design meetings and reviews. In addition, the user interface was designed with a

team including experts in human computer interaction and graphic design. Further, both

the debugging and user interface enhancements were reviewed and evaluated by two

62
categories of users respectively, 1) software developers programming this technology and

2) principle investigators who presented these technologies to research sponsors.

Additional feedback and evaluations will be collected from other end users of the HLT

system as well as developers who will apply this enhanced architecture for future

software development.

4.3 Overall Conclusions

The quantitative results discussed in this chapter provide evidence that the

enhancements to the original architecture have improved the robustness of the system.

The results show a 7.2% improvement in robustness on the most complex task in the

HLT system. The qualitative enhancements, which may not directly contribute to

robustness, have contributed to improvements in the overall functioning of the system.

Therefore, though more difficult to quantify, it can be viably argued that these

enhancements to the original architecture have also indirectly contributed to enhanced

system robustness.

CHAPTER V

CONCLUSIONS AND FUTURE WORK

The fundamental modularity and extensibility of the DARPA Communicator

architecture marked a new era in HLT research and significantly advanced the

complexity of problems which could be studied. It also provided a capability for

evaluating and comparing research results that did not previously exist. Nonetheless, it

suffered many critical robustness issues. In addition, a multiple multi-user application

capability was innately supported. This thesis has identified and addressed these issues

and experimental analysis discussed in Chapter IV has shown a 7.2% improvement in

robustness on the most complex task in the HLT system.

5.1 Thesis Contributions

As discussed in Chapter IV, essential qualitative and quantitative enhancements

were implemented. The key contributions of the thesis include:

• The robustness of the system has shown significant improvements under the

enhanced architecture. Chapter IV discusses a series of experiments that were

conducted to measure the improvement in robustness of the system. The experiments

show an improvement of 7.2% on the address querying task which is the most

complex task in the HLT system.

• The initial architecture required the user to possess detailed knowledge about each

63

64
application. It involved manual startup of the servers and manual allocation of ports.

Modular enhancements such as the process manager have eliminated the need for

manual assistance in starting and managing the servers.

• The enhanced architecture provides a carefully designed graphical interface for the

user to choose among different applications with a mouse-click; all subsequent tasks,

from server startup to port allocation, are automated. When the user exits the

application, all related processes are terminated automatically.

• Debugging complex HLT applications has always been challenging. Most of the

client applications are multithreaded, making it difficult to retrace the events and

isolate the bug. This problem increases in magnitude in a multi-user environment. In

the enhanced architecture, servers have been redesigned as state machines with basic

handshaking incorporated in the communication between servers. These

enhancements have been successful in trapping server errors and provide

functionality for effective tracing of potential bugs.

5.2 Future Work

Further experiments should be conducted to obtain additional measures of the

robust improvements due to the enhanced architecture. These experiments should include

at least 20 additional users unfamiliar with the system and allow the system to respond to

user queries continuously for prolonged time periods. These prolonged experiments must

be carefully controlled using scenarios that properly exercise system functionality, such

as those in the third and fourth experiments conducted for this thesis, so that meaningful

data are collected. This data would give more insight into the robustness of the system to

65
complex inter-process communication for an extended period of time. Due to the

constraints of the original architecture, experiments comparing its performance to the

enhanced architecture can be performed only on a single-user platform.

Performance improvements to our initial prototype dialog system were made by

running a series of pilot experiments followed by a set of Wizard of Oz experiments.

Modifications were made to the grammar and the language model that improved the

performance of the system to queries with OOVs. Further experiments can be performed

to improve the grammar and the language model which will allow the dialog system to

handle a wider range of user queries.

Improvements can also be made to the way the context information is currently

used in the dialog system. The availability of state-of-the-art statistical techniques has

made a significant impact on the way natural language processing works. Statistical

parsers have attracted extensive attention because of their performance and ability to

adapt to different data sets with ease. However, the availability of data sets to train these

statistical models has always proved to be an obstacle. A future enhancement would be to

extend the dialog system to accommodate a statistical parser which can be trained on any

data set. This feature will expand our query response capabilities.

Under the current architecture, the HLT system runs on a distributed framework

where a single client communicates with a single server machine or multiple clients

communicate with a single server machine. The process manager has not been tested to

manage multiple clients communicating with multiple server machines. The system also

needs to be tested on supercomputer clusters. This would enhance application execution

66
speed as the computational power available for each application would be considerably

increased.

In conclusion, this thesis has addressed vulnerabilities in the DARPA

Communicator architecture through several important enhancements, including increased

system robustness to failure, automated server startup, error detection and correction,

support for multiple multi-user applications, and improved debugging capabilities. Future

work includes experimentation to validate the enhanced architecture and building other

robust, complex, state-of-the-art human language technologies on this enhanced platform.

REFERENCES

[1] K. Hacioglu, B. Pellom, “A Distributed Architecture for Robust Automatic
Speech Recognition,” Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, Hong Kong, April 2003.

[2] S. Bayer, C. Doran, B. George, “Dialogue Interaction with the DARPA
Communicator Infrastructure: The Development of Useful Software,”
Proceedings of First International Conference on Human Language Technology
Research, San Diego, California, March 2001.

[3] A. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R. Shern, K. Lenzo, W. Xu,
“Creating Natural Dialogs in the Carnegie Mellon Communicator System,”
Proceedings of the European Conference on Speech Communication and
Technology, Budapest, Hungary, September 1999.

[4] W. Ward, B. Pellom, “The CU Communicator System,” IEEE Workshop on
Automatic Speech Recognition and Understanding, Keystone, Colorado, USA,
December 1999.

[5] M. Walker, “DARPA Communicator Dialog Travel Planning Systems: The June
2000 Data Collection,” Proceedings of the European Conference on Speech
Communication and Technology, Aalborg, Denmark, 2001.

[6] “The SRI Communicator System,” http://www.ai.sri.com/~communic/, Speech
Technology and Research Laboratory, SRI International, Menlo Park, California,
USA.

[7] C. S. Liu, H. C. Wang, C. H. Lee, “Speaker Verification using Normalized Log-
likelihood Score,” IEEE Transactions on Speech and Audio Processing, vol. 4,
pp. 56-60, 1996.

[8] D. A. Reynolds, “Speaker Identification and Verification using Guassian Mixture
Speaker Models,” Speech Communications, vol. 17, pp. 91-108, 1995.

[9] J. Baca, F. Zheng, H. Gao, J. Picone, “Dialog Systems for Automotive
Environments,” European Conference on Speech Communication and
Technology, Geneva, Switzerland, September 2003.

67

http://www.ai.sri.com/~communic

68
[10] L. R. Rabiner and B. Juang, Fundamentals of Speech Recognition, Prentice Hall,

Englewood Cliffs, New Jersey, USA, 1993.

[11] J. Picone, “Continuous Speech Recognition Using Hidden Markov Models,”
IEEE Acoustics, Speech and Signal Processing Magazine, vol. 7, no. 3, pp. 26-41,
July 1990.

[12] “Internet-Accessible Speech Recognition Technology,”
http://www.isip.msstate.edu/projects/speech/, Institute of Signal and Information
Processing, Mississippi State University, Mississippi, USA.

[13] “Java 2 Platform SE 5.0 API Specifications,” http://java.sun.com/j2se/1.5.0/docs/
api/, Sun Microsystems Inc., Santa Clara, California, USA.

[14] N. K. Simpkins, “An Open Architecture for Language Engineering: The
Advanced Language Engineering Platform (ALEP),” Proceedings of Linguistic
Engineering Convention, Paris, July 1994.

[15] H. Cunningham, Software Architecture for Language Engineering,
Ph.D. Dissertation, University of Sheffield, Sheffield, UK, 2000.

[16] R. Grishman, “Tipster Architecture Design Document Version 2.2,”
Technical report, The Defense Advanced Research Projects Agency, 1996.

[17] J. Aberdeen, et. al., “Implementing Practical Dialogue Systems with the DARPA
Communicator Architecture,” Proceedings of Conference on Knowledge and
Reasoning in Practical Dialogue Systems, Stockholm, Sweden, 1999.

[18] F. Olsson, “A Requirement Analysis for an Open Set of Human Language
Technology Tasks,” Proceedings of International Conference on Language
Resources and Evaluation, Las Palmas, Spain, June 2006.

[19] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, V. Zue, “Galaxy-II: A Reference
Architecture for Conversational System Development,” Proceedings of
International Conference on Spoken Language Processing, Sydney, Australia,
1998.

[20] “Java™ Desktop Audio Server,” http://communicator.sourceforge.net/sites/
MITRE/distributions/OSTK20020125/audio_io/jdas/doc/jdas.html, MITRE
Corporation, Bedford, Maryland, USA.

[21] V. Zue, et. al., “JUPITER: A Telephone-based Conversational Interface for
Weather Information,” IEEE Transactions on Speech and Audio Processing,
vol. 8, no. 1, pp. 100-112, January 2000.

http://communicator.sourceforge.net/sites
http://java.sun.com/j2se/1.5.0/docs
http://www.isip.msstate.edu/projects/speech

69
[22] A. Rudnicky, et. al., “Creating Natural Dialogs in the Carnegie Mellon

Communicator System,” Proceedings of the European Conference on Speech
Communication and Technology, Budapest, Hungary, September 1999.

[23] “SpeechObjects: An Architectural Overview,” http://www.nuance.com/speech/
whitepapers/, Nuance Inc., Burlington, Maryland, USA.

[24] S. Weinschenk, D. T. Barker, “Designing Effective Speech Interfaces,” John
Wiley and Sons Publishers, Indianapolis, Indiana, USA, 2000.

[25] L. Rothkrantz, D. Datcu, M. Beelen, “Personal Intelligent Travel Assistant: A
distributed approach,” Proceedings of International Conference on Artificial
Intelligence, Las Vegas, Nevada, USA, June 2005.

[26] M. Baum, G. Erbach, M. Kommenda, G. Niklfeld, E. Waldmüller, “Speech and
Multimodal Dialogue Systems for Telephony Applications based on a Speech
Database of Austrian German,” Journal of Austrian Society for Artificial
Intelligence, vol. 20, no. 1, pp. 29-34, 2001.

[27] B. Pellom, W. Ward, S. Pradhan, “The CU Communicator: An Architecture for
Dialogue Systems,” Proceedings of International Conference on Spoken
Language Processing, Beijing, China, November 2000.

[28] “Galaxy Communicator Manual,” http://communicator.sourceforge.net/sites
/MITRE/distributions/GalaxyCommunicator/docs/manual/index.html, MITRE
Corporation, Bedford, Maryland, USA.

[29] S. Bayer, C. Doran, B. George, “Exploring Speech-enabled Dialogue with the
Galaxy Communicator Infrastructure,” Proceedings of First International
Conference on Human Language Technology Research, San Diego, California,
March 2001.

[30] “Programmer’s Guide to Java Sound”, http://java.sun.com/j2se/1.5.0/
docs/guide/sound/programmer_guide/contents.html, Sun Microsystems Inc.,
Santa Clara, California, USA.

[31] A. Ganapathiraju, N. Deshmukh, J. Hamaker, V. Mantha, Y. Wu, X. Zhang,
J. Zhao, J. Picone, “ISIP Public Domain LVCSR System,” Proceedings of the
Speech Transcription Workshop, Linthicum Heights, Maryland, USA, June 1999.

[32] N. Deshmukh, A. Ganapathirahu, J. Picone, “Hierarchical Search for Large-
vocabulary Conversational Speech Recognition,” IEEE Signal Processing
Magazine, vol. 16, no. 5, pp. 84-107, 1999.

[33] S. B. Davis, P. Mermelstein, “Comparison of Parametric Representations for
Monosyllabic Word Recognition in Continuously Spoken Sentences,” IEEE

http://java.sun.com/j2se/1.5.0
http://communicator.sourceforge.net/sites
http://www.nuance.com/speech

70
Transactions on Acoustics, Speech and Signal Processing, vol. 28, pp. 357-366,
August 1980.

[34] X. Huang, A. Acero and H. Hon, Spoken Language Processing – A guide to
Theory, Algorithm and System Development, Prentice Hall, Upper Saddle River,
New Jersey, USA, 2001.

[35] “The Phoenix Parser Manual”, http://cslr.colorado.edu/~whw/phoenix
/Phoenix_Manual.pdf, Center for Spoken Language Research, University of
Colorado, Boulder, USA.

[36] “Travelocity,” http://www.travelocity.com/, Travelocity Inc., SouthLake, Texas,
USA.

[37] “Expedia,” http://www.expedia.com/, Expedia Inc, Bellevue, Washington, USA.

[38] “Mapquest,” http://www.mapquest.com/, Mapquest Inc., Denver, Colorado, USA.

[39] J. H. L. Hansen, J. Plucienkowski, S. Gallant, B. L. Pellom, W. Ward, “CU-
Move: Robust Speech Processing for In-Vehicle Speech Systems,” Proceedings
of International Conference on Spoken Language Processing, vol. 1, pp. 524-527,
Beijing, China, October 2000.

[40] G. Alippi, A. Giussani, C. Micheletti, F. Roncoroni, G. Stefini, G. Vassena,
“Global Positioning and Geographical Information Systems,”
IEEE Instrumentation & Measurement Magazine, vol. 7, pp. 36-43, December
2004.

[41] J.P. Campbell, “Speaker Recognition: A Tutorial,” Proceedings of IEEE,
pp. 1437-1462, September 1997.

[42] “ISIP Foundation Classes,” http://www.cavs.msstate.edu/hse/ies/projects/speech/
software/documentation/class/index.html, Institute of Signal and Information
Processing, Mississippi State University, Mississippi, USA.

[43] “Sof Format,” http://www.cavs.msstate.edu/hse/ies/projects/speech/software/tutor
ials/production/fundamentals/current/section_02/s02_01_p06.html, Institute of
Signal and Information Processing, Mississippi State University, Mississippi,
USA.

[44] K. Bush, A. Ganapathiraju, P. Korman, J. Trimble , L. Webster, “A Comparison
of Energy-based Endpoint Detectors for Speech Signal Processing,”
http://www.cavs.msstate.edu/hse/ies/publications/courses/ece_4773/projects/1995
/conference/paper_speech.pdf.

[45] S. Mitra, Digital Signal Processing, McGraw-Hill, New York, New York, USA,
1998.

http://www.cavs.msstate.edu/hse/ies/publications/courses/ece_4773/projects/1995
http://www.cavs.msstate.edu/hse/ies/projects/speech/software/tutor
http://www.cavs.msstate.edu/hse/ies/projects/speech
http://www.mapquest.com
http://www.expedia.com
http://www.travelocity.com
http://cslr.colorado.edu/~whw/phoenix

71
[46] J. K. Proakis, D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,

and Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1998.

[47] T. Stanley, J. Baca, M. Elliott and J. Picone, “Enhancements to the DARPA
Communicator Architecture,” Proceedings of World Congress in Computer
Science, Computer Engineering and Applied Computing, Las Vegas, Nevada,
USA, June 2006.

[48] A. Leon-Garcia, I. Widjaja, Communication Networks: Fundamental Concepts
and Key Architecture, McGraw-Hill, New York, New York, USA, 2000.

[49] M. Liu, T. Stanley, J. Baca, J. Picone, “Robust Architecture for Human Language
Technology,” Proceedings of IEEE SoutheastCon, Memphis, Tennessee, USA,
March 2006.

[50] P. Linz, An Introduction to Formal Languages and Automata, Jones & Bartlett
Publishers, Sudbury, Maryland, USA, 2001.

[51] A. S. Tanenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs, New
Jersey 1996.

[52] S. Whittaker, M. Walker, J. Moore, “Fish or Fowl: A Wizard of Oz Evaluation of
Dialogue Strategies in the Restaurant Domain,” Proceedings of Language
Resources and Evaluation Conference, Gran Canaria, Spain, 2002.

[53] H. Cheng, et. al., “A Wizard of Oz Framework for Collecting Spoken Human-
computer Dialogs,” Proceeding of International Conference on Spoken Language
Processing, Jeju Island, Korea, 2004.

APPENDIX A

LIST OF TASKS

72

73

Table 8 List of tasks

Serial

No.

User Tasks System Specifications

1 Choose one of these tasks:
1) Use the Speech Analysis application to record
audio data.
2) Use Dialog system to get a response to your
query.

The Data Recorder server tries to
write to a location that does not exist
(programmer error).

2 Choose one of these tasks:
1) Use the Speech Analysis application to record
audio data.
2) Use Dialog system to get a response to your
query.

Server is tries to read a parameter
file that does not exist (programmer
error).

3 Choose one of these tasks:
1) Use the Speech Analysis application to record
audio data.
2) Use Dialog system to get a response to your
query.

A buffer overflow during the data
transfer in the recording stage
(programmer error).

4 Choose one of these tasks:
1) Use the Speech Analysis application to record
audio data.
2) Use Dialog system to get a response to your
query.

The server tries to access a null
Communicator frame and extract a
value that does not exist
(programmer error).

5 Choose one of these tasks:
1) Use the Speech Analysis application to record
audio data.
2) Use Dialog system to get a response to your
query.

During data transfer, the program
creates an audio communicator
frame but does not wrap the audio
data inside the frame (programmer
error).

6 Choose one of these tasks:
1) Use the Speech Analysis application to record
audio data.
2) Use Dialog system to get a response to your
query.

The server gets an inappropriate
frame (programmer error).

7 Choose one of these tasks:
1) Use the Speech Analysis application to record
audio data.
2) Use Dialog system to get a response to your
query.

Communicator frame that does not
have any hub rule pertaining to it
(programmer error).

8 Choose one of these tasks:
1) Use the Speech Analysis application to record
audio data.
2) Use Dialog system to get a response to your
query.

An error in setting a hub rule
(programmer error).

74

Table 8 (continued)
Serial

No.

Tasks System Specifications

9 Speech Analysis Application:
Recording task:
time duration: 1 second

Normal operating
conditions

10 Speech Analysis Application:
Recording task:
time duration: 5 second

Normal operating
conditions

11 Speech Analysis Application:
Recording task: 15 seconds
time duration: 15 second

Normal operating
conditions

12 Speech Analysis Application:
Record and playback alternatively in the following sequence.
record -> playback

Normal operating
conditions

13 Speech Analysis Application:
Record and playback alternatively in the following sequence.
record -> playback-> record -> playback

Normal operating
conditions

14 Speech Analysis Application:
Record and playback alternatively in the following sequence.
record -> record -> playback-> playback

Normal operating
conditions

15 Dialog system Application:
Try recording for different time durations (refer task 9, 10, 11).

Normal operating
conditions

16 Dialog system Application:
Try recording and playback alternatively (refer task 12, 13, 15).

Normal operating
conditions

17 Dialog system Application:
Try recording an utterance that is not part of the model (an
utterance that does not relate to address-queries) and test how the
recognition module handles it.

Normal operating
conditions

18 Dialog system Application:
Use the text mode, and try parsing a string that does not belong
to an address query.

Normal operating
conditions

19 Dialog system Application:
Use “Text input” mode to query an address which uses the SQL
database for retrieving a response.

Normal operating
conditions

20 Dialog system Application:
Use “Text input” mode to query an address which uses Mapquest
for retrieving a response.

Normal operating
conditions

21 Dialog system Application:
Use “Text input” mode to query a direction which uses SQL
database for retrieving a response.

Normal operating
conditions

22 Dialog system Application:
Use “Text input” mode to query a direction which uses Mapquest
for retrieving a response.

Normal operating
conditions

75

Table 8 (continued)
Serial
No.

Tasks System Specifications

23 Dialog system Application:
Use “Text input” mode to query a direction which uses
context information.

Normal operating
conditions

24 Dialog system Application:
Use “Text input” mode to query the distance which
uses SQL database for retrieving a response.

Normal operating
conditions

25 Dialog system Application:
Use “Text input” mode to query a distance which uses
Mapquest for retrieving a response.

Normal operating
conditions

26 Dialog system Application:
Use “Text input” mode to query a direction which uses
context information.

Normal operating
conditions

27 Dialog system Application:
Use “Text input” mode to query a list of places which
uses Mapquest for retrieving a response.

Normal operating
conditions

28 Dialog system Application:
Use “Text input” mode to query for building
information which uses SQL database for retrieving a
response.

Normal operating
conditions

29 Dialog system Application:
Use “Text input” mode to query an address which uses
the SQL database for retrieving a response.

Normal operating
conditions

30 Dialog system Application:
Use “Text input” mode to query an address which uses
Mapquest for retrieving a response.

Normal operating
conditions

31 Dialog system Application:
Use “Text input” mode to query a direction which uses
SQL database for retrieving a response.

Normal operating
conditions

32 Dialog system Application:
Use “Text input” mode to query a direction which uses
Mapquest for retrieving a response.

Normal operating
conditions

33 Dialog system Application:
Use “Text input” mode to query a direction which uses
context information.

Normal operating
conditions

34 Dialog system Application:
Use “Text input” mode to query the distance which
uses SQL database for retrieving a response.

Normal operating
conditions

35 Dialog system Application:
Use “Text input” mode to query a distance which uses
Mapquest for retrieving a response.

Normal operating
conditions

36 Dialog system Application:
Use “Text input” mode to query a direction which uses
context information.

Normal operating
conditions

76

Table 8 (continued)
Serial

No.

Tasks System Specifications

37 Dialog system Application:
Use “Text input” mode to query a list of places which uses
Mapquest for retrieving a response.

Normal operating
conditions

38 Dialog system Application:
Use “Text input” mode to query for building information
which uses SQL database for retrieving a response.

Normal operating
conditions

APPENDIX B

LIST OF SCENARIOS

77

78

List of Scenarios

Speech Analysis Application Tasks:

Task 1:

Record your voice for varying time durations.

1) 1 second

2) 5 seconds

3) 15 seconds

Task 2:

Try recording your voice and play it back. Repeat this in different sequences.

1) record -> playback

2) record -> playback -> record -> playback

3) record -> record -> playback -> playback

Dialog Systems Application Tasks:

Task 1:

Record your voice for varying time durations (similar to Task 1 in the Speech Analysis

application).

1) 1 second

2) 5 seconds

79
3) 15 seconds

Task 2:

Try recording your voice and play it back. Repeat this in different sequences (similar to

Task 2 in the Speech Analysis application).

1) record -> playback

2) record -> playback -> record -> playback

3) record -> record -> playback -> playback

Task 3:

Imagine you are in a big city to attend a conference. Once the conference proceedings are

over for the day, you want to visit some sites of interest. You don’t have a map with you

and have no idea about the layout of the city. Use the system to plan your trip.

Task 4:

1) Imagine you are working in a big city for quite a few years. You plan to make a

visit to Starkville. So you start on a road trip from your city. You are almost near

Starkville when you find that you are really low on gas. Use the system to make a

decision on whether you can make it without filling gas.

2) You decide on filling gas. Use the system to locate a gas station.

3) You reach your hotel. You need to visit your friend’s place. Use the system to get

to his place.

4) You and your friend want to go to your favorite restaurant. Your friend is unsure

whether the restaurant still exists. Use the system to verify this.

80
5) You are happy to find that the restaurant still exists. Use the system to reach the

restaurant.

6) Once you had lunch, you want to return to your hotel. Use the system to get back

to your hotel.

7) You are planning to eat your favorite cuisine for dinner. Use the system to help

you in choosing a restaurant.

8) Tomorrow, you plan to visit your department. In a casual chat with your friend

you learn that your department has been moved to a different location. Use the

system to get the exact location.

All the tasks listed above were spoken by you through the voice interface. You need to

use a text interface for the tasks mentioned below. Click the “show text input” option

from the menu. You will get a text input box at the bottom of the interface. Use this input

box to enter your text queries for the tasks mentioned below.

Task 5:

You want to watch your favorite TV show and cannot find it on any of the channels. Use

the system to get the channel/timing information.

Task 6:

Repeat all the subdivisions in task 4. Remember to type in your queries this time instead

of speaking the queries.

APPENDIX C

INSTRUCTIONS AND WARM UP EXCERCISES

81

82

Instructions

This experiment has a series of tasks that test the improvement on the robustness

of our HLT system. The experiment has a collection of scenarios under which you will be

asked to use the system to accomplish a given task. In order to measure the robustness

improvement, you will have to repeat the tasks in the experiments twice 1) On the

enhanced system and 2) On the original system. For both the experiments, you will be

given maximum time duration of 30 minutes. During the experiment, you will be using

the Speech Analysis and Dialog system application. The Speech Analysis application is a

basic recording application. The Dialog system is an address querying system which will

assist you in navigation. Please inform us immediately, if you feel the application is not

responding to your queries.

Warm up exercises

1) Open the Speech Analysis application, which is the first item, listed on the Demo

Selector. Try recording your utterance and playing it back. Repeat this if necessary.

2) Open the Dialog system application. You will be prompted for username and

password. Please seek assistance in filling these fields. Once you have successfully

logged in, you can try some of the queries listed below.

1) Where is Walmart?

2) Where is Simrall?

3) How can I go from Simrall to Butler?

4) How far is Walmart from ERC?

83
5) You can also try some queries on you own.

Once you are comfortable with the system, you can start the experiment. Please

remember to ask for assistance if needed.

	A Robust Architecture For Human Language Technology Systems
	Recommended Citation

