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Spaceborne sensors, which collect imagery of the Earth in various spectral bands, 

are limited by the data transmission rates. As a result the multispectral bands are 

transmitted at a lower resolution and only the panchromatic band is transmitted at its full 

resolution. The information contained in the multispectral bands is an invaluable tool for 

land use mapping, urban feature extraction, etc.  However, the limited spatial resolution 

reduces the appeal and value of this information.  

Pan sharpening techniques enhance the spatial resolution of the multispectral 

imagery by extracting the high spatial resolution of the panchromatic band and adding it 

to the multispectral images. There are many different pan sharpening methods available 

like the ones based on the Intensity-Hue-Saturation and the Principal Components 

Analysis transformation. But these methods cause heavy spectral distortion of the 

multispectral images. This is a drawback if the pan sharpened images are to be used for 

classification based applications.  



 

 

In recent years, multiresolution based techniques have received a lot of attention 

since they preserve the spectral fidelity in the pan sharpened images.  Many variations of 

the multiresolution based techniques exist. They differ based on the transform used to 

extract the high spatial resolution information from the images and the rules used to 

synthesize the pan sharpened image. The superiority of many of the techniques has been 

demonstrated by comparing them with fairly simple techniques like the Intensity-Hue-

Saturation or the Principal Components Analysis. Therefore there is much uncertainty in 

the pan sharpening community as to which technique is the best at preserving the spectral 

fidelity. This research investigates these variations in order to find an answer to this 

question.  

An important parameter of the multiresolution based methods is the number of 

decomposition levels to be applied. It is found that the number of decomposition levels 

affects both the spatial and spectral quality of the pan sharpened images. The minimum 

number of decomposition levels required to fuse the multispectral and panchromatic 

images was determined in this study for image pairs with different resolution ratios and 

recommendations are made accordingly. 
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CHAPTER I 

INTRODUCTION 

1  
1.1 Characteristics of Remote Sensing Imagery 

Remote sensing images are be characterized by their spectral, spatial, radiometric, 

and temporal resolutions. Spectral resolution refers to the bandwidth and the sampling 

rate over which the sensor gathers information about the scene. High spectral resolution 

is characterized by a narrow bandwidth (e.g., 10 nm). Spatial resolution refers to the 

smallest features in the scene that can be separated (resolved). The radiometric resolution 

refers to the dynamic range or the total number of discrete signals of particular strengths 

that the sensor can record. A larger dynamic range for a sensor results in more details 

being discernible in the image. The Landsat 7 sensor records 8-bit images; thus it can 

measure 256 unique gray values of the reflected energy while Ikonos-2 has an 11-bit 

radiometric resolution (2048 gray values). In other words, an higher radiometric 

resolution allows for simultaneous observation of high and low contrast objects in the 

scene. The temporal resolution refers to the time elapsed between consecutive images of 

the same ground location taken by the sensor. Satellite based sensors, based on their 

orbit, may dwell continuously on an area or revisit the same area every few days. The 

temporal characteristic is helpful in monitoring land use changes [22]. 



 

 

2
Due to system tradeoffs related to data volume and signal to noise ratio (SNR) 

limitations, remote sensing images tend to have either a high spatial resolution and low 

spectral resolution or vice versa [31]. The following section explains the relationship 

between the spatial resolution and spectral resolution.  

1.2 Spatial Resolution and Spectral Resolution Tradeoffs 

All sensors have a fixed signal to noise ratio that is a function of the hardware 

design. The energy reflected by the target must have a signal level large enough for the 

target to be detected by the sensor. The signal level of the reflected energy increases if 

the signal is collected over a larger instantaneous field of view (IFOV) or if it is collected 

over a broader spectral bandwidth. Collecting energy over a larger IFOV reduces the 

spatial resolution while collecting it over a larger bandwidth reduces its spectral 

resolution. Thus, there is a tradeoff between the spatial and spectral resolutions of the 

sensor. As noted above, a high spatial resolution can accurately discern small or narrow 

features like roads, automobiles, etc. A high spectral resolution allows the detection of 

minor spectral changes, like those due to vegetation stress or molecular absorption [31].  

Most optical remote sensing satellites carry two types of sensors – the 

panchromatic and the multispectral sensors. The multispectral sensor records signals in 

narrow bands over a wide IFOV while the panchromatic sensor records signals over a 

narrower IFOV and over a broad range of the spectrum. Thus, the multispectral (MS) 

bands have a higher spectral resolution, but a lower spatial resolution compared to the 

associated panchromatic (PAN) band, which has a higher spatial resolution and a lower 

spectral resolution. Hyperspectral sensors have been launched in recent years, which have 
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even narrower channel bandwidths than MS sensors (approximately 10 nanometers), and 

correspondingly their spatial resolution is poorer than MS sensors (assuming a similar 

orbit and optics). Table 1-1 lists the spectral and spatial resolutions of the Landsat 7 

ETM+ sensor [17], Table 1-2 gives the same information for the SPOT5 sensor [41]. The 

Landsat 7 MS bands 1-5 have a spatial resolution of 30 m while the PAN band has a 15 

m resolution. Similarly, the MS bands 1-4 of SPOT5 have a spatial resolution (10 m), 

which is four times that of the PAN band (2.5 m). Other examples of satellite systems 

which carry high spatial resolution and high spectral resolution sensors are Quickbird, 

Ikonos, and the Indian Remote Sensing Satellite (IRS). 

Table 1-1 Spectral, and spatial resolutions of Landsat 7 

 

Band Number 
Spectral Range 

(nm) 

Spatial 

Resolution (m) 

1 450-515 30 

2 525-605 30 

3 630-690 30 

4 750-900 30 

5 1550-1750 30 

6 1040-1250 60 

7 2090-2350 30 

Panchromatic 520-900 15 
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Table 1-2 Spectral, and spatial resolutions of SPOT 5 

 

Band Number 
Spectral Range 

(nm) 

Spatial 

Resolution (m) 

1 500-590 10 

2 610-680 10 

3 780-890 10 

4 1580-1750 20 

Panchromatic 480-710 2.5 

 

1.3 Image Fusion 

Image fusion refers to the process of combining two or more images into one 

composite image, which integrates the information contained within the individual 

images [5]. The result is an image that has a higher information content compared to any 

of the input images. Generally, the goal of the fusion process is to evaluate the 

information at each pixel location in the input images and retain the information from that 

image which best represents the true scene content or enhances the utility of the fused 

image for a particular application.  

Researchers and other customers who buy satellite imagery desire both high 

spatial and spectral resolutions simultaneously in order to extract the maximum 

information content from the imagery. Thus, the information from both the PAN and MS 

channels needs to be integrated into one channel. Many different image fusion methods 
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are found in the literature to combine MS and PAN images [1], [9]. These techniques 

combine the spatial details from a high spatial resolution-low spectral resolution (PAN) 

image with the low spatial resolution-high spectral resolution (MS) image to create a high 

spatial, high spectral resolution image. If successful, this method provides spectrally and 

spatially higher information content [37]. In the remote sensing literature, this image 

fusion process is popularly referred to as “pan sharpening” since the details of the PAN 

image are used to “sharpen” the MS imagery. A more specific and accurate definition of 

the pan sharpening would be “the enhancement of the spatial resolution of a low spatial 

resolution image by the integration of higher resolution details from an available higher 

spatial resolution image”. This general terminology will be used since the higher spatial 

resolution image does not necessarily have to be that of a panchromatic band. Thus, a 

Landsat 7 MS image of 30 m spatial resolution could be fused with any one MS band of 

SPOT 5 10 m spatial resolution to increase the Landsat 7 MS image’s resolution by a 

factor of three. One could also use a higher resolution aerial photograph of the area if it 

were available. 

Image fusion a vast discipline in itself, refers to the fusion of various types of 

imagery that provide complementary information. For example, thermal and visible 

images are combined to aid in aircraft landing [35]. Multispectral images are combined 

with radar imagery because of the ability of the radar to “see” through cloud cover. Since 

pan sharpening refers to the fusion of only a specific type of imagery, it can be 

considered a subset of the vast image fusion discipline. In this study, we are only 

interested in applying it to the fusion of PAN and MS images. However, before image 
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fusion or pan sharpening can be applied to a set of images they must satisfy certain 

conditions [24] – 

• The images should be of the same ground location, and they must be 

coregistered to each other within sub pixel accuracy, 

• No major changes should have occurred in the landscape imaged between the 

acquisition of the two images, 

• The spectral ranges of the PAN and the MS images must overlap. 

1.4 Applications of Pan Sharpening 

Many applications such as mapping of land use, vegetation and urban areas 

benefit from pan sharpening. The different objects or classes observed in the scene can be 

better distinguished or classified due to the high spectral resolution of multispectral 

images. However, the maps created will have a coarse appearance due to the low spatial 

resolution of the MS image. On the other hand, the different classes cannot be separated 

in the panchromatic imagery as they have almost identical gray values [50], but the 

higher spatial resolution, of the panchromatic band leads to a more accurate delineation 

of the structures and the boundaries between them [14], [29]. Since the pan sharpened 

image has both a high spectral resolution and a high spatial resolution, the objects can be 

classified efficiently as well as delineated with higher accuracy. The maps created from 

the pan sharpened images leads to enhanced visual interpretation. Zhang et al. [50] used a 

pan sharpened image obtained from the fusion of Quickbird MS and PAN images to 

extract road networks in Fredericton, New Brunswick, Canada. The same principles can 

be used to extract buildings in an urban environment. A few papers assessing the 
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effectiveness of pan sharpening for urban mapping are listed in [10], [11], and [42]. 

1.5 Motivation 

The previous section shows that there are various applications of pan sharpening 

ranging from land use mapping to road extraction. All these applications involve 

classification of the imagery. In order that the pan sharpened imagery is classified 

correctly, the spectral information or the radiometry of the MS imagery must be 

preserved. One target application is the supervised classification of the pan sharpened 

imagery by using the spectral signatures derived from the original MS imagery [12]. 

Thus, preserving the spectral information of the original MS images in the pan 

sharpened images is important. This means that there should be ideally zero or minimal 

change in the radiometry or digital number (DN) values of the image. The change or loss 

of the original radiometry is also termed as ‘spectral distortion’ in literature. Over the 

years, researchers have formulated various techniques for pan sharpening that attempt to 

minimize the spectral distortion, or in other words, retain the maximum spectral fidelity 

of the MS images [1], [7], and [14]. On the other hand, if the use of the pan sharpened 

image is just to produce maps for better visual interpretation, the spectral distortion is not 

of much concern, in that case, the goal is then to produce images with high contrast. 

The goal of this dissertation is to produce pan sharpened images with the highest 

spectral fidelity possible because of the importance of such images in classification tasks. 

The literature survey and my initial experiments showed that Multi Resolution Analysis 

(MRA) based methods seem to be the most effective at producing high spectral fidelity 

pan sharpened images. Thus, the MRA techniques are pursued and investigated in detail. 
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There are many variants of the MRA techniques, and each is promoted as being the best 

at preserving the spectral fidelity of the MS images. Arguments are made in favor of a 

certain new technique by comparing it against fairly simple techniques like the IHS or 

PCA methods. One of the novel approaches of this work is the rigorous comparison of 

different MRA methods with each other. 

1.6 Contributions 

The main goal of this study is to implement MRA based pan sharpening 

techniques and its many variants and determine empirically the most suitable ones. The 

motivation behind pursuing MRA based techniques is that they preserve the spectral 

fidelity of the MS images while improving their spatial resolution. A number of 

parameters of the MRA based pan sharpening methods were studied, and their effects on 

the quality of the pan sharpened images determined quantitatively. The major findings of 

this work are described in the following subsections. 

1.6.1 Choice of the Mother Wavelet  

The most suitable mother wavelet for wavelet based pan sharpening is the second 

order Daubechies wavelet ‘db2’ based on empirical evaluations. A more general 

inference is that the shorter wavelets gave better results than the longer ones. The only 

exception was the shortest 2-tap Haar wavelet, which gave poorer results compared to 

even the longest wavelets. Similarly, various classes of filters are used for the Laplacian 

Pyramid (LP), and it is determined that the 13-tap Quadrature Mirror Filter (QMF) gave 

the highest spectral fidelity. The same filters that are used for the LP based pan 
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sharpening were also used to pan sharpen images with the A Trous Wavelet Transform 

(AWT). It is determined that the Gaussian filter corresponding to a central coefficient 

weight (CCW) of 0.5 gave the highest spectral fidelity among all the filters explored. 

1.6.2 Comparison of Various MRA Transforms 

The various MRA transforms like the Redundant Wavelet Transform (RWT), the 

A Trous Wavelet Transform (AWT) and the Laplacian Pyramid (LP) are compared. In 

the many pan sharpening papers found in literature, there are different and contradictory 

claims regarding which one is the best. A detailed comparison between RWT, AWT, and 

LP is carried out. As a result, it is determined that the RWT is best at preserving the 

spectral fidelity of the pan sharpened image.  

1.6.3 Benefits of the Additive Method 

It is shown that the additive pan sharpening technique performs well when the 

MRA transform is a LP and the spectral fidelity provided by this algorithm is quite close 

to the substitutive method based on the RWT.  The advantage of this technique is that, 

since only the PAN image has to be decomposed, it is computationally faster compared to 

the substitutive method. However, sometimes the spatial quality of this method is slightly 

less than that of the substitutive methods. 

1.6.4 Choice of the Selection Rule 

There are various selection rules proposed to combine the high frequency 

coefficients of the MS-PAN images in order to improve the spectral fidelity of the pan 
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sharpened images. These rules are evaluated and it is found that the maximum amplitude 

selection rule provides the highest spectral fidelity while being computationally the least 

expensive. 

1.6.5 Effect of Directional Selectivity 

Often the reason for the superiority of the RWT over the LP or the AWT is cited 

as the higher directional selectivity of the RWT. Through experiments based on the 

Steerable Pyramid Transform (SPT), whose directional selectivity can be varied, it is 

determined that the directional selectivity played only a minor role in improving the 

spectral quality. 

1.6.6 Estimation of the Minimum Number of Decomposition Levels 

The relationship between the number of decomposition levels required to fuse 

PAN and the MS images and the resolution ratio of the images is found. The number of 

decomposition levels required to merge images is directly proportional to their resolution 

ratio. Recommendations on the minimum required decomposition levels for a given 

resolution ratio are made, based on the pan sharpening application. It is found that the 

spatial quality is affected by the number of decomposition levels, and other parameters of 

the fusion process have hardly any effect on it, i.e. a different wavelet filter or selection 

rule cannot reduce the number of decomposition levels required to merge the datasets. 
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1.7 Document Overview 

The next chapter (Chapter 2) describes the various pan sharpening methods found 

in literature with an emphasis on MRA based techniques. The reader is also introduced to 

the theory of multiresolution analysis. Chapter 3 describes the metrics used for 

quantitative assessment of the pan sharpened images. The topics that will be researched 

are also outlined along with the methodologies used to approach them. Chapter 4 

describes the datasets that were used in this research, while Chapter 5 gives detailed 

results on each of the topics that were investigated. Chapter 6 makes conclusions based 

on the results obtained and suggestions for future work. Appendix A defines some 

acronyms used throughout the document while in Appendix B some of the MRA 

transforms are explained.  



 

12 

 
 
 
 

CHAPTER II 

LITERATURE REVIEW 

2  
2.1 Introduction 

There are many pan sharpening techniques available in literature. This chapter 

describes some popular ones; any advantages or disadvantages associated with them are 

also given. Review articles on image fusion have appeared in literature describing the 

various techniques available [28]. The authors of [28] classify pan sharpening techniques 

into categories such as arithmetic combination based, color based, wavelet based, and 

substitution based methods since many of them are minor variations of a pioneering 

technique. The wavelet based methods are just one of the many realizations possible of 

the MRA based pan sharpening technique. In this work I prefer to use a slightly different 

categorization scheme, the one proposed by Shettigara [36] in which, any technique that 

involves a forward transformation of the bands, replacement or manipulation of the 

transformed bands and a reverse transformation is called a Component Substitution 

(COS) technique. Figure 2-1 shows the categorization of pan sharpening techniques that I 

follow and a few techniques that fall under them. Most pan sharpening methods can be 

classified as COS based or arithmetic combination based (AMC), i.e. they directly 

perform some type of arithmetic operation on the MS and PAN bands like weighted
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 addition, multiplication, normalized division, ratios etc. According to Shettigara’s 

approach, the MRA based techniques would be classified under the COS technique as 

they involve a forward and an inverse MRA transform to construct the pan sharpened 

images. However, the MRA based methods have received so much attention and so many 

variations exist that they can be considered a separate category in them self.  

The following sections describe the COS, AMC and MRA methods and provide 

an example of each. The focus of this work is the MRA based pan sharpening methods, 

of which many variations exist. Thus, this work provides a comprehensive review of the 

MRA based methods. To explain the algorithms, throughout this report the algorithms the 

following notations will be used: B represents the set of MS bands, A – the PAN image 

and F – the pan sharpened bands. The notations B and F will be used to represent all the 

bands collectively. If a particular band is to be addressed a subscript shall be used, e.g. B1 

refers to the first band in the MS set. Most of the techniques require that the MS images 

first be resampled to the pixel size of the PAN image, thus the resampled MS images will 

be noted by the superscript *, i.e. B*. Any image downsampled or degraded to a lower 

resolution from its original resolution will be denoted by the superscript `, i.e. A` refers to 

the PAN image degraded to a lower resolution. 
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Figure 2-1 Categorization of pan sharpening techniques  

2.2 The COS Methods 

Some of the popular COS methods for pan sharpening are the IHS method, the 

PCA method, and the MRA based methods. Grasping the working of MRA based 

methods, requires a proper understanding of the MRA concepts, which are quite 

complex. Thus, this topic is introduced at a later stage in the chapter (section 2.4), with 

the hope that after reading the other COS and AMC methods the reader will be more 

comfortable with the pan sharpening solutions and able to comprehend the MRA 

technique better. 

Pan sharpening Techniques

COS 
 

AMC 
 

Intensity Hue Saturation 

Principal Components 
Analysis 

Multiresolution Analysis 
Based 

High Pass Filtering 

Brovey 

Synthetic Variable Ratio 
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2.2.1 The Intensity Hue Saturation Method 

2.2.1.1 The Intensity Hue Saturation Transform 

Digital images are generally displayed by an additive color composite using the 

three primary colors – red (R), green (G), and blue (B) [22]. However, colors can be 

described by an alternate representation: Intensity, Hue, and Saturation (IHS). Intensity 

represents the total luminance of the image, hue represents the dominant wavelength 

contributing to the color, and saturation describes the purity of the color relative to gray. 

The IHS transformation separates the spatial and spectral information in a RGB image. 

The intensity component represents the spatial information while the hue and saturation 

describe the spectral information [22]. The spatial information can then be manipulated 

by performing some mathematical operation on the “intensity” component to enhance the 

image without altering its spectral representation. This principle is used in the IHS pan 

sharpening scheme described below.  

More than one algorithm exists to compute the RGB to IHS transform, and they 

differ mainly in the way “intensity” is defined. Two of the most popular transform pairs 

to convert from RGB to IHS representation and back from IHS to RGB representation are 

the hexcone model and the triangle model. In order to distinguish between the two 

representations, the intensity component of the hexcone model will be called “value” (V) 

and that of the triangle model called “luminance” (L). Correspondingly, the IHS 

representation of the hexcone model will be denoted by VHS and that of the triangle 

model denoted by LHS. The hexcone model is described in detail below. 
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2.2.1.2 The Hexcone Model 

This transform pair defines intensity as the maximum value of the R, G, and B 

values at any pixel position. The details to calculate VHS from RGB and the reverse 

RGB to VHS are given below [39]: 

RGB TO HSV 

1) V := max(R,G,B), 

2) Let X := min(R,G,B), 

3) S := (V-X)/V, if S==0 return, 

4) Let r := (V-R)/(V-X), g := (V-G)/(V-X), b := (V-B)/(V-X), 

5) If R=V then H := (if G=X then 5+b else 1-g), 

If G=V then H := (if B=X then 1+r else 3-b), 

else H := (if R=X then 3+g else 5-r), 

6) H := H/6 

HSV TO RGB 

1) H := H*6, 

2) Let I := floor(H), F := H-I, 

3) Let M := V*(1-S), 

N : = V*(1-(S*F)), 

K := V*(1-S*(1-F))), 

4) Switch(I): 

Case 0: (R,G,B) := (V,K,M), 

Case 1: (R,G,B) := (N,V,M), 
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Case 2: (R,G,B) := (M,V,K), 

Case 3: (R,G,B) := (M,N,V), 

Case 4: (R,G,B) := (K,M,V), 

Case 5: (R,G,B) := (V,M,N), 

In the above transforms the RGB space is first normalized to the range [0, 1] and 

thus all RGB and HSV values fall in this range. A point to note is that if the saturation (S) 

is zero it means all R, G, B are equal at this point, and the hue is not defined at this point. 

The hue is then replaced by the immediate previous value in the image.  

2.2.1.3 The Triangle Model 

The other transform pair is called the triangle model, which defines the intensity 

as the average of R, G, and B at the pixel position: L = (R+G+B)/3. The interested reader 

can find the details of this transform pair in [39].  

2.2.1.4 IHS Based Pan Sharpening 

The IHS pan sharpening technique is the oldest known data fusion method and 

one of the simplest. Figure 2-2 illustrates this technique for convenience. In describing 

the algorithm the nonspecific notation IHS will be used since either VHS or LHS can be 

used for the implementation. In this technique the following steps are performed: 

1. The low resolution MS imagery is co-registered to the same area as the high 

resolution PAN imagery and resampled to the same resolution as the PAN 

imagery.  
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2. The three resampled bands of the MS imagery B*, which represent the RGB space 

are transformed into IHS components. 

3. The PAN imagery is histogram matched to the “I” component. This is done in 

order to compensate for the spectral differences between the two images, which 

occurred due to different sensors or different acquisition dates and angles. 

4. The intensity component of MS imagery is replaced by the histogram matched 

PAN imagery. The RGB of the new merged MS imagery is obtained by 

computing a reverse IHS to RGB transform.  

In the above algorithm, replacing the spatial component of the MS imagery with 

the PAN imagery allows the details of the PAN imagery to be incorporated in to the MS 

imagery. 
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Figure 2-2 IHS based pan sharpening method 

 

2.2.1.5 Comments on the IHS Method 

The IHS technique is fairly easy to understand and implement. Moreover it 

requires very little computation time compared to the more sophisticated techniques. 

However, it severely distorts the spectral values of the original color of the MS image. 

This is seen from Figure 2-3 – Figure 2-5, which show a QuickBird image pan sharpened 

using the VHS method. The colors of the buildings in the lower right region of the image 
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(below the diagonal road) have changed from white or light blue to a strong blue. The 

vegetation above the road also appears lighter in color. Thus the IHS technique is good 

only for visual analysis, not machine classification; moreover it is also limited to three 

bands. 

 
 

Figure 2-3 Quickbird MS image 
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Figure 2-4 Quickbird PAN image 
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Figure 2-5 The VHS pan sharpened image 

 

Since there are different techniques to compute the IHS representation, it is 

important to make comparisons among them. A brief literature survey of IHS based pan 

sharpening papers showed that [7], [26] used the LHS representation. Nunez et al. [26] 

gave quantitative results showing that the LHS method resulted in less spectral distortion 

of the MS bands compared to VHS. 
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2.2.2 Principal Components Analysis Method  

2.2.2.1 Principal Components Analysis – A Dimensionality Reduction Technique 

The data in each of the MS bands of a sensor are highly correlated. Thus, the 

different bands are quite similar and the data is redundant to some extent. If an analyst 

must process this data, the redundant information must be filtered for effective analysis. 

The goal of the principal components analysis is to reduce the dimensionality of the data 

by decorrelating the original data in N dimensions into uncorrelated data in fewer than N 

dimensions [22]. This is analogous to data compression. 

The principal components (PC) of an N dimensional data are computed by a 

linear transformation [8]. Suppose x is an Nx1 vector, then the mean of x can be 

estimated from a sample of L such vectors: 
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and its covariance matrix is given by: 
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where E is the expectation operator. The covariance matrix is a NxN matrix and it 

is real and symmetric. Its diagonal elements are the variances of the individual variables 

and the off-diagonal elements are their covariances. Then a matrix A is defined such that 

its rows are eigenvectors of xC , and it defines a new vector y , which is a linear 

transformation of x: 
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)( xmxAy −= , (3) 

The new vector y is a vector with zero mean and its covariance yC is related to 

xC as follows: 

T
xy AACC = , (4) 

Since the rows of A  are eigenvectors of yx CC ,  is a diagonal matrix with the 

eigenvalues of xC  as its elements: 
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Since the off-diagonal elements of yC  are zero, the variables of the transformed 

vector y  are uncorrelated and independent of each other. The rows of A  are arranged in 

order of decreasing magnitude, and thus the variables of y  are arranged in order of 

decreasing significance. For dimensionality reduction we can neglect one or more 

elements of y  that correspond to the smallest magnitude eigenvectors. This transform is 

invertible; this operation can be called the inverse principal components: 

myAx += −1 , (6) 

2.2.2.2 PCA Pan Sharpening 

In the PCA pan sharpening method, instead of calculating the IHS transform of 

the MS imagery, the principal components are calculated. In this technique the following 

steps are performed, Figure 2-6 also illustrates these steps: 
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1. The low resolution MS imagery is co-registered to the same area as the high 

resolution PAN imagery. 

2. The principal components of the MS imagery are calculated and resampled to the 

same pixel size as the PAN image. 

3. The PAN image is histogram matched to the first principal component (PC1) of 

the MS image. This matching is done in order to compensate for the albedo 

differences between the two images. 

4. The first PC of the MS imagery is replaced by the histogram matched PAN 

imagery, which has a higher resolution. The logic behind replacing the first PC is 

that it contains the information common to all the bands. So replacing it with the 

high resolution PAN image will maximize the effect of the fusion in all the bands 

[36]. 

5. The inverse principal components are computed to obtain the new merged MS 

imagery. 
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Figure 2-6 PCA based pan sharpening method 

2.2.2.3 Comments on the PCA Method 

An advantage of this technique is that the number of input bands is theoretically 

unlimited. The PCA method for pan sharpening gives better results compared to the IHS 

method. However, this method is sensitive to the area being sharpened [28] because the 

variance between pixel values in a band and the correlation among the MS bands differs 

based on the land cover. Moreover, since the first PC contains the maximum variance of 

the MS imagery, replacing it with the PAN band maximizes the spectral effect of the 
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PAN image. Figure 2-7 shows the above QuickBird MS image pan sharpened using the 

PCA method. The spectral quality of the image is not preserved. The buildings in the 

lower left region below the road appear bluish instead of white as in the original MS 

image. The bare soil and grass on the right side of the road appear brighter and light 

green respectively. 

 
 

Figure 2-7 PCA based pan sharpened image 
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2.3 The AMC Methods 

The logic behind the AMC methods is to increase the spatial resolution of the MS 

imagery by adding, multiplying or taking some sort of ratio of the PAN image with them 

[28]. To minimize the spectral effects of the PAN image most implementations do a 

weighted addition or multiplication, where the weights are determined based on some 

criteria. 

2.3.1 Addition, Multiplication  

The following two formulas were proposed by Yesou et al. [45] to enhance the 

spatial resolution of the MS images, 

BiAi sBwAwsF ++= )( *
21 , (7) 

BiAi sABsF += )( * , (8) 

The additions and multiplications are point wise operations. BA ss , are the scaling 

factors and 21, ww are the weighting factors. The MS images have to be first resampled 

before applying the above formulas. Many other arithmetic possibilities exist and the 

references for these can be found in [28]. But, since these methods do not preserve the 

spectral fidelity of the MS images well, they are not considered in this work. 

2.3.2 Ratioing 

Certain band ratios enhance the image details and thus, this technique is very 

suitable for producing images with high contrast. The Brovey transform and the Synthetic 

Variable Ratio (SVR) methods are examples of this technique. 
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2.3.2.1 The Brovey Transform 

The Brovey transform method (named after its author) uses ratios to sharpen the 

images. Each MS band is normalized with respect to the other MS bands and multiplied 

by the PAN band to obtain the pan sharpened image. The following equation gives the 

mathematical formula for the Brovey method [12]: 
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j
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+
=

∑
=1

*

*

, (9) 

In practice there can be areas in the image where the DN values in all the bands 

are zero, thus a small constant c is added to the denominator to produce meaningful 

output values. This method produces images with excellent contrast, which can be useful 

for change detection. However, the pixel values are altered drastically and thus these 

images are not suitable for automatic classification purposes. Figure 2-8 shows that MS 

image pan sharpened by the Brovey method has a high contrast. The bare region in the 

top of the image has changed from brown to blue. The road, which goes across the image 

diagonally, has also changed from grayish-blue to a brown color. Moreover, a 

comparison with the pan sharpened images from the IHS and PCA methods shows that 

the Brovey images introduce the most spectral distortion. 



 

 

30

 
 

Figure 2-8 Pan sharpening by Brovey method 

2.3.2.2 The Synthetic Variable Ratio Method 

The original Synthetic Variable Ratio (SVR) method was proposed by Munechika 

et al. [25], which is given by the following equation: 
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A
A
BF

syn

i
i ⋅= ' , (10) 

where '
synA is the low resolution PAN image created synthetically from the low 

resolution MS bands. The aim is to create a low resolution PAN image that would have 

been measured by a low resolution panchromatic sensor if it was available. This image is 

calculated as follows: 

∑
=

=
N

i
ii

i
syn BA

1
φ , (11) 

The coefficients iφ are calculated by using an atmospheric model. The 

representative reflection spectra of five land cover classes – urban, soil, water, trees and 

grass in the image under consideration are measured. This spectra and the target 

reflectance are input to an atmospheric model that simulates the reflectance values for the 

PAN band. The iφ coefficients are then obtained through regression analysis between the 

simulated and actual DN values. Finally, before applying equation A
A
BF

syn

i
i ⋅= ' , (10) 

the PAN image is histogram matched to the synthetic low resolution PAN image. Zhang 

[48] notes that the coefficient calculation is complicated as it requires measuring the 

spectra of particular classes and running an atmospheric model that requires considerable 

human operator skills. Moreover, many scenes may not have these five specified classes, 

there may be more than these classes. Thus, this situation creates additional work for the 

operator.  
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Zhang proposed a modified SVR method that calculates the regression analysis 

coefficients iφ directly from the original PAN (A) and the resampled MS images (B*). 

These coefficients are then used to calculate the synthetic PAN image – synA at the same 

resolution as the original PAN image given by: 

∑
=

=
N

i
iisyn BA

1

*φ , (12) 

Thus the modified SVR formula is: 

A
A
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syn

i
i ⋅=

*

, (13) 

The primary advantage of this method is that the calculation of regression analysis 

coefficients iφ is much simpler and does not require operator intervention. Though the 

Zhang designed the modified SVR to preserve the spectral information of the MS images, 

my initial results with this method were not very encouraging (loss of spectral fidelity). A 

literature review showed that Zhang pursued another technique based on least squares 

error citing loss of spectral fidelity in the SVR method as its drawback [49].  

2.3.3 The High Pass Filtering Method 

The High Pass Filtering (HPF) technique is one type of a weighted addition of the 

PAN image with the MS image. However, because it played an important role in the 

realization of the MRA based methods it is discussed separately. The problem of pan 

sharpening can be considered as the substitution of the high spatial frequency information 

from one image to another [1]. The PAN image contains the high spatial frequency 
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information that must be inserted or added into the MS image. The first such technique to 

take advantage of high spatial frequency substitution from the PAN image to the MS 

image was the High-Pass Filtering (HPF) method developed by Schowengerdt [34]. The 

HPF method is implemented as follows: 

1. The low resolution MS imagery is co-registered to the same area as the high 

resolution PAN imagery and resampled to the same size as the PAN image 

using a bicubic resampling technique. 

2. The high frequency details of the PAN image are obtained by subtracting a 

lowpass version of the PAN image from itself. The lowpass filtering is 

implemented by simply averaging pixels over a nn×  (typical values for n are 

3, 5, or 7) sliding window which moves over each pixel in the image. For 

example the lowpass filter used by Schowengerdt was: 

⎥
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LP , (14) 

3. The high frequency details are then added to the resampled MS image band by 

band, which gives a high resolution MS image. Since the highpass 

information from one band is being substituted to another band, the difference 

in radiometry between the two bands must be accounted for first. 

Mathematically, the HPF method can be given by the following equation,  

hpii ABF += * , (15) 

where hpA is the high pass filtered PAN image. 
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The main drawback of the HPF technique is the results are very much dependent 

on the window size over which the high frequency details image is computed. A good 

amount of trial and error is required in coming up with the optimal window size for a 

particular scene, i.e. the results vary with the landscape [28]. Nevertheless, this technique 

laid the foundation for advanced MRA based pan sharpening techniques. These 

techniques use the same principle as the HPF method – that only the high pass filtered 

information or the higher frequencies from the PAN image are needed to increase the 

spatial resolution of the MS images.  

2.4 The MRA Based Methods 

2.4.1 Introduction 

The MRA based methods use the same principle as the HPF technique – extract 

the high frequency or details information from the PAN image for insertion into the MS 

image. The difference lies in the way in which this information is extracted. The MRA 

transforms perform a forward transformation to separate the low and high frequency 

information in the images, substitute the high frequency information from the PAN into 

the MS image and finally perform a reverse transform to construct the pan sharpened 

image. Most implementations perform a forward transform on the MS images, also [14], 

[18], [21], discard the high frequency information extracted from the MS image and 

substitute it with that from the PAN image before performing the reverse transformation. 
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2.4.2 Multi Resolution Analysis Theory 

Pattern recognition in remote sensing imagery encompasses the automatic 

identification of variable sized objects in the image. For example, if there is a 

requirement to detect all the edges in an image, these edges could be large or small 

depending on how rapidly the image intensity changes. The small edges can be easily 

identified by applying small neighborhood detection operators while the large edges can 

be identified by large neighborhood operators. However, it is recognized that using a 

large operator to detect a larger feature is computationally very inefficient [8]. Rather 

than scaling the operator to the scale of the object, it is more efficient to vary the scale of 

the image (or the object). Thus, the image analysis (pattern recognition) is more efficient 

if the image is analyzed at different resolutions [23]. 

An image at a given resolution can be divided into coarser approximations at a 

lower resolution. Suppose the original image has a resolution rj and its lower resolution 

approximation image has resolution rj-1. Then, the details missing in the lower resolution 

representation are given by the difference between the original image and the 

approximation image [23]. At coarser resolutions only the large objects are visible and 

the viewer gets only a rough idea of the image context. The original image can be 

reconstructed as successive details are added to the approximations and the finer details 

of the image become visible. A mathematical definition and an explanation of 

multiresolution are given below. 

Multiresolution: A continuous function )(tf can be decomposed into many 

subspaces, where each subspace contains a part of the whole function. Each of these 
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different parts contains a projection of the function at different resolutions. This 

decomposition of the function onto subspaces at different scales or different resolutions 

can be defined as multiresolution [40].  

In order to explain the multiresolution theory two subspaces jV and jW are used 

and j denotes the scale of the subspace. The projection of )(tf on the subspace jV is 

denoted by )(tf j . As the scale ∞→j the projection )(tf j better approximates the 

function )(tf . It should also be noted that each subspace jV is contained within the next 

higher subspace 1+jV , which can be generalized by the following equation: 

⋅⋅⋅⊂⊂⋅⋅⋅⊂⊂ +110 jj VVVV , (16) 

The details missing in jV to construct 1+jV are contained in the subspace jW , thus 

the subspace 1+jV can also be written as: 

jjj WVV ⊕=+1 , (17) 

The above equation can be generalized for any two consecutive subspaces 

(i.e., 001 WVV ⊕= ) which leads to the following summation: 

jj WWWVV ⋅⋅⋅⊕⊕=+ 1001 , (18) 

In addition to the above properties, the subspaces must also satisfy the dilation 

and translation requirements. The dilation requirement states that all the rescaled 

functions in jV will be in 1+jV . If a scaling factor of two is chosen, then it means that if the 

subspace jV contains frequencies up to f , 1+jV must contain the frequencies up to f2 . 

This is given by the following equation: 
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1)2()( +∈⇔∈ jj VtfVtf , (19) 

While the translation requirement states that if )(tf j is in jV then a shifted version 

of )(tf j - )( ktf j − must also be in jV . 

jjjj VktfVtf ∈−⇔∈ )()( , (20) 

Finally, a scaling function )(tφ must be defined that generates the approximations 

of the function )(tf j on each subspace jV . The translations of the )(tφ  - )( kt −φ  must 

span the whole space 0V and be orthonormal. The scaling function )(, tkjφ  for each 

subspace jV  is generated by the dilations and translations of )(tφ : 

)2(2)( 2/
, ktt jj
kj −= φφ , (21) 

The details that are present in the subspace jW  can be taken by the simple 

difference between two successive approximations )(tf j and )(1 tf j+  or by decomposing 

the function )(tf  on the wavelet function – )(tψ . The wavelet functions for each 

subspace jW  are obtained by dilations and translations of this basic wavelet function: 

)2(2)( 2/
, ktt jj
kj −= ψψ , (22) 

This multiresolution analysis is not restricted to the continuous functions )(tf , but 

can be extended to discrete functions, which can be a one dimensional signal or a two 

dimensional image. The LP, AWT, DWT, and the RWT are all transforms that perform 

MRA, but using different approaches. Each of these transforms is described in detail in 
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Appendix B for the interested reader. However, here only the basic properties of these 

transforms and the differences among them will be described.  

Any MRA transform used generates two types of subband images – the 

approximation or low frequency image at the lowest scale requested and one or more 

details or high frequency images at each scale depending on the transform. For example, 

the RWT and the DWT generate three detail images (H, V, D) at each scale 

corresponding to the details of the image in three directions – horizontal, vertical, and 

diagonal, respectively. While the LP and the AWT generate only a single detail image at 

each scale without any spatial orientation. The DWT and RWT compute the details by 

decomposing the signal over the wavelet function while the LP and AWT obtain the 

details by simply taking the difference between the approximation images at successive 

scales. Further, the DWT and the LP are subsampled transforms (i.e. the images are 

decimated by a factor of two at each consecutive scale) while the RWT and the AWT are 

oversampled transforms because there is no decimation at consecutive scales.  

2.4.3 Categorization of the MRA Pan Sharpening Methods 

As noted earlier there are many different versions of the MRA pan sharpening 

method. These versions differ due to the choice of preprocessing options, the MRA 

transform applied, applying the MRA transform on only the PAN or both the PAN and 

MS images. The meaning and purpose of each of these choices is explained below. 
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2.4.3.1 Radiometric Normalization 

The first step in most pan sharpening methods like the IHS, PCA, and similar 

COS methods is to adjust the PAN band to the component it is going to replace (i.e. 

Intensity or PC1). This reduces the spectral effect of the PAN band in the pan sharpened 

image. If the PAN and MS images have been acquired on different dates under different 

solar angles, etc., the radiometry of the PAN will be very different from that of the MS 

images [26] and consequently the spectral effect of the PAN image will be severe. This 

adjustment or radiometric normalization is generally accomplished by a histogram 

matching of the PAN band to the component being replaced. 

Generally the same logic is extended to MRA based pan sharpening, most 

researchers histogram match the PAN band to each MS band before decomposing them 

and substituting the high frequency coefficients of the PAN image in place of the MS 

image’s coefficients [26], [37]. However, some implementations have also been found 

where the radiometric normalization is left out [18], [29], and [52]. In [18], [52] Landsat 

7 TM and SPOT PAN images were fused, in which case the spectral differences between 

the PAN and MS should be significant since they were acquired on different dates. 

However, it is difficult to tell whether their methods could have benefited from the 

normalization step since they did not mention whether they experimented with the 

radiometric normalization step or not. 

2.4.3.2 MS Transformation 

The reason for the poor spectral fidelity of the IHS and the PCA methods was 

their adding redundant spatial information to the MS images by superimposing the PAN 
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image in place of the Intensity or the first PC rather than adding only the high frequency 

spatial information. Some researchers found that instead of applying the MRA based pan 

sharpening to each MS band, if their IHS or PCA transformation was computed and the 

MRA based pan sharpening applied only to the Intensity or first PC, the spectral fidelity 

improved. Nunez et al. [26] applied the MRA based technique to the Intensity component 

of the MS images while [14] applied the MRA based pan sharpening to the first PC.  

However, performing pan sharpening on only the Intensity or first PC can have 

drawbacks if the images contain regions of contrast reversal [19]. Contrast reversal 

occurs when the scene imaged has opposite contrast in the MS and PAN images. For 

example water has a strong reflectance at shorter wavelengths (visible band), while it 

absorbs heavily at longer wavelengths (NIR band). Suppose for a certain material the 

PAN band has low reflectance or, in other words, low contrast and the MS band has high 

contrast. Then if the pan sharpening is performed there are artifacts in this region because 

the high frequency coefficients of opposite polarity cancel each other out in the pan 

sharpened image resulting in loss of detail information. Thus contrast reversals must be 

detected in the images and special processing must be applied to those regions where 

contrast reversal occurs. Since this has to be done for each MS band the IHS and PCA 

based MRA methods are not suitable in such a scenario. Our literature survey showed 

that very few articles explicitly deal with the issue of contrast reversal [2], [5], [19], [34], 

this is perhaps because contrast reversal occurs under very few situations. 
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2.4.3.3 The MRA Transform 

The core principle of the MRA pan sharpening methods is the separation of the 

low and high frequencies in the images and substituting the high frequency information 

of the PAN image into the MS images. This step (the MRA transform) occurs after one or 

both of the above preprocessing steps are applied. Any wavelet transform or a pyramid 

transform can be used to accomplish this. The various MRA transforms that have been 

used in pan sharpening research are –    

• Discrete Wavelet Transform (DWT) [20], 

• Redundant Wavelet Transform (RWT) [1],  

• A Trous Wavelet Transform (AWT) [26],  

• Laplacian Pyramid (LP) [1],  

The differences between these various transforms were given in section 2.4.2. The 

pan sharpened images differ depending on the transform used to obtain them. This topic 

is further addressed in section 3.2.6 and the Results chapter. 

2.4.3.4 Coefficient Synthesis Method 

Once the MS and PAN images have been decomposed into their detail and 

approximation coefficients there are different techniques to combine them and synthesize 

the pan sharpened images. Primarily, there are two variants of the MRA based method – 

additive and substitutive methods, explained in the following subsections. Out of the two, 

the substitutive method and its variants are more popular. Since each of them can be 
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implemented using almost any MRA transform, the explanations will be given with a 

generic notation.  

In the following discussion the detail coefficients (or images) obtained by 

applying the MRA transform will be denoted by d  while the approximation image will 

be denoted by a . The detail coefficients of the MS image will be subscripted by B and 

thus denoted by Bd  and those coming from the PAN image by Ad . Similarly, the 

approximation images from the MS and PAN images will also be subscripted by B and A 

respectively. The combined or selected coefficients, used to reconstruct the pan 

sharpened image are subscripted with F - Fd , Fa . The approximation or detail 

coefficients will be indexed by a vector ),,,( lkjip =
→

 as suggested by [5]. ji,  represent 

the pixel location in the transformed images, k  denotes the level of the wavelet transform 

and l the orientation of the detail image. For transforms like the AWT or LP l is one since 

there is only one detail image at each level in the pyramid, while for the DWT or RDWT 

l  can be one, two or three corresponding to the three detail images – H, V, D. Since any 

MRA transform can be used to implement a particular scheme, the acronym MT will be 

used to convey the meaning that a forward MRA transform is applied and IMT to mean 

that an inverse MRA transform is applied. 

2.4.4 Additive Method 

In the additive method described by Nunez et al. [26], the AWT was used to 

decompose only the PAN image and then the detail or high frequency coefficients are 

added to the MS imagery. They found that the additive method resulted in less spectral 
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distortion of the MS images compared to the substitutive method (described in the 

following section) because all of the original information in the MS image is retained in 

the pan sharpened image. 

The merging can be carried out on each MS band separately or only the Intensity 

component of the MS imagery, the latter preferred by the authors since it gives higher 

spectral fidelity. They found that adding the details to all the bands separately resulted in 

shifting the color of the pixel towards gray. Pan sharpening only the “intensity” 

component is also better from the performance point of view because we only need to 

compute the MRA transform on two images (I and PAN) rather than four images (R, G, 

B and PAN). Figure 2-9 shows the flowchart of the additive pan sharpening method. The 

main steps in the additive method are as follows: 

1. Both the images are coregistered and the MS imagery is resampled to the same 

spatial resolution as the PAN imagery. 

2. The RGB bands of the MS imagery are transformed into IHS components as 

described above in section 2.2.1.1. 

),,(),,( *
3

*
2

*
1 SHIBBB RGBTOIHS =⎯⎯⎯ →⎯ , (23) 

3. The PAN image is histogram matched to the Intensity component of the MS 

imagery (as described in section 2.4.3.1 this step is optional). 

4. The detail coefficients of the histogram matched PAN image are obtained:  
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)(},{ AMTda AA = , (24) 

5. The approximation image of the PAN band – Aa  is discarded and the Intensity 

band of the MS image (I) substituted in its place. The inverse wavelet transform is 

computed on them to obtain the sharpened Intensity component fI : 

),( Af dIIMTI = , (25) 

6. The inverse IHS to RGB transform is computed to obtain the sharpened MS 

imagery:  

),,(,,( 321 FFFSHI IHSTORGB
f =⎯⎯⎯ →⎯ , (26) 

 

 
 

Figure 2-9 Additive MRA based pan sharpening method 
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A disadvantage of the additive method is the inconvenience caused when the 

images to be merged do not have a resolution ratio that is a power of two. For example, 

the resolution ratio between a Landsat 7 MS band at 30 m and SPOT P band at 10 m is 3. 

A single decomposition of the PAN band would result in an approximation image at 20 m 

while the MS band has a resolution of 30 m. This would mean inserting an image at 

resolution 30 m in place of a 20 m image. Even if more than one decomposition is 

performed the scales of the lowest approximation image of the PAN and the MS image 

will be different. After two decomposition levels the approximation image of the PAN 

will have a resolution of 40 m. However, precisely this approach is used by the authors 

with 2 or 3 decomposition levels. I believe that even though this may have given good 

results it violates logic as an image with a different resolution has been substituted in 

place of the approximation image of the PAN. 

A workaround this problem is to use an M-scale wavelet transform or a pyramid 

scheme that decomposes images by a scale other than two, where M is the resolution ratio 

of the images to be merged. This approach was taken by Shi et al. [37] and Blanc et al. 

[3], who used a 3-band wavelet transform to merge the TM MS and SPOT P images. 

Thus the resolution of the approximation image of the PAN after performing one 

decomposition level will be 30 m and then the 30 m MS image can be substituted in its 

place. However, very few wavelet software packages are available that provide the 

general M-band wavelet transforms. This is a big inconvenience for pan sharpening 

researchers who are mostly experts in geology, hydrology, or some earth science rather 

than electrical engineers. Moreover, even if a general M-scale transform is written it 
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would have to be provided for each resolution ratio (e.g. 3, 5, 7, etc.) dataset. Similarly 

there is also a generalized LP [1] that can decompose images by any scale ratio. Due to 

time limitations these generalized M-scale transforms could not be implemented. The 

performance evaluation of these M-scale transforms for pan sharpening is recommended 

for future work. 

Even then the additive merger is applied to images with resolution ratios 2 and 4 

in combination with MRA transforms that have M=2 so that the correct scale 

requirements are met to study its viability and compare it with the substitutive merger.  

2.4.5 Substitutive Method 

In this technique the MRA is performed on both the PAN and the MS images. 

Since the aim is to incorporate the details from the PAN image into the MS imagery, the 

detail coefficients from the MS image and the approximation image of the PAN image 

are discarded. The approximation image of the MS image is used along with the detail 

image of the PAN image for synthesizing the pan sharpened image. The method is 

explained step by step below for sharpening each MS band separately, the same 

algorithm can be applied to only the Intensity component. Figure 2-10 gives the flowchart 

of the method for convenience. 

1. Both the images are coregistered and the MS imagery is resampled to the same 

spatial resolution as the PAN imagery. 

2. The PAN image is histogram matched to each MS band (as described in the 

diagram this step is optional). If the histogram matching is performed there are 

three copies of the PAN image corresponding to each MS image – Ai. 
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3. The MS and PAN images are decomposed into their approximation and detail 

images: 

)(},{ *
iBiBi BMTda = , (27) 

)(},{ iiAAi AMTda = , (28) 

4. The detail images of the MS image are replaced by those of the PAN image and 

the inverse MRA transform is computed to obtain the pan sharpened imagery: 

FiFi aa = , (29) 

iAiF dd = , (30) 

),( FiFii daIMTF = , (31) 

 



 

 

48

 
 

Figure 2-10 Substitutive MRA based pan sharpening method 
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has a higher energy. The detail coefficients with higher magnitude or energy correspond 

to sharp or drastic changes in the image intensity and thus represent the “salient” features 

(for e.g. edges) in the image [20]. Since the goal of the pan sharpening is to enhance the 

edge information in the pan sharpened image, this logic makes sense. The logic behind 

these rules is that if the MS detail coefficients have the intensity to define the spatial 

quality they should be retained. The detail coefficients from the PAN image should be 

injected into the fused image only when required, thus because of this conditional 

injection of details the change in the radiometry of the MS image is minimized. The 

various selection rules differ in the way in which “energy” or “salience” is defined.  

2.4.5.1 Maximum Amplitude Selection 

In the Maximum Amplitude Selection rule (MAS) the coefficients at each pixel 

given by the following equation [18] –  

))}(()),((max{)(
→→→

= pdabspdabspd BAF , (32) 

2.4.5.2 Window Based Salience 

This Window Based Salience rule (WBS) was proposed in [5], Burt et al. reason 

that since the salient features in the image are generally larger than one pixel, the 

selection rule must also be applied on more than one coefficient at a time. The salience at 

a pixel is computed as the variance or energy over a mm×  window centered over it ( m  

is usually 3 or 5) as given below –  
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BB lkyjxidlkjiS 2),,,(),,,( , (34) 

After measuring the salience of each coefficient in the image, the source 

coefficients are combined using either “selection” or “averaging”, based on a match 

measure between them. The match measure ABM  is given by the normalized correlation 

computed between the two coefficients from A and B around the same neighborhood as 

used to compute the salience: 

BA

BA
AB SS

dd
lkjiM

+
= ∑∑2

),,,( , (35) 

This quantity is a measure of how similar the two images are at a particular pixel 

location. If the match measure is near +1 it means the images are very similar locally 

while values near -1 indicate that they are quite different. If the match measure 

ABM exceeds a threshold α the source coefficients are combined through a weighted 

average: 

)()()()()(
→→→→→

+= pdpwpdpwpd BBAAF , (36) 

If ABM is below the threshold, either one of the source coefficients is selected 

based on the MAS criterion as given by equation 

))}(()),((max{)(
→→→

= pdabspdabspd BAF , (32). The logic behind selecting the 

coefficient with higher salience when the match measure is below a certain threshold is to 

retain a higher contrast in the fused image. Generally, regions with opposite contrast are 
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associated with a low match measure. For example, if the MS image has a high contrast 

while the PAN image has a low contrast, and if they are averaged the overall contrast or 

salience of the fused coefficient is reduced, resulting in blurry looking images.  

)()(
→→

=⇒> pdpdSS AFBA , (37) 

)()(
→→

=⇒> pdpdSS BFAB , (38) 

The weights are computed as follows based on the match measure and the 

threshold: 

⎟
⎠
⎞

⎜
⎝
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−
−

−=
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2
1

2
1

min
ABMw , (39) 

minmax 1 ww −= , (40) 

The higher weight maxw is given to the coefficient with the higher energy and the 

lower weight minw is assigned to the other coefficient: 

},{ minmax wwwwSS BABA ==⇒> , (41) 

},{ minmax wwwwSS ABAB ==⇒> , (42) 

The equations for calculating the weights show that when the match measure 

exceeds the threshold, minw is extremely low while maxw  is high. As ABM increases 

towards one the weights become nearly equal. Burt et al. suggested using a quite high 

threshold ( )85.0=α ; however they also noted that change in the neighborhood size or 

threshold did not affect the results greatly. In this work a value of 0.75 was chosen for the 

threshold. 
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2.4.5.3 Window Based Verification 

Li et al. [20] stated that since the window based salience rule can be considered as 

the cascade of a nonlinear filter with a linear filter, it lacks a clear physical meaning. The 

variance computation is considered as a nonlinear filter while the wavelet transform is a 

linear filter. They describe the Window Based Verification rule (WBV), which is a linear 

filtering operation. In this rule, the maximum amplitude of any pixel in the mm× window 

is chosen as the activity or salience of the center pixel under consideration since it 

indicates the presence of a dominant feature in the neighborhood. Thus, two intermediate 

images corresponding to the two images to be merged are created whose values are the 

salience measure of each pixel. These intermediate images are subject to a consistency 

verification rule which is as follows: if the central pixel comes from image A while the 

majority of the pixels in the neighborhood are from image B, the central pixel is assigned 

the value of image B at that location, otherwise the value of image A is retained. The 

same window size is used when applying the consistency verification rule as that when 

computing the activity. 

2.4.5.4 Addition 

Yocky proposed the addition rule (ADD), in which the detail coefficients from 

both the images are added to generate the detail coefficients of the fused image [47]:  

)()()(
→→→

+= pdpdpd BAF , (43) 

This way, all the information from the MS image is retained in the fused image. 

This statement is true in the context of spectral fidelity as it leads to pan sharpened 
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images that are spectrally closer to the original MS images, since all the MS coefficients 

are retained. However, in the spatial context this statement is false, as noted by Yocky 

himself. He suggests this discrepancy may be occurring due to the blockiness of the MS 

pixels that are preserved in the pan sharpened image. This selection rule can be logically 

considered identical to the additive method suggested by Nunez et al. [26]. However, 

experimentally, it is found that numerically there is significant difference in the results 

obtained from them. 

2.4.5.5 Other Possible Rules 

Many other rules are possible to combine the coefficients of both the detail 

images like the ones suggested in [47]. These include –  

• Boolean operators ( e.g. AND, OR, XOR), 

• Maximum value selection rule, 

• Conservation of energy, contrast stretching, maximum likelihood ratioing, edge 

enhancement. 

These rules are not studied in this work since the variations due to some of them 

are minor and in some cases the quality of the fused image can degrade. For example, the 

maximum value selection rule resulted in poor spatial quality. In reference to the 

selection rules that were described above, the substitutive method given by equation 

iAiF dd = , (30), which discards the detail coefficients of the MS image, will be 

referred to as the NULL rule since it is equivalent to not applying any selection rule. The 

NULL and the MAS rules are the most popular in pan sharpening while the WBS and the 
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WBV rules are more popular in general image fusion applications such as fusion of 

visible and thermal images, images with different regions out of focus, etc. One of the 

goals of this research is to compare these rules – MAS, WBS, WBV, and the ADD rules. 

2.4.5.6 Computational Complexity of the Selection Rules 

The computational complexity of the selection rules described above is also 

calculated. Compared to the NULL rule the other rules have a significant computational 

complexity. The simplest substitutive method given by the NULL rule has unit 

computational cost (the assignment operator), while the MAS rule requires one operation 

per pixel of the detail images for comparing the magnitudes and thus its computational 

complexity is N2. In general, if there are n detail images for the MRA transform used 

(e.g. n=3 for RWT, n=1 for AWT) and k levels of the transform are computed, the total 

computational complexity for this rule would be 2Nnk ⋅⋅ . The ADD rule has the same 

computational complexity as the MAS rule since it requires one addition operation per 

pixel. For the window based rules proposed by Burt and Li the number of operations 

required to compute the salience of each pixel in both the images are at least 2m and thus 

the computational complexity increases further – 22 Nmnk ⋅⋅⋅ . This means the WBV and 

WBS rules are 2m  times computationally intensive compared to the MAS rule. Since 

typical values for m are 3 or 5, this rule increases the computation by at least a factor of 

nine compared to the MAS or ADD rules. Generally, the window based rules are 

computationally more complex compared to the pixel wise rules. 
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2.4.6 Model Based Method 

2.4.6.1 Introduction 

The model based methods can be described as a variant of either the additive or 

the substitutive fusion methods depending on whether the MRA is performed on both the 

PAN and the MS images or only the PAN image. There are primarily two models that 

were found in literature – the AABP model (named after its authors – Aiazzi, Alparone, 

Baronti, and Pippi) [1] and the RWM model (Ranchin, Wald, and Mangolini) [30]. The 

basic principle behind these models is that the detail coefficients from the PAN image are 

inserted into the MS image depending on the local correlation between them and 

modified prior to insertion to take into account the differences in gray level values of the 

MS and PAN images. 

2.4.6.2 AABP Model 

The model of Aiazzi et al. is a conditional fusion scheme where the detail 

coefficients from the PAN image are inserted into the MS image only when the local 

correlation between the images exceeds a certain threshold. The logic behind this scheme 

is that the details from the PAN image at each pixel location in the image must be 

inserted into the MS image only if the images are similar in nature at that location in the 

image. This conditional injection of details seems to be proposed to avoid the problem of 

edges and features getting blurred when the PAN image and the MS image have opposite 

signatures (i.e., contrast reversal). The authors propose two variants of their scheme one 

additive (based on the LP) and the other substitutive (based on the RWT). I will refer to 
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them as the AABP-SUB and the AABP-ADD model respectively. It is not clear why the 

authors recommended a particular transform for each sub model since it is known that 

any MRA transform can be used for pan sharpening, (i.e., the AABP-SUB model could 

be implemented with the LP too). Maybe the authors found through empirical evaluations 

that these two particular combinations gave better results. This seems to be concurrent 

with my findings that the additive method based on the LP gives better results than those 

based on the RWT or the AWT. The additive scheme is described in detail below since 

the authors mention they had slightly better results with it: 

1. The PAN image is decomposed using the LP, 

2. The MS image is resampled to the same resolution as the PAN image using a 

23-tap polynomial filter. It must be noted that here the choice of filter to 

upsample the MS images should not be critical, a bilinear or bicubic 

interpolation should be adequate, 

3. A Local Correlation Coefficient (LCC) map is calculated between the 

resampled MS image and the approximation image of the PAN. The LCC is 

just the correlation coefficient but computed over a mxm sliding window for 

each pixel in the entire image, 

4. At each pixel location the LCC is matched against a threshold θ, if it exceeds 

the threshold the detail coefficient at that position is inserted into the MS 

image. Otherwise no injection of detail coefficients takes place: 
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)()()(
→→→

=⇒> pdpdpLCC AFθ , (44) 

0)()( =⇒≤
→→

pdpLCC Fθ , (45) 

5. Before inserting the detail coefficients, they are multiplied by a Local Gain 

(LG) factor, which is the ratio of the standard deviation of the MS image to 

the standard deviation of the approximation image (corresponding to PAN):  
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= , (46) 

This is done in order to scale the values of the detail coefficients of the PAN 

image to that of the MS image, 

6. The pan sharpened image is synthesized by adding the resampled MS image 

with the scaled detail image of the PAN. This step is repeated for each MS 

band. 

In the substitutive scheme the MRA is performed on both the PAN and the 

resampled MS image using the RWT. The LCC is computed between the approximation 

images of the PAN and MS images. The thresholding and the scaling steps are identical 

to that of the additive scheme. In case the LCC is below the threshold, the MS detail 

coefficients are retained. In the AABP model, two parameters can be varied – the 

threshold θ and the size of the window m . The authors studied the performance of the 

model with respect to these parameters and found that they have little effect on the 

quality of the pan sharpened images. The quality slightly improved with a larger window, 

and the threshold range of (-1, 0.8) gave almost similar results. A threshold higher than 

0.8 resulted in poor quality pan sharpened images. This effect is understandable as there 
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will be fewer and fewer coefficients that will have such a high correlation (otherwise 

there would be no need for pan sharpening), and consequently details will not be injected 

into the MS image.  

2.4.6.3 RWM Model 

The RWM model is also a conditional fusion scheme like the AABP model. 

However, unlike the AABP model in which the LCC is computed between the 

approximation images of the PAN and MS in case of the AABP-SUB method (or the 

resampled MS and approximation of the PAN in case of the AABP-ADD method), in the 

RWM model it is computed between the detail images itself. Since the authors of [30] 

found that both models gave almost identical results, the RWM model was not 

implemented in this work. 

2.4.7 Summary 

This chapter gave an overview of many pan sharpening techniques. I have shown 

that pan sharpening techniques can be divided into two categories – component 

substitution (COS) based and arithmetic combination based methods (AMC). The 

advantages and disadvantages of each method are also given. The HPF technique laid the 

foundation for the MRA based methods. Since the focus of this research is the MRA 

techniques a thorough review of the MRA techniques is also given. MRA based methods 

preserve the spectral fidelity better than other methods because they extract only the high 

frequency information from the PAN image to inject into the MS image.  
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CHAPTER III 

RESEARCH OBJECTIVES AND METHODOLOGIES 

3  
3.1 Introduction 

This chapter first outlines the research objectives and then explains the methods 

and metrics used for quantitatively assessing the quality of the pan sharpened images. 

This chapter describes the details of the study – how the experiments were conducted and 

what the criteria and metrics used to decide which algorithm is best were. 

3.2 Research Objectives 

Chapter 2 gave a comprehensive overview of the various MRA based pan 

sharpening techniques. As stated previously, these variations arise out of the choice of 

preprocessing options, the MRA transform used, and the methods used to synthesize the 

coefficients of the pan sharpened image. This research studies these variations, the effect 

of the preprocessing options, the MRA transform, etc. in order to make recommendations 

regarding which variation gives the highest spectral fidelity. Only options or parameters 

that seem to be appropriate to this study are addressed. In this case the one deemed to be 

the most appropriate is chosen based on the literature review. The different parameters 

and preprocessing options in the MRA based techniques have a small or significant effect 
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on the spectral and spatial quality of the pan sharpened image. For example, the mother 

wavelet used in the RWT based pan sharpening can have a subtle or significant effect on 

the quality of the pan sharpened image. A major contribution of this work is that I have 

used multiple datasets from different sensors before arriving at my conclusions. 

Sometimes researchers test their algorithms on a single dataset of small size (512x512 

pixels) to arrive at their conclusions. 

The following subsections describe the parameters that were investigated and the 

reasoning for the approach adopted.  

3.2.1 Effect of Radiometric Normalization 

The importance of the radiometric normalization step was given in section 

2.4.3.1, and most authors prefer to implement it. The effect of this preprocessing step on 

the quality of the pan sharpened images will be analyzed by simply turning this option on 

and off. Since in this study each MS band is merged individually the PAN band is 

histogram matched to each MS band and thus there are N modified PAN bands for the N 

multispectral bands to be merged. 

3.2.2 MS Transformation 

Section 2.4.3.2 mentions that there can be loss of detail information and artifacts 

in the pan sharpened image if there are contrast reversals in the scene and if special 

adaptive processing is not applied in these regions for each band. Otherwise, if contrast 

reversal is not a concern (for e.g. if such regions are scarce) the MS bands can be 

transformed into IHS or PC before applying the MRA based pan sharpening. 
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In this study, due to time limitations, adaptive processing for contrast reversal was 

not implemented; moreover most of the datasets do not exhibit contrast reversal. Only 

one dataset (tm-vorarlberg) exhibited contrast reversal, and it was found that in this case 

avoiding the radiometric normalization step gave fairly good results. Thus I could have 

applied a IHS or PC transformation before performing the pan sharpening. However, it is 

chosen not to do so because the idea is that in future the results from this work will be 

used and adaptive processing for contrast reversal must be applied. 

3.2.3 Choice of the Wavelet Basis 

Some researchers have concluded that the choice of the mother wavelet does not 

matter [32]. Some claim that the higher order, smoother wavelets gave better results [18] 

while others claim that the shorter wavelets gave better results [44]. However, there are 

not many details in the literature that explain why a certain wavelet basis was better than 

the others or the results were based on different metrics. This work will investigate the 

effect of the wavelet basis on the pan sharpened image in more detail using quantitative 

metrics.  

Two popular wavelet families will be investigated – the Daubechies wavelets and 

the biorthogonal wavelets. The Daubechies wavelets are nonlinear phase while the 

biorthogonal wavelets are linear phase [4]. Daubechies wavelets with different number of 

vanishing moments were used to observe the effect of the number of vanishing moments 

on the results. As the number of vanishing moments increase, the wavelet coefficients 

give a better approximation of the signal [4]. In this dissertation I use the notation ‘dbN’ 

to denote a Daubechies wavelet having N vanishing moments (e..g ‘db2’ denotes a 
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Daubechies wavelet with two vanishing moments). The experiments were limited to the 

Daubechies wavelets – ‘db1’, ‘db2’, ‘db5’, ‘db10’, and ‘db20’. These wavelets were 

studied to see the effect of very short, medium and long wavelets on quality of the pan 

sharpened images. In order to observe only the effect of the wavelet, no selection rules on 

the high frequency coefficients are applied.  

The Daubechies wavelets belong to a class of filters called the nonlinear phase 

filters. The choice of these filters in image compression leads to higher artifacts and less 

coding gain compared to another class of filters called the ‘linear phase filters’. There 

were two purposes for performing these set of experiments – one is to find the mother 

wavelet that results in the highest spectral fidelity and the second was to observe if the 

linear phase filters had any advantage over the nonlinear filters. All the biorthogonal 

filters that were available in the MATLAB toolbox were investigated: bior1.1, bior1.3, 

bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, 

bior4.4, bior5.5, bior6.8. 

Similarly, the filters used for the LP based pan sharpening will be studied in order 

to determine the one which gave the highest spectral fidelity. There are many filters that 

can be applied to the LP (e.g. the binomial filters, Quadrature Mirror Filters (QMF), and 

the Gaussian filters). Literature shows that for LP or AWT based image fusion the 

Gaussian filters are the most popular. These filters will be used to find an empirically best 

filter for LP based pan sharpening. Since the AWT is just an oversampled version of the 

LP the same filters will be used for the AWT too to find the one which gives the highest 

spectral fidelity. 
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3.2.4 Comparison of Different Coefficient Synthesis Methods 

Chapter 2 explains that there are two main methods in the MRA based technique 

to merge the MS and PAN images – the additive and the substitutive method. The 

additive method based on the RWT, AWT, and the LP will be compared to the 

substitutive method based on the RWT. The comparison is restricted to only the RWT 

based substitutive method since a detailed investigation of the substitutive methods 

showed that this approach best preserves the spectral fidelity compared to the AWT or 

the LP. 

3.2.5 Choice of the Selection Rule 

Five main selection rules for the substitutive method were described in section 

2.4.5 – NULL, MAS, WBS, WBV, and ADD. From the logical explanation of these rules 

it is clear that the advanced rules will increase the spectral fidelity compared to the 

NULL rule. This work will compare these rules and ascertain which of them gives the 

highest spectral fidelity. The comparison was restricted to the rules – NULL, MAS, 

WBS, and WBV as they are the most popular in image fusion. The ADD rule resulted in 

poor spatial quality and thus, the results for this rule are not compared to the NULL rule.  

In pan sharpening most of the researchers employ either the NULL [21], [52] or 

the MAS rule [19], [46]. Very few articles were found that used the window based rules 

[20] for pan sharpening, which seem to be highly favored in image fusion research. To 

the best of my knowledge a comparison of the different selection rules has not been 

undertaken in the context of pan sharpening. These rules have been compared in the 

context of image fusion by few authors [20], [51]. The finding of [20] was that the WBV 
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rule outperformed MAS and WBS; while [51] provides a broader conclusion that the 

window based methods perform better than pixel based methods for choosing the 

coefficient from either image. It cannot be assumed that the same results apply to pan 

sharpening images because not only are the input image characteristics different, but the 

aim of the fusion and metrics used to assess the quality of the fused images are also 

different. In general image fusion (which was done by the authors of [20], [51]) the 

images to be fused were out of focus images. Such images are simulated by taking an 

image and blurring it using some type of lowpass filter or introducing some kind of 

distortion (noise) in different regions. For example an image C is blurred in the left half 

and right half respectively creating two images A and B. These images A and B are then 

fused to create an image F which must be as close to C as possible. The primary metric 

used by many researchers, including the above authors, is the Root Mean Square Error 

(RMSE) between the original image C and the fused image F. Such a reference image is 

not available in pan sharpening.  

The goal of pan sharpening is to create a high resolution MS image which best 

preserves the spectral similarity with respect to the original MS image while 

incorporating the spatial resolution of the PAN image. Thus, the selection rules will be 

judged by two types of metrics – spectral quality metrics and spatial quality metrics, (i.e., 

it should increase the spectral fidelity while retaining the spatial resolution of the PAN 

image). These metrics are described later in this chapter. 
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3.2.6 Choice of the MRA Transform 

In the additive or substitutive method any MRA transform can be used, it was 

stated in section 2.4.3.3 states that the most popular ones are the DWT, RWT, AWT and 

the LP. The number of articles found during the literature survey that used the RWT are 

far more than those that used the AWT, LP or the DWT.  

An advantage of the transforms like RWT, AWT, and the LP is that they are shift 

invariant (the LP is approximately shift invariant) while the DWT is shift variant. Many 

authors have noted that the shift variance of the DWT causes artifacts in the fused images 

[14], [15], [18], and [51]. Thus the DWT images are not analyzed further. These artifacts 

can be minimized by using linear phase or biorthogonal filters [15], [51] but they cannot 

be entirely removed. The DWT pan sharpened images produced in this work had 

artifacts, surprisingly for the shorter biorthogonal filters the artifacts worsened. In 

general, the longer Daubechies and biorthogonal wavelets produced fewer artifacts.  

Comparison of the different MRA transforms has been made by various authors 

but very few authors have compared them in the context of pan sharpening. A 

comparison between the LP and the RWT in the context of pan sharpening was done by 

Aiazzi et al. [2] and Ranchin et al. [30]. Aiazzi et al. [2] proposed the AABP model 

which was explained in section 2.4.6.2, this model had two variations. The additive 

model was based on the LP while the substitutive model was based on the RWT. The 

authors applied both the variations to pan sharpen SPOT images and found that they gave 

almost similar results. Interestingly in another joint study [30], they found that the LP 

based AABP model outperforms the RWT based model proposed by Ranchin et al. 
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In both the studies, the authors assess the spectral quality of the pan sharpened 

images by comparing these images to the ideal high resolution MS image that would have 

been acquired by a MS sensor having the same resolution as the PAN image. This 

comparison requires the presence of a high resolution MS image which cannot be 

acquired in practice, thus the original MS-PAN images are degraded so that the MS 

image has a lower resolution and the PAN image has the same resolution as the original 

MS image. After pan sharpening the degraded MS image it has the same resolution as the 

original MS image and thus it can be compared with it [44]. Wald et al. [44] believe the 

results can be extrapolated to higher resolution, i.e. the quality of the pan sharpened 

image produced by merging the original MS-PAN will be of the same quality. In this 

work I prefer to use a different approach – measure the spectral distortion in the pan 

sharpened image by comparing it with the original MS image. Our studies show that the 

latter approach should be preferred. These issues will be explained in detail in sections 

3.3.3.4, 3.3.3.5 and 3.3.4. 

Thus in this work I propose to compare the RWT, AWT, and the LP pan 

sharpened images using the substitutive method in order to see which one gives the 

highest spectral fidelity. Since the results of each transform are also affected by the 

wavelet basis used (RWT) or the filter used (AWT, LP) first the wavelet (or filter) which 

gives the best results for each transform will be determined and used for comparison with 

the other transforms. The remaining parameters of the fusion process should be kept 

identical – the radiometric normalization (applied for each of them or none of them) and 

the number of decomposition levels of the transform. The quality of the pan sharpened 
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images will be measured by directly measuring the spectral distortion between the MS 

and the pan sharpened images. 

3.2.7 Effect of Directional Selectivity of the Transform 

The directional selectivity of a transform can be defined as its ability to capture 

the details of an image in different spatial directions. The details generated by the LP or 

the AWT do not have a specific spatial direction, thus it is not very effective for pattern 

recognition of textures [23]. On the other hand the detail images generated by the wavelet 

transforms – DWT and the RWT have a spatial direction. These transforms produce three 

detail images at each scale which capture the image details in three directions – 

horizontal, vertical and diagonal. This improved directional selectivity is helpful in 

efficient texture discrimination. 

It is generally believed that transforms with a higher directional selectivity give 

better results for image fusion. Li et al. [20] found that the DWT performed better than 

the LP for fusion of out of focus images and reasoned that this was because of the higher 

directional selectivity of the DWT.  

The goal of this research is to determine if higher directional selectivity improves 

the quality of the pan sharpened images. This comparison can easily be done by 

comparing the results of the LP or AWT and comparing them with the results of the 

RWT. However, the differences between the RWT and the AWT are not only different 

directional selectivity but also a different multiresolution operator (wavelet or filter), and 

a different subsampling rate in the case of the LP. Since these two factors also have an 
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effect on the quality of the pan sharpened images the effect of the directional selectivity 

cannot be studied in isolation.  

Thus, I plan to use the Steerable Pyramid Transform (SPT) [38] to pan sharpen 

the images. Since the SPT can have any desired directional selectivity the same MS-PAN 

image pair will be pan sharpened using the SPT but with a different number of detail 

images each time. The spectral quality of the pan sharpened images created using a 

different number of orientation bands will be analyzed. 

3.2.8 Estimation of the Minimum Number of Decomposition Levels 

In the substitutive method described in section 2.4.5, both the MS and the PAN 

images are decomposed ‘L’ times (where generally L is chosen to be between one and 

four). The spectral and spatial qualities of the pan sharpened images are affected by the 

number of decomposition levels. Rockinger [32] concluded that the presence of larger 

objects required more levels of decomposition for a good fusion, while Nunez et al. [26] 

report that 2 to 3 levels of decomposition are sufficient. Preliminary studies have shown 

that the quality of the pan sharpened images produced by the MRA based technique is a 

function of the number of decomposition levels and the resolution ratio of the PAN-MS 

pair. If fewer levels of decomposition are applied, the spatial quality of the pan sharpened 

images is less satisfactory, while the spectral similarity between the original MS and pan 

sharpened images decreases if excessive levels are applied. Thus, this work attempts to 

determine the best or the minimum possible number of decomposition levels for the 

wavelet based fusion, i.e., which yields sufficient spatial quality and the highest spectral 
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fidelity. The sufficient spatial quality implies that the pan sharpened image has the spatial 

resolution of the PAN image. 

In practice, remote sensing images are very large. They may have tens of 

thousands of rows and columns in each band. Thus, each extra decomposition level 

results in a longer wait time for the result. This work investigates the quality of the pan-

sharpened images produced by using various levels of decomposition and by merging 

PAN-MS image pairs with different resolution ratios.  

The aim of this study is to make recommendations on the best possible number of 

decomposition levels required for merging images with a particular resolution ratio. For 

this purpose MS-PAN images with four different resolution ratios are used – 2, 3, 4, and 

5, since pan sharpening images with ratios 2, 3, and 4 is common. The resolution ratio 5 

is chosen to add more breadth to the study. For these experiments it was decided to use 

Wald’s property 1 and 2 both.  

The results are expected to act as a guideline for practitioners who desire to 

implement the MRA based fusion scheme. These experiments were only carried out for 

the RWT scheme, but the results should also apply to the AWT and LP methods. To the 

best of my knowledge, a detailed investigation of the effect of the number of 

decomposition levels on the fusion results of PAN and MS imagery has not been 

conducted.  

It was also found that Zhou et al. [52] made somewhat similar observations. They 

merged a SPOT PAN with LANDSAT TM images using 2 and 3 decomposition levels 

and found that the pan sharpened image created with 2 decomposition levels had higher 
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spectral quality while the pan sharpened image created with 3 decomposition levels had 

higher spatial quality as measured by their spatial quality metric – the High Pass 

Correlation Coefficient (HPCC), which is described below. However, they just worked 

on one resolution ratio (3) and my conclusions on the number of decomposition levels 

also differ from theirs.  

3.3 Image Quality Metrics 

The emphasis of this work is to produce pan sharpened images that retain the 

spectral fidelity of the original MS images while achieving a high spatial quality. A 

quantitative assessment of the spectral, as well as spatial quality of the pan sharpened 

image, must be done. This section describes the metrics used to assess the pan sharpened 

images. The findings and conclusions of this research will be based on these metrics. 

There are mainly two ways to evaluate the quality of the fused images or any image in 

general – subjective and objective metrics [16]. 

3.3.1 Subjective Metrics 

Subjective metrics are based on the opinion of human observers. As an example, 

consider a researcher who must decide if a new compression algorithm is better than an 

older one. The compressed images produced by both techniques and the original image 

are presented to a group of observers.  Each observer ranks the image on a given scale 

and the results are averaged. However, this technique is questionable since individual 

opinions vary considerably. Moreover, it may be a costly metric since it is difficult to 
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find volunteers, in which case the observers must be paid. Thus, these metrics should be 

kept to a minimum. 

3.3.2 Objective Metrics 

Objective metrics on the other hand are quantifiable. They exploit the pixel level 

differences in the images, correlation between images and the gray level distributions 

(histogram) [43] to assess the image quality. The pan sharpened image must not only 

have all the spatial details of the PAN image, but also be spectrally similar to the original 

MS image as possible. The following sections describe the objective spectral and spatial 

quality metrics. 

3.3.3 Spectral Quality Metrics 

This section describes the various spectral quality metrics used to evaluate the 

spectral fidelity of the pan sharpened images with respect to the original MS images are 

described. Since the goal is to preserve the radiometry of the original MS images, any 

metric used must measure the amount of change in DN values in the pan sharpened 

image compared to the original image. The following subsections define a few spectral 

quality metrics. 

3.3.3.1 Correlation Coefficient 

The correlation coefficient measures the closeness or similarity between two 

images [43]. It can vary between –1 to +1. A value close to +1 indicates that the two 

images are very similar, while a value close to –1 indicates that they are highly 

dissimilar. The formula to compute the correlation between two images A and B, both of 
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size NXN pixels is given by: 
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Various correlation coefficients are computed to evaluate the spectral quality of 

the pan sharpened images [43]. The inter-correlation between each pair of the 

unsharpened bands and the sharpened bands was computed and compared. For example, 

),( 21 BBCorr is the interband correlation between bands 1 and 2 before fusion, and 

),( 21 FFCorr is the interband-correlation after fusion. Ideally a zero change in the 

correlation values would be desirable, i.e. if ),( 21 BBCorr  was 0.94, the ideal value for 

),( 21 FFCorr  would be 0.94. Thus, if there are three bands being fused the inter-

correlation between each pair of the three unsharpened bands and the three sharpened 

bands was computed and compared: 

)|(),|( 2121 FFCorrBBCorr , (48) 

)|(),|( 3232 FFCorrBBCorr , (49) 

)|(),|( 3131 FFCorrBBCorr , (50) 

Then, the correlation between each sharpened and unsharpened band 

),( *
ii FBCorr  (for i = 1, 2 … N if there are N bands) is computed. The ideal value for this 

is 1. Since the pan sharpened images are larger (more pixels) than the original MS image 

‘B’ it is not possible to compute the correlation or apply any other mathematical 

operation between them. Thus, the resampled MS image B* is used for this comparison. 



 

 

73
This is acceptable since the resampling produces little change in the radiometry of the 

original images. Similarly, the correlation between the resampled MS image and the PAN 

image )|( * ABCorr i  is computed and it is compared with the correlation between the 

fused and PAN images )|( AFCorr i . Ideally, the correlation between the fused and PAN 

image should be the same as that between the original MS and PAN image. 

3.3.3.2 Root Mean Square Error 

The Root Mean Square Error (RMSE) between each unsharpened MS band and 

the corresponding sharpened band is also computed as a measure of spectral fidelity [21]. 

It measures the amount of change per pixel due to the processing (e.g. pan sharpening) 

and is described by: 
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During this work, it was found that the RMSE has a higher resolution compared 

to the correlation coefficient. This statement means that if the performance of the two 

algorithms is almost identical to each other, then the RMSE can better distinguish which 

one is better. For example, if the pan sharpened images produced by algorithms 1 and 2 

have a correlation coefficient of 0.99 with respect to the MS image, it means the spectral 

quality of both algorithms is identical. On the other hand, if the RMSE values for the two 

corresponding images are 2.34 and 2.12 respectively, clearly algorithm 2 results in a 

higher spectral quality compared to algorithm 1, and only the RMSE can clarify this 

distinction. 
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3.3.3.3 Histogram  

The histograms of the original MS and the pan sharpened bands must be 

evaluated [43]. If the spectral information has been preserved in the pan sharpened 

image, its histogram will closely resemble the histogram of the original image. Though 

the histogram is a quantitative measurement, the comparison of two histograms can be 

carried out either subjectively (visually) [43], [44] or objectively by computing the shift 

in the mean of the original MS image [27]. The shift in the mean value of a band i  is 

computed as: 
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The symbol )(Xµ  denotes the mean of an image X. A fusion technique that 

preserves the spectral fidelity of the images should result in low values for SM  (i.e., 

ideally the mean of the image should not change). 

3.3.3.4 Wald’s Property 1 

Wald et al. [44] arrived at three properties that a sharpened image must have in 

order to assess its spectral quality. They state the first property as follows “Any synthetic 

image F(h) once degraded to its original resolution l, should be as identical as possible to 

the original image B(l)”. The synthetic image refers to the pan sharpened image in this 

context, while h and l are the resolution of the PAN and the MS images respectively. 

This property is tested by using a low pass filter to spatially degrade the 

sharpened image to its original low resolution. Wald et al. noted that the choice of the 

filter is not very significant . In this study, a bicubic resampling was applied to obtain the 
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degraded image F’(l) from the sharpened images. One could also apply a wavelet 

transform and compare the approximation image obtained from the pan sharpened image 

and compare it with the original MS image. Nevertheless, the main point is that the same 

degradation method must be used to compare pan sharpened images produced by 

different algorithms. Statistical comparisons are then done between the two images by 

using various metrics like SM, correlation between each band i  of F’(l) and B(l) 

( ilFlBCorr )('|)(( ), the difference in variances of the two images relative to the variance 

of the original MS image, and a few other quantities. No other literature articles were 

found that calculated property 1 as a measure of the spectral fidelity of the images. 

3.3.3.5 Wald’s Property 2 

The second property states that “Any synthetic image F(h) should be as identical 

as possible to the image B(h) that the corresponding sensor would observe with the 

highest resolution h”. However, testing the second property requires the existence of a 

higher resolution image captured by the MS sensor that has the same resolution as the 

PAN image. Such an image does not exist (otherwise there would be no need for pan 

sharpening). Wald et al. propose the following approach to circumvent this difficulty: 

1. The original PAN A(h) and MS images B(l) are degraded to a lower resolution. 

The PAN image is degraded to have the MS image’s resolution l and the MS 

image degraded to have a resolution s. The resolution ratio s/l must be maintained 

the same as l/h in order to make correct comparisons. The degradation is done by 
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lowpass filtering them over a nxn neighborhood and downsampling the filtered 

images by n along both rows and columns (n = l/h the desired resolution ratio)  

2. A(l) and B(s) are fused to obtain the pan sharpened image F(l) at the same 

resolution as the original MS image – B(l). 

3. The quality of the pan sharpened image F(l) can be compared to B(l) by using 

various statistical methods like the correlation coefficient, shift in mean, etc. as 

suggested for property 1.  

In this work, in order to measure property 2, I take a slightly different approach to 

create A(l) and B(s). In Yocky [46], A(l) is created by taking the average or a weighted 

average of the MS bands. The method to obtain the degraded MS image is the same as 

Wald’s. I believe that in Wald’s method if the original PAN and MS images are 

misregistered this misregistration is retained in the degraded PAN and MS images and 

thus the results will be affected. In Yocky’s method the degraded MS image will always 

be coregistered to the PAN image. This is a good technique for someone wanting to 

research pan sharpening algorithms, but without the skills to coregister images or to a 

MS-PAN image pair of the same ground location. Moreover, the spectral differences in 

the PAN and MS images are minimal.  

3.3.3.6 Wald’s Property 3  

The third property is just an extension of the second property. It has been 

selectively implemented in this work for conciseness. It is stated as follows, “The 

multispectral set of synthetic images F(h) should be as identical as possible to the 

multispectral set of images B(h) that the corresponding sensor would observe with the 
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highest resolution h”. A comparison of the statements of properties 2 and 3 shows that 

they are almost identical except for the fact that in the third property the whole set of 

images is compared rather than a band to band comparison.  

The calculation of the third property involves subjective evaluation (i.e., visual 

analysis). The subjective assessment suggests that the color composites of images F(h) 

and B(h) must agree visually. The MS and the pan sharpened images are simultaneously 

displayed on the screen and the subject attempts to observe the differences in contrast, 

color, etc. between the two images. However, the ability of humans to distinguish minute 

differences between the colors of the two images is limited as Wald et al. themselves 

note. Thus, this method would be acceptable if a general idea is required about whether a 

pan sharpened image has the same colors as the MS image. However, when a decision 

has to be made to choose from among many pan sharpened images that have minute 

differences (like those produced by small variants of the MRA technique) the visual 

analysis clearly has shortcomings. As a result property 3 was not measured in this work. 

3.3.4 Conflict of Wald’s Property 1 with Property 2 

In the following discussion the spectral fidelity metrics that calculate the change 

in the radiometry of the pan sharpened image with respect to the resampled MS image 

(e.g. the correlation coefficient or RMSE given in sections 3.3.3.1 and 3.3.3.2 above) will 

be referred to as property 1 type metrics. Wald’s property 1 measures how similar the pan 

sharpened image is to the original low resolution MS image, while properties 2 and 3 

measure how similar the pan sharpened image is to the ideal high resolution MS image. 

The literature survey showed that researchers are divided into two groups – those that 
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measure the performance of their algorithms based on property 1 or its variants and those 

that measure the performance based on property 2 (and 3). For example, Aiazzi et al. [1], 

Lemeshewsky [18], Wald et al. [44], Schowengerdt [34] prefer the use of property 2 

while Li et al. [21], Shi et al. [37] and Yocky [4746] prefer property 1 type metrics.  

During this research it was found that if an algorithm produces pan sharpened 

images that satisfy properties 2 and 3 well, then it will not satisfy property 1 well. 

Though property 3 is not measured in this research, it is believed that it will follow the 

pattern of property 2 (i.e. if a pan sharpening technique improves property 2 it will also 

improve property 3). The conflict of property 1 and 2 is demonstrated by pan sharpening 

a MS image degraded to a lower resolution and creating a PAN image by averaging the 

three MS bands (as suggested by Yocky [46]) and comparing it with the original MS 

image. The geovantage_ratio4 dataset was pan sharpened using five different 

decomposition levels – 1 to 5. As the decomposition levels are increased, the spatial 

resolution of the pan sharpened images improves. Table 3-1 shows the property 1 and 2 

metrics for the different pan sharpened images, the three values in each cell are the values 

for MS bands 1, 2, and 3. As the decomposition levels are increased from 1 to 5 there is a 

steady improvement in property 2 metrics, which means the pan sharpened image is 

becoming a good approximation of the high resolution MS image. However, the property 

1 metrics deteriorate, which means the pan sharpened image is losing its original spectral 

characteristics. Among all the pan sharpened images, the one produced from five 

decomposition levels best satisfies property 2, however the property 1 metrics are the 

lowest for this image. 
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Table 3-1 Conflict of Wald's property 1 and 2 

 
 Property1 Property 2 

Num. 

decomposition 

levels (L) 

Correlation RMSE Correlation RMSE 

1 0.99 0.98 0.99 8.74 8.16 8.9 0.94 0.93 0.94 18.0 17.0 19.0 

2 0.98 0.98 0.98 10.0 9.06 9.97 0.96 0.96 0.96 14.0 14.0 16.0 

3 0.97 0.97 0.97 12.2 10.4 11.5 0.98 0.98 0.97 10.0 9.9 12.0 

4 0.96 0.96 0.96 14.4 12.1 13.4 0.99 0.99 0.98 8.1 8.0 10.0 

5 0.95 0.95 0.96 15.54 13.2 14.4 0.99 0.99 0.98 8.0 7.7 9.7 

 
This experiment demonstrates that maximizing both property 1 and 2 at the same 

time are conflicting goals. The main reason why MRA techniques are pursued for pan 

sharpening was to reduce the spectral distortion in the pan sharpened images. The goal of 

pan sharpening is two-fold – achieving the spatial quality of the PAN image while 

preserving the spectral quality of the MS images. It was found through experiments that 

maximizing the property 2 metrics is not really required in order to get good spatial 

quality. In the above experiment it was found that according to property 2 metrics L=5 is 

the optimal decomposition level, the spatial quality of the image pan sharpened with L=3 

looks sufficient. It is seen that the property 1 metrics of L=3 image are better than those 

for L=5.  

One of the goals of this research was to produce pan sharpened images that would 
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be used for supervised classification where the spectral signatures used are derived from 

the MS images and used to classify the pan sharpened image.  Any change in the 

radiometry of the imagery increases the chances of misclassification. In this case, 

property 1 and its variants are a better measure of the spectral distortion of the pan 

sharpened images. Moreover, property 1 and its type of metrics are useful in a real world 

scenario where the ideal high resolution MS image will not be available. Thus in this 

work the spectral quality is evaluated based on property 1 and its type metrics will be 

used. 

3.3.5 Spatial Quality Metrics 

The evaluation of the spatial quality of the pan sharpened images is equally 

important since the goal is to retain the high spatial resolution of the PAN image. A 

survey of the pan sharpening literature revealed there were very few papers that evaluated 

the spatial quality of the pan sharpened imagery. Consequently, there are very few spatial 

quality metrics found in the literature. It was found that these metrics had some 

drawbacks and thus, the spatial quality computed by them was in error. This is explained 

in section 3.3.6. 

3.3.5.1 Mean Gradient 

Image gradients have been used as a measure of image sharpness [33]. The 

gradient at any pixel is the derivative of the DN values of neighboring pixels. Generally 

sharper images have higher gradient values. Thus, any image fusion method should result 

in increased gradient values because this process makes the images sharper compared to 
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the low resolution image. The mean gradient defines the contrast between the details 

variation of pattern on the image and the clarity of the image [37]. The mean gradient 

_
G of an image X is given by: 
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where xI∆  and yI∆ are the horizontal and vertical gradients per pixel. Ryan et al. 

also used the mean gradient to characterize the image quality for Ikonos images [33]. 

However, the gradient calculation implemented by them was slightly different, as they 

used a Roberts operator that measures the gradient in the 45 degree diagonal directions, 

i.e., xI∆  and yI∆ are given by: 

)1,1(),( ++−=∆ jiXjiXI x , (56) 

)1,(),1( +−+=∆ jiXjiXI y , (57) 

3.3.5.2 High Pass Correlation Coefficient 

This approach was first proposed by Zhou et al. [52] to measure the amount of 

edge information from the PAN image is transferred into the fused images. The high 

spatial resolution information missing in the MS image is present in the high frequencies 

of the PAN image. The pan sharpening process injects the higher frequencies from the 

PAN image into the MS image. Thus, they propose that the correlation coefficient 
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between the highpass filtered PAN and the pan sharpened images would indicate how 

much spatial information from the PAN image has been incorporated into the MS image. 

A higher correlation between the two highpass filtered images implies that the spatial 

information has been retained faithfully. This correlation coefficient is called the 

Highpass Correlation Coefficient (HPCC). The authors made use of a Laplacian operator 

as the highpass filter, whose coefficients are given by: 
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Though no reason is stated for the preference of this particular filter it is believed 

that any highpass filter (e.g. Sobel, Prewitt [16]) can be used for this purpose. Let Y(A) 

be the high pass filtered PAN image and Y(Fi) be the high pass filtered pan sharpened 

images. Then the HPCC is given by:  

))(),(( ii FYAYCorrHPCC = , (59) 

3.3.6 Limitations of the Spatial Quality Metrics 

The goal of the MRA based pan sharpening is to produce pan sharpened images 

with the highest spectral fidelity while the spatial quality is sufficient such that all the 

structures observed in the PAN image can be observed easily in the pan sharpened image. 

Though it is not investigated whether a small increment in the spectral fidelity will result 

in improved classification, generally the algorithm is tweaked to give as high a spectral 

fidelity as possible assuming that even the slightest improvement will be beneficial. The 

same cannot be said about the spatial quality. It is sufficient that the user should be able 
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to observe all the details of the PAN image in the sharpened image. Of course the images 

with higher spatial quality look crisp and sharp, but it has been found that such an 

increase in spatial quality is at the expense of reduced spectral fidelity.  

Thus, the task is to define the term “sufficient spatial quality”. This is a very 

difficult task and cannot be measured by any metric (i.e. how can it be said if a HPCC 

value of 0.94 is sufficient or not?). Perhaps a HPCC of 0.95 is sufficient, but a value of 

0.94 is not sufficient, i.e. the sharpened image do not contain all the details observed in 

the PAN image. Moreover, this value could be different for different images. Whether the 

pan sharpened image has all the details in the PAN image can only be determined 

through visual analysis. Thus, visual analysis played an important role in determining the 

spatial quality of the images. Perhaps this is the reason for so few studies on the spatial 

quality of the pan sharpened images. 

During this study, the above mentioned metrics were measured and researched. A 

few anomalies were found with all of them. For one of the datasets, the HPCC values for 

the three bands sharpened with the Brovey method were lower than those of images 

sharpened from the wavelet based method using two decomposition levels, implying the 

Brovey method sharpened images contain less high frequency information than those 

obtained from the wavelet based method. Visual analysis, however, clearly contradicts 

this result. Moreover, contradictions were also noticed for the images sharpened by the 

wavelet-based method. For the first dataset, images sharpened using five and nine levels 

of decomposition had lower HPCC values compared to the images sharpened using two, 

three and four levels. Visual analysis showed that the image sharpened using two levels 
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was not sufficiently merged and should have lower HPCC values compared to those for 

five and nine levels. It is suspected that HPCC is affected not only by the correlation 

between the edges, but also by the pixel values of the filtered images. Similar anomalies 

were noted for the mean gradient metric. When the MS image is resampled using a 

nearest neighbor technique to match the pixel size of the PAN image, its mean gradient 

was higher than that of some of the pan sharpened images. 

Thus, the spatial quality of the pan sharpened images is analyzed in this work 

using visual analysis. The search for better quantitative spatial quality metrics is 

recommended for future work. 

3.3.7 The True Edge Metric 

Pan sharpened images are often used for automated object extraction [50] (i.e., to 

extract features such as roads, buildings, etc.). Nowadays, feature extraction is often 

automated and an edge detection operator is applied on the image to generate an edge 

map. A good pan sharpening technique should retain all the edges present in the PAN 

image in the sharpened image.  

The edges in an image are calculated as follows: a Sobel edge operator [16] is 

applied on the image. The Sobel edge operator basically consists of two gradient 

operators, one in the horizontal direction and the other in the vertical direction: 
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Filtering an image u  with these two gradient operators xH  and yH results in two 

gradient images xg and yg respectively whose values at each pixel location (i,j) are given 

by: 
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xg and yg give the gradient of the image u in the horizontal and the vertical 

direction respectively. The overall gradient magnitude of the image regardless of 

direction is given by the Euclidean sum of the two gradient images: 

22 ),(),(),( jigjigjig yx += , (64) 

The magnitude of g at each pixel location is compared against a threshold t , if it 

exceeds the threshold that pixel location is declared as an edge point: 

tjig ≥),( , (65) 

Thus a binary edge image is created as a result that has a 1 at a pixel location if 

equation tjig ≥),( , (65) is satisfied and 0 otherwise. The threshold can be either 

chosen manually or automatically. The automatic approach was used in this study, where 

the threshold is set to the SNR of the gradient image.  



 

 

86
The above operations are performed on the PAN image and the fused images 

resulting from the different decomposition levels. Thus, two binary images are produced - 

edA (the edge image resulting from the PAN image) and edF , which is the result of 

applying the edge operator on the fused image. In order to evaluate the performance of 

the pan sharpening technique the edge images of the PAN and the pan-sharpened image 

are compared. The match between the edges in the PAN and the fused image is 

computed. Ideally, the fused image should have all the edges that were present in the 

PAN image. However, there will be some edges in the PAN image that will not be 

detected in the fused images and some edges in the fused images that will not be present 

in the fused images. Thus, two metrics can be computed from the edge information –  
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Here kTE is the percentage of true edges found in the fused band k . A true edge in 

the fused image is found, if an edge is present in the fused image at a certain pixel 

location (i,j) and if there is also an edge at the same pixel location in the PAN image. It is 

assumed that all the edges present in the PAN image are true edges.  Therefore, the sum 

of true edges found in the fused image divided by the sum of edges in the PAN image 

results inTE called the True Edge metric here onwards.  
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kFE is the percentage of false edges found in the fused band k called the False 

Edge metric. A false edge is found if an edge is present in the fused image at location 

(i,j), but not present in the PAN image at that location. The percentage of false edges is 

determined as the total number of false edges divided by the total number of edges in the 

fused image. However, it is possible that a true edge may not be found in the PAN image 

for some reason, but it is correctly found in the MS images.   Thus, a false edge could be 

a real edge in the image. Since this metric does not convey anything about how the edge 

information from the PAN image is retained in the fused image, it is not discussed here. 

Since this metric measures the amount of edge information in the fused image 

compared to the PAN image, it can be considered a spatial quality metric. During the 

investigation on the minimum number of decomposition levels required to merge images 

with a certain resolution ratio (section 5.10) it was found that for the pan sharpened 

images created with different number of decomposition levels, the TE values improve 

significantly until the spatial quality of the pan sharpened image is not sufficient as 

deemed by visual analysis. Thus the proposed TE metric is tested to see if it can be used 

to predict the minimum number of decomposition levels required to pan sharpen images 

with sufficient spatial quality. These concepts will be better understood upon reading 

sections 5.10 and 6.2.1. 
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CHAPTER IV 

DATA DESCRIPTION 

4  
In this chapter all the datasets that are used are described. The original and pan 

sharpened images for each dataset are saved in a folder that is named by the dataset itself.  

4.1 File Naming Convention 

Since there are many pan sharpened images for each dataset corresponding to the 

different methods used to pan sharpen them a systematic file naming convention must be 

adopted. The files containing the pan sharpened images are suffixed with the parameters 

of the method used to merge them. All the images are in TIFF file format. The images are 

named as follows: 

Prefix-[Number of decomposition levels][MRA method]-[Mother wavelet | 

Filter]-[MS transformation option]-[Coefficient synthesis method]-[Selection rule]-

[Block processing or whole dataset processing]-[Radiometric normalization option].tif. 

The prefix is usually a word like ‘sharp’ or ‘qb_sharp’ to convey the meaning that the file 

contains a pan sharpened image. The acronym for the MRA methods are ‘dwt’ for the 

DWT, ‘rdwt’ for the RWT, ‘awt’ for the AWT, ‘lap’ for the LP, and ‘spt’ for the SPT. 

The mother wavelet is identified by the string ‘db1’, ‘db2’ or in general ‘dbN’ where N is 

the order of the wavelet. For the AWT and the LP the Gaussian filters are identified by a
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 decimal number corresponding to the value of the central coefficient of the filter (a). The 

binomial and QMF filters are identified by ‘binomN’ or ‘qmfN’ where N is the filter 

length. For the SPT this suffix tells the number of orientation bands used in the 

decomposition, i.e. ‘2ors’ means two detail images were used in the pan sharpening 

process. The MS transformation option can be either ‘sbm’ or ‘ihs’ or ‘lhs’. The ‘sbm’ 

option implies each MS band is processed separately, while ‘ihs’ implies that the IHS 

transformation was first computed and the pan sharpening applied to only this band. The 

coefficient synthesis method indicates whether the additive method given by ‘add’ or the 

substitutive method given by ‘sub’ was used. If the AABP model was used it is given by 

‘aabp-N-θ ’, the additive or substitutive version of the AABP model can be identified by 

the transform used (‘lap’ for the additive and ‘rdwt’ for the substitutive). The ‘N’ is the 

window size used to compute the LCC, LG and θ is the threshold. The selection rules are 

identified by ‘srN’, where N=0 for the NULL rule, 1 for the MAS rule, 2 for the WBS 

rule and 3 for the WBV rule and 5 for the ADD rule. If the images are processed by 

computing the MRA transform on the whole image this is identified by ‘whl’, since block 

processing was also implemented to handle large datasets this is identified by the string 

‘blk’ instead. Finally the radiometric normalization option is specified by ‘hm’ to mean 

that it was done or ‘nohm’ which means it was omitted. 

The quality metrics for each dataset are also stored in a separate text file denoted 

by a ‘-metrics.txt’ trailing extension. For e.g. the pan sharpened image for the tm-erdas2 

dataset - sharpbilin234-2rdwts-db2-sbm-sub-sr0-whl-nohm.tif implies that this image was 

pan sharpened using 2 decomposition levels of the RWT, the ‘db2’ wavelet was used, 
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each band was pan sharpened individually and the NULL selection rule was applied. No 

radiometric normalization was done and the MRA transform was computed on the whole 

image.  The quality metrics of the image are given in the file sharpbilin234-2rdwts-db2-

sbm-sub-sr0-whl-nohm-metrics.txt. 

The filenames of the MS and PAN images are self explanatory. They can be 

identified by the keywords ‘ms’ and ‘pan’ respectively and the resampled MS images 

contain the keyword ‘res’. 

4.2 Dataset – tm-erdas2 

This dataset is created from a Landsat7 scene of the downtown area of Denver, 

Colorado, US. Since these are Landsat7 images, the spatial resolution ratio of the MS and 

PAN images is two. The three MS bands are band 2, 3, and 4 of the sensor. These bands 

correspond to the visible (bands 2, 3) and NIR portion (band 4) of the electromagnetic 

spectrum. The PAN image is of size 807 rows x 839 columns while the MS image is of 

size 404 rows x 420 columns.  

4.3 Dataset – tm-vorarlberg 

This dataset is also a Landsat7 scene of the Vorarlberg state of Austria. The Rhine 

River in the scene runs from south to north into Lake Constance. The three MS bands are 

band 1, 2, and 3 of the Landsat sensor. The scene is 2089 rows x 2113 columns. The 

original PAN and MS images are vbg_pan.tif and vbg_msb123.tif. The pan sharpened 

images are prefixed with ‘vbg_sharp123’ for images merged with the NULL rule while 

for merging images with the advanced rules like the MAS, WBS, etc. the MS images 
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were resampled using a bilinear interpolation method and thus these images are prefixed 

with a ‘vbg_sharpbilin123’. 

4.4 Dataset – tm-vorarlberg2 

This dataset is a subset of the tm-vorarlberg dataset. Since the tm-vorarlberg 

dataset is huge it would take up a lot of disk space to store the pan sharpened images 

corresponding to the different pan sharpening methods that were tried. Thus a 512x512 

pixels wide region from the upper left portion of the tm-vorarlberg dataset was cropped to 

create this new dataset.  

If the new MS image is created by taking a subset of the original low resolution 

MS image which is smaller in size than the PAN image then a lot of effort has to be 

spend in coregistering the new cropped MS and PAN images. Thus a simpler approach is 

used, the subset operation is performed on the resampled MS and PAN images that have 

the same pixel size. However, because of this the MS image of smaller size is not 

available to compute Wald’s property 1, but this should not be a serious problem as we 

are the spectral fidelity is measured by comparing the resampled MS and pan sharpened 

images. 

4.5 Dataset – qb1 

This dataset is a Quickbird scene of a city in the Middle East. The first three MS 

bands are used here. The images have a resolution ratio of four. The PAN image size was 

512x512 while the MS was 128x128 pixels.  



 

 

92
4.6 Dataset – qb-pyramids2 

This dataset is also a Quickbird scene of an area to the north of the pyramids in 

Egypt. It contains urban features in the North of the imagery and mostly vegetation in the 

western part of the imagery. In the bottom left portion of the image there are some 

containers on the ground. The PAN and the resampled MS images are of size 512x512 

pixels.  

Since these images were also obtained by subsetting larger images like the tm-

vorarlberg2 dataset the original low resolution MS image is not available for comparison.  

4.7 Dataset - geovantage imagery 

One of the goals of this study was to determine the minimum number of 

decomposition levels required to merge images with a given resolution ratio. As it was 

decide to use Wald’s property 2 approach to aid in making the conclusions four datasets 

with resolution ratios 2, 3, 4, and 5 were created using Yocky’s method given in section 

3.3.3.5. The four datasets corresponding to resolution ratios 2, 3, 4, and 5 are called 

geovantage_ratio2, geovantage_ratio3, geovantage_ratio4, and geovantage_ratio5 

respectively. All the datasets are of the same location - the Mississippi State University 

campus located in Mississippi, USA. They were created from a 1 m resolution aerial 

color photograph by subsetting a 600x600 pixels wide area from the original. The image 

contains mostly buildings, lawns, vehicles and a road running across the whole image 

from the top to bottom. 
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CHAPTER V 

RESULTS 

5  
5.1 The Effect of Radiometric Normalization 

The effect of radiometric normalization on the spectral and spatial quality of the 

pan sharpened images was investigated by pan sharpening the datasets by first 

performing the histogram match of the PAN image to the MS image before doing the 

MRA based pan sharpening and then repeating the same process with all the parameters 

identical but without the histogram matching (HM) step.  

5.1.1 Dataset – tm-erdas2 

The quality metrics of the pan sharpened images created with and without the 

histogram match are given in Table 5-1. Except for the first band it is seen that the pan 

sharpened image created without the HM preserves the spectral fidelity better than that 

by the pan sharpened image with the HM. The inter band correlation is also better 

preserved, when the HM is avoided. However, the spatial quality of the latter is slightly 

better as seen in Figure 5-1. The pan sharpened images are shown with a zoom factor of 

two. The individual bands of both pan sharpened images were visually analyzed and it 

was found that the spatial quality of the individual bands differ in both the images. The
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 spatial quality of the first band (band 2 of TM) is better in the pan sharpened image 

created without the HM while the spatial quality of the other two bands (bands 3, 4 of 

TM) are better in the pan sharpened image created with the HM. As a result, the spatial 

quality of the HM pan sharpened image appears better because two of the three bands 

have good spatial quality. Since the goal of the pan sharpening process is to extract 

maximum spatial information and retain the highest spectral fidelity from the PAN image 

it would be desirable to pan sharpen the first band without the HM and the remaining two 

bands with the HM.  
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Table 5-1 Spectral quality metrics (tm-erdas2) 

 
 HM NO HM 

))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

1.570 
2.761 
2.928 

1.925 
2.279 
2.122 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.989 
0.991 
0.991 

0.984 
0.994 
0.995 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.971 
0.637 
0.643 

0.961 
0.620 
0.630 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.967 
0.601 
0.607 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.973 
0.976 
0.975 

0.966 
0.990 
0.992 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

2.438 
4.465 
4.834 

2.802 
2.839 
2.755 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.829 
0.822 
0.897 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.861 
0.857 
0.930 

0.870 
0.849 
0.920 
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(a) The resampled MS image 

 

(b) The PAN image 

(c) Pan sharpened image without the HM (d) Pan sharpened image with the HM 

Figure 5-1 Pan sharpened images with and without the HM (tm-erdas2) 
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5.1.2 Dataset – tm-vorarlberg 

The pan sharpening of this data is carried out using three decomposition levels 

compared to only two in the above dataset. This was done because pan sharpened images 

produced using one or two decomposition levels were quite blurry and appear unmerged 

in many parts of the image. This topic is addressed later in this work in section 5.10 by 

making a detailed analysis of the effect of number of decomposition levels on the spectral 

and spatial quality of pan sharpened images.  

The pan sharpened images with and without the histogram match are – 

vbg_sharp123-3rdwts-db2-sbm-sub-sr0-whl-hm.tif and vbg_sharp123-3rdwts-db2-sbm-

sub-sr0-whl-nohm.tif. The metrics are given in Table 5-2. The spectral quality of the pan 

sharpened image created with the HM is slightly better. However, the spatial quality of 

this image is very poor. The spatial quality of each band was individually studied and it 

was found that for each band the quality of the pan sharpened band without the HM is 

better. This can be seen from Figure 5-2, where a small area of the image is shown. Many 

terrain features that could not be observed in the original MS image are seen in the pan 

sharpened image created without the histogram match, but cannot be delineated as well in 

the pan sharpened image created with the histogram match. Many more such features can 

be identified by browsing the complete imagery on the disk. 
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Table 5-2 Spectral quality metrics (tm-vorarlberg) 

 
 HM NO HM 

))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

6.518 
6.012 
8.637 

6.848 
6.319 
7.857 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.943 
0.954 
0.932 

0.937 
0.949 
0.943 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.965 
0.981 
0.963 

0.969 
0.982 
0.963 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.962 
0.975 
0.957 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.930 
0.941 
0.918 

0.924 
0.936 
0.934 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

7.334 
6.865 
9.546 

7.553 
7.118 
8.476 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.495 
0.666 
0.608 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.566 
0.730 
0.694 

0.591 
0.745 
0.701 
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(a) The resampled MS image 

 

(b) The PAN image 

 

(c) Pan sharpened image without the HM 

 

(d) Pan sharpened image with the HM 

Figure 5-2 Pan sharpened images with and without the HM (tm-vorarlberg) 

 
Clearly the initial histogram match step should be avoided when pan sharpening 

this dataset. The original PAN image (vbg_pan.tif) and the PAN image histogram 

matched to each band (vbg_pan_hm_b1.tif, vbg_pan_hm_b2.tif, and vbg_pan_hm_b3.tif) 

were analyzed. It is found that the histogram match alters/increases the DN values of the 
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PAN image in such a way that the texture or details of the image are blurred or lost. This 

can be observed by looking at the PAN image before and after the histogram match. 

Since the details of the histogram matched PAN image are substituted in the pan 

sharpened image, it too has lost the details. One more side effect of the increased DN 

values of the PAN image after histogram match is that the pan sharpened image appears 

saturated in color in many parts of the forest. These appear as bright green spots in many 

parts of the image.  

Thus it is seen that in the first dataset the histogram match improved the quality of 

the pan sharpened images while in the second case it reduced it. Though both the datasets 

are TM images, the first one was composed of bands 2, 3, 4 while the second one is 

composed of bands 1, 2, 3. The first one was taken over a mainly urban scene while the 

second one comprises of forests and mostly natural landscape. It is known that the PAN 

band does not spectrally overlap the first MS band and this may be the cause of the 

contradictions in the results.  

5.1.3 Dataset – qb1 

The pan sharpened images with and without the initial histogram match are – qb_sharp-

3rdwts-db2-sbm-sub-sr0-whl-hm.tif and qb_sharp-3rdwts-db2-sbm-sub-sr0-whl-

nohm.tif. Table 5-3 gives the spectral and spatial quality metrics for these two pan 

sharpened images. 
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Table 5-3 Spectral and spatial quality metrics for the qb1 dataset 
 

 HM NO HM 
))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

2913 
2889 
2878 

3129 
3078 
3023 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.936 
0.941 
0.947 

0.927 
0.934 
0.942 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.988 
0.990 
0.962 

0.990 
0.991 
0.965 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.983 
0.986 
0.950 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.910 
0.913 
0.918 

0.889 
0.896 
0.906 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

3599 
3633 
3711 

4086 
4056 
4035 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.792 
0.838 
0.854 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.9 
0.939 
0.951 

0.907 
0.944 
0.955 

 
It is seen from the metrics that the histogram match resulted in a slightly better 

spectral fidelity. The spatial quality of both the pan sharpened images is good. Both 

appear sharp and have all the details of the PAN image. Thus, in this case the histogram 

match did not have a significant effect on the results. In preference of the higher spectral 

fidelity provided by the histogram match this image would be preferred over the one 
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produced without the histogram match. After all, that is the main motivation for choosing 

the MRA based fusion technique over the conventional methods like HIS, PCA, etc.  

5.1.4 Dataset – qb-pyramids2 

The same experiments were conducted for this dataset by keeping the same 

parameters as for the above dataset. The main conclusion from this experiment indicates 

that the histogram match step results in slightly higher spectral fidelity. The reason for 

the similarity in the findings may be because both the images are of the first three bands 

and the PAN image’s spectral range overlaps all the three bands. This indicates that the 

Quickbird images must be pan sharpened with the initial histogram match. The metrics 

for this dataset are not given in order to preserve space. 

5.1.5 Summary of the Histogram Match 

From the above results it was seen that for the Quickbird bands the pan sharpened 

images produced by applying a histogram match increased the spectral fidelity while for 

the TM bands it was seen that for one dataset (tm-erdas2) the histogram matching 

improved the results for two of the bands while for the other dataset it degraded the 

spatial quality in all the three bands. 

For the second TM dataset (tm-vorarlberg) it is suspected that the MS and PAN 

images have a lot of contrast reversal. Generally, regions of contrast reversal are 

identified by very low correlation between the original MS and PAN images. The 

correlation between the MS and PAN images for the tm-erdas2, qb1, and qb-pyramids2 

dataset is quite high in the range of 0.78 to 0.90 while that for tm-vorarlberg is 0.5, 0.67, 
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and 0.61 in bands 1, 2, and 3 respectively. The correlation in the upper left 512x512 

region of this image (the tm-vorarlberg2 dataset) was even lower – -0.175, 0.115, and 

0.302. This low correlation or contrast reversal can be identified even visually. Most of 

the features or landscapes that appear bright in the PAN image appear dark in the MS 

bands and vice versa. For example, the Rhine River in the center of the image appears 

dark in the PAN image whereas it appears very bright in the MS bands.  

Thus, from pan sharpening the above datasets it seems that the histogram 

matching should be performed in general which seems to increase the spectral fidelity of 

the pan sharpened images except when there is contrast reversal in the MS-PAN images. 

In a practical implementation of the pan sharpening algorithm the user should not have to 

specify whether histogram matching should be performed or not. Another point to be 

noted is that contrast reversal can occur in isolated small regions which are just a few 

pixels wide or in a particular feature like a river which could run across the whole image 

(like in the tm-vorarlberg dataset). Thus if contrast reversal is a concern the adaptive 

processing schemes given in [19], [34] should be implemented instead.  

However, as mentioned previously these schemes could not be implemented due 

to scope limitations. From this point forward in the dissertation the above datasets the 

appropriate preprocessing is applied for each dataset. This means processing the tm-

erdas2, qb1, and qb-pyramids2 datasets with a histogram match but avoiding this step for 

the tm-vorarlberg, and tm-vorarlberg2 datasets. 
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5.2 Comparison of the Additive and Substitutive Methods 

One of the main limitations of the additive merger technique is that they can only 

be applied to datasets whose resolution ratios are a power of two (section 2.4.4). The 

RWT, AWT, and LP are applied and the quality of the pan sharpened image produced by 

each of them is compared to that obtained from the substitutive method. For convenience 

the additive RWT, AWT, and LP methods will be denoted by RWT-ADD, AWT-ADD, 

and LP-ADD, respectively. 

The resolution ratios of the tm-erdas2 and geovantage_ratio2 datasets are two thus 

one decomposition level is applied during the merging. The resolution ratios for the qb1 

and geovantage_ratio4 datasets are four and thus, two decomposition levels are applied 

for merging them. The ‘db2’ wavelet is applied for the RWT-ADD method and the 

Gaussian filter corresponding to a=0.375 is applied for the AWT and the LP methods. 

5.2.1 Dataset – tm-erdas2 

The pan sharpened image created from the RWT-ADD, AWT-ADD and the LP-

ADD appear satisfactorily merged at first. However, closer inspection reveals that the 

RWT-ADD pan sharpened image appears grainy or freckled compared to the AWT-ADD 

and LP-ADD pan sharpened image. This effect is shown in Figure 5-3. Figure 5-3(a) is 

the resampled, but unsharpened MS image while Figure 5-3(b) is the pan sharpened 

image produced using two decomposition levels of RWT, and the substitutive method. 

Figure 5-3(c) is the pan sharpened image using RWT-ADD and Figure 5-3(d) is the pan 

sharpened image using AWT-ADD method. The images were scaled down by a factor of 

two to clearly demonstrate the freckled effect in the RWT-ADD image. The LP-ADD pan 
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sharpened image is not shown as it is identical to the AWT-ADD image. The spatial 

quality of the AWT-ADD and the LP-ADD methods is as good as that of the substitutive 

method. 

 
(a) The resampled MS image 

 
(b) Pan sharpened image with 2 RWTs and 
the SUB method  

 
(c) Pan sharpened image using RWT-ADD 
method 

 
(d) Pan sharpened image using AWT-ADD 
method 

Figure 5-3 Pan sharpened image using the additive merger (tm-erdas2) 

The quality metrics for the pan sharpened images created using the additive and 

substitutive methods are given in Table 5-4. The correlation and the RMSE between the 
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MS image and the pan sharpened image cannot be computed for the LP-ADD image 

because in this technique there is no need to resample the MS image. Thus, only Wald’s 

property 1 is calculated. The RMSE values for the RWT pan sharpened image are very 

high while that of the AWT-ADD and the LP-ADD method are small. This is proof that 

they have preserved the spectral information of the original MS image while enhancing 

its spatial quality. The AWT-ADD merger seems to best preserve the spectral fidelity. It 

is seen that the spectral fidelity of both LP-ADD and AWT-ADD methods is better than 

that of the substitutive method. 
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Table 5-4 Spectral quality metrics for the additive merger (tm-erdas2) 

 
 RWT-SUB RWT-ADD AWT-ADD LP-ADD 

))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

1.57 
2.761 
2.928 

27.94 
34.86 
39.65 

0.920 
1.717 
1.826 

1.392 
2.661 
2.908 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.989 
0.991 
0.991 

0.991 
0.993 
0.991 

0.996 
0.997 
0.997 

0.992 
0.992 
0.991 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.971 
0.637 
0.643 

0.967 
0.635 
0.639 

0.969 
0.630 
0.635 

0.972 
0.648 
0.654 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.967 
0.601 
0.607 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.973 
0.976 
0.975 

0.954 
0.961 
0.956 

0.982 
0.984 
0.983 

- 
- 
- 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

2.438 
4.465 
4.834 

28.10 
35.03 
39.83 

2.065 
3.756 
4.082 

- 
- 
- 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.829 
0.822 
0.897 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.861 
0.857 
0.930 

0.846 
0.845 
0.917 

0.856 
0.853 
0.926 

- 
- 
- 

 

5.2.2 Dataset – geovantage_ratio2 

The images of this dataset were also pan sharpened using the RWT-ADD, AWT-

ADD, and LP-ADD methods. The parameters of the fusion process are the same as for 

the above dataset, except that the histogram match is not performed. The spectral quality 
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metrics of the pan sharpened images are given in Table 5-5. The pan sharpened images 

are - sharp-1awts-0.375-sbm-add-whl-nohm.tif, sharp-1laps-0.375-sbm-add-whl-nohm.tif 

and sharp-1rdwts-db2-sbm-add-whl-nohm.tif (corresponding to the AWT-ADD, LP-

ADD and the RWT-ADD methods, respectively). The metrics show that the AWT and 

LP methods result in a pan sharpened image that is closer to the original high resolution 

MS image. Visually all the pan sharpened images appear quite similar. However, closer 

inspection shows that the RWT pan sharpened image appears slightly freckled in certain 

portions of the image. One such portion is shown in Figure 5-4, which shows the original 

high resolution MS image (a), the pan sharpened image created using 3 levels of RDWT 

and the substitutive method (b), the pan sharpened images corresponding to the AWT-

ADD (c) method, and the RWT-ADD method (d). It can be seen that the RWT-ADD 

image is slightly blurry near the edges of objects. This region is shown at a smaller scale 

in order to clearly demonstrate the poor edge information in the additively merged 

images clearly. The image corresponding to the additive LP method is not shown as it is 

similar to the AWT image (sharp-1laps-B3-sbm-add-whl-nohm.tif). 

Table 5-5 Spectral quality metrics for the additive merger (geovantage_ratio2) 

 
Wald’s 

property 2 RWT-SUB RWT-ADD AWT-ADD LP-ADD 

)|( 11 FBRMSE  
)|( 22 FBRMSE  
)|( 33 FBRMSE  

8.8 
8.5 
10 

69 
60 
65 

13 
13 
15 

16 
16 
18 

)|( 11 FBCorr  
)|( 22 FBCorr  
)|( 33 FBCorr  

0.99 
0.98 
0.98 

0.94 
0.93 
0.93 

0.97 
0.96 
0.96 

0.95 
0.94 
0.94 
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(a) Original high resolution MS image (b) Pan sharpened image corresponding to 
3 RWT levels and substitutive method 

(c) Pan sharpened image corresponding to 
AWT-ADD method 

(d) Pan sharpened image corresponding to 
RWT-ADD method 

Figure 5-4 Pan sharpened images from the additive method (geovantage_ratio2) 
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Another interesting observation made from this dataset is that the pan sharpened 

images created from the additive method are not as sharp as that obtained from three 

decomposition levels and the substitutive method. The white border of the blue roof on 

the upper right portion is retained in the pan sharpened image produced from the three 

decomposition levels of RWT and the substitutive method, but not so clearly in the 

additively merged images. This region is marked in the figure with a white boundary 

around it. However, this can be noticed only at higher scales. Thus, it is seen that the 

AWT-ADD and LP-ADD images have moderate spatial quality, and it is up to the user to 

decide if this is acceptable for them. 

5.2.3 Dataset – qb1 

The three pan sharpened images corresponding to the RWT-ADD, AWT-ADD 

and the LP-ADD methods are - qb_sharpbilin-2rdwts-db2-sbm-add-whl-hm.tif, 

qb_sharpbilin-2awts-0.375-sbm-add-whl-hm.tif and qb_sharp-2laps-0.375-sbm-add-whl-

hm.tif respectively. Their spectral quality metrics are given in Table 5-6. In order to do a 

comparison with the substitutive method, the pan sharpened image created from three 

decomposition levels of the RWT is used – qb_sharp-3rdwts-db2-sbm-sub-whl-hm.tif.  
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Table 5-6 Spectral quality metrics for the additive merger (qb1) 

 
 RWT-SUB RWT-ADD AWT-ADD LP-ADD 

))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

2913 
2889 
2878 

14848 
17066 
17226 

1406 
1385 
1404 

3301 
3312 
3316 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.936 
0.941 
0.947 

0.915 
0.919 
0.922 

0.985 
0.987 
0.987 

0.922 
0.926 
0.933 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.988 
0.990 
0.962 

0.990 
0.993 
0.972 

0.986 
0.989 
0.959 

0.989 
0.991 
0.964 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.983 
0.986 
0.950 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.910 
0.913 
0.918 

0.705 
0.708 
0.715 

0.952 
0.953 
0.953 

- 
- 
- 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

3599 
3633 
3711 

14799 
17027 
17197 

2672 
2726 
2853 

- 
- 
- 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.758 
0.805 
0.822 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.9 
0.939 
0.951 

0.803 
0.835 
0.850 

0.852 
0.892 
0.909 

- 
- 
- 

 
Figure 5-5 shows the pan sharpened image corresponding to the RWT-ADD 

method. It seems to have retained the spatial quality of the PAN image very well. For 

example the white markers along the road appear very clearly and the crowns of the trees 

in the upper section of the image are also seen very clearly. However, the colors are 



 

 

112
excessively strong compared to the original MS image. The rooftops have a strong shade 

of blue while in the original MS image they are almost white or very light blue. 

Consequently, the spectral quality is very poor as evidenced by the metrics. Figure 5-6 

shows the pan sharpened image created using the AWT-ADD technique. The spectral 

quality of this image is the best among the three methods used. However, the spatial 

quality seems insufficient as seen from some of the rooftops. The edges of the rooftops 

have the brown color of the adjacent ground and thus seem to be partially merged. When 

the original MS image is resampled to the same size as the PAN image, it causes the 

spectral signatures of the rooftops and adjacent ground to become mixed. Since this 

image is simply substituted into the approximation image of the PAN, the mixed 

signature is retained in the pan sharpened process. This can also be seen in the lower right 

portion of the image, where there appears a blur or a smeared effect around some of the 

automobiles. This smearing does not occur in the original PAN image.  

The pan sharpened image created using the LP-ADD method is free of this effect 

(Figure 5-7). This is perhaps because the image does not have to be resampled prior to 

insertion into the pan sharpened image. The LP-ADD image appears satisfactorily 

merged and clearly better than the RWT-ADD and AWT-ADD images. The smearing 

effect is not very serious because it is difficult to detect at the original scale of the image. 

It only becomes apparent when the images are observed at a smaller scale. For 

convenience this is shown in Figure 5-8. The spectral quality of the LP-ADD image as 

given by Wald’s property 1 is not as good as the AWT-ADD method, but it presents a 

good tradeoff between spectral and spatial quality. 
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Figure 5-5 Pan sharpened image using RWT-ADD technique (qb1) 
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Figure 5-6 Pan sharpened image using AWT-ADD technique (qb1) 
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Figure 5-7 Pan sharpened image using LP-ADD technique 

 



 

 

116
 

 
(a) AWT-ADD pan sharpened image 

 
(b) LP-ADD pan sharpened image 

Figure 5-8 Spectral signatures mixing in the AWT-ADD image 

5.2.4 Dataset – geovantage_ratio4 

The pan sharpened images corresponding to the RWT-ADD, AWT-ADD, and the 

LP-ADD methods are sharp-2rdwts-db2-sbm-add-whl-nohm.tif, sharp-2awts-0.375-sbm-

add-sr0-whl-nohm.tif and sharp-2laps-0.375-sbm-add-whl-nohm.tif, respectively.  

As in the above dataset (section 5.2.3) the RWT-ADD image is excessively strong 

in color or “blotchy” in appearance. Though the AWT-ADD image initially appears 

sufficiently merged at first, under closer appearance, it appears blurry and unmerged 

around the road. The LP-ADD image is relatively better and does not appear blurry in 

this area. However, the road and the divider are seen in a very weak color and overall the 

contrast of the LP-ADD image is very poor compared to the original high resolution MS 

image. Table 5-7 gives the RMSE and correlation of each pan sharpened image with 

respect to the high resolution MS image. It shows that among the additively merged 

images, the AWT-ADD image most closely resembles the high resolution image 

followed by the LP-ADD image and finally the RWT-ADD image. However, visual 
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inspection showed that the AWT-ADD pan sharpened image has some problem and it 

cannot be considered a good approximation of the high resolution image. A pan 

sharpened image using three decomposition levels and the substitutive technique was 

compared with these images. The spatial quality of this image was clearly better than the 

RWT-ADD, AWT-ADD, and the LP-ADD images. The metrics for this image are also 

much better than those of the additive images. Thus, for this dataset it seems that the LP-

ADD image provided only a modest solution (similar to the geovantage_ratio2 dataset). 

Table 5-7 Spectral quality metrics for the additive merger (geovantage_ratio4) 

 
Wald’s 

property 2 
RWT-SUB RWT-ADD AWT-ADD LP-ADD 

)|( 11 FBRMSE  
)|( 22 FBRMSE  
)|( 33 FBRMSE  

9.9 
9.6 
12 

100 
88 
95 

11 
11 
13 

15 
15 
17 

)|( 11 FBCorr  
)|( 22 FBCorr  
)|( 33 FBCorr  

0.98 
0.98 
0.97 

0.86 
0.84 
0.85 

0.98 
0.97 
0.97 

0.96 
0.95 
0.95 

 

5.2.5 Summary of the Additive Method 

Thus, from the above results it can be summarized that the RWT based additive 

merger is not suitable. This is due to the fact that it results in freckled images sometimes 

or too strong colors and consequently leads to a very high loss of spectral fidelity.  

The AWT and LP based additive merger gave good results when pan sharpening 

the tm-erdas2 and geovantage_ratio2 datasets. Both the methods resulted in higher 

spectral fidelity compared to the substitutive method for the tm-erdas2 dataset. However, 

the spatial quality of the pan sharpened images created by these methods for the 
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geovantage_ratio2 dataset is slightly less than that of the substitutive method. Although 

this difference, in the spatial quality can only be observed on closer inspection or at a 

higher scale.  

The AWT-ADD method could not achieve good spatial quality when used for 

sharpening the other two datasets with a higher MS-PAN resolution ratio of four. Thus it 

can be said that the AWT-ADD method is only suitable for merging images with a 

resolution ratio of two. 

The LP based additive merger is deemed the most suitable of the three additive 

methods studied. It did not give the blotchy appearance like the RWT and retained higher 

spatial quality compared to the AWT method when it was used to pan sharpen images 

with a resolution ratio of four. For the tm-erdas2 dataset it resulted in higher spectral 

fidelity than the substitutive method based on the RWT, while for the qb1 dataset the 

substitutive RWT method gave higher spectral fidelity. Later (through the experiments in 

section 5.3 that were conducted to determine the best wavelet basis for the RWT and the 

best filter for the AWT and LP) it was found that the ‘db2’ wavelet gives the highest 

spectral fidelity among all the Daubechies and biorthogonal wavelets that were selected 

for evaluation. However, for the LP it turned out that the Gaussian filter corresponding to 

a=0.375 is not the best one, but the 13-tap QMF. This could be the reason that the 

substitutive RWT method gave higher spectral fidelity for the qb1 dataset. It must be 

noted that the filter has an effect on only the spectral quality and not the spatial quality of 

the pan sharpened images.  
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Thus it can be said that the LP-ADD method results in high spectral quality pan 

sharpened images that are comparable to those produced by the RWT based substitutive 

method. It was later found that the spectral fidelity of the substitutive methods can be 

increased by using one of the advanced selection rules given in section 2.4.5 and studied 

in this chapter in section 5.6. These rules cannot be applied to the additive method. Thus, 

the substitutive method would outperform the additive methods if the selection rules are 

applied.  

The main conclusion from this experiment is that the additive method based on 

the LP is a good choice for pan sharpening, if the user can live with modest spatial 

quality. However, the additive method is restricted to images with a resolution ratio that 

is a power of two. 

5.3 Effect of the Wavelet Basis 

The effect of using different wavelet bases was studied using the Daubechies and 

biorthogonal family of wavelets. The different Daubechies wavelets used are – ‘db1’, 

‘db2’, ‘db5’, ‘db10’, and ‘db20’. The following biorthogonal filters were investigated: 

bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, 

bior3.7, bior3.9, bior4.4, bior5.5, bior6.8. 

5.3.1 Dataset – tm-erdas2 

The pan sharpened images are – sharpbilin234-2rdwts-db1-sbm-sub-sr0-whl-

hm.tif, sharpbilin234-2rdwts-db2-sbm-sub-sr0-whl-hm.tif, ···, and sharpbilin234-2rdwts-

db20-sbm-sub-sr0-whl-hm.tif, corresponding to the ‘db1’, ‘db2’, ···, ‘db20’ wavelets, 
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respectively. The spectral quality metrics of the pan sharpened images produced using 

different Daubechies wavelets are given in Table 5-8. 

Table 5-8 Spectral quality metrics for different wavelets (tm-erdas2) 

 
 ‘db1’ ‘db2’ ‘db5’ ‘db10’ ‘db20’ 

))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

1.673 
2.967 
3.025 

1.570 
2.761 
2.928 

1.557 
2.740 
2.948 

1.572 
2.772 
2.988 

1.588 
2.807 
3.024 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.988 
0.989 
0.990 

0.989 
0.991 
0.991 

0.989 
0.991 
0.991 

0.989 
0.991 
0.990 

0.989 
0.991 
0.990 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.973 
0.657 
0.663 

0.971 
0.637 
0.643 

0.971 
0.630 
0.636 

0.971 
0.629 
0.634 

0.970 
0.628 
0.634 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.967 
0.601 
0.607 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.972 
0.975 
0.975 

0.973 
0.976 
0.975 

0.973 
0.976 
0.975 

0.973 
0.976 
0.974 

0.973 
0.976 
0.974 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

2.480 
4.559 
4.858 

2.438 
4.465 
4.834 

2.447 
4.480 
4.870 

2.463 
4.510 
4.904 

2.477 
4.538 
4.931 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

 0.829  
0.822 
0.897 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

 0.869 
0.866 
0.934 

0.861 
0.857 
0.930 

0.858 
0.854 
0.928 

0.857 
0.853 
0.927 

0.856 
0.852 
0.927 

 
It is seen that according to Wald’s property 1 the ‘db5’ wavelet gives the highest 

spectral fidelity while according to the correlation and RMSE values between the 
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resampled MS and the pan sharpened images the ‘db2’ wavelet gives the highest spectral 

fidelity. It is seen that the spectral fidelity of the ‘db2’ wavelet is slightly better than 

‘db1’ and the other longer wavelets. Another observation is that as the wavelet length is 

increased after ‘db2’, the spectral fidelity decreases steadily. The inter band correlation 

among the pan sharpened bands is best preserved by the ‘db20’ wavelet. From the above 

table it is seen that the inter band correlation steadily improves as higher order wavelets 

are used. 

Next, the biorthogonal wavelets are tested. The results of only the few wavelets 

which gave better results will be given here. The interested reader can study all the 

metrics corresponding to each wavelet (e.g. sharpbilin234-2rdwts-bior2.2-sbm-sub-sr0-

whl-hm.tif, etc.) by going to each metric’s file on the disk. In summary, the biorthogonal 

wavelet that resulted in the highest spectral fidelity (in terms of RMSE between MS and 

pan sharpened image) was ‘bior2.2’. Interestingly the RMSE metrics for the ‘db2’ are 

also almost the same but slightly higher. It was further decided to investigate the 

relationship between the number of vanishing moments in the scaling function and the 

spectral fidelity. Since the number of vanishing moments of the analysis scaling function 

and the synthesis scaling function are different, this is explored by –  

i) Increasing the number of vanishing moments in the analysis scaling function 

while keeping them constant for the synthesis scaling function. In order to 

understand this effect we can look at the images and metrics’ files 

corresponding to three sets of wavelets. The first set {‘bior1.1’, ‘bior1.3’, 

‘bior1.5’} has one vanishing moment in its synthesis scaling function, the 
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second set {‘bior2.2’, ‘bior2.4’, ‘bior2.6’, ‘bior2.8’} has two vanishing 

moments in its synthesis scaling function, and finally {‘bior3.1’, ‘bior3.3’, 

‘bior3.5., ‘bior3.7’, ‘bior3.9’} has three vanishing moments.The metrics are 

not tabulated here but rather the results are just stated and conclusions made. 

Among the three sets it was observed that, just like the Daubechies wavelets, 

as the vanishing moments in the analysis scaling function are increased the 

spectral fidelity improved and then dropped again. If the RMSE between the 

original and the pan sharpened image is used as the metric for spectral fidelity 

the wavelets that gave the best spectral fidelity in each set were – ‘bior1.3’, 

‘bior2.2’, and ‘bior3.3’. The inter band correlation was found to improve for 

the higher order wavelets.  

ii) Increasing the number of vanishing moments in the synthesis scaling function 

while keeping them constant in the analysis scaling function. The wavelets to 

be tested were divided into five sets – {‘bior1.1’, ‘bior3.1’}, {‘bior1.3’, 

‘bior3.3’}, {‘bior1.5’, ‘bior3.5’}, {‘bior2.4’, ‘bior4.4’}, and {‘bior2.8’, 

‘bior6.8’}. In the first three sets the wavelets with higher number of vanishing 

moments in the synthesis scaling function gave better results while for the 

latter two the wavelets with lower num number of vanishing moments in the 

synthesis scaling function gave better results. Thus, a definite statement 

cannot be made. One reason for this anomaly may be that a set of two is too 

small to make any kind of inference. For example, in the Daubechies wavelet 

set if we had looked at only ‘db1’ and ‘db2’ one would think that higher order 
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wavelets will give better spectral fidelity while in reality the spectral fidelity 

deteriorated for the longer wavelets. However, consistent with the previous 

observations the inter band correlation improved with the increase in the 

wavelet order. 

5.3.2 Dataset – tm-vorarlberg 

The spectral quality metrics of the pan sharpened images produced using different 

wavelets are given in Table 5-9. 
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Table 5-9 Spectral quality metrics for different wavelets (tm-vorarlberg) 

 
 ‘db1’ ‘db2’ ‘db5’ ‘db10’ ‘db20’ 

))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

7.212 
6.596 
8.275 

6.848 
6.319 
7.857 

6.801 
6.293 
7.799 

6.851 
6.338 
7.856 

6.906 
6.384 
7.918 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.930 
0.944 
0.936 

0.937 
0.949 
0.943 

0.938 
0.950 
0.944 

0.937 
0.949 
0.943 

0.936 
0.948 
0.942 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.971 
0.983 
0.964 

0.969 
0.982 
0.963 

0.969 
0.981 
0.962 

0.968 
0.981 
0.962 

0.968 
0.981 
0.962 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.962 
0.975 
0.957 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.917 
0.931 
0.927 

0.924 
0.936 
0.934 

0.925 
0.937 
0.935 

0.925 
0.937 
0.934 

0.924 
0.936 
0.933 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

7.882 
7.366 
8.863 

7.553 
7.118 
8.476 

7.513 
7.096 
8.426 

7.559 
7.136 
8.480 

7.610 
7.179 
8.539 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.495 
0.666 
0.608 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.612 
0.761 
0.721 

0.591 
0.745 
0.701 

0.581 
0.738 
0.691 

0.578 
0.736 
0.687 

0.576 
0.734 
0.686 

 
From the metrics it can be seen that the ‘db5’ wavelet best observes Wald’s 

property 1 and the inter band correlation is better preserved by longer wavelets in 

general. The spectral fidelity according to the RMSE between the resampled and 

sharpened MS images is also better preserved by the ‘db5’ wavelet. 
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The analysis of the metrics of the pan sharpened images created by using the 

biorthogonal wavelets is similar to the above dataset. The biorthogonal wavelets do not 

give a higher spectral fidelity than the ‘db2’ wavelet. Increasing the number of vanishing 

moments in the analysis scaling function improves the spectral fidelity at first but then it 

remains about the same or in some cases deteriorated slightly. Since there does not seem 

to be any advantage of the biorthogonal wavelets their analysis is discontinued here 

onwards. 

5.3.3 Dataset – qb1 

The spectral quality metrics of the pan sharpened images produced using different 

wavelets are given in Table  5-10.  
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Table 5-10 Spectral quality metrics (qb1) 

 ‘db1’ ‘db2’ ‘db5’ ‘db10’ ‘db20’ 
))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

3076.698 
3036.903 
3019.591 

2913.435 
2889.491 
2877.918 

2850.800 
2829.960 
2823.664 

2844.484 
2822.475 
2817.758 

2848.002 
2824.342 
2820.270 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.929 
0.935 
0.941 

0.936 
0.941 
0.947 

0.939 
0.943 
0.949 

0.940 
0.944 
0.949 

0.939 
0.944 
0.949 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.989 
0.991 
0.965 

0.988 
0.990 
0.962 

0.988 
0.989 
0.960 

0.987 
0.989 
0.960 

0.987 
0.989 
0.960 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.983 
0.986 
0.951 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.906 
0.911 
0.916 

0.910 
0.913 
0.918 

0.910 
0.913 
0.917 

0.909 
0.913 
0.917 

0.909 
0.912 
0.917 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

3646.545 
3661.803 
3736.388 

3598.991 
3632.511 
3711.201 

3604.041 
3641.138 
3722.669 

3617.774 
3653.484 
3735.364 

3630.398 
3664.247 
3746.199 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.792 
0.838 
0.854 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.910 
0.946 
0.958 

0.900 
0.939 
0.951 

0.894 
0.934 
0.947 

0.892 
0.933 
0.946 

0.891 
0.932 
0.945 

 
For this dataset the Wald’s property 1 is best preserved by the ‘db10’ wavelet and 

the inter band correlation best preserved by longer wavelets than the shorter wavelets. 

Once again the ‘db2’ wavelet results in the minimum RMSE between the resampled and 

the sharpened MS images and it decreases as the longer wavelets are applied.   
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5.3.4 Dataset – qb-pyramids2 

The spectral quality metrics of the pan sharpened images produced using different 

wavelets are given in Table 5-11. 

Table 5-11 Spectral quality metrics (qb-pyramids2) 

 
 ‘db1’ ‘db2’ ‘db5’ ‘db10’ ‘db20’ 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.992 
0.993 
0.980 

0.991 
0.993 
0.977 

0.990 
0.992 
0.976 

0.990 
0.992 
0.976 

0.990 
0.992 
0.976 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.986 
0.989 
0.968 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.923 
0.928 
0.930 

0.925 
0.929 
0.932 

0.925 
0.929 
0.931 

0.924 
0.929 
0.931 

0.924 
0.928 
0.931 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

3535.235 
3450.662 
3642.574 

3486.659 
3417.111 
3607.764 

3490.034 
3424.223 
3616.609 

3503.715 
3437.495 
3631.526 

3515.747 
3448.492 
3643.918 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.776 
0.822 
0.829 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.880 
0.917 
0.920 

0.871 
0.910 
0.914 

0.866 
0.906 
0.910 

0.865 
0.905 
0.909 

0.864 
0.904 
0.908 

 
For this dataset the Wald’s property 1 could not be calculated because of the way 

in which the dataset was created (for details see section 4.6). However, since this 

property is studied for the remaining three datasets it is sufficient as the behavior of the 

wavelets with respect to this property is understood in general. The inter band correlation 

is better preserved by longer wavelets than the shorter wavelets. As observed in the 
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previous datasets the spectral fidelity is best preserved by the ‘db2’ wavelet and it 

decreases as the longer wavelets are applied. 

5.3.5 Summary of the Effect of Wavelet Filters 

From the above experiments it can be seen that the spectral fidelity is better 

preserved in most cases by ‘db2’ or ‘db5’ in one of the cases. Since the intermediate 

wavelets (‘db3’, ‘db4’) were not used it cannot be said with complete confidence that 

‘db2’ was the best among the Daubechies family of wavelets. However, a statement can 

be made in general about the performance of the wavelet filters as a function of the 

number of vanishing moments - wavelets with fewer vanishing moments give better 

spectral fidelity. Though Wald’s property 1 and the RMSE and CC between the 

resampled MS and pan sharpened images are intended for the same purpose – to measure 

the spectral similarity of the pan sharpened image with respect to the original MS image, 

they give slightly different answers. Wald’s property 1 indicates that slightly longer 

wavelets (‘db5’ or ‘db10’) are better for preserving the spectral fidelity, while the CC and 

RMSE between the original MS and pan sharpened images indicate that the shorter 

wavelets (‘db2’) are preferable. Nevertheless the difference in the conclusions that can be 

made based on the two different sets of metrics is minimal. Both metrics indicate that the 

spectral fidelity first improves slightly as the wavelet filter length is increased, but starts 

deteriorating after a certain length.  

The correlation between the original MS and PAN images and the correlation 

between these bands after pan sharpening is performed is given in the bottom two rows in 

each table. The correlation between the pan sharpened and PAN images is highest for the 



 

 

129
‘db1’ wavelet and least for the ‘db20’ wavelet, thus it can be concluded that the shorter 

wavelets integrate a higher amount of information from both the PAN and the MS 

images. 

5.4 Effect of Different Kernels on the LP Based Fusion 

Various categories of filters were used to pan sharpen the datasets using the LP. 

In order to observe only the effect of the filter the NULL selection rule and single band 

processing were applied. The filters compared were binomial filters, Quadrature Mirror 

Filters (QMF) and the length 5 Gaussian kernels as given by Burt et al. [Burt, 1983]. In 

this section since many filters are compared the detailed results for each dataset will not 

be tabulated for conciseness, the interested reader can look at the metrics files on the 

disk.  

5.4.1 Binomial Filters 

Binomial filters of order one to twelve were used to do the pan sharpening. From 

experiments in the datasets tm-erdas2, tm-vorarlberg2, qb1, and qb-pyramids2 it is seen 

that the shorter binomial filters provide better spectral fidelity while the spatial quality of 

all pan sharpened images seemed sufficient and identical. One exception noted was that 

the first order or 2-tap binomial filter gave artifacts in the pan sharpened image. The 

images appeared pixilated and had the stair step effect almost all over the image. 

However, one exception is the tm-erdas2 dataset where this effect was hardly visible. It 

was found that as the filter order was increased the spectral fidelity decreased. The 3-tap 

(2nd order) binomial filter resulted in the highest spectral fidelity among all the binomial 
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filters. Another interesting observation is that the even length filters have very poor 

spectral fidelity.  For e.g. the spectral fidelity of the 4-tap binomial filter was much poor 

compared to the 5-tap or even the 7-tap filter. This maybe because of the asymmetry of 

even length filters. 

5.4.2 Quadrature Mirror Filters 

Application of the QMF filters shows that the odd length QMF filters give good 

results but the even length QMF filters give artifacts. These are not very severe but they 

do exist in some regions of the image. These do not appear pixilated or stair stepped but 

rather seem to be occurring due to the smearing of spectral signatures of sharp objects 

and thus result in poor spectral quality. The QMF filters used were 5, 8, 9, 12, 13 and 16 

tap respectively. It is also seen that as the length of the odd length QMF filters is 

increased the spectral quality improves. Comparison between the best binomial filter 

(‘binom3’) and the best QMF filter (‘qmf13’) showed that the QMF filter gave higher 

spectral fidelity. Even the smallest ‘qmf5’ filter gave better spectral quality than the best 

‘binom3’ filter. Thus it can be concluded that odd length QMF filters must be preferred 

over the binomial filters. 

5.4.3 Gaussian Filters 

The length-5 Gaussian kernel proposed by Burt et al. [5] was used. Five different 

Gaussian kernels were obtained by varying the weights of the filter coefficients subject to 

certain constraints. The different filter coefficients obtained by varying the weights of the 

coefficient are given in Table 5-11. In the table each column corresponds to the filter 
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coefficients obtained by changing the weight central coefficient – a, from 0.3 to 0.6. 

When ‘a’ is increased beyond 0.5 it is seen that the border coefficients become negative 

and the filter becomes trimodal. 

Table 5-12 Various Gaussian filters 

 
Filter 

Coefficients a=0.3 a=0.375 a=0.4 a=0.5 a=0.6 

w(-2) 
w(-1) 
w(0) 
w(1) 
w(2) 

0.10 
0.25 
0.30 
0.25 
0.10 

0.0625 
0.25 
0.375 
0.25 

0.0625 

0.05 
0.25 
0.40 
0.25 
0.05 

0 
0.25 
0.5 
0.25 

0 

-0.05 
0.25 
0.6 
0.25 
-0.05 

 
The effect of varying a from 0.3 to 0.6 is that the spectral fidelity increases as ‘a’ 

increases. However, it was seen that the pan sharpened images corresponding to a=0.6 

filter have artifacts. These artifacts are quite minor and only a closer inspection identifies 

them. The only exception was the tm-erdas2 dataset otherwise these artifacts were seen in 

all the other datasets. These artifacts seem to be caused by the trimodal nature of the 

Gaussian function when a=0.6. Similarly artifacts were observed when this filter 

(Gaussian, a=0.6) was used to fuse two out of focus images. Thus the Gaussian filter 

corresponding to a=0.6 will not be considered further for LP based fusion. Thus the filter 

corresponding to a=0.5 seems the most suitable among the Gaussian filters. 

The Gaussian filter was compared to the other binomial and QMF filters. Only the 

best filters from each set were chosen i.e. the 5-tap Gaussian corresponding to a=0.5, the 

3-tap binomial filter and the 13-tap QMF filter. Even the 5-tap QMF filter is better than 

the Gaussian filters, while the quality metrics of the 3-tap binomial filter are almost equal 

to that of the Gaussian filter. 



 

 

132
5.5 Effect of Different Kernels on the AWT Based Fusion 

The same filters as those used for the LP based fusion were evaluated for the 

AWT based pan sharpening. The comparisons were done using the NULL rule.  

5.5.1 Binomial Filters 

Most of the observations made for this filter family are similar to those obtained 

by applying the LP. One exception noted is that the 2-tap binomial filter does not give 

artifacts, this is perhaps a result of avoiding the decimation step. The even length filters 

resulted in very poor spectral fidelity compared to the odd length filters. Under this 

transform the 5-tap binomial filter resulted in the best spectral fidelity in the Quickbird 

datasets qb1, and qb-pyramids2 while the 3-tap binomial filter gave the highest spectral 

fidelity for the tm-erdas2, and tm-vorarlberg2 datasets. 

5.5.2 Quadrature Mirror Filters 

It was found that in general the odd length QMF filters gave much better results 

than the even length filters. Among the odd length filters the longer filters gave higher 

spectral fidelity. The 13-tap QMF gave the highest spectral fidelity compared to other 

QMFs, except for the tm-vorarlberg2 dataset where the 9-tap QMF gave higher spectral 

fidelity.  

5.5.3 Gaussian Filters 

A study of the Gaussian filters showed that as ‘a’ was increased from 0.3 to 0,5 

the spectral fidelity of the pan sharpened images improved but it deteriorated for a=0.6. 
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The spectral fidelity of the images produced by the a=0.6 Gaussian filter is worse than 

that produced by the filter corresponding to a=0.3. However, no artifacts are seen in the 

pan sharpened image produced by the a=0.6 Gaussian filter. One exception to this is the 

tm-erdas2 dataset in which the spectral fidelity of the pan sharpened image corresponding 

to the a=0.6 filter was higher than the a=0.5 filter. In the qb-pyramids2 dataset it was seen 

that the color of some of the buildings and trees had spilled over to the neighboring 

regions in the pan sharpened image corresponding to this filter. This can be seen by 

looking at the file sharp2-3awts-0.6-sbm-sub-sr0-whl-hm.tif. 

5.5.4 Summary 

Comparing the behavior of the filters applied under the AWT with their behavior 

under the LP it is seen that the behavior showed consistency under the LP. For e.g. the 3-

tap binomial filter was superior to the rest of the binomial filters under the LP while 

under the AWT sometimes the 5-tap was better than the rest for two of the datasets.  

An inter comparison of the spectral fidelity metrics of the different filter families 

for the LP showed that the best QMF (13-tap) outperformed the best binomial filter (3-

tap) and the 3-tap binomial filter outperformed the best Gaussian filter (a=0.5) for all the 

datasets studied. Under the AWT no such consistent pattern was observed. However, the 

a=0.5 Gaussian filter (a=0.6 in case of tm-erdas2) gave higher spectral fidelity compared 

to the best QMF or binomial filter always. 
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5.6 The Selection Rules 

Various selection rules in the context of the substitutive method were described in 

section 2.4.5 that could be used to increase the spectral fidelity of the pan sharpened 

images, out of which three primary rules are compared here – MAS, WBS, and WBV 

with NULL rule as the reference. The RWT will be used for the pan sharpening although 

the results should be applicable for the other transforms too.  

In order to apply the MAS, WBS and WBV rules the MS images must be 

resampled to the PAN image’s size using a resampling technique that results in a smooth 

image. A bilinear or bicubic interpolation technique is suitable for this purpose but not 

the nearest neighbor technique since it results in a blocky and very pixilated looking 

resampled image. If the NN resampled MS image is used, the output pan sharpened 

image is also blocky and pixilated in certain areas where the coefficients of the MS image 

are chosen over the coefficients of the PAN image by the selection rule. The WBV or 

WBS schemes can be applied on a sliding window of 3x3, 5x5 or in general mxm  pixels. 

It was found for the WBS and WBV rules that as the window size is increased the 

spectral fidelity starts to decrease, thus the optimal window size is found to be 3x3. 

First the selection rules will be evaluated and the best rule will be compared to the 

advanced model methods i.e. the AABP model.  

5.6.1 Dataset – tm-erdas2  

Table 5-13 shows the spectral quality metrics of the pan sharpened images of this 

dataset obtained by applying the four selection rules. The four pan sharpened images 

corresponding to the NULL, MAS, WBS and WBV rules are - sharpbilin234-2rdwts-db2-
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sbm-sub-sr0-whl-hm.tif, sharpbilin234-2rdwts-db2-sbm-sub-sr1-whl-hm.tif, 

sharpbilin234-2rdwts-db2-sbm-sub-sr2-w3-whl-hm.tif and sharpbilin234-2rdwts-db2-

sbm-sub-sr3-w3-whl-hm.tif respectively. 

Table 5-13 Spectral quality metrics for various rules (tm-erdas2) 

 
 NULL MAS WBS WBV 

))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

1.570 
2.761 
2.928 

1.306 
2.414 
2.715 

1.383 
2.53 
2.772 

1.428 
2.610 
2.842 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.989 
0.991 
0.991 

0.992 
0.993 
0.992 

0.991 
0.992 
0.992 

0.991 
0.992 
0.991 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.971 
0.637 
0.643 

0.970 
0.632 
0.637 

0.970 
0.632 
0.638 

0.970 
0.634 
0.639 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.967 
0.601 
0.607 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.973 
0.976 
0.975 

0.978 
0.979 
0.978 

0.977 
0.979 
0.977 

0.976 
0.977 
0.976 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

2.438 
4.465 
4.834 

2.229 
4.183 
4.613 

2.273 
4.262 
4.670 

2.341 
4.370 
4.769 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

 0.829  
0.822 
0.897 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.861 
0.857 
0.930 

0.858 
0.855 
0.929 

0.858 
0.855 
0.928 

0.859 
0.856 
0.929 
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5.6.2 Dataset – tm-vorarlberg 

Table 5-14 gives the spectral quality metrics for this dataset. The four pan 

sharpened images corresponding to the NULL, MAS, WBS and WBV rules are - 

vbg_sharp123-3rdwts-db2-sbm-sub-sr0-whl-nohm.tif, vbg_sharpbilin123-3rdwts-db2-

sbm-sub-sr1-whl-nohm.tif, vbg_sharpbilin123-3rdwts-db2-sbm-sub-sr2-w3-whl-nohm.tif 

and vbg_sharpbilin123-3rdwts-db2-sbm-sub-sr3-w3-whl-nohm.tif respectively. 
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Table 5-14 Spectral quality metrics for various rules (tm-vorarlberg) 

 
 NULL MAS WBS WBV 

))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

6.848 
6.319 
7.857 

5.40 
4.968 
5.265 

5.529 
5.124 
5.394 

5.563 
5.185 
5.413 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.937 
0.949 
0.943 

0.962 
0.969 
0.975 

0.960 
0.967 
0.973 

0.959 
0.966 
0.973 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.969 
0.982 
0.963 

0.967 
0.975 
0.958 

0.967 
0.974 
0.957 

0.967 
0.974 
0.957 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.963 
0.977 
0.958 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.924 
0.936 
0.934 

0.953 
0.961 
0.970 

0.952 
0.960 
0.970 

0.952 
0.959 
0.970 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

7.553 
7.118 
8.476 

5.990 
5.632 
5.720 

6.051 
5.718 
5.748 

6.084 
5.777 
5.767 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.495 
0.666 
0.608 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.591 
0.745 
0.701 

0.578 
0.734 
0.677 

0.578 
0.734 
0.676 

0.577 
0.734 
0.676 

 

5.6.3 Dataset – qb1 

Table 5-15 gives the spectral quality metrics for this dataset. The four pan 

sharpened images corresponding to the NULL, MAS, WBS and WBV rules are – 

qb_sharp-3rdwts-db2-sbm-sub-sr0-whl-hm.tif, qb_sharpbilin-3rdwts-db2-sbm-sub-sr1-
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whl-hm.tif, qb_sharpbilin-3rdwts-db2-sbm-sub-sr2-w3-whl-hm.tif and qb_sharpbilin-

3rdwts-db2-sbm-sub-sr3-w3-whl-hm.tif respectively. 

Table 5-15 Spectral quality metrics for various rules (qb1) 

 
 NULL MAS WBS WBV 

))('|)(( 11 lFlBRMSE  
))('|)(( 22 lFlBRMSE  
))('|)(( 33 lFlBRMSE  

2913.435 
2889.491 
2877.918 

1855.394 
1820.597 
1845.612 

1923.831 
1898.360 
1921.780 

2005.936 
1986.232 
2012.238 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.936 
0.941 
0.947 

0.975 
0.977 
0.978 

0.973 
0.975 
0.977 

0.970 
0.973 
0.974 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.988 
0.990 
0.962 

0.987 
0.989 
0.959 

0.987 
0.989 
0.958 

0.987 
0.989 
0.959 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.983 
0.986 
0.950 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.910 
0.913 
0.918 

0.941 
0.944 
0.944 

0.940 
0.942 
0.943 

0.937 
0.939 
0.940 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

3598.991 
3632.511 
3711.201 

2854.547 
2867.469 
3003.181 

2876.325 
2892.723 
3027.5 

2941.363 
2964.019 
3101.738 

),( *
1 ABCorr  

),( *
2 ABCorr  

),( *
3 ABCorr  

0.792 
0.838 
0.854 

)|( 1 AFCorr  
)|( 2 AFCorr  

)|( 3 AFCorr  

0.900 
0.939 
0.951 

0.859 
0.9 

0.915 

0.860 
0.901 
0.916 

0.862 
0.903 
0.918 
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5.6.4 Performance Evaluation of the Selection Rules 

The MAS, WBS and WBV rules show significant improvement in the spectral 

fidelity compared to the NULL rule. The MAS rule results in the highest spectral fidelity 

followed by the WBS and the WBV rule. The performance of the WBS rule is better than 

the WBV rule more close to the MAS rule. This maybe because this rule uses the 

selection action like the MAS rule when the match measure is below the threshold and 

since the threshold was set quite high at 0.75 it must be resulting in selection most of the 

time. The only difference is that the salience or energy of a coefficient is measured over a 

small neighborhood around the pixel rather than only the individual coefficient as in the 

MAS scheme. When the match measure exceeds the threshold the weighted average of 

the two coefficients is taken thus further retaining the information coming from the MS 

image. 

A relative comparison between the metrics of the MAS and the NULL rule was 

done for the three datasets. The same was done for the comparison of MAS and WBV 

rules. The relative improvement in the spectral fidelity due to the MAS rule is given in 

Table 5-16. The three values in each cell are for the three bands. It is seen that the use of 

MAS over NULL rule shows significant improvement particularly in the last two datasets 

while it is smaller in the first dataset. The improvement from MAS rule over the WBV 

rule is very less for the last two datasets, however for the first dataset the relative 

improvement due to MAS over NULL and WBV is about the same magnitude. In any 

case the MAS rule should be preferred due to its lower computational complexity and 

better spectral fidelity. 
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Table 5-16 Relative improvement of MAS over NULL and WBS rules 

 
Dataset MAS over NULL MAS over WBV 

tm-erdas2 
8.57 
6.32 
4.57 

4.78 
4.28 
3.27  

tm-vorarlberg 
20.69 
20.88 
32.52 

1.55 
2.51 
0.81  

qb1 
20.68 
21.06 
19.08 

2.95 
3.26 
3.18  

 
The spatial quality of the pan sharpened images produced by using all the rules 

seems similar and thus the MAS rule must be favored since it always results in the 

highest spectral fidelity and is computationally fast. However on close inspection of some 

of the pan sharpened images it was found that the MAS, WBS and WBV rules have some 

problems. In the tm-vorarlberg dataset it was found that using the MAS, WBS and WBV 

scheme resulted in pan sharpened images that had pixilated edges, i.e. it appeared 

unsatisfactorily merged in some regions. In an attempt to eliminate this effect in the 

WBV scheme the window size was increased to 5x5 without any success. This 

phenomenon is illustrated in Figure 5-9, which shows the region around the Rhine River. 

The interested reader can look at all the three images corresponding to the MAS, WBS, 

and WBV rules and see that this effect is observed along the entire length of the river 

from North to South. The pan sharpened image corresponding to the WBS scheme is not 

shown as it has similar shortcomings like the MAS and WBV rules. 

In the other qb1 dataset some of the automobiles on the road in the bottom right 

hand corner have a smeared effect which is not present in the original PAN image. The 
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pan sharpened image created with the NULL rule is free of this effect. Although this 

problem is not very serious because it can hardly be observed at the original scale of the 

image but quite obvious when the images are observed at a smaller scale or only to a 

keen observer, this is shown in Figure 5-10. The pan sharpened image corresponding to 

the WBS rule is not shown here as it is similar to the MAS or WBV images. The original 

MS images when resampled have a slightly smeared effect around sharp structures that 

have small spectral signatures. This smearing seems to be retain in the pan sharpened 

images created using the MAS, WBS or WBV rules because its energy exceeds the 

energy of the coefficients coming from the PAN image. 

Though no such effect was observed for the tm-erdas2 dataset it shows that the 

selection rules should be applied with caution as they can give slight artifacts in the pan 

sharpened images sometimes. This also goes on to demonstrate the importance of 

working with more than one dataset.  
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(a) Pan sharpened image (NULL rule) 

 

(b) The PAN image 

 

(c) Pan sharpened image (MAS rule) 

 

(d) Pan sharpened image (WBV rule) 

Figure 5-9 Pan sharpened images from using various selection rules (tm-vorarlberg) 
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(a) The PAN image 

 

(b) The pan sharpened image (NULL rule) 

 

(c) Pan sharpened image (MAS rule) 

 

(d) Pan sharpened image (WBV rule) 

Figure 5-10 Pan sharpened images from using various selection rules (qb1) 

The above datasets were also pan sharpened using the AWT scheme and the 

NULL, MAS, WBS and WBV rules. The findings are similar to those obtained from the 

RWT method. The spectral fidelity of the MAS rule was highest followed by the WBS 

and WBV rules. The problems with the smearing of small spectral signatures in the qb1 

dataset and the stair stepped effect in the tm-vorarlberg data were also seen, which shows 

that changing the MRA transform does not improve the spatial quality. 
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5.7 The AABP Model 

The AABP model was described in section 2.4.6.2. There are two variants of this 

model, AABP-ADD based on the LP which is additive and the other AABP-SUB based 

on the RWT which is substitutive. Both the models are implemented and studied here. 

5.7.1 AABP-ADD  

In the additive AABP model only the PAN image is decomposed n times where n 

is the resolution ratio of the MS and PAN images. However, initial results with this 

scheme were discouraging. The pan sharpened images had artifacts all over the images.  

In an attempt to eliminate the artifacts I tried some variations of the scheme 

without any success. For example, different thresholds were used – θ=-1, θ=0.2, θ=0.4, 

and θ=0.8 to control the injection of the details in to the pan sharpened image. A 

threshold of -1 corresponds to unconditional injection, while as the threshold increases 

fewer coefficients are added to the MS image. Another variation that was tried was to 

omit the scaling of the detail coefficients by the LG factor but this too did not help to 

improve the results. The interested reader can look at the pan sharpened images in the tm-

erdas2 and the geovantage_ratio2 datasets corresponding to this method (e.g., sharp-

1laps-elp11-sbm-aabp-9--1-whl-nohm.tif, sharp-1laps-elp11-sbm-aabp-9-0.8-whl-

nohm.tif in the tm-erdas2 dataset). 

5.7.2 AABP-SUB 

The AABP-SUB model was then applied to merge the tm-erdas2 and 

geovantage_ratio2 datasets. The same window size of 9x9 and thresholds θ=-1, θ=0.2, 
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θ=0.4, and θ=0.8 were used. The corresponding pan sharpened images are sharpbilin234-

1rdwts-db2-sbm-aabp-9--1-whl-nohm.tif, sharpbilin234-1rdwts-db2-sbm-aabp-9-0.4-

whl-nohm.tif, and sharpbilin234-1rdwts-db2-sbm-aabp-9-0.8-whl-nohm.tif in the tm-

erdas2 folder. The pan sharpened images for the geovantage_ratio2 dataset are - sharp-

1rdwts-db2-sbm-aabp-9--1-whl-nohm.tif, sharp-1rdwts-db2-sbm-aabp-9-0.4-whl-

nohm.tif, and sharp-1rdwts-db2-sbm-aabp-9-0.8-whl-nohm.tif. Though these images 

retain the spectral information of the original MS image, they suffer from poor spatial 

quality. The images appear blurry compared to the PAN image or the pan sharpened 

image created using two decomposition levels and the substitutive method for this 

dataset. 

5.7.3 Summary of the AABP Model 

Both the additive and the substitutive AABP models resulted in poor spatial 

quality, the additive model was the worse of the two. This is highly contradictory to the 

published results of the authors and requires further investigation. Since this model did 

not give good results there is no point in comparing its spectral quality with that provided 

by the additive or substitutive methods studied earlier. 

5.8 Comparisons between the RWT, AWT and the LP 

In this section the spectral quality of the RWT, AWT, and LP pan sharpened 

images are compared in order to decide which one gives the highest spectral fidelity. The 

comparison of metrics is restricted to RMSE(B* | F) for simplicity as the use of Wald’s 

property 1 metrics also lead to similar conclusions. The ‘db2’ wavelet is used for the 
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RWT, the Gaussian filter corresponding to a=0.5 for the AWT, and the 13-tap QMF for 

the LP.  

Table 5-17 Some properties of the RWT, AWT, and the LP 

 
 RWT AWT LP 

Directional 

selectivity 
3 none none 

Decimation none none 
The approximation images are subsampled by a 

factor of 2 at each scale 

Filter 

Daubechies, 

Biorthogonal 

wavelets 

The AWT and LP use the same filters but these are 

different from those used in the RWT or DWT for e.g. 

Gaussian, binomial, QMF. 

 

5.8.1 Comparisons under the NULL Rule 

Table 5-18 gives the spectral fidelity metrics of the three transforms under the 

NULL rule. The three values in each cell denote the metrics for the three bands; this 

convention is used throughout the remainder of this chapter. It is seen that the spectral 

fidelity of the RWT is the highest, the LP is the second best and its spectral fidelity is 

quite close to the RWT. The AWT provides the least spectral fidelity compared to the LP 

and the RWT. Table 5-19 gives the relative improvement in the spectral fidelity for the 

RWT and LP with the metrics of the AWT as the reference. The improvement for the tm-

vorarlberg2 dataset is the highest, around 20% while for the other three datasets it is 

somewhat less around 10-15%. 
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Table 5-18 Spectral quality metrics of RWT, AWT, and LP under NULL rule 

 
Dataset LP AWT RWT 

tm-erdas2 2.507 4.623 4.963 2.818 5.253 5.363 2.438 4.465 4.834 

tm-vorarlberg2 7.449 7.081 8.515 9.539 8.749 10.775 7.439 7.034 8.305 

qb1 3709 3740 3814 4206 4145 4192 3599 3633 3711 

qb-pyramids2 3572 3503 3698 3994 3833 4031 3487 3417 3608 

 

Table 5-19 Relative improvement of LP and RWT over the AWT under NULL rule 

 

Dataset 
LP 

(%) 

RWT 

(%) 

tm-erdas2 
11.04 11.99 7.46 13.48 15 9.86  

tm-vorarlberg2 
21.91 19.07 20.97 22.01 19.6 22.92  

qb1 
11.82 9.77 9.02 14.43 12.35 11.47  

qb-pyramids2 
10.57 8.61 8.26 12.69 10.85 10.49  

 

5.8.2 Comparisons under the MAS Rule 

Next the spectral fidelity provided by these transforms under the MAS rule is 

compared. The relative improvements due to the LP and RWT over the AWT are given in 

Table 5-20 for the tm-erdas2, tm-vorarlberg2, and the qb1 dataset. It is observed that the 

improvement in spectral fidelity provided by the RWT over the AWT under the MAS 

rule is significant. Although the improvement of the LP over the AWT is good for the tm-

vorarlberg2 dataset, it is very small for the qb1 dataset and even negative for the tm-
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erdas2 dataset. The main point to be noted from the comparisons made in Table 5-19 and 

Table 5-20 is that the relative improvements of LP and RWT with respect to the AWT 

have reduced by applying the MAS rule. It is seen that the AWT based pan sharpening 

benefits more from the use of the MAS rule compared to the NULL rule.   

Table 5-20 Relative improvement of LP and RWT over the AWT under MAS rule 

 

Dataset 
LP 

(%) 

RWT 

(%) 

tm-erdas2 
-0.62 1.57 -3.51  7.4 9.03 2.56  

tm-vorarlberg2 
13.76 13.15 15.12  16.43 17.06 21.18  

qb1 
3.17 2.49 2.43  8.59 7.35 6.5  

 

Thus the main conclusion to be drawn from this analysis is that the RWT provides 

the highest spectral fidelity compared to the AWT or the LP.  

5.9 Effect of Directional Selectivity 

The Steerable Pyramid Transform (SPT) was used to pan sharpen the datasets. In 

this experiment the number of orientation bands in the transform is varied between one 

and six and the MAS rule is applied to choose the high frequency coefficients in order to 

understand the effect of the directional selectivity. For each dataset, the other parameters 

of the pan sharpening process like the application of the histogram match and the number 

of decomposition levels used are kept the same as when the RWT or the LP was used to 

process it. 
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Table 5-21 gives the spectral quality metrics of the tm-erdas2 dataset. The first 

column shows the metrics for the case when the NULL selection rule is applied. In this 

case varying the number of oriented bands does not affect the output results, since all the 

high frequency coefficients come from the PAN image.  

Table 5-21 Spectral quality metrics for the SPT using K orientation bands (tm-erdas2) 

 
 NULL K=1 K=2 K=3 K=4 K=6 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.972 
0.648 
0.654 

0.971 
0.643 
0.649 

0.971 
0.643 
0.649 

0.971 
0.643 
0.649 

0.971 
0.643 
0.649 

0.971 
0.643 
0.649 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.967 
0.601 
0.607 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.965 
0.968 
0.968 

0.972 
0.972 
0.972 

0.972 
0.973 
0.972 

0.972 
0.973 
0.972 

0.972 
0.973 
0.972 

0.972 
0.973 
0.972 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

2.811 
5.219 
5.43 

2.562 
4.885 
5.235 

2.557 
4.876 
5.231 

2.551 
4.868 
5.226 

2.551 
4.868 
5.226 

2.550 
4.865 
5.225 

 
From the above table it is seen that as the number of oriented bands is increased 

from one to three there is improvement in the spectral fidelity. However, when K is 

increased beyond three there is very little improvement. Surprisingly, the inter band 

correlation does not change much as the number of orientation bands are changed. The 

relative improvement in the spectral fidelity as the oriented bands are increased is given 

in Table 5-22, which shows the improvement in percentage as K is increased 

successively. These metrics show that there is practically no point in using more than 

three oriented bands. 
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Table 5-22 Relative improvement in spectral fidelity as a function of K (tm-erdas2) 

 
 

Percentage 

Improvement in 

NULL K=1
K=1  

K=2 

K=2  

K=3 

K=3  

K=4 

K=4  

K=6 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

8.858 
6.40 
3.59  

0.195 
0.184 
0.076  

0.234 
0.164 
0.096  

0 
0 
0  

0.039 
0.062 
0.019  

 
The same experiment is repeated on the qb1 dataset. The other parameters of the 

pan sharpening process are as given previously – three decomposition levels, single band 

processing, and performing the histogram match. Table 5-23 gives the spectral quality 

metrics for this dataset and Table 5-24 gives the relative improvement in percentage as 

the number of oriented bands of the SPT is increased. Similar to the previous dataset the 

improvement obtained by using just K=1 and MAS rule over the NULL rule is 

significant. There is hardly any improvement when K is increased beyond three. The inter 

band correlation slightly improves as K is increased to 2 but remains constant thereafter 

as the number of orientation bands are increased further. 
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Table 5-23 Spectral quality metrics for the SPT using K orientation bands (qb1) 

 
 NULL K=1 K=2 K=3 K=4 K=6 

),( 21 FFCorr  
),( 32 FFCorr  
),( 13 FFCorr  

0.989 
0.991 
0.964 

0.987 
0.989 
0.960 

0.988 
0.990 
0.961 

0.988 
0.990 
0.961 

0.988 
0.990 
0.961 

0.988 
0.990 
0.961 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.983 
0.986 
0.950 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.895 
0.902 
0.908 

0.924 
0.928 
0.929 

0.925 
0.929 
0.930 

0.925 
0.929 
0.930 

0.925 
0.929 
0.930 

0.925 
0.929 
0.930 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

3787 
3755 
3859 

3295 
3282 
3436 

3274 
3269 
3420 

3270 
3262 
3413 

3261 
3257 
3415 

3256 
3255 
3410 

 

Table 5-24 Relative improvement in spectral fidelity as a function of K (qb1) 

 
 

Percentage 

Improvement in 

NULL K=1
K=1  

K=2 

K=2  

K=3 

K=3  

K=4 

K=4  

K=6 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

12.99 
12.6 

10.97  

0.64 
0.40 
0.47  

0.12
0.21
0.20 

0.28 
0.15 

-0.06  

0.15
0.06
0.15 

 

If practical considerations are taken into account, an improvement of the order 

less than 1% would be considered ineffective. Then K=1 seems to be sufficient for pan 

sharpening when the SPT is used. However, there is definitely a small improvement in 

the spectral fidelity as the number of orientation bands is increased. This experiment 
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proves that higher directional selectivity results in little improvement in the spectral 

fidelity. The findings from the tm-vorarlberg2 dataset are also similar, the improvement 

in the spectra fidelity when K is increased beyond two are less than 1%. 

The main purpose of these experiments was to understand the role that directional 

selectivity played in improving the performance of RWT over the LP or the AWT. The 

RWT has three detail images in three directions – H, V, D and the LP has one detail 

image. Thus the effect of incrementing the number of orientation bands from K=1 to K=3 

must be understood in order to make a fair evaluation. Table 5-25 shows the spectral 

quality improvement obtained by incrementing the number of orientation bands from 

K=1 to K=3. The improvement is quite small, on the order of 1%. The spectral fidelity of 

the RWT was better than the LP by about 2-3%, thus it can be concluded that directional 

selectivity is only partly responsible for the superior performance of the RWT over the 

LP or the AWT. The choice of the mother wavelet is a more critical factor in determining 

the spectral fidelity of the pan sharpened image. For example, if the RWT and LP were 

compared by using the ‘db20’ wavelet and the 13-tap QMF respectively, the percentage 

improvement due to the RWT would have been much less. Similarly if a Gaussian filter 

were used for the LP and the ‘db2’ wavelet for RWT in order to make comparisons the 

relative improvement due to the RWT over LP would be much higher.  
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Table 5-25 Spectral quality improvement in the SPT method (K=1 to K=3) 

 
 

Percentage Improvement in 

tm-erdas2 qb1 

),( 1
*
1 FBRMSE  

),( 2
*
2 FBRMSE  

),( 3
*
3 FBRMSE  

0.43 

0.35 

0.17 

1.06 

0.76 

0.61 

 

5.10 Estimation of the Minimum Number of Decomposition Levels 

In order to estimate the minimum number of decomposition levels in MRA based 

pan sharpening for a particular resolution ratio of the images, experiments were done on 

datasets created from the ‘geovantage’ imagery. Four different resolution ratios n=2, 3, 4, 

and 5 were used. Since the higher resolution MS image is available for comparison for 

these datasets (the original aerial photograph) the task of analyzing the pan sharpened 

images is simplified somewhat. 

In order to see if the findings from the above datasets can be extended to MS-

PAN image pairs where the higher resolution MS image is not available for comparison, 

the tm-erdas2 and qb1 datasets are also studied. The following sections will describe the 

results obtained for each of the datasets. 

5.10.1 Dataset – geovantage_ratio2 

This dataset has a resolution ratio of two. The images were pan sharpened with 

the RWT based substitutive method. Nine decomposition levels – 1, 2, 3 … 9 were used, 
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thus nine pan sharpened images are created. Hypothetically an image of size NxN can be 

decomposed up to at most log2N levels, 10 decomposition levels are the maximum for a 

600x600 image (for image sizes not a power of two the next higher power of two integer 

is considered as N). Since the images are 600x600, they can be decomposed ten times. 

However, after 7 or 8 levels the computation becomes excessive and thus, decomposition 

levels up to nine are only considered. Also, the difference is negligible between 9 and 10 

decomposition levels results. The pan sharpened images are compared to the higher 

resolution original MS image by using Wald’s property 2. The results for this are given in 

Table 5-26. The three values in each cell are for the three bands. 

Table 5-26 Wald’s property 2 and TE metrics (geovantage_ratio2) 

 
L RMSE Correlation True Edges (%) 

1 15, 14, 16 0.96 0.95 0.95 35 43 34 

2 12 11 13 0.98 0.97 0.97 68 68 64 

3 8.8 8.5 10 0.99 0.98 0.98 80 75 71 

4 7.7 7.3 9.1 0.99 0.99 0.99 83 76 72 

5 7.9 7.3 9.0 0.99 0.99 0.99 84 76 72 

6 8.6 7.7 9.3 0.99 0.99 0.98 84 76 72 

7 9.4 8.3 9.8 0.99 0.98 0.98 85 76 73 

8 10 8.7 10 0.98 0.98 0.98 85 76 73 

9 10 8.8 10 0.98 0.98 0.98 85 76 73 
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It is seen that pan sharpened images with L=1 have very high RMSE and also a 

poor spatial quality. As L (decomposition levels) is increased up to 4 the RMSE 

decreases and the correlation also improves. Thus, by looking at Wald’s property 2 

metrics L=4 seems to be the optimal choice and if L is increased beyond 4 the spectral 

quality starts degrading. Thus L=4 can be considered the optimal decomposition level for 

images with n=2. 

The pan sharpened images were also visually compared with the original image. 

The spatial quality of the pan sharpened image created by L=1 was not very good, it 

appeared blurry. Some of the small structures on the rooftops of a building that were 

separated in the original image appeared joined in this image. These are shown in Figure 

5-11. 

Pan sharpened images created with L=2 or higher were much better, and the 

structures appear disjoint as in the original image. This is also seen from the significant 

increase in the number of edges extracted from the image. No changes can be noted 

visually in the pan sharpened images created with L=2 and higher. A comparison of the 

edge metrics of the pan sharpened images created by using L=2 and 3 respectively shows 

that significantly more edges have been retained in the pan sharpened image created by 

using L=3. Thus, if the user is satisfied with modest spatial quality and if computational 

power and achieving the highest spectral fidelity is an important criterion, L=2 would be 

a better choice otherwise according to the edge metrics L=3 will give sharper images with 

better spatial quality. The increase in the edge metrics beyond L=3 is little. 
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(a) The original MS 

image 

 
(b) Pan sharpened 

image, L=1 

 
(c) Pan sharpened 

image, L=2 

 
(d) Pan sharpened 

image, L=3 

Figure 5-11 The original and various pan sharpened images for dataset I 

5.10.2 Dataset – tm-erdas2  

The second dataset is the actual TM MS-PAN image pari. Images were pan 

sharpened using nine different decomposition levels: L=1, 2, 3… 9. The results for the 

pan sharpened images are presented in Table 5-27. In order to conserve space the metrics 

for L=6, 7, 8 are not presented here onwards. These values lie between those of L=5 and 

L=9.  
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Table 5-27 Spectral quality and TE metrics (tm-erdas2) 

 
L 1 2 3 4 5 9 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

1.0 
1.0 
1.0 

0.99 
0.99 
0.99 

0.98 
0.99 
0.99 

0.97 
0.99 
0.98 

0.96 
0.98 
0.97 

0.96 
0.98 
0.95 

),( 21 FFCorr  
),( 32 FFCorr  

),( 13 FFCorr  

0.97 
0.61 
0.62 

0.96 
0.62 
0.63 

0.96 
0.64 
0.65 

0.97 
0.66 
0.66 

0.97 
0.69 
0.67 

0.97 
0.72 
0.68 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.97 
0.60 
0.61 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.98 
0.99 
0.99 

0.96 
0.98 
0.98 

0.95 
0.98 
0.97 

0.94 
0.97 
0.97 

0.94 
0.97 
0.96 

0.93 
0.97 
0.94 

True Edges (%) 
57 
58 
58 

63 
66 
71 

63 
66 
73 

62 
65 
74 

62 
65 
74 

61 
65 
75 

  

Visual analysis showed that the pan sharpened image produced by keeping L=1 is 

quite blurry in certain regions, which is also reflected in the edge metric. The edge metric 

is more or less constant after L is increased beyond 2. Thus the optimal choice would be 

L=2 since the spectral quality of the image does not degrade much compared to L=1. In 

this case a higher resolution truth image is not available, and thus the choice of the 

optimal decomposition level is difficult. The choice must be made based on both the 

spectral and spatial quality metrics. It is seen that as the decomposition levels increase, 

the spatial quality improves and saturates after a certain number of decompositions. 

While at the same time it is known that the spectral similarity with respect to the low 

resolution MS images decreases. According to Wald’s property 2 the pan sharpened 
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images are approaching the ideal high resolution MS image as L is increased to 3 or 4, 

which is good. However, the spectral similarity with respect to the original MS images 

decreases. 

Thus, it is seen that a different choice of metrics gives a different optimal 

decomposition level. It is recommended that if the pan sharpened images are to be used 

for automated classification where the spectral signatures from the original low resolution 

MS images will be used, then the lower decomposition levels are recommended (L=2). 

This is because it preserves the radiometry of the original image well and delivers 

sufficient spatial quality at the same time. 

5.10.3 Dataset – geovantage_ratio3 

This dataset has a resolution ratio of three. The spectral and spatial quality metrics 

of the various pan sharpened images are given in Table 5-28. 

Table 5-28 Wald’s property 2 and TE metrics (geovantage_ratio3) 

 
L RMSE Correlation True Edges (%) 

1 12 12 13 0.97 0.97 0.97 56 53 61  

2 8.9 9 11 0.99 0.98 0.98 81 76 73 

3 7.3 7.2 8.9 0.99 0.99 0.99 88 79 77 

4 7 6.9 8.5 0.99 0.99 0.99 90 79 77 

5 7.5 7.2 8.7 0.99 0.99 0.99 90 79 77 

9 9.8 8.8 10 0.99 0.98 0.98 91 79 77 
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A choice of L=4 gives the minimum RMSE and the highest possible spatial 

quality. The correlation and RMSE start deteriorating for L=5 or higher, thus the metrics 

for L=6, 7, 8 are not given. However, the RMSE values for L=3 are not significantly 

different from those of L=4. Thus, L=3 or 4 would be an optimal choice for pan 

sharpening images with a resolution ratio of 3. 

Pan sharpened images produced from L=1 were blurry and the shape of many 

structures could not be reconstructed correctly. Many features in the pan sharpened image 

appeared smeared and two nearby objects appeared joined when in fact they are separated 

by a small distance. Pan sharpened images produced from L=2 appeared to be 

satisfactorily merged. They were sharp and all the details present in the original color 

photograph were evident. The edge metrics shows a higher amount of improvement in 

first band when L is increased from 2 to 3 while the improvement for the other two bands 

is lesser and quite insignificant.  

A literature search revealed that Lemeshewsky [18] also used a RWT with three 

decomposition levels to merge images with n=3. The images were a TM MS (30 m) and a 

SPOT PAN (10 m). 

5.10.4 Dataset – geovantage_ratio4 

This dataset is a MS-PAN image pair with ratio four. The spectral and spatial 

quality metrics of the various pan sharpened images are given in Table 5-29. 
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Table 5-29 Wald’s property 2 and TE metrics (geovantage_ratio4) 

 
L RMSE Correlation True Edges (%) 

1 18 17 19 0.94 0.93 0.94 44 44 43 

2 14 14 16 0.96 0.96 0.96 75 75 74 

3 10 9.9 12 0.98 0.98 0.97 88 85 83 

4 8.1 8 10 0.99 0.99 0.98 91 85 84 

5 8 7.7 9.7 0.99 0.99 0.98  92 85 84 

9 10 9.1 11 0.98 0.98 0.98 93 85 83 

 
In this case a choice of L=4 or 5 seems the optimal choice. The difference in 

terms of RMSE between L=4 or 5 is insignificant, thus practically L=4 is a better choice. 

The correlation and RMSE start deteriorating for L=6 or higher. As noted previously, pan 

sharpened images from L=1 were blurry. Though the images from L=2 are not blurry, 

they too have a smearing effect in some parts of the image. This is shown in Figure 5-12 

where it is seen that the road appears slightly unmerged. Thus, visually a value of L=3 

seems sufficient to pan sharpen images with a resolution ratio of 4. If the edge metrics are 

used to determine the minimum ‘L’ they also predict that a value of L=3 is sufficient as 

the improvement in edge metrics beyond L=3 is insignificant. 
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(a) The original MS image 

 
(b) Pan sharpened image, L=1 

 
(c) Pan sharpened image, L=2 

 
(d) Pan sharpened image, L=3 

Figure 5-12 The original and pan sharpened images for dataset IV 

5.10.5 Dataset – qb1 

The fifth dataset is a Quickbird MS-PAN pair, which also has a resolution ratio of 

4. The metrics for the pan sharpened images of this dataset are given in Table 5-30. 
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Table 5-30 Spectral quality and TE metrics (qb1) 

 
L 1 2 3 4 5 9 

))('|)(( 11 lFlBCorr  
))('|)(( 22 lFlBCorr  
))('|)(( 33 lFlBCorr  

0.96 

0.96 

0.97 

0.96 

0.96 

0.97 

0.94 

0.94 

0.94 

0.91 

0.9 

0.91 

0.90 

0.89 

0.90 

0.88 

0.85 

0.87 

),( 21 FFCorr  
),( 32 FFCorr  

),( 13 FFCorr  

0.98 

0.99 

0.95 

0.98 

0.99 

0.95 

0.98 

0.99 

0.95 

0.98 

0.99 

0.96 

0.98 

0.99 

0.95 

0.98 

0.99 

0.95 

),( 21 BBCorr  
),( 32 BBCorr  
),( 13 BBCorr  

0.98 

0.99 

0.95 

),( 1
*
1 FBCorr  

),( 2
*
2 FBCorr  

),( 3
*
3 FBCorr  

0.98 

0.08 

0.98 

0.94 

0.93 

0.94 

0.91 

0.90 

0.91 

0.9 

0.88 

0.89 

0.89 

0.87 

0.89 

0.87 

0.84 

0.86 

True Edges (%) 

34 

38 

40 

69 

78 

81 

78 

89 

91 

80 

93 

93 

76 

85 

85 

76 

85 

85 

 
It was clear from visual inspection of the fused images that one or two levels of 

decomposition were insufficient. Visual analysis of the fused images from three 

decomposition levels onwards confirms that the spatial information is fused satisfactorily. 

They appear identical. The increase in the edge metrics when L is increased from 3 to 4 is 
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not much. Strangely, when L is increased beyond four, the number of edges extracted 

also decrease. Thus, there is no advantage in going beyond a certain number of 

decomposition levels. In fact, as the spectral quality metrics show it is a disadvantage.  

Similar to the observations made for dataset II, it is seen that as the decomposition 

levels increase the spectral similarity between the original MS and the sharpened images 

decreases. At the same time the amount of correlation between the sharpened and PAN 

image increases. The correlation between the original MS and PAN bands was 0.79, 0.84 

and 0.85 and that between the PAN and the sharpened bands from 3 decomposition levels 

was 0.9, 0.94 and 0.95. While for 9 decomposition levels it is 0.95, 0.99 and 0.99. Thus, 

it can be concluded that as the decomposition levels increase, a higher percentage of 

information from the PAN image is retained in the fused image and less from the MS 

image.  

Therefore, it is shown that more than four decomposition levels are redundant and 

the choice must be made between 3 and 4 levels. The lower bound preserves the 

radiometry of the MS images better while 4 decomposition levels leads to slightly better 

spatial quality (i.e., the images look sharp and visually pleasing). Preserving the original 

radiometry of the images is important from the point of view of automated classification 

while extracting the maximum edge information from the PAN image is important for 

tasks like automated object extraction (e.g. buildings, roads). Thus, the number of 

decomposition levels must be chosen depending upon the application. 
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5.10.6 Dataset – geovantage_ratio5 

The final dataset is a MS-PAN pair with ratio five. The metrics for the pan 

sharpened images are given in Table 5-31. 

Table 5-31 Wald’s property 2 and TE metrics (geovantage_ratio5) 

 
L RMSE Correlation True Edges (%) 

1 18 18 20 0.94 0.92 0.93 46 43 44 

2 15 14 16 0.96 0.95 0.95 77 75 75 

3 10 10 12 0.98 0.98 0.97 90 87 86 

4 8.1 8.1 10 0.99 0.99 0.98 93 88 86 

5 8 7.9 10 0.99 0.99 0.98 94 88 86 

9 10 9.3 11 0.98 0.98 0.98 95 87 86 

 
It is seen from the metrics that the pan sharpened images created with L=5 is the 

optimal, i.e. most closely resembles the original high resolution color photograph. The 

spatial quality is also good. The RMSE and the correlation with the high resolution MS 

images starts decreasing after L=6. Visually, the images generated by L=3 appeared 

satisfactorily merged. The number of edges extracted drastically increases as L is 

changed from 1 to 2 or 2 to 3, but is more or less constant after L is increased beyond 

that. All the structures observed in the original image could be seen in the pan sharpened 

image corresponding to L=3. 
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5.10.7 Summary 

The findings from the above experiments are summarized in this subsection. It 

was seen that there is not a unique answer to the problem of finding the “optimal number 

of decomposition levels for images with a particular resolution ratio”. The decision 

should be based on the purpose of the pan sharpened image. For example, if the pan 

sharpened images are to be used for automatic or supervised classification in order to 

create land use maps the lower number of decomposition levels which better preserve the 

spectral similarity with the MS images must be applied. For tasks like automated 

extraction of urban objects (e.g., roads, buildings) which require rich spatial information 

and preservation of the original spectral information, the higher number of decomposition 

levels is justified. Since MRA based methods have this characteristic they are preferred 

compared to computationally simpler statistical methods like IHS or Brovey. Thus, in 

Table 5-32 we make two recommendations for the optimal decomposition level for each 

resolution ratio based on the application. In the third column of the table the minimum 

number of decomposition levels estimated by the TE metric is also given. There are two 

values in the first row corresponding to n=2 because the estimations for the tm-erdas2 

and geovantage_ratio2 datasets are different. The user can choose the number of 

decomposition levels depending upon the application of the pan sharpened image and the 

computational power available to them. 



 

 

166

Table 5-32 Recommended decomposition levels 

 

Resolution Ratio (n) Urban feature 
extraction 

Classification for 
land use mapping 

Estimated value by 
TE 

2 4 2 3,2 
3 4 2 2 
4 5 3 3 
5 5 3 3 

 
The TE metric was proposed as an indicator of the minimum number of 

decomposition levels required to merge the pan sharpened images with sufficient spatial 

quality as determined by visual analysis. It is seen that except for the first dataset – 

geovantage_ratio2 the value of ‘L’ predicted by TE was in agreement with the number 

deemed sufficient by visual analysis. In section 6.2.1 it is suggested how this metric 

could be used to predict the minimum number of decomposition levels required to merge 

images whose resolution ratio may not be known. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

6  
In this chapter conclusions are drawn based on the experiments performed in this 

study and the contributions deriving from this work. Also, topics that are worthy of 

further investigation are suggested for future work. 

6.1 Conclusions 

6.1.1 Choice of the Wavelet for RWT   

Various mother wavelets were evaluated and it was found that the ‘db2’ or the 

second order Daubechies wavelet provided the highest spectral fidelity for the RWT 

based pan sharpening. This wavelet even outperformed the biorthogonal wavelets. The 

analysis of Daubechies wavelets showed that the shorter wavelets preserved the spectral 

fidelity to a higher degree compared to the longer wavelets with the exception of the 

‘db1’ (Haar) wavelet. The spectral fidelity of this wavelet was poorer than the longest 

wavelets that were used.  

6.1.2 Choice of the Filter for LP and AWT 

It was discovered that for the LP based pan sharpening the 13-tap QMF gave the 

highest spectral fidelity. Three different families of filters were used – the Gaussian 
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filters, the binomial filters and QMFs. A general relationship between the characteristics 

of the filters with the spectral fidelity was determined. It was discovered that as the length 

of the QMFs increased the spectral fidelity improved while for the binomial filters as the 

filter length increases the spectral fidelity degrades. For the Gaussian filter as the weight 

of the central coefficient of the filter is increased the spectral fidelity improves. However, 

when the filter becomes trimodal (i.e. the weight of the central coefficient is 0.6 or more) 

the pan sharpened image contains artifacts and the spatial quality is not acceptable. 

The same filters were used to perform AWT based pan sharpening, and it was 

determined that Gaussian filters gave higher spectral fidelity compared to the binomial 

filters or QMFs. The literature survey showed that for AWT based pan sharpening almost 

all researchers used the ‘cubic spline’ filter or the length 5 Gaussian filter with the central 

coefficient weight equal to 0.375. I have shown here that better results can be obtained 

with the AWT using a different filter. It was seen that as the weight of the central 

coefficient of the Gaussian filter was increased up to 0,5 the spectral fidelity improved 

but degraded drastically for higher values. 

6.1.3 Choice of the MRA Transform 

Three MRA transforms – RWT, LP, and AWT were compared and it was found 

that the RWT gave the highest spectral fidelity. The spectral fidelity of the LP is only 

slightly less than that of the RWT while that of the AWT is much poorer.  

To the best of my knowledge a detailed comparison of the three transforms has 

not been made. The novelty of this approach is that before arriving at the final 

conclusions the best wavelet (or filter) is used for each transform.    
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6.1.4 Comparison of the Additive and Substitutive Methods 

To the best of my knowledge a detailed comparison between the additive and 

substitutive methods was not done previously. It was found that the additive method 

based on the RWT is not suitable, the images pan sharpened with this method have very 

poor spectral fidelity. The additive method based on the AWT delivers good results when 

pan sharpening images with resolution ratio of two, the spectral quality is higher than that 

of the substitutive RWT method, although for higher ratios (e.g., four) it results in poor 

spatial quality. This discovery that the additive method based on the AWT results in poor 

spatial quality is in contradiction with the findings of Nunez et al. [26]. They found this 

method to be better than the substitutive method based on the AWT and did not find any 

problems with the spatial quality of the pan sharpened images. 

The LP based additive method provides high spectral quality comparable to that 

of the substitutive methods. One of the main advantages of the LP based additive method 

or the additive methods in general is that only the PAN image has to be decomposed. 

Thus, it will be computationally cheaper compared to the substitutive method in which 

both the PAN and MS images must be decomposed.  

However, the drawback of the additive method is that sometimes it provides 

slightly less spatial quality compared to the substitutive methods, and it can only be 

applied to pan sharpen MS-PAN images whose resolution ratio is a power of two.  

6.1.5 Choice of the Selection Rule 
The various selection rules available to combine the detail coefficients of the PAN 

and the MS image were studied and it was determined that the point wise maximum 
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amplitude selection (MAS) rule produces images with the highest spectral fidelity 

compared to the window based methods. In summary the three main selection rules can 

be ranked in the order 1) MAS, 2) WBS, and 3) WBV based on the spectral fidelity 

criterion. Thus the MAS rule must be preferred because not only does it result in the 

highest spectral fidelity but it is also computationally much cheaper compared to the 

WBS and WBV rules. However, it must be understood that sometimes these rules can 

cause slightly pixilated edges in some regions of the image and slight smearing around 

sharp objects. These artifacts are relatively few and do not always occur, moreover they 

are only noticeable to a keen observer. 

To the best of my knowledge a comparison of these selection rules in the context 

of pan sharpening was not done previously. 

Thus, if the images with the highest spectral fidelity possible are desired, the 

RWT based substitutive method is recommended, and a Daubechies 2nd order wavelet 

must be used. The maximum amplitude selection (MAS) rule must be applied to choose 

between the high frequency coefficients of both images. 

6.1.6 The Effect of the Directional Selectivity 

There is a misconception in the image fusion community that the reason for the 

superior performance of the RWT with respect to the LP is its higher directional 

selectivity. Through experiments on the SPT, I have demonstrated that the higher 

directional selectivity plays only a minor role in improving the spectral fidelity of the pan 

sharpened image. The major reason for the higher spectral fidelity provided by the RWT 

with respect to the LP or the AWT is the fact that a better wavelet is used compared to 
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the filter used for the LP or the AWT. If an inferior wavelet were used for the RWT like 

the ‘db20’ the relative spectral fidelity improvement from the use of the RWT over the 

LP could be lower.  

6.1.7 Estimation of the Minimum Number of Decomposition Levels 

The quality of the pan sharpened images produced by the wavelet based fusion 

algorithm depends upon the number of decomposition levels in the MRA transform. Too 

few decomposition levels result in pan sharpened images with poor spatial quality, while 

excessive levels severely distort the radiometry of the pan sharpened images compared to 

the original MS images. The wavelet transform has a high computational complexity that 

increases with the number of decomposition levels. Thus determining the minimum 

number of decomposition levels is important. The minimum number of decomposition 

levels was estimated by conducting a systematic study using both objective and 

subjective metrics. This study determined the minimum number of decomposition levels 

necessary in the wavelet based pan sharpening for PAN-MS image pairs with different 

resolution ratios. The larger the resolution ratio is, the more decomposition levels are 

required to achieve a satisfactory fusion result.  

One interesting fact derived from the study was that a different choice of metrics 

leads to a different recommendation on the minimum number of decomposition levels. 

When a truth or reference image is available for comparison, the minimum 

decomposition level is chosen based on the pan sharpened image which most closely 

resembles the reference image in terms of pixel values. In other words this image is the 

closest that a higher resolution MS sensor would have observed if it existed. While if a 
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reference image is not available the minimum number is more difficult to determine or 

interpret. It is chosen as the image that achieves sufficient spatial quality compared to the 

pan sharpened images and also preserves the radiometry of the unmerged MS images as 

much as possible. However, these are conflicting goals as seen from the results. The 

spectral similarity between the original MS and the pan sharpened images decreases as 

the decomposition levels increase. While the spatial quality of the pan sharpened images 

increases up to a certain number of decompositions but remains constant after that. 

For example, when working on image pairs with a resolution ratio of two, 

comparison with the reference image indicated that L=4 was the best choice while in its 

absence L=2 seemed a better choice. Similarly for image pairs with resolution ratio four, 

the minimum decomposition levels as determined by the two different methods were 5 

and 3. The difference in the two decisions is quite considerable. Four decomposition 

levels would take up a lot more computation than two since remote sensing datasets are 

generally huge. Thus it is advocated that when it is necessary to preserve the radiometry 

of the original MS images in the pan sharpened images, the minimum required 

decomposition levels be applied. This is useful for tasks like automated classification, 

when sometimes the sharpened imagery is classified using spectral signatures from the 

original MS image. However, if the application is automated object extraction (e.g. 

buildings, roads) where images with high spatial and high spectral information are 

desired the higher decomposition levels are recommended. 
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Recommendations for the minimum number of decomposition levels required to 

merge images with resolution ratios of 2, 3, 4 and 5 are given in section 5.10.7 based on 

the application of the pan sharpened image. 

6.2 Potential Topics for Future Work 

Finally, this section describes an interesting topic for future work that could not 

be carried out due to time limitation. 

6.2.1 Automatic Estimation of the Number of Decomposition Levels 

Suppose it is decided to make available the MRA based pan sharpening as part of 

a remote sensing software so that users can pan sharpen their images without any effort 

by simply specifying the MS and PAN images to the software. The parameters of the pan 

sharpening like the wavelet or the filter used and the MRA transform can be kept fixed in 

the software since the best one has been determined through empirical evaluations. For 

example if the substitutive method is used the RWT and the ‘db2’ wavelet are 

recommended. The histogram match option can also be automatically decided by 

computing the correlation between the MS and the PAN images.  

However, the number of decomposition levels in the MRA based pan sharpening 

process cannot be kept fixed since it depends on the resolution ratio of the images.  The 

simplest thing to do would be to let the user supply this information. Many times the 

organization selling the imagery supplies the MS imagery resampled to the pixel size of 

the PAN image. In such a scenario there is no way to tell the resolution ratio unless this is 

specified in the metadata. Even if the resolution ratio is known it is best to make the 



 

 

174
software user supply as little information to the algorithm as possible, i.e. the software 

should have intelligent defaults. Thus, it would be sophisticated to not have the user 

specify the decomposition levels and the software estimate it based on calculations of the 

image characteristics. 

Any commercial or real software for wavelet based pan sharpening will do block 

processing since the images are generally huge. The idea is to block process the first few 

blocks with different decomposition levels (1, 2 … 5) and calculate the True Edge (TE) 

metric for each pan sharpened block corresponding to the different number of 

decomposition levels used. It was seen from our experiments that when the spatial quality 

of the pan sharpened image is satisfactory the TE metric does not improve significantly. 

Thus, among the various decomposition levels applied for each block the 

decomposition level ‘L’ after which the TE metric changes relatively little (less than 5-10 

%) should be chosen as the minimum decomposition level. The prediction for each block 

may differ by one or two. In such situations the maximum value of ‘L’ obtained for the 

processed blocks can be chosen to compute the final pan sharpened image.  
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AABP Aiazzi, Alparone, Baronti and Pippi

AABP-ADD  AABP Additive Model 

AABP-SUB  AABP Substitutive Model 

AMC  Arithmetic Combination 

AWT A Trous Wavelet Transform 

COS Component Based Substitution 

DWT Discrete Wavelet Transform 

HM Histogram Match 

HPCC High Pass Correlation Coefficient 

HPF High Pass Filtering 

IHS Intensity Hue Saturation 

IMT  Inverse Multiresolution Transform 

LHS  Luminance Hue Saturation 

LP  Laplacian Pyramid 

MAS  Maximum Amplitude Selection 

MRA  Multiresolution Analysis 

MT  Forward Multiresolution Transform 

PCA  Principal Components Analysis 

QMF  Quadrature Mirror Filter 

RWT  Redundant Wavelet Transform 

SPT  Steerable Pyramid Transform 
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SVR Synthetic Variable Ratio 

VHS Value Hue Saturation 

WBS Window Based Salience 

WBS Window Based Verification 
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B.1 The Discrete Wavelet Transform 

It is seen in section 2.4.2 that a function can be decomposed into its 

approximations and details. Thus, a given signal at original resolution J can be 

decomposed into details at successively lower resolutions J-1, J-2 … J0 and the 

approximation at the lowest resolution J0. This is given by the following equation [4]: 

)()()()()( ,
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00
tkdtkatf kj
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J

Jj
jkJ

k
J ψφ ∑∑∑

=

+= , (68) 

The coefficients )(
0

kaJ and )(kd j are the Discrete Wavelet Transform (DWT) 

coefficients of the function and they are calculated by the inner products of the function 

with the scaling and wavelet functions respectively. In practice, the DWT coefficients are 

not calculated in this way. Mallat described a filter bank implementation of the DWT 

[23] where a set of low pass and high pass filters obtained from the scaling and wavelet 

functions are convolved with the signal and the output of both the filters are 

downsampled. The outputs of the low pass and high pass filters correspond to the 

approximation (low frequency) and detail (high frequency) components of the signal 

respectively. This procedure can be recursively applied to the output of the low pass filter 

to obtain successively lower approximations, while the output of the high pass filter at 

each iteration level is retained. The DWT algorithm can be applied for up to log2N 

iterations for a signal of length N until we are left with only one sample of the signal.  

An image is a two-dimensional signal. Thus, if we want to compute the DWT 

coefficients of an image, we can apply the DWT algorithm on the rows first and then on 

the columns. This is possible because the DWT is a separable transform. Figure B-1 
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illustrates the process of obtaining the DWT of an image. The symbols ϕh and ψh are, 

respectively, the low pass and high pass wavelet filters used for decomposition. In the 

first step, the rows of the image are convolved with the low pass and high pass filters and 

the result is downsampled by a factor of two along the columns. The high pass or detailed 

coefficients characterize the image’s high frequency information with vertical orientation 

while the low pass component contains its low frequency vertical information. Both 

subimages are again filtered column-wise with the same low pass and high pass filters 

and downsampled along rows. This DWT produces four subimages at a lower scale – A, 

H, V, and D. Each subimage is one-fourth the size of the original image. These four 

components can be interpreted as follows [8]: 

1) Approximation coefficients (A) – the intensity or gray-level variations of the image, 

2) Horizontal coefficients (H) – variations along the columns, 

3) Vertical coefficients (V) – variations along the rows, 

4) Diagonal coefficients (D) – variations along the diagonals. 

Sequential DWTs can be performed on the approximation image A to yield 

images at successively lower resolutions. 
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Figure B-1 The 2-D DWT 

The Inverse Discrete Wavelet Transform (IDWT) allows us to reconstruct the 

image at increasingly higher resolutions by using the four subimages, A, H, V, and D 

obtained from the DWT of the original image. The symbols ϕ

~
h and ψ

~
h are the low pass and 

high pass reconstruction filters respectively. Figure B-2 illustrates the process of 

reconstructing the original image from its DWT components. Each step is the inverse of a 

corresponding step in the DWT. The four subimages are upsampled along rows first, 

since the last step in the DWT was downsampling along rows. The approximation and the 

vertical subimages are convolved with the low pass filter while the horizontal and 

detailed subimages are convolved with the high pass filter column-wise (in the DWT we 

filtered along the columns second). The upsampled and convolved versions of the vertical 

(V) and diagonal (D) coefficients are summed together, and the upsampled and 

convolved versions of the approximation (A) and horizontal (H) coefficients are summed 
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together. Both these intermediate outputs are upsampled along columns and then filtered 

row wise with the high pass and low pass reconstruction filters, respectively, and 

summed to yield the original image. 

 

Figure B-2 The inverse 2-D DWT 

It is noted that some authors [8] use a reverse notation to denote the resolution, 

i.e. an increasing subscript is used to denote lower resolutions. Thus, in the above 

discussion on DWT if the original image has a resolution J, successive DWTs will yield 

images at resolutions J+1, J+2, and so on. This reverse notation is used to explain the 

RWT, LP, and AWT in the following sections to maintain consistency with the original 

articles. 

B.2 The Redundant Wavelet Transform 

If the wavelet transform is applied to a shifted copy of the signal, the wavelet 

coefficients should merely be a shifted version of the coefficients that were obtained by 

Original 
image 

~

φh  

~

ψh  

~

φh  

~

ψh  

A 

H 

V 

D 

2↑  

2↑  

2↑  

2↑  
~

φh  

~

ψh  

+

+

2↑  

2↑  

+



 

 

188
applying the wavelet transform on the original signal. This property of the wavelet 

transform is called shift invariance [13].  

The DWT described above is not shift invariant, the wavelet coefficients of the 

DWT change when the signal is shifted. Shift variance results from the application of 

subsampling in the wavelet transform. The main step in all the wavelet transforms is 

convolving the signal (or image) with a filter bank to obtain the approximation and the 

detail images. In the DWT algorithm the output of the filtering is critically subsampled, 

i.e. the outputs of the filter banks are decimated by a factor of two (the most common 

case). This subsampling causes the coefficients to change when the input is shifted. The 

shift variance of the DWT can sometimes be a problem in applications like pattern 

recognition or image fusion. For example, the use of the DWT in image fusion is known 

to cause artifacts in the fused images.  

The problem of shift variance is overcome by oversampling or removing the 

subsampling step at each scale in the DWT and instead upsampling the filters at each 

sacle. Since the subsampling is eliminated there is redundant data in the approximation 

and detail images at each scale and the transform is no longer orthogonal. Thus the 

oversampled DWT is known as the Redundant Wavelet Transform (RWT). Suppose the 

original image is at resolution j=0, then the lowpass and highpass filters at each scale are 

upsampled by inserting 2j-1 zeros between its non zero coefficients [13]. Thus, the filter 

coefficients at each successive resolution j are given as follows: 
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jj hh 2↑= φφ , (69) 

jj hh 2↑= ψψ , (70) 

Figure B-3 shows the diagram of the RWT. Since, the downsampling is 

eliminated the A, H, V, and D images are all the same size as the original image. Thus, 

the RWT is both computation and data intensive compared to the DWT.  

 

Figure B-3 The Redundant Wavelet Transform 

B.3 The Laplacian Pyramid 

The Laplacian Pyramid (LP) was first proposed by Burt et al. [5] for compact 

image representation. The basic steps of the LP are as follows: 

1. Convolve the original image 0g with a lowpass filter w (for e.g. the Gaussian 

filter) and subsample it by two to create a reduced lowpass version of the 

image – 1g , 
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2. This image is then upsampled by inserting zeros in between each row and 

column and interpolating the missing values by convolving it with the same 

filter w to create the expanded lowpass image '
1g , which is subtracted pixel by 

pixel from the original to give the detail image – 0L  given by: 

'
100 ggL −= , (71)  

In order to achieve compression, rather than encoding 0g , the images 0L and 1g are 

encoded. Since 1g is the lowpass version of the image it can be encoded at a reduced 

sampling rate and since 0L is largely decorrelated it can be represented by far fewer bits 

than required to encode 0g . The above steps can be performed recursively on the lowpass 

and subsampled image 1g a maximum of N number of times if the image size is 2Nx2N to 

achieve further compression. Thus the end result is a number of detail images 

NLLL ⋅⋅⋅10 , and the lowpass image Ng . Each recursively obtained image in the series is 

smaller in size by a factor of four compared to the previous image and its center 

frequency reduced by an octave. Thus they can be visualized as a pyramid created from 

the stack of images NLLL ⋅⋅⋅10 , one on top of another. As the detail images are a 

difference of two images filtered by a Gaussian or any other identical function they are 

called the Laplacian images and the scheme to obtain them is called the Laplacian 

Pyramid. 

The inverse transform to obtain the original image 0g  from the N Laplacian 

images NLLL ⋅⋅⋅10 , and the lowpass image Ng is as follows: 
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1. Ng is upsampled by inserting zeros between the sample values and 

interpolating the missing values by convolving it with the filter w to obtain the 

image Ng ′ , 

2. The image Ng ′ is added to the lowest level Laplacian image NL to obtain the 

approximation image at the next upper level: 

'
1 NNN gLg +=− , (72)  

3. Steps 1 and 2 are repeated on the Laplacian images 110 , −⋅⋅⋅ NLLL to obtain the 

original image.     

B.4 The A Trous Wavelet Transform 

The A Trous Wavelet Transform (AWT) is very similar to the LP except that the 

lowpass images are never subsampled. Thus, the approximation and detail images at 

consecutive scales are the same size as the original image [26]. Since the approximation 

and detail images of the AWT are not subsampled, in an effort to avoid confusion a 

different notation will be used to denote them – ja and jd , respectively. Prior to filtering 

the image at each scale j, the filter w is upsampled by inserting 2j-1 zeros between its 

sample values and consequently, it is denoted by jw to indicate this. The following two 

equations describe how the approximation and detail images for each scale are obtained. 



 

 

192

jjj waa ∗= −1 , (73) 

jjj aad −= −1 , (74)  

The inverse transform to obtain the original image 0a  is very simple. The detail 

images at each scale are simply added one by one to the approximation image Na  at the 

lowest level: 

NN dddaa +⋅⋅⋅+++= 100 , (75)  
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