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Information retrieval is the process of fulfilling a user’s need for information by 

locating items in a data collection that are similar to a complex query that is often posed 

in natural language. Latent Semantic Indexing (LSI) was the predominant technique 

employed at the National Institute of Standards and Technology’s Text Retrieval 

Conference for many years until limitations of its scalability to large data sets were 

discovered. This thesis describes SCRIBE, a modification of LSI with improved 

scalability. SCRIBE clusters its semantic index into discrete volumes described by high-

dimensional extensions to computer graphics data structures. SCRIBE’s clustering 

strategy limits the number of items that must be searched and provides for sub- linear time 

complexity in the number of documents. Experimental results with a large, natural 

language document collection demonstrate that SCRIBE achieves retrieval accuracy 

similar to LSI but requires 1/10 the time. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Information retrieval is loosely defined as the task of informing users of the 

existence and location of information related to their requests.  Information retrieval (IR) 

systems do not change or add to the information contained in the items they return to the 

user. Such systems are not necessarily intelligent – in the sense of intelligent agents – 

though many examples are [44].  The goal of this thesis is to improve an information 

retrieval technique – Latent Semantic Indexing (LSI) – by combining its elegant approach 

to conceptual clustering with a simplified representation of high-dimensional “semantic 

spaces” adapted from efficient data structures previously developed for use in computer 

graphics. In order to accomplish this goal, we have developed data structures and 

algorithms, collectively named SCRIBE (Semantic Cluster Retrieval Index Basic 

Elements), to efficiently search a semantic index while maintaining retrieval performance 

comparable to legacy systems.  This approach restores the competitiveness of LSI- like 

retrieval solutions with other contemporary IR systems. Experimental results with the 

OHSUMED document collection [30] demonstrate that SCRIBE performs as well as LSI 

but takes less than 1/10th as long to answer users’ queries. 

1 



    

   

  

 

 

 

 

                                                 

 

2 
1.1.1 Information Retrieval 

Information retrieval is often defined in terms of its contrast with the related 

problem of data retrieval.  Data retrieval is generally tackled as a pattern-matching task in 

which a highly structured query in a specialized language describes attributes of the 

desired subset of a data collection.  Data retrieval (DR) tends to be computer-centric and 

well suited to serving the needs of automatic algorithms. Relational databases provide an 

example of the characteristics of data retrieval systems. Information retrieval, on the 

other hand, addresses situations to which deterministic solutions prove unsatisfactory and 

in which the human factors involved preclude the simplifying assumptions of DR 

algorithms.  Hallmarks of situations that call for IR include the need for natural language 

queries, the preference toward partial matching of query attributes, recall of relevant1 

information from partially matching branches of (what would be) the recognition 

decision tree, and the need to seek information among very large data sets.  Information 

retrieval is closely related to – and often considered to be synonymous with – document 

retrieval, in which natural language documents are parsed and indexed in order to serve 

natural language queries.  Document retrieval is a special case of information retrieval; 

IR addresses a wider range of problems [3].  

Information retrieval (IR) is most often applied to data sources in which the 

information is encoded in a human-understandable format, but not one easily parsed by 

computers – e.g., conversational speech or college essays. Google is one of the best-

1 Relevance is a metric defined by the application domain. One may consider that in 
response to the query, “cancer cells,” medical journal articles are likely more relevant 
than movie reviews. 



    

   

 

  

 

 

3 
known information retrieval applications; virtually every Internet aficionado has used 

Google’s document searching tools that index and serve links to billions of web pages. 

Other common applications include retrieval from bioinformatics sequence repositories, 

specialized document collections with abnormal data distributions, imagery databases, 

spoken word corpora, and cross- language document collections. A common thread 

among these problems is the difficulty of instructing a computer to understand the data 

retrieved by the IR process.  Rather than understanding the data they search, IR systems 

compare queries to a statistical model and use knowledge gleaned from the comparison to 

guide a search through the document collection. A good IR system contains a data model 

that produces results consistent with human intuition – though the model itself is rarely 

transparent to intuition [3]. 

1.1.2 Latent Semantic Indexing 

IR techniques excel at distilling relationships among raw data units into weights, 

connections, or rules for recognizing similarity – they simplify the features of complex 

data into automatically learnable units. Depending upon the technique we choose to 

apply, we might think of the learnable units in terms of simpler metaphors – support 

vectors, hidden states, and connection weights – or we might choose a data-driven 

approach that requires little or no interpretation. One such data-driven approach, Latent 

Semantic Indexing (LSI), was developed by Dumais, Deerwester, Landauer, Foltz, et al. 

at Bellcore Labs around 1988 [17].  LSI, an IR technique commonly applied to the 

document retrieval problem, requires minimal parsing of documents and constructs 

powerful classification models from very simple data structures. LSI was introduced to 



    

   

 

 

 

 

 

4 
the IR community at the First Text Retrieval Conference (TREC) hosted by the National 

Institute for Standards and Technology (NIST) in 1993 [13, 17].  TREC is a competitive 

conference offering several tracks or data sets geared to exercise IR systems’ ability to 

solve problems in domains of interest to the government customer community. Tracks 

include cross- language retrieval, question answering, and large document collection 

retrieva l.  LSI routinely exhibited retrieval accuracy on par with support vector machines, 

its highest-scoring contemporary at TREC [13, 14, 16].  LSI so impressed the community 

that more than half of the entries in the second TREC (1994) were based upon LSI- like 

techniques [14].  

LSI’s strong performance at TREC stems from its ability to infer knowledge of 

synonymous and polysemous words from their occurrence in similar contexts. Thus, LSI 

is able to recognize and retrieve documents conceptually similar to users’ queries even 

when the documents and queries are not lexicographically similar. Its strength at 

induction, however, is not matched by its search strategy for responding to queries.  

To understand the LSI approach, consider Google’s task – locating documents that 

are similar to a short, user-generated query string. Table 1.1 contains a collection of 

documents; for this example, the collection consists only of titles. The documents span a 

range of topics and share common words that differ in meaning according to their 

context.  The common words – those that appear in more than one document – are 

italicized for emphasis. Each document is converted to an ordered, column vector with 

common word counts as the elements. (For non-trivial collections, the raw occurrence 

counts are replaced with a weighted frequency metric.) The column vectors are 



    

   

 

 
 

 
 

 
  

 
  

  
  

 
  

  
 

  
 

    
            

            
            
            

            
            

            
            
            

            
            
            
            

 
 

 

 

5 
juxtaposed to create a “term-by-document” or “term-document” matrix from which the 

final index is computed.  

Table 1.1  Titles of technical memos as represented in a co-occurrence matrix. From: 
Deerwester, 1990 [11]. 

Technical Memo Example 

Titles: 
c1: Human machine interface for Lab ABC computer applications 
c2: A survey of user  opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user-perceived response time  to error measurement 
m1: The generation of random, binary, unordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

Terms Documents 
c1 c2 c3 c4 c5 m1 m2 m3 m4 

Human 1 0 0 1 0 0 0 0 0 
interface 1 0 1 0 0 0 0 0 0 
computer 1 1 0 0 0 0 0 0 0 
User 0 1 1 0 1 0 0 0 0 
System 0 1 1 2 0 0 0 0 0 
response 0 1 0 0 1 0 0 0 0 
Time 0 1 0 0 1 0 0 0 0 
EPS 0 0 1 1 0 0 0 0 0 
Survey 0 1 0 0 0 0 0 0 1 
Trees 0 0 0 0 0 1 1 1 0 
Graph 0 0 0 0 0 0 1 1 1 
Minors 0 0 0 0 0 0 0 1 1 

Computation of a latent semantic index proceeds along the assumption that the meaning 

of a given document is encoded in a “semantic space” – a high-dimensional space in 

which the axes represent components of conceptual meta- language that are independent 

of the specific language in which a document is written. Natural languages form 

analogous “lexical spaces” which contain an axis for every word in the language.  In 

general, the semantic space derived from a document collection has orders of magnitude 



    

   

 

 

 

 

6 
fewer dimensions than the corresponding lexical space. Lexical spaces contain so many 

more dimensions because of synonymy, the occurrence of many words with the same 

meaning. Noise is also introduced to lexical spaces through polysemy, the presence of 

words with many meanings. In short, synonymy and polysemy increase the number of 

ways to describe identical concepts, but the meaning of a given concept is unique. We 

induce semantic knowledge into the index by using principle component analysis to find 

a reduced-rank approximation of the term-document matrix, a sample of the lexical space 

of the document collection. When the approximation’s rank is close to the dimensionality 

of the semantic space, the index will contain term-document vectors that cluster 

according to their conceptual content.  Table 1.2 shows a rank-2 semantic index 

computed from the term-document matrix composed in Table 1.1.  In this example, 

dimension reduction was accomplished via manipulation of the singular value 

decomposition (SVD) of the term-document matrix.  We select a set of components 

associated with the greatest N singular values in the decomposition where N is the target 

dimensionality of the index, and re-compose those singular vectors into the final index.  

Figure 1.1 illustrates the SVD and composition of the semantic index. 
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T a bl e 1. 2 R a n k -2 a p pr o xi m ati o n of t er m -d o c u m e nt c o -o c c urr e n c e m atri x. Fr o m: 
D e e rw est er, 1 9 9 0 [ 1 1]. 

T e r ms D o c u m e nt s 
c 1  c 2 c 3  c 4  c 5 m 1  m 2  m 3  m 4 

h u m a n 0. 1 6 0. 4 0 0. 3 8 0. 4 7 0. 1 8 -0. 0 5 -0. 1 2 -0. 1 6 -0. 0 9 
i nt e rf a c e 0. 1 4 0. 3 7 0. 3 3 0. 4 0 0. 1 6 -0. 0 3 -0. 0 7 -0. 1 0 -0. 0 4 
c o m p ut e r 0. 1 5 0. 5 1 0. 3 6 0. 4 1 0. 2 4 0. 0 2 0. 0 6 0. 0 9 0. 1 2 
u s e r 0. 2 6 0. 8 4 0. 6 1 0. 7 0 0. 3 9 0. 0 3 0. 0 8 0. 1 2 0. 1 9 
s y st e m 0. 4 5 1. 2 3 1. 0 5 1. 2 7 0. 5 6 -0. 7 -0. 1 5 -0. 2 1 -0. 0 5 
r e s p o n s e 0. 1 6 0. 5 8 0. 3 8 0. 4 2 0. 2 8 0. 0 6 0. 1 3 0. 1 9 0. 2 2 
ti m e 0. 1 6 0. 5 8 0. 3 8 0. 4 2 0. 2 8 0. 0 6 0. 1 3 0. 1 9 0. 2 2 
E P S 0. 2 2 0. 5 5 0. 5 1 0. 6 3 0. 2 4 -0. 0 7 -0. 1 4 -0. 2 0 -0. 1 1 
s u r v e y 0. 1 0 0. 5 3 0. 2 3 0. 2 1 0. 2 7 0. 1 4 0. 3 1 0. 4 4 0. 4 2 
t r e e s -0. 0 6 0. 2 3 -0. 1 4 -0. 2 7 0. 1 4 0. 2 4 0. 5 5 0. 7 7 0. 6 6 
g r a p h -0. 0 6 0. 3 4 -0. 1 5 -0. 3 0 0. 2 0 0. 3 1 0. 6 9 0. 9 8 0. 8 5 
mi n o r s -0. 0 4 0. 2 5 -0. 1 0 -0. 2 1 0. 1 5 0. 2 2 0. 5 0 0. 7 1 0. 6 2 

Q u er y  pr o c essi n g  pr oj e cts  t h e  v e ct or  f or m  of  a  q u er y  stri n g  i nt o  s e m a nti c  s p a c e 

f or c o m p aris o n wit h t h e d o c u m e nts’ c ol u m n v e ct ors.  E a c h q u er y is c o n v ert e d t o a t er m 

v e ct or  a c c or di n g  t o  t h e  ( w ei g ht e d)  o c c urr e n c e  c o u nts  of  i n d e x e d  t er ms  i n  t h e  q u er y 

stri n g.  T h e  q u er y  v e ct or  is  m ulti pli e d  b y  t h e  t er m  v e ct ors  of  t h e  S V D  ( m atri x U k   i n 

Fi g ur e 1. 1) a n d t h e di a g o n al m atri x of si n g ul ar v al u es ( S k )  t o  pr oj e ct  it  i nt o  t h e  s e m a nti c 

s p a c e.  T h e r es ulti n g c o or di n at es ar e c o m p ar e d wit h e a c h d o c u m e nt c ol u m n v e ct or i n Vk 

( a s  s c al e d  b y  t h e  m atri x S k )  t o  pr o d u c e  a  si mil arit y  m etri c.  T h e  r es ult  r et ur n e d  f or  a 

q u er y is t h e list of d o c u m e nts i n t h e i n d e x as  or d er e d b y t h e si mil arit y m etri c ( or, m or e 

oft e n, a n or d er e d s u bs et of t h e m ost si mil ar d o c u m e nts). 
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Fi g ur e 1. 1 Vis u al r e pr es e nt ati o n of t h e Si n g ul ar V al u e D e c o m p ositi o n of a r a n k -r m atri x 
A. Di m e nsi o n r e d u cti o n i n v ol v es s el e cti n g t h e k gr e at est si n g ul ar v al u es fr o m 
S  a n d t h e k c orr es p o n di n g c ol u m n v e ct ors i n U a n d V.  R e-c o m p o siti o n of Uk , 
S k , a n d Vk  pr o d u c e s Ak , t h e r a n k-k a p pr o xi m ati o n of A.  Fr o m: D u m ai s, 1 9 9 5 
[ 1 5]. 

1. 1. 3 W e a k n ess es of L SI 

L SI f ell o ut of v o g u e b e c a us e t h e c a n o ni c al s e ar c h pr o c e d ur e i n v ol v es c o m p ari n g 

e a c h of N d o c u m e nts i n t h e i n d e x t o t h e q u er y stri n g f oll o w e d b y a s ort of t h e r es ult list. 

E a c h c o m p aris o n i n cl u d es a si mil arit y m etri c c al c ul ati o n of li n e ar or d er i n M, t h e n u m b er 

of  i n d e x e d  t er ms.  T h us,  t h e  s e ar c h  pr o c e d ur e’s  as y m pt oti c  ti m e  c o m pl e xit y  is 

O( M Nl o g N) i n t h e b est c as e. 

S e m a nti c  i n di c es  ar e  als o  e n or m o us;  n ot  as  l ar g e  as  t h e  ori gi n al  d o c u m e nt 

c oll e c ti o n,  b ut  n ot  as  c o m p a ct  as  t h e  m o d els  pr o d u c e d  a n d  e m pl o y e d  b y  ot h er  I R 

al g orit h ms,  eit h er.  T h e  mi ni m al  st or a g e  c h ar g e  f or  a  s e m a nti c  i n d e x  is  of  or d er 

O( k *( M + N))  w h er e  k  is  t h e  di m e nsi o n alit y  of  t h e  i n d e x  (t h e  n u m b er  of  si n g ul ar  v al u es 

k e pt aft er di m e nsi o n r e d u cti o n). 



    

   

 

 

  

 

 

 

 

9 
Adding new data to a semantic index incurs a cost either in reprocessing the 

document collection into a new index or in warping the axes of the existing index.  This 

makes online learning of models very difficult. Use of certain other matrix 

decompositions shows promise in reducing the warping [2, 34]. 

1.2 Motivation 

In the decade since LSI’s introduction, SVM and other IR systems have solved the 

synonymy and polysemy problems in their idiomatic ways and with much faster searches. 

LSI has been boosted a few times by the addition of highly parallelized search 

algorithms, space partitioning searches, and index-shrinking strategies.  These additions 

and modifications have kept LSI commercially viable, but haven’t spurred further 

innovation. The simplicity and elegance of the LSI approach to information retrieval 

mark it as a perfect candidate for early analysis of any large data set in which the 

connections between concepts are hypothesized but not fully understood.  LSI is not as 

well suited to implementation in COTS hardware as other IR applications.  LSI is also 

patented – unlike many other IR systems; the cost of licensing it has decreased its 

popularity as a prototyping tool and its license terms have restricted the third party 

innovation that bolstered its competitors at TREC. 

The approach of this thesis is to construct a process that operates upon an LSI- like 

semantic index to superimpose smooth, closed surfaces over the document clusters in a 

semantic space. Once an orthonormal basis for the semantic space has been extracted or 

inferred, we only need to store the control points of the superimposed surfaces in order to 

completely describe the conceptual clusters. The surface representations facilitate search 
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al g orit h ms wit h i m pr o v e d ti m e c o m pl e xit y o v er e xisti n g L SI s e ar c h es w hil e m ai nt ai ni n g 

t h e  s a m e  a c c ur a c y.  T his  a p pr o a c h  als o  pr o d u c es  c o n c e pt u al  cl ust ers  t h at  c a n  b e 

i n c or po r at e d i nt o ot h er m a c hi n e l e ar ni n g s yst e ms. 

1. 3 H y p ot h e si s 

L at e nt  s e m a nti c  i n d e xi n g  is  a n  eff e cti v e  i nf or m ati o n  r etri e v al  t e c h ni q u e,  b ut 

s e arc h  effi ci e n c y  s c al es  p o orl y  a n d  st or a g e  n e e ds  ar e  u n a c c e pt a bl e  f or  l ar g e  d at a 

c oll e c ti o ns.    T e c h ni q u es  d eri v e d  fr o m  m a c hi n e  l e ar ni n g  a n d  c o m p ut er  gr a p hi cs  c a n  b e 

a p pli e d t o s e m a nti c i n di c es t o g e n er at e d at a str u ct ur es t h at s u p p ort m or e effi ci e nt s e ar c h 

w hi l e m ai nt ai ni n g c o m p ar a bl e r etri e v al a c c ur a c y. 

1. 4 C o nt ri b uti o ns 

C urr e nt  i nf or m ati o n  r etri e v al  m et h o ds  b as e d  o n  s e m a nti c  i n d e xi n g  ar e  eff e cti v e 

b ut  i n effi ci e nt  wit h  l ar g e  d at a  c oll e cti o ns.  C o ntri b uti o ns  of  t his  t h esis  ar e  t h e 

d e v el o p m e nt of: 

· Cl ust eri n g p ar a m et ers s uit a bl e f or p artiti o ni n g s e m a nti c s p a c es i nt o c o n c e pt u all y 
si mil ar gr o u ps of d o c u m e nts; 

· D at a str u ct ur es a d a pt e d fr o m 3 D c o m p ut er gr a p hi cs s uit a bl e f or c o m p a ct st or a g e 
a n d m a ni p ul ati o n of d o c u m e nt cl ust er b o u n d ar y s urf a c es; 

· Ti m e -effi ci e nt s e ar c h al g o rit h ms b as e d u p o n r a y tr a ci n g m et h o ds. 

T h e  n e w  d at a  str u ct ur es  a n d  m et h o ds  als o  all o w  i n cr e m e nt al  u p d ati n g  of  d at a 

c o ll e cti o n i n di c es wit h n e w d o c u m e nts, a pr o c e d ur e w hi c h is n ot c urr e ntl y s u p p ort e d b y 

L SI. 



    

   

  

 

  

 

 

 

11 
1.5 Applications 

By reducing the search and storage complexity of semantic indexes, we have 

provided mechanisms that can potentially be used for applying LSI- like techniques to 

new commercial application domains such as virus scanning, network intrusion detection, 

and spam filtering. These problems can all potentially benefit from integration of the 

knowledge gained from semantic indexing with other machine learning algorithms.  By 

providing concept primitives derived from the semantic index, we support learning of 

better models for these applications and more. 

1.6 Organization 

The remainder of this document is organized as follows: 

Chapter II outlines the body of literature related to this thesis. Chapter III outlines the 

research approach that was followed and describes design parameters for the SCRIBE 

information retrieval pipeline.  Chapter IV discusses the design choices that were made 

during implementation of the SCRIBE system. Chapter V presents experimental results 

demonstrating statistical identity between the retrieval performances of the SCRIBE and 

LSI systems and dramatic improvement in SCRIBE’s running time compared to LSI. 

Chapter VI discusses the conclusions of this thesis, summarizes its contributions to the 

field of research, and suggests some topics of future inquiry. 



    

   

  
 

 
 
 

 

 

 

 

  

CHAPTER II 

LITERATURE REVIEW 

The goal of this thesis research is to improve the scalability of latent semantic 

indexing (LSI) by applying clustering methods from machine learning and search 

methods derived from computer graphics. LSI has been used both for information 

retrieval (IR) and as part of tools for textual analysis [19, 20, 23].  The representations 

and algorithms developed in this research improve the performance of LSI for 

information retrieval and, by extension, textual analysis. Section 2.1 provides a brief 

review of IR methods with an emphasis on vector model methods. Clustering methods 

will be used to extract characteristic features from LSI and are reviewed in Section 2.2.  

Methods from computer graphics have been used to develop compact representations for 

clusters. These methods are discussed in Section 2.3.  Section 2.4 presents a review of 

ray tracing methods that are used to represent queries of the new, geometric cluster 

representations. 

2.1 Information Retrieval 

Information retrieval (IR) is the process of fulfilling a “user information need” [3].  The 

process subsumes simple data retrieval and additionally includes filtering and ranking 

steps that aid users’ comprehension. Baeza-Yeats and Ribeiro-Neto [3] describe the three 

“classic models” of information retrieval: the Boolean, probabilistic, and vector models. 

12 



    

   

 

 

 

  

 

13 
All three models consider documents as bags of words characterized by index terms and 

assume that index terms are mutually independent and orthogonal.  Each model is 

distinguished by a particular representation of documents and user queries.  

The Boolean model represents documents as binary strings in which each bit 

indicates the presence (1) or absence (0) of an index term.  Queries are posed as 

conjunctive forms that specify constraints on the set of documents that can potentially fill 

the user information need. Retrieval in the Boolean model is a binary decision – if a 

document fully satisfies the query, it is retrieved; otherwise the document is discarded.  

No partial matching is allowed. All retrieved documents satisfy the query equally, so 

there is no ranking of the items in the returned set [3].  Because it lacks the ability to 

retrieve partial matches and rank documents, the Boolean model is little better than data 

retrieval at fulfilling users’ information needs.  Thus, it has little value to IR research, 

though it has achieved some commercial popularity. 

Probabilistic IR approximates an “ideal answer set” [3] by estimating the 

likelihood of relevance to a user query for each document in the collection.  This model 

represents both documents and queries as binary strings like those described in the 

Boolean model. During retrieval, a probabilistic model of relevance is learned by 

iteratively refining estimates of the probability that each index term occurs in at least one 

relevant document.  The probabilities are refined by applying the estimation rules to the 

set of documents retrieved by the previous set of probabilities. (Initially, all probabilities 

are set to 0.50.) After several iterations, the model is expected to converge on an 

approximation of the ideal answer set.  Documents in the final answer set are ranked in 
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or d er of t h eir pr o b a bilit y of r el e v a n c e.  Pr o b a bilisti c I R c a n r etri e v e d o c u m e nts t h at o nl y 

p arti all y  m at c h  a  us er  q u er y.  As  i n  t h e  B o ol e a n  m o d el,  in d e x t er m w ei g hts ar e bi n ar y.  

D o c u m e nt  r a n ks  ar e  b as e d  o n  t h e  s u ms  of  t er m  w ei g hts,  s o  r a n ks  i n  t h e  pr o b a bilisti c 

m o d el d o n ot r efl e ct t h e r at e of a t er m’s o c c urr e n c e i n a gi v e n d o c u m e nt; all ot h er f a ct ors 

b ei n g e q u al, a d o c u m e nt i n w hi c h t er m t  o c c urs  fift y ti m es is gi v e n t h e s a m e r a n k as o n e 

i n w hi c h t o c c ur s o nl y o n c e [ 3].  I n pr a cti c e, t his c a n m e a n t h at t e c h ni c al d o c u m e nts o n a 

s u bj e ct m a y b e r a n k e d e q u all y wit h t a bl oi d arti cl es o n t h e s a m e t o pi cs. B a e z a -Y e ats a n d 

Ri b eir o -N et o [ 3]  r e vi e w  t h e  m ost  p o p ul ar  pr o b a bilisti c  m o d els:  B a y esi a n  n et w or ks, 

i nf er e n c e n et w or ks, a n d b eli ef n et w or ks. 

T h e  v e ct or  m o d el a p pr o a c h e s  I R  a s  a  cl u st eri n g  pr o bl e m.    D o c u m e nt s  ar e 

c o n sid er e d  as  p oi nts  i n  a  hi g h -di m e nsi o n al l e xi c al s p a c e i n w hi c h t h e fr e q u e n c y of e a c h 

i n d e x t er m is pl ott e d al o n g o n e of m a n y m ut u all y ort h o g o n al a x es.  D o c u m e nts a n d us er 

q u eri es  ar e  r e pr es e nt e d  as  v e ct ors  of  i n d e x  t er m  fr e q u e n ci es  or  w ei g hts.    I n  t h e  v e ct or 

m o d el, t er m w ei g hts d eri v e d fr o m t h e r at e of o c c urr e n c e of a n i n d e x t er m i n a d o c u m e nt 

ar e s ub stit ut e d f or r a w t er m fr e q u e n ci es.  T h us, e a c h d o c u m e nt v e ct or u ni q u el y i d e ntifi es 

a  p oi nt  i n  l e xi c al  sp a c e.    D o c u m e nt s  ar e  r a n k e d  a c c or di n g  t o  t h eir  si mil arit y  t o  a  u s er 

q u er y.  T h e v e ct or m o d el’s c o n c e pt of si mil arit y is t h e d e gr e e t o w hi c h t w o v e ct ors p oi nt 

i n t h e s a m e dir e cti o n ( e. g., ar e m e m b ers of t h e s a m e cl ust er).  T his c o n c e pt is m ost oft e n 

c a pt ur e d  i n  m etri c  f or ms  utili zi n g  t h e  d ot  pr o d u ct  or  c osi n e  f u n cti o ns.    T h e  v e ct or 

m o d el’s f or m ul a ti o n of si mil arit y all o ws p arti al m at c hi n g of us er q u eri es.  B e c a us e i n d e x 

t er m w ei g hts c o m e fr o m t h e d o m ai n [0 , ¥ ) , d o c u m e nts wit h hi g h c orr el ati o n t o s p e cifi c 

t er ms  i n  a  us er  q u er y  (i. e.,  h a v e  hi g h  i ntr a-cl u st er c orr el ati o n)  t e n d t o b e r a n k e d a b o v e 



    

   

 

  

 

 

 

15 
documents with low correlation to all terms in the user query (i.e. have high inter-cluster 

correlation) [3]. 

2.1.1 Vector Model Techniques for LSI 

Latent Semantic Indexing (LSI) processes a data collection to generate a model of 

the information contained in a data collection’s addressable parts [11].  The information 

model is used to inform online recognition of the information represented by new data 

samples and queries, and facilitates the retrieval of similar documents from within the 

indexed collection. The data and information models are constructed in roughly the 

same data structures - two-dimensional, rectangular matrices.  Rows and columns of the 

matrices represent two levels of granularity at which the data is analyzed to construct the 

information model: columns represent the addressable or retrievable items in the data 

collection such as documents, images, or sound files; each row represents an atomic data 

element parsed from the addressable items such as a word, pixel, or pitch. Because the 

number of rows is usually much greater than the number of columns the data matrix – 

called a co-occurrence matrix – tends to be sparse. As the induction procedure resolves 

polysemy and synonymy relationships the initial atom weights are spread and shared 

among groups of related atoms [4].  Because of the spread of atom weights, the matrix 

representing the information model is always dense [17].  

Davis and Foltz [10] discuss the problem of learning recognition models from 

example data by compacting the data representation using Minimum Description Length 

– the least number of bits in which a message can be encoded – as a heuristic to guide an 

automatic search for an efficient encoding. In particular, they treat the problem of data 



    

   

  

  

 

 

 

 

 

16 
compression.  For example, in the language L = {A,B,C, D} *  certain character 

combinations might occur so frequently that the number of transmitted characters can be 

reduced by including special characters to represent those groups in the data model. By 

analyzing the growth of parsimony networks – hierarchical networks representing 

decisions to merge character co-occurrences into special characters - Davis and Foltz 

found a method for learning data recognition models that account for polysemous 

alphabets by merging characters whenever the merge minimizes the model’s total 

description length. They found that merging characters that encoded similar events in the 

language tended to reduce the description length of the data model and improve 

recognition accuracy. 

In LSI, Dumais, Furnas, Landauer, et al. [11] applied an encoding compaction 

technique to a vector space model of natural language in which each word in the 

language is mapped to a unique axis on a high-dimensional orthonormal basis.  Example 

documents are encoded as word-count vectors in the language space and the vectors are 

juxtaposed as columns in a sparse matrix.  Encoding compaction was interpreted as an 

analogous process to projection of the language space – or lexical space – into a lower-

dimensional “semantic space”. This projection embodies an underlying assumption that a 

hidden semantic grammar guides the choice of words in natural language documents.  By 

projecting the document vectors into a space of approximately the same dimensionality as 

the semantic space, it was expected that a model of the information content of the 

example documents would be induced.  Experiments at TREC [13, 14, 16] and in several 

user studies [19, 21, 22, 37] indicate that the dimension reduction method does capture an 



    

   

 

 

 

 

17 
information model with characteristics similar to the models described by Davis and 

Foltz [10].  The projection technique described by Dumais, Furnas, Landauer, et al. [11] 

reduces description length with respect to the number of axes in the lexical and semantic 

spaces, but tends to increase the space needed to store the induced model by mapping the 

sparse lexical matrix onto a dense semantic matrix.  The gain in recognition accuracy 

comes at premium in storage complexity. In analogy to Davis and Foltz’s [10] parsimony 

networks, orthonormal axes replace atoms of a language and atom merging is replaced by 

the projection of related axes onto a new, composite axis [4, 10, 17].  

The choice of which dimensions to merge is decided by a form of principle 

component analysis derived from a linear algebraic technique called Singular Value 

Decomposition (SVD).  The details of the SVD are discussed in Chapter 1. In this 

chapter we will highlight the motivation for applying matrix decomposition to knowledge 

induction. SVD divides the co-occurrence matrix into three components: the left singular 

matrix represents a transform that describes an orthonormal basis; the singular vector – a 

diagonal matrix – contains the PCA results and describes the information and noise 

content of each axis; the right singular matrix represents the coordinates of the 

addressable items with respect to the orthonormal basis. When multiplied together, these 

three components exactly reproduce the original co-occurrence matrix.  Davis, Foltz, and 

Dumais [10, 11, 17] demonstrated that reducing the dimensionality of a model induces 

knowledge about the underlying (or “latent”) information structure with the greatest 

information gain occurring when the target number of dimensions is set very close to that 

of semantic space. This semantic space is a conceptualization of the vector space 



    

   

 

 

 

 

 

 

18 
corresponding to a hypothesized semantic meta- language that directs word choices 

independent ly of the human language in which a document is composed.  The 

dimensionality of semantic space cannot be measured directly; rather, the dimensionality 

of an information model is said to be close to that of the semantic space whenever the 

model’s retrieval metrics are within experimental or production tolerances.  As applied to 

the SVD, each singular value and its associated pair of singular vectors represent a 

component of the transform that maps an atom-count vector into lexical space [4, 17].  

Each component transform encodes information about the atom-count vectors’ positional 

relationships along one axis of the orthonormal basis of lexical space.  Dumais, Furnas, 

Landauer, et al [17] found they could choose dimensions to merge based upon the PCA 

results embodied by the singular va lues.  Their method, LSI, approximates the semantic 

space of a data collection by retaining from the full SVD only the transforms associated 

with the k greatest singular values. In effect, the information contained in the discarded 

transforms is merged into those that remain – an analog to the parsimony network merges 

described by Davis and Foltz [10]. 

A desirable side effect of dimension reduction is the formation of clusters within 

the semantic index. Atom-count vectors are scaled and rotated during the SVD process 

such that conceptually similar data are moved close together in the approximated 

semantic space [17]. Davis and Foltz [10] describe the information structure of semantic 

indices in analogy to artificial neural networks.  They interpret the dimensions of 

document vectors as edge weights leading from an input array into an array of neurons in 

which each document vector maps to a unique neuron that recognizes the document from 



    

   

 

 

  

 

 

 

19 
which its edge weights were derived.  This interpretation is also similar to Kohonen’s 

[33] self-organizing map, in which a 2D array of neurons is connected to an N-D input 

space. The SVD moves the vectors themselves into closer proximity whereas Kohonen’s 

learning rule adjusts the weights of fixed nodes to detect the presence of stimuli in 

discrete regions of the input space. SVD and self-organizing maps will be compared 

further in the coming sections. 

2.1.2 Queries in IR Systems 

We have seen how LSI, as an example of vector space models, represents 

information and learned knowledge.  To  begin our discussion of information retrieval, let 

us examine the vector representation of queries. Queries may take one of two general 

forms: (1) short, keyword-rich descriptions of the desired information, or (2) example 

items that are similar to the desired information (for example an article on the topic of 

interest might be used to query the Lexus Nexus database of journal articles). LSI 

processes both query forms identically.  First, an atom-count vector is constructed by 

counting the atoms (e.g., words) in the query.  The atom-count vector is mapped to a 

template derived from the rows of the retrieval index – that is from the indexed terms in 

the semantic space. Counts for any atoms that match indexed terms are copied into the 

template leaving behind any non- indexed atoms. The filled template is scaled and rotated 

into semantic space by multiplication with the basis transform computed during SVD [4, 

17].  After the basis transformation, the query vector represents the coordinates of a point 

along a new “pseudo-document” vector in semantic space [11].  



    

   

 

  

 

20 
For each query, LSI ranks every document vector (addressable item) in its index 

with respect to the query’s pseudo-document vector though only the few highest-ranked 

datum are actually included in the response to the user [11].  The ranking procedure is 

roughly equivalent to K-Nearest Neighbor learning. The distance between the query’s 

pseudo-document and each indexed item is computed.  A rank-ordered list of the indexed 

items is then constructed and the top few items are returned in the query response [11, 

15].  Note that the distance computed between the pseudo-document and the indexed 

items is usually not the Euclidean distance between these points; most often, the metric is 

either the dot product of the two vectors or the cosine of their included angle [15, 36].  

Dumais first noted the scalability concerns surrounding the exhaustive search of the index 

in the SIAM Review in 1995 [15].  Chen et al. [9] discuss implementation strategies to 

overcome some scalability hurdles in a 2001 technical report. 

2.2 Cluster Extraction 

Hand et al. [28] define clustering as the process of “decomposing … a … data set 

into groups so that the points in one group are similar to each other and are as different as 

possible from the points in other groups.” This thesis research applies clustering methods 

from machine learning to semantic indices in order to extract information about the 

distribution of data points in the index and the clusters they are expected to form.  Hand 

et al. divide clustering methods into three categories: hierarchical, partition-based, and 

probabilistic. The three categories are defined based on the scope of the scoring function 

(local or global), and on the determinism of the search method used to pick candidate 

cluster members (see Figure 2.1). 



    

   

 

 

 

 

 

21 
Hierarchical clustering algorithms characteristically include a local scoring 

function and search method that is tightly correlated with a specific, expected cluster 

model [28].  Peter Willett [48] presents a comprehensive review of hierarchical clustering 

strategies used for information retrieval through 1988.  Koller and Sahami [35] developed 

an on- line learning technique for extending hierarchical cluster graphs. This on- line 

technique superimposes over the cluster hierarchy a decision network in which each 

decision depends on a small subset of the characteristic features of the underlying cluster.  

Broder et al. [8] published a comprehensive, syntactic clustering of the entire World Wide 

Web in 1997. Broder’s hierarchical method includes some novel similarity metrics, but is 

most impressive because of its scalability; Broder’s test data included 30 million 

hypertext documents which were clustered and indexed for searching in about 10.5 days 

of processing time. Karypis, Han, and Kumar [32] presented Chameleon, a hierarchical 

clustering method that uses a hybrid, adaptive cluster model, in 1999. Chameleon 

operates on a k-Nearest Neighbor graph derived from the raw data. The cluster model 

considers metrics based on min-cut division of the vertices assigned to a cluster (local) 

and min-cut division of the links between clusters (global). The best candidate merge 

simultaneously maximizes both metrics; as a result, clusters of widely varying sizes and 

shapes can be discovered by Chameleon’s single, adaptive model. 
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Search Strategy 
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Figure 2.1 Categories of clustering algorithms 

Partition-based clustering methods de-couple the cluster model from the scoring 

functions. Typically, they use global scoring functions – comparing a data point to all the 

possible clusters - and examine every data point during each iteration of cluster 

refinement.  Thus, no specific cluster model is imposed by the clustering method, though 

the scoring function does attempt to enforce the previously mentioned similarity 

constraints [28].  Guha, Rastogi, and Shim [27] presented CURE, a partition-based 

clustering method for characterizing large databases, in 1998. CURE bears a strong 

likeness to the Chameleon system; CURE merges partial clusters formed by normalized, 

random sampling of the data points. After the initial partial clusters are merged, they act 

as scaffolds around which the whole database may be characterized and partitioned. 

Borodin, Ostrovsky, and Rabani [7] developed techniques for achieving near-quadratic 

time complexity in general when searching for optimal partitions of sparse clusters. 

(Sparse clusters are defined in Awerbuch and Peleg, 1990 cited in [7].)  The use of 

Borodin et al.’s [7] technique applies the sparse cluster model to methods that are 



    

   

  

 

23 
otherwise independent of any cluster model.  This loss of generality is usually acceptable 

compared to the gain in data throughput. McCallum, Nigam, and Ungar [38] proposed a 

further refinement to partition optimization in high-dimensional data sets – such as 

document collections – in 2000. McCallum et al. proposed a two-step method that first 

forms overlapping partitions across the entire data set and then efficiently refines cluster 

boundaries by examining only the data points that fall into overlapping regions. 

McCallum et al. report empirical findings of a 20x speed up over complete partition 

optimization with no significant change in IR metrics. 

Probabilistic (or “fuzzy”) clustering methods produce mixture models that predict 

a data point’s membership in a given cluster with a known degree of error [28].  Fuzzy 

clusters are difficult to represent geometrically and are therefore of limited interest in the 

proposed research.  However, unsupervised probabilistic clustering methods have been 

successful at predicting the number of clusters in large data sets – an accomplishment 

which is of great importance to this thesis research. Gath and Geva [26] developed an 

unsupervised learning algorithm based upon fuzzy k-means in 1989. Their method 

incrementally increased the number of clusters requested of the k-means algorithm until 

some performance metric function was maximized. Gath and Geva assume that the 

performance metric will be specialized for a given problem, so their method provides 

extensive flexibility for adaptation to almost any real-valued function. Slonim and 

Tishby [43] presented an information theoretic, fuzzy clustering algorithm for large, full-

text databases in 2000.  While their partitioning scheme is more sophisticated, Slonim 
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and Tishby also incrementally adjust the number of clusters over many iterations of their 

algorithm until some performance metric is maximized. 

2.3 Geometric Surfaces 

This thesis research adapts methods and data structures from computer graphics to 

compose compact representations for clusters. Three computer graphics approaches that 

were explored are implicit equations, non-uniform rational b-spline (NURBS) curves, and 

polygonal meshes. Each of these methods provides convenient data structures and 

algorithms for defining the boundary between points inside and outside of a given region 

of space. Shirley [42] describes implicit equations as real-valued functions that return 

zero whenever their arguments define a point on the “implicit surface.” Shirley develops 

implicit equations for 3D planes and a small selection of 3D curves. He concludes by 

presenting techniques for representing surfaces in general by parameterized, implicit 

equations.  Forrest [24] introduced Bezier curves to the computer graphics community in 

1972. Bezier curves interpolate a continuous path from a set of control points according 

to a blending rule, a polynomial that defines the influence of each control point on the 

curve. Versprille [18, 45] describes non-uniform rational b-spline (NURBS) curves, the 

general framework of which Bezier curves are a special case. NURBS curves are 

piecewise functions in which each interval contains a Bezier blending function over the 

local control points. NURBS curves provide the advantage that changing a portion of a 

complex curve requires minimal re-computation of the blending polynomials.  Hearn and 

Baker [29] describe polygonal meshes as the tessellation of a surface which approximates 



    

   

 

  

 

 

 

 

25 
the curvature with a set of polygonal patches. Shirley [42] describes data structures for 

efficiently representing meshes of triangular patches tangent to a curved surface. 

2.4 Query Service and Ray-Surface Intersection 

Query service in the vector space model of information retrieval is a mathematical 

analog to ray-surface intersection searches in computer graphics.  This thesis research 

adapts optimizations of the ray-surface intersection search to improve the time 

complexity of LSI-like query service.  Ray/scene intersection is the process in graphics of 

testing an arbitrary ray for intersection with all space-filling, geometric surfaces in the set 

of objects defined as a scene.  In general, the ray/scene intersection is linear in the 

number of objects in the scene. Because scenes are usually sparse – having a low ratio of 

object volumes to total volume – space partitioning schemes frequently enable sub-linear 

complexity search and retrieval of objects that are likely to intersect with a given ray 

[42].  The clustering techniques described in the section 2.2 are spatial partitioning 

schemes. The document collections studied in this research are sufficiently large to 

demonstrate LSI’s scale constraints, but are small enough that the document clusters 

produced by Chameleon, for example, sufficiently partition semantic space so that 

SCRIBE requires no further subdivision to maintain its search efficiency. When the 

techniques developed in this thesis – or, for that matter, any IR techniques – are applied 

to much larger document collections, it becomes necessary to generate a guide tree to 

direct the search algorithm toward regions of space that are likely to contain query 

matches. Two popular guide trees are BSP and k-d trees.  Binary space partition trees 

(BSP-trees) are “binary trees for multidimensional points where successive levels are 
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split by arbitrary hyperplanes” [5]. That is, at each level the dimension containing the 

most information (as determined by an information gain metric) is chosen and a splitting 

hyperplane is constructed at the median value of that dimension among the objects in that 

level and section of the tree. At every decision point all dimensions are candidates for 

splitting. K-d trees [6] are a special case of BSP-trees in which the splitting dimension at 

each level is predetermined.  For k-dimensional data the splitting dimension at level L 

is L mod k +1. In practice, the depth of a k-d tree is roughly the same as a BSP-tree 

constructed on the same data (thus search complexity is asymptotically equal), but the 

construction time is reduced by a constant factor related to the time spent computing the 

information gain metric for the BSP-tree. 



    

    

  
 

 
 
 

 

 

 

 

 

CHAPTER III 

RESEARCH APPROACH 

This thesis research considers information retrieval as part of the knowledge 

discovery and exploration framework in Figure 3.1.  This framework provides 

mechanisms for fulfilling a user’s information need by retrieving relevant documents 

through a natural language query service interface as required for information retrieval. 

In addition, the framework constructs the necessary data structures to permit visualization 

and exploration of the information space. 

The research has followed the framework laid out in Figure 3.1 to test the 

hypothesis stated in Chapter I: 

Latent semantic indexing is an effective information retrieval technique, 

but search efficiency scales poorly and storage needs are unacceptable for 

large data collections. Techniques derived from machine learning and 

computer graphics can be applied to semantic indices to generate data 

structures that support more efficient search with comparable retrieval 

accuracy. 

27 
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Fi g ur e 3. 1 Pr o p os e d k n o wl e d g e dis c o v er y a n d i nf or m ati o n r etri e v al fr a m e w or k 

A pr ot ot y p e i nf or m ati o n r etri e v al (I R) pi p eli n e h as b e e n c o nstr u ct e d fr o m t h e fr a m e w or k 

b y s el e cti n g a n d a d a pti n g pr e -e xisti n g al g orit h ms f or e a c h t as k i n t h e pi p eli n e: 

· Tr a nsf or m ati o n t o v e ct or s p a c e, 

· Di m e nsi o n alit y r e d u cti o n, 

· Cl ust eri n g a n d b o u n d ar y e xtr a cti o n, 

· S urf a c e r e pr es e nt ati o n, 

· Q u er y s er vi c e. 
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The remainder of this chapter examines the tasks and the constraints each places upon 

candidate algorithms. This chapter concludes with a discussion of the metrics that were 

used to judge the success of the prototype. 

3.2 Data Transformation to Vector Space 

This task transforms a data collection from a relatively complex, free-form 

structure into the simplified representation required by the knowledge inference task that 

comes next in the pipeline. As discussed in the previous chapter, each of the three classic 

information retrieval models represents documents as strings of index term weights 

(either binary weights or real-values). The goal of this task, then, is the identification of 

index terms and the calculation of index term weights. This thesis research adopts a 

simple, common rule for choosing index terms: any term that appears in two or more 

documents is an index term.  The particulars of calculating index term weights depend 

upon the representation model chosen. By focusing on the LSI approach, we have 

implicitly chosen to employ the vector space model of information retrieval.  In addition, 

Dumais’ study of term weighting techniques recommends the use of the local “log-

frequency” and global “log-entropy” scheme, which we have also adopted [12].  The 

construction of these weight strings satisfies the representational requirements of the 

knowledge inference stage of any vector model-based IR pipeline. 

3.3 Knowledge Inference by Dimension Reduction 

This task involves learning the links between terms and information in the data 

collection. The vector model of IR frames this task as cluster analysis – documents that 



    

    

 

 

 

 

  

 

30 
contain similar information are expected, by virtue of the term weighting scheme, to 

occur relatively closer to each other than to dissimilar documents. This thesis research 

follows the example of previous implementations of the vector model that apply 

analytical algorithms to the initial document vectors to produce an information model.  In 

particular, we apply principle component analysis and multi-dimensional scaling in the 

form suggested by Latent Semantic Indexing (LSI) [17].  The term-document matrix 

produced by the first stage of the pipeline is factored into its singular value 

decomposition (the PCA step) and approximated by its greatest eigenpairs (multi-

dimensional scaling). 

The semantic space produced by this stage of the pipeline can be searched as a 

document index itself – this is the strategy used by LSI. For the purposes of improving 

search efficiency and supporting visualization, however, this thesis research extends the 

IR pipeline to the discovery and discrete definition of document clusters. 

3.4 Document Cluster Identification and Boundary Extraction 

The index produced by the previous stage of the pipeline contains document 

clusters that represent the relationships among fragments of information in the collection.  

Those clusters, though, cannot be recovered from the index directly as might be desirable 

for visualization, classification, or other search optimizations as we have done in this 

research.  This stage of the pipeline discovers the clusters formed during the inference 

stage and extracts their members into separate containers for further analysis. 

The number of clusters formed during inference is unknown at this stage in the 

pipeline. Before proceeding to cluster identification, then, it is necessary to estimate the 
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number of clusters present in the semantic index. This is easily accomplished by a 

probabilistic clustering algorithm such as fuzzy k-means [26].  Probabilistic clustering 

was too time-consuming for the schedule of this thesis research.  Preliminary trials with 

fuzzy k-means took days to complete one clustering solution out of the hundreds required 

for convergence. Instead, we developed a few simple criteria that describe acceptable 

clustering solutions.  These criteria, described in the Appendix, were used to guide a 

manual search of the parameter space. 

The choice of an appropriate cluster identification algorithm for this stage is 

constrained by the need to maintain the relative spatial separation between clusters and 

the need to identify clusters with both convex and concave geometries. As discussed in 

Chapter II, partition-based clustering algorithms are generally more able to adapt to 

complex cluster geometries than hierarchical or probabilistic algorithms.  An exception, 

the hierarchical Chameleon system [32], is also a strong candidate.  In this thesis 

research, we have adopted the Chameleon technique. First we compute a partition-based 

clustering solution over the semantic index. The small clusters of the first solution are 

then hierarchically merged.  

3.5 Boundary Surface Representation by Graphics Primitives 

This stage of the pipeline simplifies the representation of the extracted cluster 

volumes to improve storage and search complexity. The document vectors that make up 

the surface of each cluster volume are used as guidelines for fitting computer graphics 

primitives around each cluster.  The choice of primitives is the users’ prerogative; 

however, the complexity of the primitive chosen should agree with the complexity of the 



    

    

 

  

 

 

  

 

  

  

  

3 2 

cl u st ers’ g e o m etri es.  F or c o n v e x cl ust ers, is o m etri c pri miti v es ( e. g., s p h er es, c u b es, et c.) 

m a y s uffi c e.  F o r c o n c a v e cl ust ers, pri miti v es s u c h as N U R B S or p ol y g o n al m es h es m a y 

b e m or e a p pr o pri at e.  I n o ur r es e ar c h, si m pli cit y of t h e pr ot ot y p e pi p eli n e h as dri v e n t h e 

c h oi c e of gr a p hi cs pri miti v es. 

3. 6 Q u e r y S e r vi c e 

At t his st a g e of t h e pi p eli n e, it is n o l o n g er n e c e ss ar y t o s e ar c h t hr o u g h all or m ost 

of t h e d o c u m e nt v e ct ors i n t h e s e m a nti c i n d e x t o fi n d r el e v a nt m at c h es t o a us er’s q u er y. 

Wit h  mi n or  a d a pt ati o n,  t h e  r a y  tr a ci n g  m et h o d  of  i nt ers e cti o n  t esti n g  wit h  t h e  gr a p hi cs 

pri miti v es  f or m e d  at  st a g e  4  h as  b e e n  us e d  t o  a c c o m plis h  t h e  t as k  of  l o c ati n g  r el e v a nt 

d o c u m e nt  cl ust ers  wit h o ut  a ct u all y  e x a mi ni n g  a n y  of  t h e  d o c u m e nt  v e ct ors.  W e  h a v e 

a d a pt e d  s u b - li n e ar  r a y  tr a ci n g  f or  us e  t h e  I R  pi p eli n e.  A d a pt ati o ns  i n cl u d e  hi g h-

di m e nsi o n al  i nt ers e cti o n  t ests,  f a ciliti es  f o r  r a n ki n g  d o c u m e nt  v e ct ors  i n  cl ust ers 

i nt ers e ct e d b y a q u er y v e ct or, a n d cl ust er r el e v a n c e r a n ki n gs f or n o n- i nt ers e ct e d cl ust ers. 

3. 7 P e rf o r m a n c e M et ri cs 

T h e  p erf or m a n c e  of  t h e  pr ot ot y p e  pi p eli n e  h as  b e e n  c o m p ar e d  wit h  e xisti n g  I R 

s yst e ms b y t h e f oll o wi n g m e tri c s: 

· R e c all: t h e n u m b er of r el e v a nt d o c u m e nts r etri e v e d; 

· Pr e cisi o n: t h e r ati o of r el e v a nt t o n o n -r el e v a nt d o c u m e nts r etri e v e d. 

· F -m e as ur e: d es cri b es b ot h r e c all a n d pr e cisi o n i n a si n gl e v al u e. 

E x p eri m e nt al  d o c u m e nt  c oll e cti o ns  a v ail a bl e  fr o m  t h e  NI S T  T e x t  R etri e v al  C o nf er e n c e 

( T R E C) pr o vi d e d at a s ets, lists of r el e v a nt d o c u m e nts, a n d p erf or m a n c e m etri cs s u p pli e d 
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by competitors. SCRIBE, an implementation of the prototype pipeline, was evaluated 

against a basic LSI implementation. Both systems were tested over W. Hersh’s 

OHSUMED [30] document collection, queries, and relevance judgments from the TREC-

9 filtering track. 



    

    

  
 

 
 
 

 

  

 

 

  

  

  

  

  

  

 

 

C H A P T E R I V 

D E SI G N A N D I M P L E M E N T A TI O N 

T his c h a pt er d es cri b es t h e d esi g n a n d i m pl e m e nt ati o n of t h e S C RI B E ( S e m a nti c 

Cl u st er  R etri e v al  I n d e x  B a si c  El e m e nt s)  s y st e m  t h at  w a s  i m pl e m e nt e d  a s  a  pr o of  of 

c o n c e pt of t h e i nf or m ati o n r etri e v al pi p eli n e dis c uss e d i n C h a pt er I. 

4. 1 S C RI B E D esi g n a n d I m pl e m e nt ati o n 

S C RI B E  w as  c o nstr u ct e d  t o  i m pl e m e nt  t h e  d esi g n  s h o w n  i n  Fi g ur e  3. 1  b y 

a d a p ti n g e xisti n g al g orit h ms a n d b uil di n g c ust o m s oft w ar e f or t h e si x t as ks b el o w: 

· D at a tr a nsf or m ati o n t o v e ct or s p a c e 

· K n o wl e d g e i nf er e n c e b y di m e nsi o n alit y r e d u cti o n 

· Cl ust eri n g a n d b o u n d ar y e xtr a cti o n 

· B o u n d ar y s urf a c e r e pr es e nt ati o n 

· Q u er y pr o c essi n g. 

4. 1. 1  D at a Tr a nsf or m ati o n t o V e ct or S p a c e 

T h e  d esi g n  of  t his  st a g e  f oll o w e d  t h e  e x a m pl es  of  est a blis h e d  v e ct or  m o d el  I R 

t e c h ni q u e s.  Do c u m e nts  w er e  m o d el e d  as  “ b a gs  of  w or ds ” [ 3]  t h at  w er e  c o n v ert e d  t o 

v e ct or f or m b y r e c or di n g t h e r a w o c c urr e n c e c o u nts f or e a c h t er m. N ot e t h at “t er ms ” ar e 

diff er e nti at e d  fr o m  “ w or ds. ”  A  w or d  is  a n y  n o n - n ull  c oll e cti o n  of  al p h a n u m eri c 

c h ar a c t ers.    T er ms  ar e  w or ds  wit h  p arti c ul ar  o c c urr e n c e fr e q u e n c y  c h ar a ct eristi cs.  T h e 
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35 
specific parameters that distinguish terms from words are user-selectable; in this work, 

terms were defined as words that occurred in more than two documents but less than 40% 

of documents in the collection. These parameter values were chosen to be typical of LSI 

systems as described by Foltz et al. in [10, 23, 36, 49]. 

All terms were compared to Salton’s SMART stop list of high-frequency English 

words [41].  Terms appearing on this list occur so frequently in English natural language 

that modeling of them overwhelms the influence of information-bearing terms. 

Consequently, these terms are removed from the data stream early in the vector 

transformation process. Note that the limitation of term frequency to less than 40% of the 

document collection is intended to accomplish the same goal for domain-specific terms. 

Additionally, the natural language document collection used in this work was 

stemmed – homogenized for variances in spelling resulting from use in different parts of 

speech, temporal sense, number, etc. – by applying the Porter Stemmer algorithm [39].  

All documents, queries, and stop words were stemmed prior to any other vector space 

transformation step. The Porter Stemmer does not remove punctuation from a text 

stream; it was necessary to add some lightweight textual analysis procedures to the 

document vector construction program. 

4.1.2  Dimension Reduction with SVD 

Berry [4] published SVDPACKC, a reference implementation – in C – of several 

singular value decomposition (SVD) algorithms from the Linear Algebra Package 

(LAPACK) [1]  algorithm collection. Rohde’s simplified executable front-end [40] for 

the single-vector Lanczos SVD was used at this stage of the pipeline to perform 
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knowledge inference by dimension reduction. Rohde’s SVD program permits 

customization of five parameters that affect the quality of the solution and performance of 

the algorithm. The first two parameters are the number of rows and columns in the term-

document matrix (TDM). Control of these parameters is the most effective means of 

controlling the running time of the algorithm. However, the removal of rows that 

represent terms or columns that contain document vectors is not desirable because such 

actions cause information loss in the semantic index.  

SVD rank is the third parameter. The rank of the decomposed matrix is analogous 

to the dimensionality of the term-document space.  The SVD program can be told to end 

early when a certain number of the largest singular values have been discovered.  This is 

advantageous, since this stage of the pipeline deals with dimension reduction. The rank 

of the SVD was therefore chosen as the target dimensionality of the semantic index. The 

specific value of this parameter was chosen by performance trials of the pipeline over a 

portion of the document collection reserved for training. 

The final two parameters are intended to account for floating point rounding error, 

but can be used to affect adjustments in the granularity of the decomposition.  The first of 

these parameters defines the range of values that will be interpreted as equal to zero. By 

default, this range is [-1E-30, 1E-30].  Widening this range decreases the number of QR 

factorization steps required to cause the SVD to converge, in effect reducing the running 

time of the program. Wider zero ranges distort SVD, but might not negatively impact 

retrieval performance of the index if the TDM is sufficiently sparse. The default value of 

this parameter was used in the current work. The final parameter is the floating-point 



    

    

 

  

 

 

 

 

 

 

 

37 
error correction.  This value – 1E-6 by default – corrects for rounding error in all floating-

point calculations in the SVD program. As with the zero range, the default va lue was 

used in the current work. 

4.1.3 Document Clustering and Boundary Extraction 

The document clustering task was accomplished by applying algorithms 

implemented in Karypis’s Cluster Toolkit (CLUTO) [31].  A data format adaptor was 

written for conversion between the output format of Rohde’s SVD program and 

CLUTO’s vector input format. The adaptor simply scales the right singular vectors by 

the singular values and prints the resulting vectors to a new file. 

Karypis’s CLUTO package permits user specification of dozens of parameters.  

This section first outlines the parameter classes and then specifies the values chosen for 

this pipeline. The three parameter classes support clustering algorithm selection, report 

generation, and visualization options. 

CLUTO provides six clustering algorithms and a mechanism for composing 

sequences of clustering operations.  The algorithms have a common parameter set: 

similarity functions, cluster criterion functions, row and column models, and pruning 

functions. The algorithms are a mixture of agglomerative, partitioning, and graph-based 

methods. Two algorithms may be composed with the second operating upon the solution 

of the first; this operation is usually applied by first partitioning and then agglomerating 

clusters.  Each algorithm is specialized at run time by specification of a parameter set.  

Similarity functions include vector cosine, correlation coefficients, Euclidean distance, 

and Jaccard coefficients (for graph-based methods).  Many criterion functions are 



    

    

 

 

 

 

  

 

 

38 
provided including linkage classifiers, UPGMA, and a collection of probabilistic 

classifiers. Additionally, a preprocessing step to the clustering algorithms may be 

instructed to perform two operations: transform the vectors into a variety of coordinate 

spaces; prune vectors out of the input set when they are duplicates, zero vectors, or 

otherwise non- informative. 

During the literature review process, the Chameleon clustering method was 

identified as the best clustering method for the IR pipeline.  CLUTO provides the 

capabilities needed to implement the Chameleon method and was therefore configured to 

emulate it. Chameleon composes partitioning and agglomerative algorithms – 

specifically graph-based methods.  Early designs mimicked the graph-based method and 

determined that they were prohibitively slow on high-dimensional vectors.  Instead, a 

composition of repeated bisection and hierarchical agglomeration was chosen.  The 

partitioning step was specialized to use the correlation coefficient similarity function and 

the I2 criterion function. The agglomeration algorithm was specialized to use the 

correlation coefficient similarity function as well with the UPGMA criterion function. 

No coordinate transformation was applied to the vectors. The vector columns were 

pruned until 90% of the similarity between vectors remained.  (According to Karypis, this 

pruning improves the processing time of the clustering algorithms without reducing the 

solution quality [31].)  A more detailed journal of the process leading to these parameter 

choices is included in the Appendix. 

CLUTO provides extensive reporting facilities from raw text files to formatted 

input suitable for a number of visualization systems. CLUTO’s most essential output is a 



    

    

 

 

 

  

 

 

39 
report of the cluster sizes. Additional details include internal and external cluster 

similarities, z-scores representing the membership probabilities, feature analyses, and 

cluster labeling. Enhanced reports include detailed statistical summaries of each cluster’s 

salient features, visualizations of clustering solutions, agglomeration trees, and more 

options that will be elided. 

The basic reporting features were the most useful to the current work. CLUTO 

was instructed to output a file containing the cluster membership information for each 

vector. Z-scores for each vector are also emitted into the cluster solution file to support 

off- line analysis of the solution. Additional summary details were also requested as 

screen output to facilitate the parameter selection process detailed in the Appendix. 

4.1.4 Surface Representation 

Two surface representations were selected for implementation – axis-aligned 

bounding boxes and bounding spheres. These two were chosen from a wider field due to 

their simple data structures and efficient intersection tests.  Both surface representations 

were derived from the cluster membership judgments output from CLUTO. Bounding 

boxes were constructed by recording the minimum and maximum values along each axis 

over all the members of a cluster. Bounding spheres were cons tructed by computing the 

centroid of each cluster’s bounding box and constructing a radius length as half the length 

of the line segment between the minimum and maximum corners of the associated 

bounding box.  

The separation of the bounding surfaces was computed to test the viability of 

applicability of the two representations to the IR problem.  It was discovered that the 
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bounding spheres overlapped each other extensively to the point that a ray intersecting 

any one bounding sphere was likely to intersect them all. Investigation into this 

phenomenon revealed that the document clusters were roughly pencil-shaped – extended 

along rays radiating away from the origin. Bounding boxes, however, were found to 

provide perfect separation of the clusters. This result for axis-aligned boxes was 

unexpected.  Natural language documents may be expected to cover a small set of topics; 

the vectors representing such a varied collection would tend to be bounded best by an 

oriented box.  The choice of axis-aligned bounding boxes was motivated in part by the 

expectation that the extreme points of the boxes surrounding similar but distinct clusters 

would overlap and provide a mechanism for retrieving document records from a small 

neighborhood of similar clusters. The specificity of documents in the MEDLINE 

collection, however, causes the clusters to form around single index term axes instead of 

around arbitrary rays. This turned out to be both a blessing and an impediment as will be 

discussed in the next chapter. 

A third cluster representation was designed around the signed distance field (SDF) 

concept in which each point in a data set is represented by its displacement relative to a 

convenient splitting plane. This improves on the bounding box and sphere 

representations which represent their members with full-rank vectors.  Further the SDF 

stores most of the information needed to compute the similarity between a query vector 

and members of the cluster; the distance of a document to the splitting plane is linearly 

related to the similarity of the document vector and splitting plane (i.e. the ray containing 

the nearest point on the splitting plane). However, construction of a SDF requires the 



    

    

  

 

 

  

 

 

41 
ability to find an appropriate splitting plane and although the properties of such a plane 

are known for the IR problem – parallel with the centroid vector, perpendicular to the 

most separating axis – the fulfillment of these requirements is non-trivial in K 

dimensions. The idea of implementing cluster representations as a combination of 

bounding surfaces and signed distance fields is exciting, but was set aside as a subject for 

future work. 

4.1.5 Query Service 

Query service was designed from the start as a ray tracing engine adapted for 

operation in high dimensional spaces.  A “query tracer,” the name chosen for IR ray 

tracers, was implemented for this stage of the pipeline to perform intersection testing 

between rays derived from query vectors and the clusters constructed in earlier stages. 

The query tracer: (1) searches the document clusters to find those that intersect (or 

partially intersect) with the query ray; (2) ranks the data vectors in any intersected 

clusters in order of their similarity to the query ray; and (3) ranks the non-intersected 

clusters in order of their similarity to the query ray. 

Once the design process of the cluster surface data structures was complete, the 

adaptation of the ray tracer was actually trivial. Most of the operations required were 

identical to traditional ray tracing requests; a query operation was added to make a 

distinction between raw and processed intersection test results.  A framework of interface 

classes was designed to simplify implementation and extension of query tracers. Classes 

implementing the IR pipeline were then composed atop this interface and the Boost uBlas 

[46] linear algebra library.  Because the Boost uBlas implementation is tuned for dense 



    

    

 

 

 

 

 

 

 

42 
matrix and vector operations, sparse versions of a few common operations such as vector-

matrix multiplication and matrix multiplication were implemented as well. 

Operation of the query tracer is described below. The query tracer loads each 

cluster of document vectors into a distinct and unique object in the search space.  Each 

cluster object contains a collection of its document vectors. When a query message is 

received by a cluster, the query ray is tested against the boundaries of the enclosing 

surface. If the ray intersects the surface boundaries, then a list of document similarities is 

constructed and returned to the calling object. Cluster objects are contained by a scene 

graph that determines the search order and which of the clusters will be searched at all.  

The scene graph chosen for the current work imposes no order on the search and permits 

searching of all clusters. In this work, document clustering alone is sufficient to provide 

sub- linear search complexity in the number of documents. Other scene graph 

implementations made possible by the query tracing framework classes facilitate further 

reduction in search complexity, for example by implementing an R* tree over the 

document clusters.  Scene graphs are contained by scene objects that process query 

results before passing them back to the user- level program. The IR scene graph imposes 

limits on the number of results returned in response to a query and ensures that results are 

returned in order of decreasing similarity. Variations on each of the objects described 

above are facilitated by the query tracing interface classes discussed above. 

The query tracer implemented in SCRIBE does not directly serve natural 

language queries.  The task of translating user queries into vectors in the semantic space 

is accomplished by a sequence of programs that stem the queries, construct index term 
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occurrence vectors, and produce pseudo-documents from the query term vectors.  The 

decision to translate the queries offline was motivated by the need to reduce the memory 

load of the query tracer. Since the current query tracer implementation still loads the full-

rank vector for each document into memory, the overhead of additionally loading the 

translation matrices restricts the ability of the query tracer to locate accurate matches in a 

reasonable amount of time.  Both SCRIBE and the LSI system perform this offline query 

translation, so the process has no impact on the performance results. 

4.2 Implementation of the Latent Semantic Indexing System 

Latent semantic indexing was implemented for comparison to the SCRIBE 

system.  This implementation was accomplished by configuring SCRIBE’s query tracer 

to load each document vector into a distinct and unique object in the search space.  The 

query operations were slightly modified to treat the entire scene graph as a single cluster 

in the query tracer. That is, SCRIBE only performs direct comparison of documents to the 

query vector when the query intersects the documents’ enclosing surface, but LSI 

compares every document to the query vector.  This behavior was implemented in the 

unordered scene graph class, thus causing a split of the LSI and query tracing source 

trees. Future work will obviate this change either by refactoring the class hierarchy to 

remove the distinction between clusters and document or by designing a scene graph 

tailored specifically to LSI operations.  This divergence in behavior, though accomplished 

in a less than elegant fashion, is fundamental to the differences in the query tracing and 

LSI methods that are under scrutiny in this work.  



    

    

 
 

 
 

 

 

 

 

  

 

 

CHAPTER V 

EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter discusses experiments designed to test the following hypothesis: 

Latent semantic indexing is an effective information retrieval technique, 

but search efficiency scales poorly and storage needs are unacceptable for 

large data collections. Techniques derived from machine learning and 

computer graphics can be applied to semantic indices to support more 

efficient search while maintaining comparable retrieval performance. 

The following sections detail the experimental protocol used to gather performance data 

from both a Latent Semantic Indexing system and a SCRIBE system as described in 

Chapter V, the data resulting from the experiment, and statistical analyses of the 

performance data.  

5.1 Data Sets 

W.R. Hersh’s OHSUMED [30] document collection, queries, and relevance judgments  

distributed by NIST in association with the TREC-9 filtering track were chosen as the 

input for these experiments due to their availability and the author’s familiarity with their 

data formats. OHSUMED includes sixty-three queries and associated relevance 

judgments for training and test collections of MEDLINE abstracts spanning the years 

44 
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1 9 8 7 a n d 1 9 8 8 -9 1 r es p e cti v el y.  T h e tr ai ni n g c oll e cti o n c o nt ai ns 5 4, 7 1 0 d o c u m e nts.  T h e 

t est c oll e cti o n c o nt ai ns 2 9 3, 8 5 6 d o c u m e nts. 

5. 2 M et ri cs f o r M e as u ri n g S u c c ess 

T h e f oll o wi n g r etri e v al a n d p erf or m a n c e m etri cs w er e c oll e ct e d: 

· R e c all 

· Pr e ci si o n 

· F -m e as ur e 

· R u n ni n g ti m e 

T h e  m e as ur e m e nts  of  t h e  pr ot ot y p e  pi p eli n e  w er e  c o m p ar e d  t o  m e as ur e m e nts  of  t h e 

a u th or’s L SI i m pl e m e nt ati o n o n t h e s a m e d at a s et.  R e c all, pr e cisi o n, a n d f- m e as ur e f or 

t h e  pr ot ot y p e  w er e  e x p e ct e d  t o  b e  si mil ar  t o  t h e  m e as ur e m e nts  f or  L SI.  R u n ni n g  ti m e 

w as e x p e ct e d t o b e l o w er f or S C RI B E t h a n L SI. 

5. 3 E x p e ri m e nt al D esi g n 

5. 3. 1 H y p ot h esis 

A n e x p er i m e nt w as p erf or m e d t o c o m p ar e t h e p erf or m a n c e of S C RI B E wit h L SI.  

T h e C P U ti m e, r e c all, pr e cisi o n, a n d f - m e as ur e m etri cs w er e c h os e n as i n di c at ors li k el y 

t o pr o vi d e i nsi g ht i nt o t h e r el ati o ns hi ps b et w e e n t h e s yst e ms’ p erf or m a n c e c h ar a ct eristi cs. 

T h e h y p ot h esis st at e d a b o v e i n cl u d es a n e x p e ct ati o n t h at S C RI B E will i m pr o v e u p o n t h e 

effi ci e n c y of L SI w hil e m ai nt ai ni n g c o m p ar a bl e r etri e v al c a p a bilit y.  Wit h r es p e ct t o t h e 

i n di c at or m etri cs t his i m pli es t h at: 



    

    

 

 

 

 

  

 

 

  

46 
(i) Total CPU time of a SCRIBE query is less than the time for an LSI query 

with the same parameters; 

(ii) Recall, precision, and f-measures of a SCRIBE query are no worse than 

for an LSI query with the same parameters. 

5.3.2 Experimental Protocol 

A protocol was designed to collect measurements of the performance metrics of a 

SCRIBE system and compare these data to those collected from an identically configured 

LSI system. Each experiment exercised both a SCRIBE and an LSI system over identical 

document collections, queries and relevance judgments, indexing terms, and 

dimensiona lities.  The experiment was repeated with four document collections created 

by randomly sampling 25% of the OHSUMED test collection. In each experiment, 

measurements of the performance metrics were taken for each of the sixty-three queries 

provided with the OHSUMED collection.  The resulting four measurements for each 

query were averaged across the four experiments (to reduce noise introduced by uneven 

sampling of judged documents across the queries) yielding sixty-three data points per 

metric. 

5.4 Results 

Measurements of the SCRIBE and LSI processes are listed in the Appendix. Two 

listings are provided for each process corresponding to the average measurements of the 

performance metrics over the four document collections sampled from the OHSUMED 

collection.  The results are organized into spreadsheets with columns reporting the timing 



    

    

 

 

 

 

 

47 
and retrieval statistics previously discussed. OHSUMED relevance judgments are 

documents chosen by subject matter experts who searched the MEDLINE archive for 

documents fulfilling the information need stated in each query.  Because the OHSUMED 

collection was randomly sampled to create the four test collections, the number of 

available relevance judgments varies between experiments; however, each sampled 

document collection contains ten relevance judgments per query on average.  Because the 

number of documents retrieved is independent of the number of relevance judgments, 

running time is unaffected by the variance in the number of judged documents. The 

performance metrics chosen for these experiments are sensitive to variations in the 

number of judged documents; all three performance metrics are ratios of the number of 

judged documents and some other feature. To account for variations in the performance 

metrics due to sampling, measurements at each data point were averaged across the four 

document collections.  The averaged measurements are summarized in Figures 5.1 – 5.4. 
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Figure 5.1 Running time summary 
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Figure 5.2 Recall summary 
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Average Precision and Standard Error per 

Query for Four Docum e n t C o llections 
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Figure 5.3 Precision summary 

Figure 5.4 F-measure summary 
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5. 5 A n al ysis 

T h e  r es ults  w er e  a n al y z e d  usi n g  h y p ot h esis  t esti n g  b y  st atisti c al  m et h o ds. 

I niti all y, t h e p o p ul ati o n m e a ns of e a c h m etri c w er e e x a mi n e d wit h a M a n n-W hit n e y r a n k 

s u m  t est.  Aft er  f ail ur e  t o  r ej e ct  t h e  n ull  h y p ot h esis  f or  t hr e e  of  t h e  m etri cs,  t h e 

c h ar a ct e risti cs of d at a s u p p orti n g t h e n ull h y p ot h esis w er e c o nsi d er e d.  A p o w er a n al ysis 

a n d a n A N O V A of m e a ns w er e p erf or m e d t o e x a mi n e t h e eff e cts of al g orit h m c h oi c e o n 

r e c all,  pr e ci si o n,  a n d  f- m e a s ur e.  T hi s  s e cti o n  s u m m ari z e s  t h e  d et ail s  of  e a c h  t e st  a n d 

pr e s e n ts a n i nt er pr et ati o n of t h e r es ults. 

A M a n n -W hit n e y r a n k s u m t est [ 4 7] w as p erf or m e d f or e a c h m etri c t o t est t h e n ull 

h y p ot h esis  t h at  t h e  m e as ur e m e nts  fr o m  b ot h  t h e  L SI  a n d  S C RI B E  s yst e ms w er e dr a w n 

fr o m  t h e  s a m e  p o p ul ati o n.  Pr o b a bilit y  t a bl es  f or  t h e  M a n n-W hit n e y  U  st atisti c  ar e  n ot 

c al c ul at e d f or s a m pl e si z es gr e at er t h a n t w e nt y-fi v e.  I nst e a d, z-s c or es ar e c al c ul at e d fr o m 

t h e  U  st atisti c  a n d  a p pr o xi m ati o ns  fr o m  t h e  n or m al  distri b uti o n  ar e  us e d  i nst e a d. 

H err nst ei n’s ρ   st atisti c [ 4 7]  w a s  c al c ul at e d  a s  w ell. ρ   is  a n  eff e ct  si z e  m e as ur e 

r e pr e s e nti n g  t h e  a m o u nt  of  o v erl a p  b et w e e n  t w o  s a m pli n g  distri b uti o ns. ρ  r a n g es fr o m 

0. 0  t o 1. 0 wit h 0. 5 i n di c ati n g c o m pl et e o v erl a p a n d t h e e xtr e m es i n di c ati n g n o o v erl a p. ρ 

U
is  d eri v e d  fr o m  t h e  M a n n-W hit n e y  st atisti c  as   w h er e  U  is  t h e  M a n n-W hit n e y 

n 1 * n 2 

st atisti c a n d n1  a n d n2  ar e t h e n u m b er of s a m pl es i n t h e t w o gr o u ps. 

C P U  ti m e  p o p ul ati o ns  f or  t h e  t w o  al g orit h ms  w er e  f o u n d  t o  b e  t ot all y  disj oi nt 

wit h a r   st atisti c  gr e at er  t h a n  0. 9 9  a n d  a  z-s c or e (z = 9. 2 0 )  i n di c ati n g a pr o b a bilit y l ess 

t h a n 0. 0 0 1 t h at t h e t w o s ets of m e as ur e m e nts w er e dr a w n fr o m t h e s a m e p o p ul ati o n.  T his 
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fi n di n g is c o nsist e nt wit h Fi g ur e 6. 1.  T h er ef or e, t h e n ull h y p ot h esis is r ej e ct e d f or C P U 

ti m e  i n  f a v or  of  t h e  alt er n ati v e h y p ot h esis:  S C RI B E  a n d  L SI  e x hi bit  si g nifi c a ntl y 

diff e re nt  r u n ni n g  ti m es  d uri n g  q u er y  s er vi c e.    M or e o v er,  S C RI B E  e x hi bits  si g nifi c a ntl y 

l o w er  r u n ni n g  ti m es  t h a n  L SI.  O n  a v er a g e  S C RI B E  r et ur ns  q u er y  r es ults  8. 6  s e c o n ds 

f ast er  t h a n  L SI.  T his  is  a  v er y  l ar g e  eff e ct  si z e –   a p pr o xi m at el y  t hirt y- f o ur  st a n d ar d 

d e vi a ti o ns (d @ 3 4 ) . 

N o  e vi d e n c e  w a s  f o u n d  t o  i n di c at e  r ej e cti o n  of  H 0   wit h  r es p e ct  t o  t h e  r e c all, 

pr e c isi o n,  a n d f- m e as ur e  st atisti cs. Z -s c or es  f or  t h es e  t ests (z = 1. 2 9 ..1. 5 7 )  i n di c ate d 

pr o b a bil iti es  b et w e e n 0. 0 7 -0. 1 5   t h at  t h e  m e as ur e m e nts  w er e  dr a w n  fr o m  t h e  s a m e 

p o p ul ati o n.  T h e r   st atisti cs  f or  t h es e  t hr e e  m etri cs  r a n g e d  fr o m  0. 5 7 0-0. 5 8 5 i n di c ati n g 

t h at t h e L SI a n d S C RI B E p o p ul ati o ns ar e si mil ar f or e a c h m etri c.  It w as d e ci d e d t h at a n 

a n al ysis of v ar ia n c e ( A N O V A) s h o ul d b e p erf or m e d t o f urt h er e x pl or e t h e d at a. 

A n a p ri o ri  p o w er a n al ysis of t h e o n e-w a y A N O V A of m e a ns w as p erf or m e d t o 

pr e di ct t h e s a m pl e si z e n e e d e d t o a c hi e v e a st atisti c al p o w er l e v el of 0. 8 f or s e v er al eff e ct 

si z es.  T h e st atisti c al p o w er is d eri v e d as 1 - β  w h er e β  i s t h e pr o b a bilit y of c o m mitti n g a 

T y p e  II  err o r –  f aili n g t o r ej e ct a f als e H0 .  M. Fri e n dl y’s f p o w e r  S A S m a cr o [ 2 5] w as 

us e d  t o  c al c ul at e a  pri ori   p o w er  l e v els  f or  s e v er al  eff e ct  si z es  (i n  t er ms  of  st a n d ar d 

d e vi ati o ns)  o v er  a  r a n g e  of  s a m pl e  si z es  i n cl u di n g  t h e  n u m b er  of  d at a  p o i nts  i n  t h e 

c urr e nt e x p eri m e nt.  It w as d et er mi n e d t h at wit h si xt y -t hr e e s a m pl es eff e cts of at l e ast 0. 5 

st a n d ar d d e vi ati o ns c a n b e d et e ct e d wit h 8 0 % p o w er a n d eff e cts of at l e ast 0. 8 st a n d ar d 

d e vi ati o ns wit h 9 9 % p o w er.  T h at is, t h e s a m pl e si z e of t h e c ur r e nt e x p eri m e nt (N = 6 3)  is 

s uffi ci e ntl y l ar g e t o pr o vi d e a n 8 0 % li k eli h o o d of r ej e cti n g a n y f als e n ull h y p ot h esis wit h 

https://0.07-0.15
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a n eff e ct si z e of 0. 5 st a n d ar d d e vi ati o ns or l ar g er (d ³ 0. 5 ).  As t h e eff e ct si z e i n cr e as es, 

t h e  pr ob a bilit y  of  a c c e pti n g  a f als e H 0   d e cr e as es.  Pl a ci n g  stri ct  b o u n ds  o n  st atisti c al 

p o w er all o ws us t o a c c e pt H 0  w h e n P ( X | H 0 ) > 0. 5  at t h e a = 0. 5 l e v el wit h a r e as o n a bl e 

d e gr e e  of  a ss ur a n c e  t h at  H0   i s  a ct u all y  tr u e.  It  w a s  d e ci d e d  t h at  a n  eff e ct  si z e  of  0. 5 

st a n d ar d d e via ti o ns r e pr es e nt e d t h e s m all est eff e ct li k el y t o b e si g nifi c a nt.  E x a mi n ati o n 

of  t h e  d at a  fr o m  t his  e x p eri m e nt  r e v e als  t h at a  c h a n g e  of  0. 5  st a n d ar d  d e vi ati o n s  i s 

e q ui v al e nt  t o  a d di n g  o n e  r el e v a nt  d o c u m e nt  i n  t e n,  o n  a v er a g e,  t o  t h e  r a w  r e c all 

m e a s ur e m e nts  fr o m  eit h er  al g orit h m  or  o n e  d o c u m e nt  i n  a  t h o us a n d  t o  t h e  pr e cisi o n 

s c or es  of  eit h er  al g orit h m.  W e  ass u m e  t h at  s u c h  a  s m all  diff er e n c e  i n  p erf or m a n c e  is 

b ar el y  si g nif ic a nt.    Wit h  t his  i n  mi n d,  w e  fi x  p o w er  at  8 0 %  a n d  pr o c e e d  t o  a n al y z e  t h e 

A N O V A. 

A  o n e -w a y  A N O V A  r el ati n g  t h e  a v er a g e  m e as ur e m e nts  of  e a c h  m etri c  t o 

al g o rit h m c h oi c e w as p erf or m e d o v er all t h e d at a p oi nts (N = 6 3).  A s di s c u s s e d a b o v e, t h e 

e x p eri m e nt  w as  p o w erf ul  e n o u g h  t o  d et e ct  a  f als e  H0   8 0 %  of  t h e  ti m e  (N = 6 3, d = 0. 5, 

p o w er = 8 0 %).  B et w e e n gr o u ps F t ests r el ati n g p erf or m a n c e m etri cs t o al g orit h m c h oi c e 

ar e s u m m ari z e d i n T a bl e 6. 1.  N o si g nifi c a nt diff er e n c e w as o bs er v e d b et w e e n al g orit h ms 

f or  r e c all,  pr e ci si o n,  or  f- m e as ur e  at  t h e α = 0. 0 5  l e v el,  a n d  w e  c a n  b o u n d  a n y  p ossi bl e 

e ff e ct at d £ 0. 5 st a n d ar d d e vi ati o ns ( e. g., l ess t h a n ± 1 d o c u m e nt o ut of 1 0 0 0 f or r e c all) 

f or α = 0. 0 5, N = 6 3, a n d p o w er = 0. 8 0 . 

https://power=0.80
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T a bl e 5. 1 S u m m ar y of A N O V A of m e a ns r el ati n g m etri cs t o al g or it h ms. 

A N O V A of M etri cs B et w e e n Al g orit h m Gr o u ps 
(N = 6 3, α = 0. 0 5, p o w er = 0. 8) 

F( 1, 1 2 4) P( X| H 0 ) d  b o u n d e d d  o b s er v e d 
R e c all 2. 5 4 3 . 1 1 3 0. 5 0 0. 2 8 

Pr e ci si o n . 9 3 1 . 3 3 6 0. 5 0 0. 1 7 

F _ m e a s ur e . 9 4 9 . 3 3 2 0. 5 0 0. 1 7 

I n  s u m m ar y,  S C RI B E  a n d  L SI w er e  f o u n d  t o  e x hi bit  si g nifi c a ntl y  diff er e nt 

r un ni n g  ti m es  u n d er  t h e  M a n n -W hit n e y  r a n k  s u m  t est.    S p e cifi c all y,  S C RI B E’s  a v er a g e 

r un ni n g ti m e w as f o u n d t o b e a n or d er of m a g nit u d e l o w er t h a n a v er a g e ti m es f or L SI. A n 

A N O V A  p o w er  a n al ysis  b o u n d e d  a n y  p ossi bl e  eff e ct  si z e  f or  r e c all,  pr e ci si o n,  a n d  f-

m e as ur e  t o d £ 0. 5 st a n d ar d  d e vi ati o ns  wit h  p o w er = 8 0 %, N = 6 3, α = 0. 0 5,  a n d  w e 

d et e rmi n e t h at d £ 0. 5  st a n d ar d d e vi ati o ns is t o o s m all of a n eff e ct t o m e a ni n gf ull y f a v or 

o n e al g orit h m o v er a n ot h er.  O n t h e str e n gt h of t h at e vi d e n c e, w e a c c e pt e d t h at S C RI B E 

a n d L SI e x hi bit t h e s a m e r etri e v al p erf or m a n c e. 



    

    

 
 

 
 

 

  

 

 

CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the findings that SCRIBE improves upon LSI’s running 

time by a factor of ten without impacting retrieval performance. Directions of future 

research are discussed. Two SCRIBE enhancements are outlined: parameterization of 

clusters’ overlapping regions and reduction of the memory required to store a SCRIBE 

index. Human computer interface topics discussed include semantic cluster labeling and 

visualization of query results. 

6.1 Summary of Results 

SCRIBE is an information retrieval system based on an algebraic vector model of 

information retrieval similar to Latent Semantic Indexing. SCRIBE enhances the 

algebraic vector model of IR with clustering techniques borrowed from machine learning. 

SCRIBE packages its semantic index into efficiently searchable computer graphics data 

structures adapted for high-dimensional duty.  While designing SCRIBE, a generic 

information retrieval framework emerged.  This framework abstracts the fundamental 

stages of information retrieval so that a complete SCRIBE system can be constructed 

from pluggable modules. In the course of this research, both LSI and SCRIBE have been 

implemented as modules in this IR framework. 
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Experiments performed during this research show that SCRIBE and LSI perform 

equally well with respect to three important IR metrics. Statistical hypothesis testing 

over the ANOVA F statistic indicates that SCRIBE and LSI perform equally well with 

respect to the recall, precision, and f-measure metrics. Both algorithms exhibit similar 

levels of recall; they find the same number of relevant documents in response to a user’s 

request. Likewise, SCRIBE’s and LSI’s responses are similarly precise; the algorithms 

are equally robust against noise. The f-measure statistic – derived from recall and 

precision – also demonstrates identical behavior for SCRIBE and LSI. The only 

significantly different performance measure between the two algorithms is running time.  

Hypothesis testing over the Mann-Whitney U statistic indicates that SCRIBE responds to 

queries more than ten times faster than LSI. This improvement is bought at the cost of a 

longer index creation process, but the overhead of clustering and surface building is 

negligible compared to the runtime savings during query service. 

6.2 Contributions 

In this research we developed SCRIBE, an IR application demonstrating a 

clustering method for organizing and searching large document collections.  SCRIBE 

includes a generic framework for developing new information retrieval systems.  

SCRIBE’s search algorithm, based on ray tracing, provides time-efficient fulfillment of 

users’ information needs. Finally, SCRIBE’s data structures will facilitate visualization 

and exploration of large document collections. 
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6.3 Future Research 

Three proposed aspects of the SCRIBE system were not implemented in the 

current work: storage charge reduction, visualization, and labeling.  Work on these 

components is ongoing and is discussed in the following sections.  A need to 

parameterize cluster overlap regions was discovered during implementation and testing of 

SCRIBE and is also a topic of continuing research. 

6.3.1 Cluster Overlap Parameterization 

Axis-aligned bounding boxes (AABBs) were chosen as the surface representation 

of SCRIBE clusters in part because they do not tightly approximate the shape of 

arbitrarily aligned document clusters.  Figure 7.1 shows a group of document clusters 

indexed by the terms computer and art. The portion of each cluster near the origin of the 

coordinate system represents documents in which the index terms appear with relatively 

low frequency.  Foltz [23] describes documents in this region as relatively general in 

scope – containing many index terms, but not using any of them more frequently than the 

others. Note that the low-frequency extremities of the AABBs of the clusters overlap 

such that a query vector intersecting at least one of the clusters has a high probability of 

intersecting several of them. This configuration is typical of the clusters that were 

thought to exist in the OHSUMED collection prior to the experiments previously 

described. Figure 7.2 shows the configuration that is now thought to be more typical of 

the clusters in the OHSUMED collection. Because the clusters tend not to overlap, 

SCRIBE sometimes ignores relevant documents because the enclosing cluster just barely 

fails to intersect with the query vector. 
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Figure 6.1 Expected cluster topology Figure 6.2 Actual cluster topology 

We have considered several potential solutions to the near miss problem involving 

parameterization of the cluster intersection test.  Clusters may be instructed to detect 

intersection with queries passing through a region near the boundary surface, effectively 

expanding or shrinking their volume in all directions. Conversely, the return value of the 

intersection test – a Boolean in the current implementation – may take on a value from a 

range of levels to indicate degrees of similarity with a cluster. In this case, a cutoff 

parameter supplied at run time would determine the similarity at which clusters intersect 

with query vectors. Additional research of this topic will include a study of the makeup 

of document collections in which this sort of parameterization is really needed. For 

example, we do not expect that the texts of a public library wo uld contain as few low-

frequency entries as the OHSUMED collection. The ability to adjust for cluster density 

variations will become important as novel data types become the focus of IR research. 

6.3.2 Storage Charge Reduction Using Signed Distance Fields 

The current implementations of SCRIBE and LSI operate on exactly the same 

data and load the same amount of data into memory at run time. Our proposal to reduce 
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the memory requirements was founded on an expectation of adapting Signed Distance 

Fields (SDF) to high-dimensional spaces.  We have since learned that those assumptions 

were quite naïve. 

To construct a SDF from a SCRIBE cluster, the normal vector of a splitting plane 

is calculated at the center of the cluster and perpendicular to the axis along which the 

document members vary most. In three dimensions the splitting plane normal is found 

using the cross-product operator on two convenient vectors.  Unfortunately, the cross-

product is not defined for vectors of arbitrarily high dimension. However, an equivalent 

of the cross-product can be found in k dimensions when k-1 basis vectors are known.  

The subject of this research involves formalizing a method for choosing basis vectors that 

approximate the splitting plate of a k-dimensional cluster. 

6.3.3 Cluster Labeling 

Cluster labeling is a key requirement for integration of SCRIBE into a machine 

learning system, and also for construction of user interfaces atop SCRIBE. Without 

labels, the contents of SCRIBE clusters cannot be automatically recognized by a machine 

learning algorithm.  Likewise, users must be presented with a summary of a cluster’s 

contents if SCRIBE is to be made into a useful IR system. Unsupervised cluster labeling 

algorithms suitable to this task have begun appearing in the literature over the past few 

years. Future research will explore the feasibility of adapting these algorithms into 

SCRIBE modules. Cluster labeling will enable the incorporation of relevance feedback 

mechanisms into SCRIBE. 
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6.3.4 Visualization 

Visualization of the SCRIBE clusters was not a primary goal of this research.  

Since SCRIBE’s data structures and search algorithms were adapted from ray tracing, 

though, partial visualization support has already been integrated into the SCRIBE query 

engine. Future work in visualization of que ry results and the SCRIBE index depends 

upon the availability of some cluster labeling support. As a side effect of SCRIBE’s 

principle component analysis the dimensions of document vectors are ordered so that 

picking the first k elements of all document vectors produces the maximally visible, k-

dimensional projection of the vector space. Visualization in two or three dimensions is 

essentially built in to SCRIBE by default. Two additional items must be added to fully 

enable visualization of SCRIBE’s clusters.  First, the cluster intersection tests must be 

specialized to operate on query vectors with any dimensionality less than or equal to the 

dimensionality of the index. Second, a representation of material properties must be 

added to SCRIBE’s document and cluster objects.  A rudimentary material properties 

class was built into the SCRIBE’s Object base class. Operations on the material 

properties have not yet been exercised on the objects returned in SCRIBE’s query 

responses. 

Future research will involve testing the existing visualization mechanisms in 

SCRIBE and adding new capabilities as necessary. Construction of an IR tool is a logical 

next stage of development. User studies comparing SCRIBE-based visualizations to 

existing IR tools will be performed in this phase of development. 
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APPENDIX A 

CLUSTER PARAMETER SEARCH JOURNAL 

Notes on the Development of Document Vector Clustering Parameters 

I searched for a clustering solution that met these needs: 

1) Maximize the internal similarity of each cluster's members; 

2) Minimize the number of clusters; 

3) Minimize the running time of the clustering algorithm. 

These requirements were prioritized in the order they are listed above. My search 

strategy relied upon three metrics - each related to the corresponding requirement listed 

above: 

1) Average similarity - the ratio of the total internal similarity of all clusters 

divided by the number of clusters in the solution. 

2) Number of clusters. 

3) Running time of algorithm. 

I must note that my evaluations were informal and I did not retain my measurements once 

I was satisfied with my parameter set.  I could probably regenerate the data upon which I 

based my decision if necessary. 

I began by choosing a few algorithms that were likely to yield meaningful 

document clustering solutions as indicated by previous work in the field of research 

(mostly gleaned from the CLUTO documentation and companion publications). I chose 

to examine the speed of these algorithms first: 

••Graph partitioning, 



    

    

 

 

 

 

 

 

 

 

 

 

66 
••Graph partitioning followed by agglomerative, 

••Direct k-means (incremental learning of N cluster parameters), 

••Bisecting k-means, 

••Bisecting k-means followed by agglomerative. 

I instructed the clustering program to produce 1000-way clustering solutions for 

each of the above methods over the ohsu.87 MEDLINE data set. Graph partitioning and 

direct k-means methods ran for prohibitively long times and were eliminated from 

consideration. Bisecting k-means with and without agglomeration both ran in an 

acceptable time frame. 

I next compared the average similarity of 400-way solutions from bisecting k-

means with and without agglomeration (for agglomeration the bisection was carried to 

1000 partitions which were then re-merged). The agglomerated solution tended to 

improve the average similarity over a variety of tangential parameter sets including 

agglomerative criterion function and bisection criterion function. Thus, I chose to 

optimize the number of clusters only for bisecting k-means with agglomeration. 

I generated bisecting k-means with agglomerations solutions described by the 

ordered pair (300, 1000), (400, 1000), (600, 1000), (1000, 2000), and (1000, 5000) where 

the first number is the size of the agglomeration solution and the second number is the 

size of the bisecting k-means solution. For each of these solutions the agglomerative 

criterion function was UPGMA and the bisection criterion function was I2 as described in 

Karypis, 2003. The pair (400, 1000) was found to maximize the average similarity 



    

    

 

 

 

 

 

  

67 
among the selected tuples. No further minimization of the number of clusters was 

attempted. 

At this point I had obtained a parameter set {bisecting k-means with 

agglomeration, (400, 1000)} which described a clustering strategy that optimized the 

metrics previously chosen as guides to a preferred solution.  Intermediate results were 

deleted to avoid accidental corruption of experimental data.  All four data sets were 

clustered according to the new parameter set. 

A Note About the Clustering Solutions 

Each of the four clustering solutions contains a "junk" cluster that appears to 

contain most or all of the outliers from the document collection.  These outlying points 

are given a very low internal similarity score in terms of the correlation coefficient metric 

that was used during clustering. However, they have a markedly consistent structure. 

Form a dense cloud within or very near the unit sphere surrounding the origin of the 

semantic coordinate system. This positioning indicates the presence of a group of 

documents that contained so few distinctive indexing terms that they were marginalized 

during the singular value decomposition.  One semantic interpretation of this position is 

that the documents contained little or no information. Another interpretation is that each 

of the documents is so unique that no other documents in the collection share with it any 

semantic relationship.  It is expected that the documents in these "junk" clusters represent 

a mixture of the two situations. In either case, our ability to address the semantic content 

of the members of these clusters was lost during the knowledge inference step. A 
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possible solution to this loss of information is the inclusion of metadata such as the 

MESH indexing terms in the indexed text of each document. 
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APPENDIX B 

EXPERIMENTAL PROCEDURE 

The following steps should be performed in a Cygwin environment. 
The exp_tools/ directory should be in the PATH. 

1. Use "ohsustrip" from "ohsu_strip.cpp" to produce reduced ohsumed.xx files. 
Reduced files only include the pertinent fields - .I, .U, .W - from the original 
document collection. 
Reduced files are about 30% smaller than the originals. 
$ ohsustrip ohsumed.xx ohsumed_r.xx 

Optional: Sample a percentage of the document collection instead of the whole 
collection. 
This is useful when the collection is too large to be addressed as a contiguous term 
document matrix in main memory. The svd program will emit an error when the 
collection is too large. 
$ ohsustrip ohsumed.xx ohsumed_rNN.xx 0.NN 

NN is the sample rate. 

2. Use "stem" from C++ port of Porter's algorithm to produce stemmed document 
collection. 
Stemmed files are uniformly lowercase and include stemmed abstracts only. 
Stemmed files are marginally <5% smaller than the reduced files. 
$ stem ohsumed_r.xx >ohsumed_rs.xx 

3. Delete the intermediate oshumed_r.xx file. It is no longer needed and is very large. 
$ rm ohsumed_r.xx 

3. Use "stem" to produce a stemmed stop list from SMART's "englishST.txt" list. 
$ stem englishST.txt >englishST_s.txt 

4. Use "vectorizer" with the stemmed stop list to produce a term document matrix from 
the reduced and stemmed ohsumed.xx collection. (Running vectorizer with no 
arguments will produce a usage guide.) 
$ vectorizer ohsumed_rs.xx englishST_s.txt 

5. Use "svd" to convert tdm.sparse from a sparse text to a sparse binary file. 
Sparse binary files are about 50% smaller than sparse text files. 
$ svd -r st -w sb -c tdm.sparse tdm.sparse.bin 

6. Delete the tdm.sparse text file. The sparse binary file is a one-to-one equivalent but 
takes half the space to store and runs through the SVD process more quickly. 

https://ohsumed_rs.xx
https://ohsumed.xx
https://ohsumed_r.xx
https://oshumed_r.xx
https://ohsumed_rs.xx
https://ohsumed_r.xx
https://ohsumed_rNN.xx
https://ohsumed.xx
https://ohsumed_r.xx
https://ohsumed.xx
https://ohsumed.xx


    

    

  
  
 

 
 

  
  
  
   

 
  
   

 

 
  
 

  
  
  
 

 
 

  
  
 

 
  
 

 
 

  
  
     

 

 

71 
7. Rename tdm.sparse.bin resulting from svd to something informative. 

$ mv tdm.sparse.bin ohsu_88-91_rst.tdm.sparse.bin 

8. Save TDM file, row_template.txt, and doc_id_records.txt together in a separate 
directory. 
$ mv doc_id_records.txt tdm_files/ 
$ mv row_template.txt tdm_files/ 
$ mv ohsu_88-91_rst.tdm.sparse.bin tdm_files/ 

Optional: Compress the tdm file with gzip 
$ gzip --best ohsu_88-91_rst.tdm.sparse.bin 

9. Use "svd" to produce the decomposition of the ohsu term document matrix.  svd can 
produce the subset of the decomposition corresponding to just the N greatest 
eigenvalue triples by specifying N to the -d option.  Get the 300-dimensional 
approximation of the TDM in dense binary format matrix files 
$ svd -d 300 -o svd_files/ -r sb -w db -v 2 tdm_files/ohsu_88-91_rst.tdm.sparse.bin.gz 

10. Compress the matrix files in svd_files/ for storage. 
$ tar czvf ohsu_88-91_rst.svd.tgz svd_files/* 
$ mv ohsu_88-91_rst.svd.tgz svd_files/ 

11. Use "right_singular_scale" to find the product of S * Vt and transpose the result into 
the format expected by CLUTO. 
$ cd svd_files 
$ right_singular_scale -S -Vt V_scaled.txt 

Optional: compress the V_scaled.txt file. This is recommended. Decompress the file for 
use with CLUTO, but normally keep it compressed. 
$ gzip --best V_scaled.txt 

12. Copy the uncompressed document vector matrix and document ID files to the 
cluster_files directory 
$ cp svd_files/V_scaled.txt cluster_files/V_scaled.mat 
$ cp tdm_files/doc_id_records.txt cluster_files/doc_id_records.rlabel 

13. Use "vcluster" from the CLUTO package to perform repeated bisecting k-means 
clustering to 1000 clusters followed by agglomerative clustering of the k-means 
solution to 600 clusters.  Use correlation coefficients to measure document vector 
similarity.  Choose the 'best' dimension along which to partition k-means clusters.  
Use the UPGMA criterion function for agglomerative clustering. Do not scale the 
rows or columns.  Prune the columns to account for 90% of the similarity between 
documents (improves running time without negatively impacting clustering solution). 
Save output to vcluster.txt. 

https://tdm_files/ohsu_88-91_rst.tdm.sparse.bin.gz


    

    

  
  
    
    
    
   
  

 
 

  
         
 

 

 
 

 
 

 
 

  
     

 
     

 
 

  
   
 

 
 

  
 

   
       

 
 

  
 

       
 

 
  

72 
$ cd cluster_files/ 
$ ~/exp_tools/cluto-2.1.1/Win32/vcluster -clmethod=rb -sim=corr \ 

-agglocrfun=upgma -agglofrom=1000 -cstype=best \ 
-rowmodel=none -colmodel=none -colprune=0.9 \ 
-clustfile=V_scaled.mat.clustering.rb.1000.agglo.600 \ 
-rlabelfile=doc_id_records.rlabel -zscores V_scaled.mat 600 >vcluster.txt 

14. Use "organize_clusters" to produce the extracted clusters from the document 
collection.  Save the output to organized_clusters.txt. 
$ ~/exp_tools/organize_clusters.exe V_scaled.mat doc_id_records.rlabel \ 

V_scaled.mat.clustering.rb.1000.agglo.600 600 organized_clusters.txt 

15. Use "build_surfaces" to produce bounding boxes and bounding spheres that enclose 
the members of each of the organized clusters. Save the output to 
bounding_boxes.txt and bounding_spheres.txt respectively. 
$ ~/exp_tools/build_surfaces.exe organized_clusters.txt 600 300 bounding_boxes.txt 

bounding_spheres.txt 

16. Use "stem" and a text editor to stem the query input file, "query.ohsu.1-63".  Save the 
output to query_stemmed.ohsu.1-63. 
$ ~/exp_tools/stem.exe query.ohsu.1-63 >> query_stemmed.ohsu.1-63 
(Use text editor to repair XML tags, "Number:" tags, OHSU query identifiers, and 
"Description:" tags.) 

17. Use "scale_queries" to produce query pseudo-documents from the stemmed query 
records. Save the output to query_vectors.txt. 
$ ~/exp_tools /scale_queries.exe query_stemmed.ohsu.1-63 svd_files/-Ut svd_files/-S 

tdm_files/row_template.txt query_vectors.txt 

18. Use "querytracer" to produce a list of document IDs for documents that match the 
queries in query_vectors.txt. Save the output to query_matches_timing.txt 
$ querytracer.exe cluster_files/organized_clusters.txt \ 

cluster_files/bounding_boxes.txt query_vectors.txt \ 
600 300 >> results/query_matches_timing.txt 

19. Use "lsitracer" to produce a list of document IDs for documents that match the 
queries in query_vectors.txt.  Save the output to lsi_query_matches_timing.txt 
$ lsitracer.exe cluster_files/organized_clusters.txt cluster_files/bounding_boxes.txt \ 

query_vectors.txt 600 300 >> results/lsi_query_matches_timing.txt 

20. Use "align_qrels" to extract the query relevance records for only the documents in 
each experimental collection from among the records for the entire TREC OHSU 
corpus. 
$ align_qrels.exe qrels.ohsu.88-91 tdm_files/doc_id_records.txt \ 



    

    

   
 

 
 

  
  

 
 

 
  

73 
>results/qrels.ohsu.88-91.aligned.txt 

21. Use "analyze_results" to report recall, precision, f-measure, and cpu-time metrics for 
LSI and querytracer results. 
$ cd results 
$ analyze_results.exe query_matches_timing.txt qrels.ohsu.88-91.aligned.txt \ 

>qt_results.txt 
$ analyze_results.exe lsi_query_matches_timing.txt qrels.ohsu.88-91.aligned.txt \ 

> lsi_results.txt 
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APPENDIX C 

RESULTS – AVERAGE MEASUREMENTS 

Average measurements of performance statistics from SCRIBE queries on four document 
collections. 

Query Relevant Recall Precision F-measure CPU time (sec.) 

1 1 0.5239315 0.00525 0.010393628 0.6830435 Total Relevance 2637 

2 1 0.022727275 0.00025 0.00049456 0.63823975 
Judgments 

3 1 0.09012735 0.00325 0.00627322 0.69115075 

4 1 0.56666675 0.00175 0.003487553 0.6363015 Average 
Relevance 

10.464 

5 1 0.66883125 0.006 0.011888113 0.64629275 Judgments 
6 1 0.21666675 0.00125 0.002485583 0.63420575 

7 1 0 0 0 0.66410475 

8 0 0 0 0 0.5838175 A zero (0) in the Relevant 
column means at least one 

9 1 0 0 0 0.6339295 sampled document 
10 

11 

1 

1 

0.475 

0.9281045 

0.00175 

0.01625 

0.003486555 

0.03194035 

0.617034 

0.5923275 

collection contains no 
judged documents for the 
assoc iated query. 

12 0 0 0 0 0.74102875 

13 1 0.218589675 0.00275 0.00542751 0.7362995 

14 1 0 0 0 0.667223 

15 1 0.47970775 0.004 0.007931613 0.719395 

16 1 0.41785725 0.004 0.00791695 0.64938525 

17 1 0.4125 0.00225 0.004474155 0.70249025 

18 1 0.352548 0.00675 0.013245428 0.73912725 

19 1 0.070707175 0.0015 0.002937343 0.6193185 

20 1 0.28214275 0.0015 0.0029831 0.642019 

21 1 0.290673 0.008 0.015566225 0.6802515 

22 1 0.1875 0.0005 0.00099701 0.75332275 

23 1 0.237590775 0.00325 0.006409805 0.7028215 

24 1 0.3732685 0.005 0.009854838 0.69455075 

25 1 0.2947915 0.00325 0.00642397 0.706097 

26 1 0.560065 0.00425 0.008432573 0.746392 

27 0 0 0 0 0.673934 

28 1 0.33049425 0.00375 0.007411103 0.48577425 

29 1 0.03125 0.00025 0.000496033 0.59971775 

30 1 0.2260235 0.008 0.01543403 0.7614705 

31 1 0.217262 0.00175 0.00347027 0.288493 

32 1 0.05792125 0.00075 0.00148075 0.707794 

33 1 0.6397625 0.02175 0.0420633 0.69686925 

34 0 0 0 0 0.76211875 

35 1 0 0 0 0.71922125 
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Query Relevant Recall Precision F-measure CPU time (sec.) 

1 0.42140125 0.004 0.007923258 0.63108125 

1 0.0516194 0.00075 0.001477845 0.6472265 

1 0.39368675 0.00575 0.01133059 0.71165475 

1 0.37365625 0.0105 0.020419175 0.71008675 

1 0.25400425 0.003 0.00592887 0.75707275 

1 0.14166675 0.00075 0.001492043 0.650754 

1 0.11212125 0.00125 0.002472313 0.56678275 

1 0 0 0 0.67756825 

1 0.44496325 0.005 0.009881013 0.67425075 

1 0.22291675 0.00125 0.002485588 0.7887275 

1 0 0 0 0.52406475 

1 0.072727275 0.0005 0.000992073 0.61156375 

1 0.020833325 0.00025 0.00049407 0.38521975 

1 0.677097 0.01175 0.023078975 0.71501725 

1 0.08333325 0.00025 0.000498505 0.6967675 

1 0.9613095 0.0125 0.02466955 0.7089535 

1 0.33333325 0.00075 0.00149651 0.70277625 

0 0 0 0 0.6300695 

1 0.1666665 0.0005 0.00099701 0.62068725 

1 0.64599575 0.00475 0.009424663 0.6447665 

1 0.5 0.0025 0.00496825 0.7041675 

1 0.56666675 0.00225 0.004473183 0.71497075 

0 0 0 0 0.61711175 

1 0 0 0 0.77412475 

1 0.0694445 0.0005 0.000992558 0.74386875 

1 0.261616025 0.00175 0.0034747 0.63434025 

1 0.27083325 0.00125 0.002488058 0.68232425 

1 0.048188025 0.00075 0.001476865 0.5973265 
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77 

Average measurements of performance statistics from LSI queries on four document collections. 

Query Relevant Recall Precision F-measure CPU time 

1 

2 

1 

1 

0.58739325 

0.022727275 

0.006 

0.00025 

0.011875835 

0.00049456 

5.2684025 

9.28204 

Total Relevance 
Judgments 

2637 

3 1 0.13069765 0.00475 0.009166188 8.3556525 

4 1 0.56666675 0.00175 0.003487553 8.4680425 Average 
Relevance 

10.464 
29 

1 0.84383125 0.007 0.0138757 7.5338525 Judgments 

6 1 0.21666675 0.00125 0.002485583 9.9270025 

7 1 0 0 0 8.091595 

8 0 0 0 0 8.7086 A zero (0) in the Relevant 

9 1 0 0 0 8.807995 
column means at least one 
sampled document 

11 

1 

1 

0.475 

1 

0.00175 

0.0175 

0.003486555 

0.0343976 

15.379985 

13.3731725 

collection contains no 
judged documents for the 
assoc iated query. 

12 0 0 0 0 7.717355 

13 1 0.4128205 0.005 0.009871268 8.7292025 

14 1 0 0 0 7.7111425 

1 0.86931825 0.00725 0.0143766 8.32133 

16 1 0.4357145 0.00425 0.00841005 7.5168475 

17 1 0.9 0.00525 0.01043492 7.857525 

18 1 0.37907275 0.00725 0.014226795 10.7330775 

19 1 0.10656555 0.002 0.003924485 8.9549925 

1 0.54285725 0.00275 0.005470668 9.0159 

21 1 0.330673 0.009 0.01751745 7.5927725 

22 1 0.1875 0.0005 0.00099701 8.337425 

23 1 0.41624825 0.006 0.011825615 12.69912 

24 1 0.40411225 0.00575 0.011322535 8.4784675 

1 0.534028 0.006 0.011856848 7.8075725 

26 1 0.641234 0.005 0.009918223 11.477455 

27 0 0 0 0 8.502355 

28 1 0.18489 0.002 0.003955033 11.06997 

29 1 0.03125 0.00025 0.000496033 9.3821325 

1 0.233353 0.00825 0.01591308 11.09067 

31 1 0.86011925 0.00725 0.014370248 8.7855825 

32 1 0.08292125 0.001 0.0019758 8.7793525 

33 1 0.871406 0.02975 0.057526525 8.835965 

34 0 0 0 0 8.437975 

1 0.010416675 0.00025 0.000488283 8.189445 

36 1 0.4633835 0.0045 0.008911888 10.9852575 

37 1 0.1016194 0.0015 0.002955678 8.872905 

38 1 0.3681815 0.0055 0.01083456 9.2548525 

39 1 0.38758275 0.01075 0.020912225 7.6124225 
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42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

78 
Query Relevant Recall Precision F-measure CPU time 

1 0.2998375 0.0035 0.006917988 7.875615 

1 0.14166675 0.00075 0.001492043 11.1742025 

1 0.1579545 0.00175 0.003461433 9.15559 

1 0 0 0 8.58951 

1 0.49175825 0.00575 0.011358345 9.935005 

1 0.29583325 0.00175 0.003478635 7.2266875 

1 0.08333325 0.00025 0.000498505 10.6742925 

1 0.122727275 0.00075 0.001489585 10.01882 

1 0.038690475 0.0005 0.000987168 10.4616225 

1 0.971875 0.0165 0.0324198 15.48941 

1 0.08333325 0.00025 0.000498505 7.152795 

1 0.97916675 0.01275 0.02516265 8.42641 

1 0.5 0.001 0.00199601 9.7805175 

0 0 0 0 10.0455275 

1 0.25 0.00075 0.001495515 9.0622575 

1 0.718723 0.00525 0.010416725 9.530765 

1 0.71666675 0.0035 0.00695536 9.88718 

1 0.56666675 0.00225 0.004473183 9.75889 

0 0 0 0 8.789675 

1 0.1704545 0.0015 0.002971783 10.0661575 

1 0.0694445 0.0005 0.000992558 8.616985 

1 0.39924225 0.003 0.005950938 9.3699325 

1 0.5 0.00225 0.004479103 8.3847075 

1 0.02777775 0.00025 0.00049554 10.47364 
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80 
APPENDIX D 

ABRIDGED MANN-WHITNEY U TESTS 

Mann-Whitney rank sum test over Recall metric 

Source Recall Rank Source Rank Sum Samples 

qt 0 1 qt 3000 57 

qt 0 2 

qt 0 3 Source Rank Sum Samples 

qt 0 5 

qt 0 6 

qt 0 7 Mann-Whitney U Statistic 

lsi 0 9 

lsi 0 10 ? Statistic 

lsi 0 11 0.585411 

qt 0.020833 13 z - Normal Distribution 

qt 0.022727 14 1.572642 

qt 0 4 lsi 3555 57 

lsi 0 8 1902 

lsi 0.010417 12 

lsi 0.022727 15 

lsi 0.027778 16 

qt 0.03125 17 

lsi 0.03125 18 

lsi 0.03869 19 

qt 0.048188 20 

qt 0.051619 21 

qt 0.057921 22 

qt 0.069445 23 

lsi 0.069445 24 

qt 0.070707 25 

qt 0.072727 26 
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Mann-Whitney rank sum test over Precision metric 

Source Precision Rank Source Rank Sum Samples 

qt 0 1 qt 3015 57 

qt 0 2 

qt 0 3 Source Rank Sum Samples 

qt 0 5 

qt 0 6 

qt 0 7 Mann-Whitney U Statistic 

lsi 0 9 

lsi 0 10 ? Statistic 

lsi 0 11 0.580794 

qt 0.00025 13 z - Normal Distribution 

qt 0.00025 14 1.487634 

qt 0 4 lsi 3540 57 

lsi 0 8 1887 

qt 0.00025 12 

qt 0.00025 15 

lsi 0.00025 16 

lsi 0.00025 17 

lsi 0.00025 18 

lsi 0.00025 19 

lsi 0.00025 20 

lsi 0.00025 21 

qt 0.0005 22 

qt 0.0005 23 

qt 0.0005 24 

qt 0.0005 25 

lsi 0.0005 26 
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Mann-Whitney rank sum test over F-measure metric 

Source F-measure Rank Source Rank Sum Samples 

qt 0 1 qt 3049 57 

qt 0 2 

qt 0 3 Source Rank Sum Samples 

qt 0 5 

qt 0 6 

qt 0 7 Mann-Whitney U Statistic 

lsi 0 9 

lsi 0 10 ? Statistic 

lsi 0 11 0.570329 

qt 0.000494 13 z - Normal Distribution 

qt 0.000495 14 1.29495 

qt 0 4 lsi 3506 57 

lsi 0 8 1853 

lsi 0.000488 12 

lsi 0.000495 15 

lsi 0.000496 16 

qt 0.000496 17 

lsi 0.000496 18 

qt 0.000499 19 

lsi 0.000499 20 

lsi 0.000499 21 

lsi 0.000987 22 

qt 0.000992 23 

qt 0.000993 24 

lsi 0.000993 25 

qt 0.000997 26 
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Mann-Whitney rank sum test over CPU Time metric 

Source CPU Time Rank Source Rank Sum Samples 

qt 0.288493 1 qt 1653 57 

qt 0.485774 3 Source Rank Sum Samples 

qt 0.597327 7 Mann-Whitney U Statistic 

qt 0.617034 10 ? Statistic 

qt 0.631081 13 z - Normal Distribution 

qt 0.63393 14 9.206331 

qt 0.38522 2 

qt 0.524065 4 lsi 4902 57 

qt 0.566783 5 

qt 0.592328 6 

qt 0.599718 8 3249 

qt 0.611564 9 

qt 0.619319 11 1 

qt 0.620687 12 

qt 0.634206 15 

qt 0.63434 16 

qt 0.636302 17 

qt 0.63824 18 

qt 0.642019 19 

qt 0.644767 20 

qt 0.646293 21 

qt 0.647227 22 

qt 0.649385 23 

qt 0.650754 24 

qt 0.664105 25 

qt 0.667223 26 
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APPENDIX E 

ANOVA POWER ANALYSIS 

SAS ANOVA power analysis program 

options nodate nocenter nonumber; 
title ‘Power analysis for ANOVA designs’; 
%include “fpower.sas”; 
%fpower( a=2, b=1, delta=%str(0.2, 0.5, 0.8, 1.0, 2.0, 
3.0),

 alpha=0.05, n=%str(2 to 10 by 1, 12 to 18 by 2, 
20 to 40 by 10, 50, 
60 to 70 by 1), 

ptable=YES, ntable=NO); 

https://alpha=0.05
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SAS power table output 
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APPENDIX F 

ANOVA RESULTS 
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