
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-5-2006

Scribe: A Clustering Approach To Semantic Information Retrieval Scribe: A Clustering Approach To Semantic Information Retrieval

Joseph R. Langley

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Langley, Joseph R., "Scribe: A Clustering Approach To Semantic Information Retrieval" (2006). Theses and
Dissertations. 3869.
https://scholarsjunction.msstate.edu/td/3869

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3869?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

SCRIBE: A CLUSTERING APPROACH TO SEMANTIC INFORMATION

RETRIEVAL

By

Joseph Russell Langley

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2006

Copyright by

Joseph Russell Langley

2006

_________________________________ _________________________________

_________________________________ _________________________________

SCRIBE: A CLUSTERING APPROACH TO SEMANTIC INFORMATION

RETRIEVAL

By

Joseph Russell Langley

Approved:

Susan M. Bridges Julia E. Hodges
Professor of Computer Science and Head and Professor of Computer Science
Engineering and Engineering
(Major Professor and (Committee Member)
Co-Director of Thesis)

J. Edward Swan II Edward Allen
Associate Professor of Computer Science Associate Professor of Computer Science
and Engineering and Engineering
(Co-Director of Thesis) Graduate Coordinator

Kirk H. Schulz
Dean of the Bagley College of Engineering

Name: Joseph Russell Langley

Date of Degree: August 5, 2006

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Susan M. Bridges

Title of Study: SCRIBE: A CLUSTERING APPROACH TO SEMANTIC
INFORMATION RETRIEVAL

Pages in Study: 92

Candidate for Degree of Master of Science

Information retrieval is the process of fulfilling a user’s need for information by

locating items in a data collection that are similar to a complex query that is often posed

in natural language. Latent Semantic Indexing (LSI) was the predominant technique

employed at the National Institute of Standards and Technology’s Text Retrieval

Conference for many years until limitations of its scalability to large data sets were

discovered. This thesis describes SCRIBE, a modification of LSI with improved

scalability. SCRIBE clusters its semantic index into discrete volumes described by high-

dimensional extensions to computer graphics data structures. SCRIBE’s clustering

strategy limits the number of items that must be searched and provides for sub- linear time

complexity in the number of documents. Experimental results with a large, natural

language document collection demonstrate that SCRIBE achieves retrieval accuracy

similar to LSI but requires 1/10 the time.

DEDICATION

I dedicate this research to my parents, Randy and Diane, and to my sister,

Rachel.

ii

ACKNOWLEDGMENTS

I wish to express my gratitude: to Dr. Susan Bridges, my major professor, for her

guidance and advice; to my graduate committee members, Dr. Julia Hodges and Dr. Ed

Swan; and to Dr. Stephanie Doane for her encouragement and support. My thanks also

go to Dr. T. J. Jankun-Kelly for his patience during countless spontaneous office visits

and for pointing out some excellent reading material on signed distance fields.

I also wish to thank my colleagues in the Department of Psychology for their

tutelage in the mysteries of the ANOVA: Dr. Deborah Eakin, Dr. Carrick Williams, Teena

Garrison, and Mark Thomas.

Finally, I extend my thanks to Dr. Len Miller of the Department of Mathematics

and Statistics for donating his vector analysis textbook to my work.

iii

TABLE OF CONTENTS

Page

DEDICATION ... ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

CHAPTER

I. INTRODUCTION ... 1

1.1 Background .. 1
1.1.1 Information Retrieval... 2
1.1.2 Latent Semantic Indexing .. 3
1.1.3 Weaknesses of LSI ... 8

1.2 Motivation.. 9
1.3 Hypothesis.. 10
1.4 Contributions .. 10
1.5 Applications ... 11
1.6 Organization... 11

II. LITERATURE REVIEW ... 12

2.1 Information Retrieval... 12
2.1.1 Vector Model Techniques for LSI.. 15
2.1.2 Queries in IR Systems.. 19

2.2 Cluster Extraction .. 20
2.3 Geometric Surfaces.. 24
2.4 Query Service and Ray-Surface Intersection....................................... 25

III. RESEARCH APPROACH... 27
3.2 Data Transformation to Vector Space .. 29
3.3 Knowledge Inference by Dimension Reduction.................................. 29
3.4 Document Cluster Identification and Boundary Extraction................. 30
3.5 Boundary Surface Representation by Graphics Primitives.................. 31
3.6 Query Service... 32

iv

CHAPTER Page

3.7 Performance Metrics.. 32

IV. DESIGN AND IMPLEMENTATION ... 34
4.1 SCRIBE Design and Implementation.. 34

4.1.1 Data Transformation to Vector Space 34
4.1.2 Dimension Reduction with SVD ... 35
4.1.3 Document Clustering and Boundary Extraction...................... 37
4.1.4 Surface Representation .. 39
4.1.5 Query Service... 41

4.2 Implementation of the Latent Semantic Indexing System................... 43

V. EXPERIMENTAL RESULTS AND ANALYSIS .. 44
5.1 Data Sets .. 44
5.2 Metrics for Measuring Success.. 45
5.3 Experimental Design.. 45

5.3.1 Hypothesis.. 45
5.3.2 Experimental Protocol.. 46

5.4 Results .. 46
5.5 Analysis.. 50

VI. CONCLUSIONS AND FUTURE WORK .. 54
6.1 Summary of Results... 54
6.2 Contributions .. 55
6.3 Future Research.. 56

6.3.1 Cluster Overlap Parameterization.. 56
6.3.2 Storage Charge Reduction Using Signed Distance Fields 57
6.3.3 Cluster Labeling ... 58
6.3.4 Visualization... 59

REFERENCES .. 60

APPENDIX

A. Cluster Parameter Search Journal.. 65
B. Experimental Procedure .. 70
C. Results – Average Measurements.. 75
D. Abridged Mann-Whitney U Tests.. 80
E. ANOVA Power Analysis ... 85
F. ANOVA Results... 88

v

LIST OF TABLES

TABLE Page

1.1 Titles of technical memos as represented in a co-occurrence matrix. From:
Deerwester, 1990 [11]. ... 5

1.2 Rank-2 approximation of term-document co-occurrence matrix. From:
Deerwester, 1990 [11]. ... 7

5.1 Summary of ANOVA of means relating metrics to algorithms. 53

vi

LI S T O F FI G U R E S

FI G U R E P a g e

1. 1 Vis u al r e pr es e nt ati o n of t h e Si n g ul ar V al u e D e c o m p ositi o n of a r a n k -r m atri x
A. Di m e nsi o n r e d u cti o n i n v ol v es s el e cti n g t h e k gr e at est si n g ul ar v al u es
fr o m S a n d t h e k c orr es p o n di n g c ol u m n v e ct ors i n U a n d V. R e-
c o m p ositi o n of Uk , S k , a n d Vk pr o d u c es Ak , t h e r a n k-k a p pr o xi m ati o n of A.
Fr o m: D u m ais, 1 9 9 5 [1 5]... 8

2. 1 C at e g ori es of Cl ust eri n g Al g orit h ms .. 2 2

3. 1 Pr o p os e d k n o wl e d g e dis c o v er y a n d i nf or m ati o n r etri e v al fr a m e w or k 2 8

5. 1 R u n ni n g ti m e s u m m ar y ... 4 8

5. 2 R e c all s u m m ar y ... 4 8

5. 3 Pr e ci si o n s u m m ar y .. 4 9

5. 4 F -m e as ur e s u m m ar y .. 4 9

6. 1 E x p e ct e d cl ust er t o p ol o g y ... 5 7

6. 2 A ct u al cl ust er t o p ol o g y ... 5 7

vii

CHAPTER I

INTRODUCTION

1.1 Background

Information retrieval is loosely defined as the task of informing users of the

existence and location of information related to their requests. Information retrieval (IR)

systems do not change or add to the information contained in the items they return to the

user. Such systems are not necessarily intelligent – in the sense of intelligent agents –

though many examples are [44]. The goal of this thesis is to improve an information

retrieval technique – Latent Semantic Indexing (LSI) – by combining its elegant approach

to conceptual clustering with a simplified representation of high-dimensional “semantic

spaces” adapted from efficient data structures previously developed for use in computer

graphics. In order to accomplish this goal, we have developed data structures and

algorithms, collectively named SCRIBE (Semantic Cluster Retrieval Index Basic

Elements), to efficiently search a semantic index while maintaining retrieval performance

comparable to legacy systems. This approach restores the competitiveness of LSI- like

retrieval solutions with other contemporary IR systems. Experimental results with the

OHSUMED document collection [30] demonstrate that SCRIBE performs as well as LSI

but takes less than 1/10th as long to answer users’ queries.

1

2
1.1.1 Information Retrieval

Information retrieval is often defined in terms of its contrast with the related

problem of data retrieval. Data retrieval is generally tackled as a pattern-matching task in

which a highly structured query in a specialized language describes attributes of the

desired subset of a data collection. Data retrieval (DR) tends to be computer-centric and

well suited to serving the needs of automatic algorithms. Relational databases provide an

example of the characteristics of data retrieval systems. Information retrieval, on the

other hand, addresses situations to which deterministic solutions prove unsatisfactory and

in which the human factors involved preclude the simplifying assumptions of DR

algorithms. Hallmarks of situations that call for IR include the need for natural language

queries, the preference toward partial matching of query attributes, recall of relevant1

information from partially matching branches of (what would be) the recognition

decision tree, and the need to seek information among very large data sets. Information

retrieval is closely related to – and often considered to be synonymous with – document

retrieval, in which natural language documents are parsed and indexed in order to serve

natural language queries. Document retrieval is a special case of information retrieval;

IR addresses a wider range of problems [3].

Information retrieval (IR) is most often applied to data sources in which the

information is encoded in a human-understandable format, but not one easily parsed by

computers – e.g., conversational speech or college essays. Google is one of the best-

1 Relevance is a metric defined by the application domain. One may consider that in
response to the query, “cancer cells,” medical journal articles are likely more relevant
than movie reviews.

3
known information retrieval applications; virtually every Internet aficionado has used

Google’s document searching tools that index and serve links to billions of web pages.

Other common applications include retrieval from bioinformatics sequence repositories,

specialized document collections with abnormal data distributions, imagery databases,

spoken word corpora, and cross- language document collections. A common thread

among these problems is the difficulty of instructing a computer to understand the data

retrieved by the IR process. Rather than understanding the data they search, IR systems

compare queries to a statistical model and use knowledge gleaned from the comparison to

guide a search through the document collection. A good IR system contains a data model

that produces results consistent with human intuition – though the model itself is rarely

transparent to intuition [3].

1.1.2 Latent Semantic Indexing

IR techniques excel at distilling relationships among raw data units into weights,

connections, or rules for recognizing similarity – they simplify the features of complex

data into automatically learnable units. Depending upon the technique we choose to

apply, we might think of the learnable units in terms of simpler metaphors – support

vectors, hidden states, and connection weights – or we might choose a data-driven

approach that requires little or no interpretation. One such data-driven approach, Latent

Semantic Indexing (LSI), was developed by Dumais, Deerwester, Landauer, Foltz, et al.

at Bellcore Labs around 1988 [17]. LSI, an IR technique commonly applied to the

document retrieval problem, requires minimal parsing of documents and constructs

powerful classification models from very simple data structures. LSI was introduced to

4
the IR community at the First Text Retrieval Conference (TREC) hosted by the National

Institute for Standards and Technology (NIST) in 1993 [13, 17]. TREC is a competitive

conference offering several tracks or data sets geared to exercise IR systems’ ability to

solve problems in domains of interest to the government customer community. Tracks

include cross- language retrieval, question answering, and large document collection

retrieva l. LSI routinely exhibited retrieval accuracy on par with support vector machines,

its highest-scoring contemporary at TREC [13, 14, 16]. LSI so impressed the community

that more than half of the entries in the second TREC (1994) were based upon LSI- like

techniques [14].

LSI’s strong performance at TREC stems from its ability to infer knowledge of

synonymous and polysemous words from their occurrence in similar contexts. Thus, LSI

is able to recognize and retrieve documents conceptually similar to users’ queries even

when the documents and queries are not lexicographically similar. Its strength at

induction, however, is not matched by its search strategy for responding to queries.

To understand the LSI approach, consider Google’s task – locating documents that

are similar to a short, user-generated query string. Table 1.1 contains a collection of

documents; for this example, the collection consists only of titles. The documents span a

range of topics and share common words that differ in meaning according to their

context. The common words – those that appear in more than one document – are

italicized for emphasis. Each document is converted to an ordered, column vector with

common word counts as the elements. (For non-trivial collections, the raw occurrence

counts are replaced with a weighted frequency metric.) The column vectors are

5
juxtaposed to create a “term-by-document” or “term-document” matrix from which the

final index is computed.

Table 1.1 Titles of technical memos as represented in a co-occurrence matrix. From:
Deerwester, 1990 [11].

Technical Memo Example

Titles:
c1: Human machine interface for Lab ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user-perceived response time to error measurement
m1: The generation of random, binary, unordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey

Terms Documents
c1 c2 c3 c4 c5 m1 m2 m3 m4

Human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
User 0 1 1 0 1 0 0 0 0
System 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
Time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
Survey 0 1 0 0 0 0 0 0 1
Trees 0 0 0 0 0 1 1 1 0
Graph 0 0 0 0 0 0 1 1 1
Minors 0 0 0 0 0 0 0 1 1

Computation of a latent semantic index proceeds along the assumption that the meaning

of a given document is encoded in a “semantic space” – a high-dimensional space in

which the axes represent components of conceptual meta- language that are independent

of the specific language in which a document is written. Natural languages form

analogous “lexical spaces” which contain an axis for every word in the language. In

general, the semantic space derived from a document collection has orders of magnitude

6
fewer dimensions than the corresponding lexical space. Lexical spaces contain so many

more dimensions because of synonymy, the occurrence of many words with the same

meaning. Noise is also introduced to lexical spaces through polysemy, the presence of

words with many meanings. In short, synonymy and polysemy increase the number of

ways to describe identical concepts, but the meaning of a given concept is unique. We

induce semantic knowledge into the index by using principle component analysis to find

a reduced-rank approximation of the term-document matrix, a sample of the lexical space

of the document collection. When the approximation’s rank is close to the dimensionality

of the semantic space, the index will contain term-document vectors that cluster

according to their conceptual content. Table 1.2 shows a rank-2 semantic index

computed from the term-document matrix composed in Table 1.1. In this example,

dimension reduction was accomplished via manipulation of the singular value

decomposition (SVD) of the term-document matrix. We select a set of components

associated with the greatest N singular values in the decomposition where N is the target

dimensionality of the index, and re-compose those singular vectors into the final index.

Figure 1.1 illustrates the SVD and composition of the semantic index.

7

T a bl e 1. 2 R a n k -2 a p pr o xi m ati o n of t er m -d o c u m e nt c o -o c c urr e n c e m atri x. Fr o m:
D e e rw est er, 1 9 9 0 [1 1].

T e r ms D o c u m e nt s
c 1 c 2 c 3 c 4 c 5 m 1 m 2 m 3 m 4

h u m a n 0. 1 6 0. 4 0 0. 3 8 0. 4 7 0. 1 8 -0. 0 5 -0. 1 2 -0. 1 6 -0. 0 9
i nt e rf a c e 0. 1 4 0. 3 7 0. 3 3 0. 4 0 0. 1 6 -0. 0 3 -0. 0 7 -0. 1 0 -0. 0 4
c o m p ut e r 0. 1 5 0. 5 1 0. 3 6 0. 4 1 0. 2 4 0. 0 2 0. 0 6 0. 0 9 0. 1 2
u s e r 0. 2 6 0. 8 4 0. 6 1 0. 7 0 0. 3 9 0. 0 3 0. 0 8 0. 1 2 0. 1 9
s y st e m 0. 4 5 1. 2 3 1. 0 5 1. 2 7 0. 5 6 -0. 7 -0. 1 5 -0. 2 1 -0. 0 5
r e s p o n s e 0. 1 6 0. 5 8 0. 3 8 0. 4 2 0. 2 8 0. 0 6 0. 1 3 0. 1 9 0. 2 2
ti m e 0. 1 6 0. 5 8 0. 3 8 0. 4 2 0. 2 8 0. 0 6 0. 1 3 0. 1 9 0. 2 2
E P S 0. 2 2 0. 5 5 0. 5 1 0. 6 3 0. 2 4 -0. 0 7 -0. 1 4 -0. 2 0 -0. 1 1
s u r v e y 0. 1 0 0. 5 3 0. 2 3 0. 2 1 0. 2 7 0. 1 4 0. 3 1 0. 4 4 0. 4 2
t r e e s -0. 0 6 0. 2 3 -0. 1 4 -0. 2 7 0. 1 4 0. 2 4 0. 5 5 0. 7 7 0. 6 6
g r a p h -0. 0 6 0. 3 4 -0. 1 5 -0. 3 0 0. 2 0 0. 3 1 0. 6 9 0. 9 8 0. 8 5
mi n o r s -0. 0 4 0. 2 5 -0. 1 0 -0. 2 1 0. 1 5 0. 2 2 0. 5 0 0. 7 1 0. 6 2

Q u er y pr o c essi n g pr oj e cts t h e v e ct or f or m of a q u er y stri n g i nt o s e m a nti c s p a c e

f or c o m p aris o n wit h t h e d o c u m e nts’ c ol u m n v e ct ors. E a c h q u er y is c o n v ert e d t o a t er m

v e ct or a c c or di n g t o t h e (w ei g ht e d) o c c urr e n c e c o u nts of i n d e x e d t er ms i n t h e q u er y

stri n g. T h e q u er y v e ct or is m ulti pli e d b y t h e t er m v e ct ors of t h e S V D (m atri x U k i n

Fi g ur e 1. 1) a n d t h e di a g o n al m atri x of si n g ul ar v al u es (S k) t o pr oj e ct it i nt o t h e s e m a nti c

s p a c e. T h e r es ulti n g c o or di n at es ar e c o m p ar e d wit h e a c h d o c u m e nt c ol u m n v e ct or i n Vk

(a s s c al e d b y t h e m atri x S k) t o pr o d u c e a si mil arit y m etri c. T h e r es ult r et ur n e d f or a

q u er y is t h e list of d o c u m e nts i n t h e i n d e x as or d er e d b y t h e si mil arit y m etri c (or, m or e

oft e n, a n or d er e d s u bs et of t h e m ost si mil ar d o c u m e nts).

8

Fi g ur e 1. 1 Vis u al r e pr es e nt ati o n of t h e Si n g ul ar V al u e D e c o m p ositi o n of a r a n k -r m atri x
A. Di m e nsi o n r e d u cti o n i n v ol v es s el e cti n g t h e k gr e at est si n g ul ar v al u es fr o m
S a n d t h e k c orr es p o n di n g c ol u m n v e ct ors i n U a n d V. R e-c o m p o siti o n of Uk ,
S k , a n d Vk pr o d u c e s Ak , t h e r a n k-k a p pr o xi m ati o n of A. Fr o m: D u m ai s, 1 9 9 5
[1 5].

1. 1. 3 W e a k n ess es of L SI

L SI f ell o ut of v o g u e b e c a us e t h e c a n o ni c al s e ar c h pr o c e d ur e i n v ol v es c o m p ari n g

e a c h of N d o c u m e nts i n t h e i n d e x t o t h e q u er y stri n g f oll o w e d b y a s ort of t h e r es ult list.

E a c h c o m p aris o n i n cl u d es a si mil arit y m etri c c al c ul ati o n of li n e ar or d er i n M, t h e n u m b er

of i n d e x e d t er ms. T h us, t h e s e ar c h pr o c e d ur e’s as y m pt oti c ti m e c o m pl e xit y is

O(M Nl o g N) i n t h e b est c as e.

S e m a nti c i n di c es ar e als o e n or m o us; n ot as l ar g e as t h e ori gi n al d o c u m e nt

c oll e c ti o n, b ut n ot as c o m p a ct as t h e m o d els pr o d u c e d a n d e m pl o y e d b y ot h er I R

al g orit h ms, eit h er. T h e mi ni m al st or a g e c h ar g e f or a s e m a nti c i n d e x is of or d er

O(k *(M + N)) w h er e k is t h e di m e nsi o n alit y of t h e i n d e x (t h e n u m b er of si n g ul ar v al u es

k e pt aft er di m e nsi o n r e d u cti o n).

9
Adding new data to a semantic index incurs a cost either in reprocessing the

document collection into a new index or in warping the axes of the existing index. This

makes online learning of models very difficult. Use of certain other matrix

decompositions shows promise in reducing the warping [2, 34].

1.2 Motivation

In the decade since LSI’s introduction, SVM and other IR systems have solved the

synonymy and polysemy problems in their idiomatic ways and with much faster searches.

LSI has been boosted a few times by the addition of highly parallelized search

algorithms, space partitioning searches, and index-shrinking strategies. These additions

and modifications have kept LSI commercially viable, but haven’t spurred further

innovation. The simplicity and elegance of the LSI approach to information retrieval

mark it as a perfect candidate for early analysis of any large data set in which the

connections between concepts are hypothesized but not fully understood. LSI is not as

well suited to implementation in COTS hardware as other IR applications. LSI is also

patented – unlike many other IR systems; the cost of licensing it has decreased its

popularity as a prototyping tool and its license terms have restricted the third party

innovation that bolstered its competitors at TREC.

The approach of this thesis is to construct a process that operates upon an LSI- like

semantic index to superimpose smooth, closed surfaces over the document clusters in a

semantic space. Once an orthonormal basis for the semantic space has been extracted or

inferred, we only need to store the control points of the superimposed surfaces in order to

completely describe the conceptual clusters. The surface representations facilitate search

1 0

al g orit h ms wit h i m pr o v e d ti m e c o m pl e xit y o v er e xisti n g L SI s e ar c h es w hil e m ai nt ai ni n g

t h e s a m e a c c ur a c y. T his a p pr o a c h als o pr o d u c es c o n c e pt u al cl ust ers t h at c a n b e

i n c or po r at e d i nt o ot h er m a c hi n e l e ar ni n g s yst e ms.

1. 3 H y p ot h e si s

L at e nt s e m a nti c i n d e xi n g is a n eff e cti v e i nf or m ati o n r etri e v al t e c h ni q u e, b ut

s e arc h effi ci e n c y s c al es p o orl y a n d st or a g e n e e ds ar e u n a c c e pt a bl e f or l ar g e d at a

c oll e c ti o ns. T e c h ni q u es d eri v e d fr o m m a c hi n e l e ar ni n g a n d c o m p ut er gr a p hi cs c a n b e

a p pli e d t o s e m a nti c i n di c es t o g e n er at e d at a str u ct ur es t h at s u p p ort m or e effi ci e nt s e ar c h

w hi l e m ai nt ai ni n g c o m p ar a bl e r etri e v al a c c ur a c y.

1. 4 C o nt ri b uti o ns

C urr e nt i nf or m ati o n r etri e v al m et h o ds b as e d o n s e m a nti c i n d e xi n g ar e eff e cti v e

b ut i n effi ci e nt wit h l ar g e d at a c oll e cti o ns. C o ntri b uti o ns of t his t h esis ar e t h e

d e v el o p m e nt of:

· Cl ust eri n g p ar a m et ers s uit a bl e f or p artiti o ni n g s e m a nti c s p a c es i nt o c o n c e pt u all y
si mil ar gr o u ps of d o c u m e nts;

· D at a str u ct ur es a d a pt e d fr o m 3 D c o m p ut er gr a p hi cs s uit a bl e f or c o m p a ct st or a g e
a n d m a ni p ul ati o n of d o c u m e nt cl ust er b o u n d ar y s urf a c es;

· Ti m e -effi ci e nt s e ar c h al g o rit h ms b as e d u p o n r a y tr a ci n g m et h o ds.

T h e n e w d at a str u ct ur es a n d m et h o ds als o all o w i n cr e m e nt al u p d ati n g of d at a

c o ll e cti o n i n di c es wit h n e w d o c u m e nts, a pr o c e d ur e w hi c h is n ot c urr e ntl y s u p p ort e d b y

L SI.

11
1.5 Applications

By reducing the search and storage complexity of semantic indexes, we have

provided mechanisms that can potentially be used for applying LSI- like techniques to

new commercial application domains such as virus scanning, network intrusion detection,

and spam filtering. These problems can all potentially benefit from integration of the

knowledge gained from semantic indexing with other machine learning algorithms. By

providing concept primitives derived from the semantic index, we support learning of

better models for these applications and more.

1.6 Organization

The remainder of this document is organized as follows:

Chapter II outlines the body of literature related to this thesis. Chapter III outlines the

research approach that was followed and describes design parameters for the SCRIBE

information retrieval pipeline. Chapter IV discusses the design choices that were made

during implementation of the SCRIBE system. Chapter V presents experimental results

demonstrating statistical identity between the retrieval performances of the SCRIBE and

LSI systems and dramatic improvement in SCRIBE’s running time compared to LSI.

Chapter VI discusses the conclusions of this thesis, summarizes its contributions to the

field of research, and suggests some topics of future inquiry.

CHAPTER II

LITERATURE REVIEW

The goal of this thesis research is to improve the scalability of latent semantic

indexing (LSI) by applying clustering methods from machine learning and search

methods derived from computer graphics. LSI has been used both for information

retrieval (IR) and as part of tools for textual analysis [19, 20, 23]. The representations

and algorithms developed in this research improve the performance of LSI for

information retrieval and, by extension, textual analysis. Section 2.1 provides a brief

review of IR methods with an emphasis on vector model methods. Clustering methods

will be used to extract characteristic features from LSI and are reviewed in Section 2.2.

Methods from computer graphics have been used to develop compact representations for

clusters. These methods are discussed in Section 2.3. Section 2.4 presents a review of

ray tracing methods that are used to represent queries of the new, geometric cluster

representations.

2.1 Information Retrieval

Information retrieval (IR) is the process of fulfilling a “user information need” [3]. The

process subsumes simple data retrieval and additionally includes filtering and ranking

steps that aid users’ comprehension. Baeza-Yeats and Ribeiro-Neto [3] describe the three

“classic models” of information retrieval: the Boolean, probabilistic, and vector models.

12

13
All three models consider documents as bags of words characterized by index terms and

assume that index terms are mutually independent and orthogonal. Each model is

distinguished by a particular representation of documents and user queries.

The Boolean model represents documents as binary strings in which each bit

indicates the presence (1) or absence (0) of an index term. Queries are posed as

conjunctive forms that specify constraints on the set of documents that can potentially fill

the user information need. Retrieval in the Boolean model is a binary decision – if a

document fully satisfies the query, it is retrieved; otherwise the document is discarded.

No partial matching is allowed. All retrieved documents satisfy the query equally, so

there is no ranking of the items in the returned set [3]. Because it lacks the ability to

retrieve partial matches and rank documents, the Boolean model is little better than data

retrieval at fulfilling users’ information needs. Thus, it has little value to IR research,

though it has achieved some commercial popularity.

Probabilistic IR approximates an “ideal answer set” [3] by estimating the

likelihood of relevance to a user query for each document in the collection. This model

represents both documents and queries as binary strings like those described in the

Boolean model. During retrieval, a probabilistic model of relevance is learned by

iteratively refining estimates of the probability that each index term occurs in at least one

relevant document. The probabilities are refined by applying the estimation rules to the

set of documents retrieved by the previous set of probabilities. (Initially, all probabilities

are set to 0.50.) After several iterations, the model is expected to converge on an

approximation of the ideal answer set. Documents in the final answer set are ranked in

1 4

or d er of t h eir pr o b a bilit y of r el e v a n c e. Pr o b a bilisti c I R c a n r etri e v e d o c u m e nts t h at o nl y

p arti all y m at c h a us er q u er y. As i n t h e B o ol e a n m o d el, in d e x t er m w ei g hts ar e bi n ar y.

D o c u m e nt r a n ks ar e b as e d o n t h e s u ms of t er m w ei g hts, s o r a n ks i n t h e pr o b a bilisti c

m o d el d o n ot r efl e ct t h e r at e of a t er m’s o c c urr e n c e i n a gi v e n d o c u m e nt; all ot h er f a ct ors

b ei n g e q u al, a d o c u m e nt i n w hi c h t er m t o c c urs fift y ti m es is gi v e n t h e s a m e r a n k as o n e

i n w hi c h t o c c ur s o nl y o n c e [3]. I n pr a cti c e, t his c a n m e a n t h at t e c h ni c al d o c u m e nts o n a

s u bj e ct m a y b e r a n k e d e q u all y wit h t a bl oi d arti cl es o n t h e s a m e t o pi cs. B a e z a -Y e ats a n d

Ri b eir o -N et o [3] r e vi e w t h e m ost p o p ul ar pr o b a bilisti c m o d els: B a y esi a n n et w or ks,

i nf er e n c e n et w or ks, a n d b eli ef n et w or ks.

T h e v e ct or m o d el a p pr o a c h e s I R a s a cl u st eri n g pr o bl e m. D o c u m e nt s ar e

c o n sid er e d as p oi nts i n a hi g h -di m e nsi o n al l e xi c al s p a c e i n w hi c h t h e fr e q u e n c y of e a c h

i n d e x t er m is pl ott e d al o n g o n e of m a n y m ut u all y ort h o g o n al a x es. D o c u m e nts a n d us er

q u eri es ar e r e pr es e nt e d as v e ct ors of i n d e x t er m fr e q u e n ci es or w ei g hts. I n t h e v e ct or

m o d el, t er m w ei g hts d eri v e d fr o m t h e r at e of o c c urr e n c e of a n i n d e x t er m i n a d o c u m e nt

ar e s ub stit ut e d f or r a w t er m fr e q u e n ci es. T h us, e a c h d o c u m e nt v e ct or u ni q u el y i d e ntifi es

a p oi nt i n l e xi c al sp a c e. D o c u m e nt s ar e r a n k e d a c c or di n g t o t h eir si mil arit y t o a u s er

q u er y. T h e v e ct or m o d el’s c o n c e pt of si mil arit y is t h e d e gr e e t o w hi c h t w o v e ct ors p oi nt

i n t h e s a m e dir e cti o n (e. g., ar e m e m b ers of t h e s a m e cl ust er). T his c o n c e pt is m ost oft e n

c a pt ur e d i n m etri c f or ms utili zi n g t h e d ot pr o d u ct or c osi n e f u n cti o ns. T h e v e ct or

m o d el’s f or m ul a ti o n of si mil arit y all o ws p arti al m at c hi n g of us er q u eri es. B e c a us e i n d e x

t er m w ei g hts c o m e fr o m t h e d o m ai n [0 , ¥) , d o c u m e nts wit h hi g h c orr el ati o n t o s p e cifi c

t er ms i n a us er q u er y (i. e., h a v e hi g h i ntr a-cl u st er c orr el ati o n) t e n d t o b e r a n k e d a b o v e

15
documents with low correlation to all terms in the user query (i.e. have high inter-cluster

correlation) [3].

2.1.1 Vector Model Techniques for LSI

Latent Semantic Indexing (LSI) processes a data collection to generate a model of

the information contained in a data collection’s addressable parts [11]. The information

model is used to inform online recognition of the information represented by new data

samples and queries, and facilitates the retrieval of similar documents from within the

indexed collection. The data and information models are constructed in roughly the

same data structures - two-dimensional, rectangular matrices. Rows and columns of the

matrices represent two levels of granularity at which the data is analyzed to construct the

information model: columns represent the addressable or retrievable items in the data

collection such as documents, images, or sound files; each row represents an atomic data

element parsed from the addressable items such as a word, pixel, or pitch. Because the

number of rows is usually much greater than the number of columns the data matrix –

called a co-occurrence matrix – tends to be sparse. As the induction procedure resolves

polysemy and synonymy relationships the initial atom weights are spread and shared

among groups of related atoms [4]. Because of the spread of atom weights, the matrix

representing the information model is always dense [17].

Davis and Foltz [10] discuss the problem of learning recognition models from

example data by compacting the data representation using Minimum Description Length

– the least number of bits in which a message can be encoded – as a heuristic to guide an

automatic search for an efficient encoding. In particular, they treat the problem of data

16
compression. For example, in the language L = {A,B,C, D} * certain character

combinations might occur so frequently that the number of transmitted characters can be

reduced by including special characters to represent those groups in the data model. By

analyzing the growth of parsimony networks – hierarchical networks representing

decisions to merge character co-occurrences into special characters - Davis and Foltz

found a method for learning data recognition models that account for polysemous

alphabets by merging characters whenever the merge minimizes the model’s total

description length. They found that merging characters that encoded similar events in the

language tended to reduce the description length of the data model and improve

recognition accuracy.

In LSI, Dumais, Furnas, Landauer, et al. [11] applied an encoding compaction

technique to a vector space model of natural language in which each word in the

language is mapped to a unique axis on a high-dimensional orthonormal basis. Example

documents are encoded as word-count vectors in the language space and the vectors are

juxtaposed as columns in a sparse matrix. Encoding compaction was interpreted as an

analogous process to projection of the language space – or lexical space – into a lower-

dimensional “semantic space”. This projection embodies an underlying assumption that a

hidden semantic grammar guides the choice of words in natural language documents. By

projecting the document vectors into a space of approximately the same dimensionality as

the semantic space, it was expected that a model of the information content of the

example documents would be induced. Experiments at TREC [13, 14, 16] and in several

user studies [19, 21, 22, 37] indicate that the dimension reduction method does capture an

17
information model with characteristics similar to the models described by Davis and

Foltz [10]. The projection technique described by Dumais, Furnas, Landauer, et al. [11]

reduces description length with respect to the number of axes in the lexical and semantic

spaces, but tends to increase the space needed to store the induced model by mapping the

sparse lexical matrix onto a dense semantic matrix. The gain in recognition accuracy

comes at premium in storage complexity. In analogy to Davis and Foltz’s [10] parsimony

networks, orthonormal axes replace atoms of a language and atom merging is replaced by

the projection of related axes onto a new, composite axis [4, 10, 17].

The choice of which dimensions to merge is decided by a form of principle

component analysis derived from a linear algebraic technique called Singular Value

Decomposition (SVD). The details of the SVD are discussed in Chapter 1. In this

chapter we will highlight the motivation for applying matrix decomposition to knowledge

induction. SVD divides the co-occurrence matrix into three components: the left singular

matrix represents a transform that describes an orthonormal basis; the singular vector – a

diagonal matrix – contains the PCA results and describes the information and noise

content of each axis; the right singular matrix represents the coordinates of the

addressable items with respect to the orthonormal basis. When multiplied together, these

three components exactly reproduce the original co-occurrence matrix. Davis, Foltz, and

Dumais [10, 11, 17] demonstrated that reducing the dimensionality of a model induces

knowledge about the underlying (or “latent”) information structure with the greatest

information gain occurring when the target number of dimensions is set very close to that

of semantic space. This semantic space is a conceptualization of the vector space

18
corresponding to a hypothesized semantic meta- language that directs word choices

independent ly of the human language in which a document is composed. The

dimensionality of semantic space cannot be measured directly; rather, the dimensionality

of an information model is said to be close to that of the semantic space whenever the

model’s retrieval metrics are within experimental or production tolerances. As applied to

the SVD, each singular value and its associated pair of singular vectors represent a

component of the transform that maps an atom-count vector into lexical space [4, 17].

Each component transform encodes information about the atom-count vectors’ positional

relationships along one axis of the orthonormal basis of lexical space. Dumais, Furnas,

Landauer, et al [17] found they could choose dimensions to merge based upon the PCA

results embodied by the singular va lues. Their method, LSI, approximates the semantic

space of a data collection by retaining from the full SVD only the transforms associated

with the k greatest singular values. In effect, the information contained in the discarded

transforms is merged into those that remain – an analog to the parsimony network merges

described by Davis and Foltz [10].

A desirable side effect of dimension reduction is the formation of clusters within

the semantic index. Atom-count vectors are scaled and rotated during the SVD process

such that conceptually similar data are moved close together in the approximated

semantic space [17]. Davis and Foltz [10] describe the information structure of semantic

indices in analogy to artificial neural networks. They interpret the dimensions of

document vectors as edge weights leading from an input array into an array of neurons in

which each document vector maps to a unique neuron that recognizes the document from

19
which its edge weights were derived. This interpretation is also similar to Kohonen’s

[33] self-organizing map, in which a 2D array of neurons is connected to an N-D input

space. The SVD moves the vectors themselves into closer proximity whereas Kohonen’s

learning rule adjusts the weights of fixed nodes to detect the presence of stimuli in

discrete regions of the input space. SVD and self-organizing maps will be compared

further in the coming sections.

2.1.2 Queries in IR Systems

We have seen how LSI, as an example of vector space models, represents

information and learned knowledge. To begin our discussion of information retrieval, let

us examine the vector representation of queries. Queries may take one of two general

forms: (1) short, keyword-rich descriptions of the desired information, or (2) example

items that are similar to the desired information (for example an article on the topic of

interest might be used to query the Lexus Nexus database of journal articles). LSI

processes both query forms identically. First, an atom-count vector is constructed by

counting the atoms (e.g., words) in the query. The atom-count vector is mapped to a

template derived from the rows of the retrieval index – that is from the indexed terms in

the semantic space. Counts for any atoms that match indexed terms are copied into the

template leaving behind any non- indexed atoms. The filled template is scaled and rotated

into semantic space by multiplication with the basis transform computed during SVD [4,

17]. After the basis transformation, the query vector represents the coordinates of a point

along a new “pseudo-document” vector in semantic space [11].

20
For each query, LSI ranks every document vector (addressable item) in its index

with respect to the query’s pseudo-document vector though only the few highest-ranked

datum are actually included in the response to the user [11]. The ranking procedure is

roughly equivalent to K-Nearest Neighbor learning. The distance between the query’s

pseudo-document and each indexed item is computed. A rank-ordered list of the indexed

items is then constructed and the top few items are returned in the query response [11,

15]. Note that the distance computed between the pseudo-document and the indexed

items is usually not the Euclidean distance between these points; most often, the metric is

either the dot product of the two vectors or the cosine of their included angle [15, 36].

Dumais first noted the scalability concerns surrounding the exhaustive search of the index

in the SIAM Review in 1995 [15]. Chen et al. [9] discuss implementation strategies to

overcome some scalability hurdles in a 2001 technical report.

2.2 Cluster Extraction

Hand et al. [28] define clustering as the process of “decomposing … a … data set

into groups so that the points in one group are similar to each other and are as different as

possible from the points in other groups.” This thesis research applies clustering methods

from machine learning to semantic indices in order to extract information about the

distribution of data points in the index and the clusters they are expected to form. Hand

et al. divide clustering methods into three categories: hierarchical, partition-based, and

probabilistic. The three categories are defined based on the scope of the scoring function

(local or global), and on the determinism of the search method used to pick candidate

cluster members (see Figure 2.1).

21
Hierarchical clustering algorithms characteristically include a local scoring

function and search method that is tightly correlated with a specific, expected cluster

model [28]. Peter Willett [48] presents a comprehensive review of hierarchical clustering

strategies used for information retrieval through 1988. Koller and Sahami [35] developed

an on- line learning technique for extending hierarchical cluster graphs. This on- line

technique superimposes over the cluster hierarchy a decision network in which each

decision depends on a small subset of the characteristic features of the underlying cluster.

Broder et al. [8] published a comprehensive, syntactic clustering of the entire World Wide

Web in 1997. Broder’s hierarchical method includes some novel similarity metrics, but is

most impressive because of its scalability; Broder’s test data included 30 million

hypertext documents which were clustered and indexed for searching in about 10.5 days

of processing time. Karypis, Han, and Kumar [32] presented Chameleon, a hierarchical

clustering method that uses a hybrid, adaptive cluster model, in 1999. Chameleon

operates on a k-Nearest Neighbor graph derived from the raw data. The cluster model

considers metrics based on min-cut division of the vertices assigned to a cluster (local)

and min-cut division of the links between clusters (global). The best candidate merge

simultaneously maximizes both metrics; as a result, clusters of widely varying sizes and

shapes can be discovered by Chameleon’s single, adaptive model.

22

Search Strategy

Deterministic Probabilistic
Sc

or
in

g
Sc

op
e Local Hierarchical

FuzzyGlobal
Partition-based

Hybrid

Figure 2.1 Categories of clustering algorithms

Partition-based clustering methods de-couple the cluster model from the scoring

functions. Typically, they use global scoring functions – comparing a data point to all the

possible clusters - and examine every data point during each iteration of cluster

refinement. Thus, no specific cluster model is imposed by the clustering method, though

the scoring function does attempt to enforce the previously mentioned similarity

constraints [28]. Guha, Rastogi, and Shim [27] presented CURE, a partition-based

clustering method for characterizing large databases, in 1998. CURE bears a strong

likeness to the Chameleon system; CURE merges partial clusters formed by normalized,

random sampling of the data points. After the initial partial clusters are merged, they act

as scaffolds around which the whole database may be characterized and partitioned.

Borodin, Ostrovsky, and Rabani [7] developed techniques for achieving near-quadratic

time complexity in general when searching for optimal partitions of sparse clusters.

(Sparse clusters are defined in Awerbuch and Peleg, 1990 cited in [7].) The use of

Borodin et al.’s [7] technique applies the sparse cluster model to methods that are

23
otherwise independent of any cluster model. This loss of generality is usually acceptable

compared to the gain in data throughput. McCallum, Nigam, and Ungar [38] proposed a

further refinement to partition optimization in high-dimensional data sets – such as

document collections – in 2000. McCallum et al. proposed a two-step method that first

forms overlapping partitions across the entire data set and then efficiently refines cluster

boundaries by examining only the data points that fall into overlapping regions.

McCallum et al. report empirical findings of a 20x speed up over complete partition

optimization with no significant change in IR metrics.

Probabilistic (or “fuzzy”) clustering methods produce mixture models that predict

a data point’s membership in a given cluster with a known degree of error [28]. Fuzzy

clusters are difficult to represent geometrically and are therefore of limited interest in the

proposed research. However, unsupervised probabilistic clustering methods have been

successful at predicting the number of clusters in large data sets – an accomplishment

which is of great importance to this thesis research. Gath and Geva [26] developed an

unsupervised learning algorithm based upon fuzzy k-means in 1989. Their method

incrementally increased the number of clusters requested of the k-means algorithm until

some performance metric function was maximized. Gath and Geva assume that the

performance metric will be specialized for a given problem, so their method provides

extensive flexibility for adaptation to almost any real-valued function. Slonim and

Tishby [43] presented an information theoretic, fuzzy clustering algorithm for large, full-

text databases in 2000. While their partitioning scheme is more sophisticated, Slonim

24
and Tishby also incrementally adjust the number of clusters over many iterations of their

algorithm until some performance metric is maximized.

2.3 Geometric Surfaces

This thesis research adapts methods and data structures from computer graphics to

compose compact representations for clusters. Three computer graphics approaches that

were explored are implicit equations, non-uniform rational b-spline (NURBS) curves, and

polygonal meshes. Each of these methods provides convenient data structures and

algorithms for defining the boundary between points inside and outside of a given region

of space. Shirley [42] describes implicit equations as real-valued functions that return

zero whenever their arguments define a point on the “implicit surface.” Shirley develops

implicit equations for 3D planes and a small selection of 3D curves. He concludes by

presenting techniques for representing surfaces in general by parameterized, implicit

equations. Forrest [24] introduced Bezier curves to the computer graphics community in

1972. Bezier curves interpolate a continuous path from a set of control points according

to a blending rule, a polynomial that defines the influence of each control point on the

curve. Versprille [18, 45] describes non-uniform rational b-spline (NURBS) curves, the

general framework of which Bezier curves are a special case. NURBS curves are

piecewise functions in which each interval contains a Bezier blending function over the

local control points. NURBS curves provide the advantage that changing a portion of a

complex curve requires minimal re-computation of the blending polynomials. Hearn and

Baker [29] describe polygonal meshes as the tessellation of a surface which approximates

25
the curvature with a set of polygonal patches. Shirley [42] describes data structures for

efficiently representing meshes of triangular patches tangent to a curved surface.

2.4 Query Service and Ray-Surface Intersection

Query service in the vector space model of information retrieval is a mathematical

analog to ray-surface intersection searches in computer graphics. This thesis research

adapts optimizations of the ray-surface intersection search to improve the time

complexity of LSI-like query service. Ray/scene intersection is the process in graphics of

testing an arbitrary ray for intersection with all space-filling, geometric surfaces in the set

of objects defined as a scene. In general, the ray/scene intersection is linear in the

number of objects in the scene. Because scenes are usually sparse – having a low ratio of

object volumes to total volume – space partitioning schemes frequently enable sub-linear

complexity search and retrieval of objects that are likely to intersect with a given ray

[42]. The clustering techniques described in the section 2.2 are spatial partitioning

schemes. The document collections studied in this research are sufficiently large to

demonstrate LSI’s scale constraints, but are small enough that the document clusters

produced by Chameleon, for example, sufficiently partition semantic space so that

SCRIBE requires no further subdivision to maintain its search efficiency. When the

techniques developed in this thesis – or, for that matter, any IR techniques – are applied

to much larger document collections, it becomes necessary to generate a guide tree to

direct the search algorithm toward regions of space that are likely to contain query

matches. Two popular guide trees are BSP and k-d trees. Binary space partition trees

(BSP-trees) are “binary trees for multidimensional points where successive levels are

26
split by arbitrary hyperplanes” [5]. That is, at each level the dimension containing the

most information (as determined by an information gain metric) is chosen and a splitting

hyperplane is constructed at the median value of that dimension among the objects in that

level and section of the tree. At every decision point all dimensions are candidates for

splitting. K-d trees [6] are a special case of BSP-trees in which the splitting dimension at

each level is predetermined. For k-dimensional data the splitting dimension at level L

is L mod k +1. In practice, the depth of a k-d tree is roughly the same as a BSP-tree

constructed on the same data (thus search complexity is asymptotically equal), but the

construction time is reduced by a constant factor related to the time spent computing the

information gain metric for the BSP-tree.

CHAPTER III

RESEARCH APPROACH

This thesis research considers information retrieval as part of the knowledge

discovery and exploration framework in Figure 3.1. This framework provides

mechanisms for fulfilling a user’s information need by retrieving relevant documents

through a natural language query service interface as required for information retrieval.

In addition, the framework constructs the necessary data structures to permit visualization

and exploration of the information space.

The research has followed the framework laid out in Figure 3.1 to test the

hypothesis stated in Chapter I:

Latent semantic indexing is an effective information retrieval technique,

but search efficiency scales poorly and storage needs are unacceptable for

large data collections. Techniques derived from machine learning and

computer graphics can be applied to semantic indices to generate data

structures that support more efficient search with comparable retrieval

accuracy.

27

2 8

Fi g ur e 3. 1 Pr o p os e d k n o wl e d g e dis c o v er y a n d i nf or m ati o n r etri e v al fr a m e w or k

A pr ot ot y p e i nf or m ati o n r etri e v al (I R) pi p eli n e h as b e e n c o nstr u ct e d fr o m t h e fr a m e w or k

b y s el e cti n g a n d a d a pti n g pr e -e xisti n g al g orit h ms f or e a c h t as k i n t h e pi p eli n e:

· Tr a nsf or m ati o n t o v e ct or s p a c e,

· Di m e nsi o n alit y r e d u cti o n,

· Cl ust eri n g a n d b o u n d ar y e xtr a cti o n,

· S urf a c e r e pr es e nt ati o n,

· Q u er y s er vi c e.

29
The remainder of this chapter examines the tasks and the constraints each places upon

candidate algorithms. This chapter concludes with a discussion of the metrics that were

used to judge the success of the prototype.

3.2 Data Transformation to Vector Space

This task transforms a data collection from a relatively complex, free-form

structure into the simplified representation required by the knowledge inference task that

comes next in the pipeline. As discussed in the previous chapter, each of the three classic

information retrieval models represents documents as strings of index term weights

(either binary weights or real-values). The goal of this task, then, is the identification of

index terms and the calculation of index term weights. This thesis research adopts a

simple, common rule for choosing index terms: any term that appears in two or more

documents is an index term. The particulars of calculating index term weights depend

upon the representation model chosen. By focusing on the LSI approach, we have

implicitly chosen to employ the vector space model of information retrieval. In addition,

Dumais’ study of term weighting techniques recommends the use of the local “log-

frequency” and global “log-entropy” scheme, which we have also adopted [12]. The

construction of these weight strings satisfies the representational requirements of the

knowledge inference stage of any vector model-based IR pipeline.

3.3 Knowledge Inference by Dimension Reduction

This task involves learning the links between terms and information in the data

collection. The vector model of IR frames this task as cluster analysis – documents that

30
contain similar information are expected, by virtue of the term weighting scheme, to

occur relatively closer to each other than to dissimilar documents. This thesis research

follows the example of previous implementations of the vector model that apply

analytical algorithms to the initial document vectors to produce an information model. In

particular, we apply principle component analysis and multi-dimensional scaling in the

form suggested by Latent Semantic Indexing (LSI) [17]. The term-document matrix

produced by the first stage of the pipeline is factored into its singular value

decomposition (the PCA step) and approximated by its greatest eigenpairs (multi-

dimensional scaling).

The semantic space produced by this stage of the pipeline can be searched as a

document index itself – this is the strategy used by LSI. For the purposes of improving

search efficiency and supporting visualization, however, this thesis research extends the

IR pipeline to the discovery and discrete definition of document clusters.

3.4 Document Cluster Identification and Boundary Extraction

The index produced by the previous stage of the pipeline contains document

clusters that represent the relationships among fragments of information in the collection.

Those clusters, though, cannot be recovered from the index directly as might be desirable

for visualization, classification, or other search optimizations as we have done in this

research. This stage of the pipeline discovers the clusters formed during the inference

stage and extracts their members into separate containers for further analysis.

The number of clusters formed during inference is unknown at this stage in the

pipeline. Before proceeding to cluster identification, then, it is necessary to estimate the

31
number of clusters present in the semantic index. This is easily accomplished by a

probabilistic clustering algorithm such as fuzzy k-means [26]. Probabilistic clustering

was too time-consuming for the schedule of this thesis research. Preliminary trials with

fuzzy k-means took days to complete one clustering solution out of the hundreds required

for convergence. Instead, we developed a few simple criteria that describe acceptable

clustering solutions. These criteria, described in the Appendix, were used to guide a

manual search of the parameter space.

The choice of an appropriate cluster identification algorithm for this stage is

constrained by the need to maintain the relative spatial separation between clusters and

the need to identify clusters with both convex and concave geometries. As discussed in

Chapter II, partition-based clustering algorithms are generally more able to adapt to

complex cluster geometries than hierarchical or probabilistic algorithms. An exception,

the hierarchical Chameleon system [32], is also a strong candidate. In this thesis

research, we have adopted the Chameleon technique. First we compute a partition-based

clustering solution over the semantic index. The small clusters of the first solution are

then hierarchically merged.

3.5 Boundary Surface Representation by Graphics Primitives

This stage of the pipeline simplifies the representation of the extracted cluster

volumes to improve storage and search complexity. The document vectors that make up

the surface of each cluster volume are used as guidelines for fitting computer graphics

primitives around each cluster. The choice of primitives is the users’ prerogative;

however, the complexity of the primitive chosen should agree with the complexity of the

3 2

cl u st ers’ g e o m etri es. F or c o n v e x cl ust ers, is o m etri c pri miti v es (e. g., s p h er es, c u b es, et c.)

m a y s uffi c e. F o r c o n c a v e cl ust ers, pri miti v es s u c h as N U R B S or p ol y g o n al m es h es m a y

b e m or e a p pr o pri at e. I n o ur r es e ar c h, si m pli cit y of t h e pr ot ot y p e pi p eli n e h as dri v e n t h e

c h oi c e of gr a p hi cs pri miti v es.

3. 6 Q u e r y S e r vi c e

At t his st a g e of t h e pi p eli n e, it is n o l o n g er n e c e ss ar y t o s e ar c h t hr o u g h all or m ost

of t h e d o c u m e nt v e ct ors i n t h e s e m a nti c i n d e x t o fi n d r el e v a nt m at c h es t o a us er’s q u er y.

Wit h mi n or a d a pt ati o n, t h e r a y tr a ci n g m et h o d of i nt ers e cti o n t esti n g wit h t h e gr a p hi cs

pri miti v es f or m e d at st a g e 4 h as b e e n us e d t o a c c o m plis h t h e t as k of l o c ati n g r el e v a nt

d o c u m e nt cl ust ers wit h o ut a ct u all y e x a mi ni n g a n y of t h e d o c u m e nt v e ct ors. W e h a v e

a d a pt e d s u b - li n e ar r a y tr a ci n g f or us e t h e I R pi p eli n e. A d a pt ati o ns i n cl u d e hi g h-

di m e nsi o n al i nt ers e cti o n t ests, f a ciliti es f o r r a n ki n g d o c u m e nt v e ct ors i n cl ust ers

i nt ers e ct e d b y a q u er y v e ct or, a n d cl ust er r el e v a n c e r a n ki n gs f or n o n- i nt ers e ct e d cl ust ers.

3. 7 P e rf o r m a n c e M et ri cs

T h e p erf or m a n c e of t h e pr ot ot y p e pi p eli n e h as b e e n c o m p ar e d wit h e xisti n g I R

s yst e ms b y t h e f oll o wi n g m e tri c s:

· R e c all: t h e n u m b er of r el e v a nt d o c u m e nts r etri e v e d;

· Pr e cisi o n: t h e r ati o of r el e v a nt t o n o n -r el e v a nt d o c u m e nts r etri e v e d.

· F -m e as ur e: d es cri b es b ot h r e c all a n d pr e cisi o n i n a si n gl e v al u e.

E x p eri m e nt al d o c u m e nt c oll e cti o ns a v ail a bl e fr o m t h e NI S T T e x t R etri e v al C o nf er e n c e

(T R E C) pr o vi d e d at a s ets, lists of r el e v a nt d o c u m e nts, a n d p erf or m a n c e m etri cs s u p pli e d

33
by competitors. SCRIBE, an implementation of the prototype pipeline, was evaluated

against a basic LSI implementation. Both systems were tested over W. Hersh’s

OHSUMED [30] document collection, queries, and relevance judgments from the TREC-

9 filtering track.

C H A P T E R I V

D E SI G N A N D I M P L E M E N T A TI O N

T his c h a pt er d es cri b es t h e d esi g n a n d i m pl e m e nt ati o n of t h e S C RI B E (S e m a nti c

Cl u st er R etri e v al I n d e x B a si c El e m e nt s) s y st e m t h at w a s i m pl e m e nt e d a s a pr o of of

c o n c e pt of t h e i nf or m ati o n r etri e v al pi p eli n e dis c uss e d i n C h a pt er I.

4. 1 S C RI B E D esi g n a n d I m pl e m e nt ati o n

S C RI B E w as c o nstr u ct e d t o i m pl e m e nt t h e d esi g n s h o w n i n Fi g ur e 3. 1 b y

a d a p ti n g e xisti n g al g orit h ms a n d b uil di n g c ust o m s oft w ar e f or t h e si x t as ks b el o w:

· D at a tr a nsf or m ati o n t o v e ct or s p a c e

· K n o wl e d g e i nf er e n c e b y di m e nsi o n alit y r e d u cti o n

· Cl ust eri n g a n d b o u n d ar y e xtr a cti o n

· B o u n d ar y s urf a c e r e pr es e nt ati o n

· Q u er y pr o c essi n g.

4. 1. 1 D at a Tr a nsf or m ati o n t o V e ct or S p a c e

T h e d esi g n of t his st a g e f oll o w e d t h e e x a m pl es of est a blis h e d v e ct or m o d el I R

t e c h ni q u e s. Do c u m e nts w er e m o d el e d as “ b a gs of w or ds ” [3] t h at w er e c o n v ert e d t o

v e ct or f or m b y r e c or di n g t h e r a w o c c urr e n c e c o u nts f or e a c h t er m. N ot e t h at “t er ms ” ar e

diff er e nti at e d fr o m “ w or ds. ” A w or d is a n y n o n - n ull c oll e cti o n of al p h a n u m eri c

c h ar a c t ers. T er ms ar e w or ds wit h p arti c ul ar o c c urr e n c e fr e q u e n c y c h ar a ct eristi cs. T h e

3 4

35
specific parameters that distinguish terms from words are user-selectable; in this work,

terms were defined as words that occurred in more than two documents but less than 40%

of documents in the collection. These parameter values were chosen to be typical of LSI

systems as described by Foltz et al. in [10, 23, 36, 49].

All terms were compared to Salton’s SMART stop list of high-frequency English

words [41]. Terms appearing on this list occur so frequently in English natural language

that modeling of them overwhelms the influence of information-bearing terms.

Consequently, these terms are removed from the data stream early in the vector

transformation process. Note that the limitation of term frequency to less than 40% of the

document collection is intended to accomplish the same goal for domain-specific terms.

Additionally, the natural language document collection used in this work was

stemmed – homogenized for variances in spelling resulting from use in different parts of

speech, temporal sense, number, etc. – by applying the Porter Stemmer algorithm [39].

All documents, queries, and stop words were stemmed prior to any other vector space

transformation step. The Porter Stemmer does not remove punctuation from a text

stream; it was necessary to add some lightweight textual analysis procedures to the

document vector construction program.

4.1.2 Dimension Reduction with SVD

Berry [4] published SVDPACKC, a reference implementation – in C – of several

singular value decomposition (SVD) algorithms from the Linear Algebra Package

(LAPACK) [1] algorithm collection. Rohde’s simplified executable front-end [40] for

the single-vector Lanczos SVD was used at this stage of the pipeline to perform

36
knowledge inference by dimension reduction. Rohde’s SVD program permits

customization of five parameters that affect the quality of the solution and performance of

the algorithm. The first two parameters are the number of rows and columns in the term-

document matrix (TDM). Control of these parameters is the most effective means of

controlling the running time of the algorithm. However, the removal of rows that

represent terms or columns that contain document vectors is not desirable because such

actions cause information loss in the semantic index.

SVD rank is the third parameter. The rank of the decomposed matrix is analogous

to the dimensionality of the term-document space. The SVD program can be told to end

early when a certain number of the largest singular values have been discovered. This is

advantageous, since this stage of the pipeline deals with dimension reduction. The rank

of the SVD was therefore chosen as the target dimensionality of the semantic index. The

specific value of this parameter was chosen by performance trials of the pipeline over a

portion of the document collection reserved for training.

The final two parameters are intended to account for floating point rounding error,

but can be used to affect adjustments in the granularity of the decomposition. The first of

these parameters defines the range of values that will be interpreted as equal to zero. By

default, this range is [-1E-30, 1E-30]. Widening this range decreases the number of QR

factorization steps required to cause the SVD to converge, in effect reducing the running

time of the program. Wider zero ranges distort SVD, but might not negatively impact

retrieval performance of the index if the TDM is sufficiently sparse. The default value of

this parameter was used in the current work. The final parameter is the floating-point

37
error correction. This value – 1E-6 by default – corrects for rounding error in all floating-

point calculations in the SVD program. As with the zero range, the default va lue was

used in the current work.

4.1.3 Document Clustering and Boundary Extraction

The document clustering task was accomplished by applying algorithms

implemented in Karypis’s Cluster Toolkit (CLUTO) [31]. A data format adaptor was

written for conversion between the output format of Rohde’s SVD program and

CLUTO’s vector input format. The adaptor simply scales the right singular vectors by

the singular values and prints the resulting vectors to a new file.

Karypis’s CLUTO package permits user specification of dozens of parameters.

This section first outlines the parameter classes and then specifies the values chosen for

this pipeline. The three parameter classes support clustering algorithm selection, report

generation, and visualization options.

CLUTO provides six clustering algorithms and a mechanism for composing

sequences of clustering operations. The algorithms have a common parameter set:

similarity functions, cluster criterion functions, row and column models, and pruning

functions. The algorithms are a mixture of agglomerative, partitioning, and graph-based

methods. Two algorithms may be composed with the second operating upon the solution

of the first; this operation is usually applied by first partitioning and then agglomerating

clusters. Each algorithm is specialized at run time by specification of a parameter set.

Similarity functions include vector cosine, correlation coefficients, Euclidean distance,

and Jaccard coefficients (for graph-based methods). Many criterion functions are

38
provided including linkage classifiers, UPGMA, and a collection of probabilistic

classifiers. Additionally, a preprocessing step to the clustering algorithms may be

instructed to perform two operations: transform the vectors into a variety of coordinate

spaces; prune vectors out of the input set when they are duplicates, zero vectors, or

otherwise non- informative.

During the literature review process, the Chameleon clustering method was

identified as the best clustering method for the IR pipeline. CLUTO provides the

capabilities needed to implement the Chameleon method and was therefore configured to

emulate it. Chameleon composes partitioning and agglomerative algorithms –

specifically graph-based methods. Early designs mimicked the graph-based method and

determined that they were prohibitively slow on high-dimensional vectors. Instead, a

composition of repeated bisection and hierarchical agglomeration was chosen. The

partitioning step was specialized to use the correlation coefficient similarity function and

the I2 criterion function. The agglomeration algorithm was specialized to use the

correlation coefficient similarity function as well with the UPGMA criterion function.

No coordinate transformation was applied to the vectors. The vector columns were

pruned until 90% of the similarity between vectors remained. (According to Karypis, this

pruning improves the processing time of the clustering algorithms without reducing the

solution quality [31].) A more detailed journal of the process leading to these parameter

choices is included in the Appendix.

CLUTO provides extensive reporting facilities from raw text files to formatted

input suitable for a number of visualization systems. CLUTO’s most essential output is a

39
report of the cluster sizes. Additional details include internal and external cluster

similarities, z-scores representing the membership probabilities, feature analyses, and

cluster labeling. Enhanced reports include detailed statistical summaries of each cluster’s

salient features, visualizations of clustering solutions, agglomeration trees, and more

options that will be elided.

The basic reporting features were the most useful to the current work. CLUTO

was instructed to output a file containing the cluster membership information for each

vector. Z-scores for each vector are also emitted into the cluster solution file to support

off- line analysis of the solution. Additional summary details were also requested as

screen output to facilitate the parameter selection process detailed in the Appendix.

4.1.4 Surface Representation

Two surface representations were selected for implementation – axis-aligned

bounding boxes and bounding spheres. These two were chosen from a wider field due to

their simple data structures and efficient intersection tests. Both surface representations

were derived from the cluster membership judgments output from CLUTO. Bounding

boxes were constructed by recording the minimum and maximum values along each axis

over all the members of a cluster. Bounding spheres were cons tructed by computing the

centroid of each cluster’s bounding box and constructing a radius length as half the length

of the line segment between the minimum and maximum corners of the associated

bounding box.

The separation of the bounding surfaces was computed to test the viability of

applicability of the two representations to the IR problem. It was discovered that the

40
bounding spheres overlapped each other extensively to the point that a ray intersecting

any one bounding sphere was likely to intersect them all. Investigation into this

phenomenon revealed that the document clusters were roughly pencil-shaped – extended

along rays radiating away from the origin. Bounding boxes, however, were found to

provide perfect separation of the clusters. This result for axis-aligned boxes was

unexpected. Natural language documents may be expected to cover a small set of topics;

the vectors representing such a varied collection would tend to be bounded best by an

oriented box. The choice of axis-aligned bounding boxes was motivated in part by the

expectation that the extreme points of the boxes surrounding similar but distinct clusters

would overlap and provide a mechanism for retrieving document records from a small

neighborhood of similar clusters. The specificity of documents in the MEDLINE

collection, however, causes the clusters to form around single index term axes instead of

around arbitrary rays. This turned out to be both a blessing and an impediment as will be

discussed in the next chapter.

A third cluster representation was designed around the signed distance field (SDF)

concept in which each point in a data set is represented by its displacement relative to a

convenient splitting plane. This improves on the bounding box and sphere

representations which represent their members with full-rank vectors. Further the SDF

stores most of the information needed to compute the similarity between a query vector

and members of the cluster; the distance of a document to the splitting plane is linearly

related to the similarity of the document vector and splitting plane (i.e. the ray containing

the nearest point on the splitting plane). However, construction of a SDF requires the

41
ability to find an appropriate splitting plane and although the properties of such a plane

are known for the IR problem – parallel with the centroid vector, perpendicular to the

most separating axis – the fulfillment of these requirements is non-trivial in K

dimensions. The idea of implementing cluster representations as a combination of

bounding surfaces and signed distance fields is exciting, but was set aside as a subject for

future work.

4.1.5 Query Service

Query service was designed from the start as a ray tracing engine adapted for

operation in high dimensional spaces. A “query tracer,” the name chosen for IR ray

tracers, was implemented for this stage of the pipeline to perform intersection testing

between rays derived from query vectors and the clusters constructed in earlier stages.

The query tracer: (1) searches the document clusters to find those that intersect (or

partially intersect) with the query ray; (2) ranks the data vectors in any intersected

clusters in order of their similarity to the query ray; and (3) ranks the non-intersected

clusters in order of their similarity to the query ray.

Once the design process of the cluster surface data structures was complete, the

adaptation of the ray tracer was actually trivial. Most of the operations required were

identical to traditional ray tracing requests; a query operation was added to make a

distinction between raw and processed intersection test results. A framework of interface

classes was designed to simplify implementation and extension of query tracers. Classes

implementing the IR pipeline were then composed atop this interface and the Boost uBlas

[46] linear algebra library. Because the Boost uBlas implementation is tuned for dense

42
matrix and vector operations, sparse versions of a few common operations such as vector-

matrix multiplication and matrix multiplication were implemented as well.

Operation of the query tracer is described below. The query tracer loads each

cluster of document vectors into a distinct and unique object in the search space. Each

cluster object contains a collection of its document vectors. When a query message is

received by a cluster, the query ray is tested against the boundaries of the enclosing

surface. If the ray intersects the surface boundaries, then a list of document similarities is

constructed and returned to the calling object. Cluster objects are contained by a scene

graph that determines the search order and which of the clusters will be searched at all.

The scene graph chosen for the current work imposes no order on the search and permits

searching of all clusters. In this work, document clustering alone is sufficient to provide

sub- linear search complexity in the number of documents. Other scene graph

implementations made possible by the query tracing framework classes facilitate further

reduction in search complexity, for example by implementing an R* tree over the

document clusters. Scene graphs are contained by scene objects that process query

results before passing them back to the user- level program. The IR scene graph imposes

limits on the number of results returned in response to a query and ensures that results are

returned in order of decreasing similarity. Variations on each of the objects described

above are facilitated by the query tracing interface classes discussed above.

The query tracer implemented in SCRIBE does not directly serve natural

language queries. The task of translating user queries into vectors in the semantic space

is accomplished by a sequence of programs that stem the queries, construct index term

43
occurrence vectors, and produce pseudo-documents from the query term vectors. The

decision to translate the queries offline was motivated by the need to reduce the memory

load of the query tracer. Since the current query tracer implementation still loads the full-

rank vector for each document into memory, the overhead of additionally loading the

translation matrices restricts the ability of the query tracer to locate accurate matches in a

reasonable amount of time. Both SCRIBE and the LSI system perform this offline query

translation, so the process has no impact on the performance results.

4.2 Implementation of the Latent Semantic Indexing System

Latent semantic indexing was implemented for comparison to the SCRIBE

system. This implementation was accomplished by configuring SCRIBE’s query tracer

to load each document vector into a distinct and unique object in the search space. The

query operations were slightly modified to treat the entire scene graph as a single cluster

in the query tracer. That is, SCRIBE only performs direct comparison of documents to the

query vector when the query intersects the documents’ enclosing surface, but LSI

compares every document to the query vector. This behavior was implemented in the

unordered scene graph class, thus causing a split of the LSI and query tracing source

trees. Future work will obviate this change either by refactoring the class hierarchy to

remove the distinction between clusters and document or by designing a scene graph

tailored specifically to LSI operations. This divergence in behavior, though accomplished

in a less than elegant fashion, is fundamental to the differences in the query tracing and

LSI methods that are under scrutiny in this work.

CHAPTER V

EXPERIMENTAL RESULTS AND ANALYSIS

This chapter discusses experiments designed to test the following hypothesis:

Latent semantic indexing is an effective information retrieval technique,

but search efficiency scales poorly and storage needs are unacceptable for

large data collections. Techniques derived from machine learning and

computer graphics can be applied to semantic indices to support more

efficient search while maintaining comparable retrieval performance.

The following sections detail the experimental protocol used to gather performance data

from both a Latent Semantic Indexing system and a SCRIBE system as described in

Chapter V, the data resulting from the experiment, and statistical analyses of the

performance data.

5.1 Data Sets

W.R. Hersh’s OHSUMED [30] document collection, queries, and relevance judgments

distributed by NIST in association with the TREC-9 filtering track were chosen as the

input for these experiments due to their availability and the author’s familiarity with their

data formats. OHSUMED includes sixty-three queries and associated relevance

judgments for training and test collections of MEDLINE abstracts spanning the years

44

4 5

1 9 8 7 a n d 1 9 8 8 -9 1 r es p e cti v el y. T h e tr ai ni n g c oll e cti o n c o nt ai ns 5 4, 7 1 0 d o c u m e nts. T h e

t est c oll e cti o n c o nt ai ns 2 9 3, 8 5 6 d o c u m e nts.

5. 2 M et ri cs f o r M e as u ri n g S u c c ess

T h e f oll o wi n g r etri e v al a n d p erf or m a n c e m etri cs w er e c oll e ct e d:

· R e c all

· Pr e ci si o n

· F -m e as ur e

· R u n ni n g ti m e

T h e m e as ur e m e nts of t h e pr ot ot y p e pi p eli n e w er e c o m p ar e d t o m e as ur e m e nts of t h e

a u th or’s L SI i m pl e m e nt ati o n o n t h e s a m e d at a s et. R e c all, pr e cisi o n, a n d f- m e as ur e f or

t h e pr ot ot y p e w er e e x p e ct e d t o b e si mil ar t o t h e m e as ur e m e nts f or L SI. R u n ni n g ti m e

w as e x p e ct e d t o b e l o w er f or S C RI B E t h a n L SI.

5. 3 E x p e ri m e nt al D esi g n

5. 3. 1 H y p ot h esis

A n e x p er i m e nt w as p erf or m e d t o c o m p ar e t h e p erf or m a n c e of S C RI B E wit h L SI.

T h e C P U ti m e, r e c all, pr e cisi o n, a n d f - m e as ur e m etri cs w er e c h os e n as i n di c at ors li k el y

t o pr o vi d e i nsi g ht i nt o t h e r el ati o ns hi ps b et w e e n t h e s yst e ms’ p erf or m a n c e c h ar a ct eristi cs.

T h e h y p ot h esis st at e d a b o v e i n cl u d es a n e x p e ct ati o n t h at S C RI B E will i m pr o v e u p o n t h e

effi ci e n c y of L SI w hil e m ai nt ai ni n g c o m p ar a bl e r etri e v al c a p a bilit y. Wit h r es p e ct t o t h e

i n di c at or m etri cs t his i m pli es t h at:

46
(i) Total CPU time of a SCRIBE query is less than the time for an LSI query

with the same parameters;

(ii) Recall, precision, and f-measures of a SCRIBE query are no worse than

for an LSI query with the same parameters.

5.3.2 Experimental Protocol

A protocol was designed to collect measurements of the performance metrics of a

SCRIBE system and compare these data to those collected from an identically configured

LSI system. Each experiment exercised both a SCRIBE and an LSI system over identical

document collections, queries and relevance judgments, indexing terms, and

dimensiona lities. The experiment was repeated with four document collections created

by randomly sampling 25% of the OHSUMED test collection. In each experiment,

measurements of the performance metrics were taken for each of the sixty-three queries

provided with the OHSUMED collection. The resulting four measurements for each

query were averaged across the four experiments (to reduce noise introduced by uneven

sampling of judged documents across the queries) yielding sixty-three data points per

metric.

5.4 Results

Measurements of the SCRIBE and LSI processes are listed in the Appendix. Two

listings are provided for each process corresponding to the average measurements of the

performance metrics over the four document collections sampled from the OHSUMED

collection. The results are organized into spreadsheets with columns reporting the timing

47
and retrieval statistics previously discussed. OHSUMED relevance judgments are

documents chosen by subject matter experts who searched the MEDLINE archive for

documents fulfilling the information need stated in each query. Because the OHSUMED

collection was randomly sampled to create the four test collections, the number of

available relevance judgments varies between experiments; however, each sampled

document collection contains ten relevance judgments per query on average. Because the

number of documents retrieved is independent of the number of relevance judgments,

running time is unaffected by the variance in the number of judged documents. The

performance metrics chosen for these experiments are sensitive to variations in the

number of judged documents; all three performance metrics are ratios of the number of

judged documents and some other feature. To account for variations in the performance

metrics due to sampling, measurements at each data point were averaged across the four

document collections. The averaged measurements are summarized in Figures 5.1 – 5.4.

48

Average CPU Time and Standard Error per

Q uery for Four Document C o llections

0

2

4

6

8

10

12

14

16

18

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Q uery Number

C
P
U
 T
im
e
 (
se
c.
)

L S I

S C R IB E

Figure 5.1 Running time summary

Average Recall and Standard Error per

Query for Four Document C o llections

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Query Number

R
e
c
a
ll

L SI

S C R IBE

Figure 5.2 Recall summary

Average F-measure and Standard Error per LSI

Query for Four Document C o llections S C R IB E

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F-
m
e
a
s
u
r
e

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Query Number

49

Average Precision and Standard Error per

Query for Four Docum e n t C o llections

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Query Number

P
r
e
c
is
io
n

L SI

S C R IB E

Figure 5.3 Precision summary

Figure 5.4 F-measure summary

5 0

5. 5 A n al ysis

T h e r es ults w er e a n al y z e d usi n g h y p ot h esis t esti n g b y st atisti c al m et h o ds.

I niti all y, t h e p o p ul ati o n m e a ns of e a c h m etri c w er e e x a mi n e d wit h a M a n n-W hit n e y r a n k

s u m t est. Aft er f ail ur e t o r ej e ct t h e n ull h y p ot h esis f or t hr e e of t h e m etri cs, t h e

c h ar a ct e risti cs of d at a s u p p orti n g t h e n ull h y p ot h esis w er e c o nsi d er e d. A p o w er a n al ysis

a n d a n A N O V A of m e a ns w er e p erf or m e d t o e x a mi n e t h e eff e cts of al g orit h m c h oi c e o n

r e c all, pr e ci si o n, a n d f- m e a s ur e. T hi s s e cti o n s u m m ari z e s t h e d et ail s of e a c h t e st a n d

pr e s e n ts a n i nt er pr et ati o n of t h e r es ults.

A M a n n -W hit n e y r a n k s u m t est [4 7] w as p erf or m e d f or e a c h m etri c t o t est t h e n ull

h y p ot h esis t h at t h e m e as ur e m e nts fr o m b ot h t h e L SI a n d S C RI B E s yst e ms w er e dr a w n

fr o m t h e s a m e p o p ul ati o n. Pr o b a bilit y t a bl es f or t h e M a n n-W hit n e y U st atisti c ar e n ot

c al c ul at e d f or s a m pl e si z es gr e at er t h a n t w e nt y-fi v e. I nst e a d, z-s c or es ar e c al c ul at e d fr o m

t h e U st atisti c a n d a p pr o xi m ati o ns fr o m t h e n or m al distri b uti o n ar e us e d i nst e a d.

H err nst ei n’s ρ st atisti c [4 7] w a s c al c ul at e d a s w ell. ρ is a n eff e ct si z e m e as ur e

r e pr e s e nti n g t h e a m o u nt of o v erl a p b et w e e n t w o s a m pli n g distri b uti o ns. ρ r a n g es fr o m

0. 0 t o 1. 0 wit h 0. 5 i n di c ati n g c o m pl et e o v erl a p a n d t h e e xtr e m es i n di c ati n g n o o v erl a p. ρ

U
is d eri v e d fr o m t h e M a n n-W hit n e y st atisti c as w h er e U is t h e M a n n-W hit n e y

n 1 * n 2

st atisti c a n d n1 a n d n2 ar e t h e n u m b er of s a m pl es i n t h e t w o gr o u ps.

C P U ti m e p o p ul ati o ns f or t h e t w o al g orit h ms w er e f o u n d t o b e t ot all y disj oi nt

wit h a r st atisti c gr e at er t h a n 0. 9 9 a n d a z-s c or e (z = 9. 2 0) i n di c ati n g a pr o b a bilit y l ess

t h a n 0. 0 0 1 t h at t h e t w o s ets of m e as ur e m e nts w er e dr a w n fr o m t h e s a m e p o p ul ati o n. T his

5 1

fi n di n g is c o nsist e nt wit h Fi g ur e 6. 1. T h er ef or e, t h e n ull h y p ot h esis is r ej e ct e d f or C P U

ti m e i n f a v or of t h e alt er n ati v e h y p ot h esis: S C RI B E a n d L SI e x hi bit si g nifi c a ntl y

diff e re nt r u n ni n g ti m es d uri n g q u er y s er vi c e. M or e o v er, S C RI B E e x hi bits si g nifi c a ntl y

l o w er r u n ni n g ti m es t h a n L SI. O n a v er a g e S C RI B E r et ur ns q u er y r es ults 8. 6 s e c o n ds

f ast er t h a n L SI. T his is a v er y l ar g e eff e ct si z e – a p pr o xi m at el y t hirt y- f o ur st a n d ar d

d e vi a ti o ns (d @ 3 4) .

N o e vi d e n c e w a s f o u n d t o i n di c at e r ej e cti o n of H 0 wit h r es p e ct t o t h e r e c all,

pr e c isi o n, a n d f- m e as ur e st atisti cs. Z -s c or es f or t h es e t ests (z = 1. 2 9 ..1. 5 7) i n di c ate d

pr o b a bil iti es b et w e e n 0. 0 7 -0. 1 5 t h at t h e m e as ur e m e nts w er e dr a w n fr o m t h e s a m e

p o p ul ati o n. T h e r st atisti cs f or t h es e t hr e e m etri cs r a n g e d fr o m 0. 5 7 0-0. 5 8 5 i n di c ati n g

t h at t h e L SI a n d S C RI B E p o p ul ati o ns ar e si mil ar f or e a c h m etri c. It w as d e ci d e d t h at a n

a n al ysis of v ar ia n c e (A N O V A) s h o ul d b e p erf or m e d t o f urt h er e x pl or e t h e d at a.

A n a p ri o ri p o w er a n al ysis of t h e o n e-w a y A N O V A of m e a ns w as p erf or m e d t o

pr e di ct t h e s a m pl e si z e n e e d e d t o a c hi e v e a st atisti c al p o w er l e v el of 0. 8 f or s e v er al eff e ct

si z es. T h e st atisti c al p o w er is d eri v e d as 1 - β w h er e β i s t h e pr o b a bilit y of c o m mitti n g a

T y p e II err o r – f aili n g t o r ej e ct a f als e H0 . M. Fri e n dl y’s f p o w e r S A S m a cr o [2 5] w as

us e d t o c al c ul at e a pri ori p o w er l e v els f or s e v er al eff e ct si z es (i n t er ms of st a n d ar d

d e vi ati o ns) o v er a r a n g e of s a m pl e si z es i n cl u di n g t h e n u m b er of d at a p o i nts i n t h e

c urr e nt e x p eri m e nt. It w as d et er mi n e d t h at wit h si xt y -t hr e e s a m pl es eff e cts of at l e ast 0. 5

st a n d ar d d e vi ati o ns c a n b e d et e ct e d wit h 8 0 % p o w er a n d eff e cts of at l e ast 0. 8 st a n d ar d

d e vi ati o ns wit h 9 9 % p o w er. T h at is, t h e s a m pl e si z e of t h e c ur r e nt e x p eri m e nt (N = 6 3) is

s uffi ci e ntl y l ar g e t o pr o vi d e a n 8 0 % li k eli h o o d of r ej e cti n g a n y f als e n ull h y p ot h esis wit h

https://0.07-0.15

5 2

a n eff e ct si z e of 0. 5 st a n d ar d d e vi ati o ns or l ar g er (d ³ 0. 5). As t h e eff e ct si z e i n cr e as es,

t h e pr ob a bilit y of a c c e pti n g a f als e H 0 d e cr e as es. Pl a ci n g stri ct b o u n ds o n st atisti c al

p o w er all o ws us t o a c c e pt H 0 w h e n P (X | H 0) > 0. 5 at t h e a = 0. 5 l e v el wit h a r e as o n a bl e

d e gr e e of a ss ur a n c e t h at H0 i s a ct u all y tr u e. It w a s d e ci d e d t h at a n eff e ct si z e of 0. 5

st a n d ar d d e via ti o ns r e pr es e nt e d t h e s m all est eff e ct li k el y t o b e si g nifi c a nt. E x a mi n ati o n

of t h e d at a fr o m t his e x p eri m e nt r e v e als t h at a c h a n g e of 0. 5 st a n d ar d d e vi ati o n s i s

e q ui v al e nt t o a d di n g o n e r el e v a nt d o c u m e nt i n t e n, o n a v er a g e, t o t h e r a w r e c all

m e a s ur e m e nts fr o m eit h er al g orit h m or o n e d o c u m e nt i n a t h o us a n d t o t h e pr e cisi o n

s c or es of eit h er al g orit h m. W e ass u m e t h at s u c h a s m all diff er e n c e i n p erf or m a n c e is

b ar el y si g nif ic a nt. Wit h t his i n mi n d, w e fi x p o w er at 8 0 % a n d pr o c e e d t o a n al y z e t h e

A N O V A.

A o n e -w a y A N O V A r el ati n g t h e a v er a g e m e as ur e m e nts of e a c h m etri c t o

al g o rit h m c h oi c e w as p erf or m e d o v er all t h e d at a p oi nts (N = 6 3). A s di s c u s s e d a b o v e, t h e

e x p eri m e nt w as p o w erf ul e n o u g h t o d et e ct a f als e H0 8 0 % of t h e ti m e (N = 6 3, d = 0. 5,

p o w er = 8 0 %). B et w e e n gr o u ps F t ests r el ati n g p erf or m a n c e m etri cs t o al g orit h m c h oi c e

ar e s u m m ari z e d i n T a bl e 6. 1. N o si g nifi c a nt diff er e n c e w as o bs er v e d b et w e e n al g orit h ms

f or r e c all, pr e ci si o n, or f- m e as ur e at t h e α = 0. 0 5 l e v el, a n d w e c a n b o u n d a n y p ossi bl e

e ff e ct at d £ 0. 5 st a n d ar d d e vi ati o ns (e. g., l ess t h a n ± 1 d o c u m e nt o ut of 1 0 0 0 f or r e c all)

f or α = 0. 0 5, N = 6 3, a n d p o w er = 0. 8 0 .

https://power=0.80

5 3

T a bl e 5. 1 S u m m ar y of A N O V A of m e a ns r el ati n g m etri cs t o al g or it h ms.

A N O V A of M etri cs B et w e e n Al g orit h m Gr o u ps
(N = 6 3, α = 0. 0 5, p o w er = 0. 8)

F(1, 1 2 4) P(X| H 0) d b o u n d e d d o b s er v e d
R e c all 2. 5 4 3 . 1 1 3 0. 5 0 0. 2 8

Pr e ci si o n . 9 3 1 . 3 3 6 0. 5 0 0. 1 7

F _ m e a s ur e . 9 4 9 . 3 3 2 0. 5 0 0. 1 7

I n s u m m ar y, S C RI B E a n d L SI w er e f o u n d t o e x hi bit si g nifi c a ntl y diff er e nt

r un ni n g ti m es u n d er t h e M a n n -W hit n e y r a n k s u m t est. S p e cifi c all y, S C RI B E’s a v er a g e

r un ni n g ti m e w as f o u n d t o b e a n or d er of m a g nit u d e l o w er t h a n a v er a g e ti m es f or L SI. A n

A N O V A p o w er a n al ysis b o u n d e d a n y p ossi bl e eff e ct si z e f or r e c all, pr e ci si o n, a n d f-

m e as ur e t o d £ 0. 5 st a n d ar d d e vi ati o ns wit h p o w er = 8 0 %, N = 6 3, α = 0. 0 5, a n d w e

d et e rmi n e t h at d £ 0. 5 st a n d ar d d e vi ati o ns is t o o s m all of a n eff e ct t o m e a ni n gf ull y f a v or

o n e al g orit h m o v er a n ot h er. O n t h e str e n gt h of t h at e vi d e n c e, w e a c c e pt e d t h at S C RI B E

a n d L SI e x hi bit t h e s a m e r etri e v al p erf or m a n c e.

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the findings that SCRIBE improves upon LSI’s running

time by a factor of ten without impacting retrieval performance. Directions of future

research are discussed. Two SCRIBE enhancements are outlined: parameterization of

clusters’ overlapping regions and reduction of the memory required to store a SCRIBE

index. Human computer interface topics discussed include semantic cluster labeling and

visualization of query results.

6.1 Summary of Results

SCRIBE is an information retrieval system based on an algebraic vector model of

information retrieval similar to Latent Semantic Indexing. SCRIBE enhances the

algebraic vector model of IR with clustering techniques borrowed from machine learning.

SCRIBE packages its semantic index into efficiently searchable computer graphics data

structures adapted for high-dimensional duty. While designing SCRIBE, a generic

information retrieval framework emerged. This framework abstracts the fundamental

stages of information retrieval so that a complete SCRIBE system can be constructed

from pluggable modules. In the course of this research, both LSI and SCRIBE have been

implemented as modules in this IR framework.

54

55
Experiments performed during this research show that SCRIBE and LSI perform

equally well with respect to three important IR metrics. Statistical hypothesis testing

over the ANOVA F statistic indicates that SCRIBE and LSI perform equally well with

respect to the recall, precision, and f-measure metrics. Both algorithms exhibit similar

levels of recall; they find the same number of relevant documents in response to a user’s

request. Likewise, SCRIBE’s and LSI’s responses are similarly precise; the algorithms

are equally robust against noise. The f-measure statistic – derived from recall and

precision – also demonstrates identical behavior for SCRIBE and LSI. The only

significantly different performance measure between the two algorithms is running time.

Hypothesis testing over the Mann-Whitney U statistic indicates that SCRIBE responds to

queries more than ten times faster than LSI. This improvement is bought at the cost of a

longer index creation process, but the overhead of clustering and surface building is

negligible compared to the runtime savings during query service.

6.2 Contributions

In this research we developed SCRIBE, an IR application demonstrating a

clustering method for organizing and searching large document collections. SCRIBE

includes a generic framework for developing new information retrieval systems.

SCRIBE’s search algorithm, based on ray tracing, provides time-efficient fulfillment of

users’ information needs. Finally, SCRIBE’s data structures will facilitate visualization

and exploration of large document collections.

56
6.3 Future Research

Three proposed aspects of the SCRIBE system were not implemented in the

current work: storage charge reduction, visualization, and labeling. Work on these

components is ongoing and is discussed in the following sections. A need to

parameterize cluster overlap regions was discovered during implementation and testing of

SCRIBE and is also a topic of continuing research.

6.3.1 Cluster Overlap Parameterization

Axis-aligned bounding boxes (AABBs) were chosen as the surface representation

of SCRIBE clusters in part because they do not tightly approximate the shape of

arbitrarily aligned document clusters. Figure 7.1 shows a group of document clusters

indexed by the terms computer and art. The portion of each cluster near the origin of the

coordinate system represents documents in which the index terms appear with relatively

low frequency. Foltz [23] describes documents in this region as relatively general in

scope – containing many index terms, but not using any of them more frequently than the

others. Note that the low-frequency extremities of the AABBs of the clusters overlap

such that a query vector intersecting at least one of the clusters has a high probability of

intersecting several of them. This configuration is typical of the clusters that were

thought to exist in the OHSUMED collection prior to the experiments previously

described. Figure 7.2 shows the configuration that is now thought to be more typical of

the clusters in the OHSUMED collection. Because the clusters tend not to overlap,

SCRIBE sometimes ignores relevant documents because the enclosing cluster just barely

fails to intersect with the query vector.

57

Figure 6.1 Expected cluster topology Figure 6.2 Actual cluster topology

We have considered several potential solutions to the near miss problem involving

parameterization of the cluster intersection test. Clusters may be instructed to detect

intersection with queries passing through a region near the boundary surface, effectively

expanding or shrinking their volume in all directions. Conversely, the return value of the

intersection test – a Boolean in the current implementation – may take on a value from a

range of levels to indicate degrees of similarity with a cluster. In this case, a cutoff

parameter supplied at run time would determine the similarity at which clusters intersect

with query vectors. Additional research of this topic will include a study of the makeup

of document collections in which this sort of parameterization is really needed. For

example, we do not expect that the texts of a public library wo uld contain as few low-

frequency entries as the OHSUMED collection. The ability to adjust for cluster density

variations will become important as novel data types become the focus of IR research.

6.3.2 Storage Charge Reduction Using Signed Distance Fields

The current implementations of SCRIBE and LSI operate on exactly the same

data and load the same amount of data into memory at run time. Our proposal to reduce

58
the memory requirements was founded on an expectation of adapting Signed Distance

Fields (SDF) to high-dimensional spaces. We have since learned that those assumptions

were quite naïve.

To construct a SDF from a SCRIBE cluster, the normal vector of a splitting plane

is calculated at the center of the cluster and perpendicular to the axis along which the

document members vary most. In three dimensions the splitting plane normal is found

using the cross-product operator on two convenient vectors. Unfortunately, the cross-

product is not defined for vectors of arbitrarily high dimension. However, an equivalent

of the cross-product can be found in k dimensions when k-1 basis vectors are known.

The subject of this research involves formalizing a method for choosing basis vectors that

approximate the splitting plate of a k-dimensional cluster.

6.3.3 Cluster Labeling

Cluster labeling is a key requirement for integration of SCRIBE into a machine

learning system, and also for construction of user interfaces atop SCRIBE. Without

labels, the contents of SCRIBE clusters cannot be automatically recognized by a machine

learning algorithm. Likewise, users must be presented with a summary of a cluster’s

contents if SCRIBE is to be made into a useful IR system. Unsupervised cluster labeling

algorithms suitable to this task have begun appearing in the literature over the past few

years. Future research will explore the feasibility of adapting these algorithms into

SCRIBE modules. Cluster labeling will enable the incorporation of relevance feedback

mechanisms into SCRIBE.

59
6.3.4 Visualization

Visualization of the SCRIBE clusters was not a primary goal of this research.

Since SCRIBE’s data structures and search algorithms were adapted from ray tracing,

though, partial visualization support has already been integrated into the SCRIBE query

engine. Future work in visualization of que ry results and the SCRIBE index depends

upon the availability of some cluster labeling support. As a side effect of SCRIBE’s

principle component analysis the dimensions of document vectors are ordered so that

picking the first k elements of all document vectors produces the maximally visible, k-

dimensional projection of the vector space. Visualization in two or three dimensions is

essentially built in to SCRIBE by default. Two additional items must be added to fully

enable visualization of SCRIBE’s clusters. First, the cluster intersection tests must be

specialized to operate on query vectors with any dimensionality less than or equal to the

dimensionality of the index. Second, a representation of material properties must be

added to SCRIBE’s document and cluster objects. A rudimentary material properties

class was built into the SCRIBE’s Object base class. Operations on the material

properties have not yet been exercised on the objects returned in SCRIBE’s query

responses.

Future research will involve testing the existing visualization mechanisms in

SCRIBE and adding new capabilities as necessary. Construction of an IR tool is a logical

next stage of development. User studies comparing SCRIBE-based visualizations to

existing IR tools will be performed in this phase of development.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK
Users' Guide, 3 ed. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 1999.

[2] R. K. Ando, "Latent Semantic Space: Iterative Scaling Improves Precision of
Inter-document Similarity Measurement," presented at 23rd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
Athens, Greece, 2000.

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, 1 ed:
Addison-Wesley, 1999.

[4] M. W. Berry, "Large Scale Singular Value Computations," International Journal
of Supercomputer Applications, vol. 6, pp. 13-49, 1992.

[5] P. E. Black, "BSP-tree," in Dictionary of Algorithms and Data Structures, 2005.

[6] P. E. Black, "k-d tree," in Dictionary of Algorithms and Data Structures, 2005.

[7] A. Borodin, R. Ostrovsky, and Y. Rabani, "Subquadratic Approximation
Algorithms for Clustering Problems in High Dimensional Spaces," presented at
Thirty-first Annual ACM Symposium on Theory of Computing, Atlanta, GA,
1999.

[8] A. Broder, S. Glassman, M. Manasse, and G. Zweig, "Syntactic Clustering of the
Web," presented at Sixth International World Wide Web Conference, Santa Clara,
California, 1997.

[9] C. Chen, N. Stoffel, M. Post, C. Basu, D. Bassu, and C. Behrens, "Telcordia LSI
Engine: Implementation and Scalability Issues," presented at 11th International
Workshop on Research Issues in Data Engineering: Document Management for
Data Intensive Business and Scientific Applications, Hiedelberg, Germany, 2001.

[10] M. W. Davis and P. W. Foltz, "Learning Via Compact Data Representation," 1998.

60

61
[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,

"Indexing by Latent Semantic Analysis," Journal of the Society for Information
Science, vol. 41, pp. 391-407, 1990.

[12] S. T. Dumais, "Enhancing Performance in Latent Semantic Indexing Retrieval,"
Behavior Research Methods, Instruments and Computers, vol. 23, pp. 229-236,
1991.

[13] S. T. Dumais, "LSI meets TREC: A Status Report," presented at The First Text
REtrieval Conference (TREC1), Gaithersburg, MD, 1993.

[14] S. T. Dumais, "Latent Semantic Indexing (LSI) and TREC-2," presented at The
Second Text REtrieval Conference (TREC2), Gaithersburg, MD, 1994.

[15] S. T. Dumais, "Using Linear Algebra for Information Retrieval," SIAM Review:
Society for Industrial and Applied Mathematics, vol. 37, pp. 573-595, 1995.

[16] S. T. Dumais, "Using LSI for Information Filtering: TREC-3 Experiments,"
presented at The Third Text REtrieval Conference (TREC3), Gaithersburg, MD,
1995.

[17] S. T. Dumais, G. W. Furnas, T. K. Landauer, and S. Deerwester, "Using Latent
Semantic Indexing to Improve Information Retrieval," presented at Proceedings
of CHI'88: Conference on Human Factors in Computing, New York, 1988.

[18] G. Farin, "A History of Curves and Surfaces in CAGD," in Handbook of
Computer Aided Geometric Design, G. Farin, J. Hoschek, and M.-S. Kim, Eds.,
5th ed. North Holland: Elsvier, 2002.

[19] P. W. Foltz, "Comprehension, Coherence and Strategies in Hypertext and Linear
Text," in Hypertext and Cognition, J.-F. Rouet, J. J. Levonen, A. P. Dillon, and R.
J. Spiro, Eds. Hillsdale, NJ: Lawrence Erlbaum Associates, 1996.

[20] P. W. Foltz, "Latent Semantic Analysis for Text-Based Research," Behavior
Research Methods, Instruments and Computers, vol. 28, pp. 197-202, 1996.

[21] P. W. Foltz, M. A. Britt, and C. A. Perfetti, "Reasoning from Multiple Texts: An
Automatic Analysis of Readers' Situation Models," presented at 18th Annual
Cognitive Science Conference, Lawrence Erlbaum, NJ, 1996.

[22] P. W. Foltz and S. T. Dumais, "Personalized Information Delivery: An Analysis of
Information Filtering Methods," Communications of the ACM, vol. 35, pp. 51-60,
1992.

62
[23] P. W. Foltz, W. Kintsch, and T. K. Landauer, "The Measurement of Textual

Coherence with Latent Semantic Analysis," Discourse Processes, vol. 25, pp.
285-307, 1998.

[24] A. R. Forrest, "Interactive Interpolation and Approximation by Bezier
Polynomials," The Computer Journal, vol. 15, pp. 71-79, 1972.

[25] M. Friendly, "fpower: Power computations for ANOVA designs," 1.2 ed, 1995.

[26] I. Gath and A. B. Gev, "Unsupervised Optimal Fuzzy Clustering," IEEE
Transactions on Pattern Analysis and Machine Learning, vol. 11, pp. 773-780,
1989.

[27] S. Guha, R. Rastogi, and K. Shim, "CURE: An Efficient Clustering Algorithm for
Large Databases," presented at 1998 SIGMOD International Conference on
Management of Data, Seattle, WA, 1998.

[28] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, 1 ed. Cambridge,
MA: MIT Press, 2001.

[29] D. Hearn and M. P. Baker, Computer Graphics with OpenGL, 3rd ed. Upper
Saddle River, NJ: Pearson Prentice Hall, 2004.

[30] W. R. Hersh, C. Buckley, T. J. Leone, and D. H. Hickam, "OHSUMED: An
interactive retrieval evaluation and new large test collection for research,"
presented at 17th Annual ACM SIGIR Conference, 1994.

[31] G. Karypis, "CLUTO: A Clustering Toolkit," 2.1.1 ed. Minneapolis, MN:
University of Minnesota, 2003, pp. A collection of tools for clustering low- and
high-dimensional data.

[32] G. Karypis, E.-H. S. Han, and V. Kumar, "Chameleon: Hierarchical Clustering
Using Dynamic Modeling," Computer, vol. 32, pp. 68-75, 1999.

[33] T. Kohonen, Self-Organizing Maps, vol. 30, 3 ed. New York, NY: Springer, 2001.

[34] T. G. Kolda and D. P. O'Leary, "Computation and Uses of the Semidiscrete Matrix
Decomposition," University of Maryland, April, 1999.

[35] D. Koller and M. Sahami, "Hierarchically Classifying Documents Using Very
Few Words," presented at 14th International Conference on Machine Learning,
1997.

[36] T. K. Landauer, P. W. Foltz, and D. Laham, "An Introduction to Latent Semant ic
Analysis," Discourse Processes, vol. 25, pp. 259-284, 1998.

63
[37] T. K. Landauer, D. Laham, and P. W. Foltz, "Learning Human-like Knowledge by

Singular Value Decomposition: A Progress Report," Advances in Neural
Information Processing Systems, vol. 10, pp. 45-51, 1998.

[38] A. McCallum, K. Nigam, and L. H. Ungar, "Efficient Clustering of High-
dimensional Data Sets with Application to Reference Matching," presented at
Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Boston, MA, 2000.

[39] M. Porter, "Porter Stemming Algorithm," 1 ed: tartus.org, 2006.

[40] D. Rohde, "SVDLIBC," 1.34 ed. Boston, MA: TedLab, Massachusettes Institue of
Technology, 2005.

[41] G. Salton and C. Buckley, "SMART version 11 English stopword list," 11 ed:
Cornell University, 1999.

[42] P. Shirley, Fundamentals of Computer Graphics, 1 ed. Natick, MA: A. K. Peters,
2002.

[43] N. Slonim and N. Tishby, "Document clustering using word clusters via the
information bottleneck method," presented at 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
Athens, Greece, 2000.

[44] C. J. van Rijsbergen, Information Retrieval, 2nd ed. Glasgow, Scotland:
University of Glasgow, 1979.

[45] K. Versprille, "Computer Aided Design Applications of the Rational B-spline
Approximation Form." Syracuse, NY: Syracuse University, 1975.

[46] J. Walter and M. Koch, "uBLAS: Boost C++ Libraries Basic Linear Algebra
System," Boost 1.33.0 ed: Boost.org, 2002.

[47] Wikipedia, "Mann-Whitney U," vol. 2006: Wikipedia.org, 2006.

[48] P. Willett, "Recent Trends in Hierarchic Document Clustering: a Critical Review,"
Information Processing and Management: an International Journal, vol. 24, pp.
577-597, 1988.

[49] M. B. Wolfe, M. E. Schreiner, B. Rehder, D. Laham, P. W. Foltz, W. Kintsch, and
T. K. Landauer, "Learning from Text: Matching Readers with Texts by Latent
Semantic Analysis," Discourse Processes, vol. 25, pp. 309-336, 1998.

https://Wikipedia.org
https://Boost.org
https://tartus.org

APPENDIX A

CLUSTER PARAMETER SEARCH JOURNAL

64

65
APPENDIX A

CLUSTER PARAMETER SEARCH JOURNAL

Notes on the Development of Document Vector Clustering Parameters

I searched for a clustering solution that met these needs:

1) Maximize the internal similarity of each cluster's members;

2) Minimize the number of clusters;

3) Minimize the running time of the clustering algorithm.

These requirements were prioritized in the order they are listed above. My search

strategy relied upon three metrics - each related to the corresponding requirement listed

above:

1) Average similarity - the ratio of the total internal similarity of all clusters

divided by the number of clusters in the solution.

2) Number of clusters.

3) Running time of algorithm.

I must note that my evaluations were informal and I did not retain my measurements once

I was satisfied with my parameter set. I could probably regenerate the data upon which I

based my decision if necessary.

I began by choosing a few algorithms that were likely to yield meaningful

document clustering solutions as indicated by previous work in the field of research

(mostly gleaned from the CLUTO documentation and companion publications). I chose

to examine the speed of these algorithms first:

••Graph partitioning,

66
••Graph partitioning followed by agglomerative,

••Direct k-means (incremental learning of N cluster parameters),

••Bisecting k-means,

••Bisecting k-means followed by agglomerative.

I instructed the clustering program to produce 1000-way clustering solutions for

each of the above methods over the ohsu.87 MEDLINE data set. Graph partitioning and

direct k-means methods ran for prohibitively long times and were eliminated from

consideration. Bisecting k-means with and without agglomeration both ran in an

acceptable time frame.

I next compared the average similarity of 400-way solutions from bisecting k-

means with and without agglomeration (for agglomeration the bisection was carried to

1000 partitions which were then re-merged). The agglomerated solution tended to

improve the average similarity over a variety of tangential parameter sets including

agglomerative criterion function and bisection criterion function. Thus, I chose to

optimize the number of clusters only for bisecting k-means with agglomeration.

I generated bisecting k-means with agglomerations solutions described by the

ordered pair (300, 1000), (400, 1000), (600, 1000), (1000, 2000), and (1000, 5000) where

the first number is the size of the agglomeration solution and the second number is the

size of the bisecting k-means solution. For each of these solutions the agglomerative

criterion function was UPGMA and the bisection criterion function was I2 as described in

Karypis, 2003. The pair (400, 1000) was found to maximize the average similarity

67
among the selected tuples. No further minimization of the number of clusters was

attempted.

At this point I had obtained a parameter set {bisecting k-means with

agglomeration, (400, 1000)} which described a clustering strategy that optimized the

metrics previously chosen as guides to a preferred solution. Intermediate results were

deleted to avoid accidental corruption of experimental data. All four data sets were

clustered according to the new parameter set.

A Note About the Clustering Solutions

Each of the four clustering solutions contains a "junk" cluster that appears to

contain most or all of the outliers from the document collection. These outlying points

are given a very low internal similarity score in terms of the correlation coefficient metric

that was used during clustering. However, they have a markedly consistent structure.

Form a dense cloud within or very near the unit sphere surrounding the origin of the

semantic coordinate system. This positioning indicates the presence of a group of

documents that contained so few distinctive indexing terms that they were marginalized

during the singular value decomposition. One semantic interpretation of this position is

that the documents contained little or no information. Another interpretation is that each

of the documents is so unique that no other documents in the collection share with it any

semantic relationship. It is expected that the documents in these "junk" clusters represent

a mixture of the two situations. In either case, our ability to address the semantic content

of the members of these clusters was lost during the knowledge inference step. A

68
possible solution to this loss of information is the inclusion of metadata such as the

MESH indexing terms in the indexed text of each document.

APPENDIX B

EXPERIMENTAL PROCEDURE

69

70
APPENDIX B

EXPERIMENTAL PROCEDURE

The following steps should be performed in a Cygwin environment.
The exp_tools/ directory should be in the PATH.

1. Use "ohsustrip" from "ohsu_strip.cpp" to produce reduced ohsumed.xx files.
Reduced files only include the pertinent fields - .I, .U, .W - from the original
document collection.
Reduced files are about 30% smaller than the originals.
$ ohsustrip ohsumed.xx ohsumed_r.xx

Optional: Sample a percentage of the document collection instead of the whole
collection.
This is useful when the collection is too large to be addressed as a contiguous term
document matrix in main memory. The svd program will emit an error when the
collection is too large.
$ ohsustrip ohsumed.xx ohsumed_rNN.xx 0.NN

NN is the sample rate.

2. Use "stem" from C++ port of Porter's algorithm to produce stemmed document
collection.
Stemmed files are uniformly lowercase and include stemmed abstracts only.
Stemmed files are marginally <5% smaller than the reduced files.
$ stem ohsumed_r.xx >ohsumed_rs.xx

3. Delete the intermediate oshumed_r.xx file. It is no longer needed and is very large.
$ rm ohsumed_r.xx

3. Use "stem" to produce a stemmed stop list from SMART's "englishST.txt" list.
$ stem englishST.txt >englishST_s.txt

4. Use "vectorizer" with the stemmed stop list to produce a term document matrix from
the reduced and stemmed ohsumed.xx collection. (Running vectorizer with no
arguments will produce a usage guide.)
$ vectorizer ohsumed_rs.xx englishST_s.txt

5. Use "svd" to convert tdm.sparse from a sparse text to a sparse binary file.
Sparse binary files are about 50% smaller than sparse text files.
$ svd -r st -w sb -c tdm.sparse tdm.sparse.bin

6. Delete the tdm.sparse text file. The sparse binary file is a one-to-one equivalent but
takes half the space to store and runs through the SVD process more quickly.

https://ohsumed_rs.xx
https://ohsumed.xx
https://ohsumed_r.xx
https://oshumed_r.xx
https://ohsumed_rs.xx
https://ohsumed_r.xx
https://ohsumed_rNN.xx
https://ohsumed.xx
https://ohsumed_r.xx
https://ohsumed.xx
https://ohsumed.xx

71
7. Rename tdm.sparse.bin resulting from svd to something informative.

$ mv tdm.sparse.bin ohsu_88-91_rst.tdm.sparse.bin

8. Save TDM file, row_template.txt, and doc_id_records.txt together in a separate
directory.
$ mv doc_id_records.txt tdm_files/
$ mv row_template.txt tdm_files/
$ mv ohsu_88-91_rst.tdm.sparse.bin tdm_files/

Optional: Compress the tdm file with gzip
$ gzip --best ohsu_88-91_rst.tdm.sparse.bin

9. Use "svd" to produce the decomposition of the ohsu term document matrix. svd can
produce the subset of the decomposition corresponding to just the N greatest
eigenvalue triples by specifying N to the -d option. Get the 300-dimensional
approximation of the TDM in dense binary format matrix files
$ svd -d 300 -o svd_files/ -r sb -w db -v 2 tdm_files/ohsu_88-91_rst.tdm.sparse.bin.gz

10. Compress the matrix files in svd_files/ for storage.
$ tar czvf ohsu_88-91_rst.svd.tgz svd_files/*
$ mv ohsu_88-91_rst.svd.tgz svd_files/

11. Use "right_singular_scale" to find the product of S * Vt and transpose the result into
the format expected by CLUTO.
$ cd svd_files
$ right_singular_scale -S -Vt V_scaled.txt

Optional: compress the V_scaled.txt file. This is recommended. Decompress the file for
use with CLUTO, but normally keep it compressed.
$ gzip --best V_scaled.txt

12. Copy the uncompressed document vector matrix and document ID files to the
cluster_files directory
$ cp svd_files/V_scaled.txt cluster_files/V_scaled.mat
$ cp tdm_files/doc_id_records.txt cluster_files/doc_id_records.rlabel

13. Use "vcluster" from the CLUTO package to perform repeated bisecting k-means
clustering to 1000 clusters followed by agglomerative clustering of the k-means
solution to 600 clusters. Use correlation coefficients to measure document vector
similarity. Choose the 'best' dimension along which to partition k-means clusters.
Use the UPGMA criterion function for agglomerative clustering. Do not scale the
rows or columns. Prune the columns to account for 90% of the similarity between
documents (improves running time without negatively impacting clustering solution).
Save output to vcluster.txt.

https://tdm_files/ohsu_88-91_rst.tdm.sparse.bin.gz

72
$ cd cluster_files/
$ ~/exp_tools/cluto-2.1.1/Win32/vcluster -clmethod=rb -sim=corr \

-agglocrfun=upgma -agglofrom=1000 -cstype=best \
-rowmodel=none -colmodel=none -colprune=0.9 \
-clustfile=V_scaled.mat.clustering.rb.1000.agglo.600 \
-rlabelfile=doc_id_records.rlabel -zscores V_scaled.mat 600 >vcluster.txt

14. Use "organize_clusters" to produce the extracted clusters from the document
collection. Save the output to organized_clusters.txt.
$ ~/exp_tools/organize_clusters.exe V_scaled.mat doc_id_records.rlabel \

V_scaled.mat.clustering.rb.1000.agglo.600 600 organized_clusters.txt

15. Use "build_surfaces" to produce bounding boxes and bounding spheres that enclose
the members of each of the organized clusters. Save the output to
bounding_boxes.txt and bounding_spheres.txt respectively.
$ ~/exp_tools/build_surfaces.exe organized_clusters.txt 600 300 bounding_boxes.txt

bounding_spheres.txt

16. Use "stem" and a text editor to stem the query input file, "query.ohsu.1-63". Save the
output to query_stemmed.ohsu.1-63.
$ ~/exp_tools/stem.exe query.ohsu.1-63 >> query_stemmed.ohsu.1-63
(Use text editor to repair XML tags, "Number:" tags, OHSU query identifiers, and
"Description:" tags.)

17. Use "scale_queries" to produce query pseudo-documents from the stemmed query
records. Save the output to query_vectors.txt.
$ ~/exp_tools /scale_queries.exe query_stemmed.ohsu.1-63 svd_files/-Ut svd_files/-S

tdm_files/row_template.txt query_vectors.txt

18. Use "querytracer" to produce a list of document IDs for documents that match the
queries in query_vectors.txt. Save the output to query_matches_timing.txt
$ querytracer.exe cluster_files/organized_clusters.txt \

cluster_files/bounding_boxes.txt query_vectors.txt \
600 300 >> results/query_matches_timing.txt

19. Use "lsitracer" to produce a list of document IDs for documents that match the
queries in query_vectors.txt. Save the output to lsi_query_matches_timing.txt
$ lsitracer.exe cluster_files/organized_clusters.txt cluster_files/bounding_boxes.txt \

query_vectors.txt 600 300 >> results/lsi_query_matches_timing.txt

20. Use "align_qrels" to extract the query relevance records for only the documents in
each experimental collection from among the records for the entire TREC OHSU
corpus.
$ align_qrels.exe qrels.ohsu.88-91 tdm_files/doc_id_records.txt \

73
>results/qrels.ohsu.88-91.aligned.txt

21. Use "analyze_results" to report recall, precision, f-measure, and cpu-time metrics for
LSI and querytracer results.
$ cd results
$ analyze_results.exe query_matches_timing.txt qrels.ohsu.88-91.aligned.txt \

>qt_results.txt
$ analyze_results.exe lsi_query_matches_timing.txt qrels.ohsu.88-91.aligned.txt \

> lsi_results.txt

APPENDIX C

RESULTS – AVERAGE MEASUREMENTS

74

75
APPENDIX C

RESULTS – AVERAGE MEASUREMENTS

Average measurements of performance statistics from SCRIBE queries on four document
collections.

Query Relevant Recall Precision F-measure CPU time (sec.)

1 1 0.5239315 0.00525 0.010393628 0.6830435 Total Relevance 2637

2 1 0.022727275 0.00025 0.00049456 0.63823975
Judgments

3 1 0.09012735 0.00325 0.00627322 0.69115075

4 1 0.56666675 0.00175 0.003487553 0.6363015 Average
Relevance

10.464

5 1 0.66883125 0.006 0.011888113 0.64629275 Judgments
6 1 0.21666675 0.00125 0.002485583 0.63420575

7 1 0 0 0 0.66410475

8 0 0 0 0 0.5838175 A zero (0) in the Relevant
column means at least one

9 1 0 0 0 0.6339295 sampled document
10

11

1

1

0.475

0.9281045

0.00175

0.01625

0.003486555

0.03194035

0.617034

0.5923275

collection contains no
judged documents for the
assoc iated query.

12 0 0 0 0 0.74102875

13 1 0.218589675 0.00275 0.00542751 0.7362995

14 1 0 0 0 0.667223

15 1 0.47970775 0.004 0.007931613 0.719395

16 1 0.41785725 0.004 0.00791695 0.64938525

17 1 0.4125 0.00225 0.004474155 0.70249025

18 1 0.352548 0.00675 0.013245428 0.73912725

19 1 0.070707175 0.0015 0.002937343 0.6193185

20 1 0.28214275 0.0015 0.0029831 0.642019

21 1 0.290673 0.008 0.015566225 0.6802515

22 1 0.1875 0.0005 0.00099701 0.75332275

23 1 0.237590775 0.00325 0.006409805 0.7028215

24 1 0.3732685 0.005 0.009854838 0.69455075

25 1 0.2947915 0.00325 0.00642397 0.706097

26 1 0.560065 0.00425 0.008432573 0.746392

27 0 0 0 0 0.673934

28 1 0.33049425 0.00375 0.007411103 0.48577425

29 1 0.03125 0.00025 0.000496033 0.59971775

30 1 0.2260235 0.008 0.01543403 0.7614705

31 1 0.217262 0.00175 0.00347027 0.288493

32 1 0.05792125 0.00075 0.00148075 0.707794

33 1 0.6397625 0.02175 0.0420633 0.69686925

34 0 0 0 0 0.76211875

35 1 0 0 0 0.71922125

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

76
Query Relevant Recall Precision F-measure CPU time (sec.)

1 0.42140125 0.004 0.007923258 0.63108125

1 0.0516194 0.00075 0.001477845 0.6472265

1 0.39368675 0.00575 0.01133059 0.71165475

1 0.37365625 0.0105 0.020419175 0.71008675

1 0.25400425 0.003 0.00592887 0.75707275

1 0.14166675 0.00075 0.001492043 0.650754

1 0.11212125 0.00125 0.002472313 0.56678275

1 0 0 0 0.67756825

1 0.44496325 0.005 0.009881013 0.67425075

1 0.22291675 0.00125 0.002485588 0.7887275

1 0 0 0 0.52406475

1 0.072727275 0.0005 0.000992073 0.61156375

1 0.020833325 0.00025 0.00049407 0.38521975

1 0.677097 0.01175 0.023078975 0.71501725

1 0.08333325 0.00025 0.000498505 0.6967675

1 0.9613095 0.0125 0.02466955 0.7089535

1 0.33333325 0.00075 0.00149651 0.70277625

0 0 0 0 0.6300695

1 0.1666665 0.0005 0.00099701 0.62068725

1 0.64599575 0.00475 0.009424663 0.6447665

1 0.5 0.0025 0.00496825 0.7041675

1 0.56666675 0.00225 0.004473183 0.71497075

0 0 0 0 0.61711175

1 0 0 0 0.77412475

1 0.0694445 0.0005 0.000992558 0.74386875

1 0.261616025 0.00175 0.0034747 0.63434025

1 0.27083325 0.00125 0.002488058 0.68232425

1 0.048188025 0.00075 0.001476865 0.5973265

5

10

15

20

25

30

35

77

Average measurements of performance statistics from LSI queries on four document collections.

Query Relevant Recall Precision F-measure CPU time

1

2

1

1

0.58739325

0.022727275

0.006

0.00025

0.011875835

0.00049456

5.2684025

9.28204

Total Relevance
Judgments

2637

3 1 0.13069765 0.00475 0.009166188 8.3556525

4 1 0.56666675 0.00175 0.003487553 8.4680425 Average
Relevance

10.464
29

1 0.84383125 0.007 0.0138757 7.5338525 Judgments

6 1 0.21666675 0.00125 0.002485583 9.9270025

7 1 0 0 0 8.091595

8 0 0 0 0 8.7086 A zero (0) in the Relevant

9 1 0 0 0 8.807995
column means at least one
sampled document

11

1

1

0.475

1

0.00175

0.0175

0.003486555

0.0343976

15.379985

13.3731725

collection contains no
judged documents for the
assoc iated query.

12 0 0 0 0 7.717355

13 1 0.4128205 0.005 0.009871268 8.7292025

14 1 0 0 0 7.7111425

1 0.86931825 0.00725 0.0143766 8.32133

16 1 0.4357145 0.00425 0.00841005 7.5168475

17 1 0.9 0.00525 0.01043492 7.857525

18 1 0.37907275 0.00725 0.014226795 10.7330775

19 1 0.10656555 0.002 0.003924485 8.9549925

1 0.54285725 0.00275 0.005470668 9.0159

21 1 0.330673 0.009 0.01751745 7.5927725

22 1 0.1875 0.0005 0.00099701 8.337425

23 1 0.41624825 0.006 0.011825615 12.69912

24 1 0.40411225 0.00575 0.011322535 8.4784675

1 0.534028 0.006 0.011856848 7.8075725

26 1 0.641234 0.005 0.009918223 11.477455

27 0 0 0 0 8.502355

28 1 0.18489 0.002 0.003955033 11.06997

29 1 0.03125 0.00025 0.000496033 9.3821325

1 0.233353 0.00825 0.01591308 11.09067

31 1 0.86011925 0.00725 0.014370248 8.7855825

32 1 0.08292125 0.001 0.0019758 8.7793525

33 1 0.871406 0.02975 0.057526525 8.835965

34 0 0 0 0 8.437975

1 0.010416675 0.00025 0.000488283 8.189445

36 1 0.4633835 0.0045 0.008911888 10.9852575

37 1 0.1016194 0.0015 0.002955678 8.872905

38 1 0.3681815 0.0055 0.01083456 9.2548525

39 1 0.38758275 0.01075 0.020912225 7.6124225

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

78
Query Relevant Recall Precision F-measure CPU time

1 0.2998375 0.0035 0.006917988 7.875615

1 0.14166675 0.00075 0.001492043 11.1742025

1 0.1579545 0.00175 0.003461433 9.15559

1 0 0 0 8.58951

1 0.49175825 0.00575 0.011358345 9.935005

1 0.29583325 0.00175 0.003478635 7.2266875

1 0.08333325 0.00025 0.000498505 10.6742925

1 0.122727275 0.00075 0.001489585 10.01882

1 0.038690475 0.0005 0.000987168 10.4616225

1 0.971875 0.0165 0.0324198 15.48941

1 0.08333325 0.00025 0.000498505 7.152795

1 0.97916675 0.01275 0.02516265 8.42641

1 0.5 0.001 0.00199601 9.7805175

0 0 0 0 10.0455275

1 0.25 0.00075 0.001495515 9.0622575

1 0.718723 0.00525 0.010416725 9.530765

1 0.71666675 0.0035 0.00695536 9.88718

1 0.56666675 0.00225 0.004473183 9.75889

0 0 0 0 8.789675

1 0.1704545 0.0015 0.002971783 10.0661575

1 0.0694445 0.0005 0.000992558 8.616985

1 0.39924225 0.003 0.005950938 9.3699325

1 0.5 0.00225 0.004479103 8.3847075

1 0.02777775 0.00025 0.00049554 10.47364

APPENDIX D

ABRIDGED MANN-WHITNEY U TESTS

79

80
APPENDIX D

ABRIDGED MANN-WHITNEY U TESTS

Mann-Whitney rank sum test over Recall metric

Source Recall Rank Source Rank Sum Samples

qt 0 1 qt 3000 57

qt 0 2

qt 0 3 Source Rank Sum Samples

qt 0 5

qt 0 6

qt 0 7 Mann-Whitney U Statistic

lsi 0 9

lsi 0 10 ? Statistic

lsi 0 11 0.585411

qt 0.020833 13 z - Normal Distribution

qt 0.022727 14 1.572642

qt 0 4 lsi 3555 57

lsi 0 8 1902

lsi 0.010417 12

lsi 0.022727 15

lsi 0.027778 16

qt 0.03125 17

lsi 0.03125 18

lsi 0.03869 19

qt 0.048188 20

qt 0.051619 21

qt 0.057921 22

qt 0.069445 23

lsi 0.069445 24

qt 0.070707 25

qt 0.072727 26

81

Mann-Whitney rank sum test over Precision metric

Source Precision Rank Source Rank Sum Samples

qt 0 1 qt 3015 57

qt 0 2

qt 0 3 Source Rank Sum Samples

qt 0 5

qt 0 6

qt 0 7 Mann-Whitney U Statistic

lsi 0 9

lsi 0 10 ? Statistic

lsi 0 11 0.580794

qt 0.00025 13 z - Normal Distribution

qt 0.00025 14 1.487634

qt 0 4 lsi 3540 57

lsi 0 8 1887

qt 0.00025 12

qt 0.00025 15

lsi 0.00025 16

lsi 0.00025 17

lsi 0.00025 18

lsi 0.00025 19

lsi 0.00025 20

lsi 0.00025 21

qt 0.0005 22

qt 0.0005 23

qt 0.0005 24

qt 0.0005 25

lsi 0.0005 26

82

Mann-Whitney rank sum test over F-measure metric

Source F-measure Rank Source Rank Sum Samples

qt 0 1 qt 3049 57

qt 0 2

qt 0 3 Source Rank Sum Samples

qt 0 5

qt 0 6

qt 0 7 Mann-Whitney U Statistic

lsi 0 9

lsi 0 10 ? Statistic

lsi 0 11 0.570329

qt 0.000494 13 z - Normal Distribution

qt 0.000495 14 1.29495

qt 0 4 lsi 3506 57

lsi 0 8 1853

lsi 0.000488 12

lsi 0.000495 15

lsi 0.000496 16

qt 0.000496 17

lsi 0.000496 18

qt 0.000499 19

lsi 0.000499 20

lsi 0.000499 21

lsi 0.000987 22

qt 0.000992 23

qt 0.000993 24

lsi 0.000993 25

qt 0.000997 26

83

Mann-Whitney rank sum test over CPU Time metric

Source CPU Time Rank Source Rank Sum Samples

qt 0.288493 1 qt 1653 57

qt 0.485774 3 Source Rank Sum Samples

qt 0.597327 7 Mann-Whitney U Statistic

qt 0.617034 10 ? Statistic

qt 0.631081 13 z - Normal Distribution

qt 0.63393 14 9.206331

qt 0.38522 2

qt 0.524065 4 lsi 4902 57

qt 0.566783 5

qt 0.592328 6

qt 0.599718 8 3249

qt 0.611564 9

qt 0.619319 11 1

qt 0.620687 12

qt 0.634206 15

qt 0.63434 16

qt 0.636302 17

qt 0.63824 18

qt 0.642019 19

qt 0.644767 20

qt 0.646293 21

qt 0.647227 22

qt 0.649385 23

qt 0.650754 24

qt 0.664105 25

qt 0.667223 26

APPENDIX E

ANOVA POWER ANALYSIS

84

85
APPENDIX E

ANOVA POWER ANALYSIS

SAS ANOVA power analysis program

options nodate nocenter nonumber;
title ‘Power analysis for ANOVA designs’;
%include “fpower.sas”;
%fpower(a=2, b=1, delta=%str(0.2, 0.5, 0.8, 1.0, 2.0,
3.0),

 alpha=0.05, n=%str(2 to 10 by 1, 12 to 18 by 2,
20 to 40 by 10, 50,
60 to 70 by 1),

ptable=YES, ntable=NO);

https://alpha=0.05

86
SAS power table output

APPENDIX F

ANOVA RESULTS

87

88
APPENDIX F

ANOVA RESULTS

	Scribe: A Clustering Approach To Semantic Information Retrieval
	Recommended Citation

