
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-7-2005

Autonomous Consolidation of Heterogeneous Record-Structured Autonomous Consolidation of Heterogeneous Record-Structured

HTML Data in Chameleon HTML Data in Chameleon

Philippe Chouvarine

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Chouvarine, Philippe, "Autonomous Consolidation of Heterogeneous Record-Structured HTML Data in
Chameleon" (2005). Theses and Dissertations. 831.
https://scholarsjunction.msstate.edu/td/831

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/831?utm_source=scholarsjunction.msstate.edu%2Ftd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

AUTONOMOUS CONSOLIDATION OF HETEROGENEOUS

RECORD-STRUCTURED HTML DATA

IN CHAMELEON

By

Philippe Chouvarine

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2004

Copyright by

Philippe Chouvarine

2004

AUTONOMOUS CONSOLIDATION OF HETEROGENEOUS

RECORD-STRUCTURED HTML DATA

IN CHAMELEON

By

Philippe Chouvarine

Approved:

Julia E. Hodges
Professor of Computer Science and
Engineering
(Major Professor)

Hasan M. Jamil
Associate Professor of Computer Science
at Wayne State University
(Thesis Director)

Susan M. Bridges
Professor of Computer Science and
Engineering
(Committee Member)

Edward B. Allen
Assistant Professor of Computer Science
and Engineering
(Graduate Coordinator)

Robert P. Taylor
Interim Dean of
the College of Engineering

Name: Philippe Chouvarine

Date of Degree: December 11, 2004

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Julia E. Hodges

Director of Thesis: Dr. Hasan M. Jamil

Title of Study: AUTONOMOUS CONSOLIDATION OF HETEROGENEOUS
RECORD-STRUCTURED HTML DATA IN CHAMELEON

Pages in Study: 60

Candidate for Degree of Master of Science

While progress has been made in querying digital information contained in XML and

HTML documents, success in retrieving information from the so called “hidden Web”

(data behind Web forms) has been modest. There has been a nascent trend of developing

autonomous tools for extracting information from the hidden Web. Automatic tools for

ontology generation, wrapper generation, Web-form querying, response gathering, etc.,

have been reported in recent research. This thesis presents a system called Chameleon

for automatic querying of and response gathering from the hidden Web. The approach to

response gathering is based on automatic table structure identification, since most infor-

mation repositories of the hidden Web are structured databases, and so the information

returned in response to a query will have regularities. Information extraction from the

identified record structures is performed based on domain knowledge corresponding to the

domain specified in a query. So called ”domain plug-ins” are used to make the dynamically

generated wrappers domain-specific, rather than conventionally used document-specific.

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

I. INTRODUCTION . 1

1.1 Problem Specification . 1
1.2 The Key Idea Through a Motivating Example 3
1.3 Approach to Solving the Problem . 5
1.4 Organization . 7

II. LITERATURE REVIEW . 8

2.1 Automated Filling and Submitting of Web Forms 8
2.2 Record Identification and Information Extraction 11

2.2.1 Languages for Wrapper Development 12
2.2.2 HTML-aware Tools . 13
2.2.3 NLP-based Tools . 14
2.2.4 Wrapper Induction Tools . 16
2.2.5 Modeling-based Tools . 17
2.2.6 Ontology-based Tools . 18

III. THE CHAMELEON SYSTEM . 21

3.1 Hypothesis . 21
3.2 System Implementation Covered in this Research 22

3.2.1 System Architecture . 22
3.2.2 Query Language . 23
3.2.3 Mapping of User Queries to Web Forms 25
3.2.4 Record Identification Algorithms 27

3.2.4.1 The Record Identifier Architecture 30
3.2.4.2 The HTML Table Tree Algorithm 33
3.2.4.3 The Highest<tr>-fan-out Algorithm 35

iv

CHAPTER Page

3.2.5 Information Extraction . 38
3.2.6 Data Consolidation and Output 39
3.2.7 User Interface . 40
3.2.8 Domain Plug-in Modules . 41

3.2.8.1 General Information 41
3.2.8.2 Creation of Domain Plug-ins 45
3.2.8.3 Benefits of Plug-in Architecture 46

IV. EXPERIMENTAL RESULTS . 48

4.1 Qualitative Comparison with Related Tools 48
4.2 Testing Domains . 50
4.3 Information Extraction Performance Metrics 51
4.4 Quantitative Comparison with the BYU Tool 53

V. CONCLUSION . 56

5.1 Summary . 56
5.2 Future Work . 57

REFERENCES . 59

LIST OF TABLES

TABLE Page

4.1 Qualitative comparison with related IE tools 49

4.2 Sites from which the system successfully extracts data 50

4.3 Comparison of the BYU tool and Chameleon performances 55

vi

LIST OF FIGURES

FIGURE Page

3.1 The System Architecture . 24

3.2 HTML code of a single www.expedia.com result record 28

3.3 A) A generic HTML table tree example. B) www.expedia.com table tree . . . 29

3.4 A sample www.orbitz.com record . 30

3.5 The Record Identifier Architecture . 31

3.6 The HTML Table Tree algorithm . 34

3.7 The Highest<tr>-fan-out algorithm . 36

3.8 The IE algorithm . 38

3.9 Consolidated records of flight reservation domain 40

3.10 Dynamically adaptable target schema . 40

vii

CHAPTER I

INTRODUCTION

1.1 Problem Specification

The Web can be viewed as an ever-growing large database having millions of users all

over the world. Yet the Web has very little database functionality. An average user be-

gins his/her search for information on the Web from the sites hosting the Internet search

engines, such as Google or Alta Vista. They provide important automation for finding

potentially relevant Web pages based on the user’s keyword search – a process known as

Information Retrieval (IR). However, after IR is applied, the user still needs to spend a

significant amount of time and effort searching through relevant and irrelevant links. The

biggest limitation of IR is that it cannot be applied to the hidden Web, the databases behind

the firewall. Only pages with input forms for querying online databases can be searched,

but not the dynamically generated result pages.

One specific type of Web query that is of practical interest to the users is querying

vendors or organizations providing the same type of products or services. The users are

interested in comparing prices on the same offers from different vendors, or comparing

job offers satisfying the same criteria from different Web sites, etc. The overwhelming

majority of such sites use online databases to efficiently present to the user their informa-

1

2

tional inventory showing up-to-the-minute changes. This introduces yet another task for

the user: online forms must be filled out on each such site to query the online databases.

Such a process, hereafter called the comparison search, adds another dimension to the al-

ready difficult problem of finding relevant information on the Web. The steps involved in

a typical comparison search can be summarized as follows:

1. Retrieve links to potentially relevant sites by submitting a keyword query to a search
engine (e.g., Yahoo and Alta Vista).

2. Follow the relevant links, which usually load a page with a form for querying an
online database of a particular vendor.

3. Input the search parameters, submit the form, and wait for the query results to be
fetched from the online database and encoded into the HTML format.

4. Write down the results in a table for future comparison.

5. Repeat steps 2 - 4 for each relevant link.

If the information retrieval phase generates a significant number of relevant links, this

tedious process may take hours of the user’s time. The need for efficient automation of

this process has not been satisfied yet.

Practical solutions for the comparison search problem are limited to third-party com-

mercial sites (e.g., Yahoo Shopping and MySimon). They usually provide a list of products

of the same domain (mostly electronics or books) from various online vendors, which can

be sorted by price, and allow the users to initiate a transaction on a remote vendor site with

a click of a button. Two approaches are used to create such lists: real-time data collec-

tion (e.g., Jungo and MySimon) and storing the data locally using periodical updates (e.g.,

Junglee) [8]. Though these sites make life easier for the users who know about them, the

3

provided selection of online vendors is limited by the library of wrappers that these sites

maintain. More importantly, these sites provide comparison shopping in only one or two

domains.

1.2 The Key Idea Through a Motivating Example

When we think about the Internet, we think about the large repository of information

where anything can be found if one puts enough effort and tenacity into the search. The

level of effort required may also deter us from effectively using it. However, in the not so

distant future the situation may change and the Web will become more and more database-

like. The users may be able to pose complex queries that presently can only be performed

by professional database systems. For example, a user living in California may decide

to visit his/her family in Tennessee. The user may then pose a single query that would

inquire about the cheapest airfare and car-rental options in Memphis with the condition

that his/her stay in Tennessee would not overlap with the tornado season.

No resource on the Web can currently process this type of query that spans a number

of domains. It would be unreasonable to expect third-party commercial Web sites to orig-

inate comparison search services that would span over such seemingly unrelated domains

as weather and car rentals. Therefore, as we see it, the future is in client-side applications

that can use domain knowledge plug-ins for querying a set of sites with online databases

satisfying certain criteria in a given domain. Naturally such Web agent applications will

support queries over any combination of domains that are supported. The Chameleon

4

agent that we developed follows this smart agent paradigm. The agent has an architecture

that allows functionality extension by simply adding domain plug-ins (consisting of one

DLL and two or more XML files) in specified directories. The appropriate DLL is linked

based on the domain name specified in the query. The user also has flexibility in customiz-

ing extraction rules, editing domain-specific thesauri used in mapping of Web forms, and

adding new search keywords.

The Information Extraction (IE) part of the project that we have implemented is fully

compatible for use with a smart agent and nicely customizable by the user. The two al-

gorithms that we developed are based on the assumption that records generated by remote

scripts are based on HTML table structures (virtually all script-generated pages that we

examined follow this format). This approach allows significantly improved processing

time since we manipulate the table tree rather than the Document Object Model (DOM)

tree that includes every tag of the page. For complex domains such as flight reservation,

the result pages may contain a significant number of tags; for example, the page generated

by www.orbitz.com contains roughly 30,000 tags.

The algorithms analyze the HTML structure of the result pages by finding structurally

identical branches of the table tree in the case of the first algorithm or finding a table that

most likely contains encoded records in the case of the second algorithm. Further structural

analysis and domain knowledge-based validation precisely identify the encoded records.

Information atoms of these records are then mapped to attributes of the target schema

using analysis of the HTML structure and domain-knowledge-based extraction rules. This

5

approach allows data extraction at run time independent of structural or schema formats,

which means that the system is not bound to static extraction rules previously identified

for a particular site. On the contrary, it can potentially extract data from any site in a given

domain. The target schema is also adaptable to the processed source schemas. It contains

the attributes having the weight associated with the frequency of their occurrences and

passing the threshold criterion set by the user. If the threshold value is set at 0% a target

schema having the union of attributes from all source schemas is produced. Setting the

threshold at 100% would produce the target schema with the intersection of the attributes.

1.3 Approach to Solving the Problem

Our approach to addressing the issue of automated comparison search in the hidden Web

involves looking at a query from the domain of application. In other words, we contex-

tualize the query by domains – for example, travel, car rental, job search, etc. Contexu-

alization helps by adding relevant knowledge in the form of domain plug-ins. Typically

the plug-ings contain domain knowledge in the form of key words for IR, thesaurus, map-

ping heuristics, information extraction rules, etc., relevant to a domain. A single logical

Domain Plug-in Module (DPM) is physically implemented as XML and DLL files. In

other words, DPMs contain the heuristics that are relevant for comparison searches of dif-

ferent domains. In this way, the query engine itself remains domain independent, and its

functionality changes with plug-ins for a given set of data repositories.

6

Our system, Chameleon, also addresses a general limitation of the IR process. This

process yields a list of the most successfully promoted links satisfying the keyword search

criteria, whereas the user may desire to include in the comparison search his/her favorite

site in the given domain and query the other sites having ontologies most closely resem-

bling the ontology of this site. The system provides an option to specify the URL of such

an example site and then creates the ontology of this site used for the query mapping.

Processing of the next site uses this example ontology for mapping the query to the cor-

responding HTML form. This gives a better chance of successfully mapping sites with

similar ontologies. Once the successful mapping is performed, the example ontology is

combined with the ontology of the just processed site. As this process continues, the ex-

ample ontology is refined to become common to all the processed sites. Once the system

has a mapping of query parameters to Web form controls, it automatically fills out and

submits the forms, and then automatically extracts the query result data from the pages

generated by online databases on these sites.

Chameleon’s functionality largely depends on its ability to consolidate heterogeneous

records obtained from multiple sources so that a correct and coherent comparison can be

performed by the front-end query engine. That leads to the main focus of this paper. In

this paper we propose two algorithms for autonomous record structure identification and

consolidation of records from multiple sources, and an architecture for a query engine for

comparison search. We emphasize here that our approach relies on ad hoc integration of

7

Web sites. The sites to be integrated are a function of queries and query variables, and the

integration happens at run time.

The two record identification algorithms discussed in this paper use different approaches

which maximize the subset of sites covered by the system. Attribute values of the identified

records are extracted using domain-knowledge-based IE techniques. Our implementation

of the target schema, which combines attributes of the source schemas of the result pages

from different sites, is adaptive to attribute frequency of the source schemas and can be

customized to have attributes ranging from intersection to union of the source attributes.

1.4 Organization

The remaining chapters are organized as follows: Chapter II provides an overview of

tools for automated filling and submitting of Web forms and information extraction tools.

Chapter III contains an overview of the proposed tool (record identification algorithms,

information extraction, and system implementation). Chapter IV covers information do-

mains of Web sites used for testing, qualitative comparison analysis with related tools,

and experimental results showing superiority of Chameleon compared with the closest

ontology-driven IE tool. Chapter V provides a conclusion and an outline of the future

research directions.

CHAPTER II

LITERATURE REVIEW

The project has two distinct phases: automatic filling out /submitting of forms to on-

line databases and record identification / information extraction from the resulting HTML

pages. Therefore the literature review covers the two areas of related research separately.

2.1 Automated Filling and Submitting of Web Forms

Research in this area has been driven by various end goals, the three most common of

which are 1) to assist the user browsing the Internet in filling out redundant forms (e.g.,

Microsoft .NET Passport), 2) to design an automatic form-filling system that can be used

in conjunction with a Web crawling agent to automatically pose queries to online databases

(e.g., ShopBot, HiWE and OntoBuilder), and 3) to automatically transfer the entire content

of an online database to a local database by interaction with the corresponding Web form

(e.g., BYU).

One of the earliest research projects in this area is ShopBot [7]. This system tries to

identify the correct forms for query submission by following all links found on the main

page of a given site, the URL of which is provided as an input. If the system is confident

that the forms do not have the correct fields, these forms are discarded. The remaining

8

9

forms are given several test queries and the corresponding result pages are analyzed to

determine the correct form. This system works only with the shopping-domain forms

having simple one-line search forms.

A more recent project whose goal is closely related to our research is the Hidden

Web Exposer (HiWE) [21]. The project is aimed toward adopting a task-specific human-

assisted approach to Web crawling; or, in other words, the user can customize the crawler

to access the specific part of the hidden Web of interest to the user. The system includes

Form Analyzer and Form Processor modules tackling the task of automatic filling out Web

forms. The system uses a special Label Value Set (LVS) table for passing query values to

forms. The LVS table uses fuzzy/graded weights associated with values showing their

probability of being correctly used with a given label. Each Web form encountered by the

HiWE crawler is processed by matching the labels on the form with the labels in LVS;

based on the value weights, they are then assigned to the corresponding fields. The top-

weighted value assignments are submitted separately and the result pages are validated to

select the correct submission.

Another approach to automated form filling is proposed in [14] by Liddle et al. Their

method begins with creating a parse tree of the target HTML form. Then a CGI GET re-

quest is sent using empty or default values of form attributes. This submission is followed

by other submissions with varied values of certain attributes with the goal to extract all

data behind this particular form. Statistical methods are used to minimize the number of

samples (submissions). Obviously, this approach can be feasible only for relatively small

10

online databases where variation of a few default parameters can produce resulting pages

covering the whole database. More importantly, this system, as well as Microsoft .NET

Passport [17], which is used to assist the user in filling out redundant personal information

forms widely used in e-commerce sites, have design goals inconsistent with their use as a

part of Web-crawling agents.

One of the latest research projects in this area is the OntoBuilder project [18]. We

use the product of this research as a part of our system. Manual ontology generation is

a time consuming and tedious process; OntoBuilder automates this process. Creation of

ontologies is an effective approach to mapping queries posed by the user to Web forms.

OntoBuilder was designed to work specifically with HTML form ontologies. It has the

ability to create an initial ontology and then merge this ontology with ontologies of the

other sites in the same domain. The resulting ontology is common to the HTML forms

of all the sites that were used in this process. The methodology consists of two phases:

the training phase and the adaptation phase. In the training phase, the initial ontology is

built, which is essentially a mapping of the user query to the HTML form. In the adap-

tation phase, ontologies of HTML forms from other sites are extracted and merged with

the current iteration of the common ontology one at a time. This process requires mini-

mal user supervision. OntoBuilder has high precision of ontology generation (more than

90% in narrow domains). There has been some research on creation of a fully automatic

OntoBuilder agent that takes URLs with HTML forms as input and outputs their common

ontology in an XML file. We use similar predefined XML files to simulate the use of

11

the OntoBuilder agent in our system. While mapping a user query to Web forms using

OntoBuilder agent may not be 100% successful, it is a very powerful tool for finding and

validating relevant Web forms. The discussion on how the OntoBuilder agent is used to

perform these two tasks is given in section 3.2.3.

2.2 Record Identification and Information Extraction

This section provides an overview of IE approaches and applicability of tools designed

using these approaches to the agent paradigm. The interested reader may find more infor-

mation on IE in [8], [13], and [19].

Following the taxonomy of Web data extraction tools proposed by Laender et al. in

[13], we will cover classes of such tools and identify the areas of their applicability. The

taxonomy includes six groups:

1. Languages for wrapper development

2. HTML-aware tools

3. NLP-based tools

4. Wrapper induction tools

5. Modeling-based tools

6. Ontology-based tools

The taxonomy only identifies the approaches that can be taken in development of Web IE

tools. In practice, a combination of such approaches can be used; e.g., the Chameleon tool

that we developed relies on HTML-aware and ontology-based approaches.

12

2.2.1 Languages for Wrapper Development

One of the first approaches to wrapping Web-based data was the creation of languages

for wrapper development. Such languages provide a higher level abstraction aimed to

simplify wrapper creation compared with conventional programming languages such as

Java or Perl that have traditionally been used for wrapper development.

Minerva [5] is a wrapper development language used in the Araneous system [16].

Minerva uses an EBNF-style grammar to define a set of productions for each target docu-

ment. The irregularities of the processed Web pages are handled by an explicit procedural

mechanism inside the grammar parser.

One of the latest efforts in this area is HTQL [4]. It is designed to perform SQL-

like queries over semistructured HTML pages. Its operation is based on parsing a target

HTML page into a DOM tree and locating parts of the tree specified in the query. One

query can specify a number of repeated structures and filter based on the extracted values.

This language has been used in conjunction with the PickUp system [3] that automatically

generates HTQL queries of visually selected areas in the Web Browser window. These

queries are in essence document-specific wrappers for Web IE.

Languages for wrapper development can potentially be used in conjunction with IE

modules of smart agents to provide a higher abstraction for the IE task.

13

2.2.2 HTML-aware Tools

These tools rely on the HTML structure of the document by forming a parse tree consisting

of HTML tags and finding regularities in such trees to identify objects for extraction. A

good representative example of this type of tool is XWRAP by Liu et al. [15]. It uses a

semi-automatic wrapper generation procedure where a user can try using one of the six

predefined extraction heuristics to locate the target extraction objects (tuples). The user

can vary the number of attributes per object to achieve the desired result. Once the result

is satisfactory, the user can name each attribute and generate a document-specific static

wrapper. (By static wrappers we mean that their extraction rules are coded at compile

time, as opposed to dynamic wrappers that infer extraction rules at run time). This tool

allows fast generation of static site-specific wrappers under user supervision. The tool

that we want to integrate with a smart Web query agent should be fully automatic in its

IE functionality and preferably generate extraction rules in run-time mode and cover a

certain set of result pages generated by various online databases (including pages that will

be designed in the future) in a given domain. XWRAP does not have these qualities and

cannot be used for this purpose.

One of the most advanced HTML-aware tools is RoadRunner [6]. The essence of this

tool is comparison of two or more pages generated by the same online database that allows

generating of a schema common to the pages. After that the system infers a grammar that

populates a table of this schema with the corresponding extracted data. Unlike XWRAP,

RoadRunner is a fully automatic system that is capable of capturing complex record struc-

14

tures. However the system generates document-specific static wrappers. Though Road-

Runner is potentially applicable for use with a smart Web query agent, it would dictate the

need to maintain a library of static wrappers that should be verified every time a wrapper

from this library is used (the change of layout or formatting can easily make the exist-

ing static wrappers useless) and generate a new static wrapper for a changed page or new

page which does not have a corresponding wrapper in the library yet. This would add

substantial time and resource overhead. An alternative solution would require generation

of temporary wrappers for every target HTML page, which, given the methodology used

by RoadRunner, would cause even greater time overhead.

2.2.3 NLP-based Tools

Natural language processing (NLP) techniques have been developed and successfully used

on free text much earlier than there was a need for Web IE. NLP techniques work well with

unstructured, grammatically rich free text by relying on part-of-speech tagging, lexical se-

mantic tagging, finding relationships between phrases or parts of sentences, etc. Therefore,

NLP techniques are only useful for Web IE from pages containing big chunks of relatively

unstructured text, which is not the case with most hidden Web pages generated by online

databases where the schema attribute values are populated with text usually having very

little grammatical structure.

One of the representative tools of this class is RAPIER (Robust Automated Production

of Information Extraction Rules) [2]. This system takes as input texts and filled tem-

15

plates indicating the information to be extracted. The learning algorithm creates pattern-

matching rules to fill the slots in the template. The algorithm learns unbounded patterns

that include constraints on the words and part-of-speech tags surrounding the data used to

fill the slots. The extraction patterns are based on delimiter and content description. The

IE rules consist of three parts: pre- and post- fillers (patterns that match the text preceding

and following the target text) and a filler (the target text). The system extracts a single

record from each input document, therefore only single-slot extraction is possible unless

the text is divided into more than three fields [22].

One of the most advanced NLP tools capable of multislot extraction is WHISK [22].

The system includes extraction rules from a set of hand-tagged training example docu-

ments. The process begins with an empty set of extraction rules and a set of untagged

instances (sentences). The user tags the case frames to be extracted from the presented in-

stances followed by the system’s learning phase. During the learning phase WHISK uses

the tagged case frames to create rules and to test the accuracy of the proposed rules. The

tagging and learning processes interleave and repeat iteratively. The algorithm learns the

extraction rules by top-down induction beginning from the most general rule and gradu-

ally adding terms to reduce errors to zero. The extraction rules identify the context and

delimiters of the target text. WHISK can handle variable permutations of slots if training

examples of all possible orderings of items were used in the learning phase.

16

2.2.4 Wrapper Induction Tools

These tools are influenced by natural language processing techniques, but instead of iden-

tifying parts of speech using linguistic constraints, they rely on formatting features that

allow induction of extraction rules from a training set of example HTML pages. The

extraction rules use HTML tags or groups of tags as delimiters.

The first widely known tool of this class is WIEN [11]. Though this tool pioneered

the idea of automatic wrapper induction, WIEN has some serious limitations. The user

must have knowledge of the structural class of the page and then submit labeled training

examples of pages that belong to the same structural class. The system then generates

a wrapper that is common to all the training examples and potentially works with the

other pages of the same domain and structural class. This capability of generation of

domain-specific wrappers rather than document-specific ones is the major advantage of

the system. However WIEN does not work with complex nested record structures. This

together with the need to know the structural class of the target HTML page are drawbacks

of this system.

One of the most advanced tools of this class is STALKER [20]. Like WIEN, the sys-

tem takes a set of training examples with labeled relevant data and generates a sequence

of tokens surrounding the target data. After all positive examples are learned the sys-

tem outputs a wrapper that covers all of the learning examples. The main advantage of

STALKER is that it works with nested hierarchical structures. However, this is achieved

by supplying an Embedded Catalog Tree (ECT) that provides structural description of the

17

target page. This system is not applicable for use in a smart agent because the generated

static wrappers rely on ECT, which makes them document-specific. Such wrappers re-

quire verification that the structure of the document has not been changed before their use.

The methodology used in STALKER wrapper induction precludes attempts to make the

wrappers dynamic by using temporary wrappers reinducted for every target HTML page.

The primary reason for that is that STALKER requires human supervision.

2.2.5 Modeling-based Tools

Modeling-based tools rely on matching the target structure of data to be extracted with

portions of input Web pages. The target structure is provided from a set of modeling prim-

itives (tuples, lists, etc.) that conform to the model of the target data. Usually such tools

require substantial user interaction and create relatively static (poorly adaptive) wrappers,

so it would not be feasible to use this class of wrapper generation tools with smart agents.

NoDoSE (Northwestern Document Structure Extractor) [1] is an interactive tool that

allows one to semi-automatically determine the structure of documents and then extract

their data. Using a GUI, the user hierarchically decomposes the document, marking the

regions of interest and then describing their semantics. Once the user has identified the

interesting regions, the system is able to identify similar regions automatically. This task

is performed by a mining component that attempts to infer the grammar of the document

based on the information supplied by the user. The mining component supports free text

and HTML documents.

18

DEByE (Data Extraction By Example) [12] is an interactive tool for extracting semistruc-

tured data from Web pages. The extraction process is based on the examples supplied by

the user via a GUI that allows the user to specify nested tables with possible structure

variations. The examples are then used to generate extraction patterns by identifying the

example nested tables on the target pages. The DEByE extractor module uses the patterns

to execute a bottom-up extraction algorithm that identifies information atoms on the target

page and assembles complex objects using the structure of the extraction patterns.

2.2.6 Ontology-based Tools

Ontology-based tools rely on data semantics rather than on the HTML encoding for IE.

This allows generation of domain-specific wrappers, which use ontology specification as

the means for mapping objects for extraction.

As yet, there is only one widely known ontology-based IE tool; it was developed at

Brigham Young University (BYU) [9]. The tool requires a carefully manually constructed

ontology that covers a certain domain of sites. Having such an ontology, the tool becomes

a dynamic wrapper that works in two distinct phases. First, the record boundaries are

identified using a number of heuristics applied in probabilistic (weighted) manner and then

the ontology is applied to extract target objects. This approach fits well in the framework

of a smart Web query agent. Our IE implementation was influenced by this tool. However,

the record boundary identification techniques used in the existing BYU tool rely on the

condition of multiplicity of records (the number of records must exceed the number of

19

tags used to format attributes in the source schema). The real-life documents may not

necessarily satisfy this criterion. For example, complex record structures such as those

used in the flight-reservation domain are likely to have more tags used to format attributes

of a single record than the number of records generated in response to a query.

Our system overcomes this limitation. Another potential drawback of the BYU tool is

caused by its neglect of HTML tags in identifying of record attributes. The BYU tool uses

an NLP approach to map the records stripped of HTML encoding to the target schema.

Such blending of information atoms can potentially cause confusion of data previously

grouped in a single atom with the data contained in an ontologically close information

atom. Our system avoids this problem by mapping each information atom individually to

the target attributes. Yet another shortcoming of the BYU tool is the use of a hard-coded

target schema tied to the ontology specification. In the situation where a smart agent

extracts information from sites that persistently lack a target schema attribute or have an

extra attribute not included in the target schema, the IE performance is degraded. Our

system avoids this pitfall by having an adaptive target schema that uses statistical analysis

of attribute frequency in the extracted source schemas.

Having reviewed all six classes of Web IE tools, we can conclude that each represents

tools having different design purposes from tools of other classes. Requirements analysis

for design of a particular Web IE tool may dictate inclusion of features of a particular

class of tools. E.g., if the domain of target pages is known to be poorly structured and

has grammatically rich texts, the tool to be designed must include NLP features. The

20

other important issue to point out is that there is a relationship between the ease (degree of

automation) of wrapper creation and resilience (adaptiveness) of the created wrappers. For

example, there are a lot of HTML-aware tools that can create a static, document-specific

wrapper in a matter of seconds. On the other hand, a well defined ontology-based wrapper

may take hours of manual design, but the resulting wrapper is dynamically adaptive to

any target page in a given domain. This relationship must be considered during the design

process when features of certain classes of Web IE tools are selected.

The Chameleon tool developed in this thesis research uses HTML-aware and ontology-

based approaches to IE. This combination allows successful extraction of information from

HTML-encoded tuples having complex structure (e.g., most tuples in a flight reservation

domain use irregularly nested HTML table structures having multiple ontologically close

information atoms). The implementation details are given in Chapter III.

CHAPTER III

THE CHAMELEON SYSTEM

3.1 Hypothesis

The purpose of the thesis is to demonstrate the feasibility of a proposed implementation of

a query agent for information domains of the hidden Web. We propose a system architec-

ture for the Chameleon agent that allows completely autonomous querying of a selected

domain of the hidden Web consisting of a number of Web sites identified by the agent at

run time. We assume that the existing research in the field of finding and validating Web

forms and mapping queries to these Web forms is sufficient for its successful integration

with the proposed system architecture of the Chameleon agent, therefore our research con-

centrates on the rest of the implementation. The research coveres record identification and

information extraction from semistructured HTML encoded records generated by online

databases, and consolidation of the extracted data in a recordset that can be used for fur-

ther conventional SQL-like queries. The proposed tool is able to perform these operations

without any prior knowledge of format, structure, or layout of the result pages generated by

online databases, as long as all of the result pages belong to the same information domain.

The functionality of the Chameleon agent relies heavily on domain knowledge provided

by domain plug-ins in conjunction with the proposed record identification algorithms and

21

22

information extraction technique that utilize information grouping of the HTML encoding

and ontology representation of a given information domain.

3.2 System Implementation Covered in this Research

This thesis research concentrates on record identification theory, information extraction,

and system architecture of the Chameleon system. It covers two novel record identification

algorithms for semistructured HTML sources generated by online databases, a domain-

knowledge driven information extraction technique, and details of system implementation.

The implemented system covers the functionality subset related to form filling of Web

forms given existing map to the query parameters, further information gathering from

result pages and consolidation of this information in a single recordset for further filtering,

sorting, etc.

3.2.1 System Architecture

As shown in figure 3.1, Chameleon’s main input is a user query. The first line of the query

is common for all domains; it contains the domain name. The Query Parser identifies the

domain name and uses it to link to the corresponding domain plug-in, which returns ex-

pected domain-specific query parameters to the parser. Once the domain plug-in is linked

to the system, it passes search keywords and validation criteria to the Information Retrieval

Module, which acquires links to relevant Web forms and passes them to the OntoBuilder

agent. If the user specified the example URL, the selection of relevant links is influenced

23

by this URL. The OntoBuilder agent analyzes the Web forms and creates a collection

of temporary XML files containing their ontology and mapping to the query parameters.

When it is done, each form is processed by the Form Filling Module, Web Browser, and

Record Identifier. The Processing Scheduler is used to synchronize form loading, form

filling and submission, and extraction of records from the result pages. When all online

databases are processed, a string array of identified records from all sites is passed to the

IE Module, which extracts individual attribute values from these records and adds them to

the Record Set. The Record Set can be sorted or filtered as specified in the user query. Fi-

nally, the report having a dynamic schema is generated. The schema includes or excludes

source attributes based on their frequency and the threshold value set by the user.

3.2.2 Query Language

The current iteration of our system has the following query language format

1.<query> -> select from <domain name>

[:<example URL>]

2. where <condition> {(and|or)<condition>}

3. [order by <attribute name>]

4. [filter:<condition>]

<condition> -> <attribute name>(=|<|>|<=|>=)

<value>

24

User Query
Query Parser

Collection of
Domain Plug-
ins

Selected
domain

Search keywords,
Validation criteria

Information
Retrieval Module /
Validator

 Query parameters

Form Filling
Module

OntoBuilder Agent

Links to Web
pages with
relevant forms

Web form
ontologies with
mapped query
parameters

Filled and
submitted
Web form

Web Browser

Query result
page generated
by online DB

Record
Identifier /
Validator

Validated records
from all processed
sites as text strings

IE Module

Processing
Scheduler

Domain-
specific
extraction
rules

Add/modify
thesaurus and
keywords, edit
IE rules

Record Set of
Consolidated
Records

Tuples having
extracted attribute
values

Order By and/or Filter criteria

Dynamic
Schema
Generator

Filtered / sorted
records

Report having the schema
dynamically adapted based on
attribute frequency in source
schemas

Threshold

Thesaurus

Expected
parameters

Record
anchor and
validation
rules

Figure 3.1 The System Architecture

25

Lines 1 and 2 of the query are used to define the recordset containing records of various

online databases in a given domain. Lines 3 and 4 apply sorting and filtering conditions

on the recordset. The current specification only works in a single domain. The future

work on the system may extend its functionality to allow queries over multiple domains

by creating recordsets for every domain and applying conventional SQL queries to the

recordsets, much like SQL queries over multiple tables.

Each domain has a predefined set of query attributes that can be used in queries to

form, sort and filter the recordset. A sample query for the flight reservation domain is

shown below.

select from flight_reservation_domain

:www.orbitz.com

where airport1 = MEM and airport2 = SFO

and date1 = 09/20/03

and date2 = 09/30/03

order by URL

filter: Price < 500

3.2.3 Mapping of User Queries to Web Forms

Two essential system modules required for mapping a user query to Web forms of the

specified domain are the Information Retrieval module and the OntoBuilder agent. Imple-

mentation of these modules is beyond the scope of this research as there already exist tools

26

with satisfactory functionality to perform the tasks of these modules. The information Re-

trieval module can rely on available search engines, such as Google to provide links to

sites with potentially relevant Web forms. Very often the links may contain more than one

Web form, so the next task is to identify the relevance of these forms. The OntoBuilder

agent, which is the latest iteration of the OntoBuilder system [18], discussed in section

2.1 can successfully perform this task. Given an example URL that contains a Web form

of a desired ontology the agent is able to locate semantically similar controls on the input

form and the example form. If the number of such controls meets the threshold value used

by the agent, then relevance of the input form is validated. OntoBuilder uses the merged

ontology common to the example form and the previously processed form(s) for future

processing, which enhances its performance. The forms validated as relevant are then pro-

cessed by the OntoBuilder agent. The agent automatically generates XML files with the

Web form ontologies having the query attributes mapped to the form controls. The agent

uses a domain-specific thesaurus, which is packaged in a domain plug-in module in our

system. The thesaurus is used to acquire the correct mapping of the query attributes to

form controls by analyzing their names, select items, associated labels, etc. These activ-

ities are simulated in our system by supplying a set of predefined XML ontology files to

the Form Filling Module. This module reads the ontology files using the Microsoft XML

parser and then uses the WebBrowser ActiveX control to load the Web forms, fill them out

based on the ontology mapping, and submit. This approach makes it possible to overcome

27

the complication of finding hidden attributes of the forms and their values required for

direct CGI Get or Post submission.

3.2.4 Record Identification Algorithms

The system uses two different algorithms to identify records encoded into HTML format

by remote scripts processing the outputs of online databases. The main test domain of the

system was selected to be the flight reservation domain. The nature of this domain implies

that, though the records have identical structure, some attributes should be multivalued,

having a different number of values from record to record. For example, flight schedules

may consist of flights of one or many airlines. To accommodate the need for nesting,

which can be used not only for display of multivalued attributes (table 3 shown in Figure

3.2), but also for better record layout (table 2 shown in Figure 3.2 is used to introduce

spaces between the records), the majority of travel sites use nested table structures. In

some examined cases the nesting went up to 7 levels. All the examined sites, including

sites from different domains, use some form of HTML table-based structures to encode the

records of their online databases. Therefore the two algorithms that we have developed are

oriented to identification of this type of records.

To illustrate this point, a three-level nested table structure is shown in Figure 3.2. All

Expedia records have the same table structure; however, their HTML tag structure varies

from record to record due to conditions such as different numbers of values in multival-

ued attributes. This observation made us exploit the table structure of the result pages to

28

Figure 3.2 HTML code of a single www.expedia.com result record

identify potential records as identical table structures in our HTML Table Tree Algorithm,

which captures the hierarchy of nested tables in a tree structure. A simple example of

a table tree is shown in Figure 3.3A. Figure 3.3B shows a fragment of the HTML table

tree generated by www.expedia.com, where one of the identified identical branches shown

in the rectangle corresponds to the record depicted in Figure 3.2. The same table tree

structure is reused in our second algorithm.

29

A)

Common Root

Table (TD=2)

Table(TD=5) Table(TD=2)

Table Table Table Table Table
(TD=2) (TD=2) (TD=2) (TD=6) (TD=2)

Table Table Table Table
(TD=2) (TD=2) (TD=2) (TD=2)

Table
(TD=2) Identical nested table structures

B)
Table

Table Table (TD=20) ….

Table Table Table Table …. Table
(TD=2) (TD=2) (TD=2)

 Table Table Table …. Table
(TD=2) (TD=2) (TD=2)

 Table Table Table …. Table
(TD=2) (TD=2) (TD=2)

Table Table Table Table

Figure 3.3 A) A generic HTML table tree example. B) www.expedia.com table tree

30

It is worth noting that the record structure used by www.expedia.com is relatively

simple; it contains only one-way flight details. Many other sites use more complex record

structures (for example, www.orbitz.com). A sample Orbitz record is shown in Figure 3.4.

However, our system is capable of wrapping result pages of a given domain regardless of

their structural differences as long as the record structures are table-based, which is the

case for the overwhelming majority of sites.

Figure 3.4 A sample www.orbitz.com record

3.2.4.1 The Record Identifier Architecture

The architecture of the Record Identifier block is presented in Figure 3.5. The Alterna-

tive Algorithm block outlined with a dashed line in Figure 3.5 is not implemented; it is

shown only to demonstrate the extensibility of the system architecture that may be use-

ful for extension of the coverage of sites to include those that are not covered by the two

implemented algorithms.

31

Domain-specific
record anchor and
record validation
rules

Query results
encoded into site-
specific HTML
format

HTML Table Tree Algorithm

Empty
result set?

Validated
Result Set

No

Yes

TR-fan-out-based Algorithm

Empty
result set?

Validated
Result Set

No

Yes

Alternative Algorithm

Validated
Result Set

Record validation
rules

Record validation
rules

Figure 3.5 The Record Identifier Architecture

32

The two implemented algorithms cover a certain subset of the most commonly used

HTML encodings. However, there are other possible ways to encode records, including

non-HTML approaches such as tabulation between the<pre> and </pre> tags. This

uncommon HTML encoding can be covered by the third algorithm that is not implemented

in the system, shown as Alternative Algorithm in Figure 3.5. It may be based on record

layout and ontological validation of potential records rather than on identifying record

boundaries as HTML delimiters. For example, copying text from the browser window

and pasting it into a text document will almost certainly produce line-feed characters in

place of record separators, and though these characters may also appear in the middle of

logical records, ontological validation rules may be applied to extract valid records. This

approach neglects any HTML encoding and, thus, makes the IE phase based on purely

natural language processing techniques. The satisfactory results achieved by the first two

algorithms place the development of this NLP-based algorithm outside of the scope of this

iteration of our system.

The system architecture is designed to minimize processing time. Therefore the fastest

record identification algorithm performs its task first, and the second algorithm is activated

only if the former produces an empty result set after the extraction rules are applied to the

identified candidate records. The decision on the sequence of activation of algorithms

should be based on precision and then on processing time. However, there is no differ-

ence in precision of the two implemented algorithms, so the second criterion is used. On

33

the other hand, the precision of the Alternative Record Identifier is expected to be worse

compared with the first two algorithms, and therefore it should be used as a last resort.

3.2.4.2 The HTML Table Tree Algorithm

Following the table tree representation, the Expedia record shown in Figure 3.2 would

appear as a straight line tree with table 1 as the root and table 3 as the leaf. Since this

record itself is nested in a table containing all the other records (not shown in Figure 3.2)

forming a branch of the tree, our goal is to go through all branches of the tree and find

all of those having identical table structures. The identified potential branches can be then

validated by semantic analysis of the HTML encoded data in these structures followed by

data extraction from the positively validated HTML structures. We accomplish this task

using the algorithm presented in Figure 3.6.

The algorithm constructs an HTML table tree for a target document and finds the count

of <td> tags for every node. The purpose of counting<td> tags is to identify the number

of attributes in the tables, which is used for identification of repeated record structures. For

this purpose only the<td> tags of the first record of a given table are counted. Though

the number of columns in the subsequent rows may vary (if their<td> tags use different

colspan attributes), this count is sufficient to correctly identify potential records having

the same structure. This approach also takes care of multivalued attributes, which may be

encoded in nested tables having different numbers of rows, and thus, different numbers of

<td> tags.

34

Figure 3.6 The HTML Table Tree algorithm

The leaves of the same level having the same<td> count are used to identify potential

HTML encoded records, which are the branches of the tree ending at these leaves and be-

ginning at the direct children of the lowest common root of these leaves. Such branches are

compared using their<td> counts. The algorithm uses the assumption that the branches

are straight, i.e., each level of a given branch contains only one table. This assumption

uses the narrow coverage strategy, which can be useful to sift out uninformative pieces of

HTML code that can randomly occur between the encoded records. The opposite wide

35

coverage strategy would use the direct children of the common root as record separators,

which would include all subbranching in the potential record space. This strategy is used

in the second algorithm covered below.

The identified records are then traced back to the original HTML source code and

record delimiter tags are added to this code. The identified area of the source code is

ontologically validated record by record, and in the case of positive validation forwarded

for IE.

This algorithm is known to have problems identifying record structures if the table tree

is low or the informative subbranching is present. The second algorithm covers some of

the record structures not covered by the table tree algorithm.

3.2.4.3 The Highest<tr>-fan-out Algorithm

Creation of the Highest<tr>-fan-out algorithm presented in Figure 3.7 was influenced

by the highest fan-out heuristic formulated in [10] by Embley et al. The original heuristic

uses a DOM tree and finds a tag with the highest fan-out. Given the assumption of multiple

encoded records outnumbering the number of attributes in any schema on the target HTML

page, the direct children of such highest fan-out element are potential record separators.

The original approach uses probabilistic methods to identify the record separator from the

set of candidate tags. As mentioned above, we adopted the assumption of tabular-based

record encoding. With this assumption in mind, a table with the highest<tr> fan-out is

found. However the<tr> tags of this fan-out cannot be treated as the potential record

36

separators because there maybe multiple<tr> tags which are the direct children and yet

not used as record boundaries.

For example, there may be a record structure using every other or every third<tr>

tag to encapsulate the record. Moreover, the encoded record may be split by a pair of

</tr><tr> tags a few times, where the<tr> tag is a direct child of the highest<tr>-

fan-out table. However, the heuristic is useful for early identification of tables that are

likely to contain the target records. At this point, an ontological approach is used for

record identification. Each domain contains a unique ontological element that can be used

as a linguistic anchor showing the approximate location of a record and, what is more

important, it can be used to find the exact number of records.

Figure 3.7 The Highest<tr>-fan-out algorithm

37

For most comparison shopping domains, including the flight reservation domain, such

an ontological element is price. It can be easily spotted by locating either ”$” or ”USD”.

The anchors are specified in the domain plug-in and passed to the Record Identifier at run

time. To be considered a legitimate anchor they must be separated by a reasonable number

of tags. Otherwise, they form one anchor, which can be the case if one record contains a

price group, e.g., base price, fee, and total. After the exact number of records is identified,

the record separator is located by finding the first tag that repeats the same number of times

between the table boundaries of the candidate table.

If processing of the highest<tr>-fan-out table returns an empty result set, the process

repeats for the second highest<tr>-fan-out table and so on until either the returned result

set is non-empty or all tables of the page are processed.

Another difference is that this algorithm reuses the HTML table tree created by the

previous algorithm instead of constructing a separate DOM tree. This approach optimizes

processing time. Just like in the first algorithm, the identified records are then traced back

to the original HTML source code and the identified area of the source code is ontolog-

ically validated record by record. The approach proved to work well with a number of

sites. However the processing time is somewhat higher compared with the first algorithm,

due to the need for counting<tr> tags of every table in the page and sorting the counts.

38

3.2.5 Information Extraction

Validated records output by either of the algorithms are used for extraction of attributes

of the target domain-specific schema. The records consist of information atoms delimited

by HTML tags or groups of tags. Each atom is tested separately to fit the extraction rules

for each attribute of the schema. The extraction rules are based on the domain knowledge

associated with each attribute. A decision tree exploring all possible ways to format a

given attribute is applied to information atoms using regular expressions to check against

a particular formatting. Information atoms may constitute a part of the target attribute, for

example, values of month and day of the same date value may be located in two adjacent

information atoms. The specified extraction rules are capable of detecting such adjacent

atoms and mapping them to a corresponding target attribute. Multivalued attributes of

source schemas are mapped to a single target attribute as a list of values. The generic

domain independent IE algorithm used in the system is presented in Figure 3.8.

Figure 3.8 The IE algorithm

39

3.2.6 Data Consolidation and Output

After the IE phase is completed, the validated extracted records are stored in a Microsoft

ADO recordset object, which allows any SQL manipulations. At this point, Order By and

Filter criteria of the user query are applied to the recordset.

The sorted and filtered recordset is then used to generate a report in a dynamically

generated HTML page. The target schema of the report is dynamically adaptable to the

frequency of attributes in the processed source schemas. The user can customize the policy

strictness on inclusion or exclusion of the source attributes by setting a threshold value

anywhere between the union of all values (0%) and the intersection (100%).

An example of record consolidation generated by online databases on www.orbitz.com

(Figure 3.4) and www.expedia.com (Fugure 3.2) is shown in Figure 3.9. Note that the sys-

tem can consolidate records with substantially different structures. Orbitz records show

two-way flight details, while Expedia records only show one-way flight information. As

seen from Figure 3.9, the system also successfully maps differently formatted source at-

tributes to the target schema. Note that the structure of the consolidated records varies to

accommodate one-way and two-way flight details. In the case of this domain, the system

expects either one of these presentations, which is a part of the domain knowledge used

during the IE process, and adapts the output record structure accordingly.

Figure 3.10 shows the report headers with threshold value set to 0% (union) and 100%

(intersection).

40

Figure 3.9 Consolidated records of flight reservation domain

Figure 3.10 Dynamically adaptable target schema

3.2.7 User Interface

The system GUI (Figure 3.9) allows the user to specify a domain query in the upper left

text box. Then after the Submit Query button is pressed the system does not require any

human interaction. It automatically finds the Web forms in the specified domain, fills

41

and submits them, extracts data from the generated result pages, and outputs the query

result in a dynamically generated HTML report table. The right upper text box displays

identified records of the result page that has been processed prior to their submission to

the IE Module. It is primarily used for testing. The system also allows manual navigation

to the result pages using the URL box and the WebBrowser ActiveX control and data

extraction from these pages by pressing the Extract button. The extracted data from all

processed pages is kept in the system and displayed as a report once the Report button

is pressed. The Report button can also be useful for regeneration of the report using a

different target schema threshold, which can be set in the Options menu.

3.2.8 Domain Plug-in Modules

3.2.8.1 General Information

The system is based on the idea of isolation of domain knowledge in independent plug-in

modules separate from the system, some of which can be added in the future to extend the

functionality of the system according to the user’s needs. Each module is implemented

as a collection of a DLL file, which contains all domain-specific processing functions,

and two or more XML files. One of them contains domain knowledge for identification

of Web forms and their mapping to the user query, such as search keywords, thesaurus,

etc. This XML file is not implemented in the current iteration of the system as integration

of the Information Retrieval module and OntoBuilder Agent with the system is yet to be

done. OntoBuilder output XML files covering ontologies of Web forms used for testing

42

are currently used as stubs for the missing modules. The second domain plug-in XML

file contains a collection all possible attributes in a given domain and their extraction

rules. The form mapping file can be modified by the user to add new entries or customize

the existing items. The file with extraction rules can be modified to customize existing

extraction rules. This may be useful for various reasons, for example a user in England

may want to replace a dollar sign with a pound sign in the price extraction rule. Below is

a partial XML file with extraction rules used in the flight-reservation domain for the US

locale.

<?xml version="1.0" encoding="UTF-8" ?>

<Record>

<RecordAnchor>’$’ Or ’usd’</RecordAnchor>

<AdditionalRecordValidation>[Time]

</AdditionalRecordValidation>

<Attribute>

<Name>Price</Name>

<ExtractionRule>Price(’$’ Or

’usd’)</ExtractionRule>

</Attribute>

<Attribute>

<Name>Time</Name>

<ExtractionRule>’*## [ap][m]*’ Or

43

’*##[ap][m]*’ Or ’*## [ap] *’ Or

’*##[ap]*’</ExtractionRule>

</Attribute>

... other attributes

</Record>

The record anchor is used for record identification. A combination of the record anchor and

additional record validation rules specified by the first two entries is sufficient to correctly

validate records of the flight-reservation domain as each schedule must contain pricing

and flight time information. A price attribute by itself may be present in other non-record

sections of the page, for example, a hotel add. The time attribute may also appear by itself,

for example, in the section of the page showing the time of the report generation. However,

there is a very high probability that no other non-record section of the result page would

contain both of these attributes. The attribute entries of this XML file identify the attribute

name and its extraction rule. The extraction rules can be of three types: 1) a regular ex-

pression in single quotes, 2) an attribute name defined in another attribute entry (showed in

square brackets), or 3) an extraction function defined in the domain plug-in DLL. Multiple

rules can be concatenated with ”And” or ”Or” and grouped with braces. The functions

are used for complex attributes that may span over multiple adjacent information atoms

and therefore cannot be extracted with a single regular expression. The extraction func-

tions still let the user modify the essential part of extraction rules through their arguments.

Multiple argument values can be submitted to the extraction functions as a list of single

44

quoted values separated by ”Or”, e.g. ’$’ Or ’usd’. In this case each of these values will

be applied one at a time in attempt to map the information atoms to the target attribute of

the function. The part of the program processing this XML file uses the extraction rules

written as regular expressions to map them to the corresponding Boolean IsXXX functions

and provide them with the arguments. During the information extraction phase the IsXXX

functions are used for mapping information atoms to the target attributes.

Some other XML files may be used by creators of the domain plug-ins as long as they

are referenced for the plug-in DLL file. For example, one-to-many relationships like Make

- Model in the Car Sales domain can be conveniently represented in an XML file.

The domain plug-in files are expected to be created by the company that distributes

the program and provides its maintenance. The initial distribution may come with a lim-

ited number of plug-ins while extra plug-ins may be downloaded from an ever-growing

library located on the company’s Web site. Due to the complexity of DLL creation the

end users will only be able to modify existing plug-ins by changing values in the corre-

sponding XML files to tailor their functionality to the desired locale or other preferences.

As mentioned above, the plug-in installation is extremely simple. The DLL and XML

files must be copied to specified directories on the user’s machine running Windows. A

domain name specified in the query will be used to dynamically link the corresponding

DLL, which has the expected locations of the XML files. This way the functionality of

the selected domain becomes current to the system until another query using a different

domain name is submitted.

45

3.2.8.2 Creation of Domain Plug-ins

Domain plug-ins capture the target ontology of the corresponding domain of information

as it exists on the World Wide Web. Therefore, the first step in creation of a domain plug-

in is learning the target ontology by the creators of the plug-in. Various combinations of

keywords should be tried to identify the ones that yield the highest recall. Ontological

terms (classes), slots, and functions should be learned from studying a large number of

Web forms and the corresponding result pages. Once the creators of the plug-in have this

knowledge they can make decisions about the implementation. For example, studying of

the result pages will answer such important questions as: What combination of linguis-

tic anchors uniquely identifies (with a high degree of probability) target records? Will a

single information atom span multiple target attributes? Will a single target attribute span

multiple information atoms? Answering questions like these will create a unique set of

implementation decisions.

Creation of a new plug-in by modification of an existing plug-in for a different do-

main is fairly straight forward. The XML files should be redefined with new keywords,

anchors, extraction rules, etc. The DLL file should update the references to the new XML

files. If there are new IE functions specified in the IE XML file, they should be imple-

mented, while unused functions should be deleted. Likelihood of different relationships

between information atoms and target attributes (determined from domain analysis) may

also require modifications in the IsXXX functions for IE that can be carried over to the

new plug-in. New IsXXX functions should be added to cover new target attributes and the

46

unused functions should be deleted. These major steps account for about 95% of the effort

needed in creation of a new plug-in, the other 5% is other common sense modifications

that are difficult to classify.

3.2.8.3 Benefits of Plug-in Architecture

The benefits of using the plug-in architecture are numerous. This architecture allows easy

and seamless extension of program functionality by simple addition of new plug-in files

that cover new ontologies. There is no need to recompile the program for this purpose.

Many ontologies require similar yet different features. For example, IE of a target at-

tribute Time may need two different approaches in two different ontologies. Isolation of all

domain-specific functionality in domain plug-ins prevents incorrect use of functions like

IsTime from this example. From the software engineering point of view this architecture

is beneficial as it increases cohesion and decreases coupling of program elements.

Finally, extending the number of ontologies covered by the system by creating a new

domain plug-in is simpler than doing it any other way. One may just copy an existing

plug-in for a different ontology and use it as a template for the new ontology by making

all the required modifications. This task may be fairly simple if the two ontologies are not

disparate.

It is important to note that the benefits of the plug-in architecture are strictly of the

software engineering kind. Use of plug-ins does not improve the power of the ontology-

driven data extraction functionality of the system. Yet, it provides a sound organization of

47

the system that minimizes programming errors and provides ease of functionality exten-

sion.

CHAPTER IV

EXPERIMENTAL RESULTS

4.1 Qualitative Comparison with Related Tools

The major contribution of the Chameleon project is the development of novel record iden-

tification and IE techniques that are applicable for use in smart agents automatically query-

ing domains of the hidden Web rather than particular sites or pages. Therefore, this sec-

tion provide a comparison of our system with the related Web IE tools. The developed

system has been tested with flight reservation Web sites and produced good results. This

domain utilizes very complex HTML structures for encoding records of the online flight-

information databases which reflects complexity of the source schemas used in this do-

main. We have not seen any other tools in the literature that would work in this domain.

Therefore, Table 4.2 provides the experimental results of the developed system only. The

two last columns of Table 4.2 show how the two developed algorithms cover the source

pages. Qualitative comparison with related IE tools is summarized in Table 4.1.

The qualities used in Table 4.1 for system comparison are key for an IE system that

can work with a smart Web query agent for crawling the hidden Web. There are no widely

used commercial products of this class of software, yet the need for these tools cannot be

48

49

Table 4.1 Qualitative comparison with related IE tools
XWRAP RoadRunner WIEN Stalker BYU

Tool
Proposed
System

Capable of wrapper
generation (in a given
domain) without human
supervision, regardless the
HTML record structure.

No Yes No No Yes Yes (*)

Supports nesting and
complex variant record
structures.

Yes Yes No Yes No Yes

Capable of generation of
dynamic domain-specific
wrappers independent of
formatting or layout changes.

No No No No Yes Yes

* Current implementation only supports table-based record structures.

overestimated. Therefore these criteria were selected for the system comparison as they

determine the modern-day scientific value of the IE tools being examined.

The first quality listed in the table is the most essential for functionality of the smart

agent. The user interaction should be minimized to formulating a query, selecting a search

domain and possibly setting some custom search conditions. After that the agent must

perform the search process on all the sites that it finds automatically, which includes auto-

matic IE from pages having different record structures within one session. The user should

not be involved in structural analysis of the pages, trying various extraction heuristic, or

any of that.

The second quality shows the robustness of the examined tools. Complexity of record

structures should not deter the IE tool from wrapping the result pages.

The last quality shows if the tool is capable of generation of dynamic wrappers in run

time, which is a big advantage for smart agents as it eliminates the need for maintenance of

large libraries of static wrappers, which require verification before their use and regenera-

50

tion every time the formatting or layout of the source page is changed. It also eliminates

potential IE errors caused by poorly performed wrapper verification.

The developed system has all of these qualities, while none of the other related IE tools

has all of them. This makes the developed system superior and most fit for use with smart

Web query agents.

4.2 Testing Domains

As discussed above, the system provides domain-specific information extraction rather

than document-specific. The system architecture allows functionality extension by adding

more domain plug-in modules implemented as XML and DLL files. Two domain plug-ins

are currently implemented. The first plug-in covers form submission and IE in the flight-

reservation domain and the second one covers IE in the used-car sales domain. The flight-

reservation plug-in has been tested and shown to function correctly with various sites.

Table 4.2 presents the results of the testing specifying the record identification algorithm

used during the wrapper generation. Recall that the TR-Fan-out algorithm is invoked only

when the HTML Table Tree algorithm fails to identify records correctly.

Table 4.2 Sites from which the system successfully extracts data
Flight Reservation Sites from
which the System Performs
Successful Data Extraction

HTML Table Tree Algorithm TR-Fan-out Algorithm (activated
to work with pages not covered
by the Table Tree Algorithm)

www.expedia.com Yes --
www.orbitz.com No Yes
www.travelocity.com No Yes
www.cheaptickets.com No Yes
www.delta.com Yes --
www.nwa.com Yes --

51

To our best knowledge, there is no other tool performing IE from this domain. The

used-car sales domain happens to be less complex and its ontology was implemented by

creators of the BYU tool [9]. This tool is also capable of dynamically wrapping HTML

content based on a manually constructed domain ontology. Since this tool is functionally

the closest to Chameleon, their performances in the used-car sales domain are compared

in table 4.3. The analysis of this comparison is provided in section 4.4.

4.3 Information Extraction Performance Metrics

Traditionally performance of an information extraction task is measured by precision, re-

call, and the F-measure that combines precision and recall [8]. Generally speaking, recall

is a measure of how much information was correctly extracted and precision shows the re-

liability of the extracted information. The following formulae can be used to find precision

and recall:

Precision =
NC

NP

Recall =
NC

NT

whereNC is the number of correct answers (true positives),NP is the number of answers

produced (true positives and false negatives), andNT is the total of possible corrects (false

positives and true positives). The formulae can produce real numbers between 0 and 1,

which are often expressed as a percentage. The F-measure quantifies the performance in a

52

single value, which is often used to compare the performance of different systems. Below

is the formula for the F-measure.

F =
(β2 + 1)PR

β2P + R

where P is precision, R is recall, andβ is a parameter that can be set to favor either recall

or precision. Ifβ = 1 recall and precision have equal weights. In this case the F-measure

is called the F1 score [8].

To quantify the experimental results presented in the next section we need to determine

what constitutes correct answers, answers produced, and total of possible corrects. Count-

ing of these values can be done on the basis of a single HTML source page. The total

number of correct answers is the number of values in the intersection of the source table

values and extracted values. The number of answers produced is the number of extracted

values. The total of possible corrects is the number of values in the source table. This

quantifies extraction quality from a single source, which is not enough to objectively rep-

resent extraction power of a given IE tool. To achieve the objective measure of extraction

power the tool should be tested on a large number of randomly selected record-structured

HTML sources given they belong to the information domain being tested. Then the aver-

age values of precision, recall, and the F1 score (or the F-measure) will identify the true

information extraction power of the tool in study. The next section provides such metrics

for Chameleon and the BYU tool.

53

4.4 Quantitative Comparison with the BYU Tool

This section presents results of comparative testing of the BYU tool and Chameleon. As

explained in Sections 4.1 and 4.2, the BYU tool was selected because of its analogous

ontology-driven IE implementation, which allows domain-specific IE as opposed to page-

specific IE of other extraction tools. The comparison that is provided below reveals the

superiority of Chameleon’s record identification algorithms and IE implementation.

To perform a fair comparison of the tools the source pages were obtained from sites

whose links were retrieved by ”used cars” search keyword combination at www.yahoo.com

and from an online listing of Mississippi car dealers. Different queries were performed on

different selected sites to generate a minimally biased set of source pages. The only cri-

terion used in selection of the source pages was that they should comply with the major

elements of ontology (domain knowledge) specification, namely, the Price and Make at-

tributes must be present in the record structures.

The Chameleon UsedCars domain plug-in supports extraction of a slightly larger set of

target attributes (Price, Year, Make, Model, Mileage, Color, and VIN) compared with the

set of attributes specified in the BYU Car ontology (Year, Make, Model, Mileage, Price,

and Phone number). This slight difference does not preclude fair comparison between the

performances of these tools.

The BYU tool was tested on January 11, 2004 using the online demo available at

www.deg.byu.edu. The Car ontology was used for the test.

54

Table 4.3 provides the experimental data in terms of whether or not the extraction

was successful, precision, recall, and the F1 score. Chameleon’s success rate is almost

twice as high as that of the BYU tool. Chameleon’s precision and recall values are also

higher. The precision rate is very high due to rigorous validation procedures implemented

in Chameleon. The www.carsearch.com page was not extracted by Chameleon due to the

presence of an ad that had all record identification anchors in it. As a result the ad was

extracted instead of the records. The other two pages not extracted by Chameleon used

a list instead of an HTML table to group records. As mentioned previously, Chameleon

does not work with lists.

The important conclusion that can be drawn from this comparison is that the proba-

bilistic approach to record identification used in the BYU tool is not very practical. The

two record identification algorithms proposed in this thesis operate on much more sound

assumptions, which results in the superior IE mechanism.

55

Table 4.3 Comparison of the BYU tool and Chameleon performances

No. Web Site Extracted? Precision Recall F1 score Extracted? Precision Recall F1 score
1 autos.yahoo.com No Yes 100% 100% 100%
2 www2.nada.org Yes 100% 100% 100% Yes 100% 100% 100%
3 www.arcardealers.com Yes 100% 83% 91% Yes 100% 100% 100%
4 www.autoselect.com Yes 89% 100% 94% Yes 100% 100% 100%
5 www.autotrader.com Yes 43% 50% 46% Yes 100% 100% 100%

6
www.bayside-
ms.fivestardealers.com Yes 100% 100% 100% Yes 100% 100% 100%

7 www.bertallen.com Yes 89% 100% 94% Yes 100% 100% 100%

8
www.blackburn.fivestardealer
s.com No Yes 100% 100% 100%

9 www.carbuyer.com No Yes 100% 100% 100%
10 www.carlhogan.com No Yes 100% 100% 100%
11 www.carmax.com No Yes 100% 100% 100%
12 www.cars.com No Yes 100% 100% 100%
13 www.carsdirect.com Yes 57% 13% 21% Yes 91% 33% 48%
14 www.carsearch.com No No
15 www.cartrackers.com No No
16 www.clementscadillac.com Yes 100% 100% 100% Yes 100% 100% 100%
17 www.dealsonwheels.com No No
18 www.eastbrooktoyota.com No Yes 100% 100% 100%
19 www.edmunds.com No Yes 100% 100% 100%
20 www.enterprise.com Yes 100% 100% 100% Yes 100% 100% 100%
21 www.graydaniels.com No Yes 100% 100% 100%
22 www.herrin-gear.com No Yes 100% 100% 100%

23 www.holmandealerships.com Yes 93% 100% 96% Yes 100% 100% 100%

24
www.hondadelercombrookhav
en.com Yes 98% 100% 99% Yes 100% 100% 100%

25 www.jimrobinsongroup.com Yes 100% 83% 91% Yes 100% 100% 100%
26 www.motorzoo.com No Yes 100% 100% 100%
27 www.paulmoak.com Yes 88% 100% 94% Yes 100% 100% 100%
28 www.rogersusryhonda.com No Yes 100% 100% 100%
29 www.ropertoyota.com No Yes 100% 100% 100%
30 www.southernimports.com Yes 87% 100% 93% Yes 100% 100% 100%
31 www.turanfoley.com Yes 100% 100% 100% Yes 100% 100% 100%
32 www.tuscaloosatoyota.com No Yes 100% 100% 100%
33 www.usedcars.com Yes 100% 100% 100% Yes 100% 100% 100%

Total number of sites
extracted 16 30

Averages based on extracted
sites 90.25% 89.31% 88.70% 99.70% 97.77% 98.28%

BYU Tool Chameleon

CHAPTER V

CONCLUSION

5.1 Summary

The hidden Web is beyond the reach of the Internet search engines, yet problems such

as automated comparison search require mechanisms allowing autonomous querying of

multiple sites of the hidden Web. To date, this problem has not been successfully solved.

In this thesis we have developed a smart agent for querying domains of the hidden Web.

We have shown feasibility of the proposed system architecture that allows completely au-

tonomous querying of a selected domain of the hidden Web consisting of a number of Web

sites identified by the agent at run time. The research presented in the thesis concentrated

on record identification and information extraction from semistructured HTML encoded

records generated by online databases, and consolidation of the extracted data in a record-

set that can be used for further conventional SQL-like queries. The resulting tool is able

to perform these operations without any prior knowledge of format, structure, or layout of

the result pages generated by online databases, as long as all of the result pages belong to

the same information domain. This is achieved by providing domain plug-ins to the main

program that performs generic processing. The domain plug-ins contain the information

about the ontology and IE heuristics of the corresponding domain. The plug-in architec-

56

57

ture allows easy extension of the program functionality by adding new plug-ins covering

new domains of Web sites.

The record identification algorithms and the IE technique have been shown to perform

substantially better than the closest ontology driven IE tool. The BYU tool selected for the

comparison is the only widely known tool that is also capable of domain-specific IE. This

shows the importance of the contribution of the thesis in this area of research.

5.2 Future Work

The current implementation of the system leaves out development and integration of the

Information Retrieval Module / Validator and OntoBuilder Agent (Figure 3.1). While there

have been a few research projects that can be utilized in development of each of these

modules, the future research should be aimed toward tailoring their design for integration

with the Chameleon system in a seamless fashion.

The future research should also concentrate on increasing the power of the Record

Identifier / Validator module to increase the coverage of the source documents and possibly

cover non-table-based records.

The organization of domain plug-ins can be improved for better domain coverage to

ease their work with complex domains. Submission of multipage Web forms and IE from

multiple result pages within one site are currently not supported. The future research

should find the way to overcome these difficulties.

58

Finally, automation of domain plug-in creation is another area worthy of future re-

search. The OntoBuilder agent is the first step in this area. The agent automatically creates

and matches ontologies of single-page Web forms. However, the agent has an unaccept-

ably high error rate. On the other hand, the OntoBuilder tool for semiautomatic ontology

generation relies on human interaction and domain knowledge to correct the errors. A

common ontology based on a high number of learning examples from a given domain can

possess fairly high precision and recall. It seems that human interaction is inevitable for

creation of a sound domain plug-in, but the human effort can be substantially decreased

with development of computer aided design tools for this task.

REFERENCES

[1] B. Adelberg, “NoDoSE: A Tool for Semi-Automatically Extracting Structured and
Semi-Structured Data from Text Documents,”Proceedings of SIGMOD Record 27,
1998, vol. 2, pp. 283–294.

[2] M. Calif and R. Mooney, “Relational Learning of Pattern-Match Rules for Informa-
tion Extraction,”Proceedings of the ACL Workshop on Natural Language Learning,
Spain, July 1997.

[3] L. Chen, H. Jamil, and N. Wang, “Automatic Wrapper Generation for Semi-
Structured Biological Data Based on Table Structure Identification,”1st Interna-
tional Workshop on Biological Data Management - BIDM 03, Prague, Czech Repub-
lic, 2003.

[4] L. Chen and H. M. Jamil, “On Using Remote User Defined Functions as Wrap-
pers for Biological Database Interoperability,”International Journal of Cooperative
Information Systems, vol. 12, no. 2, March 2003, pp. 161–195, Special Issue on
Biological Databases.

[5] V. Crescenzi and G. Mecca, “Grammars Have Exceptions,”Information Systems,
vol. 23, no. 8, 1998, pp. 539–565.

[6] V. Crescenzi, G. Mecca, and P. Merialdo, “RoadRunner: Towards Automatic Data
Extraction from Large Web Sites,”Proceedings of VLDB, 2001, pp. 109–118.

[7] R. B. Doorenbos, O. Etzioni, and D. S. Weld,A Scalable Comparison-Shopping
Agent for the World Wide Web, Tech. Rep. UW-SCE-96-01-03, Department of Com-
puter Science and Engineering, University of Washington, 1996.

[8] L. Eikvil, Information Extraction from the World Wide Web: A Survey, Tech. Rep.
945, Norwegian Computing Center, 1999.

[9] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, Y.-K. Ng, D. Quass, and
R. D. Smith, “Conceptual-Model-Based Data Extraction from Multiple-Record Web
Pages,”Proceedings of DKE 31(3), 1999, pp. 227–251.

[10] D. W. Embley, Y. S. Jiang, and Y.-K. Ng, “Record-Boundary Discovery in Web
Documents,”Proceedings of SIGMOD, 1999, pp. 467–478.

59

60

[11] N. Kushmerick, D. S. Weld, and R. B. Doorenbos, “Wrapper Induction for Informa-
tion Extraction,”Proceedings of IJCAI (1), 1997, pp. 729–737.

[12] A. H. F. Laender, B. Ribeiro-Neto, and A. S. da Silva., “DEByE - Data Extraction
by Example,”Data and Knowledge Engineering, vol. 40, no. 2, 2002, pp. 121–154.

[13] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. D. Silva, and J. S. Teixeira, “A Brief
Survey of Web Data Extraction Tools,”SIGMOD Record, June 2002, vol. 31, pp.
84–93.

[14] S. W. Liddle, S. H. Yau, and D. W. Embley, “On the Automatic Extraction of Data
from the Hidden Web,”Proceedings of ER Workshops, 2001, pp. 212–226.

[15] L. Liu, C. Pu, and W. Han, “XWRAP: An XML-Enabled Wrapper Construction
System for Web Information Sources,”Proceedings of ICDE, 2000, pp. 611–621.

[16] G. Mecca, P. Atzeni, A. Masci, P.Merialdo, and G. Sindoni, “The ARANEUS Web-
Base Management System,”Proceedings of SIGMOD Record 27, 1998, vol. 2, pp.
544–546.

[17] Microsoft, “.NET Passport,” http://www.microsoft.com/net/services/passport/, (cur-
rent 12 Sep. 2003).

[18] G. A. Modica, A. Gal, and H. M. Jamil, “The Use of Machine-Generated Ontologies
in Dynamic Information Seeking,”Proceedings of CoopIS, 2001, pp. 433–448.

[19] I. Muslea, “Extraction Patterns for Information Extraction Tasks: A Survey,”Pro-
ceedings of The AAAI-99 Workshop on Machine Learning for Information Extrac-
tion, 1999.

[20] I. Muslea, S. Minton, and C. Knoblock, “Hierarchical Wrapper Induction for
Semistructured Information Sources,”Journal of Autonomous Agents and Multi-
Agent Systems, vol. 4, no. 1/2, 2001, pp. 93–114.

[21] S. Raghavan and H. Garcia-Molina,Crawling the Hidden Web, Tech. Rep. 2000-36,
Computer Science Department, Stanford University, December 2000.

[22] S. Soderland, “Learning Information Extraction Rules for Semi-Structured and Free
Text,” Machine Learning, vol. 34, no. 1-3, 1999, pp. 233–272.

	Autonomous Consolidation of Heterogeneous Record-Structured HTML Data in Chameleon
	Recommended Citation

	tmp.1625165283.pdf.Y4KPB

