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This thesis investigates the use of sequential parametric projection pursuits 

(SPPP) for hyperspectral dimensionality reduction and invasive species target 

recognition.  The SPPP method is implemented in a top-down fashion, where 

hyperspectral bands are used to form an increasing number of smaller groups, with each 

group being projected onto a subspace of dimensionality one.  The Bhattacharyya 

distance is used as the SPPP performance index.  The performance of the SPPP method 

is compared to two other currently used dimensionality reduction techniques, namely 

best spectral band selection (BSBS) and best wavelet coefficient selection (BWCS).  The 

ATR system is tested on two invasive species hyperspectral datasets:  a terrestrial case 

study of Cogongrass versus Johnsongrass and an aquatic case study of Waterhyacinth 

versus American Lotus.  For both case studies, the SPPP approach either outperforms or 



 

  

performs on par with the BSBS and BWCS methods in terms of classification accuracy; 

however, the SPPP approach requires significantly less computational time.  
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CHAPTER I 
 

INTRODUCTION 
 

1.1 Hyperspectral Image Analysis 
 

A variety of imagery can be used for remote sensing applications, including the 

following imaging modalities: panchromatic, multispectral, hyperspectral, radar, and 

lidar. From these modalities, hyperspectral imagery arguably has the most potential 

for subpixel target recognition.  This potential stems from the nature of hyperspectral 

imagery having many spectral features per pixel.  And as hyperspectral sensor 

technology advances, the number of spectral features per pixel increases.  In theory, 

this increase in the number of features can improve subpixel target detection 

accuracy.  In practice, however, this may not be true due to three main factors.   

The first factor deals with the bandwidth and computational time requirements 

for processing the hyperspectral data.  With the increase in spectral bands, these 

requirements for per-pixel analysis can become inordinate and preclude practical 

applications.  For this reason, it is typically desirable for the hyperspectral data to be 

preprocessed such that the dimensionality of the data is significantly reduced.  

The second factor is related to the training of automated target recognition 

(ATR) systems.  When designing and utilizing supervised ATR systems, there exists 

a direct relationship between the number of potential features and the amount of



 

 

2
necessary training data.  If the number of features is excessively increased without 

appropriately increasing the amount of training data, the ATR system can easily 

become overtrained.  If the amount of training data remains constant, as the number 

of features increases, the target detection accuracy will increase to a critical point 

where, thereafter, the classification accuracy decreases.  This trend is known by 

various names, including the “curse of dimensionality” and “Hughes phenomenon” 

[1,2].  

The third and final factor deals with the limitations of not having the ability to 

employ necessary statistical methods on the data.  This is evident in statistical 

methods which use the computation of the inverse of a covariance matrix, as is the 

case with Fisher’s linear discriminant analysis and maximum likelihood classifiers.  

With these methods, when the numbers of features excessively increase with a 

limited number of training samples, the feature covariance matrices can become 

sparse, and their inverses may not be computable.  As a result, these statistical 

methods, which are commonly found in supervised ATR systems, can fail. 

These three factors necessitate the use of dimensionality reduction 

methodologies for hyperspectral data.  These methodologies can be utilized as a 

preprocessing stage or as a feature extraction/optimization stage within the ATR 

system.  

 

 

 



 

 

3
1.2 Invasive Species 
 

An “invasive species” is defined as a non-native species whose introduction 

causes or is likely to cause harm to the environment, human health, or economy [3].  

Over the years, remote sensing has become an important tool for the detection and 

mapping of invasive vegetation.  Remote sensing technologies, such as aerial 

photography and multispectral digital imagery, have been used successfully to detect 

dense weed infestations when there is a unique spectral pattern expressed by the 

weed [4].   Due to the availability of hyperspectral data, new methods of detecting 

invasive species are being established everyday.  The hyperspectral imagery may 

allow for the early detection of incipient infestations and increased detection 

accuracy via subpixel ATR systems [4].  In particular, hyperspectral imaging could 

prove beneficial to the early detection of two example invasive species, Cogongrass 

(Imperata cylindrica) and Waterhyacinth (Eichhornia crassipes).  Both of these 

invasive species are becoming widespread in the southeastern United States.  

Cogongrass is an agressive noxious weed that forms thick clumps releasing toxins 

that smother out native plants.  Cogongrass has invaded extensive acreage of 

roadways, pasturelands, and forests, and as a result, is causing significant ecologic 

and economic damage.  For example, Cogongrass can quickly colonize in the open 

areas left after natural forests have been cleared, making it very difficult to be 

reforested or be converted to other agricultural uses.  In addition, the Cogongrass 

infestations significantly damage the wildlife habitat and serve as wildfire fuel.  

Waterhyacinth is a floating aquatic invasive native to South America and has invaded 
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many lakes, ponds, canals, and rivers in the United States.  Waterhyacinth can create 

dense mats of floating vegetation, causing considerable economic and ecologic 

damage.  A few ways in which Waterhyacinth causes economic damage includes 

obstructing waterway navigation, blocking drainage which can cause flooding or 

prevent subsidence of floodwaters, clogging irrigation pumps, intensifying mosquito 

problems, and blocking access to recreational areas and decreasing waterfront 

property values.  Clearly, it would be beneficial to use a cost effective method, such 

as remote sensing, to detect and monitor the spread of these types of invasive species. 

 
1.3 Contributions of this Thesis  

In this thesis, a method known as projection pursuits will be applied to 

hyperspectral data.  Projection pursuits will be used as an automated means of 

determining optimum dimensionality reduction of the hyperspectral signatures, 

where the goal is detection of a target invasive species.  The projection pursuits 

method will utilize a bank of four potential linear projections: averaging, Gaussian 

weighted averaging, principal component transform, and Fisher’s discriminant 

transform.  An automated band grouping system will be used to determine an 

optimum partitioning of the hyperspectral signature, where each partition or group of 

spectral bands will then be projected onto a lower dimensional subspace using one of 

the potential projections.  Bhattacharyya distance will be used as a performance 

metric in the optimization process.  The overall projection pursuits method will be 

incorporated into an automated target recognition system that uses a nearest mean 
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classifier, and the system will be applied to hyperspectral data of invasive species.  

Two case studies will be conducted:  Cogongrass versus Johnsongrass and 

Waterhyacinth versus American Lotus, representing realistic scenarios where the 

target invasive could be misidentified as a similar non-invasive vegetation.  The 

results of the projection pursuits approach will be compared to two currently popular 

dimensionality reduction methods, best spectral band selection and best wavelet 

coefficient selection.   

The final outcome of the thesis will be a determination of how projection 

pursuits compares to the other dimensionality reduction methods in terms of accuracy 

and computation expense, as well as an in depth analysis of the results of the 

projection pursuits method, including an analysis of how the hyperspectral signal is 

partitioned, which potential projections are most often selected, and how much the 

supervised projections improves the performance.  
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

 
2.1 Invasive Species 

 
2.1.1 Cogongrass 

Cogongrass (Imperata Cylindrica) is an invasive species which originated 

from South Asia, the Philippines, and Japan [5].  Cogongrass is currently present in 

the south and southeastern sections of the United States.  This plant has the potential 

to grow from 2 to 4 feet tall and have leaves which are 1 ½ inches wide.  Cogongrass 

tends to grow in dense colonies in open fields, along roadsides, and in forests that are 

not fully canopied.  They are considered an ecological threat because they have the 

capability of causing more frequent fires in a fire-driven ecosystem when the density 

of the colony is high [5].  Cogongrass has the ability to choke out the native plant life 

which in turn affects the habitat of insects, mammals, and birds. Furthermore, 

Cogongrass has the ability to decrease pine growth in a pine plantation if the 

infestation is very dense, thus reducing the amount of pine that can be harvested [6].   

Weeds, such as Cogongrass, cause an overall reduction of 12 % in crop yield in US
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agriculture [7].  This 12 % in reduction represents an annual crop production lost of $ 

32 billion dollars.  Cogongrass and Johnsongrass (sorghum halepense) were the two 

vegetations compared in this experiment.  These two plant species were chosen for 

comparison for three reasons: (i)throughout the south and southeastern United States 

both species are commonly found adjacent to one another, (ii) they have spectral 

similarities, and (iii) they have physiologic similarities, which is shown in the Figure 

2.1 and Figure 2.2.  

  

(a) (b)  

Figure 2.1  Cogongrass and Johnsongrass pictures. (a) Cogongrass image taken in 
                  southern Mississippi, U.S.A.  (b) Johnsongrass image in northern 
                  Mississippi, U.S.A. 
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water has the capabilities of causing costly damage and repairs to structures in its 
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Figure 2.2  Ten randomly selected hyperspectral signatures of Cogongrass (red) 
                   and  Johnsongrass (blue) 
 
 
2.1.2 Waterhyacinth 
 

Aquatic invasive species, such as Waterhyacinth (Eichhornia Crassipes), 

have the capability of reducing the growth of native plant life and altering the 

communities of fish and other wildlife [7].  Waterhyacinth is an invasive species 

which originated from South America.  An annual cost of more than $100 million is 

invested in the United States for the control of nonindigenous aquatic weed species 

[7].  This invasive species is a floating tropical species which has the means of 

overtaking a body of water in 30 days.  This characteristic prevents native aquatic 

plants from producing oxygen which makes the body of water uninhabitable [7].  

This aquatic plant is known for hindering commercial and recreational traffic through 

waterways and blocking ports with its dense mats [8].  When large quantities of 

Waterhyacinth are present in flowing water, it has the ability to cause damage to 

transportation infrastructures.  The weight combined with the current of the body of 

0 350 850 1350 1850 2350
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path [8]. Waterhyacinth and American lotus (Nelumbo lutea) were the two aquatic

invasive species compared in this experiment.  These two plant species were chosen

for comparison for three reasons: they have spectral similarities, they have 

physiologic similarities and they are found throughout the south and southe

of the United States, which are shown in the Figure 2.3.  

 

 
(a) 

 
 

igure 2.3  Waterhyacinth and American Lotus pictures taken in Starkville, Mississippi, 
                 U.S.A. in 2005. These vegetation were grown in tank systems in the plant and 

.2 Hyperspectral Sensors and Imaging 
 
referred to as imaging spectrometers) are 

instru

s of 

f 

 
(b) 

F
  
                   soil sciences research facility on the North Farm of Mississippi State 
                   University. (a) Waterhyacinth and (b) American Lotus. 
 
 
2

“Hyperspectral sensors (sometimes 

ments that acquire images in many, very narrow, and contiguous spectral 

bands throughout the visible, near-infrared (IR), mid-IR, and thermal IR portion

the spectrum” [9].  Hyperspectral data can contain 10’s, 100’s or even 1000’s of 

spectral bands of information.  When the hyperspectral data is reported in terms o
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 There are three typical methods in which hyperspectral data can be obtained: 

reflectance, each band contains the percentage of reflected light for a narrow range 

of wavelengths across the electromagnetic spectrum.  Hyperspectral data has the 

potential for being particularly useful in target detection applications.   Figure 2.4

displays a hyperspectral signal for one sample of the invasive species Cogongrass 

(Imperata cylindrica).  

  

 

Figure 2.4  Example hyperspectral signature of Cogongrass. 
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airborne sensors, spaceborne sensors, or handheld sensors.  Airborne sensors are 

mounted onboard planes, helicopters, unmanned aerial vehicles or other aircraft.  

Spaceborne sensors are mounted onboard satellites and are orbited around earth.  
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Handheld sensors are typically small and lightweight, where the instrument can be

hand carried into the field for data collection.     

 Compact Airborne Spectrographic Image

Infrared Imaging Spectrometer (AVIRIS) are examples of two types of airborne 

hyperspectral sensors.  CASI has been in operation since 1989 and has 288 spectr

bands.  These bands are contained in the electromagnetic spectrum range between 

0.40 and 1.0 µm in 1.8 nm spectral intervals.  This system has a field of view of 

about 37.8 degrees [9].  AVIRIS is a hyperspectral sensor which has 224 bands w

approximately 9.6 nm full width half maximum (FWHM).  These 224 bands span the

electromagnetic spectrum in the interval between .40 and 2.45 µm.  This sensor is 

capable of having a ground pixel resolution of approximately 20 m and an across-

track scanner swath width of about 10 km [9].   

 The Hyperion instrument is an example o

launched by NASA.   Hyperion is a hyperspectral imager which has 220 spectral

bands [10].  These bands are contained in the electromagnetic spectrum interval 

between 0.4 to 2.5 µm.  Hyperion has a 30 meter spatial resolution and has the 

capability of obtaining a 7.5 km by 100 km land area per image [10]. 

 The Analytical Spectral Devices (ASDTM) Fieldspec Pro handh

spectroradiometer is an example of a handheld instrument which can obtain

hyperspectral data [11]. The ASD has a spectral range of 350 – 2500 nm, spe

resolution of 3 nm @ 700 nm and 10 nm @ 1400/2100 nm, and uses a single 512 

element silicon photodiode array for sampling 350 - 1000 nm and two separate, 
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2.3 Hyperspectral Dimensionality Reduction 

imensional data.  However, much of 

ows 

 

 

tect different objects and phenomena while reducing the 

dimensionality of a dataset is a task that has not been perfected.   In current studies, 

graded index Indium-Gallium-Arsenide photodiodes for the 1000 - 2500 nm rang

[11].  As a result, an ASD hyperspectral signal contains an astounding 2151 spectra

bands.  The spatial resolution of the ASD is dependent on its height above the ground

when it is in operation.  A great advantage of the ASD is its capability of collecting 

hyperspectral signatures of individual targets (or endmembers) without mixing of 

neighboring materials.  For example, the ASD can be held over a target vegetation,

and a hyperspectral signature can be obtained for that exact target without mixing 

from other vegetation, soil, etc.  This can be very useful when conducting feasibilit

studies such as those found in this thesis. 

 

 
  Hyperspectral data is by definition high d

this data is redundant, and the samples of hyperspectral data often reside in a space 

that is mostly empty.  The redundancy is due to the spectral correlation between 

adjacent spectral bands.  The spectral correlation present in hyperspectral data all

for the data to be projected on to a lower dimensional subspace without loss of 

significant information.  The goal of this projection is to simultaneously remove

redundancy while retaining pertinent information that can be used to discriminate

between various classes of data, i.e. target hyperspectral signals vs. nontarget 

hyperspectral signals.  

 The ability to de
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different methods have been employed in the reduction of dimensionality.  Fisher

linear discriminant analysis (LDA), principal component analysis (PCA), and 

discrete wavelet transform (DWT) techniques are dimensionality reduction methods 

that are often utilized in remotely sensed hyperspectral imagery.  

LDA is a dimensionality reduction technique which projects the input data 

onto a subspace in which the data has maximum class separation. 

ion is based on the minimization of the within class covariance (SW) and 

maximization of the between class covariance (SB).  Since class-specific cova

are necessary, this method falls into the category of supervised dimensionality 

reduction techniques.  The ratio of the SB and SW are used in calculating the 

transformation matrix for the LDA algorithm [12].  This transformation matrix 

constructed by performing eigen-analysis which involves taking the inverse o

SW.  A problem with this analysis arises when there are too many features with too

few training vectors, and then the SW may become sparse.  The sparseness causes S

to become ill-conditioned and can inhibit the ability to calculate its inverse.  The 

inability to calculate the covariance matrix inverse makes this dimensionality 

reduction method problematic in many operational scenarios.   

A common way of using LDA for dimensionality reduction is a method

known by several names, including stepwise LDA, discriminant

on (DAFE), best spectral band selection (BSBS) and spectral greedy sear

All of these methods use the same basic approach.  For example, the BSBS metho

has two primary phases: forward selection and backward rejection.  During forward 
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selection, a subset of spectral bands is constructed in the following way.  (i) Spectral

bands are sorted according to their individual performance of class separation. (ii) 

The spectral band that provides maximum class separation is used as a seed to start 

the running subset. (iii) The spectral band with the next highest class separation is 

then added to the running subset to form a temporary subset. (iv) The temporary 

subset is then projected using LDA and tested to determine if it provides an increas

in the class separation.  If it does provide an increase, the temporary subset becom

the running subset. If it does not provide an increase, the running subset remains 

unchanged. (v) Steps iii-iv are repeated until all spectral bands are considered for 

addition to the running subset.  Next, backward rejection is conducted in the 

following way.  (vi) The first spectral band in the running subset is removed to for

a temporary subset.  (vii) The temporary subset is then projected using LDA a

tested to determine if it provides an increase in the class separation.  If it does 

provide an increase, the temporary subset becomes the running subset. If it does n

provide an increase, the running subset remains unchanged. (viii) Steps vi-vii a

repeated until all spectral bands in the running subset are considered for removal.  

(ix) The final running subset is then considered to be the “best” group of spectral 

bands and is projected using LDA.   

Dimensionality reduction can also be performed by employing PCA.  This

method involves computing the cova

s.  The eigen-values and eigen-vectors are then used to construct the 

transformation matrix [13]. Dimensionality reduction is achieved by truncating t
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transformation matrix, such that only the first few principal components are 

The number of principal components included in the matrix determines the 

dimensionality of the projected data.  Although PCA is a leading method in 

dimensionality reduction, it has been shown that PCA is not an adequate me

feature extraction [14].  Cheriyadat and Bruce proved in their study that PCA

sufficient method for dimensionality reduction when feature extraction is used for 

classification or target detection [14].  The primary reason is that PCA is an 

unsupervised dimensionality reduction technique.  In some operational scenarios, n

class-specific training data is available, and unsupervised methods must be u

However, if class-specific data is available, the work by Cheriyadat and Bruce shows 

that PCA should be avoided and supervised methods, like LDA, should be utilized

 Another method that has been applied in hyperspectral dimensionality 

reduction is the DWT.  The DWT decomposes the signal into detail and 

approximation coefficients using scaled and translated versions of the mother 

wavelet.  The coefficients themselves or combinations of the coefficients

commonly used as features.  Bruce et al. investigated the use of the receiver 

operating characteristics (ROC) to best select the coefficients for dimensional

reduction and feature extraction [15].  The method, called best wavelet coeffi

selection (BWCS) is similar to BSBS described above.  It contains the same forw

selection and backward rejection phases.  The main difference is that the selection 

process is conducted on the wavelet coefficients rather than the original spectral 

bands. 
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tral data, such as projection pursuits, is not a new concept.  However, it is 

A more recent method of dimensionality reduction applied to hyperspectr

signals 

e the “curse of dimensionality” while at the same time retaining information

within the hyperspectral signal that is pertinent to target detection and classificatio

The importance of this objective is illustrated by the limitation in which humans can 

interpret data in higher dimensional space.  A dataset which exceeds a dimension of 

three or more is difficult for humans to process and comprehend.  A dataset which is 

composed of dimensions of three and less gives humans not just the analytical skills 

but also a visual means to interpret the data.   

The idea of projection pursuits was coined in 1974 by Friedman and Tukey 

[16].  The technique used by Friedman and Tu

ultivariate dataset by performing an orthogonal projection on the dataset.  Th

driving force of their experiment was to formulate a low dimensional projection tha

reduced the dimensions of a point cloud by maximizing a function known as the 

projection index which was a combination of a trimmed standard deviation and a 

weighted count of the number of close pairs.  Their implementation proved to be 

birth of the projection pursuits approach.  The projection index is a robust compon

in the projection pursuits scheme.  This component provides a quantitative metric 

that can be used to determine the degree to which the dimension of the data will be 

reduced. 

The idea of performing orthogonal projections on multispectral and 

hyperspec
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ol was performed by Ifarraguerri and Chang [18]. In their study, the 

hypersp tion 

the 

rly as commonly used as methods like PCA and LDA.  The method o

projection pursuits has been applied to a few types of multispectral and hyperspectral 

applications.    

Jimenez and Landgrebe evaluated parallel and sequential projection pursuits 

methods in high

 their study, they seek to distinguish between two crops, corn and soybean, 

which was acquired from the Indiana’s Pine test site.  The parallel projection purs

approach involves projecting each adjacent spectral band.  The Bhattacharyya 

distance (BD), which is the projection index, is then applied to the features.  The 

sequential approach takes into account all the adjacent bands by projecting the 

adjacent bands and only varying one band projection.  In the sequential approach,

there is a global maximization of the projection index and is not based a local 

maximization of the projection index.  The two projection pursuits methods were 

compared against linear discriminant analysis. The two approaches proved to o

perform the discriminant analysis based on the resulting classification accuracies a

BDs.          

Another study in which projection pursuits was used as a dimensionality 

reduction to

ectral imagery was collected by the Hyperspectral Digital Imagery Collec

Experiment (HYDICE) sensor.  From this data collection, a 256 x 256 section of 

image which contained vehicles, roads, trees, and other features was analyzed. This 

study evaluated the use of projection pursuits in the analysis of hyperspectral images 
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in an unsupervised method.  In this study, the authors sought to find a projection 

which locates low probability targets that have significant spatial resolution in a 

hyperspectral image.  The projection pursuits method was performed by applying

PCA to the area of interest.  Next, the elements which had the largest eigen-value

were obtained and then placed in the transformation matrix.  Finally, the data was 

transformed and the information divergence index was applied, which is described i

[18], to produce the pixel with the highest value of the projection index.  The 

projection pursuits methods in this study proved that with the information divergence 

index the dimensionality of the hyperspectral image could be reduced while re

the important characteristics of the image.  

 Lin and Bruce evaluated the use of projection pursuits for dimensionality 

reduction using hyperspectral data for applic

recognition [19]. The data was obtained by a handheld spectroradiometer which 

collected 2000 spectral bands in the range of 350 and 2350 nm of two vegetation

species.  The targets in their experiment were sicklepod and cocklebur which are 

species of weeds found amongst variety agricultural crops.   In their study, paralle

parametric projection pursuits, projection pursuits best band selection, and sequen

parametric projection pursuits methods were used in reducing the dimensions of the

hyperspectral data to allow for efficient target recognition.  The two projection 

indexes used in this research were BD and the area under receiver operating 

characteristics curves [19].  The weights for the transformation matrix consisted

vector that averaged the bands in a group, a vector that chose only one spectr
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and a vector that maximized the performance metric.   The projection pursuits 

preprocessing methods employed in their study proved to have higher classification 

accuracies than data that were not preprocessed with the projection pursuits. 

 From these previous studies on projection pursuits, we can see that the 

method certainly holds promise as a means of hyperspectral dimensionality re

for invasive species detection applications. 
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CHAPTER III 

METHODOLOGIES 

 
3.1 Dimensionality Reduction 

Three types of dimensionality reduction methods are investigated in this 

thesis.  The primary method is projection pursuits, which is described in detail below.  

Two comparison methods are also investigated. These are the BSBS and BWCS 

methods, which are described in detail in Chapter 2. 

 
3.1.1 Projection Pursuits  

The mathematical form of projection pursuit is given by 

j
T XAY =  

where Xj is the original hyperspectral data (d x M) of class j, A is the transformation 

matrix (d x n), and Y is the projected data (n x M). The d in the original data is the 

number of spectral bands, M is the number samples being projected, and n is the 

dimension of the subspace in which the data will be projected. The columns of the 

transformation matrix A are orthogonal, which means that the dot product of any two 

columns would equal zero.  The nonzero elements in each column of the 

transformation matrix contain the weights of the potential projections.   The 

transformation matrix A is optimized by the projection index which is usually
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expressed as I(A T X).  In a two class problem, the optimization can be based on the 

classification separation of the two classes.  The optimization is performed by 

transforming the data into a lower dimension subspace and applying the projection 

index .  Projections are chosen or rejected based on the projection index 

measurement.  Thus, the selection of the correct projection index will significantly 

affect how effective the projection pursuit method will perform. 

  
3.1.1.1 Transformation Matrix A 
 

The dimension of the projection matrix is determined by the number of 

spectral bands or features within the training samples and the dimensionality of the 

projection subspace.  The columns of the transformation matrix are orthogonal and 

contain zero and nonzero elements.  Each column of the matrix A are zero for every 

entry except for the position of the adjacent bands.  The structure of the 

transformation matrix A is shown in Figure 3.1.  
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        Figure 3.1. SPPP transformation matrix formulization 
 
 
 
The nj denotes the number of bands in the jth partition or group and the k denotes the 

total number of groups. 

The construction of the sequential parametric projection pursuits (SPPP) 

transformation matrix is conducted as follows:  

1. An initial matrix A′ is constructed, for which each adjacent band Ak-1,1 – Ak-1,n 

is chosen. 

2. Using the initial matrix A′ , the high dimensional data is transformed and an 

initial global BD is computed, B′ . 

3. While maintaining all Ak,n’s constant, the A1,1 – A1,n group is split in half and 

the high dimensional data set is transformed and the global BD is computed, 

B1. 
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4. Step 3 is repeated for each value of k, until each group of adjacent bands has 

been spilt and a Bhattacharyya distance Bi is calculated for i =1:k creating a 

BD vector B
v

. 

5. The maximum value in vector B
v

is obtained, Bm.  Holding all groups 

constants, the mth group is split in the initial transform A′ and the matrix is 

stored.   

6. The BD Bm is compared to B′  and if Bm> B′  then B′= Bm and steps 2 – 6 are 

repeated until the global Bhattacharyya index stops increasing or the number 

of groups in the transformation matrix exceeds the initial size of the groups 

(i.e. the minimum number of training samples per class). 

Figure 3.2 shows the block diagram of the SPPP method which describes the 

implementation of the SPPP technique.  Figure 3.3 shows the SPPP group splitting 

diagram which illustrates how the groups are split during optimization of the 

transformation.  

 
 

                 
            Figure 3.2  Sequential Parametric Projection Pursuits Group Splitting Diagram 
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           Figure 3.3.  Block Diagram for Sequential Parametric Projection Pursuits  

Input Data: 
Perform Projection 
of data using matrix 
A.  

XTarget Initialize Coefficients 
of Transformation 
Matrix 

XNontarget Optimize the 
Projection Index 
I(ATX)       Y = ATX 

A YTarget 
YN t t

Check: 
Reinitialize the 
transformation 
matrix A   

 
Has Projection Index 
stop increasing? 

Or No Has number of 
groups in matrix A 
exceeded the original 
number of adjacent 
bands? 

Output 
Yes A 

 
3.1.1.2 Constructing Vectors for SPPP Matrix A 
 

In the section above, the overall approach for construction for the SPPP 

transformation matrix is defined.  Each column of the matrix represents a projection 

of a group of adjacent spectral bands.  The values of the non-zero elements in each 

column are the weights of that particular projection.  In this study, these projections 

are selected from a bank of four potential projections. Three of the projects are 

unsupervised.  They include a simple average, a Gaussian weighted average, and 

PCA.  One potential supervised projection is included in the bank, and it is Fisher’s 

LDA.    

The first unsupervised projection is the averaging vector.  This vector is the 

average of all the elements in the group of adjacent spectral bands in the original data 

space.  The vector is  
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where k is the kth group of adjacent bands, and nk is the number of the adjacent bands.   

The second unsupervised projection is a Gaussian-weighted average.  The vector is 

the element by element multiply of the group of adjacent bands with a Gaussian 

window vector having a length that is equal to the number of adjacent bands in each 

group.  Suppose that the ith group of adjacent bands have ni samples and is 

represented by vector ][ ,,1 inxxx KK

v = .  Also, suppose that the vector ][ ,,1 inwwg KK

v =  

contains the coefficients of an n-point Gaussian window with standard deviation of σ.  

The Gaussian guess vector is obtain by an array multiplication of the vectors 

gv and xv . 

[ ]
kk knknkkkkkn awawawxgA ×××=∗= ,,,. 2211 K

vv  

The third and final unsupervised initial vector guess is a principal component vector.  

Unlike the two previous unsupervised methods, this method employs applying eigen-

analysis to the set of adjacent bands.  In this method, the eigenvectors are used as 

weights to transform the data.  The eigenvalues and eigenvectors are computed for 

the adjacent bands.  Next, the eigenvectors are placed in decreasing order based on 

the value of the eigenvectors.  The eigenvector with the highest eigenvalue is then 

chosen as the weights for the adjacent bands.  For the PCA projection, only the first 

principal component is utilized, so the resulting dimensionality of the lower subspace 

is one. 
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The supervised method that governs the vectors weights for the matrix A is 

the Fisher’s LDA.  This method is classified as a supervised method because of the a 

priori knowledge that must be known about the data’s classification before the 

weights are calculated.  The weights were based on the class separation of the 

adjacent bands of the two classes.  This class separation is based on the minimization 

of the with-in class variance (SW) and maximization of the between class variance 

(SB).  The ratio of the SB and SW are used in calculating the transformation matrix for 

the LDA algorithm.  This transformation matrix is constructed by performing eigen-

analysis which involves taking the inverse of the with-in class variance matrix.  

Finally, the LDA weights are calculated and these weights are used as the vector 

weights.   LDA reduces the dimensionality to c-1, where c is the number of classes.  

Since both case studies in this thesis are two class problems (Cogongrass vs. 

Johnsongrass and Waterhyacinth vs. American Lotus), the resulting dimensionality 

of the lower subspace is one. 

3.1.1.3 Bhattacharyya Distance 
 

The BD is used as the performance index in the SPPP approach. It is a special 

form of the Chernoff distance.  The Chernoff distance seeks to find the upper bounds 

of the error of probability by finding the value of s which produces the maximum 

value for µ(s) [20].   The Chernoff distance for a 2 class problem is define as the 

following: 



27 

 

ss
T ss

MMssMMsss −
−

ΣΣ

Σ−+Σ
+−Σ−+Σ−

−
= 1

21

21
12

1
2112

)1(
ln

2
1)(])1([)(

2
)1()(µ   

where Mi is the mean of class i and the Σi is the covariance for class i.    

 The BD is formulated by selecting a specific s for the Chernoff distance.  This 

selection of s is not the optimum value for s, however this selection of s allows for a 

less problematical upper bound.  The value for which the BD is converted to from the 

Chernoff distance is ½.  The BD for a 2 class problem is then defined as the 

following: 
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The BD consists of two terms which governs its operation.  The first term represents 

the difference of mean of the class separation and the second term represents the 

difference of covariance of the class separation [20].  This relationship of the mean 

and covariance of the two terms can be revealed by setting the mean of both classes 

equal to each other for the first term and the covariance of the both classes equal to 

each other for the second term. 

    
3.2 Testing and Evaluation 
 

3.2.1 Classification 
 

The feature vectors are the driving force of any classifier.  The principal 

objective of any classifier is to use the feature vectors to assign the data in question 
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to the correct class.  The performance of the classifier will be optimum if the feature 

extraction method is chosen in such a manner in which the data which has very 

similar characteristics are classified together and the data which has dissimilar 

characteristics are not classified together.   

Similar to nearest neighbor classifier, the Euclidean distance defines how the 

test samples are classified in the nearest mean classification scheme. The nearest 

mean algorithm uses the Euclidean distance between the test samples and the mean 

of each class to determine how the test samples are classified.  The mathematical 

expression below expresses how this distance is calculated [1].    

( )∑
=

−=
d

n
jj nnxD

1

2)()( µvv
 

The d is the dimension of the training samples.  The x(n) represents the nth component 

test sample and the µj(n) represents the nth component of the mean vector of the jth 

class.      

3.2.2 N-Fold Cross Validation 
 

The types of testing methods that can be used for validation are dependent on 

the amount of data that is available for a target recognition system.  In the case in 

which the there is a small amount of data, the N-fold cross-validation approach is one 

of the common methods used [21].  The different testing methods are obtained by 

varying N.  Leave-one-out cross-validation is obtained when k is equal to one.  In this 

method, a set of N training instances is repeatedly divided into a training set of size 



29 

 

N-1 and a test set of size 1[21]. The partitioning of the data is repeated until each 

sample in the dataset has been designated as the test sample.  Jackknifing cross-

validation is obtained using the N-fold cross-validation approach when N is equal to 

two.  In this method, the data is divided in half, where half is used for training and 

the other half is used for validation.   The method used in this research is a 

combination of both jackknifing and leave-one-out cross-validation.  The data is 

jackknifed during training of the dimensionality reduction methods.  Then, a leave-

one-out cross-validation is applied to the overall ATR system that includes both the 

dimensionality reduction stage and the classification stage.  The leave-one-out cross-

validation of the overall ATR system is applied to the testing half of the data (i.e. not 

the training half of the data used to train the dimensionality reduction methods).  

  
3.3 Case Study Data 
 

Pure endmember hyperspectral signatures were collected for this study using 

a handheld ASD spectroradiometer.  Signatures were collected for Cogongrass and 

Johnsongrass (sorghum halepense) for the first case study and for Waterhyacinth and 

American Lotus (Nelumbo lutea) for the second case study.   

Johnsongrass and American Lotus were chosen as the non-target vegetation 

for three primary reasons.  In each of the case studies, (i) the target and non-target 

vegetation are often found adjacent to one another in the same habitats throughout 

the south and southeastern U.S.; (ii) the target and non-target vegetation have 

physiologic similarities which could cause them to be easily confused with one 
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another; and (iii) the target and non-target vegetation have spectral similarities which 

make them particularly challenging cases.  Thus, both case studies are practical and 

challenging problems for validating the proposed SPPP method. 

The hyperspectral signatures collected in this experiment were collected in 

good weather conditions in Mississippi, U.S.A., in 2000-2004 with the fiber optic 

sensor held NADIR at approximately shoulder height 4 feet above ground.  A 25o 

instantaneous field of view (IFOV) foreoptic was used, and the ASD unit was set to 

average ten signatures to produce each sample signature.  

For this study, 260 samples were used for evaluation, 125 samples of 

Cogongrass and 125 samples of Johnsongrass.  For each class of vegetation, 100 

signatures were used to train the SPPP and classifiers, while the 25 remaining 

signatures were used to test the system.  The Waterhyacinth and American Lotus 

dataset is multitemporal.  ASD hyperspectral signatures were collected each week for 

a total of 16 weeks.  The data was collected over the summer of 2005, starting in 

June and ending in October. For this study, 600 samples were used for evaluation, 

300 samples of Waterhyacinth and 300 samples of American Lotus.  For each class 

of vegetation, 200 signatures were used to train the SPPP and classifers, while the 

100 remaining signatures were used to test the system, for the combined dataset.  The 

division of the sample dataset for data organized my months is shown in Table 3.1. 
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Table 3.1 Division of sample dataset for Waterhyacinth and American Lotus 
                data organized by months 
 
Months Training  Testing Total  

June/July 35 35 70 

August 40 40 80 

September 40 40 70 

October 35 35 80 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 
4.1 Case Study I – Johnsongrass versus Cogongrass 

 
4.1.1 Limited Number of Groups Based on Amount of Training Data 
 

For this thesis, the proposed projection pursuits method of dimensionality 

reduction, namely SPPP, is compared with two methods found in the current remote 

sensing literature, namely BWCS and BSBS methods.   The first case study is the 

Cogongrass vs. Johnsongrass dataset, where a limitation is set on how large the 

number of groups can grow based on the amount of training data available for each 

class.  Also, the number of groups is only allowed to increase if the BD is also 

increasing.    The classification accuracies for all three methods were above 90 %.  

As one can observe from Figure 4.1, the BWCS method outperformed both the BSBS 

and SPPP dimensionality reduction methods in terms of overall classification 

accuracy.  Although both the BWCS and BSBS methods had higher classification 

accuracies, the computation times were higher than that of the SPPP technique, 

which is shown in Tables 4.1 and 4.2.    

Table 4.3 and Figure 4.2 show the classification accuracies for the SPPP 

approach when varying the size of the starting groups.  That is, when initializing the 

SPPP, the hyperspectral signature is first partitioned into N adjacent, equally sized
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groups.  Then each of the groups has the potential to be split into multiple smaller 

groups as the SPPP method proceeds.  The goal in varying the starting group size is 

to determine if this parameter significantly affected the overall performance of the 

SPPP method.  The overall accuracy was not significantly affected by the starting 

group size.  The overall classification accuracies for all group sizes were above 94 %.  

The producers and users classification accuracies for all group sizes were above 92 

%.  The smaller group size resulted in a slight increase in accuracy.  As shown in 

Figure 4.2, the confidence intervals for each group’s accuracy place each group’s 

accuracy in the same range.  That is, the confidence intervals overlap, so we cannot 

say that any particular starting group size outperforms any other starting group size.  

Also, it should also be noted that the overall computation time is less when the group 

size is smaller, since less splitting is required in the construction of the 

transformation matrix A.  So, it is recommended for this case study that the SPPP be 

initialized with smaller group sizes. 
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Figure 4.1 Classification accuracies for Cogongrass and Johnsongrass dataset for 
                  the dimensionality reduction methods of Best Wavelet Coefficients, 
                  Best Spectral Bands, and SPPP with the NM classifier with limitation 
                  on the number of groups and the BD 
 
 
The groups selected for investigation included groups 50, 60, 65, and 75. The selection of these 

group sizes were governed by the stability of the SPPP method.  This stability was based on the 

supervised potential projection.  At certain group sizes, the supervised potential projection could 

not be obtained, because the inverse of the covariance matrix could not be computed.  

      
Table 4.1 Computational time for the different  
                group sizes for the SPPP technique 
 

 

Group Size Computational Time 
        (Minutes) 

50 1.4  

60 3.4 

65 1.3 

75 7.4 
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Table 4.2 Computational time for the different  
                Comparison methods 

 
 Methods Computational Time

        (Minutes) 
Best Wavelet 
Coefficients  

45.7 

Best Band Selection 66.3 

 
 
 
 
 
 

 
 
 
Table 4.3 Producers, Users, and Overall Accuracies different starting group sizes for  
                the Cogongrass and Johnsongrass dataset when the SPPP dimensionality 
                reduction method being applied using all projection with the NM classifier 
 

 Producers Accuracy Users Accuracy  

Group Size Cogongrass Johnsongrass Cogongrass Johnsongrass Overall 
Accuracy

50 96 100 100 96 98 

60 96 96 96 96 96 

65 92 96 96 92 94 

75 96 96 96 96 96  
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Figure 4.2 Classification accuracies for Cogongrass and Johnsongrass dataset  
                  for the dimensionality reduction method SPPP for group sizes  
                  50, 60, 65, 75 with the NM classifier. Error bars indicate a 95% 
                  confidence interval.  
 

Figure 4.3 shows a plot of BD versus number of group splits, i.e. a progress 

of the BD as the SPPP method progresses.  The BD for all group sizes starts below 

120.  For the larger starting group sizes, the number of splits increases as well as the 

final BD.  On one hand, this result is not surprising since SPPP method is designed to 

stop the splitting of groups when the number of groups reaches its limiting factor, 

generally specified to be the minimum number of training samples per class.  So 

allowing the SPPP method to initialize with large groups and intelligently split the 

groups and select projections would be expected to provide improved results.  On the 

other hand, this result is surprising since this plot conflicts with the Figure 4.2.  

Based on the plot in Figure 4.3, one would expect the scenario where we start with 

fewer, larger groups to result in significantly higher classification accuracies.  But 



37 

 
group size of 65 results in fewer final groups than a starting group size of 60.  One 

that is not the case in this study.  This indicates that maybe the NM classifier is not 

capitalizing on the lower subspace data generated by the SPPP method. 

    

 
Figure 4.3  Plot of BD for each group size versus the number of times a group  
                  was split 
 

Figure 4.4 shows a barchart of the number of times each potential projection 

is selected for the four cases of varying the starting group sizes.  All four potential 

projections were selected for each case.  This is an interesting result because one 

would expect that the supervised potential projection, LDA, would be selected every 

time.  The second most selected potential projection was the unsupervised Gaussian-

weighted average.  This result is unexpected because one would not expect a simple 

Gaussian-weighted average potential projection to be selected as many or more times 

than the PCA potential projection.   Another interesting result is that the starting 
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Figure 4.5 illustrates the spectral location of the final set of groups of 

project are 

 

ons 

would expect that the larger group sizes would have more potential projections 

because of its ability to have more splits.   

 
Figure 4.4  Bar graph of the number of times a potential projection was chosen 
                  for the different group sizes when applying SPPP to Cogongrass- 
                  Johnsongrass dataset 
 

ions when applying the SPPP method.  The distributions of the groups 

found throughout the spectrum range with different group sizes.  One can observe

that there exist small concentrations of groups in the spectral regions of 1100 to 

1150, 1900 to1925, and 2150 to 2250.  This result implies that these spectral regi

have significant information which is essential in discriminating between the two 

targets of Cogongrass and Johnsongrass.   
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Figures 4.6 through 4.9 illustrate the progression of the SPPP groups and their 

optimum projections, starting with the initial group size and proceeding through the 

group splitting until the SPPP method terminates.  The color coded projection map 

describes which potential projections were selected during the splitting of groups.  

The different potential projections are represented by four different colors.  The 

region that is dark blue represents the area beyond the number of groups for that 

iteration of the SPPP method.  The expansion of the number of groups is governed by 

the initial group size.  As one can observe from Figures 4.6 to 4.9, the LDA potential 

projection is selected more often in the initial guess than that of the other projections.  

This result is as expected because the LDA potential projection is a supervised 

weighted vector which is constructed by having some a priori knowledge of the 

dataset.  The color coded maps indicate that more unsupervised potential projections 

are selected during the splitting of the groups.  The results from Figures 4.6 to 4.9 

show that the unsupervised potential projection serves an important role in some 

spectral bands when using hyperspectral data to distinguish between Cogongrass and 

Johnsongrass. The last row in each color code projection map shows which final 

projections selected for each group.   
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                  SPPP to Cogongrass-Johnsongrass dataset 

           Figure 4.5  Spectral location of groups (final number of groups = 50) for final  
                             set of projections when applying SPPP to Cogongrass-Johnsongrass 
                             dataset; locations are plotted against a reference signature 

 

 

 
Figure 4.6 Color coded projection map for initial group size of 50 when applying 
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Figure 4.7  Color coded projection map for initial group size of 60 when applying 
                  SPPP to Cogongrass-Johnsongrass dataset 
 

Figure 4.8  Color coded projection map for initial group size of 65 when applying 
                  SPPP to Cogongrass-Johnsongrass dataset 
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Figure 4.9  Color coded projection map for initial group size of 75 when applying SPPP to 
                  Cogongrass-Johnsongrass dataset 
 
 
4.1.2 Unlimited Number of Groups 
 

The second approach was to apply the SPPP technique to the Cogongrass and 

Johnsongrass datasets with no limitation on the number of groups, or projections, and 

no limiting factor on the BD.  The system was allowed to run until the supervised 

potential projection was unable to calculate the coefficients for the weighted LDA 

vector.  This phenomenon occurred when the inverse of the data could not be 

calculated for the LDA weighted vector. The classification accuracies for the two 

comparison methods was in the upper 90’s and the classification accuracy for SPPP 

method was in the lower 80’s, which is shown in Figure 4.10.  These results are not 

surprising because there was no limitation on the BD, which is the optimization 

factor.  We did not expected the classification accuracies to increases if there was no 

measure on how the SPPP technique was performing in the task of reducing the 
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dimensionalities of the datasets or increasing the ability to be distinguish between 

classes.  Furthermore, these results were as expected because this approach does not 

take in account the amount of data that is available.        

 
Figure 4.10  Classification accuracies for Cogongrass and Johnsongrass  
                    dataset for the dimensionality reduction methods of Best Wavelet 
                    Coefficients, Best Spectral Bands, and SPPP with the NM classifier  
                    with no limitation on the number of groups and the BD 
 
 

Table 4.4 and Figure 4.11 show the classification accuracies for the 

Cogongrass and Johnsongrass dataset for varying initial group sizes.  The 

classification accuracies were the same for all initial group sizes used in this study.  

The overall classification accuracies were all 86 %.  The producers and users 

classification accuracies for all group sizes were above 84 %.  The producers, users, 

and overall classification accuracies for the second approach are about 10% lower 

than that of the first method, i.e. when group splitting is bounded by either the 

amount of initial training data or a non-increasing BD.       From the results, the 
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author suspects that with no monitoring of the optimization of the system the 

transformation matrix becomes suboptimum which decreases the discrimination 

between the Cogongrass and Johnsongrass. 

 
Table 4.4  Producers, Users, and Overall Accuracies for different starting group sizes 
                 for the Cogongrass and Johnsongrass dataset when the SPPP 
                 dimensionality reduction method is applied using all four potential 
                 projections with the NM classifier with no limitation on the number of  
                 groups 
 

 Producers Accuracy Users Accuracy  

Group 
Size Cogongrass Johnsongrass Cogongrass Johnsongrass Overall 

Accuracy 
50 85 88 88 84 86 
60 85 88 88 84 86 
65 85 88 88 84 86 
75 85 88 88 84 86  
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Figure 4.11  Classification accuracies for Cogongrass and Johnsongrass dataset  
                     for the dimensionality reduction method SPPP for group sizes 50,  
                     60, 65, 75 with the NM classifier with no limitation on the number  
                     of groups  
 

The BD for the second approach had higher values of separation than that of 

the first method.  A very interesting result is that the BD for the group size of 60 

decreases about the 13th split and began increasing at the 17th split and continued to 

increase, as shown in Figure 4.12.  The result suggests that there exist local maxima 

and local minima which could affect the performances of the SPPP system.  These 

local maxima and local minima have the potential to prevent the system from 

reducing the dimensionality of the dataset for the optimum separation.  These 

phenomena exist throughout several of the cases of varying initial group sizes.  
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Figure 4.12  Plot of BD for each group size versus the number of times a group  
                    was split with no limitation on the number of groups 
 

All four potential projections were selected for each case of initial group size, 

as shown in Figure 4.13.  More total projections were selected for this approach than 

that of the approach described in section 4.1.  This result is as expected, because the 

splitting of the groups had no limitation factors which implied that more projection 

would be selected.   The supervised potential projection of LDA and the 

unsupervised Gaussian-weighted average were both again the top selected 

projections as in the approach described in section 4.1.  The results from the color 

coded projection maps are shown in Figures 4.14 – 4.17.  As in the previous results, 

the LDA potential projection was selected the most for the initial groups.  An 
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interesting result is how the selection of the projection is distributed throughout the 

four potential projections as the splitting of the groups increase.  The color coded 

map for the group size of 70 had less selected potential projections than that of the 

others.  The number of groups created for each group size where all above 70. 

 
   

 
Figure 4.13  Bar graph of the number of times a potential projection was chosen  
                    for the different group sizes when applying SPPP to Cogongrass- 
                    Johnsongrass dataset, with no limitation on the number of groups. 
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Figure 4.14  Color coded projection map for initial group size of 50 when applying 
                    SPPP to Cogongrass-Johnsongrass dataset with no limitation on the 
                    number of groups. 
 

 
Figure 4.15  Color coded projection map for initial group size of 60 when applying 
                    SPPP to Cogongrass-Johnsongrass dataset with no limitation on the  
                    number of groups 
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Figure 4.16  Color coded projection map for initial group size of 65 when applying 
                    SPPP to Cogongrass-Johnsongrass dataset with no limitation on the 
                    number of groups 
 

 
Figure 4.17  Color coded projection map for initial group size of 75 when applying 
                    SPPP to Cogongrass-Johnsongrass dataset with no limitation on the 
                    number of groups 
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4.1.3 Unsupervised SPPP 
 

The third approach was to apply the SPPP technique to the Cogongrass and 

Johnsongrass datasets when including only the unsupervised potential projections, 

i.e. removing the LDA method from the bank of potential projections. In this case, as 

in section 4.1, the number of groups is limited by the amount of training data 

available, i.e. the groups cannot split unbounded.  This third approach was performed 

for three reasons.  The first was to evaluate what affect the supervised projection had 

on the system since it had been the projection that was selected the majority of the 

time. The second was to investigate which unsupervised projections would be 

selected the most if the supervised projection was not available.  The third was to 

investigate how applying LDA in the classifier instead of within the SPPP technique 

would improve the classification accuracies of the Cogongrass and Johnsongrass 

datasets.   

The comparison methods along with the SPPP method had classification 

accuracies in the upper 80’s to 90’s range, as is shown in Figure 4.18 and Tables 4.5 

and 4.6.  The SPPP method without LDA applied within the classifier typically had 

classification accuracies in the 80’s.  The results in classification for the classifier 

without LDA is as expected.  One expects the classification accuracy of a dataset to 

be lower when there is no optimization within the classifier.  However, when LDA 

was included with the NM classifier, i.e. applying LDA after all projections were 

conducted and before NM classification, resulted in surprisingly high accuracies.  In 

fact, the overall classification accuracies are as high as those for the case described in 
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section 4.1, where LDA is included as on of the potential projections.  This result 

implies that the benefits of the supervised projection, LDA, can be equally obtained 

either during the dimensionality reduction phase or the classification phase.       

 
Figure 4.18  Classification accuracies for Cogongrass and Johnsongrass  
                    dataset for the dimensionality reduction methods of Best Wavelet 
                    Coefficients, Best Spectral Bands, and SPPP and without the potential 
                    projection LDA with the NM classifier without LDA and with LDA.  
     

The producers, users, and overall classification accuracies for the 

unsupervised approach employing LDA within the classifier and exclude LDA from 

the classifier for the Cogongrass and Johnsongrass datasets are shown in Tables 4.5 

and 4.6.  The users and producers classification accuracies for the case in which LDA 

is excluded in the classifier are in the 91 % and above range.  The users and 

producers classification accuracies for the case in which LDA is included in the 

classifier are in the 96 % and above range.   
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Table 4.5  Producers, Users, and Overall Accuracies different starting group sizes 
                 for the Cogongrass and Johnsongrass dataset when the SPPP  
                 dimensionality reduction method is applied using only unsupervised  
                 projections with the NM classifier without LDA. 
 

 Producers Accuracy Users Accuracy  

Group 
Size Cogongrass Johnsongrass Cogongrass Johnsongrass Overall 

Accuracy 
50 85 91 92 84 88 
60 85 91 92 84 88 
65 85 91 92 84 88 
75 85 88 88 84 86  

 

 
Table 4.6  Producers, Users, and Overall Accuracies different starting group sizes  
                 for the Cogongrass and Johnsongrass dataset when the SPPP  
                 dimensionality reduction method being applied using only unsupervised 
                 projections with the NM classifier with LDA within the classifier.  
 

 Producers Accuracy Users Accuracy  

Group 
Size Cogongrass Johnsongrass Cogongrass Johnsongrass Overall 

Accuracy 
50 96 96 96 96 96 
60 96 100 100 96 98 
65 96 100 100 96 98 
75 96 96 96 96 96  

 

 
The overall classification accuracies when the initial group sizes are 60 and 

65 are the highest for each case, using a NM classifier without LDA and with LDA.  

The classification accuracies are shown to be in the 86 % - 88 % range in the case in 

which the LDA is excluded from the classifier which is shown Figure 19.  The 

classification accuracies for the case in which the LDA is included with the classifier 
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vary between the 96 % - 98 % range which is shown Figure 20.  In general, the 

classification accuracies are high for the case when LDA is included in the classifier. 

Again, however, the results are not significantly affected by the initial group size. 

 

 
Figure 4.19  Classification accuracies for Cogongrass and Johnsongrass  
                    dataset for the dimensionality reduction method SPPP for  
                    group sizes 50, 60, 65, 75 with the NM classifier  
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Figure 4.20  Classification accuracies for Cogongrass and Johnsongrass  
                    dataset for the dimensionality reduction method SPPP for  
                    group sizes 50, 60, 65, 75 with the NM classifier combined  
                    with LDA 
 
 

Figure 4.21 shows the progression of the BD performance index as the SPPP 

iterates through splitting the groups and forming projections.  The figure shows the 

BD curve for several initial group sizes.  The final BD is significantly lower that that 

in the other approaches described in sections 4.1 and 4.2.   

The results for the number of times a potential projection was selected for 

each group size for the unsupervised projection is shown in Figure 4.22.  An 

interesting result is that the Gaussian-weighted average projection is selected the 

most for the group sizes 60, 65, and 75 and the PCA projection is selected the most 

for the lowest group size.         
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Figure 4.21  Plot of BD for each group size versus the number of times a  
                    group was split  
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Figure 4.22  Bar graph of the number of times a potential projection was chosen  
                    for the different group sizes when applying SPPP to Cogongrass- 
                    Johnsongrass dataset 
 

The results for the color coded projection maps for the unsupervised approach 

are shown in Figures 4.23 to 4.26.  A very interesting result is that the unsupervised 

approach’s  initial groups of projections are not dominated by just a single projection, 

but the initial group of projections is a combination of all the potential projections.  

Also from these colors coded projection maps, the results show that different 

potential projection tend to migrate to or near to a certain group.  For example, it can 

be seen in all group sizes the projection PCA migrates near the group number thirty.  
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Figure 4.23  Color coded projection map for initial group size of 50 when  
                    applying SPPP to Cogongrass-Johnsongrass dataset for  
                    unsupervised approach  
 

 

 
Figure 4.24  Color coded projection map for initial group size of 60 when  
                    applying SPPP to Cogongrass-Johnsongrass dataset for  
                    unsupervised approach 
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Figure 4.25  Color coded projection map for initial group size of 65 when  
                    applying SPPP to Cogongrass-Johnsongrass dataset for  
                    unsupervised approach 
 
 

 
Figure 4.26  Color coded projection map for initial group size of 75 when  
                    applying SPPP to Cogongrass-Johnsongrass dataset for  
                    unsupervised approach 
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4.2 Case Study II – Waterhyacinth versus American Lotus 
 

The fourth approach was to apply the SPPP technique to the Waterhyacinth 

and American Lotus dataset.  The Waterhyacinth and American Lotus dataset is 

multitemporal.  The data was collected each week for a total of 16 weeks.  This 

dataset is analyzed in two approaches.  The first approach was to lump all the data 

together and not account for the multitemporal aspect of the data.  This approach is 

designed to mimic a scenario where an ATR system is designed to run on remotely 

sensed data regardless of when that data was collected.  In the second approach, the 

multitemporal data is organized by months and analyzed.  This approach is designed 

to mimic a scenario where an ATR system is designed to run on remotely sensed data 

for a particular month, i.e. the system is retrained for each month of the growing 

season.  In all of the SPPP analysis of the Waterhyacinth and American Lotus data, 

the initial group size was set to be 60.  The results were found to be very insensitive 

to the initial group size, and thus, only one initial group size is reported for this 

dataset. 

The classification accuracies for the different approaches are shown in Figure 

4.27.  The combined dataset results in classification accuracies in the range of 60 % 

to 75 % .  The classification accuracies for the monthly datasets are fairly high.  The 

SPPP method performed well, high 90’s, on each of the monthly datasets, whereas 

the BSBS and BWCS methods appeared to be more sensitive to the time in which the 

data was collected.  However, all three methods performed very well for the August 

dataset.   
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Figure 4.27  Classification accuracies for American Lotus and Waterhyacinth  
                    dataset for the dimensionality reduction methods of Best Wavelet 
                    Coefficients, Best Spectral Bands, and SPPP  
 

The producer, user, and overall accuracies for the SPPP method are shown in 

Table 4.7.  The producer and user accuracies for the monthly odataset are shown to 

range in the high 90’s.  The producers and users accuracies for the combined 

organized data were below 85 %.  This demonstrates the benefit of having an ATR 

system that is designed for use of data that is collected within a particular timespan, 

rather than having a system that is trained on data from throughout the growing 

season.  
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Table 4.7  Producers, Users, and Overall Accuracies different starting group sizes  
                 for the American Lotus and Waterhyacinth dataset when the SPPP  
                 dimensionality reduction method being applied using all four projections  
                 with the NM classifier 
 

   
Producer Accuracy 

User Accuracy   

Months          
(Group Size of 

60) 

American 
Lotus 

Water 
Hyacinth 

American 
Lotus 

Water 
Hyacinth 

Overall 
Accuracy 

Combined 
Months 

72 80 83 64 74 

June and July 97 100 100 97 99 
August 98 100 100 98 99 

September 100 98 98 100 99 
October 100 100 100 100 100  

 

  
The Bhattacharyya curves for the American Lotus and Waterhyacinth dataset 

are shown in Figure 4.28.  The BD for the combined dataset is significantly lower 

than the monthly datasets.  The BD values for the monthly data have separation 

values which range from 100 to 5000.  The combined dataset has separation values 

which range from 20 to100.  These results explain the high overall classification 

accuracies for the monthly datasets and also explain the low overall classification 

accuracy for the combined dataset.        
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Figure 4.28  Plot of BD for each temporal dataset versus the number of times 
                    groups were split 
 

As with the Cogongrass and Johnsongrass dataset, the LDA potential 

projection was the most commonly selected projection.  In fact, for this dataset, the 

supervised LDA projection dominates, with a simple average and the Gaussian-

weighted average being approximately equally selected for a few groups, which is 

shown in Figure 4.29.  A very interesting result is that for the months of June, July, 

August, and October the potential projection of PCA was not selected at all.  

The results for the color coded projection maps are shown in Figures 4.30 to 

4.34 for the American Lotus and Waterhyacinth dataset.  As in the previous 

approaches, the LDA potential projection is the dominant projection in the SPPP 

approach.        
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Figure 4.29  Bar graph of the number of times a potential projection was chosen  
                    for the different group sizes when applying SPPP to American Lotus- 
                   Waterhyacinth dataset 
 
 

 
Figure 4.30  Color coded projection map for initial group size of 60 when  
                    applying SPPP to American Lotus-Waterhyacinth dataset for the 
                    Combined random selected organized data. 
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Figure 4.31  Color coded projection map for initial group size of 60 when  
                    applying SPPP to American Lotus-Waterhyacinth dataset for the  
                    months of June and July 
 

 
Figure 4.32  Color coded projection map for initial group size of 60 when  
                    applying SPPP to American Lotus-Waterhyacinth dataset for the  
                    month of August. 
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Figure 4.33  Color coded projection map for initial group size of 60 when  
                    applying SPPP to American Lotus-Waterhyacinth dataset for the  
                    month of September 
 

 
Figure 4.34  Color coded projection map for initial group size of 60 when  
                    applying SPPP to American Lotus-Waterhyacinth dataset for the  
                    month of October 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 
5.1 Conclusion 

In general, the proposed SPPP method performed as well as the BSBS and 

BWCS methods of dimensionality reduction.  Their overall accuracies on the 

Cogongrass and Johnsongrass dataset were all in the high 90’s.  However, the 

computational time of the SPPP was surprisingly less than that of the BSBS and 

BWCS methods.  The SPPP method required approximately 1 to 7 minutes to 

complete, depending on the initial group size, whereas the BSBS and BWCS 

methods required approximately 45 to 65 minutes to complete.   

The SPPP performance, in terms of overall classification accuracy, was not 

significantly affected by group size.  However, the computation time was 

substantially affected by the initial group size.  Larger group sizes required additional 

computation time since the SPPP method was allowed to perform more group 

splitting.  It should be noted however, that if the SPPP method were applied to a 

more challenging class discrimination problem, we might find that the larger initial 

group sizes would provide improved classification accuracies.  Also, we found that 

the stability of the SPPP approach was quite dependent on the initial group size.  

Oftentimes, when varying group sizes were selected, the SPPP code would fail.
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When the SPPP method was allowed to iterate without a limitation on the 

number of group splits, the overall accuracy was reduced.  When a upper bound was 

imposed on the group splitting, where the two stopping criteria were based on the 

amount of training data and on the increase in BD, the overall accuracy was around 

96%.  However, when no upper bound was imposed on the group splitting, the 

overall accuracy was around 86%.    

Supervised projections, LDA, are predominantly selected when they are 

included in the bank of potential projections.  However, Gaussian-weighted average 

was also selected in many instances.  When LDA was not included in the bank of 

potential projections, a simple average and Gaussian-weighted average were 

predominantly selected.  And when only unsupervised projections were included, 

both in the SPPP dimensionality reduction and the classification, the overall 

accuracies decreased significantly.  However, when the supervised projection, 

namely LDA, was reintroduced in the classification stage, the classification 

accuracies were on par with those of the system that included LDA in the SPPP 

stage.   

For the multitemporal Waterhyacinth and American Lotus dataset, the SPPP 

approach performed as well as the BWCS method and outperformed the BSBS 

method.  When the data was combined across dates, none of the three dimensionality 

reduction methods performed very well.  The SPPP method performed the best and 

only achieved an overall classification accuracy of around 74%.  When the data was 

combined on a monthly basis, the SPPP approach resulted in a near perfect target 



68 

 

detection.  If one month were to be recommended for this study, it would be August, 

where all three dimensionality reduction methods result in approximately 100% 

classification accuracies. 

 
5.2 Future Work 

One recommendation for future work would be to include more types of 

projections, particularly supervised projections, into the bank of potential projections.  

Since LDA was predominantly selected, especially with the Waterhyacinth dataset, 

the SPPP approach would probably benefit from having more supervised projections 

to pursue.   

A second recommendation would be to apply the SPPP method to a dataset 

where more training data is available.  Since the group splitting is limited by the 

minimum amount of training data per class, the SPPP approach could significantly 

improve when more training data is available, particularly for the Waterhyacinth case 

study.  Also, with the availability of more training data, alternative classifiers could 

be investigated.  In this thesis, the NM classifier was used because more 

sophisticated classifiers like a maximum-likelihood classifier would fail due to the 

small number of training samples.  It would be very interesting to know if how the 

SPPP approach performs in combination with other types of classifiers. 

A third recommendation would be to combine the SPPP approach with 

multiclassifiers and decision fusion.  Each group, or partition, resulting from the 

SPPP could be input to its own classifier, and all classifications could then be 
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combined via some sort of decision fusion, such as qualified majority voting.  This 

type of ATR system could be very powerful. 

 
 
 
 
 



 

70 

REFERENCES 
 

 
[1]  R. O. Duda, P. E. Hart, D. G. Strork, Pattern Classification, John Wiley & 

Sons, Inc., 2001. 
 

[2]  K. Fugunaga, R. R. Hayes, “Effects of Sample Size in Classifier Design,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 
8, pp. 873-885, 1989. 

 
[3]  J. L. Schnase, J. A. Smith, T. J. Stohlgen, S. Graves, C. Trees, “Biological 

Invasions: a Challenge in Ecological Forecasting,” IEEE International 
Geoscience and Remote Sensing Symposium, vol. 1, pp. 122-124, 2002. 

 
[4]  L. W. Lass, D. C. Thill, B. Shafii, T. S. Prather, “Detection Spotted 

Knapweed (Centaurea maculosa) with Hyperspectral Remote Sensing 
Technology,” Weed Technology, vol 16. pp. 426-432, 2002. 

 
[5]  E. R. R. L. Johnson and D. G. Shilling, “PCA Alien Plant Working Group-

Cogon Grass (Imperata Cylindrical): Cogon Grass,” [Online]. Available: 
http://www.nps.gov/plants/alien/fact/imcy1.thm.    

  
[6]  C. H. Bronson, M. C. Long, “Invasive Non-native Plants: Beware of Cogon 

Grass,” [Online]. Available: http://fl-
dolf.com/forest_management/fh_invasives_cogon.html. 

 
[7]  D. Pimentel, L. Lach, R. Zuniga, D. Morrison, “Environmental and Economic 

Costs of Nonindigenous Species in the United States,” Bioscience, vol. 50, 
no. 1, 2000. 

 
[8]  M. E. Jakubauskas, D. L. Peterson, S. W. Campbell, F. deNoyelles Jr., S. D. 

Campbell, D. Penny, “Mapping and Monitoring Invasive Aquatic Plant 
Obstructions in Navigate Waterways Using Satellite Multispectral Imagery,” 
Conference Proceedings of Pecora 15/Land Satellite Information IV, 2002. 

 
[9]  T. M. Lillesand, R. W. Kiefer, J. W. Chipman, Remote Sensing Image 

Interpretation, John Wiley & Sons Inc., 2004.

http://www.nps.gov/plants/alien/fact/imcy1.thm
http://fl-dolf.com/forest_management/fh_invasives_cogon.html
http://fl-dolf.com/forest_management/fh_invasives_cogon.html


71 

 

[10] N. Speciale, T. Johnson, L. Allen, “Hyperion Instrument,” [Online] 
Available:    http://e01.gsfc.nasa.gov/Technology/Hyperion.html. 

 
[11] Analytical Spectral Devices Fieldspec Pro Spectroradiometer specifications, 

[Online] Available: http://asdi.com/products_specifications-FSP.asp 
 
[12] S. Balakrishnama, A. Ganapathiraju, J. Picone, “Linear Discriminant 

Analysis for Signal Processing Problems,” IEEE Proceedings of the 
Southeastcon, pp. 78 – 81, 1999. 

 
[13] R. Gonzalez and R. Woods, Digital Image Processing, Addition-Wesley Inc., 

2001. 
 
[14] A. Cheriyadat, L. M. Bruce, “Why Principal Component Analysis is not an 

Appropriate Feature Extraction Method for Hyperspectral Data,” IEEE 
International Geoscience and Remote Sensing Symposium, vol. 6, pp. 3420 – 
3422, 2003. 

 
[15] L. M. Bruce, C. H. Koger, J. Li, “Dimensionality Reduction of Hyperspectral 

Data Using Discrete Wavelet Transform Feature Extraction,”  IEEE 
International Geoscience and Remote Sensing Symposium, vol. 40, pp. 2331-
2338, 2002. 

 
[16] J. H. Friedman, “Exploratory Projection Pursuit,” Journal of the American 

Statistical Association, vol. 32, 1987. 
 
[17] L. O. Jimenez, D. A. Landgrebe, “Projection Pursuits for High Dimensional 

Feature Reduction: Parallel and Sequential Approaches,” IEEE International 
Geoscience and Remote Sensing Symposium, vol. 1, pp. 148 – 150, 1995. 

 
[18] A. Ifarraguerri, C. Chang, “Unsupervised Hyperspectral Image Analysis with 

Projection Pursuit,” IEEE International Geoscience and Remote Sensing 
Symposium, vol. 38, pp. 2529 – 2538, 2000. 

 
[19] L. M. Bruce, H. Lin, “Projection Pursuits for Dimensionality Reduction of 

Hyperspectral Signals in Target Recognition Applications,” IEEE 
International Geoscience and Remote Sensing Symposium, vol. 2, pp. 960 – 
963, 2004. 

 
[20] K. Fukunaga, Introduction to Statistical Pattern Recognition, California 

Academic Press Inc., 1990. 
 
[21] T. M. Mitchell, Machine Learning, The McGraw-Hill Companies Inc., 1997. 

http://e01.gsfc.nasa.gov/Technology/Hyperion.html
http://asdi.com/products_specifications-FSP.asp

	Hyperspectral Dimensionality Reduction via Sequential Parametric Projection Pursuits for Automated Invasive Species Target Recognition
	Recommended Citation

	CHAPTER I
	1.1 Hyperspectral Image Analysis

	CHAPTER II
	2.1.2 Waterhyacinth
	2.2 Hyperspectral Sensors and Imaging
	2.3 Hyperspectral Dimensionality Reduction

	CHAPTER III
	3.1.1.1 Transformation Matrix A
	3.1.1.2 Constructing Vectors for the SPPP Matrix A
	3.1.1.3 Bhattacharyya Distance


	3.2 Testing and Evaluation
	3.2.1 Classification
	3.2.2 N-Fold Cross Validation

	3.3 Case Study Data
	4.1.1 Limited Number of Groups Based on Amount of Training D
	4.1.2 Unlimited Number of Groups
	4.1.3 Unsupervised SPPP

	4.2 Case Study II – Waterhyacinth versus American Lotus


