
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-13-2006

A Framework For Assessing The Impact Of Software Changes To A Framework For Assessing The Impact Of Software Changes To

Software Architecture Using Change Classification Software Architecture Using Change Classification

Byron Joseph Williams

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Williams, Byron Joseph, "A Framework For Assessing The Impact Of Software Changes To Software
Architecture Using Change Classification" (2006). Theses and Dissertations. 128.
https://scholarsjunction.msstate.edu/td/128

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/128?utm_source=scholarsjunction.msstate.edu%2Ftd%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

A FRAMEWORK FOR ASSESSING THE IMPACT OF SOFTWARE CHANGES TO

SOFTWARE ARCHITECTURE USING CHANGE CLASSIFICATION

By

Byron Joseph Williams

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2006

Copyright by

Byron Joseph Williams

2006

_________________________________ _________________________________

A FRAMEWORK FOR ASSESSING THE IMPACT OF SOFTWARE CHANGES TO

SOFTWARE ARCHITECTURE USING CHANGE CLASSIFICATION

By

Byron Joseph Williams

Approved:

Jeffrey Carver Roger King
Assistant Professor of Computer Science Associate Dean of the College of
and Engineering Engineering
(Major Professor)

Edward Allen
Associate Professor of Computer
Science and Engineering
(Committee Member and Graduate
Coordinator)

Thomas Philip
Professor of Computer Science and
Engineering
(Committee Member)

Name: Byron Joseph Williams

Date of Degree: May 13, 2006

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Jeffrey Carver

Title of Study: A FRAMEWORK FOR ASSESSING THE IMPACT OF SOFTWARE
CHANGES TO SOFTWARE ARCHITECTURE USING CHANGE
CLASSIFICATION

Pages in Study: 83

Candidate for Degree of Master of Science

Software developers must produce software that can be changed without the risk

of degrading the software architecture. One way to address software changes is to classify

their causes and effects. A software change classification mechanism allows engineers to

develop a common approach for handling changes. This information can be used to show

the potential impact of the change. The goal of this research is to develop a change

classification scheme that can be used to address causes of architectural degradation. This

scheme can be used to model the effects of changes to software architecture. This

research also presents a study of the initial architecture change classification scheme. The

results of the study indicated that the classification scheme was easy to use and provided

some benefit to developers. In addition, the results provided some evidence that changes

of different types (in this classification scheme) required different amounts of effort to

implement.

DEDICATION

I would like to dedicate this work first to God, as all that I do is to please Him.

Secondly, I would like to dedicate this work to my family and friends that have supported

me throughout my educational endeavors.

ii

ACKNOWLEDGMENTS

I would like to acknowledge Dr. Jeffrey Carver for his support and guidance that

he provided throughout the research process. I would also like to thank the Empirical

Software Engineering Research Group at Mississippi State University and the Fraunhofer

Center for Experimental Software Engineering, Maryland for their support. This research

is funded by NSF Grant CCF-0438923.

iii

TABLE OF CONTENTS

Page

DEDICATION... ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES... vi

LIST OF FIGURES ... vii

CHAPTER

I. INTRODUCTION .. 1

1.1 Problem Statement ... 1
1.2 Background and Motivation .. 2
1.3 Research Plan and Related Goals .. 5

1.3.1 Conception ... 6
1.3.2 Refinement... 7
1.3.3 Observation.. 8
1.3.4 Summary .. 10

1.4 Research Hypothesis.. 10

II. LITERATURE REVIEW ... 12

2.1 Software Change.. 12
2.2 Current Research in Software Change Classification................................ 15

III. ARCHITECTURAL CHANGE CLASSIFICATION SCHEME........................... 18

3.1 Classification Scheme Overview ... 18
3.1.1 Classification Process .. 20
3.1.2 Enhancement Details ... 21
3.1.3 Defect Details... 24

IV. HISTORICAL DATA ANALYSIS.. 27

V. EMPIRICAL CLASSROOM STUDY ... 32

iv

CHAPTER Page

5.1 Study Description... 32
5.2 Hypothesis.. 33
5.3 Study Setup .. 34
5.4 Training.. 35
5.5 Experimental Tasks.. 35

5.5.1 Change Requests.. 37
5.5.2 Data Collection and Analysis... 38

VI. RESULTS ... 40

6.1 Historical Data Analysis Results ... 40
6.2 Classroom Study Results ... 41

6.2.1 H0 Results.. 42
6.2.2 H1 Results.. 48

6.3 Study Implications ... 49
6.4 Threats to validity .. 51

6.4.1 Threats Addressed.. 51
6.4.2 Threats Not Addressed... 51

VII. CONCLUSION... 53

7.1 Publication Plan ... 55

REFERENCES .. 57

APPENDIX

A CLASSROOM CLASSIFICATION CHARTS... 60

B CLASSROOM STUDY DOCUMENTS ... 74

v

LIST OF TABLES

TABLE Page

1 Change Impact Scale... 20

2 Researcher Classifications .. 37

3 Change Implementation Results ... 49

vi

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

LIST OF FIGURES

FIGURE Page

High-Level Change Categories... 22

Detailed View of Enhancement Attributes ... 24

Detailed View of Defect Attributes .. 26

CVS Repository View – NSIS.. 29

CVS Diff Tool... 30

NSIS Closed Change Request... 31

Classification Accuracy (Change #1) ... 42

Classification Accuracy (Change #2) ... 43

Classification Consistency (Change #1) ... 44

Classification Consistency (Change #2) ... 44

Student Survey Results ... 46

Sample Change #1 Accuracy .. 62

Sample Change #1 Consistency.. 62

Sample Change #2 Accuracy .. 63

Sample Change #2 Consistency.. 63

Sample Change #3 Accuracy .. 64

Sample Change #3 Consistency.. 64

Sample Change #4 Accuracy ... 65

vii

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

FIGURE Page

Sample Change #4 Consistency.. 65

Sample Change #5 Accuracy .. 66

Sample Change #5 Consistency.. 66

Sample Change #6 Accuracy .. 67

Sample Change #6 Consistency.. 67

Sample Change #7 Accuracy .. 68

Sample Change #7 Consistency... 68

Sample Change #8 Accuracy .. 69

Sample Change #8 Consistency.. 69

Sample Change #9 Accuracy .. 70

Sample Change #9 Consistency... 70

Sample Change #10 Accuracy .. 71

32 Sample Change #10 Consistency.. 71

viii

CHAPTER I

INTRODUCTION

1.1 Problem Statement

Late lifecycle changes are unavoidable in software intensive systems. The

flexibility of a system will determine whether these late changes will cause an

architecture violation, i.e., a defect in the software architecture that reduces flexibility.

These violations are caused by many reasons, including making late changes to the

architecture without a thorough understanding of the architecture and not knowing how

the change will affect the architecture. A change that is implemented in software that

reduces system flexibility will cause the architecture of the system to degrade and will

ultimately lead to the system becoming harder and more expensive to maintain. As more

changes are required, system quality will continue to degrade and eventually the system

must be reengineered or retired. The goal of this research is to help developers

understand how certain types of changes will affect software architecture. A better

understanding of the system will enable developers to make changes and account for the

architectural impacts of the change and implement quality assurance techniques that will

allow the system to receive the change without a reduction in flexibility.

1

2

1.2 Background and Motivation

The nature of a software intensive system is that it will change over time. Making

changes to software intensive systems is a crucial aspect of maintenance and has become

an ever increasing challenge for software developers. For this reason, software

maintenance has been regarded in part as the most expensive phase of the software

lifecycle [11]. The more a system changes, the more complex it becomes. This increased

complexity can make the system less understandable for the developers and ultimately

result in decreased system quality.

Changes that must occur late in the software lifecycle pose an especially high risk

for developers, but are often unavoidable. These late changes are those that occur after at

least one cycle of the development process has been completed and a working version of

the system exists. Understanding late changes is important, due to the high cost of these

changes, both in money and effort, especially when they occur at the requirements level.

The most crucial changes tend to occur later in the lifecycle, as the customers and end-

users are better able to determine their needs. Implementation of these changes often

results in a less flexible system and forces deviation from the original design [8]. There

are many sources for late changes including defect detection, changing market

conditions, changing software environment, and evolving user requirements over time.

Due to the timing of these crucial late changes, it is often not possible to fully evaluate

their impact on the system architecture [10]. As a result, system quality decreases as the

software architecture is degraded, making defects more likely and future changes more

difficult [15].

3
When dealing with late changes, a focus on software architecture is important

because the architecture defines the structure and interactions of the system. When a

change affects the architecture of the system, the original architectural model prescribed

by the developers must be maintained to ensure that the system remains flexible and will

continue to function as originally designed. When a change affects the structure of the

system causing the interactions to become increasingly complex, the architecture tends to

degenerate and become unmaintainable [28]. When an architecture degenerates, the

actual functions of the internal and external system interfaces may not match their

original purposes, resulting in confusion for developers and forcing the software system

to be retired or undergo a major reengineering.

Developers need to better understand the effects of making a change before the

actual change is made. A change classification mechanism that allows developers to

conceptualize a change to a system before implementation will allow them to predict the

effects of the change on the software architecture. The developers can then come to a

consensus on exactly how the change request should be implemented, and take the

necessary precautions to ensure that the change does not degrade the system architecture.

This scenario can be accomplished by each developer first classifying the change request,

agreeing on the impact categories, and then using historical change data, if available, to

compare the impact of similar changes.

In general, change classifications have been created to help developers better

assess the impact and risk associated with making certain types of changes to software.

Several benefits of classifying changes have been identified in the literature, such as

4
identifying risks associated with change implementation and determining change

acceptability [25]. Software change classification mechanisms also allow engineers to

group changes based on different criteria, e.g., the cause of the change, the type of change

that needs to be made, the area where the change must take place, and the potential

impact of the change. Another benefit of change classification is that it allows engineers

to develop a common approach to deal with the items in each class, resulting in less effort

than if each change was addressed individually. Accurately classifying changes will also

enhance our ability to quantify the effects of particular change classes [25].

Classifications have been successfully used for change impact analyses on the

effects of source code modifications [3, 5, 6, 13, 14, 22, 23]. Often these source code

changes affect the software architecture because there is not currently a classification

scheme that focuses specifically on the impact of changes on the architecture. Better

understanding the impact of the types of changes that affect architectures will enable

developers to model the proposed changes, predict the implementation cost and, facilitate

a deeper understanding of the software architecture change process. As a result, higher

quality software will be developed throughout the product lifecycle.

This research presents an initial architecture change classification scheme

developed to address some of the problems associated with architectural degeneration

and provide a foundation for a future decision support model for handling changes. An

exploratory study was conducted to assess the usefulness of the scheme and to improve

the change scheme for further study.

5
This research attempts to minimize the effects of architecture degradation by

providing a means of understanding software changes and their effects on software

architecture. Architectural degradation is a problem caused in part by late changes to

software systems. These changes are unavoidable, but the effects of these changes can be

controlled and the negative effects minimized by knowing how the changes will affect

the architecture and whether to allow, defer, or not allow a change. There have been few

rigorous studies on the problem of guaranteeing quality while making changes late in the

software lifecycle. This research makes an initial effort to do so.

1.3 Research Plan and Related Goals

The objective of this research was to develop a detailed classification scheme that

modeled the effects of changes to software architecture. This research was conducted in

the following three phases: conception, refinement, and observation. These three phases

followed the goals set forth by the research.

The conception phase focused on the creation of an initial architectural change

classification scheme. The refinement phase included the analysis of historical data in

order to identify trends in certain classification types and to improve the scheme by

adding, subtracting, or modifying change categories based on historical change data. The

observation phase served to evaluate the usefulness of the classification scheme and

identify areas of weakness.

The goals of this thesis have been described using the Goal Question Metric

(GQM) format. Each GQM goal contains an object of study, a model of one or more foci,

a point of view, a purpose, and an optional description of the context [2]. Using the GQM

6
framework ensures that this research focuses on specific measurable goals. For each

GQM goal, questions of interest are presented to characterize the object of measurement.

Finally, the metrics associated with each question enable it to be answered through the

specific data collected.

1.3.1 Conception

The conception phase started with a literature review to understand the change

process, understand how changes affect software systems, and learn about current

classification schemes. The second part of the conception phase included a more detailed

review of the literature with the specific goal of identifying various types of software

changes and their affect on software architecture. These changes were then categorized

and used as inputs to the architecture change classification scheme. The areas of the

software environment affected by each change were also included in the scheme to

provide a complete picture of the effects changes have on the software system.

G1 Analyze change classification research and change data in order to
characterize changes with respect to their impact on software architecture from
the point of view of the researcher

This initial goal focuses on the creation of a preliminary change classification

scheme that models the effects of changes to software architecture. This goal provides a

baseline for the subsequent goals that will use its outputs as inputs.

Several questions of interest associated with this goal are as follows:

Q1 What are the major categories of changes?

Q2 What areas of the system does the change impact?

Q3 What is the result of the code modification/change?

7
Q4 What other software engineering documents are affected by change?

To answer these questions, the following metrics were used:

M1 Change classification models in literature

M2 Qualitative description of the implementation detail

M3 Lines added, modified, or deleted from any supporting software
engineering documents

M4 Change impact analysis data

1.3.2 Refinement

The objective of the refinement phase was to improve the classification scheme in

order to prepare it for observation in a classroom study. This phase consisted of using

data from a historical change database to further refine the classification scheme. The

historical dataset included change requests and some implementation data that was used

to measure the effort needed to implement the change. We used the classification scheme

to classify the change requests. The implementation was used to characterize the effect

each change class had on the system. Due to the time constraints (i.e., the observation

phase had to occur within 2 months of beginning the refinement phase), only one dataset

was used to obtain change data for analysis.

The second goal takes the classification scheme as an input to further characterize

the scheme.

G2 Analyze software change data in order to characterize it with respect to the
change classification scheme from the point of view of the researcher in the
context of a real project

8
The main focus of the second goal was to evolve the initial classification scheme

by classifying changes found in a historical data set. Questions of interest associated with

this goal are as follows:

Q5 What is the motivation for the change?

Q6 Are the categories of changes grouped in orthogonal classes, should
they be?

Q7 What quantitative/qualitative measures can be taken for each change?

Q8 What trends are related to each category of change?

Several metrics have been identified that provided answers to the questions posed

for G2. These metrics are:

M5 Detailed change request information

M6 Classification of changes from historic data sets

M7 Lines of code added, modified, or deleted per change class

M8 Number of modules changed, modified, or deleted per change class

After further refinement of the classification scheme, it was used as the

foundation of a classroom study identified by the third goal of this thesis.

1.3.3 Observation

The objective of the observation phase is to gather evidence in support or against

any hypotheses made after the collection and analysis of historical change data. This

observation occurred during a classroom study where students used the classification

scheme to classify and implement changes in a real development environment. An

9
analysis of the scheme’s usability along with the amount of effort involved in making

each type of change was recorded and analyzed in order to test the hypotheses.

The observation phase concluded with data collection and analysis. This data

analysis will determine if the characteristics identified by each change class match the

experiences of the students.

G3 Analyze the software change classification scheme in order to characterize it
with respect to usability, effort prediction, and architecture impact estimation
from the point of view of the researcher in the context of a classroom study

The third goal was accomplished by conducting a classroom study that provided

an initial determination of the usability and predictive capabilities of the change

classification scheme. Question of interest associated with G3 include:

Q9 Did the researcher classifications match the subjects’ classifications?

Q10 Is it the scheme easy to use?

Q11 Are the groupings/categories for the changes logical?

Q12 Are there any categories missing from the scheme?

Q13 How can the scheme be improved?

The metrics associated with G3 are listed below:

M9 Classification of changes by researcher & subjects

M10 Change implementation survey

M11 Change classification survey

M12 Person-hours required to make the change

M13 LOC added, modified, deleted

M14 Modules added, modified, deleted

10
1.3.4 Summary

Each phase of this research provided meaningful results that were used in

subsequent phases and will be used in future research. Each question of interest has been

answered using the data collected and is reported on in the remaining sections.

1.4 Research Hypothesis

When conducting preliminary studies, the initial findings serve as building blocks

for future research efforts. This research presents a preliminary study of a classification

scheme with implications in the area of software architecture change prediction and

modeling, as well as decision support modeling for assessing the viability of proposed

changes to software. In creating this classification scheme, one fundamental precursor to

any grand prediction is whether or not the differences in classes of changes will result in

a difference in the amount of measurable effort. Another elemental aspect of the creation

of this scheme is determining how well the change classifications match what is generally

understood by developers.

The goal of the research is the development of a software change classification

scheme that will ultimately provide a basis for understanding changes and how to handle

them in any environment. An initial hypothesis developed in the creation of this scheme

is as follows:

An architecture change classification scheme will allow developers to consistently
classify changes given a change request and make implementation decisions
based on the differing impact the various change classes have because items that
fall into different classes will require differing amounts of effort to implement.

This software architecture change classification scheme will help developers to

better understand change requests and how to categorize them, and show that the

11
differences in classes will result in differences in the amount of effort. This hypothesis in

turn can be used in future studies to predict more exact amounts of effort required to

implement a change, but only by first knowing and understanding that different changes

classes will require different amounts of effort.

CHAPTER II

LITERATURE REVIEW

There is one certainty in software development, and that is all software will

undergo change. Change is inevitable in software systems, because of the many factors

influence the need for changes to software. These factors can range from a change in the

user’s needs, a change in the operating environment, a change due to a problem in the

software, or even a change to prevent the need for future changes. Whatever the case,

software is going to change, and developers are developing increasingly sophisticated

ways to handle changes.

2.1 Software Change

Software change has been studied throughout the history of software

development. A pioneer of the study of software changes, Manny Lehman, created the

Laws of Software Evolution [16]. These laws describe recurring issues related to the

evolution, or changing, of E-type software systems. An E-Type system is a software

system that solves problems or implements computer applications in the real world and

must be continually evolved to maintain user satisfaction [18]. Laws I, II, VI, and VII

will be addressed in this research by examining methods for controlling the negative

effects of these laws.

12

13
Law I, Continuing Change, states that software undergoes never-ending

maintenance and development that is driven by the variance of its current capability and

environmental requirements [16]. There are various reasons why software must change to

accommodate such variance. This variance could be due to the changes in the technology

that contains the protocols and standards used by an application to communicate with

other systems. It could also be due to the changes in hardware and the need for more

efficient utilization of hardware resources. Understanding the reasons for change will aid

developers in developing systematic processes to handle change in a software intensive

system.

As systems change, they tend to become more complex. Because change is

inevitable in software systems, complexity will increase if not properly handled. This

situation leads to Law II, Increasing Complexity. This law simply states that changes

imposed by system adaptation lead to an increase in the interactions and dependencies

among system elements. These interactions may be unstructured and increase the system

entropy [17]. If entropy is not addressed and properly handled, the system will become

too complex to adequately maintain. Law II is one of the primary reasons why the

maintenance phase is typically the most expensive phase of software development [11].

In order to reduce and better manage system complexity, developers need improved ways

of understanding changes and how to incorporate change into system architectures.

It has been shown that the number of system modules increase linearly with each

incremental system release [16]. The law of Continuing Growth, Law VI, focuses on user

needs by stating that the functionality of software systems must continually increase to

14
maintain user satisfaction over the lifetime of a system [17]. This law, while similar to

Law I, reflects a different phenomena. The law addresses the tendency of the user base to

become increasingly sophisticated and demand a more robust set of features requiring

that the software grow over time to meet such needs. This growth will also include

features that are not deemed satisfactory to the user base and must be adapted to fit user

demands. This adaptation causes the system to grow. This law is often made evident by

the omission of a detailed model of the application in its actual or desired operational

domain. This lack of information is due to limitations that arise from constraints on

budget, milestones, and technology, thus causing the specification of requirements to be

bounded. When such items are excluded and are later requested by users, the system must

grow its capability to provide attributes that were not originally accommodated in the

initial development [17].

Each of the previous three laws discussed feed into Law VII, Declining Quality

[17]. As changes are made, system complexity increases. The introduction of new

features to a system causes it to grow continuously. All of these factors can serve to

reduce the perceived quality of a system. When the quality of the system is reduced, it

becomes more expensive to maintain because of an increase in the number of problems

encountered by users. To address these problems, changes must be made to the system.

These changes are likely to further increase the complexity and growth of the system

which will, in turn, further reduce the quality [17]. This cycle results in a continuous

downward spiral of quality.

15
The Laws of Software Evolution have been studied and its claims have been

supported throughout software engineering literature [16, 26]. In understanding these

laws, and the necessity of software change, researchers have developed methods of

handling changes, e.g., using change classification schemes, impact analysis, and effort

prediction models. These methods are continuing to improve. As more research is done in

the area of understanding changes, more can be done for practitioners to help them

implement system changes. Practitioners then will not have to suffer from the

uncontrollable increase in complexity or decline in quality.

2.2 Current Research in Software Change Classification

There have been several change classification and change impact analysis

schemes identified in the literature. Lam and Shankararaman identified several key

change implementation areas and their relevance to software change classification

research. These areas include process models used in change management, configuration

management issues, defining change categories, and developing additional strategies to

handle changes to software [14]. Each key area was taken into consideration when

creating the architecture change classification scheme described in Section 3.1

Process models focus on modeling the change process in relation to the software

engineering process. The PRISM model provides insight on the main components of the

environment necessary to cope with changes. The two-tier approach of the PRISM model

first attempts to identify items in the environment that will be affected by a change.

Second, it classifies and records analytical data related to the change. Both aspects

include feedback mechanisms used to influence changes and project future changes [20].

16
This model also focuses on how change propagates across the software environment,

including the effects certain environment variables have on changes, such as people,

policies, laws, and resources. The FEAST model (Feedback, Evolution and Software

Technology) identifies the need for dynamic feedback in the software process model as a

continuous system varying over time [17]. The architectural change process described by

Nedstam describes the change process as a series of steps [24]:

1. Identify an emergent need

2. Prepare resources to analyze and implement change

3. Make a go/no-go feasibility decision

4. Develop a strategy to handle the change

5. Decide what implementation proposal to use

6. Implement the change.

An architectural change classification scheme will address steps 2, 3, and 4 in the

above list by helping developers conceptualize the impact of a proposed change through

the process of classifying the change request.

The goal of the study described in this paper is to analyze a new classification

scheme designed to model the effects of changes to software architecture. Our change

classification scheme will build on features of current change classification schemes that

provide insight into aspects of change that in some way affect software architecture.

Kung, et al. researched the impact of code changes on class inheritance structure within a

software system where code changes resulted in small changes in the larger modules of

the system [13]. Briand and Basili classified changes that occurred during the

17
maintenance process. They were able to approximate component changes that were

isolated in the system architecture [3]. Nedstam, et al. identified changes to be either

architectural: affecting the structure of the system; functional: affecting only user-

observable attributes; or somewhere in between: affecting both user-observable attributes

and the system architecture [24]. Many of the above change characteristics were

considered in creating the architecture change classification scheme described in this

research.

CHAPTER III

ARCHITECTURAL CHANGE CLASSIFICATION SCHEME

As a starting point for our research, we created an architectural change

classification scheme to model changes that affect software architecture. This scheme

built on change and defect classifications published in the literature. Although the focus

of the scheme is on architectural changes, it also covers defects and functional changes

that may or may not affect system architecture. Defects and functional changes were

included to allow the scheme to be robustly used to model all types of changes, not

exclusively architecture changes.

The questions of interest pertaining to the conception phase were answered by

collecting and analyzing metrics presented throughout the remainder of this section. Each

metric was found using various sources in the literature.

3.1 Classification Scheme Overview

The high-level classes for the architectural change classification scheme are

derived from Mohagheghi’s 4 change categories: perfective, preventative, corrective, and

adaptive. Perfective changes result from new or changed requirements. These changes

improve the system to better meet user needs. Preventative changes ease future

maintenance by restructuring or reengineering the system when a potential problem is

identified. Corrective changes occur in response to defects. Adaptive changes occur when
18

19
moving to a new environment or platform or to accommodate new standards or

platforms [23]. These classes are orthogonal.

The goal for our classification scheme was to provide support for system

developers and maintainers to assess the potential impact of a proposed change and to

decide whether to implement the change. In cases where the change is crucial to the

system, the scheme will help generate consensus on how to approach change

implementation and provide an idea of its difficulty. The classification scheme is a

collection of change and defect attributes. The scheme has been modeled as a decision

tree that a developer can traverse while choosing values for each attribute.

Section 3.1.1 describes the process for arriving at the classification of a specific

change. Some of the attributes of the categorization are orthogonal and others are not.

The high level characterization of the change is an orthogonal choice. The remainder of

the attributes that provide a more detailed view of the parts of the system that will be

affected by the change are not orthogonal. For non-orthogonal attributes, each will be

given a value from Table 1. The combination of these values then gives the developer an

overall idea of the impact of that change. The classification produced by the decision tree

will be based on the developer’s experience with the system. It will help determine the

difficulty of implementing the change and provide some reasoning about the amount of

effort that will be required to make the change.

20
Table 1

Change Impact Scale

0 = No impact
1 = Small impact

2 = Significant impact
3 = Major focus of change

3.1.1 Classification Process

In addition to developing a classification scheme, we have also developed a

process for using that scheme. Figure 1 illustrates the first two steps of the process. Given

a change request, the developer first documents the lifecycle phase in which the change

was requested. Next, the developer must decide whether the change is an enhancement or

defect. An enhancement is a change that has the goal of improving the system for its

stakeholders, while a defect is caused by an error, fault, or failure.

Within the two major change categories, additional subcategories exist to further

detail the change request. In Figure 1, Figure 2, and Figure 3 each diamond represents an

attribute in the classification scheme and a decision point. Attached to each diamond are

the potential values for that attribute with the shape of the subtypes indicating whether

the attribute is orthogonal. Attributes with rectangles are orthogonal attributes (i.e., only

one choice is made), while attributes with circles are non-orthogonal attributes (i.e.,

multiple selects can be made). Sections 3.1.2 and 3.1.3 explain the detailed attributes for

the enhancement and defect classes respectively. In both cases, during this initial study,

we assume that each attribute is independent of the others. This assumption will remain

until further analysis of the change classes provides evidence of a dependency.

21
3.1.2 Enhancement Details

After determining that the change is an enhancement, the first attribute to be

determined is the class of that change. The class attribute is orthogonal and has a value of

either perfective, adaptive, or preventative. This attribute is chosen first because, in the

future, it will be likely to provide a basis for constraining the values of the other

attributes. For example, as we gather more data, it may become clear that an adaptive

change will always affect the dynamic properties of a system.

The next attribute to be determined is the type of modification that must take

place. This attribute refers to whether information is added to, deleted from or modified

in the artifacts of the system. Specifically, this characterization refers to code changes to

methods, classes, data, or libraries [13]. Because it is possible, and likely, that more than

one of these actions will occur for a given change, this attribute is non-orthogonal. The

type attribute allows a developer to prescribe a solution for the change by identifying

what must be done to the code.

22

Figure 1 High-Level Change Categories

The next attribute that is important for an enhancement is the impact attribute.

This attribute takes advantage of the developer’s knowledge of the system to associate

the change with the area(s) of the system that will be affected. Because the parts of the

system affected by the change are more likely to have new defects in them, the value(s)

of this attribute help testers focus their regression testing efforts to ensure that the system

will still function correctly after the change [5]. There were various software impact areas

identified in the literature that could be affected by a software change including:

processes, hardware, data, system, protocols/standards, programs/sub-systems, file

systems, interfaces, documentation, and source code [1, 3, 20, 22, 27]. It is expected that

the design of a system will influence which aspect of a system are affected by a particular

change [5].

23
After determining the impact, the next step is to describe the properties of change

as either static, dynamic, or a combination of the two. A value of static indicates that the

change affects the static structure of the system, i.e., class, package, and object diagrams,

while a dynamic value indicates an effect on the dynamic properties, i.e., collaboration,

state-chart, and activity diagrams.

The last attribute to be determined is architectural vs. functional characteristic of

the change. For this attribute, we use a scale ranging from purely architectural changes

that affect the structure of a system, but not how it functions to purely functional changes

that affect the user-observable attributes or functions of a system [24]. The value of this

attribute may be anywhere in the range between those two extremes, indicating how

much it will affect the architecture. For this initial study, we created a primitive scale that

classifies a change as purely functional (-1), purely architectural change (1), or

somewhere in between (0). Figure 2 shows the enhancement classification process

graphically.

24

Figure 2 Detailed View of Enhancement Attributes

3.1.3 Defect Details

Similar to the enhancements, the defect category has a set of more detailed

attributes. These changes focus on repairing an error, fault, or failure in the system and

can therefore also affect the architecture of the system. As each defect fix will also be an

enhancement, the first step is to classify the change using the attributes described in

Section 3.1.2. Afterwards, the developer will classify the change using the additional

attributes needed for defects as shown in Figure 3 and described in detail in the rest of

this section.

Similar to enhancements, the first attribute is the class. The only remaining high-

level attribute identified by Mohagheghi is corrective, because all changes due to defects

are corrective by definition [23]. The class attribute is included in the initial version of

25
the classification scheme for completeness. However, if no additional values for this

attribute are discovered in future research, the class attribute may be removed for

simplicity.

The next attribute, found, identifies the stage in the development process in which

the defect was discovered. This value is either inspection, testing, or user-reported.

Following the same idea, the next attribute is the origin, or part of the documentation in

which the defect originated. The defect can originate in the requirements, design, or code.

These attributes are included because of previous research identifying a correlation

between the time and location of defect discovery and the effort required to repair that

defect. Changes later in the lifecycle tend to be more difficult and have a larger impact

because more artifacts must be changed, requiring input from multiple stakeholders [9].

The final attribute for a defect is issues, which is similar to the impacts attribute

for enhancements. This attribute is useful for prescribing a general means of handling the

changes needed to fix the defect. Each value for the issue attribute is found throughout

software engineering literature as causing defects and are as follows: design, data

accessibility, environment, problem definition, domain knowledge, technology, interface:

system/user, and data transmission [9, 10, 21].

This initial architectural change classification scheme will be continually refined

based on the results of studies similar to the one described in Section 5.1.

26

Figure 3 Detailed View of Defect Attributes

CHAPTER IV

HISTORICAL DATA ANALYSIS

The second goal of this research focuses on the analysis of historical data to

further refine the created change classification scheme. This refinement occurred by

classifying historical change requests in a single dataset and analyzing the

implementation data to identify trends in each change class. The classification scheme

from Section 3.1 is also subject to change with the identification of new categories,

updating existing categories, or removing categories.

To do this type of analysis, this historical dataset must include change requests

and implementation data that can be traced back to each change request. It must also

include a way to measure the effect of each change request. An ideal dataset would

contain the following information on changes:

• Effort required to make the change

• Calendar time to complete change

• LOC changed/added/deleted

• Modules changed/added/deleted

• Artifacts changed

• Origin of error

• Source of change request

27

28
No dataset has been found that contains all of this information. A suitable dataset

should contain enough of these features that allow effort to be measured. These different

effort measurements could then be used as inputs to determine the difficulty of the

change.

One repository of software development projects that includes change requests

and implementation data is sourceforge.net® (SourceForge). SourceForge is an open

source software project repository that contains over 100,000 registered projects and over

1 million registered users. Each project’s development status scale ranges from planning

(1) to mature (6) and includes a rating for inactive (7) projects. For each project, an

automated tracker keeps up with feature requests (change requests), bug fixes, and a CVS

repository of the code and available documentation. There are also forums that contain

details and user/developer comments for each area managed by the tracker. These forums

include status information for each change request and bug listing for the selected project.

The status information details whether the change request is open, closed, or pending.

An example from the SourceForge repository is shown in the figures below.

Figure 4 shows a screenshot of the SourceForge CVS web-based repository viewer. This

page shows the project dataset that was used during the refinement phase, NSIS or

Nullsoft Scriptable Install System, which is a script-based Windows® installer system.

This project was chosen because of the detail the development team used in documenting

code changes in the CVS repository. This information, along with the SourceForge

forums, was used to trace an enhancement requests back to the actual code changes.

Figure 4 also shows the changes made to clzma.cpp a source file that was changed twice

https://sourceforge.net

29
since Revision 1.1 of the NSIS system. For each revision, the changes made to the source

file along with a description of the change are displayed. The repository also includes the

LOC changes from one revision to the next. The SourceForge repository contains data

suitable for metrics M5 (detailed change request information), M6, (classification of

changes from historic data sets), M7 (lines of code added, modified, or deleted per

change class), and M8 (number of modules changed, modified, or deleted per change

class). This information will be gathered by discreet examination of the classes that have

been changed.

Figure 4 CVS Repository View – NSIS

30

Another screenshot, shown in Figure 5, shows the use of the diff tool from one

revision of the clzma.cpp to the next. This tool can be used to see what types of

modifications were made to the code in addition to the change in LOC.

Figure 5 CVS Diff Tool

The last SourceForge screenshot in Figure 6 shows an example change request

made for the NSIS project. Requests such as this one were used as inputs to the

classification scheme and the implementation data that it matches in the CVS repository

was used for analysis.

31

Figure 6 NSIS Closed Change Request

CHAPTER V

EMPIRICAL CLASSROOM STUDY

The observation phase of this research was done via an empirical classroom study.

This study will use the change classification scheme and will provide evidence either in

support of or against the hypothesis. The details of the study are listed in the following

subsections.

5.1 Study Description

The overall goal of this study was to gain insight into the use of the architecture

change classification scheme. The GQM goal for this study is:

G3 Analyze the software change classification scheme in order to characterize it
with respect to usability, effort prediction and architecture impact estimation from
the point of view of the researcher in the context of a classroom study

Our purpose for running the experiment was to determine if the classification

scheme described in Section 3.1 would be of any practical use to a developer making a

software change. We focused on architectural impacts in this study because architectural

changes tend to have an adverse effect on system quality when implemented without

taking the necessary precautions to prevent degradation. The questions of interest are as

follows:

Q9 Did the researcher classifications match the subjects’ classifications?

Q10 Is it the scheme easy to use?
32

33
Q11 How accurate are the effort predictions?

Q16 Are the groupings/categories for the changes logical?

Q17 Are there any categories missing from the scheme?

Q18 How can the scheme be improved?

Answers to these questions give us an idea about whether students understood the

scheme and help identify its strengths and weaknesses. To address these questions we

collected both qualitative and quantitative data. The qualitative data was obtained from

questionnaires and surveys as well as from reports the student’s submitted about their

experience. The quantitative data was provided by the students keeping track of the

implementation details for each change, including the number of modules and

components changed and the amount of time required. Finally, we collected the modified

architecture and code from each student to perform our count of modules changed and

LOC changed for each change request.

5.2 Hypothesis

One fundamental requirement for using a classification scheme to make a

prediction about the effort required to make a change is that changes from different

classes must require different amounts effort to implement. If different classes of change

do not require different amounts of effort, then the classification scheme is not useful as

an effort predictor. The other fundamental aspect of a valid classification scheme is

whether it matches the general understanding of the developers. Different developers

should have a similar notion of how to classify a given change in terms of its effect on the

system.

34
The architecture change classification scheme was designed to force the

developers to understand the impact of a change prior to implementation. After

classifying the change, the scheme should provide information useful to an impact model

that helps to determine the effect of the change on the code and the required amount of

effort. Based on these requirements, our research hypotheses are as following:

H0: Developers will consistently classify changes in the architecture change
classification scheme
H1: Changes of different classes will require different amounts of effort to
implement.

5.3 Study Setup

This study was conducted in the Software Architecture and Design Paradigms

class at Mississippi State University in the Fall 2005 semester. This class focuses on

software architecture development methodologies and analysis methods including model

representations, component-based design, design patterns, and frameworks. There were

18 subjects (13 seniors and 5 graduate students) who participated in the study.

During the experimental tasks, described in Section 5.5, the students worked with

the artifacts from the Tactical Separation Assisted Flight Environment (TSAFE), a tool

designed to aid air-traffic controllers in detecting and resolving short-term conflicts

between aircraft [7]. Prior to the beginning of the study, the students were given several

weeks to familiarize themselves with the TSAFE system by completing an assignment to

create their own architecture for the TSAFE system based on the given requirements

document. This assignment required the students to create the logical and runtime

35
structure, map that information to the hardware and file system, and provide a rationale

for their decisions.

5.4 Training

Before using the classification scheme, the students were given two 1.25 hour

class periods of training. The first session focused on explaining the purpose for the

classification scheme and defining the attributes. The second session allowed the students

to get hands-on practice using the classification scheme to ensure they understood it.

During this session the students were given descriptions of 10 change requests for a

fictional system (for which they were given requirements and architecture), and asked to

classify those change requests. This session ended with a discussion of the classification

scheme to allow the students to provide feedback that helped us clarify some definitions.

5.5 Experimental Tasks

The change classification study took place during the final homework assignment

of the semester. The students were given feedback on the TSAFE architectures that they

created, and then were given the “gold standard” TSAFE architecture created by the

researchers. The students were given 2 successive change requests of different types to

implement. The order in which the students received the change request was randomized.

The change requests were designed to be complex enough to require architectural

changes while being simple enough to be completed in the allotted time. To verify these

properties, we implemented both change requests prior to the assignment.

After receiving the change request, the students first used the architecture change

classification scheme to classify it. Next, they modified the architecture to allow the

36
change to be implemented. Finally, the students implemented the change in the codebase.

During these activities, the students were asked to keep track of how many modules they

changed and the amount of time they worked.

After completing and submitting the first change request, the students were told to

return to the original version of the architecture and code (i.e., not including Change 1)

and were given their second change request. The students were given 3 weeks total to

complete both changes.

After completing both changes, the students were given a survey to gather their

opinion about the difficulty of each change, the ease of using the change classification

scheme, and whether the change categories “made sense” to them. Here are the steps the

students followed to complete the assignment:

1. Review the “gold standard” TSAFE Architecture and corresponding code

2. Classify change request using architectural classification scheme

3. Provide rationale for classification in Step 2

4. Submit change request classification and rationale

5. Make changes to TSAFE architecture and document effort

6. Submit modified architecture

7. Make changes to TSAFE code

8. Submit code changes and any additional architectural changes made

9. Provide report detailing changes made

10. Repeat steps 1-9 for second change

11. Complete and submit survey

37
5.5.1 Change Requests

Change #1 – Conformance Monitor. This change involved adding a class to the

system to calculate whether the flights managed by TSAFE are staying on their set

courses. The students were given the code for the mathematical calculations, but to

correctly implement the change, the students had to determine where the class should

connect to the system and how the calls should be made to the member functions.

Change #2 – Feed Display. This change required adding additional functionality

to the TSAFE system to allow the GUI to display raw flight coordinates data. This

change required the students to transfer data from low-level classes that handled the raw

flight data up the class hierarch through several classes to the higher level display

module.

Table 2

Researcher Classifications

Enhancement Change 1 Change 2
Type: Add 1 3

Modify 1 2
Delete 0 1

Properties Static 2 1
Dynamic 2 2

Impacts Program/Subsystem 0 0
Processes 0 0
Interfaces 1 3

Source Code 1 2
File System 1 0

Hardware 0 0
System 0 0

Data 0 2

38
Documentation 1 1

Other 0 0

Using the classification scheme from Section 3.1, we classified the changes (prior

to implementing them in the code). Both changes were perfective enhancements that

occurred during the maintenance phase of development, and Table 2 shows the remainder

of the attributes. The numbers in Table 2 correspond to the impact scale in Section 3.1.

5.5.2 Data Collection and Analysis

The data gathered from conducting the empirical classroom study must be

statistically and objectively analyzed to provide sound evidence in support or against the

research hypothesis.

There were several questions of interest associated with each goal of the research.

These questions have been answered using both quantitative and qualitative metrics. The

changes presented in the classroom study were classified by the researchers as well as the

subjects for comparison. This data will satisfy metric M9 (classification of changes by

researcher and subjects) identified in Section 1.3.3. Several comparison charts were made

to assess the degree of similarity between each student’s classification and the

researcher’s classification. This information tells us how well the students understood the

attributes of the classification scheme. The charts also tell us how consistently different

developers classify the same change request.

For the qualitative measurements, an implementation survey that asks questions

pertaining to the difficulty of implemented each change was provided to the students as

well as a classification survey on the ease of using the classification scheme. These two

39
pieces of information will satisfy metrics M10 (change implementation survey) and M11

(change classification survey). Several examples of questions from each survey are show

below:

Implementation Survey:
1. Which change request was more difficult to implement? Why?

Classification Scheme Survey:
1. What additional change attributes would you recommend adding to the

classification scheme?

2. On a scale of 1 to 5, with 1 being the easiest and 5 being the most difficult,
rate the scheme in terms of its ease of use.

3. Are there any inconsistencies in the attributes of the scheme and your
experiences in software development?

Survey questions such as these provided qualitative feedback to the researchers. The

detailed surveys can be found in the Appendix.

The person-hours required making the changes, along with lines of code, and

modules changed were recorded by the subjects and included in the reports. This piece of

information will provide metrics M12 (person-hours required to make the change), M13

(LOC added, modified, deleted), and M14 (modules added, modified, deleted). This data

was analyzed for each change request. Finally, the effort (LOC) required to implement

the changes from different classes will be compared using a t-test to determine if the

change that was hypothesized to be more difficult really was more difficult in practice.

CHAPTER VI

RESULTS

6.1 Historical Data Analysis Results

The SourceForge repository provided an extensive selection of open source

projects. Each project contained similar information relating to the implementation of

changes and bug fixes, and it allows users to track when changes are made to each

system. The NSIS project was chosen from a random search of the available projects in

the SourceForge repository because of the perceived level of detail provided by the

project developers. The amount of detail provided for each change made to the system in

the NSIS project did appear to be at a greater level of detail than the other projects in the

repository. However, there were also many cases where the implementation detail of the

actual change requests listed in the system tracker could not be analyzed due to the lack

of specific change information relating to the change request.

When we were able to find change requests that could be traced to the code, there

existed the possibility of bias in the selection process, because not all project developers

provided the level of detail needed to trace the change requests to the implementation

change in the code. Analyzing a change request and finding every place in the source

code where the request required a change was a very difficult and time consuming

process. Due to time constraints, the NSIS repository could not be exhaustively examined

40

41
for change implementation detail. There were a limited number of change requests that

had identifiable implementation detail; and there was a possibility that for those change

requests, there may have existed implementation detail that was not found. Although the

historical data analysis component of this research did not provide strong evidence of

implementation effort for the various change attributes because of the problems described

above, effectively using the classification scheme to classify real-world changes did

provide a sanity check. We were able to classify the changes using the scheme, but in

many cases, were not able to identify implementation detail.

This historical data analysis did enable us to change the original design of the

change scheme to more of a decision tree-like process. The attempts we made to

characterize the change requests were easily done by traversing through a tree of steps

rather than just selecting any of the attributes at random.

We plan to continue using the scheme to analyze historical data. Other

repositories have been identified in the open-source communities (Apache Software

Foundation) that provide change implementation detail with many of their sponsored

projects.

6.2 Classroom Study Results

We analyzed the data using quantitative analysis for the data collected during the

change implementation, and qualitative analysis for the surveys and reports. We grouped

the results based on hypothesis H0 and H1 posed in Section 5.2. Along with each

hypothesis, we provide a series of observations drawn from the associated data analysis.

Typ
e
Clas

s
Add

Mod
ify

Dele
te
Stat

ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
e s

se
s

Int
erf

ac
es

Sou
rce

 C
od

e

File
 Sys

tem

Hard
ware

Sys
tem Data

Doc
s.

Othe
r

Sco
pe

Students (Median) Researchers

3

2 2 22 2 2
2

1

Im
pa

ct
 V

al
ue

11 11 1 11 1 1 1 11 1 1 11

00 0 0 00 00 00 00 00
0

42
6.2.1 H0 Results

H0 was that the students would classify the changes consistently. Based on the

data collected, we provide three observations related to that hypothesis.

Observation 1: The students classified the changes similar to the way the researchers

classified them

This observation is based on the analysis of data submitted by the 15 students who

submitted their classification for Change #1 and Change #2. The students did the

classification prior to making the actual change. If the students correctly understood the

attributes of the classification scheme and how changes to the TSAFE system would

affect those attributes, then the students’ change classifications should have been similar

to the researcher’s classifications. |

Figure 7 Classification Accuracy (Change #1)

43

1 1

2

1

0

1 1 1 1

2 2

0 0 0

1 1

0 0

1 1

3

2

1 1

2

0 0

3

2

0 0 0

2

1

0 0
0

1

2

3

Typ
e

Clas
s

Add
Mod

ify

Dele
te

Stat
ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
es

se
s

Int
erf

ac
es

Sou
rce

 C
od

e

File
 Sys

tem

Hard
ware

Sys
tem

Data

Doc
s.

Othe
r

Sco
pe

Im
pa

ct
 V

al
ue

S t u den t s (M ed i a n) R e s ear c h er s

Figure 8 Classification Accuracy (Change #2)

We measured the student classifications in terms of consistency and accuracy.

Figure 7 and Figure 8 show how closely the median of the student’s classifications match

the researchers for Change #1 and Change #2 respectively. In addition, Figure 9 and

Figure 10 show the consistency of the students in their classification of the changes. The

data in these charts show first, that because the students’ classifications were similar to

the researcher’s, the students understood the classification scheme. Secondly, the results

show that the students had a fair understanding of the level of impact each change would

have on the TSAFE architecture and source code. Finally, while the median values of the

students’ classification were similar to the researcher’s classification, they were not

totally consistent as seen by the distribution of rankings. Additional charts created from

44

Cla s
s

A dd

Mod
ify

Delet
e

Static

Dyn
am

ic

Prog
./S

ubs
ys

Proc
e s

se
s

Int
erf

ac
es

Sou
rce

 C
ode

Hardw
are

File
 Sys

tem

Sys
tem

Data

Docs
.

Othe
r

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

0

2

4

6

8

10

12

14

16

of

 S
tu

de
nt

s

data from the training exercises showing the accuracy and consistency of 10 of the

fictional change requests are shown in Appendix A.

0

2

4

6

8

10

12

14

Class Add

Mod
ify

Delet
e
Static

Dyn
am

ic

Prog
./S

ubs
ys

Proc
es

se
s

Int
erf

ac
es

Sou
rce

 C
ode

File
 Sys

tem

Hardw
are

Sys
tem

Data

Docs
.
Othe

r

of

 S
tu

de
nt

s

0 - N o I m pac t 1 - S m al l I m pac t
2 - S i gni f i c a nt I m pac t 3 - M a j o r F o cu s

Figure 9 Classification Consistency (Change #1)

Figure 10 Classification Consistency (Change #2)

45

Observation 2: Survey results show that the change scheme was viewed as being useful

On the end of the assignment survey, we asked the students to describe any

inconsistencies they found in the classification scheme and to tell us how it could be

improved. We also asked the students to give us their level of agreement with several

statements pertaining to the usefulness of the scheme. The statements read as follows:

The attributes are logical and easily understood

The scheme would be beneficial to a developer making a change

The scheme has practical application in industry

The scheme is easy to use

After classifying both changes, I had an idea of which would be the most difficult

to implement

The rating scale ranged from 1 (totally disagree) to 5 (totally agree). Figure 11

shows the results recorded for each student in the study.

These results give us some confidence in the usefulness and practicality of the

classification scheme. For the first three statements, there was only one student who

showed any level of disagreement. The fourth and the fifth statement had more

disagreement than the first three statements. Observation 3 provides some rationale as to

why the “easy to use” ratings were low.

46

Totally Disagree Somewhat Disagree
Neither Agree or Disagree Somewhat Agree
Totally Agree

0 0 0 0

1

0

1

0

4

6

7

5

6

4

2

9

11

9

7 7

2

1

3 3

2

of

 S
tu

de
nt

s
12

10

8

6

4

2

0

Logical Beneficial Practical for Easy to Use Difficulty
Attributes for Industry Measure

Developers

Figure 11 Student Survey Results

Observation 3: The classification scheme contains some overlapping attributes and

ambiguous definitions

One of our survey questions asked the students to identify any ambiguity or

inconsistencies in the definitions provided for the attributes of the classification scheme.

This question was meant to elicit information that could be used to improve the

47
classification scheme. The answers that were given by the students along with a count (in

parentheses) of the number of students that gave the response are shown below:

Need a more clear definition of “System” for the Enhancement changes – could

be system interface (5)

Need a more granular scale for the “Functional vs. Architectural” attribute (5)

Definitions of “Adaptive” and “Perfective” are too similar (4)

Program/Subsystem attribute is not needed (2)

“Documentation” and “Source Code” are the same attributes (2)

“Corrective” class not needed for Defects category (2)

“Interface” definition should be split into separate definitions for system

interfaces and GUI interface (1)

Should define the scale used for impact measurement of each attribute by

providing examples of changes to similar systems and the results the chosen

impact value had on the system (1)

Need a clearer definition of “Static” and “Dynamic” properties (1)

Need a rating for number of modules that will be affected by the change (1)

“Requirements” should be added to the Issues section of the Defect category (1)

The confusion with some of the attributes, illustrated by the above comments,

provides some insight into why the classification scheme was not viewed as being as

“easy to use” as we would have hoped. They also illustrate why many students believed it

would be difficult to predict which change would require more effort simply based on its

48
classification. These comments reflect improvements that will be made to the

classification scheme to improve its use in future studies.

6.2.2 H1 Results

Observation 4: Change #2 (Feed Display) required more effort than Change #1

(Conformance Monitor)

Although most students were not able to completely implement both changes, a

majority (12/18) stated that Change #2 (Feed Display) required more effort and was more

difficult to implement than Change #1 (Conformance Monitor). Out of the three students

that did successfully implement both changes, all indicated that Change #2 was more

difficult to implement.

This qualitative response is explained in part by the difference in classification of

the two changes. Change #2 was classified as having a larger effect on the source code,

and required a larger amount of code to be added to the system.

In addition to the qualitative responses, for each change that was completed, we

used a tool to compute the number of modules changed and the number of LOC changed.

The data came from three students who completed both changes, one student who

completed only Change #1, and one student who completed only Change #2. Of the five

students that completed a change request, three received Change #1 first, the other two

received Change #2 first. Due to the small number of data points, we provide the

statistical results for both the parametric t-test and the non-parametric Mann-Whitney U

test.

49
Table 3

Change Implementation Results

Subject Change LOC Changed Modules
Changed

S5 C1 19 2
C2 25 7

S10 C1 19 2
C2 N/A N/A

S13 C1 N/A N/A
C2 13 3

S14 C1 16 2
C2 36 8

S17 C1 11 2
C2 37 7

The results of this analysis showed that that the subjects changed more modules

when implementing Change #2 versus Change #1. This result was statistically significant

(t4 = -16.00, p = .004 [t-test]; Z = 2.121, p = .034 [Mann-Whitney]). Furthermore, Change

#2 also required more LOC to implement than Change #1. This result was again

significant (t4 = -3.854, p = .018 [t-test]; Z = -1.964, p = .04 [Mann-Whitney]). The

number of modules and LOC changed are shown in Table 3.

The statistical results coupled with the qualitative responses from the subjects

provide some evidence that if used correctly, the classification scheme provides some

help in comparing the difficulty of changes.

6.3 Study Implications

Only three of the eighteen students that participated in the study completed both

change requests, with two students completing one change request each. To better

understand this occurrence, we attempted to identify the difficulties that the students had

50
while making the changes by analyzing the report each student provided about each

change. There were several factors that may account for the low completion percentage.

Here we list four prevailing factors from the student reports that may account for the low

completion percentage.

TSAFE is too complex to understand and change in such a short time: The

students had a difficult time understanding the TSAFE code. This was the biggest

obstacle noted in their reports. The TSAFE source code contains several packages and

over 100 source and configuration files. The average analysis time, time spent

understanding the architecture and source code, for students making their first change

was 5 hours. Most students struggled to understand the system and could not sufficiently

perform the required tasks.

No design document to show how the architecture maps to code: We only

provided the students with the TSAFE requirements, architecture, and source code. Since

we did not provide the students with a low level design document for the system, the

students had trouble figuring out exactly how to map the architecture to the source code

in some cases.

Java development experience low: Several students stated that they had to

“relearn” Java because they had not used the programming language in “quite some

time.”

Did not provide enough motivation to implement challenging change requests:

The students had a total of 3 weeks to complete both changes late in the semester. The

assignment only accounted for ~5% of the students overall grade, but was more difficult

51
than previous homework assignments. The students did make attempts to implement each

change, but with finals approaching and other semester long projects coming to

completion, the architecture change assignment may not have been the highest on their

priority lists.

6.4 Threats to validity

We have identified a set of validity threats both with the design and the execution

of the study. In some cases we were able to address potential threats prior to the study,

while in other cases the threats remain. In this section we discuss those threats and their

potential impact on our results.

6.4.1 Threats Addressed

Maturation and Testing: We randomly gave half of the class Change #1 first and

the other half Change #2 first. We did this to negate any effects of maturation where

students would naturally perform better when implementing the second change after

having the experience of implementing the first. Variables such as analysis time and

implementation time, given equal changes, would also have been less for the second

change because the student would have a better understanding of the code the second

time through.

6.4.2 Threats Not Addressed

Small Sample Size: The biggest threat to the validity of this study was the small

sample of students that completed both change requests. We took this issue into account

when running statistical tests by using both the parametric and nonparametric tests, which

52
showed similar results. But it is still problematic to draw any solid conclusions from this

data.

Effort in Man-Hours not Collected: We were not able to measure the amount of

time required to make each of the changes. While the students were asked to report this

figure, they were not given a time sheet to use to track their effort to analyze the code,

modify the architecture, and modify the source code. Therefore, most students (including

the three that completed both changes) did not report this information and our

comparisons between the changes were based on an estimate of effort (number of

modules and LOC changed).

Change Differences from Other Factors: The different amounts of effort required

to implement the two changes could result from other factors besides the difference in

classification. Because we only had 2 changes, we were unable to investigate other

possible differences that could cause the dissimilarity in the amount of effort required to

implement each change. In Chapter 7, we describe a future study that will address this

issue.

CHAPTER VII

CONCLUSION

Our initial goal for this research was to use the architecture change classification

scheme to test its usefulness in allowing developers to conceptualize the affects a change

would have on a software system. We hypothesized that different classifications would

require differing amounts of effort to implement allowing the change classification

scheme to be used for effort prediction. Predicting software change effort is a difficult

task even for experienced developers [19]. Our purpose for creating this scheme is to

provide an input to a decision support model that will incorporate change classification,

impact analysis, and risk assessment to aid developers in making go/no-go decisions for

changes based on how the system will be affected.

The results we were able to obtain did, in general, support our initial hypotheses.

That is, Change #2 required significantly more modules and LOC to be changed than

Change #1; and the subjects qualitatively agreed that Change #2 was more difficult.

Furthermore, the students responded that the in most cases the classification scheme was

useful, although they did provide some helpful suggestions for improvement.

We will continue to refine the classification scheme by making several changes

based on the feedback from the students. We will continue to use the modified scheme to

classify change requests from historical datasets that provide sufficient change

53

54
implementation detail and correlate those changes to the implementation data to gather

more data about the relationships of the change attributes. We hypothesize that differing

classifications of changes for a single system will exhibit distinguishing trends from other

change classes. We expect to identify certain attributes of a change that will require more

implantation effort than others. We have identified another open-source software

repository, the Apache Software Foundation, which contains funded open-source

software projects that include detailed change data. We also plan to investigate other data

sources to continue the historical data analysis efforts.

We intend to replicate the study reported on in this thesis, improving it based on

our lessons learned. In future experiments, we will use multiple change requests that

include a set of similar change classes and a set of different change classes. We can then

compare both within classes and across classes to better understand the source of

variation in effort. We can also perform further statistical analyses to show if the

classification scheme does a reasonable job of predicting effort. We intend to perform

further analysis on the data to examine an information-theory based metric approach to

measure consensus when multiple developers classify a change and different

classifications exist [12]. Our end goal for this study is to replicate it in industry. We

understand the difficulties associated with running experiments using students as

subjects, and running this study in an actual development environment would provide

stronger evidence in support or against our hypotheses [4].

Change classification can be a useful tool in determining the impact the change

will have on the system being changed. Upon further research, we envision that this

55
classification tool could be incorporated in to an organization’s current change

implementation process. An additional step could be added after receiving a change

request where the system developers would classify the change request. The developers

would meet to discuss any differences in classification, and use this meeting to come to a

consensus on the change’s attributes. After some level of agreement is reached, the

developers would analyze baseline change data of similar classes of change and begin to

assess the impact the current change will have on the system. A decision could then be

made on whether to implement the change in the system based on the importance of the

change and its classification. If the change must be made, the proper precautions could be

used to prevent architectural degradation.

Being able to accurately classify changes that affect software architecture will aid

developers in understanding the change impact and help them make architecture changes

without degrading the quality of the system.

7.1 Publication Plan

I plan to publish this research using three different approaches. I plan to submit

the information pertaining to the literature review on architecture change classification to

either ACM Computing Surveys (CSUR) or Information and Software Technology, two

technology journals. The Background and Motivation and Change Classification

Literature Search sections of this thesis will be the bulk of the survey paper. I expect to

submit this paper in May 2006. I have submitted a paper about the empirical study and

its results to The 2006 International Symposium on Empirical Software Engineering

(ISESE). I plan to combine the literature survey, historical data analysis, change

56
classification scheme, and the empirical study into a paper that will be submitted to IEEE

Transactions on Software Engineering or The Journal of Systems and Software.

REFERENCES

[1]. V. Basili and D. Weiss, "Evaluation of a Software Requirements Document by
Analysis of Change Data", Proceedings of the 5th international conference on
Software engineering, San Diego, CA, 1981, IEEE Press, pp. 314-323.

[2]. V. Basili, G. Caldiera, and H.D. Rombach, The Goal Question Metric Paradigm,
in Encyclopedia of Software Engineering, J.J. Marciniak, Editor. 1994, John
Wiley & Sons, Inc.: New York. p. 528-532.

[3]. L.C. Briand and V.R. Basili, "A Classification Procedure for the Effective
Management of Changes During the Maintenance Process", Proceeding of the
Conference on Software Maintenance, Orlando, FL, 1992, pp. 328-336.

[4]. J. Carver, L. Jaccheri, S. Morasca, and F. Shull, "Issues in Using Students in
Empirical Studies in Software Engineering Education", Proceedings of the Ninth
International Software Metrics Symposium, Sydney, Australia, 2003, pp. 239-
249.

[5]. M.A. Chaumun, H. Kabaili, R.K. Keller, and F. Lustman, "A Change Impact
Model for Changeability Assessment in Object-Oriented Software Systems",
Proceedings of the Third European Conference on Software Maintenance and
Reengineering, 1999, pp. 130-138.

[6]. P. Clarke, B. Malloy, and P. Gibson, "Using a Taxonomy Tool to Identify
Changes in Oo Software", Proceedings of the Seventh European Conference on
Software Maintenance and Reengineering, 2003, pp. 213-222.

[7]. G. Dennis, Tsafe: Building a Trusted Computing Base for Air Traffic Control
Software, masters thesis, Massachusetts Institue of Technology 2003.

[8]. S.G. Eick, T.L. Graves, A.F. Karr, A. Mockus, and P. Schuster, "Visualizing
Software Changes," Software Engineering, IEEE Transactions on, vol. 28, no. 4,
2002, pp. 396-412.

[9]. M. Fredericks and V. Basili, Using Defect Tracking and Analysis to Improve
Software Quality, D.D.A.C.f.S. (DACS), Editor. 1998.

57

58
[10]. L. Hochstein and M. Lindvall, "Combating Architectural Degeneration: A

Survey," Information and Software Technology, vol. 47, no. 10, 2005, pp. 643-
656.[11]. P. Hsia, A. Gupta, C. Kung, J. Peng, and S. Liu, "A Study on the
Effect of Architecture on Maintainability of Object-Oriented Systems",
Proceedings of the International Conference on Software Maintenance, Opio,
1995, pp. 4-11.

[12]. U. Kudikyala, E. Allen, and R. Vaughn, "Measuring Consensus During
Verification and Validation of Requirements", Proceedings Supplement: 10th
IEEE International Software Metrics Symposium, Chicago, IL, 2004.

[13]. D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen, "Change Impact
Identification in Object Oriented Software Maintenance", Proceedings of the
International Conference onSoftware Maintenance, Victoria, BC, 1994, pp. 202-
211.

[14]. W. Lam and V. Shankararaman, "Managing Change in Software Development
Using a Process Improvement Approach", Proceedings of the 24th Annual
Euromicro Conference, Vasteras, 1998, pp. 779-786 vol.2.

[15]. M.M. Lehman, "Programs, Life Cycles, and Laws of Software Evolution,"
Proceedings of the IEEE, vol. 68, no. 9, 1980, pp. 1060-1076.

[16]. M.M. Lehman and L. Belady, Software Evolution - Processes of Software
Change, Academic Press, London, 1985.

[17]. M.M. Lehman, "Feedback, Evolution and Software Technology", Proceedings of
the 10th International Process Support of Software Product Lines Software
Process Workshop, 1996, pp. 101-103.

[18]. M.M. Lehman and J.F. Ramil, "Towards a Theory of Software Evolution - and Its
Practical Impact", Proceedings of the International Symposium on Principles of
Software Evolution, 2000, pp. 2-11.

[19]. M. Lindvall and K. Sandahl, "How Well Do Experienced Software Developers
Predict Software Change?," Journal of Systems and Software, vol. 43, no. 1, 1998,
pp. 19-27.

[20]. N.H. Madhavji, "The Prism Model of Changes", Proceedings of the 13th
International Conference on Software Engineering Austin, TX, 1991, pp. 166-
177.

[21]. J.F. Maranzano, S.A. Rozsypal, G.H. Zimmerman, G.W. Warnken, P.E. Wirth,
and D.M. Weiss, "Architecture Reviews: Practice and Experience," IEEE
Software, vol. 22, no. 2, 2005, pp. 34-43.

59
[22]. A. Mockus and L.G. Votta, "Identifying Reasons for Software Changes Using

Historic Databases", Proceedings of the International Conference on Software
Maintenance, San Jose, CA, 2000, pp. 120-130.

[23]. P. Mohagheghi and R. Conradi, "An Empirical Study of Software Change: Origin,
Acceptance Rate, and Functionality Vs. Quality Attributes", Proceedings of the
2004 International Symposium on Empirical Software Engineering (ISESE '04),
2004, pp. 7-16.

[24]. J. Nedstam, E.A. Karlsson, and M. Host, "The Architectural Change Process",
Proceedings of the 2004 International Symposium on Empirical Software
Engineering (ISESE '04), 2004, pp. 27-36.

[25]. N. Nurmuliani, D. Zowghi, and S.P. Williams, "Using Card Sorting Technique to
Classify Requirements Change", Proceedings of the 12th IEEE International
Requirements Engineering Conference, 2004, pp. 240-248.

[26]. J.F. Ramil, "Laws of Software Evolution and Their Empirical Support",
Proceedings of the International Conference on Software Maintenance, 2002, pp.
71-71.

[27]. X. Ren, F. Shah, F. Tip, B.G. Ryder, and O. Chesley, "Chianti: A Tool for
Change Impact Analysis of Java Programs", Proceedings of the 19th annual ACM
SIGPLAN Conference on Object-oriented programming, systems, languages, and
applications Vancouver, BC, Canada, 2004, ACM Press, pp. 432-448.

[28]. R.T. Tvedt, M. Lindvall, and P. Costa, "A Process for Software Architecture
Evaluation Using Metrics", Proceedings of the 27th Annual NASA Goddard/IEEE
Software Engineering Workshop, 2002, pp. 191-196.

APPENDIX A

CLASSROOM CLASSIFICATION CHARTS

60

61
Appendix A includes charts that represent the classification accuracy (student’s

classification compared to the researcher) and classification consistency (number of

students that selected a particular impact value) of the change requests classified during

the training exercises. It also includes the sample change requests used in the training

sessions. The students were given 10 change requests, which are provided following the

charts, and asked to classify each change request using the architecture change

classification scheme. The change accuracy charts show the median impact value selected

by the students and the value of the researcher’s classification. The change consistency

charts show the number of students that selected each impact value. These charts support

Observation 1, described in Section 6.2.1.

62

1 1

2

1

0

1 1 1 1 1 1

0 0 0 0

1

0

-1

1 1

2

1.5

0 0

2.5

0

2

1.5 1.5

0 0 0 0

1

0

-1-1

-0.5

0

0.5

1

1.5

2

2.5

3

Ty
pe

C
la

ss

Ad
d

M
od

ify

D
el

et
e

St
at

ic

D
yn

am
ic

Pr
og

./S
ub

sy
s

Pr
oc

es
se

s

In
te

rfa
ce

s

So
ur

ce
 C

od
e

Fi
le

 S
ys

te
m

H
ar

dw
ar

e

Sy
st

em

D
at

a

D
oc

s.

O
th

er

Sc
op

e

Im
pa

ct
 V

al
ue

s

Students (Median) Researchers

Figure 12 Sample Change #1 Accuracy

0

2

4

6

8

10

12

14

16

18

20

Clas
s

Add
Mod

ify

Dele
te

Stat
ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
es

se
s

Int
erf

ac
es

Sou
rce

 C
od

e

File
Sys

tem

Hard
ware

Sys
tem Data

Doc
s.

Othe
r

of

 S
tu

de
nt

s

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

Figure 13 Sample Change #1 Consistency

63

1 1

3

2

0.5

2 2 2

1

2 2

1

0

1

2 2

0 0

1

0

3

2

1.5

2.5

2

2.5

2 2 2

1

0.5

2

2.5

2

0 0
0

0.5

1

1.5

2

2.5

3

Ty
pe

C
la

ss

Ad
d

M
od

ify

D
el

et
e

St
at

ic

D
yn

am
ic

Pr
og

./S
ub

sy
s

Pr
oc

es
se

s

In
te

rfa
ce

s

So
ur

ce
 C

od
e

Fi
le

 S
ys

te
m

H
ar

dw
ar

e

Sy
st

em

D
at

a

D
oc

s.

O
th

er

Sc
op

e

Im
pa

ct
 V

al
ue

Students (Median) Researchers

Figure 14 Sample Change #2 Accuracy

0

2

4

6

8

10

12

14

16

18

20

Clas
s

Add
Mod

ify

Dele
te

Stat
ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
es

se
s

Int
erf

ac
es

Sou
rce

Cod
e

File
Sys

tem

Hard
ware

Sys
tem Data

Doc
s.

Othe
r

of

 S
tu

de
nt

s

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

Figure 15 Sample Change #2 Consistency

64

3
3

Students (Median) Researchers

2.5
2.5 2.5

2 2 2 2 2 22
Im

pa
ct

 V
al

ue 2

1.5 1.5 1.5
1.5

11 11 11 1 1 1 1 1 1
1

0.5
0.5

00 0 00 0 00 00
0

Ty
pe

C
la

ss

Ad
d

M
od

ify

D
el

et
e

St
at

ic

D
yn

am
ic

Pr
og

./S
ub

sy
s

Pr
oc

es
se

s

In
te

rfa
ce

s

So
ur

ce
 C

od
e

Fi
le

 S
ys

te
m

H
ar

dw
ar

e

Sy
st

em

D
at

a

D
oc

s.

O
th

er

Sc
op

e

Figure 16 Sample Change #3 Accuracy

0

2

4

6

8

10

12

14

16

18

Clas
s

Add
Mod

ify

Dele
te

Stat
ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
es

se
s

Int
erf

ac
es

Sou
rce

Cod
e

File
Sys

tem

Hard
ware

Sys
tem Data

Doc
s.

Othe
r

of

 S
tu

de
nt

s

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

Figure 17 Sample Change #3 Consistency

s
Add s s fy c s e em

 e em D
e c ta r .

cs
Othesy ei se

Clas ti d ret mi awad ca
 C

o Dotstel ubna rfao est sSM Sy d yD S ocDy Sete r
Hac./ In er urog P lFior SP

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

18

16

14

12

10

8

6

4

2

0

of

 S
tu

de
nt

s

65

1 1

2

1

0

1 1 1 1

2 2

0 0 0

1 1

0

-1

1 1

2

1

0

1.5

2

1

1.5

2.5

1.5

0.5

0

1

1.5 1.5

0 0

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Ty
pe

C
la

ss
Ad

d
M

od
ify

D
el

et
e

St
at

ic
D

yn
am

ic
Pr

og
./S

ub
sy

s
Pr

oc
es

se
s

In
te

rfa
ce

s
So

ur
ce

 C
od

e
Fi

le
 S

ys
te

m
H

ar
dw

ar
e

Sy
st

em
D

at
a

D
oc

s.
O

th
er

Sc
op

e

Im
pa

ct
 V

al
ue

Students (Median) Researchers

Figure 18 Sample Change #4 Accuracy

Figure 19 Sample Change #4 Consistency

66

1

2

1

2

0.5

2

1 1 1

0

2

0.5

0

0.5

0

2

0

11

2

2.5 2.5

2

2.5

1.5

0.5

2

0

2.5

1

0 0

0.5

2.5

0.5

1

0

0.5

1

1.5

2

2.5

3

Ty
pe

C
la

ss

Ad
d

M
od

ify

D
el

et
e

St
at

ic

D
yn

am
ic

Pr
og

./S
ub

sy
s

Pr
oc

es
se

s

In
te

rfa
ce

s

So
ur

ce
 C

od
e

Fi
le

 S
ys

te
m

H
ar

dw
ar

e

Sy
st

em

D
at

a

D
oc

s.

O
th

er

Sc
op

e

Im
pa

ct
 V

al
ue

Students (Median) Researchers

Figure 20 Sample Change #5 Accuracy

0

2

4

6

8

10

12

14

16

Clas
s

Add
Mod

ify

Dele
te

Stat
ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
es

se
s

Int
erf

ac
es

Sou
rce

Cod
e

File
Sys

tem

Hard
ware

Sys
tem Data

Doc
s.

Othe
r

of

 S
tu

de
nt

s

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

Figure 21 Sample Change #5 Consistency

ys
 s d

mic m fy s e e m
Das

Ad ete
St

ic ta r .s
Otheeseas d arod

i t te e c

og
./S

ub
s

ter
faca

 C
o Dostl wa esCl

De sM n Sy rd SycDy e ao cIn e Hr rP
Sou liFrP

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

18

16

14

12

10

8

6

4

2

0

of

 S
tu

de
nt

s

67

1

0

1

2

0

1

2

1

2

0

2

0

3

1

0

1

0

11

0

2.5

2

0.5

1

2.5

2 2

0

2.5

1.5

2.5

0 0

1.5

0

1

0

0.5

1

1.5

2

2.5

3

Ty
pe

C
la

ss

Ad
d

M
od

ify

D
el

et
e

St
at

ic

D
yn

am
ic

Pr
og

./S
ub

sy
s

Pr
oc

es
se

s

In
te

rfa
ce

s

So
ur

ce
 C

od
e

Fi
le

 S
ys

te
m

H
ar

dw
ar

e

Sy
st

em

D
at

a

D
oc

s.

O
th

er

Sc
op

e

Im
pa

ct
 V

al
ue

Students (Median) Researchers

Figure 22 Sample Change #6 Accuracy

Figure 23 Sample Change #6 Consistency

68

0

1.5

1

2.5

0

0.5 0.5

1

0.5

1 1

0 0 0

1 1

0 00 0 0

2

0

1

0 0 0 0

2

0 0 0

2

1

0

-1-1

-0.5

0

0.5

1

1.5

2

2.5

3

Ty
pe

C
la

ss
Ad

d
M

od
ify

D
el

et
e

St
at

ic
D

yn
am

ic
Pr

og
./S

ub
sy

s
Pr

oc
es

se
s

In
te

rfa
ce

s
So

ur
ce

 C
od

e
Fi

le
 S

ys
te

m
H

ar
dw

ar
e

Sy
st

em
D

at
a

D
oc

s.
O

th
er

Sc
op

e

Im
pa

ct
 V

al
ue

Students (Median) Researchers

Figure 24 Sample Change #7 Accuracy

0

1

2

3

4

5

6

7

Clas
s

Add
Mod

ify

Dele
te

Stat
ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
es

se
s

Int
erf

ac
es

Sou
rce

Cod
e

File
Sys

tem

Hard
ware

Sys
tem Data

Doc
s.

Othe
r

of

 S
tu

de
nt

s

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

Figure 25 Sample Change #7 Consistency

Students (Median) Researchers

3

2.5

Im
pa

ct
 V

al
ue

2.5

2
2 2 2 2

1.5
1.5 1.5 1.5 1.5 1.5 1.5

1
1 1 11 1 1 1 1 1 11 11 1 1 1 11 1

0.5
0.5

0
0 00 00

Ty
pe

C

la
ss

Ad

d
M

od
ify

D

el
et

e
St

at
ic

D
yn

am
ic

Pr

og
./S

ub
sy

s
Pr

oc
es

se
s

In
te

rfa
ce

s
So

ur
ce

 C
od

e
Fi

le
 S

ys
te

m

H
ar

dw
ar

e
Sy

st
em

D

at
a

D
oc

s.

O
th

er

Sc
op

e

69

Figure 26 Sample Change #8 Accuracy

0

2

4

6

8

10

12

14

Clas
s

Add

Mod
ify

Dele
te

Stat
ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
es

se
s

Int
erf

ac
es

Sou
rce

Cod
e

File
 Sys

tem

Hard
ware

Sys
tem Data

Doc
s.

Othe
r

of

 S
tu

de
nt

s

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

Figure 27 Sample Change #8 Consistency

3

Im
pa

ct
 V

al
ue

Students (Median) Researchers
3

2.5

2

1.5

1

0.5

0

2.5 2.5 2.5 2.5

2 2 22 22 22 2 2 2

1.5 1.5 1.5

11 11 1 11 1 1

0.5 0.5

1

00 00 0

Ty
pe

C
la

ss

Ad
d

M
od

ify

D
el

et
e

St
at

ic

D
yn

am
ic

Pr
og

./S
ub

sy
s

Pr
oc

es
se

s

In
te

rfa
ce

s

So
ur

ce
 C

od
e

Fi
le

 S
ys

te
m

H
ar

dw
ar

e

Sy
st

em

D
at

a

D
oc

s.

O
th

er

Sc
op

e

70

Figure 28 Sample Change #9 Accuracy

0

2

4

6

8

10

12

Clas
s

Add
Mod

ify

Dele
te

Stat
ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
es

se
s

Int
erf

ac
es

Sou
rce

 C
od

e

File
 Sys

tem

Hard
ware

Sys
tem Data

Doc
s.

Othe
r

of

 S
tu

de
nt

s

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

Figure 29 Sample Change #9 Consistency

3

Im
pa

ct
 V

al
ue

Students (Median) Researchers
3

2.5

2

1.5

1

0.5

0

2.5 2.5

2 2 2 2 2

1.5 1.5

11 1 11 1 1 1 1 11 11 1

00 0 00 0

11 1

0.5

00

Ty
pe

C
la

ss

Ad
d

M
od

ify

D
el

et
e

St
at

ic

D
yn

am
ic

Pr
og

./S
ub

sy
s

Pr
oc

es
se

s

In
te

rfa
ce

s

So
ur

ce
 C

od
e

Fi
le

 S
ys

te
m

H
ar

dw
ar

e

Sy
st

em

D
at

a

D
oc

s.

O
th

er

Sc
op

e

71

Figure 30 Sample Change #10 Accuracy

0

2

4

6

8

10

12

Clas
s

Add
Mod

ify

Dele
te

Stat
ic

Dyn
am

ic

Prog
./S

ub
sy

s

Proc
es

se
s

Int
erf

ac
es

Sou
rce

 C
od

e

File
 Sys

tem

Hard
ware

Sys
tem Data

Doc
s.

Othe
r

of

 S
tu

de
nt

s

0 - No Impact 1 - Small Impact
2 - Significant Impact 3 - Major Focus

Figure 31 Sample Change #10 Consistency

72
London Ambulance Service CAD Sample Change Requests

Please classify the following change requests using the Architecture Change Classification
Scheme. NOTE: All changes are assumed to be made to the original system.

1. System Override
− Change CAD system to allow the Supervisor to override the assignment of the

ambulances by the CAD System after an assignment is made.

2. Fire Department Use
− Want to extend the system to work at a fire department to manage fire trucks. Human

resources along with equipment must be accounted for. The system must also know
the qualifications that each human has to ride on the fire truck and perform a certain
function in order to dispatch the appropriate individuals.

3. Medical Records
− System needs to add an interface to a medical records database that the Lot

Supervisor, Ambulance Driver, and Dispatcher must be able to interface upon the
receipt of a call and/or assignment of an incident.

4. Google Maps
− Change the Dispatcher display to include a map and satellite image of the managed

area. System will include display data from Google Maps online and will interface its
API in order to integrate the maps display and functionality on the client machine.

5. Increased Flexibility
− System maintainers notice a potential problem in system flexibility. They request a

change to the system design that will integrate design patterns into the design of the
software.

6. Response Time
− Customer wants an increase in the response time of the system. The system

engineer requires that the system be able to run in a multi-processor environment
and the system must be updated to make use of the additional processors.

7. Address Processing
− Tests found that the system is unable to decode the address information from a

specific area code of callers provided by a telecom carrier. The required data format
used to interpret this information and make it usable by the CAD system was not
properly understood by developers.

8. Increased Reach
− State government officials have required that all hospitals in this major metro and

surrounding area use this system and interact with its central database. This change
requires that additional servers be placed at 5 other hospitals that duplicate/mirror the
data and processing capability of the original central server, and that all servers and
clients communicate.

9. Web Client Access
− The customer wants to change how the server is accessed by remote clients in order

to better supervise and manage assignment processes from additional locations.
They want to remove all PCs from remote locations and replace them with web
terminals. This will require that all client access be done via the web. The GUI

73
application software that previously ran on the each PC to access the central data
will be removed. The interface must now be displayed in a Java based web browser.

10. Update Databases
− The Hospital Resource and Ambulance Resource Databases are getting too large to

remain on the central server. They need to be moved to separate severs that the
central server can access.

APPENDIX B

CLASSROOM STUDY DOCUMENTS

74

75
Appendix B contains several forms used to collect data from the students in the

classroom study. The first two forms are the change requests. Change Request #1 is the

Conformance Monitor Change Request, and Change Request #2 is the Feed Display

Change Request. The details of what the students were required to do for each change

request are provided in the forms.

The Architecture Change Classification Form is the form the students used to

classify each change requests. This form was used to classify the sample change requests

shown in Appendix A and the change requests used in the classroom study. After reading

the change requests, the students classified each change by selecting attributes and

attribute impact values displayed on the form. They also used the form to provide

rationale for the selections made.

The Architecture Change Definitions Form was provided to the students when

completing the sample change requests and also included in the study material that we

gave them. This form contains brief definitions for all of the attributes in the

classification scheme.

The final form is the Post-Study Questionnaire that was used to obtain feedback

from the students on how the scheme could be improved. The questionnaire also includes

questions inquiring about the difficulty the students had in implementing the two change

requests.

76
Change Request #1 – Conformance Monitor

The TSAFE system needs to be extended to indicate conformance problems that may arise with
the monitored aircraft. It must be able to determine if a flight is conforming to the planned route or
blundering. The function of determining the degree to which a flight is conforming, or not
conforming (blundering), to its assigned flight plan is know as “conformance monitoring.”

Conformance monitoring is the detection mechanism that tracks a flight to determine whether it is
conforming to its recorded flight plan or whether it is blundering. The Conformance Monitor
performs a comparison of a flight’s position and heading against its flight plan. It does not make
use of any trajectories, and therefore has no dependencies on the Trajectory Synthesizer. The
Conformance Monitor returns the state of the flight, which is a Boolean: either the flight is
conforming or it is blundering.

The first step to detect a flight’s conformance to its flight plan is known as residual generation.
The residual is a measure of the dissimilarity between the observed state of the real world system
and the expected state. Residual generation is the process of calculating the residual. The
expected state of a flight is essentially the entirety of instructions given to the flights, including the
filed flight plans (flight routes, assigned altitudes, and assigned speeds), flight plan amendments,
and any clearances and directives given to the flights by air traffic control, as well as any
reasonable extrapolations thereof. A non-conformance is deemed to have occurred, therefore,
when a flight’s actual state deviates significantly from the expected state.

The Conformance Monitor uses the values input from the Conformance Data screen to determine
whether or not a selected flight is conforming or blundering. The algorithms used to calculate this
information will be provided. It is up to you to determine what changes need to be made to the
architecture in order to implement this change. Finally, you must modify the code to reflect the
change made to the architecture and ensure that the system functions as required. The basic
functionality that must be added is as follows:

For each flight:
1) If it has no flight plan, assign it a dead reckoning trajectory and continue
2) If it has a flight plan, determine if it is blundering
3) If it is, assign its dead reckoning trajectory as its predicted trajectory
4) If it isn't, assign its route trajectory as its predicted trajectory

You must decide where the ConformanceMonitor class should be added to the system, and
modify the appropriate classes to use the CM algorithm. The ConformanceMonitor.java file has
been provided, but certain declarations have removed. You must figure out where the CM class
belongs and include the declarations and parameters that are currently missing (marked by
comments and a ‘?’).

In order to check to see if a flight is conforming or blundering, view the flights on the air traffic
screen. Flights that are blundering will be shown using a red dot and text, and conforming flights
will be displayed using a white dot and text.

In order to test this feature, for the demo-file.txt, Flight 1 conforms for its entire route, Flight 2
conforms at some points and blunders at others, and Flight 3 generally blunders for its entire
route.

77
Change Request #2 – Feed Data Display

The air traffic control operator needs to be able to access the data that is provided by the Feed
source server from within the TSAFE system. The operator needs to see the feeds to verify that a
constant flow of information is being received from the feed source and that the correct type of
information is being displayed. This feature will provide another check on the accuracy of the data
by the ATC in the event the data is not read correctly by the system. The TSAFE system must be
extended to display this information. The TSAFE System relies on the information from the feed
source to show air traffic to its users. The system must now make an additional connection to the
Feed source in order to display the information output by the Feed Source Server in a separate
window from within the TSAFE system.

The TSAFE system should be extended by adding this data to the TSAFE map display aircraft
flight data. This window will display the text feeds from the FigFileGenerator Server. It can either
be displayed from within the TSAFE map window, or displayed in a window of its own. The ATC
must be able to view this data when launching TSAFE.

The Feed Source that TSAFE reads the flight data from outputs this information to the system.
This information should be displayed in the additional window that is added to the TSAFE GUI.

The FMS Feed Generator v1.0 source file that executes the server has been included with this
change request.

78
Architecture Change Classification Form

Change Request Name & Number:

High-level change detail (Please circle one value for each listing)
• Phase Requirements Design

Code Test
Maintenance

• Type Defect
Enhancement

Please define the level of impact that each change class will have using following 3-point scale when needed:
0 = No impact; 1 = small impact; 2 = significant impact; 3 = major focus of change;

Enhancement Detail (Please circle one value for each listing)
Class Adaptive Perfective

Preventative

Type
• Add 0 1 2 3
• Modify 0 1 2 3
• Delete 0 1 2 3

Properties
• Static 0 1 2 3
• Dynamic 0 1 2 3

Impacts
• Program/Sub-system 0 1 2 3
• Processes 0 1 2 3
• Interface 0 1 2 3
• Source Code 0 1 2 3
• File System 0 1 2 3
• Hardware 0 1 2 3
• System 0 1 2 3
• Data 0 1 2 3
• Documentation 0 1 2 3
• Other: ___ 0 1 2 3

Please define the effect on the system scope using the scale below:
-1 = purely functional change; 0 = affect both functions & architecture; 1 = purely architectural
change;
Scope
• Functional vs. Architectural -1 0 1

Defect Detail (Please circle one value for each listing)
Class Corrective

Found Inspection Testing
User Reported

Origin Requirements Design
Code

Issues
• Architecture/Design 0 1 2 3
• Environment 0 1 2 3
• Problem Definition 0 1 2 3
• Domain Knowledge 0 1 2 3
• Technology 0 1 2 3

79
• Interface (System/User) 0 1 2 3
• Data Transmission 0 1 2 3
• Data Accessibility 0 1 2 3
• Other: ___ 0 1 2 3

 (Please include any relevant comments below, stating why you chose the selected classes and their respective levels of
impact for any classes that will significantly impact the system)
Rationale:

80
Architecture Change Classification Definitions
Enhancement change due to a requested improvement of the system

Defect change is due to an error, fault, or failure detected in the system

Phase location in development lifecycle where the change request is encountered – e.g. requirements,
architecture, design, code, test, maintenance

Architectural Functional
Scale used to determine type of change – architectural change: affecting the structure of a system rather than
user-observable attributes functional change: change to a user function

Adaptive change due to new hardware and software interfaces – change in the standards or protocols used in
system communication (adapting to a new environment)

Perfective adding new features or changing the system to better suit its users (changes not included in adaptive
class)

Preventative restructuring to prevent future problems – reengineering

Add, Delete, Modify Adding, deleting, or modifying code, modules, and/or components (affect of change on
source code)

Impacts
− Hardware – level of impact to system hardware (i.e. modification to improve data storage or increase system

memory)

− System – level of impact change will have on related systems that rely on the software

− Data – affect on data access (storage, retrieval, transmission) - any data used by system or data that is
provided by system to other systems

− Documentation – level of impact to documents affected by the change – including requirements, design, user
guides, manuals….etc

− Interface – level of impact to system interfaces and user interfaces - user to system component or component to
component

− Source code– level of impact change will have on the source code

− Program/Sub-system – impact to subsystems of larger system

− Processes – impact to software processes and C&C run-time structure

− File system – impact to the implementation structure – how the class, library, and resource files will be affected
by change

− Other – impact to additional aspect of system not in classification list

Properties
− static – change that will affect static design properties (i.e. class diagram, component diagram, deployment

diagram)

− dynamic – change that will affect dynamic design properties (i.e. activity diagram, statechart diagram,
collaboration diagram)

Corrective change due to defect (error, fault, failure)

Inspection change requested due to a defect found during an inspection

Testing change requested due to a defect found during testing

User Reported change requested due to a defect found by a user of the system

Location

81
− location of the source of the defect (requirements, design, code)

Areas
− Architecture/Design –design solution does not adequately solve the problem

− Data accessibility – unable to access required data stores – format of data not correct (incoming &
outgoing)

− Environment – problems related to system’s operating environment(i.e. operating system, hardware,
relationship to other systems)

− Problem Definition – problem isn’t completely or clearly defined

− Domain Knowledge – team doesn’t have adequate knowledge or experience to solve problem

− Technology – the languages, tools, and components being used to build/maintain the system are
inadequate

− Interface System/User – problems in with an external interface

− Data Transmission – problem transmitting data to a requesting system

82
Post-Study Questionnaire

Architecture Change Classification Survey
These questions all refer to the change classification that was covered by Byron Williams
in class. Please answer these questions based on your experience in the classroom
exercise and on homework 4.

1. List any additional attributes or sub-attributes that you recommend adding to the
scheme for either defects or enhancements. Explain.

2. How would you improve the classification scheme?

3. Are there any inconsistencies in the attributes of the scheme and your experiences in
using the scheme during development? Please describe.

4. Were there any characteristics of the scheme that were confusing? Please explain.

5. Please list and describe any attributes that were unnecessary in the scheme for either
defects or enhancements. Please explain.

6. Please rate your level of agreement in this section with respect to the following 5-
point scale:
(Please include any relevant comments below)
1 = Totally disagree; 2 = somewhat disagree; 3 = neither agree or

disagree;
4 = Somewhat agree; 5 = Totally agree

 Architecture Classification Scheme Practicality

__

83
• The attributes are logical and easily understood 1 2 3

 4 5
• The scheme is beneficial for a developer making a change 1 2 3 4

 5
• The scheme has practical application in industry 1 2 3 4

 5
• The scheme is easy to use 1 2 3 4

 5
• After classifying both changes, I had an idea of which would

would be the most difficult to implement 1 2 3 4
 5

Additional Comments:

These questions now refer to the changes for homework 4.

7. Which change request (please give the name or short description) was more difficult
to implement? What aspects of that change made it more difficult?

8. For each change, were the changes you made to the architecture easy to make to the
code?
Conformance Monitor:

ATC Feed Display:

9. Which architecture change was more difficult to make to the code and why?

	A Framework For Assessing The Impact Of Software Changes To Software Architecture Using Change Classification
	Recommended Citation

