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The last few decades have seen a significant development of complex heat 

transfer enhancement geometries such as a helically-finned tube. The arising problem is 

that as the fins become more complex, so does the prediction of their performance. In 

addition to discussing existing prediction tools, this dissertation demonstrates the 

successful use of artificial neural networks as a correlating method for experimentally- 

measured heat transfer and friction data of helically-finned tubes. 
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CHAPTER I  

INTRODUCTION 
 
 

The use of heat transfer enhancement has become widespread during the last 50 

years. The goal of heat transfer enhancement is to reduce the size and cost of heat 

exchanger equipment. This goal can be achieved in two ways: active and passive 

enhancement. Of the two, active enhancement is less common because it requires the 

addition of external power (e.g., an electromagnetic field) to cause a desired flow 

modification. On the other hand, passive enhancement consists of alteration to the heat 

transfer surface or incorporation of a device whose presence results in a flow field 

modification. The most popular surface enhancement is the fin. The next section 

describes the basics of heat transfer enhancement and fins. 

 
I.A Passive Heat Transfer Enhancement 

Newton’s Law of Cooling says that the rate of heat transfer between a solid and a 

surrounding fluid is directly proportional to the temperature difference between the two 

media, the surface area of the solid, and the convective heat transfer coefficient: 

 ( )fluidsolid TThAQ −=&  (1) 

In most heat transfer problems, engineers seek to obtain the maximum rate of heat 

transfer with a predefined (constant) temperature difference. Equation (1) shows that in
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order to achieve this goal, either the surface area or the convective heat transfer 

coefficient has to be increased. The heat transfer coefficient and/or the surface area can 

be increased by using some kind of surface “enhancement.” The remainder of this section 

presents two examples of fins used to enhance heat transfer from a flat plate. 

Consider the situation shown in Figure 1. A horizontal plate is enhanced with 

vertical fins resulting in a considerable increase in surface area. Assume that a fluid flows 

over both plates in the horizontal direction and that natural convection effects are 

negligible. The fluid flow characteristics are essentially the same for both plates 

(boundary layers are similar) and the primary reason for heat transfer enhancement is the 

increase in heat transfer area. The fins shown in Figure 1 are geometrically two-

dimensional. 

 

 

Figure 1. Flat Plate with Vertical Fins. 

 
Now consider the arrangement illustrated in Figure 2. Fins are created by cutting 

and bending the plate in different locations. Such an arrangement is called a louvered fin. 

Compared to the plain plate, the louvered-fin plate has approximately the same surface 

area. However, the flow characteristics for the louvered fin are completely different 

because the fins induce more turbulence, better mixing of the fluid, and periodic 

disruptions in the boundary layer. As a result, the heat transfer coefficient is increased. 

The fins shown in Figure 2 are geometrically three-dimensional. 
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Increasing the rate of heat transfer by changing the geometry of a surface is called 

enhancement. The last two examples have shown how heat transfer enhancement can be 

achieved mainly due to surface area increase or mainly due to a change in the heat 

transfer coefficient. In most engineering applications, a geometry enhancement results in 

both an area increase and a change in the heat transfer coefficient. 

 

 

Figure 2. Flat Plate with Louvered Fins. 

 
An important consequence of surface enhancement is the increase in the fluid 

pressure drop. In the first example, the wall shear stress is approximately the same for the 

flat plate and the finned plate, but the additional pressure drop comes from the increased 

contact area between the fluid and the solid (force = stress * area). In the second example, 

the contact area between the fluid and the solid is almost the same for both the plain and 

louvered-finned plate but the friction factor is increased due to increased turbulence, 

disruptions in the boundary layer, and form drag imposed by the fin. Hence, just like heat 

transfer, the pressure drop can be amplified due to an increase in surface area and/or an 

increase in friction factor. 

 
I.B Helically-finned Tubes 

Passive enhancement of heat transfer has also been used inside pipes. Webb 

(1982) gives an overview of different enhancement mechanisms available in commercial 
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tubes. Figure 3 is of great visual help in identifying the roughness type as well as the 

relevant nomenclature. 

 

 

Figure 3. Sketches of Typical Roughness Configurations [Webb (1982)]. 1-Transverse 
Rib, 2-Helical Rib, 3-‘Turbochil’ Type, 4-Corrugated, 5-Sand-grain, 6-Three-
dimensional, 7-Axially-finned Tube, 8-Helically-finned Tube. 

 
One contemporary enhancement geometry is the helical fin shown in Figure 4. 

The helical fin is considered to be two-dimensional. Several geometric variables describe 

a helical fin. Figure 5 provides a pictorial description of the geometric variables. These 

variables are: the fin height (e), the fin pitch (p), the helix angle (α), number of starts (Ns), 

and included angle (β). The fin height is the distance measured from the internal wall of 

the tube to the top of the fin. The fin pitch is the distance between the centers of two fins 

measured in the axial direction. The helix angle is the angle the fin forms with the tube 

axis. The number of starts refers to how many fins one can count around the 

circumference of the tube. Finally, the angle at which the sides of the fin meet is called 

the included angle. 
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Figure 4. A Helically-finned Tube. 

 

 

Figure 5. Geometric Variables of the Helical Fin. 

 
Two special cases are worth mentioning, namely tubes with 90° and 0° helix 

angles. A 90° helix angle corresponds to the transverse fin, and the 0° angle means the 

tube is axially finned (as shown in Figure 6). In the case of the transverse fin, the above-

mentioned definition of the number of starts does not apply. Likewise, for the case of the 

axial fin, the definition of fin pitch is invalid. Even though technically, the transversely-
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finned and axially-finned tubes do not belong to the helically-finned tube “family,” they 

can be classified as such under the 0° and 90° helix angle claim. There is an additional 

justification for this classification. Research has shown that tubes with small helix angles 

(less than 10°) behave very similarly to axially-finned tubes and that tubes with large 

helix angles (above 80°) display the same characteristics as a transversely-finned tube. 

Presently, to predict heat transfer and pressure drop in helically-finned tubes 

engineers rely on empirical correlations. Tubes with axial and transverse fins have been 

studied extensively and techniques for predicting the friction factor and heat transfer 

coefficient exist. However, fluid flow in helically-finned tubes is more difficult to model 

and few attempts have been made to obtain non-empirical solutions. The purpose of this 

dissertation is to experimentally study the fluid flow in helically-finned tubes and to 

develop a tool aimed at predicting their performance. 

 

 

Figure 6. Transversely- and Axially-finned Tubes. 
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CHAPTER II  

LITERATURE REVIEW 
 
 

The purpose of this chapter is to describe the research completed on fluid flow 

and heat transfer in tubes with helical enhancements. Publications dealing with 

theoretical and empirical models will be discussed. In addition, articles of relevance to 

the mathematics governing the flow in helically-finned tubes will be examined. 

 
II.A Empirical and Semi-empirical Models 

An excellent source that concisely describes many different models of flow in 

enhanced tubing was published by Ravigururajan (1999). Ravigururajan (1999) outlined 

various correlations available for predicting the thermal-hydraulic performance of 

turbulent flow in enhanced tubes. Each correlation was classified as either analogy-based 

or statistical/empirical. Information about the relevant applications, the source, and the 

limitations of each correlation was compiled. Many references cited by Ravigururajan 

(1999) are listed in this chapter. 

Li et al. (1982) was the first study that attempted to describe the mechanisms of 

heat transfer in helically-finned tubes by means of flow visualization. Li et al. (1982) 

performed a study on four tubes with rounded ribs, helix angles between 38° and 80°, and 

one or three starts, and used the hydrogen-bubble technique to take high-speed 
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photographs of the fluid flow. Traces of hydrogen bubbles revealed the direction of the 

flow near the ribs. 

Photographs taken by Li et al. (1982) indicated that in laminar flow, bubbles 

follow parabolic patterns. In the turbulent regime, these patterns break down because of 

random separation vortices. Additionally, tubes with helical ridges showed lower 

transition Reynolds numbers than the smooth tube. 

Spiral flow was observed for all tubes in the turbulent flow regime. In the 80°-

helix tube, the flow direction near the wall was rather different from the rib trend. 

Besides, bubbles seemed to oscillate back and forth between ribs implying the existence 

of separation vortices near the wall. In tubes with smaller helix angles, there was more 

agreement between the flow direction and the rib trend. Li et al. (1982) concluded that 

“spiral flow and boundary-layer separation flow both occurred in helical-ridging tubes, 

but with different intensities in tubes having different configurations.” 

Li et al. (1982) performed additional heat transfer and pressure drop experiments 

using 20 enhanced brass tubes with one to four starts and helix angles between 41.4° and 

81.8°. Li et al. (1982) reported their results in terms of the roughness functions of 

momentum transfer R [Nikuradse (1950), Schlichting (1979)] and heat transfer G 

[Dipprey and Sabersky (1963)]. The R and G functions facilitate comparison of the data 

because the functions are considered independent of the geometry and size of the test 

channel. 

G and R represent the effect of ribs on momentum and heat transfer in the vicinity 

of the wall and are defined by the following expressions: 
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 75.3)/2ln(5.2/2 ++= DefR  (2) 

 R
f
StfG +

−
=

2/
1)2/(  (3) 

Functions R and G are generally plotted versus local parameters such as the roughness 

Reynolds number 

 
ν

∗

==+
euf

D
ee 2/Re  (4) 

and the enhancement geometry (α, p/e, or rib shape). Gee and Webb (1980) demonstrate 

that geometries with different helix angles, rib shapes, or pitch-to-height ratios are non-

similar. Therefore, functions developed on the basis of similarity laws [e.g., R(e+) and 

G(e+)] require empirical corrections. Hence, there is need to incorporate parameters such 

as α, p/e, and rib shape in the analysis. 

Li et al. (1982) limited their analysis to single-start tubes because, based on their 

flow visualizations, single-start tubes achieve higher intensities of boundary-layer 

separation than multiple-start tubes with same parameters (e/D, p/e). Thus, according to 

Li et al. (1982), single-start tubes are more beneficial for heat transfer applications. Li et 

al. (1982) obtained the following correlations for R and G: 

 ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡ −
= −

−
38.1

2
484.0465.0156.0

/1000
)62.9(ln(Re)exp)90/()/(/995.0

ep
epDeR α  (5) 

 57.0)/ln(105.0641.0869.0621.0 Pr)()90/()/(478.0 DeeDeG +−− += α  (6) 

Li et al. (1982) combined equations (2) and (5), and refined constants to obtain the 

following expression for the Fanning friction factor: 
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 ( )
( ) ⎥
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⎦

⎤

⎢
⎢
⎣

⎡ −
+−= −

−

38.1

2
14.1

90
5.0057.0

22
1000

)62.9(ln(Re)exp)()(25.164.4)ln(42.3
e
pe

p
D
e

e
Df α  (7) 

Another investigation of flow visualization in tubes with helical roughness was 

undertaken by Ravigururajan and Bergles (1994). Ravigururajan and Bergles (1994) used 

water in a transparent plexiglass tube with a wire coil insert. Dyes of different colors 

were introduced into the flow at different distances from the tube wall in order to identify 

the patterns associated with each region of the tube (e.g., core, wall, etc…). A blue dye 

was injected just above the disruption height, and a red dye was injected close to the wall. 

Both dyes were injected at a distance of 20 diameters upstream of the coil insert. 

Photographs of flow patterns obtained by Ravigururajan and Bergles (1994) are 

reproduced in Figure 7. 

Ravigururajan and Bergles (1994) drew the following conclusions from the 

photographs: 

1) Flow visualization tests indicated the presence of a rotational layer 

close to the wall and a crossover layer in the core of the tube. The 

rotational pattern dominated for helix angles less than 30°, and the 

crossover pattern dominated for helix angles larger than 70°. 

2) With increasing roughness height, the transition Re decreased. 

3) As the roughness height increased, the angle of fluid rotation was 

increased. 

4) In augmented tubes, the hydrodynamic developing length was 

insignificant. 

5) Decreasing the helix angle decreased turbulence and the transition Re. 
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6) The thickness of the rotational layer decreased with increasing Re. 

7) Rotational angles tended towards the helix angle as Re was decreased. 

8) A rotating layer was also present in turbulent flows. 

9) At a p/e = 8 ratio, both friction and heat transfer reached a maximum 

value. 

Nakayama et al. (1983) tested tubes with spiral ribs having helix angles ranging 

from 0° to 80° and between 2 and 10 starts. The ribs had rounded cross sections. 

Nakayama et al. (1983) compared their results with other investigators in terms of the 

roughness functions of heat transfer (G) and momentum heat transfer (R). 

Based on the studies of Li et al. (1982), Nakayama et al. (1983) classified their 

tubes into three categories and proposed different correlations accordingly. The first 

category corresponded to a helix angle greater than 60°, where roughness form drag is the 

major contribution to the pressure drop (implying that rounded ribs cause a much smaller 

pressure drop than sharply-edged fins). For this category, Nakayama et al. (1983) 

proposed the following correlations for R and G: 

 )ln()/(1063.55.4 59.24 +×+= − eepR  (8) 

 28.057.0 75.4Pr/ += eG  (9) 

The second category applied to tubes with a helix angle of less than 45° where 

flow is directed along the ribs. Hence, the roughness function of momentum was 

expected to be a function of e+, α, and p/e: 

 1.016.015.0 )/)sin(()45/(02.5 epeR αα −°+=  (10) 

Data for G in the α < 45° tube category were well represented by equation (9). 
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Figure 7. Visualization Photographs Taken by Ravigururajan and Bergles (1994). 
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The third category of tubes discussed by Nakayama et al. (1983) included tubes 

with a helix angle between 45° and 60° “where the flow near the wall undergoes a 

transition from a swirling-dominated flow to a crossover flow.” The correlation of data in 

the transition range was difficult because data are not systematic. Nonetheless, for tubes 

with helix angles between 45° and 60° Nakayama et al. (1983) proposed the following 

correlations for R and G: 

 1.08.012.0 )/)sin(()45/(14.5 epeR αα −°+=  (11) 

 37.057.0 90.4Pr/ += eG  (12) 

Nakayama et al. (1983) concluded that the criteria for hydrodynamically rough 

and transition flow regimes depend not only on e+ but also on the helix angle, rib shape, 

and the pitch-to-height ratio. Therefore, according to the authors, the definition of a 

parameter domain for analysis of rough regimes is open to discussion. 

An earlier study conducted by Gee and Web (1980) investigated tubes with 

helical square-shaped ribs. The helix angle varied between 30° and 70°, and the pitch was 

held constant at 3.81 mm. Gee and Webb (1980) used air at Reynolds numbers varying 

from 6 000 to 65 000. In their analysis, Gee and Webb (1980) included data for tubes 

with transverse ribs obtained by Webb et al. (1971). 

Gee and Webb (1980) plotted R versus e+ (but gave no explicit correlation for R). 

The curve started at R ≈ 8 and e+ = 6 and reached a constant value of R ≈ 8.8 at e+ = 30. 

Gee and Webb (1980) defined R and G in the following fashion: 

 [ ] 16.0)50/(75.3)/2ln(5.2/2 α++= DefR  (13) 



14 

 

 in R
f
StfG )50/(

2/
1)2/(Pr/ α

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
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where i = 0.37 for α < 50° and i = -0.16 for α > 50°. In equations (13) and (14), there is 

no dependence on p/e because the tubes tested by Gee and Webb (1980) had a constant 

pitch. By comparing their results with other researchers, Gee and Webb (1980) concluded 

that: 

1) Helical rib-roughness provides higher heat transfer per unit friction 

than transverse roughness, and 

2) The preferred operating condition is at a roughness Reynolds number 

corresponding to e+ = 20. 

Webb et al. (2000) published a more comprehensive study where tubes with 

different helix angles, starts, fin pitch, and height were tested. Webb et al. (2000) varied 

the helix angle between 25° and 45°, the number of starts between 18 and 45, and the rib 

height between 0.33 mm and 0.55 mm. Webb et al. (2000) used water for the inside and 

condensing R-12 on the outside of the tubes. The modified Wilson plot technique [Briggs 

and Young (1968)] was used to obtain the refrigerant-side heat transfer coefficient. 

Webb et al. (2000) derived empirical explicit correlations for j and f: 

 78.0785.0221.0283.0 )/(Re108.0 αDeNf s
−=  (15) 

 505.0323.0285.0181.03/2 )/(Re00933.0PrSt αDeNj s
−==  (16) 

Webb et al. (2000) have also derived correlations based on the heat transfer-momentum 

transfer analogy approach: 

 297.01096.02138.0)(762.4 −−−+= αsNeR  (17) 
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 16.021.006.057.0 )(714.1Pr/ −−+= αsNeG  (18) 

Webb et al. (2000) examined additional performance parameters for each tube. 

These parameters were (h/hp)/(A/Ap) and the efficiency index, 

 
p

p

ff
hh

/
/

=η  (19) 

where the subscript p stands for smooth (or plain) tube. The first parameter indicated the 

ratio of the increase of the heat transfer coefficient to the increase of the surface area with 

respect to the plain tube. This parameter helps to determine what portion of the heat 

transfer coefficient increase is due to the increase of the surface area and what portion is 

due to the alteration of the flow field. The efficiency index, η, helps to evaluate the effect 

of fins on both the heat transfer and friction factor. The higher the efficiency index, the 

better the enhancement geometry. Both parameters depend on the geometry of the tube, 

the Reynolds number, and the Prandtl number of the fluid. 

By examining the above-defined performance parameters, Webb et al. (2000) 

concluded that the two key factors that affect h/hp in helically-finned tubes are the area 

increase and fluid mixing in the interfin region caused by flow separation and 

reattachment†. The combination of the two determines the enhancement intensity‡. 

Withers (1980a) tested fourteen single-helix corrugated tubes (see Figure 3) at 

various Reynolds and Prandtl numbers (10 000 < Re < 120 000; 2.3 < Pr < 10.4). None 

of the tubes tested by Withers (1980a) indicated fully-rough behavior (f being 

                                                 
† A conclusion which is in agreement with the flow visualization experiments of Li et al. (1982). 
‡ The levels at which the increased surface area and the boundary-layer mixing contribute to the apparent 
heat transfer coefficient depend on the enhancement geometry (as discussed in CHAPTER I), the Re, and 
the Pr. The higher the helix angle and the Reynolds number, the higher the chance of flow separation. The 
lower the p/e and e/D ratio, the higher the chance of skimming flow, etc… 
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independent of Re). Friction factor data were correlated by means of the following 

expression: 

 [ ]mr
f

Re)/7(ln46.2
12/
+

−=  (20) 

where operands r and m were empirically determined for each tube. Heat transfer data 

were correlated in a more comprehensive manner: 

 3/1127.05.0 )/()(22.7Pr/ −+= DpeG  (21) 

Withers (1980a) used the above equations to perform a parametric study to find 

the optimum fin height (i.e., the fin height that yields highest heat transfer coefficients 

and lowest friction factors) for single-helix corrugated tubes (the pitch was held 

constant). After looking at different Reynolds and Prandtl numbers, Withers (1980a) 

inferred that in every case, the optimum e/D ratio is 0.04. 

Withers (1980b) published data for tubes with multi-start helix ridges. The same 

experimental apparatus as in Withers (1980a) was used to test 25 tubes with helix angles 

varying between 29° and 55°. Equation (20) along with a new set of operands r and m 

was used to correlate the friction factor to the Reynolds number. By observing the 

behavior of the friction factor, Withers (1980b) conjectured that a shift in flow behavior 

occurs at p/D = 0.36. The explanation was that “at higher values of p/D a substantial 

degree of swirl could occur, as opposed to more abrupt cascading when p/D is below 

0.36.” Withers (1980b) graphed R versus e+ for nine tubes, but except for equation (20), 

made no attempt to correlate his friction data more comprehensively. 

Withers (1980b) heat transfer data were correlated much more thoroughly. The 

correlating equation for G was given by: 
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 8/1136.05.0 )/()(68.5Pr/ −+= peeG  (22) 

Unfortunately, equation (22) does not include the effect of helix angle or number of 

starts. However, Withers was one of the first to attempt the use of the G correlating 

function to tubes with helical roughness. 

Twelve single-start spirally corrugated geometries were tested by Gupta and Rao 

(1979). Gupta and Rao’s (1979) test used water and power-law type non-Newtonian 

fluids. Non-Newtonian fluids are beyond the scope of this dissertation; therefore, the 

correlations obtained by Gupta and Rao (1979) and listed here assume a behavior index 

equal to one (water). Gupta and Rao (1979) found that an important factor in analyzing 

spirally-corrugated tubes was the tube severity factor, Φ, defined as e2/pD. 

Gupta and Rao (1979) correlated the friction factor by the following equation: 

 )210exp(25.0Re)5.79exp(079.0 Φ−−Φ−=f  (23) 

The interesting fact is that equation (23) reduces to the Blasius form when the tube 

severity factor is zero (plain tube). The Nusselt number was correlated as: 

 )13exp(4.0)13exp(8.0 PrRe)45exp(029.0 ΦΦΦ−=Nu  (24) 

Equation (24) reduces to the Dittus-Boelter form when Φ = 0, and the constant 0.029 is 

replaced by 0.023. Gupta and Rao (1979) used the correlations for f and Nu to perform an 

extensive parametric study, which showed that the most favorable spiral configuration 

(highest increase in Nu with lowest increase in f) is achieved with a tube severity factor 

ranging between 0.00067 and 0.0020. 

Ganeshan and Rao (1982) tested seven spirally-corrugated tubes of one to four 

starts with a constant helix angle of 65°. In their study, the authors used water and power-
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law non-Newtonian fluids to correlate the G and R functions versus e+. As was the case 

for the equations of Gupta and Rao (1979), correlations obtained by Ganeshan and Rao 

(1982) and listed here assume a behavior index equal to one (water): 

 [ ] 127.0)ln(273.0)/( 24.052.0 ++=−⋅ eNtpNeR ss  (25) 

 [ ] [ ]3255.0 )log(0103.0)log(497.0)log(707.1576.2)Pr/log( +−+++−= eeeG  (26) 

where t is the rib width. The correlations are applicable for 20 < e+ <300. 

Ganeshan and Rao (1980) made several interesting remarks about their findings: 

1) R always increased with e+. 

2) Due to the unique nature of flow in corrugated tubes, R was not 

independent of e+ in the fully-rough regime as is typically seen in 

smooth pipes (e+ >70). 

3) Inter-rib spacing was a more significant parameter than pitch. 

4) No significant dependence of G on pNs/e was observed.† 

5) pNs/D had a small effect on heat transfer 

Sethumadhavan and Rao (1986) investigated friction and heat transfer 

characteristics of five spirally corrugated tubes with one to four corrugation starts with a 

constant 65° helix angle. Water and 50 percent glycerol were used as test fluids. Steam 

was condensed on the outside of the test tube. 

The experimental results of the friction factor were reduced in terms of the 

momentum transfer roughness function R(e+) and tube severity factor Φ = e2/pDeq 

(where Deq = D – e) in the following equation: 

                                                 
† pNs corresponds to the axial distance through which a rib makes a 360° turn along the tube circumference. 
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 [ ]
200e3for                              

)(40.0)/( 164.033.02

<+<

+=⋅ epDeR eq  (27) 

Sethumadhavan and Rao (1986) concluded that the friction factors were higher than for a 

smooth tube and, furthermore, increased with decreasing pitch (or increasing number of 

starts). 

The heat transfer coefficient results were reduced via the heat transfer roughness 

function G(e+, Pr) in the following fashion: 

 
180  e  25for                     

)(6.8Pr/ 13.055.0

<+<
+= eG  (28) 

Sethumadhavan and Rao (1986) compared their results with data from Gupta and Rao 

(1979) and Withers (1980a and 1980b). The agreement was found to be good despite the 

differences in tube geometries and fluids used by the different researchers. This fact 

supports the idea of using momentum transfer and heat transfer functions to describe 

friction and heat transfer characteristics of complex, yet structured fins. 

Vicente et al. (2004) compared spirally-corrugated tube correlations of 8 different 

researchers and concluded that for the same operating conditions, differences in 

predictions of friction factors and Nusselt numbers can be as high as 231 and 167 percent, 

respectively. This discrepancy motivated Vicente et al. (2004) to obtain experimental 

data for a wide variety of flow conditions. Vicente et al. (2004) performed experiments 

on a family of 10 helically corrugated tubes under the following conditions: e/D ranging 

from 0.02 to 0.06, p/D from 0.6 to 1.2, Re from 2 000 to 90 000, and Pr from 2.5 to 100. 

Based on about 600 data points, Vicente et al. (2004) correlated the friction factor 

with the following equation: 
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 16.054.091.0 Re)/()/(47.1 −−= DpDef  (29) 

or using the definition of the severity index, 

 16.046.0 Re53.1 −Φ=f  (30) 

Vicente et al. (2004) also analyzed the results with the momentum roughness function 

R(e+) and proposed that: 

 
1-0.1348.0

-135.0

925(p/e)efor             )(e)/(07.1)(
925(p/e)e for                        )/(60.2)(

>++=+

<+=+

epeR
epeR

 (31) 

Vicente et al. (2004) noted that the friction factors did not reach an asymptotical 

value with increasing Re and thus did not show a “sand-grain” behavior. According to the 

authors, the flow inside helically corrugated tubes is not fully understood, but it seems 

reasonable to assume that rotation flow and axial flow exist concurrently. The degree of 

flow rotation depends on the helix angle, and how rotation spreads to the core of the flow 

depends on the flow conditions, namely the Reynolds number. Flow separation may or 

may not exist depending on the shape of the corrugation. 

Based on about 800 data points, Vicente et al. (2004) fitted the heat transfer data 

with the following equation: 

 44.074.029.053.0 Pr)1500(Re)/()/(403.0 −= −DpDeNu  (32) 

or using the definition of the severity index, 

 44.074.025.0 Pr)1500(Re374.0 −Φ=Nu  (33) 

Vicente et al. (2004) also analyzed the results with the heat transfer roughness function 

G(e+) and proposed that: 
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 (34) 

Vicente et al. (2004) concluded that Nu augmentation increased with increasing 

severity index and Pr and decreased with increasing Re. The reason for this behavior is 

that at low Re numbers the boundary layer is relatively thick (and the thermal resistance 

high) and mixing induced by the corrugations helps to decrease the boundary-layer 

thickness, lowering its thermal resistance. At high Re numbers, the boundary layer is 

thinner and mixing does not improve the situation as much as for the low Re case. 

Accordingly, Vicente et al. (2004) suggested using tubes with a high severity index for 

low Re applications and tubes with an intermediate severity index for high Re 

applications. 

Newson and Hodgson (1974) tested 32 helically corrugated tubes of different 

types. These types are shown in Figure 8 and are classified as follows: 

a) 4 start, swaged (or roped) helical, 

b) 4 start, positive indentation helical, 

c) 8 start, swaged helical, 

d) 8 start, longitudinal wave, 

e) 16 start, multifluted, 

f) 30 start, multifluted, high density fluting. 

A detailed analysis of the heat transfer and pressure drop performance was accomplished 

for only tubes a, b, and c. 
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Figure 8. Tubes Tested by Newson and Hodgson (1974). 

 
For tube types a, b, and c, Newson and Hodgson (1974) proposed a model based 

on the swirl flow theory. This “model assumes that the fluid flowing within the tube 

follows exactly the spiral path of the indentations.” As a result, the distance traveled by 

the fluid is L/(cos α), and the resulting velocity is V/(cos α). By utilizing this assumption 

in the Dittus-Boelter equation, Newson and Hodgson (1974) postulated that: 

 4.02
8.0 )/11(

)(cos
1

R
p

H
h
h

+==
α

 (35) 

where HR is defined as the “helix ratio” and is equal to (pNs)/perimeter. In a similar 

manner, the Blasius equation for the friction factor gave: 

 38.12
75.2 )/11(
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f
f
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 (36) 
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Newson and Hodgson (1974) plotted experimental values of h/hp and f/fp versus 

the factors derived in equations (35) and (36), respectively. In the case of the heat transfer 

coefficient, most experimental results lay within 12% of the ones predicted by the swirl 

flow model. The swirl flow model disagreed with experiment for two tubes with the 

shortest helix ratios (highest helix angles). The authors stated that the reason for the 

disagreement could be that at higher helix angles (HR less than 0.4), the fluid tends to 

spill over the indentations rather than following them.† For such tubes, the indentations 

act as roughness to the flow and the swirl flow model cannot be applied. In addition, 

based on the results from the 4-start and 8-start tubes, Newson and Hodgson (1974) 

argued that the number of starts has no influence on the applicability of the swirl flow 

model. 

For the pressure drop data, the agreement between experiment and theory was not 

very good. The discrepancy between experiment and prediction increased with increasing 

helix angle (decreasing helix ratio) suggesting that real flow had little relevance with the 

swirl flow model. The pressure drop results tended to confirm the fact that flow spills 

over indentations at large helix angles. In the authors’ opinion, the swirl flow model 

failed to account for the effect of the indentation ratio (e/D). To show this effect, the 

authors plotted the variation of h/hp and f/fp versus e/Dh. The trend was increasing h/hp 

and f/fp with increasing indentation ratio. In addition, this increase was directed toward 

the swirl flow model values. Therefore, the authors postulated that the effect of 

                                                 
† This statement is in agreement with the theories postulated by different authors in previously cited 
literature. 
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indentations is to direct the flow into a more truly swirling mode as the height of the 

indentation increases. 

With the gathered data, Newson and Hodgson (1974) obtained an empirical 

correlation for the pressure drop, which predicted all but four data points within 14%: 

 815.1

Re6101948.073864.0)/(
0647.61

R

h

p H
De

f
f

−×−

+=  (37) 

Equation (37) is valid for tubes of type a, b, and c, and for 0.4 < HR < 3.0. 

In their article about tubes with spiral sheet intensifiers (single-start spiral fin), 

Migai and Uporov (1979) went beyond the swirl flow theory of Newson and Hodgson 

(1974). Migai and Uporov (1979) based their derivation on the fact that in the case of 

flow inside a helically-finned tube, part of the stream is swirled, while the rest is 

separated from the upper end of the spiral. Furthermore, based on flow visualization 

experiments, the authors stated that in stabilized conditions, the axial velocity field is 

close to uniform and the stream moves along the spiral. However, the fraction of 

separated flow increased with a decrease in fin pitch. The authors also noted a 30-50% 

increase in levels of turbulence. 

The basis for Migai and Uporov’s (1979) analysis was to resolve the velocity 

vector of the stream flowing onto the spiral into two components. V|| was the component 

parallel to the spiral (V|| = V*cos α) and V┴ perpendicular to the spiral (V┴ = V*sin α). V|| 

represents the stream swirling, and V┴ provides for stream separation. For α = 0°, 

rectilinear non-separation flow is achieved, and for α = 90° purely separation flow is 

obtained. The next step in the modeling was to use superposition of Nusselt numbers 

determined for the swirling motion and the separation component. Nuswirl was determined 
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by coupling the Dittus-Boelter equation with a mixing component [Migai (1966)]. Nusep 

was obtained by looking at the kinetic energy of the flow at the reattachment point past a 

transverse plate. The derivation and the resulting formulas are lengthy so the reader is 

referred to Migai and Uporov (1979) for further details. 

Migai (1968) gave a fairly qualitative discussion of flow behavior in single-start 

helically-finned tubes and helically-indented tubes. Migai (1968) indicated that pressure 

losses are governed by friction of the swirled flow, separation of vortices from the edge 

of the fin, as well as formation of vortices behind the fin. Furthermore, depending on the 

e/D ratio, a fraction of the flow follows the helix of the fin and interacts with the 

rectilinearly-moving portion of the flow near the axis. Intensive shear vortices take place 

at the interface. Migai (1968) noticed that the measured friction factor was highly 

depended on Re, differing from flow in very rough tubes, where the process is governed 

by separated flows mainly. Therefore, Migai (1968) concluded that the strong 

dependence of f on Re indicates that the fraction of separated flows is small and the 

process is mainly governed by the friction of the swirling flow. 

Another analysis of helically-finned tubes was published by Belyakov et al. 

(1989). This study tested 13 tubes with helical fins of different cross-sections. A method 

similar to that of Migai and Uporov (1979) was employed to model friction and heat 

transfer characteristics of the flow. The mean velocity was resolved into a parallel and 

perpendicular component, V|| and V┴, respectively. The principle of superposition of 

effects was used to add losses due to (1) friction, (2) swirling of the flow, and (3) 

separation of the flow around the fins. 
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For frictional resistance factor, Belyakov et al. (1989) proposed the following 

pressure drop equation: 
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 )(cos 4/3 αfrictionff =  (39) 

Belyakov et al. (1989) argued that the centrifugal force caused by the swirling 

flow ejects the slow portion of the boundary layer up the sides of the fin and into the core 

of the flow causing additional turbulence and exchange of momentum. Based on that 

hypothesis, as well as the 1/7th power-law velocity profile, the additional friction 

coefficient due to vortex mixing was given as: 
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The resistance factor was the sum of the friction factor and the vortex mixing factor:        

f = ffriction + fvortex.mixing. 

In addition to the resistance factor due to vortex mixing and friction at the wall, 

Belyakov et al. (1989) suggested the incorporation of a separation factor caused by the 

component of velocity that is perpendicular to the fin, V┴. To account for the separation 

coefficient, the following pressure drop equation was proposed: 

                                                 
† As in the swirl flow model of Newson and Hodgson (1974). 
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Belyakov et al. (1989) stated that “at present, fseparation can be found only experimentally” 

and that “it depends on form of the fins and their number.” The overall resistance factor 

was thus 
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Through experiment, Belyakov et al. (1989) correlated the overall resistance coefficient 

with the following equation: 
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A Nusselt number analysis was performed with the same approach as the overall 

resistance coefficient analysis. The components due to flow twist and flow separation 

were added to account for the overall Nusselt number. The component due to flow twist 

was determined as the sum of Nufriction and Nuvortex.mixing. The Nusselt number due to 

friction was calculated from the formula for smooth tubes with the introduction of the 

parallel component of velocity: 

 )(cosPrRe023.0 8.04.08.0 α=frictionNu  (44) 

To account for Nuvortex.mixing, Belyakov et al. (1989) used the equation derived by Migai 

(1966). The value of the Nusselt number due to separation was determined from the 
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following scheme. Part of the heat transfer occurs from the top of the fin, where the 

Nusselt number can be derived from a flat plate correlation. Another portion of heat 

transfer occurs from the depression, where the Nusselt number can be approximated 

based on the results of Migai (1968). The plate and depression Nusselt numbers can be 

approximated with the following equations: 

 )(sin)/(PrRe036.0 8.02.04.08.0 αtDNu hplate =  (45) 
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The overall Nu due to separation was thus: 
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where 
)sin(αp

t  is the proportion of the length of protrusion and 
)sin(

)sin(
α

α
p

tp −  is the 

proportion of the length of depression. 

Jensen and Vlakancic (1999) tested fifteen helically-finned tubes with a wide 

range of helix angles (0° - 45°), e/D ratios (0.0075 - 0.085), number of starts (8 - 54), and 

fin widths (0.62 mm - 1.84 mm). However, experimental data of only six tubes were 

reported. Isothermal friction factor tests were conducted with water and ethylene glycol, 

and the heat transfer tests were executed in both heating and cooling modes. Jensen and 

Vlakancic (1999) stated that, generally, the friction factor increased with increasing Ns, α, 
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and e/D; however, a large fin thickness can cause the flow to stall in between the fins, 

reducing the friction factor. Similar conclusions were drawn from the behavior of the 

Nusselt number. Jensen and Vlakancic (1999) attempted to predict their experimental 

data with correlations of Carnavos (1980) with a poor outcome. Data of only a few tubes 

fell within 10% of the predicted values. Jensen and Vlakancic (1999) attributed this 

discrepancy to the existence of two types of flows in spirally-finned tubes. The first type 

of flow occurs inside tubes with tall fins, few starts, and relatively small helix angles (less 

than 30°). In this type of flow, the fluid follows the space in between the fins (swirl 

flow). The second type of flow takes place in tubes with shorter fins (when e/D ≤ 0.02, 

the authors refer to micro-fin tubes), more fin starts and higher helix angles. According to 

the authors, the second type of flow is prone to coring† with possible relaminarization in 

the interfin regions. Jensen and Vlakancic (1999) stated that since the governing physics 

are different in different helically-finned tubes, existing correlations are usually limited to 

the type of tube that was used for their development. 

To predict the characteristics of the two flow patterns Jensen and Vlakancic 

(1999) developed two sets of correlations. The first set, for friction factors in tall-fin 

tubes, is as follows: 
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† Coring occurs when the interfin region poses such a resistance to the flow that the main portion of the 
flow is constrained to the core of the tube, skimming over the fins. 
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where pmodified = Ns·sinα/π is the non-dimensional fin pitch. The Nusselt number for tall-

fin tubes is expressed with: 
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where Aactual is the actual inside surface are of the tube. For micro-fin tubes, Jensen and 

Vlakancic (1999) proposed: 
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valid for Re ≥ 20 000, and 
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The above correlations predicted most of Jensen and Vlakancic (1999) data within 15%. 

Jensen and Vlakancic (1999) also evaluated their correlations with other data [e.g., 

Carnavos (1980)], and the results were good. 

An experiment performed by Han et al. (1978) tested a parallel-plate channel with 

ribs on both sides. The ribs were placed symmetrically or in a staggered arrangement. 

During the test, one of the variables was the angle of attack of the air flowing in the 

channel, which can be compared to a helix angle for air flowing inside a spirally-finned 
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tube. Thus, the results can be a good indicator of flow behavior in helically-finned tubes. 

In addition to the angle of attack, the investigators varied the rib height to hydraulic 

diameter ratio, the rib spacing to rib height ratio, and the rib included angle. 

Han et al. (1978) presented conclusions about each variable they investigated. 

These conclusions were as follows: 

1) Rib height to hydraulic diameter: As e/DH increased, the friction factor 

increased. For different values of e/DH, the fully-rough regime started 

at different Re numbers. 

2) Rib cross-section. The larger the rib included angle, the smaller the 

friction factor. The effect of included angle on heat transfer was 

modest. 

3) Rib pitch to height ratio. For p/e less than 10, skimming flow occurred 

(the flow did not reattach before it reached the succeeding rib). For p/e 

value of about 10 the flow reattached close to the next rib causing the 

friction factor and the St number to be the highest. For larger rib 

spacings, the reattachment point was reached before the succeeding rib 

and a boundary layer began to grow. The average shear stress and heat 

transfer were greatly reduced. 

4) Flow attack angle. As the angles of attack changed from 90° to 45°, St 

decreased only 5%. The friction factor decreased with attack angle 

“because the form drag, which makes no contribution to the heat 

transfer, is being reduced.” The authors claimed that the optimum 

attack angle is 45° because the viscous sublayer is still broken up 
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while the form drag is reduced. As the angle of attack was decreased 

further, smooth tube performance was approached. 

Han et al. (1978) presented the following correlations for friction and heat 

transfer: 
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where 

m = -0.36  for e+ < 35 

m = 0   for e+  35 

n = -0.12  for p/e < 10 

n = 0.49(α/90)0.84 for p/e  10 

and 

 jieG )45/()35/(48.10Pr)/72.0( 57.0 α+=  (56) 

where 

i = 0  for e+ < 35 

i = 0.27 for e+  35 

j = -0.43 for α  45° 

j = 0.48 for α < 45° 

The definition of R for flow in a parallel plate channel differs from equation (2) and is 

given by 

 23.4)/2ln(5.2/2 ++= hDefR  (57) 
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All of the studies presented so far were conducted on turbulent flow of water or 

air. Laminar flow is not in the scope of this dissertation. However, laminar flow can be of 

practical importance to chemical engineers who deal with highly viscous fluids such as 

oil, ethylene glycol, or liquid polymers. Those readers should refer to Shome (1995) for a 

more detailed review of investigations on laminar flow in helically-finned tubes. 

 
II.B Numerical Approach 

The numerical approach has advantages and disadvantages. The disadvantages are 

that (1) experimental results are needed to verify most numerical models and algorithms 

and (2) numerical modeling is available to a limited number of engineers with access to 

computing power. One of the advantages is that once a numerical model is proven, 

parametric studies and optimization can be easily performed without the need of an 

elaborate (and often expensive) experimental program. 

Based on the literature survey, there are few publications that present numerical 

solutions of laminar or turbulent flow in helically-finned tubes. Laminar flow is easier to 

model because there is no problem of closure† of the transport equation. Nonetheless, as 

the state of the art in the area of turbulence modeling evolves, the problem of turbulent 

flow in helically-finned tubes is likely to be understood better. 

Date (1974) introduced an interesting mathematical concept, useful in modeling 

of flow in spirally-finned tubes. Date (1974) presented a numerical solution for friction 

and heat transfer characteristics of flow in a tube containing a twisted tape insert (Figure 

9). Date’s (1974) model was based on the use of rotating cylindrical coordinates, in 

                                                 
† An explanation of closure is given later in the section. 
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which the angular coordinate is always measured from the surface of the tape. The 

rotating coordinate system is related to the stationary one by the following 

transformations: 
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where H is the pitch for 180° rotation of the twisted tape insert. With the equations 

above, the following relations can be formulated: 
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Figure 9. Configuration Analyzed by Date (1974). 

 
With the derivative relations available, Date (1974) transformed the transport 

equations from stationary to rotating cylindrical coordinates and applied the mathematical 

inference of fully-developed flow: 

 0=
′∂

∂
z

 (60) 
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for all variables, except temperature and pressure. The derivatives of pressure and 

temperature in the z’ direction are treated as known values. Hence, the transport 

equations in the r’, θ’, and z’ are as follows: 

Continuity equation 
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Axial momentum equation 
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Tangential momentum equation 
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Radial momentum equation 
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Energy equation 
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In the above equations, the pressure consists of two terms: an average term at a given z 

location and a cross-section variation term: 

 ),()(),,( 0 θθ ′′+′=′′′ rPzPzrP  (66) 

With the fully-developed flow assumption, and the fact that zP ′∂∂ /  and zT ′∂∂ /  are 

known, Vr, Vθ, Vz, and T are functions of r’ and θ‘ only. When information about stresses 

and heat fluxes (τ’s and q’s) is specified, the mathematical statement of the transport 

equations is complete. 

For laminar flow, the coupling between τ and the velocity gradients is achieved 

via viscosity, µ, and between q and the temperature gradients via diffusivity, Γ. For 

turbulent flow, the approach is to replace µ and Γ with effective values µeff = µ + µturb and 

Γeff = Γ + Γturb. Moreover, research has shown that [Kays and Crawford (1980)]: 

 9.0Pr ≈
Γ

=
eff

eff
eff

µ
 (67) 

The above definition eliminates the need to know Γeff. Nonetheless, information 

about µturb still needs to be provided. The term µturb is not a fluid property but rather a 

property of the flow pattern. Therefore, details about µturb must come from experiments. 

Providing an equation for µeff is referred to as “closure” of the turbulent Navier-Stokes 

equations. For years, closure has been the most difficult step in solving a turbulent flow 

problem. A detailed description of the closure and solution procedure used by Date 

(1974) is beyond the scope of this dissertation. 

In his doctoral dissertation, Ivanović (1978) presented solutions to three 

scenarios: (1) turbulent flow and heat transfer in longitudinally-finned tubes, (2) turbulent 

flow and heat transfer in longitudinally-finned annuli, and (3) laminar flow and heat 
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transfer in helically-finned tubes. The simplifying assumptions were fully-developed flow 

with constant properties, zero fin thickness, and 100% fin efficiency. The longitudinal fin 

problem was solved with two different turbulence models. The first approach was a 

modified mixing-length model that consisted of a superposition of a mixing length for a 

channel and a mixing length for a plain tube. The second approach was a low Re k-ε 

model. Both approaches yielded satisfactory results. 

The helical fin problem was solved using Date’s (1974) rotating coordinate 

system. The coordinate system transformation results in converting a 3-D problem into a 

2-D one. Ivanović (1978) further simplified the equations by limiting his analysis to small 

helix angles (i.e., α < 17°). The number of starts was varied from 4 to 24 and the 

dimensionless fin height 2e/D from 0.2 to 0.8. The computational domain used is shown 

in Figure 10. The boundary conditions consisted of the wall-temperature and no-slip 

condition applied at surfaces BC, CD, and CE. The condition for surfaces AB and AE 

was that the velocities, pressures, and temperatures are equal at corresponding r’s. 

 

 

Figure 10. Computational Domain of Ivanović (1978). 
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Ivanović (1978) postulated several remarks based on the results of his 

computation: 

1) The helix angle seemed to have no effect on the friction factor and 

Nusselt number for the values of tan(α)Re less than 100. Past this 

value of tan(α)Re, Nu and f increased steeply. 

2) f and Nu increased with increasing fin height. 

3) The helix angle ceased to have any effect on f and Nu for large number 

of starts (Ns = 18). 

4) f/flongitudinal continuously decreased with increasing Ns. This was 

because as the interfin region became narrower, secondary flows were 

diminished. 

5) f/flongitudinal increased with increasing fin height. This increase was 

steep for tubes with small number of fins and rather small and uniform 

for tubes with large number of fins. 

6) By analyzing the efficiency indices and local heat transfer coefficients, 

Ivanović (1978) claimed that “the economical effect of fin-twisting is 

associated only with longer fins.” 

The coordinate system transformation developed by Date (1974) was also used by 

Shome and Jensen (1996b) to model variable-viscosity, mixed-convection laminar flow 

in helically-finned tubes at 100 < Re < 1000. Numerical results were verified with 

experimental data obtained by Shome and Jensen (1996a). The numerical model 

assumed: 

• steady laminar flow, 



39 

 

• negligible viscous dissipation and axial conduction in tube wall, fin, 

and fluid, 

• 100% fin efficiency, 

• applicability of the Boussinesq approximation, constant fluid thermal 

conductivity and specific heat but variable viscosity, and 

• the uppermost fin at the inlet being always aligned with the gravity 

vector. 

The included angle of the fin was fixed at 3°. Shome and Jensen’s (1996b) model was 

more realistic than that of Ivanović’s (1978) because the fins had a finite thickness and an 

included angle, flow was developing, natural convection was taken into account, and 

there was no small helix angle assumption. 

The code was validated for a longitudinal fin setup against the results of other 

researchers. The grid independence was successfully tested by refining the mesh and 

observing the change in final results. The agreement between measured [Shome and 

Jensen (1996a)] and predicted values for the isothermal friction coefficient and Nusselt 

number was well within 10%. The Nusselt number analysis revealed that neglecting free 

convection could lead to an underprediction of Nu by up to 47% (especially at low Re). 

On the other hand, computation of the diabatic friction factor revealed that the error in f is 

more affected by the neglect of variable viscosity effect than by the neglect of free 

convection effects. 

Shome and Jensen (1996b) also performed a parametric study by varying the 

geometric parameters 0.03 ≤ 2e/D ≤ 0.1, 8 ≤ Ns ≤ 54, and 0 ≤ α ≤ 45° and the operating 
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conditions 100 ≤ Re ≤ 1000, 50 ≤ Pr ≤ 1000, 0 ≤ Ra ≤ 106, and –30 K ≤ (Twall – Tin) ≤ 30 

K. The authors concluded the following: 

1) In the developing region, the Nusselt numbers were considerably 

higher for enhanced tubes than for the smooth tube. 

2) Once the flow was developed, and the swirling flow gained strength, 

Nusselt numbers increased with increasing helix angles. 

3) At large distances from the tube entrance, the Nusselt numbers of the 

enhanced tubes lay below those of a smooth tube by as much as 15-20 

percent, probably due to coring of the fluid. 

4) Friction factors for enhanced tubes were up to 25% higher than those 

of a smooth tube. 

5) The effect of helix angle on the friction factors was negligible. 

6) In the entrance region, the Nusselt numbers increased with increasing 

number of starts. 

7) Once the flow was fully-developed, the change in Nu due to a change 

in Ns was marginal. 

8) Diabatic friction factors increased by 7-10% when Ns increased from 

14 to 30 and by 2-3% when Ns further increased to 54. 

9) In the entrance region, increasing the fin height from 2e/D = 0.03 to 

0.1 increased the Nusselt numbers by up to 45%. However, in the 

developed region, the same change in 2e/D had little effect on Nu. 

10) Contrary to the Nusselt number behavior, the effect of dimensionless 

fin height on friction factor was more uniform throughout the entrance 
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and developed regions. Increasing 2e/D from 0.03 to 0.1 increased f by 

about 25-30 percent. 

11) Coring was a strong proportional function of the number of fins. 

12) For tubes with large number of fins, heat transfer in the interfin region 

was low (even lower than for a plain tube) due to low velocity of the 

fluid adjacent to fin walls. 

Perhaps the most advanced numerical analysis of flow in helically-finned tubes 

was that of Kim et al. (2004). The most important aspect of the Kim et al. (2004) study 

was that the numerical flow simulation was carried out in the turbulent regime. Kim et al. 

(2004) did not use the helical coordinate system of Date (1974) because their goal was to 

develop computational tools that were applicable to a wide range of internal flows. 

Instead, the azimuthal symmetry of the cross section was used to implement a periodic 

boundary condition, thus simplifying the computational domain. Kim et al. (2004) used 

three different types of mesh models along with four different turbulence models [i.e., the 

model of Spalart and Allmaras (1992), shear stress transport model of Menter (1994), k-ε 

model of Goldberg et al. (1998), and the k-ε model of Lam and Bremhorst (1981)] to 

solve a set of Reynolds averaged Navier-Stokes (RANS) equations for flow inside two 

different spirally-finned tubes. The first tube had 8 fin starts, D = 23.64 mm, α = 30°, e/D 

= 0.05, and t = 1 mm. The second one had 30 fin starts, D = 24.2 mm, α = 30°, e/D = 

0.015, and t = 0.64 mm. Numerical results were compared to the experimental data of 

Jensen and Vlakancic (1999). For the first tube, friction factors and Nusselt numbers 

were within 13% and 11% of the experiment, respectively. The solution to the second 

tube problem converged with the Goldberg et al. (1998) model only, suggesting perhaps 
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its superiority for multiple-wall geometry. Numerical results for the second tube case 

with the Goldberg model were within 7.6% of the experiment for the friction factor and 

10% for the Nusselt number. Velocity visualizations of Kim et al. (2004) are shown in 

Figure 11. 

 

 

Figure 11. Flow Visualizations of Kim et al. (2004): (a) Non-dimensional speed 
and turbulent kinetic energy for the 8-start tube at Re = 36 000, (b) Non-
dimensional speed and turbulent kinetic energy for the 30-start tube at 
Re = 31 796. 
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CHAPTER III  

PRINCIPLES OF ARTIFICIAL NEURAL NETWORKS 
 
 

From the information presented so far, friction and heat transfer in helically-

finned tubes are governed by an intricate set of coupled and non-linear physical 

interactions. Therefore, obtaining a single prediction formula seems to be an unattainable 

goal with the knowledge engineers currently possess. Regression techniques performed 

on experimental data require mathematical functional form assumptions, which limit their 

accuracy. To achieve accuracy, techniques that can effectively overcome the complexity 

of the problem without dubious assumptions are needed. One of these techniques is the 

artificial neural network (ANN), inspired by the biological network of neurons in the 

brain. 

Despite the complexity of the natural environment, living creatures are able to 

perform involved activities within their ecosystems. Animals can rapidly process vast 

amounts of data and make “calculated” decisions. This capability, attributed to the 

nervous system, is partly acquired and partly enhanced through a process called learning. 

Last century’s advancements in bio-medical sciences have shed some light on the 

functioning of the nervous system. Studies in bio-medicine and psychology have always 

attempted to understand the brain and its elementary component - the neuron. Knowledge 
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gained in this topic encouraged scientists to apply the concept of a neuron to mathematics 

and logic, giving birth to artificial neural networks (ANNs). 

The purpose of ANNs is to provide solution algorithms to complex problems such 

as classification, clustering, data compression, pattern association, function 

approximation, forecasting, control applications, or optimization†. To many researchers 

dealing with these topics, ANNs are a subject of study in themselves. The purpose of this 

chapter is to briefly introduce the concept of ANNs and how ANNs can be used in heat 

transfer and fluid problems. Readers who are interested in learning more about ANNs are 

encouraged to explore some of the many texts on this subject [e.g., Haykin (1994) or 

Mehrotra et al. (1996)]. 

 
III.A Biological and Artificial Neurons 

Figure 12 shows a biological (real) neuron. A real neuron is composed of a cell 

body, dendrites, and a tubular axon, which terminates with end bulbs called synapses. 

The axon of a neuron makes synaptic connections with dendrites of many other neurons. 

The number of connections ranges from 100 to 100 000. A neuron receives signals from 

other neurons at the dendrites and transmits them down the axon to the synapses. The 

magnitude of the signal received by a neuron depends on the efficiency, or strength, of 

the synaptic connection. An electrostatic potential difference is always maintained across 

the cell membrane. The cell membrane becomes electrically active when sufficiently 

excited by signals from other neurons. The neuron fires, or sends a 100 mV signal down 

                                                 
† Heat transfer applications mostly deal with function approximation, control, and optimization. However, 
pattern recognition capabilities of ANNs have also been used in conjunction with flow visualization 
techniques to assist in unsupervised learning algorithms that develop friction, mass, and heat transfer 
correlations [Ashforth-Frost et al. (1995)]. 
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its axon, if its net excitation during a certain period of time (period of latent summation) 

exceeds a threshold value. Firing is followed by a brief refractory period during which a 

neuron is inactive. The whole process can occur at frequencies of up to several hundred 

Hertz. It is the neuron’s firing frequency that is referred to as the output of a neuron. 

 

 

Figure 12. Biological Neuron [Mehrotra et al. (1996)]. 

 
The picture presented so far is possibly oversimplified. Axons may form synapses 

with other axons. A neuron may have no axon, but only “processes” that receive and 

transmit signals. Dendrites may form synapses with other dendrites. A neuron may have 

synapses with its own dendrites. Nevertheless, the above description presents the 

characteristics of a neuron that are relevant to ANNs. 

Introduction to the artificial neuron model requires the discussion of terminology 

that is used in this dissertation. The equivalents between biological and artificial terms 

are as follows: 

• neuron = node 
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• synapse = connection 

• received signal = input 

• synaptic efficiency = weight 

• firing frequency = node output 

• threshold = bias 

The easiest way to describe an artificial neuron model is graphically. Figure 13 

shows a schematic of an artificial neuron. The similarity between an artificial neuron and 

a real one is in the operation. Each input (x1, x2, …, xn) is multiplied by a weight and is 

fed into the node. The node sends an output based on some function of the weighted 

inputs. The differences between an artificial neuron and a real one come from the 

simplifying assumptions: 

1) The position of the incoming connection is irrelevant. 

2) Each node outputs a single value to other nodes via outgoing 

connections, irrespective of their positions. 

3) All inputs come in at the same time or remain activated long enough 

for the computation of function F to take place. 

A further simplification is to postulate that: 

)()....(),....,( 1111 netFxwxwFxwxwF nnnn =++= . 

This assumption is supported by the fact that voltages are added across a circuit, which is 

what approximately happens in a brain. In order to facilitate the learning process of an 

artificial neuron, a bias is often added to the sum of weighted inputs. In such case, the 

node function really computes F(net + bias), where bias (like w) is a node variable rather 
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than an input. Throughout the rest of this chapter, the terms F(net) and F(net + bias) are 

equivalent. 

 

 

Figure 13. An Artificial Neuron. 

 
Although applying the node function to the sum of the weighted inputs is the most 

common practice, there exist networks (e.g., “sigma-pi” networks) that take the product 

of the weighted inputs. Nevertheless, the F(net) approach is the most widely used and 

will be employed herein. The next section discusses the types of functions used within 

the nodes. 

 
III.B Node Functions 

There are no legitimate limitations as to the type of node function F(net) one can 

use. Obviously, the best function to use is the one that performs the job best. Experience 

has shown that certain function types perform well in ANNs. 
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III.B.1 Step Function 

Figure 14 shows an arbitrary step function. This function simply outputs a value a 

if net is less than a threshold value c and a value b if net is greater than the threshold 

value: 

⎩
⎨
⎧

>
<

=
cnetb
cneta

netF
    if       
    if       

)(  

The output at net = c is sometimes a, sometimes b, or the average of the two. The step 

function is suitable for binary applications. For example, digital processes need inputs 

and outputs that can be represented with only two numbers, 0 and 1. 

 

 

Figure 14. An Arbitrary Step Function. 

 
Although the idea of threshold is biologically plausible, the fact that the 

magnitude of the input has little relevance (except for whether or not it is above the 

threshold) seems to be against logic. On the other hand, the output of the step function 

saturates, meaning that it cannot go infinitely high or low, following the idea that an 

infinitely high neuron firing rate is biologically impossible. A potential disadvantage of 
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the step function is that it is discontinuous, making it sensitive to noise. Moreover, non-

differentiability of this function constrains the number of learning algorithms that can be 

applied to the network. 

 
III.B.2 Ramp Function 

The ramp function is an evolution of the step function that overcomes the 

discontinuity problem by introducing a linear “ramp” between the high and low output 

values. The ramp function is illustrated in Figure 15 and is defined by the following set of 

equations: 
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Figure 15. An Arbitrary Ramp Function. 

 
By virtue of continuity, the ramp function has no binary attribute, but still 

saturates at a high and low output value. Even though the ramp function is continuous, it 

is non-differentiable at net = c and net = d. The ramp function is an example of a simple 
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piecewise linear function. More elaborate functions can be created by combining even 

more linear functions. 

 
III.B.3 Sigmoid Functions 

Sigmoid functions are S-shaped functions that are smooth (continuous and 

differentiable), symmetric about a point, and asymptotically approach a low and high 

value. Because of these characteristics, effective learning algorithms are easier to apply 

and, as a result, sigmoid functions are the most common functions in neural network 

applications. In addition, experimental observation suggests that the firing rate of a 

biological neuron is approximately a sigmoidal function of the net input [Mehrotra et al. 

(1996)]. 

An arbitrary sigmoid function is depicted in Figure 16. This function’s limits are: 
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Common choices are a = -1 or a = 0, b = 1, and c = 0. Two examples of sigmoid 

functions are: 

 
)exp(1

1)(
net

netF
−+

=  (68) 

and 

 )tanh()( netnetF =  (69) 

These two example functions can be scaled, translated, and rotated according to the 

application without losing the characteristics of a sigmoid function. 
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Figure 16. An Arbitrary Sigmoid Function. 

 
III.B.4 Gaussian Functions 

Bell-shaped curves such as the one illustrated in Figure 17 are known as Gaussian 

or radial-basis functions. Gaussian functions are also continuous, differentiable, and have 

asymptotes but they are not monotonic. Gaussian functions are used in radial-basis 

function networks. Algebraically, a Gaussian function may be described with the 

following expression: 
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where µ and σ are the mean and standard deviation, respectively. 

 
III.C Network Architecture 

The power of an artificial neuron is fully realized when nodes are combined into 

an interactive network. The way that nodes are connected influences the performance of 
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an ANN, so network architecture must be considered at an early stage of the design 

process. 

 

 

Figure 17. An Arbitrary Gaussian Function. 

 
Biological networks in the central nervous system are complex, but a general 

schematic emerges from observations. The cerebral cortex, where most processing is 

believed to occur, is composed of five to seven layers of neurons with each layer 

supplying inputs into the next. However, layer boundaries are not strict. Feedback 

connections, connections within layers, and crossing layers are known to exist. To 

simulate this, each node of the general artificial network would have to communicate 

with itself and all of the remaining nodes. An example of such a network is shown in 

Figure 18, where the network has two input and two output nodes at arbitrary locations, 

one hidden node (a hidden node is a neither an input or an output node). Even though a 
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fully-connected network is most general, its use is limited due to large number of 

parameters. Training such a network would, therefore, be very involved. 

Every other type of network can be considered a special case of the fully-

connected network. Simplification is achieved by dividing the network into layers and 

setting some weights to zero. Many variations of such networks exist, but the simplest 

one presented here is the feed-forward network shown in Figure 19. Feed-forward 

networks are the most common among ANNs. A feed-forward network allows 

connections from layer i to layer i + 1 only (no intra-layer connections) and can be easily 

described by a set of numbers that represent the number of nodes in each layer. E.g. the 

network in Figure 19 is a 3-2-3-2 network. 

 

 

Figure 18. A Fully-connected Network. 

 
Networks are not limited to the above-described categories. Small networks can 

be treated as modules, which in turn can be combined into larger systems. These systems 
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can be organized in different ways depending on whether modular emphasis is placed on 

inputs, successive refinement, etc…. 

 

 

Figure 19. A Feed-forward Network [Mehrotra et al. (1996)]. 

 
III.D ANN Learning 

Previous sections have shown that ANNs are made up of inputs, outputs, weights, 

and nodes, and have elaborated on node functions and network architectures. However, 

the most difficult part of obtaining an effective ANN is the selection of appropriate 

weights and biases. The process in which weights and biases are adjusted to achieve the 

best performance of an ANN is called training (or learning). 

Mehrotra et al. (1996) described three types of neural learning: 

1) Correlation learning. Correlation learning is based on Hebb’s theory, 

which states that if the output from neuron A repeatedly or persistently 

takes place in firing neuron B, then the synaptic efficiency between 
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neuron A and B is increased. For ANNs, this means that the weight 

between node A and B is proportional to the outputs of both nodes. 

2) Competitive learning. In competitive learning, different nodes compete 

to become “winners” for a certain type of input parameters, weights 

are adjusted to promote “winners” and demote “losers” for each type 

of input pattern. This leads to the development of networks in which 

each node specializes in the given type of input parameters. One can 

postulate that the competitive learning technique draws its principles 

from the fact that in biological systems, limited resources are 

economically distributed to the organs that are needed the most at a 

given instant in time. 

3) Feedback-based learning. Weights in ANNs can be adapted based on a 

measure associated with how close the output is to the desired value. 

This measure is usually quantified as error, and the weights and biases 

are adjusted until the error is minimized. This method , and 

particularly the backpropagation algorithm, is very common in ANN 

training. 

Because the backpropagation algorithm is so common, elaborating on this 

technique is worthwhile. The backpropagation algorithm is a supervised feedback-based 

learning method. The procedure consists of iteratively presenting the network with a 

training set of inputs and outputs, these are data from which the network can make proper 

pattern associations. Weights and biases are first initialized with random values, and then 

the training inputs are fed into the network. The output is then compared with the desired 
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value to determine the magnitude of the error. The error gradient† is computed, and the 

weights and biases are updated in the direction of most rapidly decreasing error. The 

whole process is repeated until the minimum error is found. 

The exact number of data sets (points) needed to train the network is not known a 

priori, but there exist different heuristic approximations [Mehrotra et al. (1996)]. The 

more elaborate the ANN, the more data sets are needed to train the weights and biases. 

Simpler networks are, therefore, preferred to limit the number of required experiments. 

Moreover, the supervised training process can only utilize about 50-80% of the data sets 

available. The remaining data sets are used to test (or to validate) the performance of the 

ANN. Sometimes, the training process monitors the performance of both the training set 

and the test set and stops when the global error is smallest. 

There are some indications as to which data sets should be put in the training 

basket and which ones kept for testing. The idea behind this decision is that when a test 

sample is submitted for evaluation, the ANN “interpolates” between the training points 

that are close to the test sample presented. Intuitively, the training batch should include 

the extreme available points so that the predictions are within the same range. Pacheco-

Vega et al. (2001b) applied a neural network analysis to a fin-tube heat exchanger with 

limited experimental heat transfer data. The authors presented a cross-validation 

technique to identify regions where not enough training data were available to construct a 

reliable neural network. This technique was described as follows: “From the M available 

sets of experimental data, (M - 1) are used to train the ANN. After the training is finished, 

the data set left out is predicted and the result is compared to the experimental value. The 

                                                 
† Computation of error gradients requires that the node functions be differentiable, as stated in section III.B. 
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percentage error (…) is a measure of the importance of that particular set of data with 

respect to all the measurements.” The work of Pacheco-Vega et al. (2001b) helps to 

determine which data points are crucial for training and where additional experimental 

data may be needed. 

 
III.E ANNs in Fluid Flow and Heat Transfer Literature 

Now that the principles of ANNs have been discussed, attention is shifted to the 

use of ANNs in heat transfer and fluid mechanics. Because ANNs have emerged 

relatively recently, their presence in the thermal science literature is limited. The 

following section describes several articles that can assist in getting started with a more 

thorough literature survey. By listing actual examples, this section can also help to 

understand how ANNs can be implemented successfully in heat transfer and fluid flow 

problems. 

Kalogirou (1999) presented a review of various applications of ANNs in energy 

problems. The problems were classified into six thematic categories, and each category 

had subsections with specific examples as well as references. The categories described by 

Kalogirou (1999) were as follows: 

1) Modeling various aspects of a solar steam generator. 

2) HVAC systems: estimation of building heating loads, prediction of 

energy use in commercial buildings, optimization of energy 

consumption by HVAC systems, or controlling a bus air conditioning 

system. 

3) Solar radiation. 
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4) Modeling and control in power generation systems: combustion 

modeling, control of a thermal plant, or analysis of harmonic power 

distortion. 

5) Forecasting and prediction of power consumption and cost. 

6) Refrigeration: frost prediction on evaporator coils. 

Sen and Yang (2000) described the scope of ANNs and genetic algorithm† 

techniques in thermal science applications including an exhaustive bibliography. Sen and 

Yang (2000) presented two interesting examples that use ANNs to predict the 

performance of compact heat exchangers. The first heat exchanger was a single-row, fin-

tube, cross-flow air-to-water type, and the second one was similar but with more tube 

rows. The second heat exchanger was more complex than the first one due to its 

geometry, the presence of air-side condensation, and fin spacing being a variable. The 

authors’ purpose was to compare the mathematical correlations for heat transfer with an 

ANN approach. Both techniques were compared against experimental data. Sen and 

Yang (2000) proved that in both cases the ANN approach yields more accurate results 

(most errors within 0.7% for the first heat exchanger). The explanation is worth citing: 

“results suggest that the ANNs have the ability of recognizing all the consistent patterns 

in the training data including the relevant physics as well as random and biased 

measurement errors. (…) However, the ANN does not know and does not have to know 

what the physics is. It completely bypasses simplifying assumptions such as the use of 

coefficient of heat transfer. On the other hand, any unintended and biased errors in the 

                                                 
† Genetic algorithms are another type of artificial intelligence techniques. Their description here is omitted 
for the sake of brevity. 
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training data set are also picked up by the ANN. The trained ANN, therefore, is not better 

than the training data, but not worse either.” 

Another application of ANNs that Sen and Yang (2000) described is in thermal 

systems dynamics and control. Control of dynamic thermal systems ideally requires 

dynamic systems models, which relate the outputs to the inputs. Such models are usually 

impossible to obtain due to the complexity of practical thermal systems. This is 

understandable since modeling is difficult even in the static cases. Sen and Yang (2000) 

used ANNs to perform control experiments with the first heat exchanger. Results were 

again excellent showing that ANNs are able to easily overcome complexities of the 

problems they solve. 

Ashforth-Frost et al. (1995) described a multitude of uses of ANNs in heat 

transfer and fluid mechanics with emphasis on visualization processing techniques such 

as particle image velocimetry [see also Jambunathan et al. (1996)]. The authors reported 

several references that used ANNs to recognize different geometric patterns in 

multiphase flows. In these cases, ANNs have replaced methods which had been 

performed manually. ANN modeling of physiological flows was also mentioned as a 

solution to very complex medical analyses. Furthermore, the authors mentioned inverse 

problems as being good candidates for ANN treatment due to their sensitivity to noise 

and reported several successful examples reported in the literature. 

Thibault and Grandjean (1991) were one of the early authors to show the use of 

ANNs in heat transfer data analysis. Thibault and Grandjean (1991) solved three different 

heat transfer problems using three-layered, feed-forward ANNs: a thermocouple lookup 

table, a series of correlations between Nusselt and Rayleigh numbers for the free 
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convection around horizontal smooth cylinders, and the problem of natural convection 

along slender vertical cylinders with variable surface heat flux. The backpropagation 

method and the quasi-Newton methods were used in the training procedure. The quasi-

Newton method showed faster and more robust convergence than the backpropagation 

technique and was, therefore, preferred by the authors. 

Thibault and Grandjean (1991) concluded that neural networks can be used 

efficiently to model and correlate heat transfer data. In their opinion, the main advantage 

of ANNs is to remove the burden of finding appropriate model structures to fit 

experimental data and the disadvantage is the impossibility, simply by inspection, of 

determining the influence that one variable has on an output variable. ANNs, therefore, 

lack the transparency of most standard mathematical expressions. 

ANNs were also used to correlate two-phase flow data. Kelleher et al. (2001) 

investigated data from a series of experiments on R-114 and R-113 pool boiling heat 

transfer from a vertical bank of tubes with variable amounts of oil present in the 

refrigerant. Their objective was to employ the neural network technique as a method of 

using experimental data to predict heat transfer behavior and to make the heat transfer 

predictions more accurate (than regular mathematical correlations), less reliant on 

assumptions, and easier to use. 

The ANN used by Kelleher et al. (2001) had four inputs and one output. The 

inputs were: the temperature above saturation (superheat), the percent oil in the 

refrigerant, the number of active tubes, and whether the tubes were finned or staggered. 

The output was the heat flux. In order to graphically correlate the output for every input 

situation, over 60 plots would be needed. Due to this complexity, there was no attempt to 
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correlate the data mathematically, but rather the neural network approach was used. 

Kelleher et al.’s (2001) neural network had one hidden layer with log-sigmoid node 

functions and an output layer with linear node functions. The network was trained using 

the Levenberg-Marquardt [Levenberg (1944) and Marquardt (1963)] accelerated 

backpropagation algorithm and a set of example data. The results were very good. After 

training, the network was able to accurately predict the heat flux for 72 different tube 

correlations and varying superheat. The average percent errors were well under 10%. The 

advantage of the neural network technique in this situation was that complex data were 

correlated accurately without any assumptions that would limit the neural network’s use. 

Heat transfer literature is most abundant in examples of ANNs used for 

performance prediction and control of heat exchangers. Research around the world has 

been fueled by the industry’s interest in being able to control heat exchangers and to 

provide the design engineers with simple yet effective prediction algorithms. A number 

of publications in this topic originated at the University of Notre Dame [Pacheco-Vega et 

al. (1999), (2001a), and (2001b), Diaz et al. (1996), (1999), (2001a), and (2001b), and 

Sen and Yang (2000)]. 

In order to demonstrate how ANNs can be used to analyze heat exchangers a 

fairly simple example by Islamoglu (2003) is described here. Islamoglu (2003) used a 

feed-forward backpropagation ANN to predict heat transfer rates of a wire-on-tube type 

heat exchanger widely used in small refrigeration systems. Nineteen experiments were 

conducted in three air flow modes: all cross-, wire cross-, and tube cross-flow. 

Islamoglu’s (2003) network had twelve input nodes (describing heat exchanger geometry 

and fluid flow rates), one output node corresponding to the heat flux, and one hidden 
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layer with five nodes. The data were successfully correlated with a mean relative error of 

4% (7.94% maximum relative error). Islamoglu’s (2003) example shows how powerful 

ANNs are in correlating data governed by complex physics. 

ANNs have also been used to characterize various flows inside tubes and 

channels, a topic of particular interest in this dissertation. Ghajar et al. (2004) used ANNs 

to significantly improve heat transfer correlations in the transition region for a circular 

tube with three different inlet configurations. The network Ghajar et al. (2004) used had 

five input nodes, one hidden layer with eleven nodes, and one output node. A separate 

training process was used for each tube inlet configuration. Islamoglu and Kurt (2004) 

trained an ANN to predict heat transfer from a channel with triangular corrugations. The 

input parameters were: corrugation pitch, corrugation angle, the Re number, and the 

hydraulic diameter. The output was the Nu number. The network had a 4-5-1 feed-

forward architecture and correlated Nu numbers with an average relative error <4%. 

Scalabrin and Piazza (2003) applied neural networks to analyze heat transfer from tubes 

with supercritical carbon dioxide. This problem was particularly challenging due to 

thermophysical properties having very strong gradients in the near-critical zone. 

Scalabrin and Piazza (2003) demonstrated the importance of selecting the proper input 

variables (i.e., those that account for the property gradients in the radial direction of flow) 

to obtain a universal ANN. In their particular case, failure to identify the correct input 

variables resulted in an ANN that was only able to “memorize” the training data set but 

was not general enough to correlate data from other sources. 

Chen et al. (2001) is the only source known to the author that dealt with spirally 

corrugated tubes in terms of ANNs. However, the focus was only on the shape of the 
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corrugation and not the helix angle. Chen et al. (2001) tested tubes with four starts, a 

similar pitch (~9mm), diameter (~18.9mm), ridge height (~2.2mm), and helix angle 

(~61°) but different corrugation shapes. The shape of the corrugation was quantified in 

terms of angles α’ and α’’ as shown on Figure 20. The authors devised a radial-basis 

function ANN that correlated the angles of the triangular groove, α’ and α’’, with the 

inside heat transfer coefficient. Next, they used the ANN to determine the optimal 

corrugation shape. The highest value for the heat transfer coefficient occurred at α’’ ≈ 90° 

and α’ ≈ 62°. This result was outside of the range of tested tubes. 

 

 

Figure 20. Corrugation Angles Investigated by Chen et al. (2001). 

 
Albeit small, the number of publications described here indicates that ANNs can 

be used for a wide range of heat transfer and fluid problems. The literature review also 

shows that ANNs have not been applied to correlate heat transfer and friction with all of 

the necessary geometric parameters of a helically-finned tube. Such attempt is made in 

the following chapters of this dissertation. 
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CHAPTER IV  

EXPERIMENTAL PROGRAM 
 
 

Previous chapters introduced the concepts and historical background of heat 

transfer and friction in helically-finned tubes, as well as principles of artificial neural 

networks. Attention was focused on the lack of complete understanding of flow behavior 

in helically-finned tubes and the consequent need for empirical data. 

An experimental program devised to measure turbulent pressure drop and heat 

transfer in helically-finned tubes was conducted at Mississippi State University. The 

experimental results were needed to train various artificial neural networks and to 

develop algebraic correlations for prediction purposes. 

 
IV.A Tube Geometries Tested 

Eight enhanced tubes and one plain tube were tested. The tubes were 

manufactured by Wieland-Werke AG of Ulm (Germany) for condenser applications. The 

geometric parameters of each tube are delineated in Table 1. The external geometry and 

the length were the same for each tube. The length was 10 ft; however, for installation 

purposes, only 9 ft of length were “finned” on both the outside and the inside of the tube. 

The tube material was copper-nickel. The internal fins were 0.48-mm thick at the base 

and 0.2-mm thick at the tip. Thus, the included angle β was 41°. 
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Tubes 5, 6, and 7 were matched to test the effect of the fin height. Tubes 2 and 3, 

and 4, 6, and 8 were used to analyze the influence of the helix angle. Finally, tubes 3 and 

8 and 1, 2, and 4 were tested to investigate the effect of the number of starts. 

 
Table 1. Tube Geometries. 

Tube 
# External Structure Copper 

Wall Internal Structure 

 Outside 
Diameter Fin pitch Fin 

Height Thickness Fin 
Height 

Number of 
Starts 

Helix 
Angle 

Internal 
Diameter 

 (mm) (fins/inch) (mm) (mm) (mm) - (°) (mm) 
1 18.82 40 0.945 0.645 0.38 10 25 15.64 
2 18.82 40 0.925 0.68 0.375 30 25 15.61 
3 18.86 40 0.94 0.68 0.38 30 48 15.62 
4 18.79 40 0.925 0.685 0.38 45 25 15.57 
5 18.82 40 0.90 0.71 0.31 45 35 15.6 
6 18.79 40 0.93 0.68 0.38 45 35 15.57 
7 18.82 40 0.935 0.68 0.51 45 35 15.59 
8 18.77 40 0.925 0.67 0.38 45 48 15.58 
9 18.85 40 0.93 0.67 0 - - 15.65 

 
IV.B Experimental Apparatus 

A schematic of the experimental apparatus is shown in Figure 21. The helically-

finned test tube was the inside of a double-pipe counterflow heat exchanger. Heat was 

transferred from the hot water flowing inside the test tube to the cold water flowing in the 

annulus. The cold water was provided by the city at approximately 20°C. The hot water 

loop consisted of a large water tank with a 15-kW variable-output heater, a 1-hp pump, 

the test tube, and a set of ball valves used to adjust the velocity of the water in the test 

tube. The cold water side consisted of a 9-ft long, 1¼-in I.D. annulus and a set of ball 

valves used to adjust the cold water flow rate. The water tank and all the piping were 

insulated. 
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Figure 21. Experimental Apparatus Schematic. 

 
Figure 22 shows a detailed schematic of the test section. Two pressure taps were 

attached to the test tube. The pressure taps were connected to a Sensotec model TJE 

differential pressure transducer with a 0.1% accuracy. The temperatures were measured 

with 3-in-long type-T thermocouples mounted inside tees. The hot water line 

thermocouples were installed inside 1¼-in I.D. expansions in order to promote mixing of 

the water coming out of the test tube (and, thus, to measure the “mixing-cup” 

temperature). The test tube velocity was obtained by measuring the hot water line flow 

rate with an Omega FP-5300 flow meter accurate to 0.2 ft/s. The chilled water flow rate 

was measured with a Hersey 1006 flow meter accurate to 1%. 

Every transducer, after being carefully calibrated, was connected to an SCXI data 

acquisition system from National Instruments. The data acquisition system was 

composed of an SCXI-1102C module with an SCXI-1303 terminal block that measured 

temperatures and an SCXI-1100 module with an SCXI-1303 terminal block that 

measured flow rates and pressure drop. Both modules were installed in an SCXI-1000 
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chassis connected to a desktop computer via a PCI-MIO-16XE-50 data acquisition card. 

The hardware was controlled through a program written in LabVIEW 6.1. Figure 23 

reproduces the front panel of the LabVIEW program written for this study. 

 
IV.C Data Reduction 

The Fanning friction factor was calculated according to the following data 

reduction equation: 

 22 VL
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⋅⋅⋅
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where L is the distance between pressure taps, ∆P is the pressure drop between pressure 

taps, D is the nominal inside diameter, ρ is the density at the mean bulk temperature, and 

V is the average velocity based on the nominal diameter. 

The inside heat transfer coefficient required a more complex approach because 

information about heat transfer in the annulus had to be obtained first. The heat transfer 

in the double-pipe, counterflow heat exchanger is governed by the total thermal 

resistance equation: 
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where the areas are based on the nominal outside or inside tube diameters. Solving for the 

inside heat transfer coefficient yields the data reduction equation for the heat transfer 

coefficient measurement: 
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Figure 22. Detailed Test Section Schematic. 
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Figure 23. LabVIEW Program Front Panel. 69
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In order to find hi, Uo and ho had to be known. Uo was calculated using an energy 

balance and the logarithmic mean temperature difference method. The mean heat transfer 

rate was used to find the overall heat transfer coefficient Uo: 

 )( ,, inooutoopoo TTcmQ −= &&  (74) 
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From the definition of the overall heat transfer coefficient: 
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where LMTD is the logarithmic mean temperature difference. 

The outside heat transfer coefficient, ho, was obtained by means of the Wilson 

plot technique described in detail by Briggs and Young (1968). Basically, the heat 

transfer coefficient of the annulus is assumed to be represented by an equation of the 

following form (that is the same form as the Dittus-Boelter equation): 

 4.0, PrRe o
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where Dh,o is the annulus hydraulic diameter, C and n are arbitrary constants, and the 

properties are evaluated at the mean bulk temperature. The 0.4 exponential coefficient 

was chosen because the water in the annulus was being heated. Based on the above 

analysis, equation (72) can be represented in the following fashion: 
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found graphically, as described in section IV.E. With C and n known, ho was determined 

from equation (78) and hi from equation (73). 

 
IV.D Uncertainty Analysis 

An uncertainty analysis was performed according to the guidelines outlined in 

Coleman and Steele (1999). The uncertainties of the calculated variables were found with 

the propagation technique, which quantifies how the uncertainties in the measured 

variables propagate through the data reduction equation. In general, the uncertainties of 

the measured variables arise from the use of calibration data fits and finite accuracy of 

standards and equipment used during the calibration process. Table 2 lists the 

uncertainties of the measured variables and calculated variables. 

 
Table 2. Uncertainties in Experimental Data. 

Measured Variables Calculated Variables 
Variable Uncertainty Variable Uncertainty
T 0.23 K f 15% 

im&  7% Q&  8% 

om&  3% ho 10% 
∆P 150 Pa hi 10% 
L 1/16 in Nui 10% 
D 0.01 mm   
properties negligible   

 
 
The propagation of uncertainties associated with water and copper properties was 

neglected. The hot water flow meter was the largest contributor of uncertainty in the 

calculated variables. Therefore, the 15% uncertainty in the Fanning friction factor was 
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largely due to the 7% uncertainty in the test water mass flow rate. The Nui had an 

uncertainty of only 10% because the heat flux used to compute hi was an average of iQ&  

and oQ& , reducing the overall error. A physical manifestation of uncertainty in the 

measured variables was the discrepancy between iQ&  and oQ&  at steady-state conditions. 

These two values were measured within 10% of each other. 

 
IV.E Experimental Procedure and Results 

The objective of the first stage of the experiment was to obtain a correlation for 

the outside heat transfer coefficient, ho. To achieve this objective, the Wilson plot 

technique was utilized. The plain tube was inserted into the apparatus, and the hot water 

line valves were opened to full speed (Rei ≈ 56 000) and held constant. The heater setting 

remained at approximately 7 kW throughout the entire experiment. The cold water line 

(annulus) flow rate was varied and the overall heat transfer coefficient was recorded for 

each flow rate after steady-state conditions were reached. The data points acquired during 

this process were used to generate a plot of 1/UA values versus Reo
-n. The value of n was 

varied until the data points fell on a straight line. Once the correct n value was found, C1 

was the slope of this straight line and C was obtained via 
1
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plot generated by the Wilson Plot procedure is shown in Figure 24. The values of C and n 

were found to be 1.302x10-3 and 1.234, respectively. 

The second stage consisted of validating the experimental apparatus. Isothermal 

friction factors and heat transfer coefficients were measured for the plain tube at Rei 

ranging from 12 000 to 50 000. During the heat transfer test, the water heater was set at 7 
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kW, and the annulus flow rate was maintained constant at Reo = 15 000. For consistency, 

these settings were used for all of the nine tubes tested. The plain tube results were 

compared with the Blasius and the Dittus-Boelter equations readily available in the heat 

transfer literature. The maximum percent difference between the measured and the 

theoretical values were 11% for the friction factor and 8% for the heat transfer 

coefficient. Once the experimental apparatus was validated, the helically-finned tubes 

were tested. The experimental results were cast in terms of the Fanning friction factor, f, 

and the Nusselt number, Nui (plotted, respectively, in Figure 25 and Figure 26). Heat 

transfer results were also cast in terms of the Colburn j-factor, for which the assumed 

dependence between Nui and Pri is 

 3/1
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The Colburn j-factor results are plotted in Figure 27. 
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Figure 24. Wilson Plot. 
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IV.F Discussion of Results 

The first topic of concern is the comparison of the plain tube performance with 

commonly available prediction equations. As stated in section IV.E, the plain tube 

measured friction factor was at most 11% higher than the Blasius solution, and the 

Nusselt number was at most 8% off from the Dittus-Boelter equation. The magnitudes of 

these errors are within the range obtained from the uncertainty analysis. Therefore, the 

plain tube results were considered acceptable, thus validating the experimental apparatus. 

Before discussing the enhanced-tube results presented in Figure 25 and Figure 26, 

it is practical to convert the internal geometry of the tubes in Table 1 into dimensionless 

parameters. Table 3 was obtained by introducing the axial fin pitch, p = πD/(Ns tan α) and 

calculating the dimensionless factors e/D, p/e, and p/D. These dimensionless parameters 

allow a more direct comparison between the tubes and provide more physical insight into 

the results (e.g., for a transverse fin reattachment occurs at 6 < p/e < 8). Table 3 does not 

explicitly indicate that the helix angle and the number of starts are dimensionless 

parameters. However, since these parameters are unitless, they can be treated as such. 

Therefore, α and Ns can be used as direct parameters in any correlation. 

The friction results shown in Figure 25 follow a rather predictable trend. The 

same can be said about the Nui results from Figure 26. The friction factor decreases and 

the Nusselt number increases with increasing Reynolds number. In order to study the 

influence of geometric parameters, tubes that vary in only one of the independent 

variables must identified and compared. This task is achieved qualitatively in Table 4, 

where each geometric parameter is listed and its influence on f and Nui is identified. For 

the most part, the results are consistent with rational expectations; that is, both f and Nui 
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increase with increasing e/D, Ns, and α. The only exception occurs in the comparison of 

the friction factor in tubes 3 and 8. This exception could be caused by the high helix 

angle (48°) and the consequent development of skimming flow (tubes 8 and 3 have a p/e 

ratio of 2.577 and 3.876, respectively) with a lower friction factor for tube 8 than for tube 

3. 

 
Table 3. Test Tube Dimensionless Parameters. 

Internal Structure Dimensionless Factors 
D e p Ns α e/D p/e p/D Tube

# 
[mm] [mm] [mm]  [°]    

1 15.64 0.38 10.54 10 25 0.0243 27.729 0.674 
2 15.61 0.375 3.51 30 25 0.0240 9.348 0.225 
3 15.62 0.38 1.47 30 48 0.0243 3.876 0.0941 
4 15.57 0.38 2.33 45 25 0.0244 6.134 0.150 
5 15.6 0.31 1.56 45 35 0.0199 5.017 0.100 
6 15.57 0.38 1.55 45 35 0.0244 4.085 0.100 
7 15.59 0.51 1.55 45 35 0.0327 3.048 0.100 
8 15.58 0.38 0.98 45 48 0.0244 2.577 0.0629 
9 15.65 plain 

 
 
Table 4. Qualitative Analysis of the Influence of Geometric Parameters on 

Friction and Heat Transfer Results. 

Parameter 
under 
study 

Tubes used for parameter 
study (in order of 

increasing parameter) 

Tube numbers in order 
of increasing 

experimental f 

Tube numbers in order 
of increasing 

experimental Nui 
Ns or p/e 1 → 2 → 4 1 → 2 → 4 1 → 2 → 4 
Ns or p/e 3 → 8 8 → 3 3 → 8 

e/D 5 → 6 → 7 5 → 6 → 7 5 → 6 → 7 
α 4 → 6 → 8 4 → 6 → 8 4 → 6 → 8 

 
 
Among the helically-finned tubes, the highest friction factor was displayed by 

tube 3 and the lowest by tube 1. In terms of the Nusselt number, the best performance 

was achieved by tube 8 and the worst by tube 1. Tube 1 has the smallest helix angle and 
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the smallest number of starts (Ns = 10; p/e = 27.729). Tubes 3 and 8 have the highest 

helix angle (α = 48°). Tube 7 is also worthy of note because of its highest e/D ratio 

(0.0327) with α = 35°. Except at Rei = 12 000, tube 7 displayed the second highest 

friction factor and Nusselt number. At a Reynolds number of 12 000, tube 7 had the 

highest Nui and a friction factor nearly equal to that of tube 3. 

The information presented so far would seem to confirm the theory that the helix 

angle is one of the most important parameters in determining the characteristics of flow 

in helically-finned tubes. Basically, the results obtained in this study do not contradict 

any of the assertions presented in CHAPTER II. 

 
IV.G Empirical Correlation Development 

The purpose of the current section is to obtain least-squares empirical correlations 

for prediction of f- and j-factors in helically-ribbed tubes. The reason for producing 

algebraic least-squares correlations is to have an ANN assessment criterion (or a 

benchmark). The ANN performance must be better than a least-squares correlation or the 

extra effort of developing the ANN is of no value. 

A common and reasonable approach in correlating several variables is to use a 

power-law approach. Such an approach was utilized by Webb et al. (2000), as presented 

in CHAPTER II equations (15) and (16): 

 78.0785.0221.0283.0 )/(Re108.0 αDeNf s
−=  (15) 

 505.0323.0285.0181.03/2 )/(Re00933.0PrSt αDeNj s
−==  (16) 

The process of least-squares regression consists of finding the power coefficients that 

make the prediction error minimal. Some preliminary algebraic manipulation can make 
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this task a linear algebra problem. Equations (15) and (16) can be represented by the 

following general form: 

 5432 )/(Re1
χχχχ αχ DeNf s=  (81) 

where χ1 through χ5 are constants to be determined, and the left-hand side could very well 

be replaced by j. Taking the natural logarithm of both sides yields: 

 5432 ln)/ln(lnRelnlnln 1
χχχχ αχ ++++= DeNf s  (82) 

or 

 αχχχχχ ln)/ln(lnRelnlnln 24321 ++++= DeNf s  (83) 

The above equation can be formulated for each data point collected. When dealing with 

multiple equations, a matrix notation is preferred: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

5

4

3

2

1ln

ln)/ln(lnReln1ln

χ
χ
χ
χ

χ

α
MMMMMM

DeNf s  (84) 

where the dots represent the repeating equations. There are as many equations as there 

are data points, so the linear algebra problem has the form: 

 ΘΧ=Ψ  (85) 

where Χ is the vector of unknown constants to be determined, Θ is the equation matrix, 

and Ψ is the vector of natural logarithms of experimentally determined friction factors or 

j factors. 

The key point of the correlation development is to minimize the prediction error. 

The easiest error to monitor is the sum of the squared errors; hence, the name least-
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squares regression. Using matrix algebra formulation, the sum of the squared errors 

associated with any given vector Χ is 

 ( ) ( )ΘΧ−ΨΘΧ−Ψ=∑ Ψ
Terror 2  (86) 

In the current study, Mathcad software was used to minimize the error function 

introduced in the equation above. Mathcad analysis yielded the following equations: 

 397.0319.0235.0305.0 )/(Re128.0 αDeNf s
−=  (87) 

 362.00877.0253.0347.0 )/(Re029.0 αDeNj s
−=  (88) 

The best way to verify the performance of equations (87) and (88) is to plot the 

percent error between the predicted and experimental values. The error for the friction 

factor is plotted in Figure 28 (mean squared error: MSE = 1.070x10-6) and the one for the 

j factor is depicted in Figure 29 (MSE = 6.945x10-8). Both figures include the vast 

majority of the predicted data within 10% of the experimental results. Tube 3 shows the 

highest under-prediction for the friction factor case and the highest over-prediction of the 

j factor. Tube 8 has the highest over-prediction of the friction factor, and tube 7 exhibits 

the highest under-prediction of the j factor. Moreover, Figure 29 demonstrates wave-

shaped variations of the error with respect to the Reynolds number. The mathematical 

form of the j factor correlation [equation (81)] proposed a priori is unable to represent 

such variation; a limitation that an artificial neural network does not possess. 
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Figure 28. Evaluation of Friction Results with Equation (87). 82
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Figure 29. Evaluation of Heat Transfer Results with Equation (88). 
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IV.H Evaluation of Equations (87) and (88) with Experimental Data of Webb et al. 
(2000) 

The purpose of the next two sections is to evaluate the correlations developed in 

equation (87) and (88) with independent experimental data. Table 5 presents the 

similarities and differences between the current study and that of Webb et al. (2000). 

Table 6 provides more detail about the internal geometries of the tubes tested by Webb et 

al. (2000). Table 6 tubes are numbered W1 through W8 in order to distinguish them from 

the tubes used in the current study. From the information provided in both tables, one can 

see that, on one hand, the experimental set-ups have enough similarities to suggest that 

comparison of results is possible and, on the other hand, there are some differences that 

could make the two data sets complimentary. 

 
Table 5. Differences/Similarities Between Current Study and Webb et al. (2000). 

 Current study Webb et al. (2000) 
Test fluid Water Water 
Inside diameter 15.57 mm to 15.64 mm 15.54 mm 
Heat transfer rate ±7 kW (cooling) 10.55 kW (cooling) 
Helix angle 25° to 48° 25° to 45° 
Number of starts 10 to 45 10 to 45 
Fin thickness at base 0.48 mm 0.29 mm to 0.41 mm 
Fin thickness at tip 0.2 mm 0.24 mm 
Included angle 41° 41° 
p/e 2.577 to 27.729 2.81 to 9.88 
e/D 0.0199 to 0.0327 0.0210 to 0.0356 
Rei 12 000 to 56 000 20 000 to 80 000 
Pri 4.25 to 5.47 5.08 to 6.29 

Outside 
Conditions 

Water at T = ±20°C 
and Reo = 15 000 

(counter-flow) 

R-12 boiling at 
Psat = 517 kPa 
(Tsat = 16.8°C) 

 
 
The friction factor and j-factor data of Webb et al. (2000) have been digitized 

with DigXY software. The digitizing procedure consists of scanning the plotted results 
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into digital format and placing the mouse cursor on each data point to obtain numerical 

values for the X-Y pair under study. The friction factor and j-factor results obtained in the 

manner described above are plotted in Figure 30 and Figure 31, respectively. 

 
Table 6. Tubes Tested by Webb et al. (2000). 

Tube  Manufac- I.D. E p t Ns α e/D p/e p/D 
# Turer (mm) (mm) (mm) (mm) - 

W1 Wolverine 15.54 plain 
W2 Wolverine 15.54 0.327 1.08 0.265 45 45° 0.0210 2.81 0.0591
W3 Wolverine 15.54 0.398 1.63 0.28 30 45° 0.0256 3.50 0.0896
W4 Wolverine 15.54 0.43 4.88 0.325 10 45° 0.0277 9.88 0.273 
W5 Wolverine 15.54 0.466 1.74 0.275 40 35° 0.0300 3.31 0.0993
W6 Wolverine 15.54 0.493 2.79 0.28 25 35° 0.0317 5.02 0.159 
W7 Wolverine 15.54 0.532 4.19 0.28 25 25° 0.0342 7.05 0.241 
W8 Wolverine 15.54 0.554 5.82 0.28 18 25° 0.0356 9.77 0.348 

 
 
The next step was to evaluate both sets of data with equations (87) and (88). The 

prediction error for the friction factor with respect to equation (87) is shown in Figure 32 

(MSE = 1.345x10-5) and the prediction error for the j-factor with respect to equation (88) 

is depicted in Figure 33 (MSE = 3.886x10-6). The plots demonstrate that equation (87) 

over-predicts Webb et al.’s (2000) friction data by an average 30% (see Figure 32) and 

equation (88) under-predicts Webb et al.’s j-factor data by an average 30%, with a visible 

error increase with increasing Reynolds number (see Figure 33). 
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Figure 30. Friction Data of Webb et al. (2000). 
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Figure 31. j- Factor Data of Webb et al. (2000). 



87 

 

Re
0 20000 40000 60000 80000

f pr
e/f

ex
p

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Tube W2
Tube W3
Tube W4
Tube W5
Tube W6
Tube W7
Tube W8

 
Figure 32. Evaluation of Equation (87) with Webb et al. (2000) f Data. 
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Figure 33. Evaluation of Equation (88) with Webb et al. (2000) j Data. 
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IV.I Evaluation of Equations (87) and (88) with Experimental Data of Jensen and 
Vlakancic (1999) 

Jensen and Vlakancic (1999) reported experimental data of six helically-ribbed 

tubes outlined in Table 7. The tubes have been numbered JV1 through JV6 in order to 

distinguish them from the tubes tested in the current study. The tubes reported by Jensen 

and Vlakancic (1999) are different from the ones employed in this study. Firstly, their fin 

thickness is relatively large, and, secondly, there is always at least one geometric 

parameter outside of the range of the current study tubes. 

 
Table 7. Tubes Reported by Jensen and Vlakancic (1999). 

Tube Manufacturer I.D. e  p t Ns α e/D p/e p/D 
#   [mm] [mm] [mm] [mm] - [°] - - - 

JV1 Wolverine 23.64 1.16 16.079 1.00 8 30 0.0491 13.861 0.680 
JV2 Wolverine 23.78 1.20 9.243 1.02 14 30 0.0505 7.702 0.389 
JV3 Wolverine 23.70 1.30 4.299 0.82 30 30 0.0549 3.307 0.181 
JV4 Wieland 22.10 0.22 1.286 0.58 54 45 0.00996 5.844 0.0582
JV5 Wolverine 24.13 0.33 1.404 0.90 54 45 0.0137 4.254 0.0582
JV6 Wieland 22.08 0.44 1.285 0.54 54 45 0.0199 2.920 0.0582

 
 
Jensen and Vlakancic (1999) used two experimental test sections, one to obtain 

cooling results and one for heating results; however, only cooling results are considered 

here. Each test section was a double-pipe counterflow water-to-water heat exchanger 

4.72-m long, which included a 1.52-m calming length. 

Digitized friction and j-factor data of Jensen and Vlakancic (1999) are shown in 

Figure 34 and Figure 35, respectively. Experimental Nu numbers were converted into j-

factor format (assuming a mean fluid and wall temperatures of 35°C and 20°C, 

respectively) to allow for evaluation of equations (87) and (88). The prediction errors 

associated with equations (87) and (88) are plotted in Figure 36 and Figure 37, 
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respectively. The mean squared errors associated with the prediction of f and j-factors 

were 2.666x10-5 and 5.355x10-6, respectively. 

Figure 36 demonstrates that equation (87) over-predicts Jensen and Vlakancic 

(1999) friction factors by roughly 30% except at low Reynolds numbers where tubes JV4, 

JV5, and JV6 show a high prediction error. Figure 37 illustrates that equation (88) under-

predicts Jensen and Vlakancic (1999) j-factor data by roughly 30% except for tubes JV4 

and JV5, which show a high over-prediction error at low Reynolds number and a small 

error at high Reynolds numbers. In general, the f and j prediction errors seem to be 

consistent with the ones depicted in Figure 32 and Figure 33, respectively. Other than 

experimental uncertainty, the sources of discrepancy between the data of the three studies 

are hard to identify, which only shows how little is known about heat transfer and fluid 

flow in helically-finned tubes. 

The next chapter will use the Mississippi State University data set and also data of 

other researchers to develop ANNs for the prediction of friction factors and j-factors. As 

stated earlier, the purpose of CHAPTER IV correlations is to use them as benchmarks for 

the evaluation of ANNs performance. 
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Figure 34. Friction Data of Jensen and Vlakancic (1999). 
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Figure 35. j- Factor Data of Jensen and Vlakancic (1999). 
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Figure 36. Evaluation of Equation (87) with Jensen and Vlakancic (1999) f Data. 
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Figure 37. Evaluation of Equation (88) with Jensen and Vlakancic (1999) j Data. 
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CHAPTER V  

ARTIFICIAL NEURAL NETWORK DEVELOPMENT 
 
 
V.A Notation 

Figure 38 shows a general three-layer ANN and the notation employed. Due to 

the large number of parameters involved, developing an unambiguous way of presenting 

the constants and functions that describe a neural network is important. In this study, the 

software employed for ANN development is MATLAB, so the notation presented here is 

almost identical to that used by MATLAB. The only difference is that MATLAB 

indexing must start at 1 and not 0; so in MATLAB, all the 0-indexed variables are 

essentially replaced by a different variable. The consistency of the notation presented 

herein allows MATLAB to execute computations at each layer rapidly because of its 

matrix algebra capability [Hagan et al. (1996)]. 

 

 

Figure 38. Neural Network Notation. 
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The index-0 layer represents inputs (see Figure 38). x0 is a column vector of 

inputs of size S0; whereas, S1, S2, and S3 are the number of nodes in layer 1, 2, and 3, 

respectively. W1,0 is a weight matrix feeding the inputs to layer 1. The weight matrix is 

constructed such that entry W1,0
j,k multiplies input k and feeds it into node j in layer 1. In 

general, Wl,m
j,k multiplies output k from layer m and feeds it into node j in layer l. b is the 

bias column vector. Its size corresponds to the number of nodes in a given layer. F is a 

vector of node functions (MATLAB feed-forward backpropagation networks utilize 

either linear, log-sigmoid, or tan-sigmoid functions) and generally, the same function is 

used for the entire layer. 

APPENDIX A presents the different ANNs that were trained in this study. 

Weights and biases are reported as matrices and vectors, respectively, in the notation 

presented above. Furthermore, the name of the ANN also contains the description of the 

network’s architecture. For example, “f_ANN_4LS_3LS_1LIN” stands for a friction 

factor network with 4 nodes in layer 1 using log-sigmoid functions [in MATLAB: 

logsig(x) = 1 / (1 + exp(-x)) ], 3 nodes in layer 2 using log-sigmoid functions, and 1 node 

in layer 3 using a linear function [in MATLAB: purelin(x) = x ]. 

 
V.B Normalization of Experimental Data 

When training ANNs, normalizing the inputs and targets to ensure that all the 

weights are within the same order of magnitude is advantageous. The normalized data 

will be denoted with the symbol “*.” The data from the current study have been 

normalized in the following fashion: 
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The significance of equation (89) is that it forces Re* to go to zero if Re = 1 800 (critical 

Reynolds number for transition) and to one if Re is large. The other normalizing 

equations have been chosen for their simplicity. Moreover, the inputs to every neural 

network in this study have been organized in the following manner: 
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V.C Determination of Optimal Network Architecture 

The performance of an ANN depends on its architecture. Large networks can 

learn complex functions, but require more effort to train and to report. Hence, the 

network selection process is a compromise between a small network size and a minimal 

prediction error. The architecture of the optimal network to be used for prediction of 

friction and j-factors in helically-ribbed tubes was determined for this study by training 

different networks and evaluating their performance with the mean squared error (MSE) 
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criterion. Half of the experimental data (every other Reynolds number) from each tube 

was put into a training basket, while the entire data set was used for validation. The 

Levenberg-Marquardt algorithm [Levenberg (1944) and Marquardt (1963)] was used for 

the training process. Training was stopped when the MSE of the entire data set reached a 

minimum. The training results were compiled in Table 8, which lists the MSEs of all 

networks trained with 50% of experimental data. Additional information about each 

network (i.e., weights, biases, training curves, and performance plots) is included in 

APPENDIX A. The idea behind the selection of the various networks in Table 8 was to 

start out with an arbitrary 4-3-1 network and to remove nodes and layers to see what 

happens to the network’s performance. Initially, one node was removed from each of the 

first two layers to yield a 3-2-1 network. Next, the second layer was removed to yield a 4-

1 network. Then, a 2-1 network was constructed. For the 2-1 case, a log-sigmoid output 

node function was also tested, but showed no improvement in performance. 

 
Table 8. Mean Squared Errors of ANNs Trained With 50% of Data. 

f j 
Network MSE Network MSE 

f_4LS_3LS_1LIN 7.7760x10-9 j_4LS_3LS_1LIN 1.0062x10-9 
f_3LS_2LS_1LIN 1.6848x10-8 j_3LS_2LS_1LIN 2.2488x10-9 

f_4LS_1LIN 8.3616x10-9 j_4LS_1LIN 1.9653x10-9 
f_2LS_1LIN 1.0061x10-7 j_2LS_1LIN 6.3833x10-9 
f_2LS_1LS 1.1755x10-7 j_2LS_1LS 6.5631x10-9 

 
 
Table 8 reveals that even the worst performing networks, f_2LS_1LS and 

j_2LS_1LS, have a smaller mean squared error than the power-law regression presented 

in the previous chapter [equations (87) and (88) showed, respectively, a MSE of 

1.070x10-6 for f and a MSE of 6.945x10-8 for j). The 4-3-1 architecture exhibited the 
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smallest MSE. Removing one node from the first two layers deteriorated the networks’ 

performance more than removing the second layer. For this reason, the 4-1 network 

appears to be more suitable for prediction of f and j in helically-ribbed tubes. 

The use of the MSE is an excellent numerical criterion for evaluating the 

performance of a prediction tool. Nevertheless, a visual inspection of the error behavior is 

also very important. Figure 28 and Figure 29 in CHAPTER IV visualized the 

performance of the power-law regressions developed in the previous chapter. For 

comparison purposes, these visualizations are redrawn in Figure 39 and Figure 40 in a 

slightly different manner, which will be employed throughout the rest of the chapter. 

Now, consider the performance of the f_4LS_1LIN network depicted in Figure 41 

and the j_4LS_1LIN network in Figure 42. Both networks were trained with 50% of 

experimental data as described earlier. Both figures clearly show that the 4-1 network 

geometry works very well, and, more importantly, that the neural network performance is 

superior to the power-law regression performance. Based on this visual inspection and 

the MSE values of Table 8, the prediction (or “regression”) error associated with the 4-1 

ANNs trained with 50% of data can be taken as negligible. Thus, the only error 

associated with the use of these networks is the experimental uncertainty. 

The information presented so far reinforces the statement that the ANN does not 

know and does not have to know what the physics of the problem are. The ANN 

completely bypasses simplifying assumptions such as the use of a power-law equation. 

On the other hand, any unintended and biased errors in the training data set are also 

picked up by the ANN. The trained ANN, therefore, is not better than the training data, 

but not worse either. 
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Figure 39. Performance of Equation (87). 
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Figure 40. Performance of Equation (88). 
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Figure 41. Performance of the f_4LS_1LIN ANN Trained With 50% Data. 
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Figure 42. Performance of the j_4LS_1LIN ANN Trained With 50% Data. 
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V.D Assessment of the Networks’ Ability to Generalize 

The ANNs developed so far were trained with 50% of data from all tubes. One 

can postulate that such networks only learn to “interpolate” between the Re numbers they 

were trained with and are unable to predict the performance of unknown geometries. The 

current section attempts to prove that the 4-1 networks are indeed able to generalize. 

Table 9 delineates the mean squared errors (MSE) of f_4LS_1LIN and 

j_4LS_1LIN networks trained with data from 2, 3, 4, 5, and 6 tubes and evaluated with 

all of the experimental data (8 tubes). Table 9 implies that the ANNs trained with selected 

tube data performed worse than the networks trained with 50% of data from all 8 tubes 

(see Table 8). However, if enough tubes were provided for training, the ANNs performed 

better than correlations (87) and (88). As expected, the network performance generally 

improved as additional tubes were put in the training basket. In the case of the 

f_4LS_1LIN network, 6 training tubes were needed to obtain satisfactory performance. 

The j_4LS_1LIN network was more perceptive and showed outstanding results with 4 

training tubes. The networks’ performance was sensitive to the randomly-generated 

initial guess, so the training procedure was repeated 10 to 20 times for each case, and 

only the best results were considered. 

 
Table 9. MSE's of Networks Trained with Selected Tube Data. 

MSE Training Tubes f_4LS_1LIN j_4LS_1LIN
1 and 5 1.321x10-5 3.329x10-7 

1, 3, and 5 9.290x10-7 2.324x10-7 
1, 3, 5, and 7 6.438x10-7 8.794x10-9 

1, 3, 4, 5, and 7 7.060x10-7 1.668x10-8 
1, 3, 4, 5, 7, and 8 4.713x10-8 6.442x10-9 
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The results summarized in Table 9 prove that the 4LS-1LIN networks 

recommended in the previous section are able to generalize and correctly predict the 

performance of unknown geometries. Additional details including performance and 

training curves of the Table 9 networks are given in APPENDIX A. 

 
V.E Evaluation of f- and j- Networks with Experimental Data of Webb et al. (2000) 

In section IV.H, equations (87) and (88) were evaluated with the experimental 

data of Webb et al. (2000). In this section, the Webb et al. (2000) experimental data are 

used to evaluate the performance of two f_4LS_1LIN and j_4LS_1LIN networks. 

Because of their superior performance on the current data set, ANNs trained with 50% of 

experimental data from all tubes and ANNs trained with 6 out of 8 tubes were chosen for 

evaluation. The evaluation results are summarized in Table 10. 

 
Table 10. Evaluation of f- and j- Networks with Data of Webb et al. (2000). 

f j 

ANN MSE Performance 
shown on ANN MSE Performance 

shown on 
f_4LS_1LIN 
(trained w/ 50% of 
data from all tubes) 

1.216x10-5 Figure 43 
j_4LS_1LIN 
(trained w/ 50% of 
data from all tubes) 

4.600x10-6 Figure 45 

f_4LS_1LIN 
(trained w/ tubes 1, 
3, 4, 5, 7, and 8) 

2.756x10-5 Figure 44 
j_4LS_1LIN 
(trained w/ tubes 1, 
3, 4, 5, 7, and 8) 

4.198x10-6 Figure 46 

 
 
The first conclusion drawn from the inspection of the figures listed in Table 10 is 

that the neural networks do not predict the data of Webb et al. (2000) very well. In fact, 

the mean squared errors (MSE) associated with the neural networks are in most cases 

higher than the ones associated with using equations (87) and (88) [MSE = 1.345x10-5 

using equation (87) and MSE = 3.886x10-6 using equation (88)]. Furthermore, as was the 
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case with the power-law correlations, Webb et al.’s (2000) friction data are over-

predicted and heat transfer data under-predicted by the neural networks. Basically, there 

seems to be a difference in the experimental results between the current study and that of 

Webb et al. (2000). Finally, Table 10 reveals that there is no clear advantage of using 

networks trained with all of the tubes or with data from selected tubes. 

 
V.F Evaluation of f- and j- Networks with Experimental Data of Jensen and Vlakancic 

(1999) 

In section IV.I, equations (87) and (88) were evaluated with experimental data of 

Jensen and Vlakancic (1999). In this section, the Jensen and Vlakancic (1999) 

experimental data are used to evaluate the performance of the f_4LS_1LIN and 

j_4LS_1LIN networks. As in the previous section, ANNs trained with 50% of 

experimental data from all tubes and ANNs trained with 6 out of 8 tubes were chosen for 

evaluation. The evaluation results are summarized in Table 11. 

 
Table 11. Evaluation of f- and j- Networks with Data of Jensen and Vlakanic (1999). 

f j 

ANN MSE Performance 
shown on ANN MSE Performance 

shown on 
f_4LS_1LIN 
(trained w/ 50% of 
data from all tubes) 

2.798x10-4 Figure 47 
j_4LS_1LIN 
(trained w/ 50% of 
data from all tubes) 

5.389x10-6 Figure 49 

f_4LS_1LIN 
(trained w/ tubes 1, 
3, 4, 5, 7, and 8) 

1.995x10-5 Figure 48 
j_4LS_1LIN 
(trained w/ tubes 1, 
3, 4, 5, 7, and 8) 

4.709x10-6 Figure 50 
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Figure 43. Evaluation of the f_4LS_1LIN ANN (Trained w/ 50% Data) with Data of 

Webb et al. (2000). 
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Figure 44. Evaluation of the f_4LS_1LIN ANN (Trained w/ Tubes 1, 3, 4, 6, 7, and 8) 

with Data of Webb et al. (2000). 
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Figure 45. Evaluation of the j_4LS_1LIN ANN (Trained w/ 50% Data) with Data of 

Webb et al. (2000). 
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Figure 46. Evaluation of the j_4LS_1LIN ANN (Trained w/ Tubes 1, 3, 4, 6, 7, and 8) 

with Data of Webb et al. (2000). 
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Figure 47. Evaluation of the f_4LS_1LIN ANN (Trained w/ 50% Data) with Data of 

Jensen and Vlakancic (1999). 
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Figure 48. Evaluation of the f_4LS_1LIN ANN (Trained w/ Tubes 1, 3, 4, 6, 7, and 8) 

with Data of Jensen and Vlakancic (1999). 
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Figure 49. Evaluation of the j_4LS_1LIN ANN (Trained w/ 50% Data) with Data of 
Jensen and Vlakancic (1999). 
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Figure 50. Evaluation of the j_4LS_1LIN ANN (Trained w/ Tubes 1, 3, 4, 6, 7, and 8) 

with Data of Jensen and Vlakancic (1999). 
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Table 11 implies that the ANNs trained with data of tubes 1, 3, 4, 5, 7, and 8 

predict Jensen and Vlakancic’s (1999) data slightly better than equations (87) and (88) in 

terms of the mean squared errors [MSE = 2.666x10-5 using equation (87) and MSE = 

5.355x10-6 using equation (88)]. Generally though, the performance of the ANNs on the 

Jensen and Vlakancic (1999) data was poor. The f_4LS_1LIN network trained with 50% 

of data from all tubes predicted negative friction factors for tube JV3 and over-predicted 

tube JV4’s friction by as much as 400% (see Figure 47). Finally, the errors associated 

with the f- and j-networks suggest that the results of Jensen and Vlakancic (1999) 

demonstrate a different Reynolds number dependence than the current study results. 

 
V.G ANNs Trained with a Combined Database 

A common engineering practice is to average multiple measurements to obtain the 

“best” value. Therefore, a network trained with a database combining the results of 

Jensen and Vlakancic (1999), Webb et al. (2000), and the current study would be a useful 

prediction tool. 

To create such a tool, an f_4LS_1LIN and a j_4LS_1LIN network were trained 

with 50% of data points (every other Reynolds number) from a database combining the 

experimental results of Webb et al. (2000), Jensen and Vlakancic (1999), and the current 

study. The performance of these two networks is depicted respectively on Figure 51 and 

Figure 52, with additional details included in APPENDIX A. The mean squared errors 

(MSE) of the f_4LS_1LIN and j_4LS_1LIN networks are 4.553x10-7 and 7.671x10-8, 

respectively, and are lower than the ones associated with equations (87) and (88) applied 

to any of the data sets. The network prediction errors were also plotted as a function of 
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Re* on Figure 53 for the friction factor and on Figure 54 for the Colburn j-factor. Both 

figures show that the majority of data points from the combined set are predicted within 

plus or minus 10%. Based on the information presented so far, the f_4LS_1LIN and 

j_4LS_1LIN networks trained with 50% of data points from the combined database 

appear to be the best prediction tool friction and heat transfer in helically-ribbed tubes. 

The current chapter showed that ANNs perform extremely well on the data sets 

that they are trained with, but poorly on independent data, with experimental 

discrepancies being a probable reason for disagreement. Several ANNs were capable of 

outperforming algebraic correlations, but the key aspect (other than the network’s 

geometry and node functions) affecting the network performance was the selection of the 

training data set. This selection must be carried out carefully, so that there is enough 

variation in the inputs for the network to establish trends. The more data is used in 

training process the better the network performance. However, using too many data 

points during the training process can affect the network’s ability to generalize. 
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Figure 51. Performance of f_4LS_1LIN ANN Trained with 50% Combined Data. 
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Figure 52. Performance of j_4LS_1LIN ANN Trained with 50% Combined Data. 
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Figure 53. f_4LS_1LIN (Trained with 50% Combined Data) Prediction Errors. 

f p
re

di
ct

io
n 

/ f
 e

xp
er

im
en

t 
109



 

 

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Re*

j p
re
di
ct
io
n 
/ 
j e
x
pe
rim
en
t

j 4LS 1LIN (Trained w/ 50% Combined Data) Errors

 

Figure 54. j_4LS_1LIN (Trained with 50% Combined Data) Prediction Errors. 
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CHAPTER VI  

CONCLUSIONS 
 
 
VI.A Synopsis 

This dissertation first introduced heat transfer enhancements techniques. A 

literature review of heat transfer and friction in tubes with helical enhancements 

(indentations, ribs, fins, wire inserts, or spiral tapes) was performed, and available 

prediction methods were reported. The current understanding of complex secondary 

flows in the interfin region was discussed. An introduction to artificial neural networks 

(ANNs) was presented, and a literature review of the use of ANNs in heat transfer and 

fluid flow was conducted. 

Next, heat transfer coefficients and friction factors were determined 

experimentally for eight helically-finned tubes and one smooth tube using liquid water at 

12 000 < Rei < 60 000. An uncertainty analysis was completed and plain-tube results 

were compared to the Blasius and Dittus-Boelter equations with satisfactory agreement. 

The highest j-factor was achieved by tube 8 (Ns = 45, α = 48°, e/D = 0.0244) and the 

lowest f-factor by tube 1 (Ns = 10, α = 48°, e/D = 0.0244). Power-law correlations for f  

and j-factors were developed using a least-squares regression. The performance of the 

correlations was evaluated with independent data of Webb et al. (2000) and Jensen and 

Vlakancic (1999). 
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Several ANNs were trained with 50% of friction and heat transfer data points 

from all tubes to determine the optimal network architecture. The best architecture was a 

two-layer network with four log-sigmoid nodes in the first layer and one linear node in 

the output layer (networks f_4LS_1LIN and j_4LS_1LIN). Then, this architecture was 

trained with friction and heat transfer data of 2, 3, 4, 5, then 6 tubes to check whether or 

not the ANN had the ability to generalize. Networks trained with 50% of data points from 

all tubes and networks trained with data of 6 tubes were evaluated with independent data 

of Webb et al. (2000) and Jensen and Vlakancic (1999). Finally, a friction network and a 

heat transfer network were trained with 50% of combined experimental data of Webb et 

al. (2000), Jensen and Vlakancic (1999), and the current study. The performance of these 

two networks was reported graphically and in terms of the mean squared error. 

 
VI.B Recommendations 

Measurements of friction and heat transfer imply that tube 8 (Ns = 45, α = 48°, 

e/D = 0.0244) can be recommended for heat exchange applications because of its high j-

factors and moderate f-factors at all Reynolds numbers. Conversely, the considerable 

increase in Nusselt number with respect to the friction factor shown by tube 3 (Ns = 30,   

α = 48°, e/D = 0.0243) does not justify the use of this enhancement geometry. 

The various network architectures tested in CHAPTER V suggest the 4-1 feed-

forward network with log-sigmoid node functions in the first layer and a linear node 

function in the output layer to be the most advantageous architecture to use for prediction 

of helically-ribbed tube performance. The 4LS_1LIN networks were accurate and were 

able to generalize, given adequate training data. Problems were encountered with data of 
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other researchers, but these problems were not necessarily the network’s fault. The three 

data sets contain possible bias errors, and ANNs learn to predict data without being 

capable of isolating measurement errors. Moreover, the power-law correlations (obtained 

with a least-squares regression that takes into account 100% of data points) also lacked 

appropriate accuracy. 

Considering the limited availability of heat transfer and friction data in helically-

finned tubes, the recommended prediction tool for this type of tube is the f_4LS_1LIN 

and j_4LS_1LIN network trained with the combined results of Webb et al. (2000), Jensen 

and Vlakancic (1999), and the current study. These two networks are fully described in 

APPENDIX A. 

The ultimate ANN would be trained with thousands of accurately-measured data 

points from hundreds of different tubes and could predict friction factors and Colburn j-

factors with virtually no error. Hence, neural network applications are well-suited for 

manufacturers of heat exchange equipment, who can tap into their extensive databases to 

train state-of-the-art ANNs. 

 
VI.C Future Work 

Disagreements in experimental results of Webb et al. (2000), Jensen and 

Vlakancic (1999), and the current study imply that a broader database of heat transfer and 

friction characteristics of flow in helically-ribbed tubes is desirable. Moreover, due to the 

gaps in understanding of the flow in spirally-finned tubes, more research should be 

performed on the influence of geometric parameters on flow patterns, especially in the 
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interfin region. Such research could be achieved with modern flow visualization 

techniques or perhaps proven computational fluid dynamics (CFD) tools. 

Other artificial intelligence techniques such as genetic algorithms are also good 

candidates for fitting data of helically-finned tubes. In fact, preliminary efforts have 

already commenced at Mississippi State University to utilize genetic algorithms to 

determine optimal mathematical expressions suited for curve fits of friction and heat 

transfer data in helically-ribbed tubes, and initial results look promising. 

Finally, prediction tools developed in the current study can be used to 

complement existing optimization techniques in discovering the ultimate helical fin 

geometry (that is one with the highest heat transfer coefficient but lowest friction factor). 

In such endeavors, the advantage of ANNs’ low prediction errors and applicability of 

matrix algebra are valuable. 
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A1. f-Factor Networks Trained with Half of Data Points 
A2. j-Coefficient Networks Trained with Half of Data Points 
A3. f_4LS_1LIN Networks Trained with Selected Tube Data 
A4. j_4LS_1LIN Networks Trained with Selected Tube Data 
A5. f_4LS_1LIN Network Trained with Half of Combined Database 
A6. j_4LS_1LIN Network Trained with Half of Combined Database 
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A1. Friction Factor Networks Trained with Half of Data Points 
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Training Set 
 
 103 data points (53.9 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 1.0061x10-7 
 
Architecture 
 

1st layer: 2 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 
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• f_2LS_1LS 
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Training Set 
 
 103 data points (53.9 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 1.1755x10-7 
 
Architecture 
 

1st layer: 2 nodes, log-sigmoid node functions 
2nd layer: 1 node, log-sigmoig node function 
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• f_4LS_1LIN 
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Training Set 
 
 103 data points (53.9 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 8.3616x10-9 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 
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• f_3LS_2LS_1LIN 
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Training Set 
 
 103 data points (53.9 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 1.6848x10-8 
 
Architecture 
 

1st layer: 3 nodes, log-sigmoid node functions 
2nd layer: 2 nodes, log-sigmoid node functions 
3rd layer: 1 node, linear node function 
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• f_4LS_3LS_1LIN 
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Training Set 
 
 103 data points (53.9 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 7.7760x10-9 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 3 nodes, log-sigmoid node functions 
3rd layer: 1 node, linear node function 
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A2. j-Factor Networks Trained with Half of Data Points 
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Training Set 
 
 96 data points (52.5 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 6.3833x10-9 
 
Architecture 
 

1st layer: 2 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
 

⎥
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• j_2LS_1LS 
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Training Set 
 
 96 data points (52.5 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 6.5631x10-9 
 
Architecture 
 

1st layer: 2 nodes, log-sigmoid node functions 
2nd layer: 1 node, log-sigmoid node function 

 
Weight Matrices 
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• j_4LS_1LIN 
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Training Set 
 
 96 data points (52.5 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 1.9653x10-9 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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• j_3LS_2LS_1LIN 
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Training Set 
 
 96 data points (52.5 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 2.2488x10-9 
 
Architecture 
 

1st layer: 3 nodes, log-sigmoid node functions 
2nd layer: 2 nodes, log-sigmoid node functions 
3rd layer: 1 node, linear node function 

 
Weight Matrices 
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Bias Vectors 
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• j_4LS_3LS_1LIN 
 
Training curve 
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Training Set 
 
 96 data points (52.5 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 1.0062x10-9 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 3 nodes, log-sigmoid node functions 
3rd layer: 1 node, linear node function 

 
Weight Matrices 
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Bias Vectors 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

=

8078.5
8474.1
1566.12
1609.29

1b  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

4754.1
8834.5
0923.6

2b  [ ]0794.33 =b  



143 

 

A3. f_4LS_1LIN Networks Trained with Selected Tube Data 
 

• f_4LS_1LIN (Trained with Tubes 1 and 5) 
 
Training curve 
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Training Set 
 
 Data from tubes 1 and 5. 48 data points (25.1 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 1.321x10-5 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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• f_4LS_1LIN (Trained with Tubes 1, 3, and 5) 
 
Training curve 
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Training Set 
 
 Data from tubes 1, 3, and 5. 72 data points (37.7 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 9.290x10-7 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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• f_4LS_1LIN (Trained with Tubes 1, 3, 5, and 7) 
 
Training curve 
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Training Set 
 
 Data from tubes 1, 3, 5, and 7. 95 data points (49.7 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 6.348x10-7 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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• f_4LS_1LIN (Trained with Tubes 1, 3, 4, 5, and 7) 
 
Training curve 
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Training Set 
 
 Data from tubes 1, 3, 4, 5 and 7. 119 data points (62.3 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 7.060x10-7 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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• f_4LS_1LIN (Trained with Tubes 1, 3, 4, 5, 7, and 8) 
 
Training curve 
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Training Set 
 
 Data from tubes 1, 3, 4, 5, 7, and 8. 143 data points (74.9 % of entire data set) 
 
Validation Set 
 
 191 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 4.7125x10-8 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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A4. j_4LS_1LIN Networks Trained with Selected Tube Data 
 

• j_4LS_1LIN (Trained with Tubes 1 and 5) 
 
Training curve 
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Training Set 
 
 Data from tubes 1 and 5. 46 data points (25.1 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 3.329x10-7 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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• j_4LS_1LIN (Trained with Tubes 1, 3, and 5) 
 
Training curve 
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Training Set 
 
 Data from tubes 1, 3, and 5. 69 data points (37.7 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 2.324x10-7 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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• j_4LS_1LIN (Trained with Tubes 1, 3, 5, and 7) 
 
Training curve 
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Training Set 
 
 Data from tubes 1, 3, 5, and 7. 91 data points (49.7 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 8.794x10-9 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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• j_4LS_1LIN (Trained with Tubes 1, 3, 4, 5, and 7) 
 
Training curve 
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Training Set 
 
 Data from tubes 1, 3, 4, 5, and 7. 114 data points (62.3 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 1.668x10-8 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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• j_4LS_1LIN (Trained with Tubes 1, 3, 4, 5, 7, and 8) 
 
Training curve 
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Training Set 
 
 Data from tubes 1, 3, 4, 5, 7, and 8. 137 data points (74.9 % of entire data set) 
 
Validation Set 
 
 183 data points (entire data set) 
 
Mean Squared Error 
 

MSE = 6.442x10-9 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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A5. f_4LS_1LIN Network Trained with Half of Combined Database 
 
Training curve 
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Training Set 
 

219 data points (49.9 % of combined data of Jensen and Vlakancic (1999), Webb et al. 
(2000), and the current study; every other Reynolds number) 

 
Validation Set 
 

439 data points (combined data of Jensen and Vlakancic (1999), Webb et al. (2000), and 
the current study) 

 
Mean Squared Error 
 

MSE = 4.553x10-7 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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A6. f_4LS_1LIN Network Trained with Half of Combined Database 
 
Training curve 
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Training Set 
 

171 data points (50.0 % of combined data of Jensen and Vlakancic (1999), Webb et al. 
(2000), and the current study; every other Reynolds number) 

 
Validation Set 
 

342 data points (combined data of Jensen and Vlakancic (1999), Webb et al. (2000), and 
the current study) 

 
Mean Squared Error 
 

MSE = 7.671x10-8 
 
Architecture 
 

1st layer: 4 nodes, log-sigmoid node functions 
2nd layer: 1 node, linear node function 

 
Weight Matrices 
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