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Earth observation data has increased significantly over the last decades with 

satellites collecting and transmitting to Earth receiving stations in excess of three 

terabytes of data a day. This data acquisition rate is a major challenge to the existing data 

exploitation and dissemination approaches. The lack of content and semantics based 

interactive information searching and retrieval capabilities from the image archives is an 

impediment to the use of the data.  The proposed framework (Intelligent Interactive 

Image Knowledge retrieval-I3KR) is built around a concept-based model using domain 

dependant ontologies.  An unsupervised segmentation algorithm is employed to extract 

homogeneous regions and calculate primitive descriptors for each region.  An 

unsupervised classification by means of a Kernel Principal Components Analysis 

(KPCA) method is then performed, which extracts components of features that are 

   



nonlinearly related to the input variables, followed by a Support Vector Machine (SVM) 

classification to generate models for the object classes. 

The assignment of the concepts in the ontology to the objects is achieved by a 

Description Logics (DL) based inference mechanism.  This research also proposes new 

methodologies for domain-specific rapid image information mining (RIIM) modules for 

disaster response activities.  

   In addition, several organizations/individuals are involved in the analysis of 

Earth observation data.  Often the results of this analysis are presented as derivative 

products in various classification systems (e.g. land use/land cover, soils, hydrology, 

wetlands, etc.).  The generated thematic data sets are highly heterogeneous in syntax, 

structure and semantics. The second framework developed as a part of this research 

(Semantics-Enabled Thematic data Integration (SETI)) focuses on identifying and 

resolving semantic conflicts such as confounding conflicts, scaling and units conflicts, 

and naming conflicts between data in different classification schemes.   The shared 

ontology approach presented in this work facilitates the reclassification of information 

items from one information source into the application ontology of another source.  

Reasoning on the system is performed through a DL reasoner that allows classification of 

data from one context to another by equality and subsumption.  This enables the proposed 

system to provide enhanced knowledge discovery, query processing, and searching in 

way that is not possible with key word based searches.  
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CHAPTER I

Figure 1.1

 
 

INTRODUCTION 
 
 

1.1 Background 

In recent years, U.S. Government Earth remote sensing data collection and 

archiving has increased significantly. Landsat data alone comprises 434 terabytes of 

archive (31 years of Landsat 1-5; 165 terabytes, 4 years of Landsat 7; 269 terabytes).  

Multiple Petabytes of data from Earth Observing Satellite EOS and Pre-EOS are archived 

by NASA Distributed Active Archive Centers (DAACs).   
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Figure 1.1 depicts the projected cumulative archive growth by data collected from 

major EO sensor systems over a 15-year period.  Since 1998, the science data volume 

managed by the EOS Data and Information System (EOSDIS) has increased eight-fold, 

and continues to grow at a rate of over 2 Terabytes per day.  The United States 

Geological Survey (USGS) active archive has increased dramatically to 450 terabytes 

over the past four years (Figure 1.2).  National Oceanic and Atmospheric Administration 

(NOAA) has archived data at the National Climatic Data Center, National Geophysical 

Data Center, National Oceanographic Data Center, and the National Coastal 

Development Data Center.   In addition, large amounts of in situ data (e.g., AmeriFlux 

[1], Fluxnet [2]) are collected and archived for guiding, collecting, synthesizing, and 

disseminating long-term measurements of CO2, water, and energy exchange from varied 

ecosystems. Any future efforts to manage carbon sequestration of atmospheric CO2 in 

terrestrial or marine systems will also require observations and models to verify changes 

in stocks. 

In the ocean observations domain, a variety of in situ sensors and sampling 

methods are used to collect data (e.g., meteorological, oceanographic, biogeochemical) 

and assimilate it into the Integrated Ocean Observation System (IOOS).  IOOS is 

envisioned as a coordinated national and international network of observations, data 

management, and analyses systems that rapidly and systematically acquires and 

disseminates marine environmental data and information on past, present, and future 

states of the oceans [3]   
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Figure 1.2 Archive growth at Earth Resources Observation Systems (EROS) Data Center   
 

 

Availability of such a magnitude of data to the users has raised important 

challenges regarding its archiving, the ability to convert the volumes of data into 

meaningful information that can be used for decision-making, and dissemination of the 

generated information. At the end of the data-information channel are diverse groups of 

users with varying levels of expertise and backgrounds who need to use Earth 

observations to solve a variety of complex problems. However, usable information, 

defined as knowledge in this context, is rarely readily available and it becomes the task of 

the decision maker to extract the clusters of knowledge found in the data. Hence, it is 

imperative that the information that is generated from Earth observations is usable and 

relevant to a particular context of the problem-solving environment.  Unfortunately, 
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contextual information is rarely captured and percolated through the channels of the 

knowledge discovery process [4].  

  

One of the primary interests in developing enabling technologies for seamless access of 

disparate information sources is the ever increasing collection and availability of primary 

thematic data, including such elements as land cover, sea floor, bottom type, habitat 

distribution, change detection data, etc.  These geospatial datasets offer unique 

perspectives into the dynamic nature of the geographical phenomenon and consequently, 

many hydrological, ecological and climatological models use such geographically 

referenced information as an essential input [5][6].     To overcome the diverse nature of 

data and represent it in a uniform way, syntactic standardization has long been proposed 

and a number of metadata standards have been developed worldwide during the last 

decade [7], which is now widely accepted as the standardized models for both data and 

metadata.  Each of these standards originated in one particular community and was 

quickly adopted in a variety of domains.  An example of the metadata that is specific for 

the Earth observation data is the Content Standards for Digital Geospatial Meta Data 

(CSDGMD), developed by the Federal Geographic Data Committee (FGDC) [8].  This 

comprehensive standard describes nearly 300 separate elements and provides a solid 

basis for both geographic and environmental data.  Other metadata standards to integrate 

geographic information include the National Spatial Data Infrastructure (NSDI), 

Geospatial One-stop, and the U.S. Geological Survey’s The National Map as well as 

standards from the International Standards Organization (ISO) [9].  
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Although the metadata standards alleviate to a large extent the syntactic 

heterogeneity of the data, a problem that is still not completely solved is heterogeneity of 

the intended interpretation of information. In general, the data heterogeneity problems 

can be divided into three categories [10] 

• Syntactic heterogeneity is caused by different logical models (e.g. relational vs. 

object oriented) or due to different geometric representations (raster vs. vector). 

• Schematic heterogeneity occurs because of different conceptual data models (e.g. 

objects in one database considered as properties in another, different generalization 

hierarchies). 

• Semantic heterogeneity causes most information integration problems. It occurs 

because of the differences in meaning, interpretation or usage of the same or related 

data. 

This research addresses the semantic heterogeneity in Earth observation data and 

proposes an enabling framework to 

• Translate data into domain specific formalisms.  

• Convert the data content into knowledge clusters through explicit specification of 

the conceptualization through Ontologies (i.e., data models).  

• Link users to the knowledge, provide integrated visualization, search and query 

answering facilities, and to gather information at different levels of granularity, 

from the sub category to the specific data level.   

• Dynamic learning of user defined semantic classes and related tasks, and updating 

the knowledge base with the newly discovered information. 
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1.2 Motivation 

1.2.1 Why a new system? 

This research is driven by the need to facilitate exploitation of huge amounts of 

Earth observations (EO) data available in a multitude of domains, in a way that would 

help users at different levels of expertise (Figure 1.3) to explore the vast knowledge 

hidden in the archived data. The motivating factor for developing a new system that 

departs significantly from the existing methods is to enable seamless access to imagery 

and other ancillary data not only to expert users/managers but, also to normal users.  

 

MMuullttiittuuddee  ooff EEaarrtthh SScciieennccee DDoommaaiinnss

UUsseerrss  aatt  DDiiffffeerreenntt LLeevveellss ooff EExxppeerrttiissee 

TTrriiggggeerrss 

SSeeaammlleessss  AAcccceessss  

SSoocciioo--EEccoonnoommiicc  BBeenneeffiittss

DDoorrmmaanntt  oorr  UUnnkknnoowwnn 
AApppplliiccaattiioonn  AArreeaass  

Innovation 

IInntteerrooppeerraabbiilliittyy 

KKnnoowwlleeddggee  aatt  
ddiiffffeerreenntt  lleevveellss  ooff  
ggrraannuullaarriittyy  

  

Figure 1.3 Need to provide knowledge at different levels of granularity 
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This would then trigger the use of data in a variety of domains and applications 

that normally would be unknown or lie dormant due to the lack of proper dissemination 

of the unprecedented information provided by the current EO systems. 

The following sections describe some critical areas that are not currently addressed by 

available systems. 

1.2.2 Data Processing and Dissemination 

• Making data available timely (required for emergency response tasks).  

• Better categorization / aggregation of content and formulation of custom products 

and provision of subsetting tools at spatial and temporal levels.  

• Support interoperability between various formats of data within an archive and 

between them.  

• Package products based on the meaning and knowledge about the measurements 

and context of the information sources.  

• Creation of machine understandable semantic metadata so that intelligent search 

engines / agents can automatically process and index the content.  

• Dissemination of information through current standards (e.g. OGC Web Map 

service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), 

Web Catalog Service (CS-W) etc.) driven web services oriented architectures and 

extended to the semantic web services vision.  

1.2.3 User Interfaces 

• Pursue semantic web technologies to develop content and semantics driven 
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interactive user interfaces which supports advanced querying that go beyond just 

keyword based searches.  

• Reduce the depth of hypertext linkages to reach a particular goal (i.e. intelligent 

presentation of content).  

• Learning user preferences and providing semi-automated help to fulfill a query 

requirement based on previous knowledge.  

Archived remote sensing imagery is not amenable to automated methods of query 

and knowledge discovery. At present, information about an image is limited to queries on 

structural metadata resulting in geographical coordinates, time of acquisition, sensor type, 

and acquisition mode [11].   

Such a limitation in automated exploitation of imagery has placed a severe 

constraint on the usability of the data by operational users.  To overcome this limitation 

and increase useful exploitation of the data, it is necessary to adopt new technologies that 

allow the accessibility of remote sensing data based on content and semantics. 

Consider a query “Retrieve all images from sensor X which contains wetlands 

near a coast in the Eastern part of country Y”.  This query requires problem specific 

discovery of knowledge that is responsive to the needs of an analytical task. Therefore, 

the need for knowledge discovery (features, complex relationships, and hypotheses that 

describe potentially interesting regularities) from large heterogeneous networks of 

observations and information products generated from modeling efforts is important for  

Earth observation (EO) decision making. 
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Figure 1.4 A process diagram for transforming distributed data resources into knowledge 
 

 

However, before knowledge can be discovered and shared it has to be formalized 

in such a manner that it is machine accessible and understandable. Task or context-

specific analysis of data requires exploiting the relations between terms used to specify 

the data, to extract the relevant information, and integrate the results in a coherent form. 

Figure 1.4 describes the data from various sources (NASA, NOAA, in situ, etc.) that are 

transformed into information at different application domain data analysis centers.  

However, to achieve this, middleware is required that provides tools to browse and access 

the data resources for resolving the heterogeneity problems. Domain specific knowledge 

building is achieved through ontological modeling that provides functionalities for 

capturing knowledge. 
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Image information mining provides advanced support in tasks where the 

complexity of the regions in the image has intricate shapes and textures. The knowledge 

about such details could be encoded in predictive models that have varying levels of 

granularity.  These could then be used in real time for exploring the data and generating 

regions of interest.  

1.2.4 Resolving Heterogeneities in Disparate Earth Observation Thematic Data 

The semantic heterogeneity problem in EO data, where there is usually no 

possibility for human interpretation and intervention within a service chain, in such a 

scenario, formalizing the semantics of geographic information has become indispensable.   

This proposed framework is described through a motivating example of tackling the 

problem of semantic heterogeneity in the thematic information sources related to land use 

and land cover. Explicit semantic description of the contents of the data is required to 

understand the context.  However, the description of data in terms of its semantics which 

fully describes the data products is a very challenging task and requires formulation of 

the information sources in ways that would help in automated processing or machine 

understandability. 
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Figure 1.5 Semantic conflicts between classification systems (IGBP and SiB) 
 

 

The three main causes of semantic heterogeneity are [12]: 

• Confounding conflicts occur when information items seem to have the same 

meaning, but differ in reality, e.g. due to different temporal contexts 

• Scaling and Units conflicts occur when different reference systems are used to 

measure a value, (e.g. currencies) 

• Naming conflicts occur when the naming schemes of the information differ 

significantly. A frequent phenomenon is the presence of homonyms and synonyms.    

There exist several land cover characterization schemes such as the IGBP, USGS, 

and OGE etc.  Each of these classification systems differs in their purpose and level of 

aggregation.  Also the classified data could be available in multiple scales, i.e., a coarse 
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scale or a finer scale.  Thus, semantic conflicts arise when data from such sources are 

used in an overall decision-making scenario. Therefore, it is necessary to adopt 

technologies that help to overcome the semantic translation problems. 

1.3 Contributions of this Research 

This research proposes two frameworks each of which provides unique 

methodologies for semantics-enabled data retrieval and integration. The focus areas are: 

• Framework for semantics-enabled knowledge retrieval from remote sensing data 

archives.  

• Framework for semantic reconciliation of disparate Earth observation thematic 

data.  

1.3.1 Framework for Semantics- Enabled Knowledge Retrieval from Remote Sensing 
Digital Data Archives 

This research provides a basis for the content and semantics-based retrieval of 

knowledge from Earth observation data archives. The proposed system (Intelligent 

Interactive Image Knowledge Retrieval - I3KR) is built around a concept-based model 

using domain-dependent Ontologies.  The following are the contributions of this 

research: 

1.3.1.1 Architecture 

 Development of an architecture where the basic concepts of the domain are 

identified first and generalized later, depending upon the level of reasoning required for 

executing a particular query.  The proposed middleware facilitates the access and 
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exploration of remote sensing digital archives through provision of ontology-based 

modeling of the concepts involved in the domain of interest, and linking those concepts 

with predictive models developed through machine learning methods for imagery from 

different sensors. This architecture is distinctive in the sense that it not only provides an 

efficient way for intuitive content-based searches, but also adapts open standards (Open 

Geospatial Consortium) for data dissemination. 

1.3.1.2 Content and Semantics 

The ontological modeling of the domain specific concepts (e.g., imagery, land 

cover) that is proposed, enables encoding the definitions of the concepts in a formal way 

and is used to acquire knowledge in a domain of interest (e.g., Coastal zone).  Current 

systems do not formalize the domain concepts in the form of ontology. Also, I3KR 

system localizes interesting zones and extracts characteristic information from them and 

stores this information in a database, which is later used for providing content–based 

knowledge about the semantic class(s). 

1.3.1.3 Primitive Features 

Identification and proposal of a unique set of primitive feature extraction 

algorithms corresponding to color, texture, and shape that are useful in an image 

information mining context. 

1.3.1.4 Color Space Transformations 

Extraction of primitive features based on L*a*b* color space. L*a*b* provides 

almost perfect separation of brightness and color information. This allows fine control 



 14

  

over highlight and shadow; it also excels at distinguishing shades of green foliage.  The a 

and b channels of Lab are good sources of masks for separating uniquely colored objects 

because they depend only on hue, and will, therefore, trace a true outline of an object in 

variable lighting. Hence, it provides unique advantages over the use of normal RGB color 

space used in existing systems. 

1.3.1.5 Region-Based Approach 

I3KR is a region-based system that departs significantly from the few existing 

image mining systems used with Earth remote sensing imagery which are pixel based. A 

region-based retrieval system segments images into regions (objects), and retrieves 

images based on the similarity of the regions. Several advantages are achieved by this 

architecture, such as savings on computation, time, and resources. 

1.3.1.6 Feature Data Structure Retrieval and Dimensionality Reduction 

The large files sizes of data after feature extraction needs methods to reduce the 

data so that it is manageable in practice. This system addresses this in multiple ways: 

• Region-based architecture provides significantly less amounts of data after feature 

extraction. 

• Uses a more sophisticated algorithm for feature dimensionality reduction by a 

nonlinear Kernel Principal Component Analysis (KPCA). The prevalent systems 

use flat clustering methods such as K-means and variations of it for data reduction. 

• The system facilitates feature interactions and also selection of an optimal set of 

features through a wrapper-based genetic algorithm approach. In a wrapper 
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approach, the feature subset selection algorithm exists as a wrapper around the 

induction algorithm. The feature subset selection algorithm conducts a search for a 

good subset using the induction algorithm itself as a part of the function evaluating 

feature subsets.  Current systems do not address this issue and assume the features 

to be optimal. Thus, this work reduces the number of features, which in turn 

provides a reduction in data size. 

1.3.1.7 Model Development and Concept Assignment 

Support Vector Machines (SVM) based development of semantic models is used 

in this research for learning.  

The choice of this algorithm is driven by 

• SVMs consistent superior performance over other competing methods in a variety 

of domains. 

• Can work on sparse data and significantly faster. 

• Strong statistical background 

• SVM exhibits inherent advantages due to their use of the structural risk 

minimization principle in formulating cost functions and of quadratic programming 

during model optimization. These advantages lead to a unique optimal and global 

solution compared to conventional artificial neural network models. 

Current systems use a Bayesian learning approach, where the modeling is done 

based on the prior information available in a domain. In real life inference problems it is 

often impossible to elicit the actual prior knowledge.  
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I3KR system uses the domain knowledge through Ontologies that provides not 

only the advantage of domain specific knowledge, but allows interoperating between 

different domains. 

1.3.1.8 Probabilistic Outputs 

Current systems provide semantic labels to the classified output, but generally do 

not provide a confidence value of the identified class.  I3KR system provides a 

probabilistic output that helps to: 

• Provide feedback about the strength of the classified object. 

• Rank the classified output with respect to their relevance to the user query. 

• Combine the classification outputs for an overall decision making scenario. 

• Select concepts from application ontologies. 

 

1.3.1.9 Rapid Image Information Mining 

This work provides the ability for rapid image information mining (RIIM) for 

disaster response and assessment in near real time scenarios. The computationally 

intensive tasks of feature extraction and model generation are considerably reduced by 

the wrapper-based approach for feature selection and generation adopted in this research. 

This is vital for emergency response activities. The RIIM system provides capabilities for 

a first assessment of the disaster situation through the querying of the actual content in 

the remote sensing images which is currently limited by queries only at the image 

metadata level. 
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1.3.2 Framework for Semantic Reconciliation of Disparate Earth Observation Thematic 
Data 

The objective of this research is to provide methodologies for seamless 

integration of disparate thematic databases. This work proposes a framework for 

Semantics Enabled Thematic data Integration (SETI).  The following summarizes the 

contributions for this part of the work. 

1.3.2.1 Problem Formulation 

In this research the integration problem between disparate EO Thematic data 

archives is formulated in terms of a semantic reconciliation problem.  Current data 

integration frameworks in EO domain consider only the syntactic elements that address 

the differences in logical and conceptual data models while completely ignoring the 

semantic conflicts.  The resolution of these conflicts allows the conversion of data into 

information and actionable intelligence. 

1.3.2.2 Semantic Conflicts Identification 

The semantic conflicts are identified in terms of confounding conflicts, scaling 

and units conflicts, and naming conflicts. In particular these conflicts are put in the 

context of resolving the heterogeneities in data in land cover classification schemes such 

as IGBP, USGS, SiB, OGE etc. 

1.3.2.3 Application Ontologies Development 

In SETI Ontologies were developed for each of the seven classification schemes 

(International Geosphere Biosphere Programme (IGBP) [13], United States geological 
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Survey (USGS) [14], Olson Global Ecosystems (OGE) [15], Simple Biosphere model 

(SiB) [16], Simple Biosphere model2 (SiB2) [17], Biosphere Atmosphere Transfer 

Scheme (BATS) [18], etc). The core attributes of the seasonal land cover were used to 

define object properties (e.g. hasBiome, hasBiomeCode, hasStructure, hasFoliage etc.) 

for each land cover class.  Current systems only work at the database level without regard 

to the semantics, which impedes in interoperating between thematic data.  Also, the 

search on the database is limited to key word searches or through structured query 

language (SQL) based queries.  This research formulates this issue in a different way as a 

knowledge representation problem and acquires a knowledge base. The knowledge base 

uses an ontological approach to specify its structure (entity types and relationships) and 

its classification scheme. An ontology, together with a set of instances of its classes, 

constitutes a knowledge base that is amenable to intelligent reasoning and querying that 

go beyond key word based searches. 

1.3.2.4 Shared Ontology Development 

For the integration of the classification systems a separate, more expressive 

terminology is required. The semantics of this terminology may be specified by a logic-

based ontology, which then is called a shared ontology or reference ontology. This 

research adopts the shared ontology concept and develops a reference ontology for land 

cover classification schemes, which is envisaged to be a meta-standard in the future. 
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1.3.2.5 Concept- Based Retrieval and Integration of Thematic Information 

The shared ontology approach provides the necessary framework for Description 

Logic (DL)-based reasoning across heterogeneous information sources.  SETI uses a DL 

reasoner that allows classification of data from one context to another by equality and 

subsumption. This provides an ability to search each concept in the application ontology 

belonging to an information source with the subsumed concepts in the shared ontology to 

check if they satisfy the concept definitions and then retrieves those concepts that match 

the semantics. This methodology of concept-based searches is not available in the current 

EO systems for data retrieval. 

1.4 Document Overview 

This dissertation is organized as follows; Chapter 2 describes the current state of 

knowledge in image information mining applications and also describes the various 

systems in the area of semantics-driven knowledge management solutions. The emphasis 

is on applications that could be put in the context of Earth science applications.  Chapter 

3 describes in depth the proposed methodologies for image information mining focusing 

on feature extraction, feature selection, feature generation, and classification using a 

variety of machine learning algorithms. Also, a procedure is described that enables the 

linking of model generated objects to relevant semantics in an ontology. Chapter 4 is 

focused on the proposed framework for semantics-enabled reconciliation of disparate 

thematic data; the proposed methodology is described through a motivating example of 

resolving semantic conflicts between various land cover classification schemes. Chapter 

5 presents the results from both the developed frameworks. In particular, it describes the 
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developed interface and the retrieval of knowledge from real world datasets comprising 

both raw remote sensing data and also processed information (thematic data). Chapter 6 

concludes with some recommendations for future directions in semantics-driven 

knowledge management solutions.  
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CHAPTER II 
 

LITERATURE REVIEW 
 
 

2.1 Content-Based Information Retrieval (CBIR) 

Content-Based Image Retrieval (CBIR) systems have mostly been developed 

outside the remote sensing domain, and the adoption of such systems to remote sensing 

image mining is challenging due to the unique content present in imagery. New methods 

for analysis must be developed for Earth remote sensing data.  Typical features based on 

color, texture, shape, region, and appearance have different interpretations in remote 

sensing imagery as opposed to images in other domains (e.g., photo catalogs).  Typical 

features are color, texture, shape, region, and appearance [19]. Some of the CBIR systems 

include IBM QBIC System [20], MIT Photobook System [21], and Virage System [22].  

Due to the massive growth in the information content in images, region-based features 

have recently been developed to address the partial matching capability of CBIR. A 

region-based retrieval system segments images into regions (objects), and retrieves 

images based on the similarity of the regions. Typical region based systems include 

Berkeley BlobWorld [23], UCSB Netra [24], and Columbia VisualSEEK [25]. 

2.2 Recent Approaches in Image Information Mining 

Image information mining is a relatively new idea in remote sensing where 

previous efforts have been focused on developing general-purpose image content 
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retrieval systems that are interactive and have some level of intelligence built into them.    

The Knowledge Driven Information Mining in Remote Sensing Image Archives (KIM) 

system [11] and the EO domain specific Knowledge Enabled Services (KES) are 

examples of such a system. The KIM / KES prototype technique for information mining 

differs from traditional classification methods (e.g., a host of supervised or unsupervised 

methods). It is based on extracting and storing basic characteristics of image pixels and 

areas, which are then selected (one or more and weighted) by users as representative of 

the searched feature. Knowledge discovery and data mining based on hierarchical 

segmentation has also been proposed [26]. This approach provides capabilities for 

exploring the intrinsic properties of a region by a segmentation hierarchy, with the goal 

of developing heuristics for an automatic labeling of image regions.  It also affords the 

opportunity for knowledge discovery on image data represented as a segmentation 

hierarchy. 

This research proposes a framework for semantics-enabled knowledge discovery 

from Earth Observation (EO) data archives. The goal is to facilitate complex and more 

advanced, context-sensitive query processing over distributed data archives. This is 

achieved through the modeling of the information sources by domain specific ontologies, 

which are capable of capturing knowledge structures. 

 Ontology is defined as “a shared, formal conceptualization of a domain” [27]. 

Hence, ontologies can be used for data exploration / data integration tasks (because of 

their potential to describe the semantics of sources), to solve heterogeneity problems, and 
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to provide varied levels of querying which facilitates knowledge discovery at different 

levels of granularity. 

2.2.1 Metadata and Interoperability 

Several metadata standards have been developed to address syntactic 

standardization [7]. A metadata standard that originated in the environmental community 

and was specifically designed for environmental and geospatial data is the Content 

Standards for Digital Geospatial Metadata (CSDGM), developed by the Federal 

Geographic Data Committee (FGDC) [8].  Extensions for FGDC have been developed 

that provide additional information particularly relevant to remote sensing (e.g., the 

geometry of the measurement process, the properties of the measuring instrument, the 

process of raw readings into geospatial information, and the distinction between metadata 

applicable to an entire collection of data and those applicable to component parts).  

NASA’s Earth Observing System Data and Information System (EOSDIS) Core System 

(ECS) has developed metadata standards for the EOS data [28].   

The main modules are Collection (50), Granule (26), Data Originator (34), 

Contact (16), Temporal (19), Spatial (57), Document (39), and Delivered Algorithm 

Package (47) (numbers in the parenthesis represents the number of elements in each the 

modules). One of the important goals of this standard was to allow data searches by 

scientists from diverse disciplines (e.g., atmospheric chemists, hydrologists, 

oceanographers), but also make the data accessible to non-experts (e.g., policy makers, 

educators).  The structural metadata standards, such as the one developed by ECS, 

enables a user to have a variety of requirements for searching and ordering of the data  
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Figure 2.1 A portion of the FGDC-CSDGM in ontology form [29] 
 

 

(e.g., a single granule or collection of granules). They also can provide browse or 

descriptive information prior to ordering the parent data (e.g., production history, storage 

format, production algorithms).  All of these search requirements are satisfied by an 

exhaustive set of metadata elements. However, it is important to realize that these 
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metadata standards allow us to structure the file contents, but they do not provide a 

semantic description of the domain of the information source. A more recent approach is 

the use of ontologies to make the conceptualization of a domain explicit. Figure 2.1 

shows a portion of the FGDC-CSDGM conceptualization in ontology form [29].  The 

advantage of this approach is that it represents a standard that is widely accepted by the 

Earth science research community. 

2.3 Semantics-Based Reconciliation of Disparate Information Sources 

The importance of resolving semantic differences has recently gained wide 

attention in a variety of domains due to the progress in techniques to model, capture, 

represent and reason about semantics; gradual progress in attention from data to 

information, and increasingly towards knowledge acquisition and management.  

Ontologies are often used as interlinguas (an artificial language designed to be used for 

machine translation) for providing interoperability [30] for they serve as a common data 

format for data interchange. Ontologies help to solve the problem of implicit hidden 

knowledge by making the conceptualization of a domain explicit. Ontologies are useful 

for many different applications that can be classified into several areas [31].  Each of 

these areas has different requirements on the level of formality and the extent of 

explication provided by the ontology [32]. 

Many funded research projects have been initiated by the international 

community.  Some of the frameworks for ontology-based applications are KAON [33], 

On-To-Knowledge [34] and Web-ODE [35].  In these systems, the middleware serves to 

hide the ontology sources from domain-specific application clients.  Other major 
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integration and retrieval systems are OntoBroker system, which implements the basic 

functionality of a single ontology information integration and retrieval system [36].  The 

Observer system is a multiple-ontology system, and uses query rewriting technique to 

translate between different ontologies [37].   The BUSTER [38] system uses a hybrid 

approach, in which it uses the shared terminology in query formulation and processing. A 

computational approach that compares concepts from unconnected and independent 

ontologies has been described in [39].  However, most of the above systems cater to the 

needs of the applications in domains like document repositories, office data repositories, 

web sites and other e-commerce applications and do not address specifically the 

requirements of the Earth science area. Hence, there is an urgent need to focus on the 

development of integrated systems that help in meaningful data sharing which is 

indispensable in this domain. 

2.4 Semantic Web Technology and Relevance to Earth Observations 

Semantic interoperability requires resolving various context-dependent 

incompatibilities, i.e. semantic conflicts.  The context refers to the knowledge that is 

required to reason about another system for the purpose of answering a specific query. 

Therefore, it is important to provide contextual knowledge of domain applications in 

order to ensure semantic interoperability [40].  
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Figure 2.2 Process model for Semantic web driven knowledge discovery 
 
 
 

The Semantic Web (Figure 2.2) is an extension of the current web in which 

information is given well-defined meaning, better enabling computers and people to work 

in cooperation [41].  It allows data to be shared and reused across application, enterprise, 

and community boundaries.  Using web languages, such as RDF [42], DAML+OIL [43], 

and OWL [44] it is possible to create semantically rich data models. These models are 

made up of triples (subject-predicate-object), where subjects and objects are entities, and 

predicates indicate relationships between those entities. Implicit in these models is more 

information than can usually be found in their text representation [45]. Figure 2.3 depicts 

the components of ontology driven applications.  

Earth Observations are obtained from a multitude of sources and requires 

coordination among different agencies and user groups to come to a shared understanding 

on a set of concepts involved in a domain. The realization of seamless interoperability 

and EO data integration is thus dependent on the resolution of conflicts arising from data 

represented in different data models, data sets from heterogeneous sources that differ in 

data modeling, scale, thematic content, contexts, meaning, etc.  Thus, to enable computer 
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programs to automatically generate transformations between different terminology 

systems is the core of the dream of the Semantic Web. 
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Figure 2.3 Components of ontology driven applications 

 

 

The major philosophical difference between the Semantic Web and the World 

Wide Web is that the Semantic Web is supposed to provide machine-accessible meaning 

for its constructs, whereas in the World Wide Web this meaning is provided by external 

mechanisms. This meaning is largely based on the meaning of names which, in the 

Semantic Web, are URI references [42]. 

The use of Description logic-based ontologies has been one of the primary 

applications of the Semantic Web, which is a specific form of formal logic that can be 

run efficiently on a computer.  Hence, this research pursues this line of thought and 
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focuses on formulating the EO data integration problem in a knowledge representation 

framework instead of the prevalent database management system approach. 
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CHAPTER III  
 
FRAMEWORK FOR SEMANTICS-ENABLED KNOWLEDGE RETRIEVAL FROM 

REMOTE SENSING DIGITAL DATA ARCHIVES 
 
 

3.1 Introduction 

This research proposes to develop an ontology middleware system that serves as a 

flexible and extendable platform for knowledge management solutions.  The middleware 

facilitates the access and exploration of remote sensing digital archives through provision 

of ontology-based modeling of the concepts involved in the domain of interest and 

linking those concepts with predictive models developed through machine learning 

methods for imagery from different sensors. The proposed Intelligent Interactive Image 

Knowledge Retrieval (I3KR) middleware serves to provide the following functionalities: 

• An ontology server providing the basic storage services.  

• Mechanisms for knowledge management. 

• Support for integration of variety of reasoning modules suitable for various 

domains. 

3.1.1 Approaches to Ontology Integration 

In scientific discovery applications, it is necessary to examine data in different 

contexts, from different perspectives, and at varying levels of granularity.  Since no 
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single global ontology would satisfy the requirement, a shared ontology approach is 

proposed for this work.  There are different approaches to ontology integration.   

 

 

Figure 3.1 Shared ontology approach (Adapted from [45]) 
 

 

As shown in Figure 3.1 (a), independent data sources can be related to a single 

global ontology. However, this approach can be applied only to integration problems 

where all the data sources provide nearly the same view of the domain. 

In addition, single ontology approaches are susceptible to changes in information 

sources that can affect the conceptualization of the domain represented by the ontology.   
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Figure 3.1 (b) illustrates a multiple ontology approach where each source is represented 

by its own ontology.  No common or minimum ontology commitment is needed and each 

of the source ontologies can be developed without respect to other sources or their 

ontologies.   

This architecture is useful to simplify the integration tasks and supports change 

(i.e., adding or removing sources). However, the lack of a common ontology makes it 

difficult to compare different source ontologies. A hybrid ontology approach consisting 

of a global shared ontology that encompasses all the local application level ontologies for 

a domain of interest (e.g., coastal zone) is adopted for this work. Recent studies [46] have 

suggested the advantages of this approach to be:  

• New sources can be added easily without the need of modification.  

• Supports acquisition and evolution of Ontologies. 

The Ontology Web Language (OWL-DL) [44] is used to build the ontologies.  

Domain-specific ontologies help to define concepts in a finer granularity.  These fine-

grained concepts then allow us to determine specific relationships among features (e.g., 

shape, texture, color) in images that may be used to classify those images.  

Three kinds of inter-relationships are used to create the ontology: IS-A, Instance 

Of, and Part-Of. These correspond to key abstraction primitives in object-based and 

semantic models.   In Figure 3.2, the shared vocabulary is conceptualized in the form of a 

coastal zone ontology containing general terminologies encompassing the coastal zone. 

This enables the integration of the application ontologies based on the shared vocabulary 

of terms. Thus, water bodies that are classified by the International Geosphere-Biosphere 
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Programme (IGBP) land cover classification scheme can be used to explore the types of 

water bodies (e.g. river, lakes) by using the hydrology ontology.   Further, if it is 

identified as a lake, it can be classified according to the trophic state (Eutrophic, 

Hypereutrophic, Oligotrophic, etc). Ontologies for Landsat and MODIS imagery based 

on the Anderson classification system [14] were developed. Further ontologies for land 

cover characteristics have been conceptualized in the IGBP ontology and concepts in the 

hydrology domain have been formalized. 

 

Figure 3.2 Integration of the application Ontologies (shown above are portions of IGBP 
                  and hydrology Ontologies) using shared vocabulary  

 

 

 The ontologies were modeled using Protégé-2000 [47], an open source ontology 

and knowledge base editor. Exploration of ontologies at various levels of granularity 
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necessitates defining classes by restricting their property values. Then, by a combination 

of various restrictions, they are inherited into subclasses.  The combinations of these 

restrictions define all conditions that must hold for individuals of the given class.  Given 

below are the necessary and sufficient conditions that an information entity has to fulfill 

in order to belong to that concept.  

3.1.2 Necessary Conditions 

Concepts are described by a set of necessary conditions in terms of values of 

some properties.  Thus, there are properties that are characteristic for a concept and can 

therefore always be observed for the instances of that class. However, they only apply in 

one direction: If we know that an object is a lake, then we can deduce that its tone is dark 

on a Near Infrared (NIR) band / False Color Composite (FCC) image, but we cannot 

deduce that a dark tone always belongs to a lake (i.e., it could be a shadow).  

3.1.3  Necessary and Sufficient Conditions 

An entity automatically belongs to the concept if it shows sufficient characteristic 

properties. Stronger, bi-directional relationships can be achieved by defining necessary 

and sufficient conditions for a class. Thus, by building necessary & sufficient conditions, 

intelligent tools (classifiers) can find additional characteristics of these classes.  

Below are two examples for necessary and sufficient conditions in the two 

application domains as shown in Figure 3.2. 

• Deciduous broadleaf forest ( ∃hasBiome {Mountains BorealConiferousForests 

SemiEvergreenAndDecidiousForests SchlerophyllousWoodlandsWithWinterRain 
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TemperateDecidiousForest})  (? ∃hasBiomeCode {B12 B10 B2 B7 B5})  

( hasFoliage {SummergreenEvergreen DroughtDecidious Summergreen})  

( hasRegion {TropicalSubtropical Other TemperateArctic})  

( hasStructure{BroadleafForestAndWoodland MediumTallForest  

?

∃ ?

∃ ?

∃

LowOpenForestWoodland}) 

• Eutrophic lake  ( ∃maxChlorophyplla ∋ 60)  (? ∃minChlorophyplla ∋ 10)  

( maxPhosphorous ∋ 100)  (

?

∃ ? ∃  minPhosphorous ∋ 25)  ( maxSeechiDisk ∋ 2) 

 ( ∃minSeechiDisk ∋ 0.5) 

? ∃

?

In the above expressions concepts have been defined for deciduous broadleaf 

forest and eutrophic lakes. In the case of the former concept, restrictions have been 

imposed on the object properties (e.g. hasBiome, hasBiomeCode, hasFoliage, hasRegion, 

and hasStructure) to formulate a defined concept. Object properties link individuals to 

individuals whereas Datatype properties link individuals to data values. When we define 

a property there are a number of ways to restrict the relation. The domain and range can 

be specified. The property can be defined to be a specialization (subproperty) of an 

existing property, etc.  Several restrictions can be defined for properties such as 

allValuesFrom, someValuesFrom, Cardinality, hasValue etc.   

For example the someValuesFrom restriction on the hasFoliage property of the 

class deciduous broadleaf forest is restricted to at least one value from 

SummergreenEvergreen, DroughtDecidious, and Summergreen foliage type.  

The above process of building relationships will help in answering queries such as 

“Find all Eutrophic Lakes in year 2000 in Landsat ETM+ imagery for a particular area 
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X”.  The application ontologies (e.g., hydrology, forestry) themselves make the concepts 

in the data source explicit. The hybrid ontology approach adopted in this work enables 

the development of application ontologies from a shared vocabulary (e.g., coastal zone, 

coastal hazards).  Once the user selects the relevant concepts, the DL reasoning engine 

[48] executes the searches by automatically mapping between the query concepts of 

different application ontologies within the same domain. The Racer reasoner used in this 

work allows concept consistency checking and concept (re)classification based on 

inferencing. This proves to be very useful for determining subsumption relations and the 

identification of equivalence and disjointness between concepts. Reasoning between 

concepts is done within the so called TBox. Racer allows also Abox reasoning, based on 

individuals. All reasoning is done within the framework of Description Logics. 
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Figure 3.3 Middleware depicting the concept query interface 
 
 
 

To provide access to the ontologies, a concept query interface was developed, 

which allows access to the concepts of the shared vocabulary and application ontologies 

(Figure 3.3).   The interface permits reasoning about possible matches with simple and 

complex concept searches.  Once a user selects a concept (e.g., foliage), the 

corresponding instances are displayed in a list. This is useful when the user is uncertain 

about the exact semantics of the concepts for which he/she is looking.  Once the user 

selects the relevant concepts, the DL reasoning engine executes the searches by 

automatically mapping between the query concepts of different application ontologies.   
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Figure 3.4 Framework for ontology driven image mining 
 

 

As shown in Figure 3.4, the application ontologies (e.g., hydrology, land 

use/cover, imagery) make the concepts in the data source explicit.  Once a query is 

ingested into the query processing service, it is processed and converted into a form 

usable by the DL reasoner.  The DL reasoner allows classification of data from one 

context to another by equality and subsumption. Subsumption means that if concept B 

satisfies the requirements for being a case of concept A, then B can automatically be 

classified below A [49].  For example, if the user query is to retrieve all Evergreen 

Broadleaf forest then Tropical rain forest, Tropical degraded forest and Seasonal Tropical 

forest are subsume match. 
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This procedure enables query processing and searching in a way not possible with 

keyword-based searches. The Open Geospatial Consortium, Inc. (OGC) has developed an 

architectural framework for geospatial services on the web [50].  It specifies the scope, 

objectives, and behavior of a system and its functional components.  It also identifies 

behaviors and properties that are common to all such services, but also allows 

extensibility for specific services and service types.  

The framework in this work has been built upon the existing OGC Web Coverage 

Service (WCS), which enables a user with a service that has the capability to extract only 

the necessary data that meets his/her, requirements. 

3.1.4 Primitive Features Extraction and Predictive Models Development 

The task of content-based retrieval from remote sensing images begins at the 

primitive level, where the regions in an image are indexed based on the color, shape and 

texture of each region.  These are machine-centered features and require the association 

to a meaningful set of concepts at the higher level.  This association is achieved by 

mapping the keywords and concept descriptors by a higher-level domain specific 

ontology.  This enables reasoning against the ontology and the ability to examine the 

relationships among the identified objects and associate the proper concepts with the 

image.    

In I3KR, a region-based approach is adopted, which starts by applying a 

segmentation algorithm [51] to the tiled image (Figure 3.5). The goal is to assign a 

semantic meaning to the generated regions by mapping them to concepts in the domain- 

specific ontologies.  
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Figure 3.5 Unsupervised segmentation of the image and subsequent feature extraction 
                  using texture, color, and shape parameters 
 
 

3.1.5 Kernel Principal Component Analysis (KPCA) 

The feature extraction task produces large volumes of data that are difficult to 

manage and requires the estimated image parameters to be compressed [11]. A kernel 

PCA, proposed as a nonlinear extension of a PCA [52], [53] computes the principal 

components in a high dimensional feature space F , which is nonlinearly related to the 

input space.  A kernel PCA is based on the principle that since a PCA in F  can be 

formulated in terms of the dot products in F , this same formulation can also be performed 

using kernel functions without explicitly working in F  (Figure 3.6). A kernel PCA has 

been shown to provide better performance than a linear PCA in several applications [54].  
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Given a set of centered  samples [53], kernel PCA diagonalizes the estimate of the 

covariance matrix of the mapped data 
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Figure 3.6 Kernel-PCA implicitly performs a linear PCA in some high dimensional 
                  feature space that is nonlinearly related to input space (adapted from [53]). 
 

The primitive features that were extracted from each region are used to perform 

an unsupervised classification (using KPCA), which extracts components of features that 

are nonlinearly related to the input variables.    This process also reduces the data size.  

The resulting components are stored in a database. 
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Figure 3.7

Figure 3.8

 Linearly separable case; only support vectors (dark circled) are required to 
                 define the optimally defined hyperplane. 
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 Non-Linearly separable case; only support vectors (dark circled) are required 
                  to define the optimally defined hyperplane. 
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3.1.6 Support Vector Machines 

     Support Vector Machines (SVMs), as originally introduced by Vapnik within 

the area of statistical learning theory and structural risk minimization [55], have proven to 

work successfully on many applications of nonlinear classification and function 

estimation. SVMs can be used for both classification and regression problems. Some 

applications of SVMs for classification are isolated handwritten digit recognition [56], 

object detection [57], and face detection in images [58]. The problems are formulated as 

convex optimization problems, usually quadratic programs, for which the dual problem is 

solved. Within the models and the formulation one makes use of the kernel trick, which is 

based on the Mercer theorem related to positive definite kernels [59]. One can plug in any 

positive definite kernel (e.g., linear, polynomial, or Radial Basis Function (RBF)) for a 

support vector machine classifier.  

We try to find an optimal hyperplane that separates two classes (Figure 3.7 & 

3.8). In order to find an optimal hyperplane, we need to minimize the norm of the vector 

w, which defines the separating hyperplane. This is equivalent to maximizing the margin 

between two classes. Given a set of instance-label pairs, 

( ) liyx ii ,...,1,, =  where  NRix ∈

Let the decision function be 

 ))(.()( bxwsignxf += φ                                                                                                    (7)                         

To maximize the margin (distance between hyperplane and the nearest point) the SVM 

[55] [60] requires the solution of the following optimization problem:   
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Normally the training data are separated into two parts; one is used for training 

and the other is used for testing. An improved version of handling training sets is cross-

validation. In V-fold cross-validation, we first divide the training set into V subsets of 

equal size.  Sequentially, one subset is tested using the classifier trained on the remaining 

V-1 subsets.  Thus, each instance of the whole training set is predicted once and the 

cross-validation accuracy is the percentage of data that are correctly classified. The cross-
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validation procedure can help alleviate over-fitting the data. I3KR uses five-fold cross- 

validation.  As shown in Figure 3.9 better boundary delineation could be achieved by 

performing KPCA followed by a SVM classification.       

 

   

Figure 3.9 KPCA followed by SVM classification provides better boundary delineation 
         

 

3.1.7 Probabilistic Outputs from SVM 

The outputs from a binary SVM do not allow for post processing of the result. 

Calibrated posterior probability ( )inputclassP  is very useful in practical recognition 

scenarios [61]. It has particular relevance in the proposed approach to image mining from 
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remote sensing archives. The following are the advantages of having probabilistic 

outputs: 

• Provides a feedback about the strength of the classified object. 

• Ranks the classified output with respect to their relevance to the user query. 

• Combine the classification outputs for an overall decision-making function. 

• Useful for concept selection from application ontology.  

Instead of predicting the class label, the posterior class probability ( )xyp 1=  can 

be approximated by a sigmoid function [62] 
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with parameters A  and . The best values for them are estimated using maximum 
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    The posteriori probability is a measure of how probable an image is of a 

particular type [11]. We calculated the posterior probabilities of the predicted land cover 

types given a particular image region.  
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3.1.8 DL- Based Concept Selection 

The model generated by the SVM is used to predict an unknown region. The 

object obtained as a result of the prediction has to be assigned to the proper concept in the 

hierarchy of the domain specific ontology. The goal is to map the predicted objects to the 

ontology concepts through Description Logic. In the DL systems [63], a knowledge base 

consists of an ABox and a TBox (originally from “Terminological Box and Assertional 

Box” respectively).  The TBox stores a set of universally quantified assertions, stating 

general properties of concepts and roles (e.g., “Deciduous Broadleaf forest has at least 

one structure.”). A typical assertion in an ABox is one stating that an individual is an 

instance of a certain concept (e.g., one can assert that Lake X is an instance of a “Lake, 

which is Eutrophic.”). 

Table 3.1 Description Logic (DL) axioms [63][4] 
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We can distinguish four kinds of assertions for a TBox and an ABox. Class 

assertions (Table 3.1) express that an individual is a member of a class. Property fillers 

express that two individuals are related to each other through a given property.  

A classification problem is characterized by the determination of membership 

relations between an object under consideration and a set of predefined concepts [64].   

The match between observations (model predicted objects) and membership conditions is 

performed using knowledge that associates properties of the objects with their classes.  

This can be formalized in the following way [65] 

- Let C  be a set of solution classes (concept predicates (Water Body, Vegetation, 

etc.)) 

• Let O be the set of observations (i.e., the necessary conditions for concept 

membership) { CcN c ∈ })    

• Let R be a set of classification rules (sufficient conditions for class 

membership { CcS c ∈ }) 

  Then a classification task is to find a solution class  such that  Cci ∈

)(XcRO i⇒∧                                                                                                        (13)              

Therefore, a single information entity can be translated from one context into 

another by finding a concept definition in the target structure satisfying the above 

expression.  In I3KR, the classification is handled by the middleware that integrates the 

concepts of the current domain by sending a request to the DL reasoner.  Since the 

concepts in the application ontologies are formed from a global shared ontology, after 

reclassification all the sub concepts of the query will form the result. 
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3.2 Methodology for Rapid Image Information Mining 

This section presents approaches for the development and application of image 

information mining components for the following: 

i) The application of image information mining in coastal disaster events, with 

particular emphasis on the image mining of post hurricane events. Results are 

presented using imagery from Landsat ETM+ of post hurricane Katrina 

flooding.  

ii) Proposes an image information mining system that is fast and reliable with the 

capability to perform the tasks of identifying affected regions with minimal 

expert supervision. 

iii) Previous efforts in image information mining area have focused mainly on the 

reduction of features using clustering approaches [11] [66], but little has been 

reported on the selection of best feature subsets. This research enables 

predictive model development that goes in conjunction with feature selection 

and feature generation. 

3.2.1 Feature Selection and Generation for Image Information Mining Applications 

Feature selection is defined as the selection of a subset of features to describe a 

phenomenon from a larger set that may contain irrelevant or redundant features [67]. 

Feature selection techniques usually involve a criterion function and a search algorithm. 

The former aims at evaluating the separability of classes for a given subset of features. 

And the latter identifies the subset of features that maximize the adopted criterion [68].   

Several separability indexes have been proposed in the remote sensing literature [69-73]. 
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These indexes are generally based on the average distance among the classes, and are 

computed by using the statistical distance between the pair of classes and are dependent 

upon the set of features considered. Lorenzo Bruzzone [68] argues that criterion functions 

based on the average pair-wise distances without taking into consideration the costs 

associated with classes are not appropriate for selecting features that minimizes the total 

classification cost.   

A criterion function based on the Bayes rule for minimum cost (BRMC) has been 

proposed [68] and uses a neural network as the induction algorithm. However, recently it 

has been noted that the feature selection stage and classification stage are not independent 

because the goal is correct classification with a corresponding feature pattern extracted 

with the intermediate step of feature extraction and dimensionality reduction [74]. Hence, 

it is recommended to couple feature selection with effective classification techniques. 

Wrappers-based feature selection is a methodology that has had a long history within the 

literature on statistics and pattern recognition [75], but its use within machine learning is 

relatively recent, and to the best of our knowledge no studies have been made for their 

applications in the remote sensing domain.  In a wrapper approach, the feature subset 

selection algorithm exists as a wrapper around the induction algorithm. The feature 

subset selection algorithm conducts a search for a good subset using the induction 

algorithm itself as a part of the function evaluating feature subsets [76] [77] [78].   While 

giving good results in terms of accuracy of the final classifier, wrapper approaches are 

computationally expensive.  
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 Other methods, such as filter methods, are much faster than wrappers but produce 

disappointing results because they ignore the induction algorithm [77]. However, 

wrapper-based methods can be effectively used in image information mining applications 

which are region-based instead of pixel based. The proposed RIIM is a region based 

framework that encodes knowledge at the regional level instead of pixel level, hence the 

computation cost is reduced making it an effective medium for incorporating wrapper 

based methods.  The RIIM system adopts a Genetic algorithm-based wrapper approach 

for feature selection and generation. Genetic algorithms (GAs) are randomized search and 

optimization techniques guided by the principles of evolution and natural genetics. They 

are efficient, adaptive and robust search processes, producing near optimal solutions and 

have a large amount of implicit parallelism.   

The utility of GAs in solving problems that are large and multimodal and highly 

complex has been demonstrated in several areas [79]. GAs have been used to search for 

feature subsets in conjunction with several classification methods such as neural 

networks [80, 81], decision trees [82], k-nearest neighbors [83-86] and Naïve Bayes [87, 

88].   

The rapid image information mining (RIIM) system uses machine learning to 

address the task of exploring remote sensing imagery based on its content.  The process 

of knowledge extraction from the imagery starts with the creation of tiles of the full 

scenes of the images and then performing an unsupervised segmentation on each tile. We 

use hierarchical segmentation algorithm [51] to delineate regions of interest which are 
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then used for primitive features extraction. Before performing the low-level feature 

extraction, each region is converted from RGB color space to CIE L*a*b* color space. 

This color conversion has been dictated by the fact that L*a*b color space provides more 

perceptual color information.  Fifteen primitive features based on color, texture and shape 

were extracted. Figure 3.10 depicts the low level feature extraction algorithms used in 

this study.   
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Figure 3.10
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Thus, the selection of relevant features, and the elimination of irrelevant ones, is 

one of the central problems in machine learning, and many induction algorithms 

incorporate some approach to address this issue.   Numerous search algorithms have been 

used to search for feature subsets [89].  The application of evolutionary learning 

algorithms to pattern recognition is becoming increasingly common. A variety of 

researchers have used evolutionary algorithms to perform feature selection [90]. The 

majority of these approaches begin with a large pool of potential features and an 

evolutionary process is used to evolve a population of feature subsets drawn from the 

pool. The subsets are evaluated using a standard classifier.  

Feature selection algorithms can be categorized into exponential, randomized and 

sequential algorithms.  Exponential algorithms (e.g., branch & bound, exhaustive) have 

exponential complexity in the number of features and are frequently prohibitively 

expensive to use.  Randomized algorithms include genetic and simulated annealing 

search methods and attain high accuracies. Sequential search algorithms have polynomial 

complexity and add or subtract features and use a hill-climbing strategy.  

Sequential forward selection (SFS) begins with zero attributes, evaluates all 

feature subsets with exactly one feature, and selects the one with the best performance. It 

then adds to this subset the feature that yields the best performance for the subsets of the 

next larger size. This cycle repeats until no improvement is obtained from extending the 

current subset. Sequential Backward Selection (SBS) begins with all features and 

repeatedly removes a feature whose removal yields the maximal performance 

improvement. The sequential forward selection and its backward counterpart are 
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suboptimal methods that obtain a chain of nested subsets of features in a straight forward 

manner. This nesting effect constitutes one of their main drawbacks [91].  

The algorithms cannot correct previous additions (deletions) of features.   Also 

feature interaction is not taken into consideration in these methods.  Feature interaction is 

characterized as a situation in which the effect of a feature on the target (semantic class) 

depends on the value of other features [92]. 

In this work a wrapper approach that uses a modified genetic algorithm was used 

for the incremental selection and generation of new features [93]. It uses an attribute-

based induction algorithm for the evaluation of the features at hand. Inductive learning    

involves the process of learning by example (i.e., where a system tries to induce a general 

rule from a set of observed instances). Computational studies of Darwinian evolution and 

natural selection have led to numerous models for solving optimization [94-98].  GAs 

comprises of a subset of these evolution-based optimization problems techniques 

focusing on the application of selection, mutation, and recombination to a population of 

competing problem solutions [99-100]. The population is usually formed from a constant 

number of individuals representing samples from the search space. 

3.2.2  Chromosome 

  In the RIIM system a chromosome is defined as an individual whose length is the 

same as the total number of features corresponding to each segmented region in the 

image. Each bit of the chromosome is initialized by a randomly selected 0 or 1.  The 

fitness of the chromosome during the evolutionary process is calculated by considering 

only features that have 1s.   
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New individuals for the next generation are formed by applying two genetic 

operators; crossover and mutation to the individuals from the current generation.  In each 

generation, half of those individuals with higher fitness values survive, and the others are 

extinguished.  Two parents are selected from the survived individuals, and children are 

generated by a two-point crossover.   

3.2.3 Crossover 

The crossover process defines how genes (chromosomes) from the parents have 

been passed to the offspring.  In each generation, once two individuals are selected as the 

parents, a gene from each parent is broken into several segments and recombined with 

gene segments from the other parent based on a predefined crossover probability.  After 

the crossover operation, every two parents will produce two children.  The above 

selection and crossover process will continue to run in each generation until the number 

of children equals the population size.  At the end of each generation, it is useful to pass a 

certain number of the best individuals directly to the next generation, which is called 

elitism. In elitism, the best individual from the current generation is copied directly to the 

next generation, and is used for fast convergence.  

3.2.4  Mutation 

The mutation process simulates the natural disturbance during crossover. It is a 

bit-by-bit operation based on the mutation probability (mutation rate).  Mutation rate is 

generally selected based on the population size and other factors, such as selection 

method and with or without an elitism policy.  The mutation operation follows 
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immediately after the crossover operation; Figure 3.11 depicts the two points cross over 

and mutation process used in GA.  Parents that will produce new individuals are chosen 

according to their fitness. Better individuals are more likely to pass their genes to the next 

generation.  Therefore, each generation should have a better overall fitness.   

 

 1    0    0     1    1   0    0 Parent 2 
1    0    0     0    0   1    Original Parent 1 0    1    1     1    0   1    0 

 
1    0    0     0    1   1    1 1    0    1     1    0   0    0 Child 1 Mutated

 
0    1    0     1    1   1    0 

 
  Child 2  

   

Figure 3.11
 

 Cross over and mutation 
 
 

3.2.5 Hybrid Wrapper- Based Genetic Algorithm Approach for Feature Selection and 
Generation 

This algorithm combines the positive search properties of conventional genetic 

algorithms with the option to adapt the search space incrementally. In the wrapper 

approach the feature subset selection algorithm exists as a wrapper around the induction 

algorithm.  The feature subset selection algorithm conducts a search for a good subset 

using the induction algorithm itself as part of the function evaluating the feature subsets.    

As shown in the Figure 3.12, the outer cross-validation wrapper randomly splits 

the original data set into n equally sized parts. For each run, the ith part is kept as a test set 

while the remaining n-1 parts are passed to the genetic algorithm and subsequently to the 

final SVM learner whose learned model is tested on the ith part of the dataset. 
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The inner cross-validation trains the model on the training data training set and 

optimizes the choice of an attribute set using the disjunct evaluation data test set to avoid 

a bias in the selection of the attribute set.    For reliable performance estimation of the 

complete operator chain for feature selection and classification learning the training 

evaluation and test data sets need to be disjunct, which is guaranteed here by the nested 

cross validations [93].   The combined feature selection and generation of new features 

using a wrapper based approach employs an attribute-based induction algorithm for the 

evaluation of the feature sets.   
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Figure 3.12 Algorithm for Wrapper-based approach for feature selection, generation, 
                    model creation and performance evaluation 
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In the combined feature selection and generation case, in addition to the standard 

mutation operator the crossover operator is modified to make it a variable length 

crossover operator which is based on the variable length genetic algorithms [101] a new 

operator that produces new features is also introduced. This operator uses a type 

restriction on the generator operator (e.g. Boolean, mathematical) to combine a given set 

of compatible features, resulting in new features generation. Figure 3.13 depicts this 

modified feature generator operator. For instance, the suitable features from 

Colordescriptor1, uniformity, entropy, eccentricity could be combined with an addition 

operator which produces a new feature and added to the original feature set. The set of 

the compatible features is not limited to the original features, but can contain compound 

features that have already been created by the generator [93].  The above methodology 

has been adopted for feature selection and generation in this study.   

3.2.6 Materials 

To evaluate the presented wrapper-based approach on hurricane-related events, 

data from Landsat ETM+ data (path 22, row 39, Aug 30, 2005) corresponding to post- 

Katrina hurricane, and Landsat ETM + data (path 23, row 36, Sep 22, 1999) that is not 

related to the hurricane (pre-hurricane) were used in this study.  This would help to 

identify training sites of different land covers that are specific to post hurricane areas (e.g. 

flooded fastlands) and training sites that are present, in general, during other times 

(agriculture, fallow, etc).  Such a strategy helps to develop predictive models which have 

the capability for image information mining from affected areas and compare the land 
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cover classes in the pre and post-hurricane events and also the evaluation over a period of 

time.  

 

Selected Feature set 

  

Colordescriptor1    uniformity    entropy   eccentricity     

+Select generator                                           

 

Colordescriptor1    uniformity    entropy   eccentricity     Suitable features  
selection 
 

 

   

Figure 3.13

Apply  
Generator 

Colordescriptor1    uniformity    entropy   eccentricity   uniformity+ eccentricity 

 
 Modified feature generator used in the combined approach (Modified from 

                     [93]) 
 
 
 
 

The database consists of primitive features from 7,117 segmented regions 

extracted from 60 tiles (each of 967 x 915 dimension) corresponding to post-hurricane 

Landsat ETM+ data and primitive features from 4592 segmented regions extracted from 

60 tiles (each of 719 x 575 dimensions) corresponding to pre-hurricane data.  The bands 

4, 3, 2 corresponding to near infrared, red, and green were selected and the false color 

composites (FCC) were derived from these bands.   
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Figure 3.14 USGS wetlands classification 
 

 

  Table 3.2 presents the number of training samples used for each semantic class.  

The flooded area classes selected for this study were based on the USGS-NWRC 

classification system (Figure 3.14), which provides specific land cover types that need to 

be assessed in a post-hurricane scenario. 
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Table 3.2 Training samples used in the study; each sample corresponds to a region (area 

                    depends on segmentation granularity) in the image. 
 

Semantic Class Number of samples 

Flooded Fastlands  

(includes flooded 

 agriculture and developed 

 areas) 

100 

Flooded Vegetation 

(includes flooded marshes) 

175 

 Agriculture 156 

Fallow 385 

Forests 150 

Clouds 120 

Water bodies 100 

Total Training data 1086 

 

The results from the above described framework are presented in Chapter 5. 
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CHAPTER IV

Figure 4.1

  
  

FRAMEWORK FOR SEMANTICS-ENABLED THEMATIC DATA RETRIEVAL 
 
 

4.1 Introduction 

In this section, the focus is on the semantic heterogeneity problem in Earth 

Observation (EO) data, where there is usually no possibility for human interpretation and 

intervention within a service chain. In such a scenario, formalizing the semantics of 

geographic information has become indispensable.   
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This framework will be presented through a motivating example (resolving 

semantic heterogeneities between various land cover classification schemes) of tackling 

the problem of semantic heterogeneity in the thematic information sources related to 

Land Cover. This has particular significance in the overall integrated system approach 

(Figure 4.1) where the key to understanding the model data requirements is the domain- 

specific conceptualization of the data (e.g. ontological modeling), and formulating it in a 

way that the context of the source is well understood.  This would enable to transform 

data into different contexts as required by a specific Earth science model or a decision 

support tool.   

4.2 Semantic Conflicts 

An explicit semantic description of the contents of the data is required to 

understand the context.  However, the data description in terms of its semantics, which 

fully describes the data products, is a very challenging task and requires formulation of 

the information sources in ways that would help in automated processing or machine 

understandability.  The three main causes of semantic heterogeneity are [12]: 

• Confounding conflicts occur when information items seem to have the same 

meaning, but differ in reality, e.g. due to different temporal contexts. 

• Scaling and Units conflicts occur when different reference systems are used to 

measure a value, (e.g. currencies). 

• Naming conflicts occur when the naming schemes of the information differ 

significantly. A frequent phenomenon is the presence of homonyms and synonyms.    
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The investigation of confounding conflicts is significant to EO data as the ability 

to collect imagery of the same area of the Earth's surface at different periods of time is 

one of the most important elements for applying remote sensing data. Change detection 

studies are routinely performed from such multi-temporal data, whose output is again 

highly context-sensitive and depends on the project specific goals. For example, change 

detection studies for deforestation accounting for greenhouse gases and change detection 

studies that look at deforestation and the associated urban sprawl.  If two such 

information sources exist, then it is necessary to identify whether a value is an intrinsic 

and permanent property of some instance, or if it depends on some evaluation context 

and, in the latter case, by associating this value with its context it is possible to achieve 

interoperability.  

Scaling conflicts frequently occur in the EO thematic data representation. Land 

use / land cover information, is one of the major sources of geographic information 

available today. It is highly heterogeneous in syntax, structure and semantics [10]. The 

heterogeneities arise because land use/land cover data are produced and provided by a 

variety of agencies having different definitions, standards and applications of the data. 

Solving the problem of semantic heterogeneity (e.g., the categorical land cover types in 

various land cover classification systems), is difficult, but very useful for information 

sharing.  The intent of the different classification is mainly to reduce the information load 

by abstracting from details.  For instance, there exists several land cover characterization 

schemes such as the International Geosphere Biosphere Programme (IGBP), United 

States Geological Survey (USGS), Olson Global Ecosystems (OGE), Simple Biosphere 
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model (SiB), Simple Biosphere 2 (SiB2) model, Biosphere Atmosphere Transfer Scheme 

(BATS).  Each of these classification systems differs in their purpose and level of 

aggregation.  Also, the classified data could be available in multiple scales, i.e., a coarse 

scale or a finer scale.  Thus, semantic conflicts arise when data from such sources are 

used in an overall decision-making scenario. 

 

Figure 4.2 Semantic heterogeneities arising in terms of scaling, aggregation, and overlap 
                   between classification systems (IGBP and SiB) 

 

 

A naming conflict is a commonly observed conflict in land cover classification 

schemes (e.g., the class Evergreen Needleleaf forest in an IGBP scheme corresponds to 

Evergreen Needleleaf Trees in the BAT Scheme and Evergreen Needleleaf Vegetation in 

the Running Vegetation life forms scheme). Similarly, the class grassland in the IGBP 

scheme corresponds to Ground cover only or Ground cover with trees and shrubs 
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depending on the context in which it is used in the SiB scheme and Annual grass 

vegetation in the Running Vegetation Life forms scheme. Thus, it can be observed that 

the intended purpose of one classification scheme differs from another scheme. Although 

they are used to abstract similar details, they tend to produce vast heterogeneities.  Figure 

4.2 depicts the semantic heterogeneities arising in terms of scaling, aggregation, overlap, 

and naming conflicts between the IGBP classification scheme and the SiB classification 

scheme. Thus, it can be seen that there exists a semantic translation problem for 

integration of information sources that are in different classification systems. This is 

pursued as the motivating example to demonstrate how the emerging semantic web 

technologies can be adopted in the EO domain.   

4.3 Integration Problem 

The integration problem between disparate thematic data archives is finding the 

right data that matches a given criteria.                                                                         

The above problem can be formally defined as [102] 

Let 111111 ,,,, MIdCSIS =  and 222222 ,,,, MIdCSIS =  be information sources; 

then a bilateral integration problem is equivalent to finding a membership 

 such that for all 121: CIIM ×U 21 IIx U∈  and 1Cci ∈ : 

     )                                                                                            (14) Mcx i ∈),(  iff (: 1 icdx

Where ,  are the source ontologies ,  are set of class names and d  is a 

mapping that assigns a class definition over the terms from  to every class term in  

and  

1S 2S 1C 2C

S C

I  is a set of information items.  
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Consider two repositories in two different classification systems such as, IGBP 

(IS1) and SiB (IS2). Then, a sample query is finding all the data corresponding to 

broadleaf evergreen or deciduous forest in both the information sources.   Such a query 

can be efficiently answered only if the semantics of both the information sources is well 

understood. However, even if both the information sources are sufficiently 

conceptualized by two distinct ontologies (e.g., IGBP and SiB), comparing them is rather 

a challenging task due to the great variation among the level of detail and logic of 

different ontology representations.  In general two types of ontologies are prevalent; an 

ontology that is a collection of categories organized by a partial order that is induced by 

inclusion and a more detailed ontology called the axiomatized ontology which is a 

terminological ontology whose categories are distinguished by axioms and definitions 

stated in logic or in some language that could be automatically translated into logic [103]  

The general approach for data integration in axiomatized ontologies is to map the 

local terms of distinct ontologies onto   a single shared ontology. The Semantic similarity 

is then determined as a function of some distance relation between two terms in the 

hierarchical structure underlying the ontology [104-107]. Other systems build a shared 

ontology by integrating the existing ontologies [38] [63] [108-110].  
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Figure 4.3

 

 Framework for Semantics Enabled Thematic Data Integration (SETI) 
 

 

This research pursues the shared ontology approach for the proposed framework 

by integrating the ontologies developed for each of the classification schemes (IGBP, 

BATS, etc.) and building a shared ontology for their integration. 

4.4 Shared Ontology Approach 

Assuming that ontologies are used to capture the context of the information 

entities, and then as we move from one context to another there is a requirement to 

integrate ontologies. In this work, we adopt a hybrid ontology approach (see Figure 4.3) 
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consisting of a global shared ontology that encompasses all the local application-level 

ontologies for a domain of interest (land cover). 

  As shown in Figure 4.3, by using the application ontologies (e.g. IGBP, SIB, 

USGS), it is possible to perform terminological reasoning over the definition of classes in 

them by considering the set of axioms from the shared ontology, the definitions of 

relations and the set of class definitions [102]. A brief overview of the shared ontology 

development is provided in the next section.    

The global land cover characterization has been completed for use in a wide range 

of continental to global scale environmental studies using the Advanced Very High 

Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) 

composite covering 1-km AVHRR data spanning April 1992 through March 1993 [111].  

This database provides a unique view of the broad patterns of the biogeographical and 

ecoclimatic diversity of the global land surface, and presents a detailed interpretation of 

the extent of human development [112].  The global database is available on a continent-

by-continent basis [113].  In this study the North America Land cover characterization 

database is used to demonstrate the framework (i.e., SETI) presented in the previous 

section. 

4.4.1 North America Land Cover Characterization 

The North American land cover database is one portion of a global land cover 

characteristics database that was developed on a continent-by-continent basis.  All 

continents in the global database share the same map projections (Interrupted Goode 
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Homolosine and Lambert Azimuthal Equal Area) and have 1-km nominal spatial 

resolution.   

Table 4.1  Derived global land cover data sets in the Global Land cover database(adapted 
                  from [112]) 
 
Classification scheme Number of classes Intended application 
Olson global Ecosystems 
(Olson. 1994) 

94 Carbon Cycle Studies 

IGBP DISCover Land Cover 
Legend ( Belward. 1996) 

17  Global Change 

Biosphere-Atmosphere Transfer 
Scheme (BATS) (Dickinson et al. 
1986) 

20  Land Atmosphere 
Interactions ( Climate 
models) 

Simple Biosphere Model ( SiB) 
(Sellers et al, 1986) 

16 Land-atmosphere 
interactions ( Climate 
models) 

Simple Biosphere Model2 (SiB2) 
(Sellers et al. 1996) 

10 Land-atmosphere 
interactions ( Climate 
models)  

USGS Land Use/Land Cover 
System ( Anderson at al. 1976) 

24 Multi-purpose 

Global Remote Sensing Land 
cover (Running et al . 1994) 

8 Biogeochemical modeling 

 
 

The database consists of 7,793 rows and 11,329 columns and the core attributes of 

each of the seasonal land cover are [112]: 

• Land cover descriptions 

• Seasonal characteristics 

• Site characteristics (elevation ranges, biome representation, and other relevant 

local descriptors) 

• Multi-temporal NDVI statistics. 
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Ontologies have been developed for each of the classification schemes as depicted 

in Table 4.1. The core attributes of the seasonal land cover have been used to define 

object properties (e.g., hasBiome, hasBiomeCode, hasStructure, hasFoliage) for each land 

cover class.  Below is provided a brief description of the ontology development process 

and also the steps involved in the shared ontology development, which is necessary in 

this framework for semantic interoperability.  

4.4.2 Ontology Development 

4.4.2.1 Web Ontology Language (OWL) 

 The Web Ontology Language (OWL) is a current W3C standard for developing 

ontologies. OWL has three versions: OWL lite, OWL DL, and OWL full. Each of these 

versions caters to the different requirements of the users and is a function of its 

expressiveness.  The OWL DL version to used to develop the ontologies, which provides 

maximum expressiveness, without losing computational completeness (all entailments 

are guaranteed to be computed) and decidability (all computations will finish in finite 

time) of reasoning systems [114].  OWL DL is so named due to its correspondence with 

Description Logics (DL), a field of research that has studied a particular decidable 

fragment of first order logic. 

 The open source ontology and knowledge base editor Protégé [47] has been 

employed to develop the ontologies.  Exploration of ontologies at various levels of 

granularity necessitates defining classes by restricting their property values. Then, by 

combination of various restrictions, they are inherited into subclasses.  The combinations 

of these restrictions define all conditions that must hold for individuals of the given class 
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[4].    Several ontologies were developed for different land cover schemes (Figures 4.2-

4.6). Each of these land cover schemes are selected for a particular project based on the 

project-specific goals and routinely much of the information regarding the land cover 

status of a region is disseminated though these land cover schemes. Hence, achieving 

interoperability between these land cover classification schemes is challenging. Thus, the 

conceptualization of these schemes in an ontology would provide a distinct way to 

understand the actual meaning of a class in a particular scheme and hence, help to 

identify similar class in another classification scheme. As can be seen in the Figures 4.4-

4.8, there are several classes that have subtle differences in terms of meaning, 

interpretation, scaling, and naming attributes. So it is important to conceptualize the 

intended definition of what we mean by a particular concept. As shown in Figure 4.4, a 

defined concept is obtained by defining the necessary and sufficient conditions. 
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Figure 4.4 International Geosphere Biosphere Programme(IGBP) Land Cover 
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Figure 4.5

 

 
 United States Geological Survey(USGS) Land Use/Land Cover System 
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Figure 4.6 Biosphere-Atmosphere Transfer Scheme (BATS) 
 

 

During the process of running the classifier to check for consistency and 

classification of the taxonomy in the development of the OGE ontology, it has been 

observed that the classifier has been able to find additional characteristics that resulted in 

an inferred hierarchy as shown in Figure 4.9  The concepts Dry Tropical Woods, Tropical 

Rain Forest, Tropical Degraded Forest and Seasonal Tropical Forest were originally 

modeled as sub concepts of broadleaf evergreen or deciduous class, after running the 

classifier, it checked for the concept definitions and provided an inferred hierarchy.  
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Figure 4.7 Simple Biosphere Model 
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Figure 4.8 Simple Biosphere 2 Model 
 

 

Such modeling of land cover concepts in OWL-DL helps in reasoning such as 

classification and retrieval by a description logic reasoner [48].  
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Figure 4.9 Inferred hierarchy returned by the classifier for OGE ontology 

 

4.4.2.2 Shared Ontology Development 

 The classification systems described earlier overlap and complex cases of 

semantic heterogeneity as discussed previously arise. Due to their informal and specific 

character, the standards specifying the semantics of the terminologies are not powerful 

enough to resolve those heterogeneities.  For the integration of these classification 

systems a separate, more expressive terminology is required. The semantics of this 

terminology may be specified by a logic-based ontology, which then is called a shared 

ontology or reference ontology.  The semantics of the reference ontology may be 

specified by a standard, which is often called a meta-standard [115]. 

 The Olson Global Ecosystems scheme is used as the starting point for developing 

the shared ontology because it [112]: (1) has sufficient thematic detail (94 potential 

classes) and was developed for global applications; (2) has been used for large area 

modeling and has links to landscape productivity, particularly carbon stocks; (3) 

recognizes anthropogenic elements of the landscape; (4) recognizes landscape mosaics 
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that occur at coarse resolutions; and (5) includes attributes on climate and physiognomy, 

and implies floristic elements. 

    

Figure 4.10

 

 Evolutionary prototyping lifecycle in a shared ontology development 
 

 

The bridging concepts have been identified between each of the application level 

ontologies and are then used to define a more general defined concept that sufficiently 

describes the common concepts.  The shared ontology is a very general ontology that 

covers all possible refinements (Figure 4.10).  

Drawing parallels from the software engineering field, the development of the 

shared ontology normally follows an evolutionary prototyping life cycle (Figure 4.9).   In 

this life cycle, one can go back from any stage to any stage of the development process 

[49].  The evolutionary prototyping approach dynamically responds to changes in user 

needs and accommodates subsequent unpredictable changes in requirements, as the 

development process progresses [116].  As long as the ontology does not satisfy 

evaluation criteria and does not meet all requirements during specification, the prototype 

is modified. 
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4.4.2.3 Concept- Based Retrieval and Integration of Thematic Information 

The shared ontology approach presented in the previous section provides the 

necessary framework for DL-based reasoning across heterogeneous information sources.  

The task of finding a set of classes satisfying the query in the information source is based 

on the retrieval of direct subclasses and super classes in the shared ontology as we have 

only that knowledge available, since it has already been classified. The direct super 

classes are retrieved when the concept has negation in it (e.g. retrieve all forests that are 

not mixed forest) otherwise the direct subclasses are retrieved.  The reclassification of the 

information item for one information source into the application ontology of another 

source can be formalized as [102] [117]. 

Let 11111 ,,,, MIdCSIS =  and 22222 ,,,, MIdCSIS =  be information sources,  is 

the shared ontology, 

S

x  is an information item, and 2Ix ∈ ,  is a mapping that assigns a 

class definition over the terms from  to every class term in ,  then for every

d

S C 11 Cc ∈ , 

we can define (approximate classifier) such that: ?},1,0{: 12
' →× CIM

1),( 1
' =cxM  if                                                                                   (15) ⎟

⎠
⎞⎜

⎝
⎛ ∨

∈
)(2:

2glb
cdx

ISc

0),( 1
' =cxM if ( ))(2:

2lub
cdx

ISc∈
∧¬                                                                                  (16) 

?),( 1
' =cxM , otherwise                                                                                                 (17) 

    

Thus using the above greatest lower bounds (glb) and lowest upper bounds (lub) 

depending on the query concept whether it is a negation or otherwise, it is possible to 

retrieve information from heterogeneous sources, by considering their semantic 

descriptions.  Using a DL reasoner which allows classification of data from one context 
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to another by equality and subsumption (Subsumption means that if concept B satisfies 

the requirements for being a case of concept A, then B can automatically be classified 

below A [49]),  the above procedure was adopted to search each concept in the 

application ontology belonging to an information source with the subsumed concepts in 

the shared ontology to check if they satisfy the concept definitions and then retrieve those 

concepts that match the semantics.   For example, a query on retrieval of Broadleaf 

Evergreen or Deciduous type forests from two different information sources such as 

IGBP and SiB would return results containing the actual concepts that have been 

searched in application ontologies related to each of these thematic data repositories (e.g. 

IGBP and SiB). The DL based reasoner uses the definition of concepts from the shared 

ontology which essentially are the subsumed concepts of the query concept and then 

searches for all the concepts that satisfy the criteria in each of the application ontologies.  

The retrieval of instances of the concepts that satisfied the query is the final result 

of this process. This procedure enables query processing and searching in a way not 

possible with keyword-based searches. 
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CHAPTER V 
 

RESULTS 
 
 
 
This chapter presents the results from the frameworks described in chapters 4 & 5. 

5.1 Results of the Intelligent Interactive Image Knowledge Retrieval (I3KR) 
Framework 

 

Figure 5.1 Results of a semantic query 
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Both the systems were implemented in JAVA [118].  The user interface is 

provided through an applet that runs in a browser.  The I3KR system provides a number 

of modules (including reasoning services, Area of Interest (AOI) selection, and 

knowledge base browsing and querying) that have been integrated a GUI.   

   

Figure 5.2 I3KR system depicting metadata of the image and also more details can be 
                  seen about the retrieved area of interest 

 

 

The user is provided with an integrated environment where it is possible to 

interact with the system in a variety of ways.  For example, the user can execute a 
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semantic query and visualize the results (Figure 5.1) or they can browse the existing 

knowledge base and then look for concepts that are relevant to their conjecture.   

 

     

Figure 5.3 Retrieval of the images from the archive through Web Coverage Service 
                  (WCS) 

 

 

In addition, since the user might not know the exact semantics of the information 

that they are looking for, the exploration of the ontology through the concept query 

interface gives the ability to search and explore at different conceptual levels.   
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The system also provides functionalities to store user-learned knowledge. 

Currently the image archive consists of tiled images from MODIS and Landsat sensors.  

 Figure 5.1 depicts the retrieved images from a semantic query about what MODIS 

imagery in the archive contained water bodies.  It is possible to explore the results of the 

query further by clicking on the image of interest. An image view window opens which 

depicts more details of the cover type of interest along with the metadata (Figure 5.2).    

The OGC Web Coverage Service (WCS) (Figure 5.3) provides the user with a 

service that has the capability to extract only the necessary data that meet their 

requirements. This also enables search of distributed archives and helps alleviate data 

transfer bottlenecks over the network.  The user can explore the full scene interactively 

by passing the WCS parameters like Spatial Reference System (SRS), Bounding Box 

(BB), width, height and format (jpg, tiff, Geo-tiff etc).  Once the knowledge has been 

discovered by mining through the archives, the WCS can also be used to facilitate 

decision-making by analyzing data from multiple sensors (e.g., MODIS, Landsat) at 

different resolutions of the same region by separate requests to distributed archives (e.g., 

NASA, NOAA).  

 Figure 5.4 depicts the retrieval of images from a Landsat data archive.  Finer 

details within a cover type (water body) are evident. These various levels of segmentation 

help an analyst in knowledge discovery.  Figures 5.5 & 5.6 depict the results from a 

semantic query on agriculture and forest, respectively. 
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Figure 5.4 Varying levels of segmentation details within a cover type 
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Agriculture 

 

 

 

Figure 5.5 I3KR system depicting the results of a query on agriculture 
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Forest

 

 

 

Figure 5.6 I3KR system depicting the results of a query on forest 
 

 

5.2 Results from GA- Based Feature Selection and Feature Generation 

 Several experiments were conducted to formulate the semantic models. In the 

wrapper-based approach of feature selection/generation the performance evaluation was 
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conducted using two nested cross-validations.  The inner cross validation was used to 

find an optimal subset of features and the outer cross-validation was used to evaluate the 

performance of this subset of features.   

 The genetic algorithm parameters were set to 100 for the number of generations, 

15 for population size, 0.5 for the crossover probability, 0.2 for the mutation (feature 

selection probability), and 0.5 for the feature generation probability.  The induction 

algorithm used was a SVM for classification with complexity C=1000, epsilon=0.1 and 

using a RBF kernel.  A recent study by Keerthi and Lin shows that if RBF is used with 

model selection, then there is no need to consider the linear kernel [61].  The kernel 

matrix using a sigmoid may not be positive definite and in general its accuracy is not 

better than RBF.   

Table 5.1 Accuracy, precision, recall and F-measure obtained using only feature selection 
                 by GA 
 
Class Accuracy (%) Precision (%) Recall (%) F-measure (%) 
        
Water bodies  98.80 93.80 87.76 90.53 
Agriculture 97.63 98.83 98.18 98.50 
Fallow Land 96.49 98.38 94.81 96.56 
Forest 98.53 97.84 94.44 96.11 
Flooded 
vegetation 

91.04 89.83 100 94.64 

Flooded 
fastlands 

96.92  93.75 83.33 88.24 
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Table 5.2 Features selected by GA (Only Feature Selection)   
 

 

Class Features Selected by GA 
Agriculture Color: ColorDescriptor1,ColorDescriptor2,  

Texture(Cooccurence): First order inverse element, uniformity 
Texture(primitive length): Gray level Uniformity 
Shape: Geometric Moment 

Water 
bodies 

Color: ColorDescriptor1, Colordescriptor2,  
Texture(Cooccurence): First order element, entropy, uniformity, 
Texture(primitive length): long primitive emphasis, primitive percentage 

Flooded 
vegetation 

Color: Colordescriptor1,colordescriptor3 
Texture(Cooccurence): entropy 
Texture(primitive length): short primitive emphasis, long primitive 
 emphasis, primitive percentage  
Shape: eccentricity 

Fallow Color: ColorDescriptor1, ColorDescriptor2,ColorDescriptor3 
Texture(Cooccurence): entropy 

Forest Color : ColorDescriptor1,Colordescriptor2 
Texture(Cooccurence): Maximum probability, first order element 
Shape:  eccentricity 

Flooded 
fastlands 

Color: Colordescriptor1,Colordescriptor2,Colordescriptor3, 
Texture(Cooccurence): Maximum probability 
 Texture(primitive length): Short primitive  emphasis Uniformity   
Shape:  eccentricity 

 

Table 5.3 Accuracy, precision, recall and F-measure obtained using both feature selection 
                 and generation by GA 
 

 

Class Accuracy (%) Precision (%) Recall (%) F-measure (%) 
Agriculture 97.76 98.84 98.37 98.59 
Fallow Land 97.43 98.67 96.36 97.50 
Forest  96.80 92.86 90.28 91.55 
Flooded 
vegetation 

92.54 92.86 98.11 95.41 

Flooded 
fastlands 

96.12 87.50 82.35 84.85 

Water bodies 99.07 95.56 89.58 92.47 
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Table 5.4 Features selected by GA (Feature Selection and generation) Note: only three 
                 features are shown here. 
 

Class Selected  features Features Generated from 
Color: Colordescriptor1 Color: Colordescriptor1 
Color: Colordescriptor2 Color: Colordescriptor2 
Texture (Cooccurence): 
First order inverse 
 element 

Texture (Cooccurence): 
First order inverse element 

Texture (Primitive 
 Length): 
 
Short primitive 
 emphasis 

Texture (Primitive Length): 
 
Short primitive emphasis 

Texture (Primitive 
 Length): 
 
Gray level uniformity 

Texture (Primitive Length): 
 
Gray level uniformity 

Gen1 *(geometric moment,  maximum probability) 
Gen2 +(first order inverse element, uniformity) 

Agriculture 

Gen3 *(*(geometric moment, maximum 
 probability)*(geometric moment, maximum 
 probability)) 

Color: Colordescriptor1 Color: Colordescriptor1 
Color: Colordescriptor2 Color: Colordescriptor2 
Texture (Cooccurence): 
First order inverse 
 element 

Texture (Cooccurence): 
First order inverse 
 element 

Texture (Cooccurence): 
First order   
 element 

Texture (Cooccurence): 
First order   
 element 

Texture (Primitive 
 Length): 
Short Primitive emphasis 

Texture (Primitive 
 Length): 
Short Primitive emphasis 

Shape:  
Geometric Moment 

Shape:  
Geometric Moment 

Water 
bodies 

 
Gen1 

 
+(primitive percentage, +(primitive 
 percentage, *(entropy, long primitive 
 emphasis))) 
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Table 5.4   (continued) 
 
Class Selected  features Features Generated from 
Flooded 
vegetation 

Texture (Primitive 
Length): 
Long primitive emphasis 

Texture (Primitive Length): 
Long primitive emphasis 

 Gen1 +(*(*(geometric moment, gray level 
uniformity), uniformity), +(*(*geometric 
moment, gray level uniformity), uniformity), 
long primitive emphasis)) 

 Gen2 +(*(*(geometric moment,  gray level 
uniformity), uniformity), long primitive 
emphasis) 

 Gen3 +(+(*(*geometric moment, gray level 
uniformity), uniformity)+(+(+(geometric 
moment gray level uniformity), uniformity), 
long primitive emphasis)), +(+(geometric 
moment, gray level uniformity), uniformity)) 

 Gen4 +(long primitive emphasis, *(+(*(*(geometric 
moment, gray level uniformity),uniformity), 
+(*(*(geometric moment, gray level 
uniformity), uniformity), long primitive 
emphasis)), *(*(geometric moment, gray level 
uniformity), uniformity), long primitive 
emphasis)), *(*geometric moment, gray level 
uniformity), uniformity))) 

 

 

5.2.2 Precision, Recall and F-measure 

 In content-based image retrieval (CBIR), recall and precision measurements are 

most often used to illustrate how many relevant (target) and irrelevant (misdirected) 

images are contained in the highest ranked images [1].  In region-based image 

information mining, instead of accounting for the number of images retrieved, it is more 

relevant to account for the number of correct regions that are retrieved, which indirectly 

would correspond to the images retrieved. Hence, precision in this case is the proportion 



    96
of relevant regions to all the regions retrieved. If R is the set of returned regions and S the 

set of regions relevant to the query, then: 

                                          
R

RS
precision

∩
=                                                                (18) 

Recall is the proportion of relevant regions that are retrieved, out of all relevant regions   

                                               
S

RS
recall

∩
=                                                                 (19) 

High precision indicates that most of the items you retrieve are relevant.  High 

recall indicates that you have retrieved most of the available relevant regions in a 

repository. The F-measure is the weighted harmonic mean of precision and recall given 

by 

                                           F-measure=
recallprecision

recallprecision
+

××2                                         (20) 

 In the first set of experiments the GA-based wrapper approach was used only for 

feature selection for the six semantic classes.  Table 5.1 depicts the feature selection 

results; precision, recall and, F-measure values using the reduced feature set as obtained 

from the GA.  The accuracy of the retrieval is measured in terms of the relative number 

of correctly classified examples. From an initial set of 15 features, the GA algorithm 

produced an optimal feature subset specific to each semantic class (Table 5.2).  The 

number of features reduced is more than 50 % in most of the cases, while maintaining 

good accuracy.  These selected features were then used to generate a semantic model for 

each class.  This helps to rapidly extract a limited number of features that are highly 
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relevant to a semantic class from images in a hurricane disaster event, and begin the 

process of knowledge discovery.   

 In the second set of experiments the ability of the GA for feature selection and 

generation is tested, wherein the feature dependencies are explicitly revealed. In the 

experiments simple arithmetic operators were used; however, the methodology could be 

extended to the generation of complex features that exhibit nonlinear relationships.   This 

allows recursive feature generation and thus, the construction of arbitrarily complex 

features [41].  Table 5.3 shows the results from the combined feature selection and 

generation approach. The accuracy has improved and also compound features were 

generated. For example, three features were generated for Agriculture; Gen1, Gen2, Gen 

3.  Gen 1 is obtained by the product of the features (Table 5.4), geometric moment and 

maximum probability. The retrieval from a semantic query relevant to the hurricane event 

is depicted in Figure 5.7. Several tiles images have been retrieved by the system that 

matches the query. The user then has the option to further look into the details of the 

system-derived knowledge by clicking on an image, which brings up a window that 

provides a detailed view of the actual regions that matched the user’s semantic query 

(Figure 5.8).   It is also possible to know the confidence level of each of the retrieved 

regions; this is helpful to understand how probable the region of a particular type. The 

RIIM system automatically calculates these confidence values (Figure 5.9) based on the 

posterior probabilities for all the regions and store them in the database.  This also 

facilitates the retrieval of regions which are above a particular confidence threshold that 

satisfies the user’s needs. The RIIM system provides capabilities for the user to select 
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area of interest (AOI) regions (Figure 5.10) on several example images.  This enables the 

primitive features for the AOI to be automatically extracted and stored in the database for 

further processing, and for developing custom semantic models.  

 Further, once the knowledge has been discovered about a particular region, it is 

possible to send queries to archived data from the same region but, belonging to different 

sensors through the Web Coverage Service (WCS) integrated into the system. This 

provides capabilities for extracting only a limited amount of distributed data that meets 

the requirement, thus saving on the network bandwidth.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.7 Results of a semantic query (flooded fastlands)  
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Figure 5.8 Details of the semantic class (flooded fastlands). The regions on the right 
                  depict the retrieved regions matching the users query. 
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Figure 5.9
 

 Results of a semantic query (flooded vegetation). By clicking on any retrieved 
                  region on the right, the confidence value of that region is displayed.  
 
 
 
 
 
 
 
 
 
 
 
 
 



    101
 

 

 

igure 5.10 Area of Interest (AOI) can be defined on example images which are later 
                   

5.3 Results from Semantics-Enabled Thematic Data Integration System 

The SETI system’s Graphical User Interface (GUI) provides the user with an 

integrated environment that provides functionalities to query based on the semantics 

across the thematic information repositories.  For example, the user can first select a 

geographical extent he/she is interested in and then by selecting a domain of interest (e.g. 

 

 
F

 used to build custom semantic models. 
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land cover), the concepts from the shared ontology belonging to land cover domain are 

automatically retrieved.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Prototype system for Semantics Enabled Thematic data Integration (SETI) 
 

 

This method of providing predefined concepts in a domain of discourse is 

significant in two ways – first, it enables a user who is not very familiar with the 

terminology in a specific domain the ability to explore and select the concepts that 

approximately match his /her requirement.  
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Figure 5.12 Details of deciduous broadleaf forest 
 

 

This is because the shared ontology has been developed from the application 

ontologies and contains comprehensive terminology. The other purpose is that it will 

prevent the user from giving some wild keywords that the system may not recognize and 

also may not belong to the domain of interest.   
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Figure 5.13 Results retrieved from SIB classified data repository 
 

 

 Figure 5.11 depicts the results of a concept query where the system searches for a 

Broadleaf Evergreen or Deciduous type of vegetation.  The returned results contain the 

actual concepts that have been searched in application ontologies related to each of the 

thematic data repositories (e.g. IGBP, USGS, SiB, OGE etc). The DL-based reasoner 

uses the definition of concepts from the shared ontology which essentially are the 
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subsumed concepts of the query concept and then searches for all the concepts that satisfy 

the criteria in each of the application ontologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Details of result retrieved from SIB classified data repository 
 

 

The intersection of the concept definitions that match with the subsumed concept 

definitions of the shared ontology forms the resulting query concepts. The instances of 

these concepts in the knowledge base form the results of the query. As shown in Figure 

5.11, evergreen broadleaf forest and deciduous broadleaf forest are the concepts that have 

matched in the IGBP ontology for the given user query.  
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Selecting one of these concepts (Figure 5.11) the images corresponding to the 

1992-1993, North America land cover characterization data in IGBP classification 

scheme are retrieved.  The user can further explore and see greater details (Figure 5.12) 

in the retrieved images by clicking on the retrieved images; a new window opens 

depicting the original classified image and the corresponding image that contains the 

queried result.  Similarly, Figure 5.13 shows the results returned from searching the 

thematic repository corresponding to SIB classification scheme.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Results retrieved from Olson Global Ecosystems (OGE) classified data 
                    repository 
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The concepts retrieved from SIB ontology contain evergreen broad leaf trees and 

broadleaf deciduous trees, which differ semantically from the concepts in the IGBP 

ontology, but since the reasoner works at the conceptual level, the correct concepts are 

retrieved. Suppose a keyword-based search is conducted in a similar scenario these 

concepts might not have been discovered. Figure 5.14 depicts more details from a SIB 

classified image resulting from the user query.  

 In Figure 5.15, results from OGE classified data are shown, it can be seen that 

there are more concepts that have satisfied the query concept compared to the previous 

two results (IGBP and SiB) due to the granularity of the OGE classification scheme being 

finer (94 classes). Since the classes have been modeled as defined concepts and in 

concept hierarchy, the subsumed concepts in the shared ontology that matched the 

concepts in the OGE ontology have been retrieved. Since our primary interest is in image 

information mining, the retrieval of images from the database has been shown. However, 

the retrieval of the relevant textual data (e.g. mean NDVI values, biome, structure etc.) is 

trivial as it also forms an instance of the retrieved concepts.  

 In addition to the above, functionalities for Boolean querying are provided in the 

SETI system by the advanced search interface.  This allows the combination of concepts 

with Boolean operators.  Once the user discovers a particular information entity from the 

above semantic based querying, he/she can use the OGC WMS service to extract only the 

necessary data that meets their requirements.  This also enables search of distributed 

archives and helps alleviate data transfer bottlenecks over the network. Once the 

knowledge has been discovered by mining through the thematic archives, WMS can also 
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be used to facilitate decision-making by analyzing data (change detection studies etc) 

from multiple sensors (e.g., MODIS, Landsat) at different resolutions of the same region 

by separate requests to distributed archives (e.g., NASA, NOAA).  
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CHAPTER VI
 

 
 

CONCLUSIONS AND FUTURE WORK 
 
 

6.1  Conclusions 

This research has resulted in the development of an image information mining 

system I3KR; which is semantics-enabled image knowledge retrieval system for 

exploration of distributed remote sensing image archives.  The process of image 

segmentation and primitive feature extraction followed by unsupervised learning via a 

KPCA approach has been developed. The SVM learning method has been described for 

the classification of the unsupervised content and subsequent model generation.  A 

middleware that provides support for ontology storage, retrieval, and conceptual querying 

by means of DL reasoning enables the proposed system to provide enhanced knowledge 

discovery, query processing, and searching in a way that is not possible with ordinary 

keyword-based searches.  

  It has also been shown that the concept assignment of the model predicted objects 

could be achieved by classification via a DL reasoner through subsumption and equality, 

which enables classification from one context to another. The practical applications of the 

I3KR system were demonstrated by executing semantic querying on archives of two 

sensors (MODIS and Landsat).  The Graphical User Interface (GUI) developed for this 
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research provides flexible access to the modules and in a coherent form. Currently the 

interactivity is restricted to the semantic cover type selection, knowledge base browsing

and concepts exploration through the shared ontologies; however, future work should 

incorporate relevance feedback mechanisms.   

The rapid image information mining (RIIM) prototype developed in this research 

is reliable and fast and is focused on image exploration for hurricane affected regions in 

near real-time scenarios. The computationally intensive tasks of feature extraction and 

model generation are considerably reduced by the wrapper-based approach for feature 

selection and generation shown in this research. This is vital for emergency response 

activities. The RIIM system provides capabilities for a first assessment of the disaster 

situation through the querying of the actual content in the remote sensing images, which 

is currently limited by queries only at the image metadata level.  The developed RIIM 

system currently uses imagery from only one sensor, but can be easily scaled up to be 

used with a variety of sensors.   

This research also presented the SETI system, which enables the retrieval of 

information from thematic data archives via semantics-driven searches.  The need for 

such a system has been described and the paucity of such applications in Earth 

observations domain is highlighted.  The components of the proposed system have been 

described in detail, including the ontology development process and the requirement for a 

shared ontology is presented along with the steps necessary to develop it.   The shared 

ontology approach has been implemented by pursuing a motivating example, describing 

the semantic heterogeneities in the land cover classification schemes and the North 
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America land cover characterization dataset has been used as the source to demonstrate 

the proof of concept. The DL-based querying uses the semantic relations between the 

concepts (objects) hence it provides more expressiveness, and hence enables the proposed 

system to provide enhanced knowledge discovery, query processing, and searching in a 

way that is not possible with ordinary keyword-based searches.  Results from the system 

corresponding to IGBP, SIB and OGE show that semantic reconciliation can be achieved 

by the proposed SETI system, and has been able to retrieve correct information from 

disparate thematic data repositories. Currently, semantics-based conjunctive queries are 

not handled by the system and it is proposed to enhance it with such querying capability 

in the next version of SETI.   

6.2 Potential Topics for Future Work 

Finally this section describes some useful directions and potential areas in which 

the current research could be advanced. 

6.2.1 Parallel implementation of image information mining modules 

The image information mining system developed in this research could be 

augmented with parallel implementations of some of its modules. Such an 

implementation would provide the following advantages: 

• Better scalability of the system for processing archived imagery within reasonable 

time 

• Improved savings in computation and resources 
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Real-time image segmentation is a well known problem as it is a computationally 

expensive operation with a high degree of uniformity for the operations applied to all 

pixels in an image. Hence, the segmentation algorithm that is used in this research to 

generate the regions in the images is a prime candidate for parallelization. Depending 

upon the segmentation algorithm used, three principal ways of doing segmentation are  

• Detection of discontinuities (e.g. edge-based) 

• Thresholding (e.g. based on pixel intensities) 

• Region processing (e.g. group similar pixels) 

Implementations on different parallel modes need to be investigated and 

compared for the above methods. 

The other module of the proposed architecture that could be parallelized is the 

feature extraction component, where several algorithms based on color, texture, and 

shapes have been used to extract primitive features.  The feature extraction task is 

computationally intensive; hence each algorithm could be run in parallel and also 

parallelized on each region in an image.  

The searching for a semantic region within images is also an area for parallel 

implementation where several images could be searched in parallel with the generated 

semantic models obtained by machine learning methods. This would enable to search 

huge archives and produce useful results in reasonable time.  

6.2.2 Development of methods for qualitative spatial reasoning on image data 

In addition to the proposed research there is a need for greater advances in remote 

sensing imagery understanding in a number of costal zone scenarios. One of the 
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objectives of such a research endeavor could be to understand the qualitative spatial 

relations between different land cover classes in an image.   

“Retrieve all wetlands from LandsatETM+ archive that are in the southeastern 

part of state X and are near to a surface water body” 

Proximity to surface water is an indicator of the likelihood that polluted runoff 

entering a wetland would otherwise enter surface water.  Similar queries would also help 

in the evaluation of a wetland in relation to its significance to a watershed, habitat etc.  It 

could also function as a rapid assessment technique by aggregating basic information on 

wetlands and landscape conditions - a necessary first step for detailed data analysis. The 

potential for the existence of runoff into a wetland may be assessed according to its 

spatial relation with respect to the surrounding land cover classes. If the wetland is 

surrounded by agricultural fields or surrounded by developed areas from which pollutants 

are likely to enter surface runoff, the wetland’s potential for removing non-point source 

pollutants is high. If, on the other hand, the wetland is mostly surrounded by natural 

vegetation from which runoff is likely to be largely unpolluted, it’s potential for 

removing significant pollutants is low [119-120].  Further, it is assumed that the higher in 

its watershed a wetland is located, the higher is its significance in non-point source 

removal.  

 
As can be seen from the above, several qualitative spatial relationships (Figure 

6.1) could be used to describe the potential of a wetland, such as:  

• Wetlands  near a water body 

• Wetlands close to intermittent streams.  
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• Wetlands surrounded by natural vegetation 

• Wetlands surrounded by agriculture. 

• Wetlands higher in the watershed. 

• Wetlands adjacent to significant source of polluted runoff.  

• All wetlands that are adjacent to streams or rivers are considered to be 

riverine wetlands 
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Figure 6.1 Some spatial relationships in wetlands domain 
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Figure 6.2 Wetlands assessment ontology 
 

All bottomland hardwood wetlands must be adjacent to a river where they receive 

seasonal floodwaters from the channel. 

The knowledge about the spatial relationships could be encoded as concepts that 

formalize the spatial arrangement that is unique for a type of wetland rating criteria. As 

shown in Figure 6.2, the ontology depicts the higher-level conceptualization of the 

terminology involved in wetlands assessment.  The following provides the restriction on 

the class Riverine: IsNear {Streams}.   Similarly for a Depressional/wetflat: IsFar 

{SurfaceWater} 
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Future research could work on the development of Spatial Arrangement 

Templates (SATs) that depict the instantiation of the relative arrangement of objects in a 

domain of discourse (e.g. Wetlands).  

6.2.3 Fuzzy semantic metadata for spatial relations 

A widely used method for modeling spatial relations has been proposed by 

Freeman [121], he also put forward the idea of fuzzy degree of truth to be associated with 

each spatial relation (topological and proximity). Each spatial relation thus defined gives 

a distinct semantic meaning. Yang et al proposed a method based on fuzzy K-NN 

classifier for the automatic generation of semantic metadata that describes the spatial 

relations [122].  They define the Semantic metadata as the fuzzy degree of truth with it 

associated spatial relation.  Earlier studies have taken basically two approaches; the first 

one consists of algorithms that are designed for specific purposes and do not consider the 

human perception [122] and have not been very successful.  The second approach draws 

upon the machine learning algorithms.  It could be argued that the metadata generated by 

fuzzy K-means by the above method, although very useful, is not strictly semantic in the 

sense that  

• The metadata generated is not machine understandable. 

• Does not have enough semantic relationships built-in to enable reasoning by 

inferencing engines. 

• Does not link semantic concepts for various degrees of fuzzy membership. 

Thus future work could look into these aspects of generating semantic metadata 

for qualitative spatial relations. 
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6.2.4 Tools for ontology development 

The development of applications for resolving semantic heterogeneities requires 

automated/semi-automated tools.   There is a need for development of tools for learning 

ontologies and extracting metadata which is currently a key research area. Tools are also 

required for merging, aligning and storage of ontologies.  

Existing tools are still in early stages of development and lack across-the-board 

integration. This is one of the next challenges in getting more widespread acceptance of 

the semantic web.  

6.2.5 Enabling community participation in the ontology development 

The ontologies that will furnish the semantics for the Semantic Web must be 

developed, managed, and endorsed as a community effort and focused towards the 

domain specific needs.   The challenge is to bring together ontology engineers and 

domain experts and provide a platform for the shared understanding of the domain.  

Meta-standards in terms of upper ontologies for Earth science domains should be the next 

major focus of the international standardization organizations (e.g. ISO, FGDC, OGC, 

etc). The upper ontologies consist of the basic abstract categories and the major relations 

that link them. An upper ontology can help cut the time and effort to build domain-

specific application ontologies and avoid simple mistakes. It also enables to share an 

ontology and make it more likely to be re-usable. 
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AVHRR Advanced Very High Resolution Radiometer 

BATS Biosphere Atmosphere Transfer Scheme 

CBIR Content-Based Image Retrieval 

CS-W Web Catalog Service  

CSDGMD Content Standards for Digital Geospatial Meta Data 

DAAC Distributed Active Archive Centers 

DL Description Logics 

DAML DARPA Agent Markup Language 

EO Earth observation 

EOSDIS Earth Observing System Data and Information System 

FGDC Federal Geographic Data Committee 

FCC False Color Composite 

GA Genetic Algorithm 

GRI GeoResources Institute 

IOOS Integrated Ocean Observation System 

IGBP International Geosphere Biosphere Programme 

ISO International Standards Organization 

I3KR Intelligent Interactive Image Knowledge Retrieval 

KPCA Kernel Principle Component Analysis 

KES Knowledge Enabled Services 

MODIS Moderate Resolution Imaging Spectroradiometer 
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NASA National Aeronautics and Space Administration 

NOAA National Oceanic and Atmospheric Administration 

NSF National Science Foundation 

OGE Olson Global Ecosystems 

OWL Web Ontology Language  

RDF Resource Description Framework 

RIIM Rapid Image Information Mining 

SiB Simple Biosphere model (SiB) 

SiB2 Simple Biosphere model2(SiB2) 

SQL structured query language 

SETI Semantics Enabled Thematic Data Integration 

SVM Support Vector Machines 

USGS United States Geological Survey 

USGS United States geological Survey 

WMS Web Map service 

WFS Web Feature Service 

WCS Web Coverage Service 
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