
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-11-2004

Predicting Open-Source Software Quality Using Statistical and Predicting Open-Source Software Quality Using Statistical and

Machine Learning Techniques Machine Learning Techniques

Amit Ashok Phadke

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Phadke, Amit Ashok, "Predicting Open-Source Software Quality Using Statistical and Machine Learning
Techniques" (2004). Theses and Dissertations. 3596.
https://scholarsjunction.msstate.edu/td/3596

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3596?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

PREDICTING OPEN-SOURCE SOFTWARE QUALITY USING STATISTICAL

AND MACHINE LEARNING TECHNIQUES

By

Amit Ashok Phadke

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2004

Copyright by

Amit Ashok Phadke

2004

PREDICTING OPEN-SOURCE SOFTWARE QUALITY USING STATISTICAL

AND MACHINE LEARNING TECHNIQUES

By

Amit Ashok Phadke

Approved:

Edward B. Allen
Associate Professor of Computer Science
and Engineering, and Graduate Coordina-
tor, Department of Computer Science and
Engineering
(Major Professor)

Julian E. Boggess
Associate Professor of Computer Science
and Engineering
(Committee Member)

Susan M. Bridges
Professor of Computer Science and
Engineering
(Committee Member)

W. G. Steele
Interim Dean of the James Worth Bagley
College of Engineering

Name: Amit Ashok Phadke

Date of Degree: December 11, 2004

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Edward B. Allen

Title of Study: PREDICTING OPEN-SOURCE SOFTWARE QUALITY USING
STATISTICAL AND MACHINE LEARNING TECHNIQUES

Pages in Study: 128

Candidate for Degree of Master of Science

Developing high quality software is the goal of every software development organi-

zation. Software quality models are commonly used to assess and improve the software

quality. These models, based on the past releases of the system, can be used to identify

the fault-prone modules for the next release. This information is useful to the open-source

software community, including both developers and users. Developers can use this infor-

mation to clean or rebuild the faulty modules thus enhancing the system. The users of

the software system can make informed decisions about the quality of the product. This

thesis builds quality models using logistic regression, neural networks, decision trees, and

genetic algorithms and compares their performance. Our results show that an overall ac-

curacy of 65 – 85% is achieved with a type II misclassification rate of approximately 20 –

35%. Performance of each of the methods is comparable to the others with minor varia-

tions.

DEDICATION

To my family and friends.

ii

ACKNOWLEDGMENTS

This work is supported in part by grant CCR-0132673 from National Science Foun-

dation. The findings and opinions in this thesis belong solely to the author, and are not

necessarily those of the sponsor.

I thank Dr. Edward B. Allen for his expert suggestions, constant support, encourage-

ment, and for guiding me throughout the thesis. I also thank Dr. Gene Boggess for his

expert guidance on the neural network and genetic algorithms research. The genetic algo-

rithms research was a result of a project done for Dr. Boggess’s Genetic Algorithms class.

I am also thankful to Dr. Susan Bridges for her expert guidance on machine learning,

classifiers, decision trees, and C 4.5.

I am grateful to Barry Smith, Matthew Knepley, Satish Balay and the entire PETSc

team at Argonne National Laboratory for helping me with the source code acquisition,

installation and compilation issues. Datrix R© is a registererd trademark of Bell Canada. I

am grateful to Bell Canada for providing the license for the use of their product Datrix.

I express my gratitude to BitMover Inc., for the use of the BitKeeper configuration man-

agement system. I am also thankful to Dr. Quinlan for allowing me the use of the C 4.5

tool. Neural network analysis could not have been possible without the Stuttgart Neural

Network Simulator (SNNS) tool. I am grateful to folks at the Institute for Parallel and

Distributed High Performance Systems (IPVR), University of Stuttgart for the SNNS tool.

iii

Last but not the least, I thank all Empirical Software Engineering research group members

for their valuable suggestions on the research.

iv

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . xi

CHAPTER

I. INTRODUCTION . 1

1.1 Hypothesis . 1
1.2 Research Questions . 2
1.3 Relevance . 2
1.4 Overview . 3

II. RELATED WORK . 4

2.1 Empirical Studies in Software Engineering 4
2.2 Implementing Software Metrics . 6
2.3 Open-Source Software . 9
2.4 Predicting Quality Metrics . 11
2.5 Modeling Techniques . 15

III. TOOLS . 24

3.1 BitKeeper . 24
3.2 Datrix . 25
3.3 Perl Scripts . 25
3.4 SAS . 26
3.5 Backprop . 27
3.6 SNNS . 27
3.7 Custom GA . 27
3.8 C4.5 . 28

v

CHAPTER Page

IV. METHODOLOGY . 29

4.1 Procedure . 29
4.2 Experimental Design . 30

V. CASE STUDY . 33

5.1 Introduction . 33
5.2 Data Collection . 34
5.3 PETSc Data . 37
5.4 Building Models . 39
5.5 Principal Components Analysis . 41

VI. LOGISTIC REGRESSION MODELING 47

6.1 Release 1 Models . 48
6.2 Interpreting the models . 53

VII. NEURAL NETWORK MODELING . 54

7.1 Experimenting with Backpropagation Neural Networks 54
7.2 Performance On Future Releases . 61

VIII. GENETIC ALGORITHM TRAINED MODELING 63

8.1 Logistic Regression Approach . 63
8.2 Neural Network Approach . 65
8.3 Evaluation Function . 65
8.4 Results . 67

IX. DECISION TREE MODELING . 72

9.1 C 4.5 . 72
9.2 Release 2.1.1 Models . 74
9.3 Release 2.1.2 Models . 79
9.4 Interpretation of the Model . 81

X. ANALYSIS . 83

10.1 Research Questions . 83
10.2 Analysis of Risks . 89
10.3 Threats to Internal Validity . 91

vi

CHAPTER Page

10.4 Threats to External Validity . 92

XI. CONCLUSIONS . 93

11.1 Evaluation of Hypothesis . 93
11.2 Contributions . 94
11.3 For Further Research . 94

REFERENCES . 96

APPENDIX

A. RELEASE DISTRIBUTIONS . 100

B. PRINCIPAL COMPONENT ANALYSIS 105

C. LOGISTIC REGRESSION MODELS . 116

C.1 Release 2 Models . 117
C.2 Release 3 Models . 121
C.3 Release 5 Models . 125

vii

LIST OF TABLES

TABLE Page

3.1 Tools . 24

4.1 Procedure . 29

4.2 Comparing Different Models . 32

5.1 PETSc Releases under Study . 33

5.2 Matching Input and Output Data . 35

5.3 Fault-Prone Distribution of all Releases . 39

5.4 Forming Data Sets for Logistic Regression and Decision Tree Modeling . . . 41

5.5 Training, Validation and Test Sets for Neural Network Modeling 41

5.6 Eigenvalues for Release 2.1.1 . 43

5.7 Rotated Factor Pattern for Release 2.1.1 . 44

5.8 PCA Factors for each Release . 46

6.1 Logistic Regression Modeling Results: Trained on Release 1 (R1) 52

6.2 Release 1: Training Set and Test Set Sizes 52

7.1 Basic Neural Network Results . 56

7.2 Neural Network Committee Machine . 57

7.3 No Hidden Layer Neural Network Results 59

viii

TABLE Page

7.4 No Hidden Layer Neural Network Committee Machines 59

7.5 SNNS Results . 60

7.6 SNNS vs. Standard NN Test Data Sets . 61

8.1 GA Parameters . 68

8.2 Data Sets Used in the Experiment . 68

8.3 GA-Based Logistic Regression Results . 69

8.4 GA-Based Neural Network Results . 70

9.1 C 4.5 Results on Original Data Set Model 77

9.2 C 4.5 Results on Duplicated Data Set Model 78

9.3 C 4.5 Release 2.1.2 Model Results . 80

10.1 Statistical t-Test for each Technique vs. the Random Model 84

10.2 Neural Network vs. Logistic Regression Results 85

10.3 Decision Tree vs. Logistic Regression Results 87

10.4 Neural Network vs. Decision Tree Results 88

10.5 Logistic Regression Based GA vs. Traditional Logistic Regression Results . . 88

10.6 Neural Network Based GA vs. Traditional Backprop Neural Network Results 89

10.7 FilIncNbr Metric Values . 90

B.1 Eigenvalues for Release 2.1.2 . 107

B.2 Rotated Factor Pattern for Release 2.1.2 . 108

B.3 Eigenvalues for Release 2.1.3 . 110

ix

TABLE Page

B.4 Rotated Factor Pattern for Release 2.1.3 . 111

B.5 Eigenvalues for Release 2.1.5 . 113

B.6 Rotated Factor Pattern for Release 2.1.5 . 114

C.1 Parameters for Different Models . 117

C.2 Logistic Regression Modeling Results: Trained on Release 2 (R2) 120

C.3 Release 2: Training Set and Test Set Sizes 120

C.4 Logistic Regression Modeling Results: Trained on Release 3 (R3) 124

C.5 Release 3: Training Set and Test Set Sizes 124

C.6 Logistic Regression Modeling Results: Trained on Release 5 (R5) 127

C.7 Release 5: Training Set and Test Set Sizes 127

x

LIST OF FIGURES

FIGURE Page

2.1 A Typical Two-Layer Backpropagation Neural Network 19

2.2 Processing at each Node . 19

2.3 Sigmoid Curve . 19

2.4 A Simple Decision Tree . 23

5.1 Data Collection Process and Scripts Used 35

5.2 Example Modification for Data Collection 37

5.3 Cumulative Bugs for PETSc Source 2.1.1 38

5.4 Bugs Distribution for PETSc Source 2.1.1 38

5.5 Cumulative Bugs for PETSc Source 2.1.6 40

5.6 Bugs Distribution for PETSc Source 2.1.6 40

6.1 Logistic Regression Modeling R1: Cost Ratio Selection for Model 1 49

6.2 Logistic Regression Modeling R1: Cost Ratio Selection for Model 2 49

6.3 Logistic Regression Modeling R1: Cost Ratio Selection for Model 3 50

9.1 Cost Ratio Selection for C 4.5 on Original Data Set 75

9.2 Cost Ratio Selection for C 4.5 on Duplicated Data Set 76

9.3 Cost Ratio Selection for C 4.5 Release 2.1.2 Model 79

9.4 Model Trained on Release 2.1.1 Original Data Set 82

xi

FIGURE Page

A.1 Cumulative Bugs for PETSc Source 2.1.2 101

A.2 Bugs Distribution for PETSc Source 2.1.2 102

A.3 Cumulative Bugs for PETSc Source 2.1.3 102

A.4 Bugs Distribution for PETSc Source 2.1.3 103

A.5 Cumulative Bugs for PETSc Source 2.1.5 103

A.6 Bugs Distribution for PETSc Source 2.1.5 104

C.1 Logistic Regression Modeling R2:Cost Ratio Selection for Model 1 118

C.2 Logistic Regression Modeling R2:Cost Ratio Selection for Model 2 118

C.3 Logistic Regression Modeling R2:Cost Ratio Selection for Model 3 119

C.4 Logistic Regression Modeling R3:Cost Ratio Selection for Model 1 122

C.5 Logistic Regression Modeling R3:Cost Ratio Selection for Model 2 122

C.6 Logistic Regression Modeling R3:Cost Ratio Selection for Model 3 123

C.7 Logistic Regression Modeling R5:Cost Ratio Selection for Model 1 125

C.8 Logistic Regression Modeling R5:Cost Ratio Selection for Model 3 126

xii

CHAPTER I

INTRODUCTION

Building high quality software is the goal of every software organization. Especially

in the case of open-source software, quality is a big concern. Identifying the compo-

nents which are fault-prone can help in achieving this goal. A new release of a software

product generally contains bug fixes for the bugs found after the previous release, and en-

hancements to the functionality. Obviously, there is some relationship between a software

product’s source code and the post-release bugs found in that software product release.

We try to model this relationship. The model can then be used to identify the fault-prone

modules in the next release of the software system. Once these fault-prone modules are

identified, developers can clean or rebuild these modules. Identifying fault-prone modules

also allows the users to make informed decisions about the software system.

1.1 Hypothesis

The hypothesis of this work is as follows:

By analyzing past releases of an open-source software product for high per-
formance computing, one can identify high-risk faulty modules. This analysis
can be performed by statistical and machine learning modeling techniques.

The statistical and machine learning techniques that will be employed in this research

are logistic regression, neural networks, genetic algorithms (GAs), and decision trees.

1

2

1.2 Research Questions

The approach used in this research is an empirical case study of the past releases of

Portable Extensible Toolkit for Scientific computation (PETSc). The research questions

that are interesting for this case-study are as follows:

1. Does the case-study provide evidence for or against the hypothesis?

2. Which modeling approach, statistical or machine-learning is more accurate for the
system being studied?

(a) How does a neural network’s accuracy compare with logistic regression?

(b) How does a decision tree’s accuracy compare with logistic regression?

(c) How does a neural network’s accuracy compare with decision tree?

(d) How does the accuracy of GA trained logistic regression compare with tradi-
tional logistic regression?

(e) How does the accuracy of a GA trained neural network compare with a tradi-
tional backpropagation neural network?

1.3 Relevance

This research will provide evidence for or against the proposed hypothesis. Supporting

evidence will help the developers to clean or rebuild the faulty modules, thus producing

higher quality software systems. It will also help the users of open-source software to

analyze the benefits of a newer release of a product before they decide to use it. Evidence

against the hypothesis will lead to the analysis of why the modeling process failed to give

appropriate predictions of the fault-prone modules. The analysis can help understanding

the problems in software modeling, which parameters and relationships are important for

successful modeling, and possible solutions for overcoming them [1].

3

1.4 Overview

Chapter II presents an overview of related work in the field of software metrics and

empirical software engineering. Chapter III presents the various tools that were used in

the thesis. Chapter IV describes the methodology and the experimental design. Chap-

ter V presents the case-study system on which the research was carried out. Chapter VI

discusses the application of logistic regression modeling on the different data sets and

presents its results. Chapter VII discusses the application of neural networks to the same

problem and presents its results. Chapter VIII describes the application of genetic algo-

rithms for learning logistic regression and neural network models to this problem. Chapter

IX presents the application of decision trees to the same problem. Chapter X provides an-

swers to the research questions and the hypothesis. Chapter XI evaluates the hypothesis,

summarizes contributions and provides ideas for further research.

CHAPTER II

RELATED WORK

2.1 Empirical Studies in Software Engineering

This section presents the various issues in conducting empirical software engineering

experiments and case-studies. In a recent study, Zelkowitz and Wallace [40] observed that

the work regarding new technology or techniques in computer science is not carried out

the ideal way. They propose a taxonomy of 12 different experimental approaches covering

three broad areas — observational, historical, and controlled — in empirical software

research. They discuss these approaches with their advantages and disadvantages. In their

work, they surveyed 612 different articles related to software engineering and classified

them according to their experimental approaches. Results show that the top two categories

in these papers are assertions (biased experiments) and no-experiments. Researchers often

fail to state their goals clearly, or show how they validate their hypothesis. The authors

recommend that researchers characterize the experiments according to their data in order

to enhance the researcher’s ability to report on experiments. Following this approach, our

experiment would fit in the case-study category.

There are various ethical issues in empirical software engineering experiments relat-

ing to informed consent, confidentiality, scientific value and beneficence [34]. Informed

4

5

consent implies getting the consent of the subjects to perform the experiment without any

coercion, with complete knowledge about the goals of the experiment and freedom to with-

draw at any time without explanation. Confidentiality concerns maintaining anonymity of

the subjects by avoiding including the identity details in the results. The scientific value of

an experiment concerns the importance of the research topic to society and the validity of

experimental results. If the use of a particular approach is debatable, then the validity of

the experimental results is doubtful. Any results that could harm an individual subject or

an organization should be not be published. This refers to beneficence. In essence, proper

planning and research should be performed in advance, in order to abide by these ethical

constraints to avoid difficult circumstances later. With our case-study approach, we do

not identify individuals, thereby taking care of confidentiality. The research, by itself, has

significant scientific value in the software industry.

Kitchenham et al. [18] propose a set of guidelines for conducting and reviewing empir-

ical software-engineering results. These guidelines are based on the authors’ experience

of reviewing empirical software engineering research studies and the research guidelines

in the medical field. These guidelines cover different aspects of the research including ex-

perimental context, experimental design, data collection, analysis, presentation of results,

and interpretation of results. The aim of such guidelines is to ensure that other researchers

can replicate the experiments discussed, that the conclusions are not an effect of applying

incorrect statistical techniques, and that the conclusions do not follow as a result of ma-

nipulated data. Such guidelines can help improve the hitherto poor standard of empirical

6

software-engineering research. These are not the definitive all-inclusive set of guidelines,

but they provide a good place to begin. We will use these guidelines to allow other re-

searchers to replicate our experiments and to maintain the validity of our results.

Jeffery and Votta’s [13] special introduction to an IEEE Transaction issue on Software

Engineering discusses the issues regarding the processes, design and structure of empirical

studies. They focus on the goals of developing repeatable experiments, developing ways

of providing cost-effective and timely results, and improving the empirical methods.

Generally, empirical software engineering research involves quantitative data. How-

ever, studies involving human behavior are best expressed using qualitative data. Seaman

[31] discusses several qualitative methods for data collection and analysis and describes

how they can be combined with quantitative data analysis. These methods can be used for

analyzing the bug reports in our data.

2.2 Implementing Software Metrics

The software industry has recently begun to take advantage of software metrics.

Pfleeger [27] describes the maturity of software measurements in an introduction to a

special issue on software measurements in IEEE Software. These metrics programs have

been found to be highly successful in reducing project costs and helping to produce qual-

ity software. The Capability Maturity Model developed by SEI also promotes the metrics

program. CMM level 4 (Managed) and level 5 (Optimized) require use of process metrics

7

to be measured and used for continuous process improvement [24]. This section describes

some of the metrics programs implemented in the industry.

Grady [8], based on his experience at Hewlett-Packard, suggests that by carefully mea-

suring and analyzing product and process metrics, it is possible to develop software prod-

ucts with fewer bugs and better quality and to avoid costly post-release updates. In most

cases, only one set of metrics is collected and analyzed by different groups. However, the

needs of higher management and the project manager differ in what they want to mea-

sure through the metrics program. To satisfy the needs of both groups, Grady suggests

classifying the metrics program into four main areas: project estimation metrics, product

metrics, process metrics, and rankings of the metrics among these. Examples of metrics in

these four areas are tracking functionality, found-and-fixed defects for project estimation,

cyclomatic complexity, fan-out squared for product metrics, tracking defect patterns for

process improvement and comparing testing strategies for ranking best metrics.

Paulish and Carleton [23] discuss the results of applying the software process im-

provement methods in an industry setting at Siemens. Using a case-study approach, they

measure the process, product, and environment at different sites working on different

projects at periodic intervals. These metrics include defect detection distribution, defect

rate, project productivity, schedule adherence, etc. By analyzing these metrics, improve-

ments to the process are implemented. The gains of these improvement methods are calcu-

lated by measuring these same metrics after a year. They also present some of the lessons

8

learned in initiating and implementing such a process improvement program and recom-

mendations for implementing it.

Daskalantonakis [4], based on his experience at Motorola, stresses the importance of

a prerequisite infrastructure that should be installed and working for a successful metrics

program. Furthermore, metrics to be collected and tracked should be considered in various

dimensions such as their utility, metric type, audience for metrics, metric user needs and

the levels of metric application. He also gives a set of metrics implemented at Motorola,

spanning a cross-section of the software development process ranging from requirements,

design, schedule and effort estimation to defect density and post-release bugs. He explains

how it helped to track and monitor progress. With respect to costs associated with the

metrics program, Daskalantonakis argues that these are not too significant as compared

to the benefits they offer. He stresses the fact that software metrics measurement is not

the goal; the goal is continuous process improvement through measurement, analysis, and

feedback.

Myrtveit and Stensurd [22] discuss a series of experiments carried out with industry

practitioners to determine if they can perform better at the task of project-effort estimation

with the aid of different tools, and if so which tool is the best. Their experiments extended

earlier work and measured the performance of practitioners with a history aid, an analogy

tool, and a multiple linear regression tool. They also measured the performance of these

tools by themselves without the practitioners. Their results showed that while comparing

only the tool’s performance, the regression tool outperformed the analogy tool, which was

9

not in accordance with the previous work. Their results also showed that when tested

individually, neither of these tools was found to be better than the practitioners with a

history aid. As the environment, nature of the projects, experimental design, and analysis

methods change, empirical estimation results do not converge and hence these results can

be difficult to generalize.

All of these examples were discussed with respect to an industrial setting which gen-

erally develops closed-source products. However, open-source products vary from their

counterparts in many different ways. The following section gives an overview of open-

source software.

2.3 Open-Source Software

Wu and Lin [38] explain that free software does not have any relation to the cost of

the software. Free emphasizes the freedom to run the program, modify it to suit your

needs, and redistribute the modified copies so that society can benefit from your modi-

fications. One of the major differences of many open-source software projects from the

closed-source software projects is that anyone in the world who is capable and wishes to

join the development effort can join in. This is not the case with closed-source software.

Supporters of open-source software claim that this is the basic reason that open-source

software is more stable. Some of the development issues associated with open-source

software are the use of version control systems and various licensing models.

10

Lawrie and Gacek [20] discuss the various issues surrounding the dependability of

open-source software. Dependability is considered to be a broad term covering many

features including reliability, security and availability. A system can be said to be depend-

able if it meets certain assurance criteria to demonstrate the above qualities. In general,

open-source software products are not necessarily more dependable than the non-open-

source software products. However, research suggests that, despite their ad-hoc nature

and chaotic characteristics, open-source software development is highly organized in many

cases. Since open-source software projects are initiated based on personal interest, they are

more concentrated towards system software products, whereas non open-source software

are available in a variety of domains. The open-source software development process dif-

fers from its counterpart in many factors such as tools/methods used, focus of these tools,

and the constraints on these projects. So, a better way to analyze dependability would be

on a project-by-project basis, rather than as open-source or non-open-source.

The introductory article by Feller et al. [6] in ACM Software Engineering Notes dis-

cusses papers on open-source software development with regards to meeting the chal-

lenges and surviving the success seen so far by the open-source software community. The

papers in this special issue discuss (1) quality, maintainability, portability, replicability

of open-source software products, (2) stability and sustainability of developer and user

communities, and (3) viability and profitability of open-source business models.

Paulson, Succi and Eberlein [25] compare the evolutionary and static characteristics

of open-source and closed-source software. This study is based on examination of six

11

software systems, three from the open-source community and three from a closed-source

community. Their results show that open-source software projects foster more creativity

and, generally the software has fewer defects because the bugs are found and fixed more

rapidly than in closed-source software. This does not necessarily imply that open-source

software projects are more modular, foster faster system growth, or are simpler than the

closed-source projects.

Given these differences, it is worth pointing out that even though our research method-

ology is the same for both open-source and closed-source projects, the results from this

case study of an open-source system may not apply exactly to a closed-source software

product.

2.4 Predicting Quality Metrics

Generally, an industry implemented metrics program collects the metrics for every

release and makes improvements by analyzing the metrics in between the releases. A

better approach can be to predict the value of software metrics for the release and make

informed decisions about improving its quality before the software product is released.

This has been an interesting topic for the software-engineering community for quite a

while. This section describes some of the successful attempts in this area.

Khoshgoftaar et al. [16] discuss the use of software development databases to predict

high risk modules. The hypothesis of their work is that by applying data mining techniques

to the software development databases from current and past releases, a considerable per-

12

centage of high risk modules in the current release can be identified early in the develop-

ment process. The idea is to build a model of the software using the past release data. The

data mining approach used for building this model is classification and regression trees

(CART). This model is then used on the current release data to decide whether a module is

faulty or not. The technique correctly classified 63% of the fault prone modules and 81%

of the not-fault prone modules. This can be considered a good estimate, given the huge

costs of rework after the software release.

Von Mayrhauser et al. [36] discuss an approach for identifying fault prone components

of a software system by studying the past releases and defect reports. Their hypothesis is

that by analyzing the defect reports of the past releases of a software system, the fault

architecture of the system can be derived. The idea behind this is that if two components

are to be modified in order to fix a defect, then these two components share a fault re-

lationship. The strength of this relationship is based on the number of times these two

components appear together in defect reports. Such an architecture can reveal the most

fault-prone system components over the past releases. If a component repeatedly appears

in the fault architectures for several consecutive releases, then it can be identified as an

architectural fault. The paper demonstrates this approach of deriving a fault architecture

on a large system of C, C++ and microcode spread through about 130 components mea-

suring approximately 800 KLOC. Performing a similar kind of analysis on our system

would enable us to compare our results with this approach. However, given the scope of

this comparison, we defer this work until later.

13

Khoshgoftaar and Allen [15] present a new type of model for software quality, named

module-order models, and discuss their evaluation and use. This model uses an underly-

ing statistical multiple regression model to predict the dependent quality variable for the

various modules. These modules are then ranked according to the extent to which they are

fault-prone. Analysis based on two case-studies shows that this model is fairly accurate

in identifying the top fraction of most fault-prone modules. Moreover, as the results of

the underlying multiple regression model are used to get the module order ordering, the

cut-off for identifying fault-prone modules need not be fixed before the model is built.

This allows the managers to concentrate the quality management effort on only as many

modules as is permitted by the resources.

Neural networks have also been used in this classification task. Khoshgoftaar et al.

[17] describe a neural network based software quality model for predicting the modules as

high risk or low risk, early in the development cycle. The hypothesis of their work is that

the neural network classification model performs better than the discriminant classification

model for classifying the modules as high risk or low risk. These conclusions are based on

the case-study involving data from a large military telecommunications system. This paper

also discusses a few techniques for tweaking the performance of their neural network. The

misclassification performance in terms of type I and type II errors was about 13% and 7%

respectively which can be considered as excellent.

Rapur [30] presents an implementation of a statistical software quality modeling ap-

proach that uses the amount of code-churn as a predictor variable. Multiple linear regres-

14

sion and module-order module analysis was carried out on the data. The experiment was

based on data collected for three past releases of the MPICH system. A multiple linear

regression model was built on the training data, (data between the changes in release 1

and 2) and evaluated on the test data (data between the changes in release 2 and 3). The

analysis used the number of lines of change between the different releases as the predictor

variable. This change could be due to many different reasons other than bug fixes. Also,

since the number of large-change modules is only a small fraction of total number of mod-

ules, the experimental accuracy was limited. The analysis, however, did provide a formal

approach for conducting such an experiment.

Selby and Porter [32] demonstrate the application of decision trees to the problem

of identifying components or modules which had high fault rates. The authors use the

ID3 decision tree algorithm to build their trees from a set of 74 input attributes. Their

results show that they had an average accuracy of about 80% with low type I and type II

misclassification rates. The decision tree classification process makes it easy to understand

the classification task and figure out the main factors that result in a high number of faults

in a module. The authors’ data for this experiment was based on sixteen moderate to large

size software systems from NASA developed for ground support for unmanned spacecraft

control. The decision tree was used to model the development process for these projects.

Since we are concentrating on multiple releases of the same software product, we are

trying to model the traits of a particular software product.

15

2.5 Modeling Techniques

This section discusses principal components analysis, and various modeling tech-

niques that will be used in this research. These include logistic regression, neural net-

works, genetic algorithms, and decision trees.

Principal Components Analysis Principal components analysis (PCA) as defined by

Dunteman [5] is a “statistical technique that linearly transforms an original set of vari-

ables into a substantially smaller set of uncorrelated variables that represents most of the

information in the original set of variables.”

A typical metric analyzer would measure a large set of metrics on a set of modules.

Some of these metrics would be correlated with each other. However, modeling processes

require a small subset of these metrics that are uncorrelated. Hence, principal components

analysis is carried out. A step by step description of PCA, adapted from Khoshgoftaar and

Allen [15] is shown below.

1. Let us assume that our metric analyzer collected m different metrics over n modules.
The result is an n × m matrix, denoted by X. We then standardize the matrix X as
follows to obtain a standardized measurement matrix Z, where an element is

zij =
xij − µj

σj

(2.1)

where xij represents a measurement value of metric j for module i, µj represents
the mean of metric j and σj stands for the standard deviation of metric j.

2. Principal components are linear combinations of standardized random variables such
as Z1, Z2, ..., Zm. These principal components represent the same data in a new co-
ordinate system where variability is maximized in each direction and the principal
components are uncorrelated.

16

3. Next, we calculate the covariance matrix Σ of Z. The covariance of a pair of com-
ponents, Xi and Xj is defined as follows [33].

Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] (2.2)

4. If the covariance matrix Σ is a real symmetric matrix with distinct roots then we can
calculate the eigenvalues λj and eigenvectors ej of Z.

5. Each eigenvalue λj is the variance of the corresponding principal component. Since
eigenvalues form a non-increasing series λ1 ≥ λ2... ≥ λm, we can reduce the di-
mensionality by considering only first p components according to some stopping
rule, where p � m. For example, choosing p such that Σp

j=1λj/m ≥ 0.9 captures
90% of total variance in the principal components.

6. Next, we calculate the standardized transformation matrix T of size m × p. The
columns tj are calculated as follows.

tj =
ej√
λj

(2.3)

7. Let Dj represent a principal component variable (in our case, FACTOR) and D rep-
resent the n × p matrix with Dj values for j = 1, ..., p. These are calculated as
follows.

Dj = Ztj

D = ZT (2.4)

We calculate the transformation matrix T based on our training set. To transform the

test set, we then use this transformation matrix T generated during PCA.

Logistic Regression: The logistic regression model is used for classifying modules into

one of two classes, fault-prone or not-fault-prone. The general form of this model is given

as

log

(
p

1 − p

)
= a0 + a1x1 + a2x2 + a3x3 + ... + anxn (2.5)

17

where p is the probability of a module belonging to the fault-prone class, x is the input

vector for a module and a is the coefficient vector [19]. If this probability is greater than a

certain threshold then the module is classified as being in the fault-prone class, else it is in

the non fault-prone class. This follows from the logistic regression function discussed by

Khoshgoftaar and Allen [14].

Class(xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fault − prone if p̂
1−p̂

≥
(

CI

CII

) (
πnfp

πfp

)

not − fault − prone otherwise

where xi is a module, p̂ is the estimated probability of a module being in a fault-prone

class, πnfp, πfp are the prior probabilities of membership in the not-fault-prone and the

fault-prone classes respectively in the training set, and CI , CII are the costs of misclassi-

fication.

The modeling process involves estimating the coefficient vector a from the training

set, given the class of each module as fault-prone or not-fault-prone and the input vector

x. SAS provides a procedure for doing this type of modeling, which uses a maximum like-

lihood estimation method to calculate the coefficients [12]. Stepwise logistic regression

involves adding one variable at a time to the model, starting with the intercept a0. After a

significant variable is added to the model based on a Chi-Square test, the least significant

variable in the model is removed.

Neural Networks: Neural networks are one of the premier machine learning tools for

classification tasks. There are different kinds of neural networks. The simplest form and

the one that is relevant to our work is the backpropagation neural network. A typical

18

three-layer backpropagation network is shown in Figure 2.1. The network consists of

three layers: an input layer, a hidden layer, and an output layer. Because the nodes at the

input layer do not perform any processing, this network is generally called a two-layer

network. It is a feed-forward, fully connected network, which means that all nodes in one

layer connect to all the nodes in the next layer. These nodes are connected by links. Each

of these links has a weight associated with it. At every processing node in the hidden

layer and the output layer there is a combination of a summation and a sigmoid unit. The

summation unit sums the product of inputs and the weights of each link connected to that

particular node. This value is then fed to the sigmoid unit where the input is transformed

to a value between 0 and 1 using a sigmoid function. This is illustrated in Figure 2.2 and

Figure 2.3. This illustrates the forward pass through the network. The following equations

demonstrate the forward pass. S stands for the stimulation caused at the input of each

node, W for weight of the link between nodes i and h and A stands for the activation

output at each node.

Sh =
Ni∑
i=0

AiWi ,h (2.6)

Ah =
1

1 + e−Sh
(2.7)

Next we discuss the backward pass. In this pass, the error at the output layer is cal-

culated as the difference between the target value and the output value. This error is then

propagated back to the hidden layer. The weights of the network are then adjusted, so that

19

 I1

I2

I3

I4

H1

O1 H2

H3

Input Layer Output Layer Hidden Layer

W11

W43

W31

W11

W21

Figure 2.1 A Typical Two-Layer Backpropagation Neural Network

Σ A(v)

W11 I1

W12 I2

W13 I3

Output

Figure 2.2 Processing at each Node

Figure 2.3 Sigmoid Curve

20

if that example is presented again the error of the network will be reduced. The equations

for the updating the weights of the network are discussed by Haykin [9]. This series of

a forward pass and a backward pass is repeated for all the examples in the training set.

This is known as one epoch. Training a neural network can take up to several thousand

epochs depending on the nature of the problem [9]. Once the network is trained, it is ready

to use. The unclassified input samples are presented to the network and the classification

score is obtained at the output layer. Since there are only two classifications involved in

this example, the output layer contains a single node. If the classification score is greater

than 0.5 then the input sample belongs to say class A, else it belongs to the class B. All

the information in a neural network is stored in the form of the weights of the connections

between the nodes. So, it is not trivial to abstract that information from a network.

Neural networks generally perform better when there are equal proportions of data in

the training set for each class being identified. Since in our case-study, where only a small

number of the modules are fault-prone, we will investigate techniques to counter problems

arising from unequal distributions of data.

Genetic Algorithms: A genetic algorithm (GA) is a technique initially developed by

Holland et al. for solving optimization or classification problems. Goldberg [7] applied

genetic algorithms to the gas pipeline industry demonstrating their usefulness in solving

real world problems. This method uses an analogy from biology and nature where chro-

mosomes contain the information required to describe an individual. This information is

21

encoded in the form of genes on the chromosome. The main idea behind a GA is the prin-

ciple of natural selection, where the best fit members in a population tend to survive and

produce offsprings, resulting in the evolution of better individuals.

A typical GA works as follows. A random population of individuals is created for the

first generation. These individuals are then evaluated and ranked according to a fitness

function. Higher fit individuals from one generation get a chance to produce offspring for

the next generation. As the population evolves, better and better individuals are generated

by crossing over or mutating the parent chromosomes. This process is repeated until a

satisfactory solution is found or a fixed number of generations have passed. During the

entire process, the best fit individual found so far, is saved. This best fit member is then

used on the test set to get the results. The theory behind how a GA works is explained

using the schemata theorem [7].

Our problem is to identify the fault-prone modules in the system. Typically, the ra-

tio of fault-prone modules to not-fault-prone modules in a mature software system is ap-

proximately 1:9. Hence, the standard classification methods, which require equal class

distributions do not perform as well on these data sets. A genetic algorithm allows us

to express these conditions explicitly in the fitness function and guide the evolutionary

process towards identifying better classifiers. Hence, genetic algorithms are more likely to

be successful on this type of problem.

There are different methods to select the parents in one generation for producing the

offspring in the next generation. The most commonly used is Roulette wheel selection.

22

The two most commonly used operators for producing the offspring are crossover and

mutation operators. Crossover operators make cuts in the two parent chromosomes, and

swap the material between the cuts to create two offspring chromosomes. The mutation

operator involves changing the gene value on a chromosome. For real valued genes, as in

our case, Gaussian mutation is preferred over random mutation [7].

Decision Trees: A decision tree is a machine-learning approach which is generally used

for classification tasks. One of the advantages of the decision-tree approach is that it is

very easy to abstract the information in the resulting model and understand how the clas-

sification decision was made. This can allow one to conclude facts like such and such

parameters cause a module to be faulty. Figure 2.4 shows a simple decision tree. The

decision tree is built by starting with a root node and a set of independent parameters. A

parameter is selected at each level of the tree, and the input data is divided on that parame-

ter. The parameter chosen is generally the one which would result in the smallest tree. The

information gain heuristic is one of the methods employed to determine this parameter

[29]. This process is continued until all the samples at a node are of one classification or

they are too small in number. At this stage, the classification of the samples is assigned to

that leaf node.

Once, the tree is built, classifying an unseen example involves a simple pass through

the tree. The leaf which the input sample reaches is the classification for that example.

23

high

Include files ?

medium low

No. of functions

low high

High risk Low risk

Low risk Low risk

Figure 2.4 A Simple Decision Tree

C4.5 provides built-in support for pruning decision trees. We will investigate the ef-

fects of C4.5 pruning and study other techniques for pruning.

CHAPTER III

TOOLS

A variety of tools were used in this research. This chapter presents the pointers to the

guides and descriptions about the tools used. Table 3.1 lists all the tools used in the thesis.

Table 3.1 Tools

Tools Description Developed by
Bitkeeper Configuration Management System BitMover Inc.
Datrix Metrics Collection Tool for C, C++ code Bell Canada
Perl Scripts Processing, Collecting metrics This Research
SAS Statistical Analysis Tool SAS Institute
Backprop Backpropagation Neural Network This Research
SNNS Neural Network Simulator IPVR
Custom GA Genetic Algorithm Programs This Research
C4.5 Decision Tree Tool Quinlan

3.1 BitKeeper

BitKeeper [11] is a configuration management system used by the PETSc developers.

It is similar to other configuration management systems. This configuration management

system was used to obtain the update logs for each file in the system’s data repository.

24

25

BitKeeper has a feature which allows one to get all the update logs from the time the

system was being used to the current date. We used this feature to get our update log.

3.2 Datrix

Datrix R© [2] is used for measuring the source code metrics for the system being studied.

The following components of the Datrix tool set were used in this study.

1. dxprepc: This component preprocesses the macros and preprocessor directives
like #include, #ifdef, #ifndef etc. For this study, it was found that pre-
processed code with dxprepc resulted in errors in the next stage of measurement.
Hence, the g++ preprocessor was used.

2. dxmetc: This component actually collects the metrics from the preprocessed source
code. We measure file-level and routine-level metrics using dxmetc.

3.3 Perl Scripts

The metrics collected by Datrix are in a nested block-text format. For our analysis,

we want the metrics to be in row-columns format. We use the scripts sfmet.pl and

srmet.pl to switch to the row-columns format.

The file-level metrics are collected one row per source file and the routine level metrics

are collected one row per routine. So, if a file had three routines, it will have one row of

file-level metrics and three rows of routine level metrics. However, we want to have one

row of metrics for each file. We merge the routine level metrics into one row, depending

on the definition of each routine-level metric. For example, for a routine-level metric such

as RtnLnsNbr, we merge the individual routine-level metrics by simply adding them. For a

26

metric like RtnScpNstLvlMax, we merge the individual metrics by taking their maximum.

Similarly, for metrics like RtnCplCtlAvg, we take the average by summing up the numer-

ators’ metric values and dividing by the sum of denominators’ metric values. All of this

aggregation is performed by the aggrmet.pl script. After the aggregation, the routine

and file-level metrics are combined using the script mergerfmet.pl.

The output data is collected by the script colloutmetrics.pl from the Bitkeeper

configuration management system. This script mines the entire update log of the system. It

searches for keywords such as “bugs”, “defects”, “problem”, etc. in the comments of each

of the update logs. The outputs produced are bug counts for each file, release by release.

The input and output metrics are then merged using the script mergerfoutmet.pl.

A set of utility scripts were also developed for finding the size of the system, and the

percentage of bugs in C files, header files, etc. All the scripts are developed in Perl. Wall,

Christiansen and Orwant [37] is a good resource for learning to build Perl scripts.

3.4 SAS

SAS [12] is statistical analysis package that was used for building various models in

this study. Logistic regression models are built using the proc logistic procedure.

A variety of other procedures in SAS like proc means, proc univariate, proc

score, proc freq, etc. were used in the study.

27

3.5 Backprop

Standard backpropagation neural networks were implemented to carry out the neural

network research. This implementation used the concepts discussed in Haykin [9] and

also included features such as momentum, early stopping, committee machines, etc. A

variation also included the use of a no-hidden-layer neural network and no-hidden-layer

committee machines.

3.6 SNNS

SNNS is a very sophisticated neural network tool developed by the Institute for Par-

allel and Distributed High Performance Systems (IPVR) at the University of Stuttgart,

Germany. Along with the basic neural network features, this tool also provides visualiza-

tion of the error and the weights of the network. It also has a handy feature for conducting

multiple tests at one time.

3.7 Custom GA

Genetic Algorithms were implemented as a part of the project for Dr. Boggess’s

Genetic Algorithms class [28]. Two genetic algorithms were developed. One GA program

was used to learn the parameters for logistic regression and other to learn the weights of a

neural network.

28

3.8 C4.5

C4.5 is a decision tree tool developed by Quinlan [29]. The main programs for this tool

are c4.5, c4.5rules, consult, consultr, and the script xval.sh. The c4.5

program builds a decision tree from the given data and c4.5rules builds the produc-

tion rules from the c4.5 generated tree. The programs consult and consultr can

then be used to classify the unseen examples from the decision tree and production rules

respectively. The script xval.sh (run using csh) is an automated script for performing

cross validation. It builds the decision tree model, evaluates the test data and stores the

result in the filstem.tres and filstem.rres files.

The input file names for the C4.5 system have a format of filestem.ext. Filestem

denotes the current problem you are working on, say petsc211 and ext denotes the type

of the input file. Different values for ext are names, data, tree, unpruned, etc. The

names file contains information about the data, classifications for the data, input parame-

ters, their types — discrete, continuous, etc. The data file contains the data for building the

tree with each line describing one input sample. The test file contains the testing data.

CHAPTER IV

METHODOLOGY

A case study methodology is followed for this research. This chapter explains the

procedure for carrying out the experiments and the set-up for each experiment for our

system. This methodology is also applicable for conducting a similar study with any other

system.

4.1 Procedure

The procedure for our carrying out the experiments is listed in Table 4.1.

Table 4.1 Procedure

Tasks
1 Collect the system’s source code data using Datrix for each release.
2 Collect the system’s bugs data for each release from configuration logs.
3 Perform principal components analysis on each data set.
4 Form training and validation data sets.
5 For every release

5a Build logistic regression models.
5b Build neural network models.
5c Build GA trained logistic regression and neural network models.
5d Build decision tree models.
5e Analyze and compare the performance of the above models.

29

30

1. Collect the system’s source code data using Datrix for each release: The data is col-
lected from the most recent five releases of the system. Datrix is used for collecting
this metric data.

2. Collect the system’s bugs data for each release from configuration logs: The number
of bugs found in each module for each release is collected from the configuration
management system’s logs.

3. Perform principal components analysis on each data set: Correlated features are
undesirable for a classification task. Hence, principal components analysis is per-
formed on each training data set to obtain uncorrelated features for the input data.

4. Form training and validation data sets: Since, the data collected is for five releases,
we form more than a single set for training and validation. For example, we train a
model on release 1 and test on release 2. The next model is trained on release 2, test
on release 3 and so on.

5. For every release, we

(a) Build logistic regression models: A statistical analysis package SAS [12] was
used for building statistical classification models.

(b) Build neural network models: Backpropogation neural network classification
models were explored using a custom NN and a freely available SNNS [35]
software.

(c) Build GA trained logistic regression and neural network model: Logistic re-
gression and neural network models trained using genetic algorithms were also
built.

(d) Build decision tree models: Quinlan’s [29] C4.5 was used for building a deci-
sion tree based classification model.

(e) Analyze and compare models: This involves the analysis of each model’s per-
formance and comparison of their performance – how similar or different are
the results, what factors affect the model’s performance, which model is better
suited to this kind of a task, which factors make the modules fault-prone etc.

4.2 Experimental Design

Our aim is to compare the accuracy of each of the proposed methods, logistic re-

gression, neural networks, decision trees, and GA trained logistic regression and neural

31

network models from a software engineer’s point of view. To compare these methods,

there are a few terms that need to be explained.

Typically, a software system would have fault-prone to not-fault-prone modules ra-

tio of 1:9. The two classes involved in the classification are not-fault-prone and fault-

prone classes. Using the terminology from statistics, classifying a fault-prone module as

not-fault-prone is called a type II misclassification error and classifying a not-fault-prone

module as fault-prone is called type I misclassification error. The cost of misclassification

for each class is different. CII/CI , known as the cost-ratio, is a subjective choice and

measures how much a misclassification of type II costs compared to a type I misclassifica-

tion. This implies how much classifying a fault-prone module as a not-fault-prone module

(type II misclassification) would cost us later as compared to classifying a not-fault-prone

module as a fault-prone module (type I misclassification). Clearly, the misclassification

cost for type II is much higher than for type I. We adjust our cost ratio such that the type

I and type II error rates are approximately equal. We do this cost ratio adjustment on our

training set.

To compare two models, we then consider the type I and type II errors. We calculate

these type I and type II errors using the confusion matrix obtained from the classifier.

Confusion Matrix =

⎛
⎜⎜⎜⎝

C1 M1

M2 C2

⎞
⎟⎟⎟⎠

C1 defines the number of modules that were correctly classified as being not-fault-

prone. C2 defines the number of modules that were correctly classified as being fault-

32

prone. M1 represents the number of misclassifications of type I, i.e. the number of modules

that were not-fault-prone but were classified as fault-prone. M2 represents the number of

misclassifications of type II, i.e. the number of modules that were fault-prone but were

classified as not-fault-prone. The Type I and Type II error rates are then calculated as

shown below.

TypeI =
M1

M1 + C1

(4.1)

TypeII =
M2

M2 + C2

(4.2)

Knowing that type II errors are more important, a lower type II error rate is preferred.

Also, because of the 1:9 distribution of fault-prone to not-fault-prone modules, higher type

I error rate means that a larger number of modules are misclassified. Comparison of two

models is a subjective choice combining these two issues.

Table 4.2 Comparing Different Models

TypeI (%) TypeII (%)
Model 1 20 45
Model 2 35 20
Model 3 30 25

For example, in Table 4.2, one can definitely say model 2 and model 3 are better than

model 1. However, the comparison between models 2 and 3 is subjective. The decrease in

one of the errors is associated with an increase in another.

CHAPTER V

CASE STUDY

5.1 Introduction

This research is based on the study of an open-source software system known as the

Portable Extensible Toolkit for Scientific computation (PETSc) developed by the Argonne

National Laboratory. This system was written in C and is comprised of approximately

two million lines of code. We include five releases of the PETSc software in our study as

shown in Table 5.1.

Table 5.1 PETSc Releases under Study

Release No. Release Date
2.1.1 December 19, 2001
2.1.2 April 22, 2002
2.1.3 May 31, 2002
2.1.5 Jan 27, 2003
2.1.6 August 5, 2003

Release 2.1.4 was a private release and hence the source code was not available. We

refer to these releases as 2.1.1, 2.1.2, 2.1.3, 2.1.5, 2.1.6 or releases 1, 2, 3, 5 and 6 inter-

changeably. Both actually refer to the same data sets.

33

34

5.2 Data Collection

In this research, we build software quality models for the PETSc software. As in any

model, this involves dependent and independent parameters. The input data in our case

were metrics measured from the source code of the above releases. The output parameters

for this model were the number of bugs that were found in a particular module. A module

was conceived of as a *.c file.

For measuring the input metrics, we used a metric analyzer tool, Datrix. The header

files had to be preprocessed before measuring the metrics. The data collection process is

shown in Figure 5.1.

Unfortunately, the PETSc developers did not directly keep track of any bugs data.

However, they used the BitKeeper configuration management system. We used the config-

uration management entries to find the number of the bugs in a module during a particular

release. Since the input data was collected only for a *.c file, only the bugs found in the

configuration management reports pertaining to a *.c file were collected.

One of the issues was how to combine the input and the output parameters. We as-

sumed that the number of bugs found after the release date of a particular release, say v1

until the next release date, v2, counts as the number of bugs for release v1. We matched

our input and output data sets as shown in table Table 5.2.

One of the interesting things was to find out whether there were any modules that did

not change since their first creation. By mining the configuration management system’s

logs, we found that there were around 150 modules that did not change from the first

35

Collect Input

Metrics

(collinpmetfast)

srmet.txt

sfmet.txt
Clean blank

lines

Cleanrmet.txt

Clean blank

lines

Cleanfmet.txt
Srmetcle

aned.txt

Sfmetcle

aned.txt
Aggregate

Routine Metrics

Aggrmet.pl

Clean blank

lines

Cleanrmet.txt

sraggrme

tcleaned

Merger Routine

and File Metrics

Mergerfmet.pl

inpmet.txt

Merge Input and

Output Metrics

Inpoutmet.txt

Collect Output

Metrics

Colloutmet.txt

outmet.txt

Clean blank

lines

Cleanoutmet.txt

outmetclean

ed.txt

Preprocess code

gcc -E

output.ii

Measure the

metrics

dxmetc

output.txt

Extract Routine

Metrics

srmet.pl

srmet.txt

Extract File

Metrics

sfmet.pl

sfmet.txt

Collect Input metrics

Collect Output Metrics

Saggrme

t.txt

Figure 5.1 Data Collection Process and Scripts Used

Table 5.2 Matching Input and Output Data

Release No. C Bugs *.h bugs Input Release
Before Release 2.1.1 642 21%
Between 2.1.1 and 2.1.2 131 29% 2.1.1
Between 2.1.2 and 2.1.3 107 22% 2.1.2
Between 2.1.3 and 2.1.5 42 8% 2.1.3
Between 2.1.5 and 2.1.6 68 15% 2.1.5
After 2.1.6 2285 24% 2.1.6

36

release of our study until the last release. Almost all of these modules were *.c files and

very few were *.h files. We concluded that all of these modules were stable and bug-free

over this period.

Our analysis only covers *.c files. However, it was interesting to discover what per-

centage of bugs were found in *.h files as compared to bugs found in *.c files. These

data are shown in Table 5.2. The header file bugs accounted for roughly 20% of the bugs;

80% bugs were present in *.c files.

Once the data for a release was ready, summary statistics for the data set were cal-

culated using SAS. Summary statistics provides number of entries, maximum, minimum,

mean, and standard deviation for each variable. This helped identify any obvious errors in

data collection and was a primary check for data validation. This procedure was repeated

for each of the releases. The summary statistics revealed that the maximum value for the

metric measuring the number of declarative statements in a module (RtnStmDecNbr) was

found to be very high in releases 2.1.3 and 2.1.6. After performing a univariate analysis,

it was found that the next highest values for this metric were considerably less giving the

impression that this file performed some complex operation, that used a large number of

variables. This may be the reason that this module had high values of RtnStmDecNbr.

For each of the releases, approximately 100 files had compilation errors which included

macro and syntax errors. These files were about 10% of the data. On communicating with

the PETSc team, we found that these files were not part of the core functionality and

hence could be ignored in this study. We selected a Solaris 64 configuration of the PETSc

37

software. For release 2.1.2 and 2.1.3, Datrix gave a few errors on extern definitions of

some functions in a few header files. After slight modification, these errors were resolved.

One of the examples of a modification is shown in Figure 5.2.

EXTERN int PetscViewerStringSPrintf(PetscViewer, char *, …) PETSC_PRINTF_FORMAT_CHECK(2,3);

EXTERN int PetscViewerStringSPrintf(PetscViewer, char *, …); // PETSC_PRINTF_FORMAT_CHECK(2,3);

Figure 5.2 Example Modification for Data Collection

5.3 PETSc Data

In this section, we discuss the different releases of the system. For each module,

Datrix collected 39 software metrics, which form the inputs to the model. The output

metric (number of bugs) was a discrete one. For our purposes of building a classification

model, we needed to determine a threshold for the number of bugs, so that each module

could be classified as being fault-prone or not-fault-prone.

We studied the bugs distribution for this purpose. Figure 5.3 shows the cumulative

bugs added on the modules, sorted in decreasing order of number of bugs. Figure 5.4

shows the bugs distribution with respect the individual modules.

Since the proportion of modules having one or more bugs is so low (almost 10%), we

kept the presence of any bugs as an indication of a fault-prone module. So a module is

called as fault-prone if it had one or more bugs. A module is called as not-fault-prone if it

38

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Rank of Modules

C
u

m
u

la
tiv

e
B

u
g

s 80 % of the Bugs
Rank 49, 105 Bugs

Figure 5.3 Cumulative Bugs for PETSc Source 2.1.1

0

1
2

3
4

5

6
7

8
9

10

0 200 400 600 800 1000

Rank of Modules

N
u

m
b

er
 o

f
B

ug
s

Figure 5.4 Bugs Distribution for PETSc Source 2.1.1

39

had no bugs. Using this classification, release 2.1.1 had 807 not-fault-prone modules and

75 fault-prone modules. Table 5.3 shows the fault-prone modules distribution over all the

releases.

Table 5.3 Fault-Prone Distribution of all Releases

fault-prone not-fault-prone total
Release 2.1.1 807 75 882
Release 2.1.2 809 95 904
Release 2.1.3 877 25 902
Release 2.1.5 860 52 912
Release 2.1.6 50 867 917

Releases 2.1.2, 2.1.3, and 2.1.5 had similar curves for cumulative bugs and bugs dis-

tribution. These are included in Appendix A.

However release 2.1.6 has a strikingly different distribution as compared to the other

releases. Figure 5.5 and Figure 5.6 show the cumulative bugs and the bugs distribution for

this release. This distribution is the reverse of that seen in other releases. Also, the number

of bugs per module is also higher than the previous releases.

5.4 Building Models

Since we have five different releases, our strategy was to build a series of models using

each release as the training set and testing with the rest of releases. Table 5.4 shows the

formation of training sets and test sets for logistic regression and decision tree modeling.

40

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

Rank of Modules

C
u

m
u

la
ti

ve
 B

u
g

s

80 % of the bugs
Rank 472 1883 Bugs

Figure 5.5 Cumulative Bugs for PETSc Source 2.1.6

0

5

10

15

20

25

30

0 200 400 600 800 1000

Rank of Modules

N
u

m
b

er
 o

f
B

u
g

s

Figure 5.6 Bugs Distribution for PETSc Source 2.1.6

41

Table 5.4 Forming Data Sets for Logistic Regression and Decision Tree Modeling

Model Training Set Test Set(s)
R1 Release 2.1.1 Release 2.1.2, 2.1.3, 2.1.5, 2.1.6
R2 Release 2.1.2 Release 2.1.3, 2.1.5, 2.1.6
R3 Release 2.1.3 Release 2.1.5, 2.1.6
R5 Release 2.1.5 Release 2.1.6

Table 5.5 Training, Validation and Test Sets for Neural Network Modeling

Model Training Set Validation Set Test Set(s)
N1 Release 2.1.1 Release 2.1.1 Release 2.1.2, 2.1.3, 2.1.5, 2.1.6

Table 5.5 shows the formation of training, validation and test sets for neural network

modeling. Using each modeling technique, a model is built for each of these sets based

on the training data. This model is then evaluated on each of the test sets. Since genetic

algorithms were added on later, we build GA-trained models only on release 2.1.1 and test

on 2.1.2.

5.5 Principal Components Analysis

For modeling purposes, we prefer uncorrelated data. Principal components analy-

sis (PCA) was performed to reduce the data set containing a large number of correlated

features to a small number of uncorrelated ones. The stopping criteria for principal com-

ponents analysis was a critical decision. The aim was to have the maximum variance in

42

the input data covered by the factors selected in the PCA. This ensured that we did not

lose significant information in this step. PCA was carried out using SAS.

PCA was performed on only the training set for each of the models. The output of the

PCA along with the above factors is a transformation matrix. This transformation matrix

was used to obtain the factor values for each of the test sets.

PCA was initially run with a minimum eigenvalue of one as the stopping rule. This

resulted in nine PCA factors on release 2.1.1. The tenth factor was close to the stopping

criteria and PCA of most of the other releases resulted in ten factors. Hence we decided to

add in the tenth factor for easy comparison. The eigenvalues for all the modules are shown

in the Table 5.6.

The rotated factor pattern is shown in Table 5.7. The columns F1 represents FACTOR1,

F2 represents FACTOR2 and so on. Throughout our analysis, a Varimax [12] rotation was

applied to the factor pattern to aid in interpretation. A row measures the correlation be-

tween a particular metric and each of the factors. The bold entries mark the metrics which

have high correlation with the factors. This explains the aspect of the source code that each

of the factors measure. Table 5.8 shows the meaning of the different factors in each of the

releases. It can be seen that even though the factor variables change for the parameters

over the different releases, they measure the same set of parameters for all the releases.

Hence, all the releases seem similar to each other with respect to the PCA.

Eigenvalues and rotated factor pattern for other releases are similar and included in

Appendix B.

43

Table 5.6 Eigenvalues for Release 2.1.1

Rank Eigenvalues Difference Proportion Cumulative
1 15.85 12.45 0.41 0.41
2 3.40 0.60 0.09 0.49
3 2.79 0.84 0.07 0.56
4 1.95 0.29 0.05 0.62
5 1.67 0.20 0.04 0.66
6 1.47 0.07 0.04 0.70
7 1.40 0.27 0.04 0.73
8 1.13 0.07 0.03 0.76
9 1.06 0.06 0.03 0.79

10 1.00 0.07 0.03 0.81
11 0.93 0.09 0.02 0.84
12 0.83 0.07 0.02 0.86
13 0.76 0.05 0.02 0.88
14 0.71 0.07 0.02 0.90
15 0.64 0.13 0.02 0.91
16 0.50 0.05 0.01 0.92
17 0.46 0.05 0.01 0.94
18 0.40 0.02 0.01 0.95
19 0.38 0.10 0.01 0.96
20 0.28 0.05 0.01 0.96
21 0.24 0.03 0.00 0.97
22 0.20 0.05 0.01 0.98
23 0.15 0.01 0.00 0.98
24 0.14 0.03 0.00 0.98
25 0.11 0.01 0.00 0.99
26 0.10 0.01 0.00 0.99
27 0.10 0.01 0.00 0.99
28 0.08 0.01 0.00 0.99
29 0.07 0.02 0.00 0.99
30 0.05 0.01 0.00 1.00
31 0.04 0.01 0.00 1.00
32 0.03 0.01 0.00 1.00
33 0.02 0.00 0.00 1.00
34 0.02 0.01 0.00 1.00
35 0.01 0.00 0.00 1.00
36 0.01 0.00 0.00 1.00
37 0.01 0.00 0.00 1.00
38 0.00 0.00 0.00 1.00
39 0.00 0.00 0.00 1.00

44

Ta
bl

e
5.

7
R

ot
at

ed
Fa

ct
or

Pa
tte

rn
fo

r
R

el
ea

se
2.

1.
1

FA
C

T
O

R
S

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

R
tn

St
m

E
xe

N
br

0.
89

0.
27

0.
22

0.
16

0.
12

0.
06

-0
.0

3
0.

03
0.

02
0.

03
R

tn
C

pl
E

xe
Su

m
0.

88
0.

22
0.

19
0.

14
0.

21
0.

01
-0

.0
1

-0
.0

1
0.

05
0.

04
R

tn
St

m
C

tlL
op

N
br

0.
87

0.
17

0.
26

0.
14

0.
01

0.
06

-0
.0

3
0.

01
-0

.0
4

-0
.0

1
R

tn
St

m
X

pd
N

br
0.

85
0.

22
0.

14
0.

26
0.

13
0.

04
-0

.1
1

-0
.0

1
-0

.0
2

0.
00

R
tn

St
m

N
st

L
vl

Su
m

0.
82

0.
34

0.
17

0.
29

0.
08

0.
06

-0
.0

8
0.

01
0.

02
0.

02
R

tn
L

ns
N

br
0.

76
0.

45
0.

24
0.

07
0.

09
0.

05
0.

10
0.

19
0.

00
0.

02
R

tn
St

m
D

ec
O

bj
N

br
0.

75
0.

48
0.

22
0.

06
0.

18
0.

03
0.

13
0.

08
0.

00
0.

01
R

tn
C

al
X

pl
N

br
0.

73
0.

47
0.

10
0.

08
0.

08
-0

.0
2

0.
23

0.
16

0.
01

0.
02

R
tn

A
rg

X
pl

Su
m

0.
69

0.
39

0.
05

0.
08

0.
13

-0
.0

3
0.

30
0.

17
-0

.0
3

-0
.0

2
R

tn
St

m
C

tlC
tn

N
br

0.
48

0.
20

0.
09

0.
08

-0
.0

1
0.

01
0.

08
0.

15
-0

.1
4

-0
.1

3
R

tn
St

m
C

tlI
fN

br
0.

19
0.

94
0.

06
0.

10
0.

05
0.

01
0.

01
-0

.0
4

-0
.0

5
-0

.0
2

R
tn

Sc
pN

br
0.

33
0.

91
0.

11
0.

13
0.

05
0.

02
0.

03
-0

.0
2

-0
.0

4
-0

.0
1

R
tn

C
pl

C
tlS

um
0.

33
0.

89
0.

08
0.

12
0.

10
0.

01
-0

.0
1

-0
.0

5
-0

.0
8

-0
.0

3
R

tn
Sc

pN
st

L
vl

Su
m

0.
39

0.
86

0.
10

0.
21

0.
03

0.
03

0.
01

-0
.0

3
-0

.0
5

-0
.0

2
R

tn
C

as
tX

pl
N

br
0.

37
0.

80
0.

07
0.

10
0.

03
0.

00
-0

.0
1

-0
.0

6
0.

11
0.

01
R

tn
St

m
C

tlR
et

N
br

0.
33

0.
78

0.
18

0.
04

0.
09

0.
02

0.
32

0.
11

-0
.0

1
0.

08
Fi

lD
ef

R
tn

N
br

0.
32

0.
77

0.
21

0.
04

0.
08

-0
.0

1
0.

33
0.

16
0.

03
0.

04
R

tn
St

m
D

ec
Pr

m
N

br
0.

32
0.

74
0.

18
0.

06
0.

12
0.

01
0.

29
0.

09
0.

01
0.

01
Fi

lD
ef

O
bj

G
lb

N
br

-0
.0

9
0.

66
-0

.0
6

-0
.1

2
-0

.0
3

0.
00

-0
.3

0
0.

16
0.

07
0.

01

45

Ta
bl

e
5.

7
R

ot
at

ed
Fa

ct
or

Pa
tte

rn
fo

r
R

el
ea

se
2.

1.
1

(c
on

tin
ue

d)

FA
C

T
O

R
S

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

Fi
lL

ns
N

br
0.

60
0.

66
0.

22
0.

04
0.

08
0.

05
0.

10
0.

20
0.

00
0.

03
R

tn
St

m
C

tlC
as

eN
br

0.
23

0.
09

0.
90

0.
05

-0
.0

3
0.

04
0.

02
0.

00
0.

03
-0

.0
1

R
tn

St
m

C
tlS

w
iN

br
0.

10
0.

12
0.

89
0.

02
0.

06
0.

00
-0

.0
1

0.
03

0.
00

0.
00

R
tn

St
m

C
tlB

rk
N

br
0.

43
0.

13
0.

76
0.

08
0.

00
0.

07
0.

05
0.

01
-0

.0
1

-0
.0

3
R

tn
St

m
C

tlD
flt

N
br

0.
28

0.
20

0.
69

-0
.0

2
0.

04
0.

09
-0

.0
5

0.
11

-0
.0

1
0.

02
R

tn
Sc

pN
st

L
vl

A
vg

0.
22

0.
15

0.
02

0.
89

0.
23

0.
05

0.
08

0.
02

0.
03

-0
.0

3
R

tn
St

m
N

st
L

vl
A

vg
0.

31
0.

04
0.

05
0.

85
0.

19
0.

04
-0

.1
0

-0
.0

1
0.

14
0.

02
R

tn
Sc

pN
st

L
vl

M
ax

0.
38

0.
27

0.
08

0.
73

0.
22

0.
04

0.
24

0.
12

0.
00

-0
.0

1
R

tn
C

pl
C

tlA
vg

0.
01

0.
15

-0
.0

3
0.

38
0.

79
0.

05
-0

.0
7

0.
12

-0
.1

1
-0

.0
3

R
tn

C
pl

C
tlM

ax
0.

24
0.

16
0.

01
0.

21
0.

75
0.

09
-0

.1
9

0.
14

-0
.1

6
0.

01
R

tn
C

pl
E

xe
M

ax
0.

43
0.

04
0.

12
0.

05
0.

61
0.

01
0.

21
-0

.0
5

0.
11

-0
.0

2
R

tn
C

pl
E

xe
A

vg
0.

07
-0

.0
6

0.
03

0.
13

0.
56

-0
.2

4
0.

23
-0

.2
8

0.
32

0.
02

R
tn

L
bl

N
br

0.
03

-0
.0

1
0.

05
0.

04
0.

01
0.

96
0.

07
-0

.0
2

-0
.0

1
-0

.0
1

R
tn

St
m

C
tlG

ot
oN

br
0.

10
0.

03
0.

09
0.

06
0.

00
0.

95
0.

05
-0

.0
4

-0
.0

1
0.

00
R

tn
St

m
D

ec
R

tn
N

br
0.

03
0.

14
-0

.0
4

0.
05

-0
.0

1
0.

10
0.

72
0.

02
-0

.0
1

-0
.0

1
Fi

lI
nc

D
ir

N
br

0.
20

0.
06

0.
16

0.
11

-0
.0

3
-0

.0
5

-0
.0

3
0.

77
-0

.0
2

0.
06

R
tn

St
m

D
ec

Ty
pe

N
br

-0
.0

2
0.

02
0.

05
0.

14
-0

.0
4

-0
.0

4
-0

.0
3

0.
00

0.
82

0.
02

Fi
lD

ec
St

ru
N

br
0.

06
0.

04
-0

.1
1

-0
.1

1
0.

16
0.

01
0.

12
0.

55
0.

57
-0

.0
7

Fi
lI

nc
N

br
0.

21
0.

13
0.

01
0.

00
0.

29
-0

.1
3

0.
27

0.
37

-0
.4

3
0.

03
Fi

lD
ec

O
bj

E
xt

N
br

-0
.0

2
0.

02
-0

.0
1

-0
.0

1
-0

.0
2

0.
00

-0
.0

1
0.

03
-0

.0
1

0.
98

46

Ta
bl

e
5.

8
PC

A
Fa

ct
or

s
fo

r
ea

ch
R

el
ea

se

Fa
ct

or
s

M
ea

ni
ng

fo
r

re
le

as
es

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
5

FA
C

TO
R
1

si
ze

si
ze

si
ze

if
st

at
em

en
ts

FA
C

TO
R
2

if
st

at
em

en
ts

if
st

at
em

en
ts

if
st

at
em

en
ts

si
ze

FA
C

TO
R
3

sw
itc

h-
ca

se
sw

itc
h-

ca
se

sw
itc

h-
ca

se
ne

st
in

g
FA

C
TO

R
4

ne
st

in
g

ne
st

in
g

ne
st

in
g

sw
itc

h-
ca

se
FA

C
TO

R
5

D
at

ri
x

co
m

pl
ex

ity
D

at
ri

x
co

m
pl

ex
ity

go
to

st
at

em
en

ts
go

to
st

at
em

en
ts

FA
C

TO
R
6

go
to

st
at

em
en

ts
go

to
st

at
em

en
ts

da
ta

ty
pe

de
cl

ar
at

io
ns

da
ta

ty
pe

de
cl

ar
at

io
ns

FA
C

TO
R
7

ne
st

ed
ro

ut
in

e
de

cl
ar

at
io

ns
in

cl
ud

es
in

cl
ud

es
in

cl
ud

es
FA

C
TO

R
8

in
cl

ud
es

da
ta

ty
pe

de
cl

ar
at

io
ns

ne
st

ed
ro

ut
in

e
de

cl
ar

at
io

ns
ne

st
ed

ro
ut

in
e

de
cl

ar
at

io
ns

FA
C

TO
R
9

da
ta

ty
pe

de
cl

ar
at

io
ns

ne
st

ed
ro

ut
in

e
de

cl
ra

tio
ns

di
re

ct
in

cl
ud

es
di

re
ct

in
cl

ud
es

FA
C

TO
R
10

ex
te

rn
ob

je
ct

s
ex

te
rn

ob
je

ct
s

ex
te

rn
ob

je
ct

s
ex

te
rn

ob
je

ct
s

CHAPTER VI

LOGISTIC REGRESSION MODELING

Logistic regression uses the following equation to build the model. The dependent

parameter p in our case is the probability that a given module is fault-prone. We define

a module as fault-prone if it had any bugs. The vector of dependent variables x are the

factors obtained from the PCA analysis.

log

(
p

1 − p

)
= a0 + a1x1 + a2x2 + a3x3 + ... + anxn (6.1)

Logistic regression analysis was performed using SAS. We review a few important

parameters before going on to the modeling process. CII/CI , known as the cost-ratio,

is a subjective choice and measures how a misclassification of type II costs compared to

a type I misclassification. This implies how much classifying a fault-prone module as

a not-fault-prone module (type II misclassification) would cost us later as compared to

classifying a not-fault-prone module as a fault-prone module (type I miclassification). The

logistic regression used the stepwise selection method. In the SAS logistic procedure, the

selection criteria slentry and slstay define the stepwise criteria for the factors to

enter in the model and stay in the model. SAS uses 15% as the default value. This has also

been used successfully in the literature [14].

47

48

6.1 Release 1 Models

Using 2.1.1 release data as training or fit data set, we built a logistic regression model

using SAS. Three different models were built by varying the parameters. The three models

are described below.

Model 1: Model 1 used a 15% stepwise selection criteria for logistic regression. Fig-

ure 6.1 shows the classifier model performance by varying the cost ratio on the training

set. We selected a cost ratio where the misclassification rates for type I and type II errors

were approximately equal. In this case, CII/CI is 150. A cost ratio of 150 was justified

by the practical penalty for letting a fault-prone module go undetected (CII) compared to

mistakingly treating a not-fault-prone module as if it were fault-prone (CI). However, this

choice is subjective and can be adjusted as needed. This applies only to the training set.

The equation obtained from model 1 is the following.

log

(
p

1 − p

)
= −2.71 + 0.40 FACTOR1 + 0.41 FACTOR2 − 0.33 FACTOR3

−0.25 FACTOR5 + 0.22 FACTOR7 + 0.40 FACTOR8 − 0.43 FACTOR9 (6.2)

Model 2: For model 2, we selected a higher stepwise selection criteria of 25% for lo-

gistic regression. This would allow more factors to be present in the model. Figure 6.2

shows the classifier performance as the cost-ratio is varied on the training set. Again, we

maintain the same ratio of 150, where the misclassification rates are equal.

49

0.00

20.00

40.00

60.00

80.00

100.00

0 50 100 150 200 250

CII/CI ratio

M
is

cl
as

si
fi

ca
ti

o
n

s
(%

)

Type II % Type I %

Figure 6.1 Logistic Regression Modeling R1: Cost Ratio Selection for Model 1

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 50 100 150 200 250

CII/CI ratio

M
is

cl
as

si
fi

ca
tio

n
s

%

Type I % Type 2 %

Figure 6.2 Logistic Regression Modeling R1: Cost Ratio Selection for Model 2

50

However, this model resulted in the same equation as model 1. So for this release, we

used model 1 for further analysis.

Model 3: In both of the previous models we used the original data set where the propor-

tion of fault-prone modules modules was very low (less than 0.1). In model 3, we use the

duplicated data set. In this data set, we duplicated the fault-prone modules so that they are

approximately equal to the number of not-fault-prone modules. The duplicated data set

contained 807 not-fault-prone and 750 fault-prone modules. The stepwise selection crite-

ria used was 15%. Figure 6.3 shows the misclassification rates for this model as the cost

ratio is varied. We selected the cost ratio, where both type I and type II misclassification

rates are equal, at 1.45. This new model resulted in one more parameter being added into

the equation, FACTOR6.

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

0 1 2 3 4 5 6

CII/CI ratio

M
is

cl
as

si
fi

ca
ti

o
n

s
(%

)

Type I Type II

Figure 6.3 Logistic Regression Modeling R1: Cost Ratio Selection for Model 3

51

log

(
p

1 − p

)
= −0.46 + 0.41 FACTOR1 + 0.45 FACTOR2 − 0.25 FACTOR3

−0.17 FACTOR5 − 0.48 FACTOR6 + 0.24 FACTOR7

+0.60 FACTOR8 − 0.39 FACTOR9 (6.3)

Evaluation: The above models were tested with each of the four releases 2.1.2, 2.1.3,

2.1.5, and 2.1.6. The results are shown in Table 6.1 and Table 6.2. The type II misclassi-

fication rates are of more interest to us, as they tell us how many fault-prone modules the

model actually missed. The results show that the models had approximately 69% accuracy

on the training set with misclassification rates averaging to approximately 31%. On the

2.1.2 and 2.1.3, the test data accuracy decreased slightly to about 66%. The misclassi-

fication rates were slightly higher from 2.1.2 to 2.1.3. For the release 2.1.6 test set, the

misclassification rates were lower and the overall accuracy was higher than the previous

releases. This in part was because of the distribution of the fault-prone modules to no-

fault-prone modules in this release. However the models had poor accuracy with 2.1.5

release test data.

We followed the same methodology to build models on other releases and test on the

rest of the releases. We present this models in Appendix C.

52

Table 6.1 Logistic Regression Modeling Results: Trained on Release 1 (R1)

Percent Number of Modules
Model 1 (%) Model 3 (%) Model 1 Model 3

Training Accuracy 2.1.1
Ok 68.93 70.52 608 1098
TypeI 30.98 29.62 250 239
TypeII 32.00 29.33 24 220
Test Accuracy 2.1.2
Ok 65.27 68.69 590 621
TypeI 33.75 30.53 273 247
TypeII 43.16 37.89 41 36
Test Accuracy 2.1.3
Ok 65.19 66.85 588 603
TypeI 35.23 33.30 309 292
TypeII 33.30 28.00 5 7
Test Accuracy 2.1.5
Ok 26.97 27.19 246 248
TypeI 76.63 76.40 659 657
TypeII 13.46 13.46 7 7
Test Accuracy 2.1.6
Ok 79.39 78.84 728 723
TypeI 30.00 34.00 15 17
TypeII 20.07 20.42 174 177

Table 6.2 Release 1: Training Set and Test Set Sizes

Fault-prone Not-fault-prone Total
Release 2.1.1

Model 1 75 807 882
Model 3 750 807 1557

Release 2.1.2 95 809 904
Release 2.1.3 25 877 902
Release 2.1.5 52 860 912
Release 2.1.6 867 50 917

53

6.2 Interpreting the models

From the logistic regression models, it can be seen that a module is fault-prone i.e.

(p > 1 − p) when the RHS of the model equation is positive. If we consider an aver-

age module, where all the factor values are zero, then the decision is made based on the

intercept. A negative intercept would mean that the p < 1 − p and the module is not-

fault-prone. Similarly, a positive intercept will mean that the module was fault-prone. In

all of the models discussed, the intercept is always negative. This implies that any model

will classify an average module as not-fault-prone. This is justified from our training data

distribution. Also, model 3 for each of the releases was based on duplicated data. This

model had approximately equal numbers of fault-prone and not-fault-prone modules in

each case. Hence the intercept for model 3 is less negative than the other models.

Typically, one would expect that as a factor’s value increases, the probability that a

module will be classified as fault-prone also increases. Hence, positive factor values in-

crease the chances of a module being fault prone and negative factor values reduce them.

In some of the models above, we found that some factors were negative in some models

and positive in others. This occurs even when the factor measures the same aspect of the

code, such as data type declarations. This suggests that a single factor is not decisive in

determining whether a module is fault-prone or not.

CHAPTER VII

NEURAL NETWORK MODELING

This chapter presents the application of different variations of backpropagation neural

networks to our classification problem. A backpropagation neural network typically re-

quires an equal distribution of both the classes in its training set. However a typical

software release has a fault-prone to not-fault-prone modules ratio of 1:9. Hence, we

duplicate the fault-prone modules in our training set so that they are approximately equal

to the number of not-fault-prone modules. Section 7.1 describes the various configurations

of the backpropagation neural networks that were explored in this research. Section 7.2

presents the results of the best selected configurations on the future releases.

7.1 Experimenting with Backpropagation Neural Networks

We start with a standard backpropagation neural network.

Standard Backpropagation Neural Network: The standard neural network used was

a two-layer backpropagation network. It employed a sigmoid function at the hidden and

the output layers. All ten factors resulting from the principal components analysis (PCA)

were input to the network. The network had ten input nodes, one for each of the ten PCA

components and one output node. The number of nodes in the hidden layer were varied

54

55

from one to six. The output of the network is a real number between zero and one. To get

the classification, a simple rule was used. If the value of the output node was greater than

0.5 then the module was labeled as fault-prone, else not-fault-prone. The PCA compo-

nents were real numbers in the range of approximately -20 to +20. Hence no encoding of

inputs was required. Normalization of the PCA was carried out in one of the experiments.

However, the standard neural network performed better without normalization. The per-

formance of the neural network varies slightly with each run, since the initial weights are

different for each run. We used a best of three technique, reporting the best results ob-

tained on the test sets from three runs of the network for all the experiments. These results

were found to be repeatable every few runs.

In this section, duplicated release 2.1.1 was divided into two sets, a training and a

validation set. Release 2.1.2 was used for testing. The duplicated release 2.1.1 contained

807 fault-prone modules and 750 not-fault prone modules. Of these 1557 modules, 400

modules selected at random were used as the validation data set. The remaining 1157

modules formed the training set. Release 2.1.2 contained 809 fault-prone modules and 95

not-fault-prone modules.

Table 7.1 shows the results of the basic neural network with the above described data

configuration. Nh defines the number of nodes in the hidden layer. Momentum defines the

momentum value, η defines the learning rate, and InitialWts are the range of positive and

negative values used to assign the initial weights of the network.

56

Table 7.1 Basic Neural Network Results

NN #1 NN #2 NN #3 NN #4 NN #5 NN #6 NN #7
NN Parameters
Nh 1 1 2 3 4 5 6
Momentum 0.00 0.20 0.20 0.00 0.00 0.00 0.00
η 0.30 0.20 0.35 0.18 0.15 0.20 0.15
InitialWts 0.50 0.25 0.50 0.10 0.10 0.25 0.50
Train Accuracy (%)
Ok 74.50 75.28 74.16 81.68 85.31 89.71 91.53
TypeI 34.48 32.84 34.98 16.42 12.64 10.18 13.14
TypeII 15.51 15.69 15.69 20.44 16.97 10.40 3.28
Test 2.1.2 Accuracy (%)
Ok 65.15 64.71 63.50 74.00 77.10 78.21 74.12
TypeI 36.22 35.97 37.95 21.63 19.16 17.06 22.37
TypeII 23.16 29.47 24.21 63.16 54.74 62.11 55.79

The neural network does well with 1 or 2 nodes in the hidden layer. As the number

of hidden nodes is increased, the performance on the training set improves, but falls on

the test set. This is because, the network memorizes the input patterns and hence does not

perform well on unseen samples. To avoid overtraining, the neural network program had

a feature, where if the error on the validation set increased continuously for a few epochs,

say10, then the training would be stopped. However, it was observed that this option was

never selected and the training continued for the maximum number of epochs scheduled, in

our case, 500. We also experimented with a larger number of generations up to about 5000,

but after approximately 500 generations, there was no significant improvement. To further

improve the accuracy of the network, we built a committee machine of these individual

networks.

57

Backpropagation Committee Machines: A committee machine consists of two or more

neural networks, different from each other in one way or the other. In our case, a com-

mittee machine consisted of three neural networks. The final classification for a module

was obtained by combining the classifications from individual networks, generally by vot-

ing. However, since the number of fault-prone modules was much less than the number

of not-fault-prone modules, we had a different scheme for combining the outputs. If any

of the individual networks classified the module as fault-prone, our final classification for

the module would be fault-prone, otherwise not-fault-prone. We call this rule the OR rule.

We selected the three best performing networks from our previous experiments to form

our committee machine.

Table 7.2 Neural Network Committee Machine

NN # 1 NN # 2 NN # 3 Committee
NN Parameters
Nh 1 1 2
Momentum 0.30 0.20 0.35
η 0.00 0.20 0.00
InitialWts 0.50 0.25 0.50
Train Accuracy (%)
Ok 74.76 75.28 74.85
TypeI 37.44 32.84 8.87
TypeII 11.68 15.69 43.25
NN Test 2.1.2 Accuracy (%)
Ok 61.39 64.82 80.75 64.71
TypeI 40.42 35.85 12.61 36.34
TypeII 23.16 29.47 75.79 26.32

58

Table 7.2 shows the results of this committee machine. The committee machine results

are not significantly better than the individual committee machines. This can be attributed

to the distribution of various samples in our test set. Since a large number of these modules

are not-fault-prone, the majority voting rule tends to result in a higher type II error rate. If

we use the OR rule, then the type II error rate decreases significantly, however it does so

at the expense of type I misclassifications. Hence, it was found that individual networks

are better than a committee machine in this case.

No Hidden Layer Neural Network: Since the standard backpropagation network per-

forms best with just one node in the hidden layer, one school of thought is that the re-

lationship being modeled may be linear. To test this hypothesis, we removed the hidden

layer from our network. The network now contained an input layer and an output layer.

The output layer employed sigmoid units as before.

Table 7.3 shows the results of no-hidden-layer neural networks. The no-hidden-layer

neural networks are also called perceptrons. These results had higher type II error rates

than a standard 2-layer backpropagation network. Just as with 2-layer networks, we also

built committee machines with no hidden layer network.

No-Hidden-Layer Committee Machines: Table 7.4 shows the results of these commit-

tee machines. Again, these committee machines did not show significant improvement

over the individual standard backpropagation networks.

59

Table 7.3 No Hidden Layer Neural Network Results

NN #1 NN #2 NN #3 NN #4
NN Parameters
Momentum 0.90 0.00 0.70 0.00
η 0.35 0.20 0.35 0.25
InitialWts 0.50 0.50 0.25 0.50
Train Accuracy (%)
Ok 73.29 71.05 73.03 69.14
TypeI 26.27 19.54 27.59 31.36
TypeII 27.19 39.42 26.28 30.29
Test 2.1.2 Accuracy (%)
Ok 69.80 74.67 68.14 67.26
TypeI 27.94 21.14 30.04 32.51
TypeII 49.47 61.05 47.37 34.74

Table 7.4 No Hidden Layer Neural Network Committee Machines

NN # 1 NN # 2 NN # 3 Committee
NN Parameters
Momentum 0.90 0.90 0.70
η 0.35 0.40 0.35
InitialWts 0.25 0.15 0.50
Train Accuracy (%)
Ok 73.29 72.43 72.17
TypeI 21.51 30.17 34.48
TypeII 32.48 24.09 20.44
NN Test 2.1.2 Accuracy (%)
Ok 72.68 66.70 60.95 59.07
TypeI 23.49 32.88 38.69 42.40
TypeII 60.00 36.84 42.11 28.42

60

Stuttgart Neural Network System: We decided to use a freely available neural network

software package to compare and confirm our analysis. We chose the Stuttgart Neural

Network Simulator (SNNS) [35]. SNNS is a very sophisticated neural network tool devel-

oped by the Institute for Parallel and Distributed High Performance Systems (IPVR) at the

University of Stuttgart, Germany. We selected the standard feedforwad backpropagation

neural network and used the same data sets to obtain a fair comparison.

Table 7.5 SNNS Results

NN #1 NN #2 NN #3 NN #4 NN #5 NN #6 NN #7
Nh 1 2 3 4 5 6 7
η 0.2 0.3 0.2 0.2 0.2 0.2 0.2
Momentum 0 0.1 0 0 0 0 0
Train Accuracy (%)
Ok 75.28 75.37 72.95 84.87 74.07 88.33 73.03
TypeI 35.30 25.29 40.89 18.39 42.04 14.12 35.80
TypeII 12.96 23.91 11.68 11.50 8.03 8.94 17.15
Test 2.1.2 Accuracy (%)
Ok 63.16 68.25 60.18 71.35 59.18 74.78 63.27
TypeI 38.44 29.91 41.90 25.34 43.02 20.52 37.95
TypeII 23.16 47.37 22.11 56.84 22.11 65.26 26.32

Table 7.5 shows the results of SNNS on the same data sets. SNNS obtained results

comparable to standard backpropagation networks. It also performed best with a single

node in the hidden layer.

61

7.2 Performance On Future Releases

We selected the two best configurations from our previous sections to carry out the

further analysis on future data sets. These two configurations were a standard backpropa-

gation neural network with a single node in the hidden layer and an SNNS neural network

with a single node in the hidden layer. The standard neural network used η = 0.30 and

InitialWts in the range of -0.5 to +0.5.

Table 7.6 SNNS vs. Standard NN Test Data Sets

SNNS Standard NN
Accuracy (%) Accuracy (%)

Test 2.1.3 Accuracy (%)
Ok 57.10 57.32
TypeI 42.99 42.76
TypeII 40.00 40.00
Test 2.1.5 Accuracy (%)
Ok 23.46 24.01
TypeI 80.70 80.12
TypeII 7.69 7.69
Test 2.1.6 Accuracy (%)
Ok 83.97 83.64
TypeI 30.00 30.00
TypeII 15.22 15.57

Table 7.6 shows the results on the future data sets with the above two configurations.

Both configurations had very similar results on the future releases. They performed on a

moderate level on 2.1.3, but failed completely on 2.1.5 release. The performance of these

networks on release 2.1.6 was worth noting, especially when this release had a strange

62

distribution of fault-prone and not-fault-prone modules (867 fault-prone module and 50

not-fault-prone).

This chapter also supported the hypothesis that release 2.1.5 is different from others in

some sense, since both the modeling techniques failed to predict on this release.

CHAPTER VIII

GENETIC ALGORITHM TRAINED MODELING

We describe the application of genetic algorithms (GA) to our problem in this chap-

ter. Two variants of GA’s are discussed and analyzed. Section 8.1 deals with a logistic

regression model learned by using a GA, and Section 8.2 deals with a GA trained neural

network. Section 8.3 discusses the different evaluation functions used, and Section 8.4

presents the GA results.

8.1 Logistic Regression Approach

The logistic regression approach consists of fitting an equation as shown below.

log

(
p

1 − p

)
= a0 + a1x1 + a2x2 + a3x3 + ... + anxn (8.1)

The class of a module is then determined by the following equation.

Class(xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fault − prone, if p̂
1−p̂

≥
(

CI

CII

) (
πnfp

πfp

)

not − fault − prone, otherwise

(8.2)

where xi is a module, p̂ is the estimated probability of a module being in a fault-prone

class, πnfp, πfp are the prior probabilities of membership in the non-fault-prone and the

fault-prone classes, respectively, in the training set, and CI , CII are the costs of misclassifi-

63

64

cation. SAS provides a procedure for doing the logistic regression, which uses a maximum

likelihood estimate method to get the classification [12].

The GA approach to logistic regression is to evolve the coefficients a0, a1, ..., an rather

than use a maximum likelihood estimate. The chromosome representation for the GA is a

linear arrangement of genes, each gene representing a real valued coefficient a0, ..., an. To

calculate the fitness of the individual, the evolved coefficients in the individual are substi-

tuted into the above equations and the class for each module in the data set is calculated.

Using this, a confusion matrix describing misclassifications and correct classifications is

obtained. The confusion matrix for this problem has the following form.

Confusion Matrix =

⎛
⎜⎜⎜⎝

C1 M1

M2 C2

⎞
⎟⎟⎟⎠

C1 defines the number of modules that were correctly classified as being not-fault-

prone. C2 defines the number of modules that were correctly classified as being fault-

prone. M1 represents the number of misclassifications of type I, i.e. the number of modules

that were not-fault-prone but were classified as fault-prone. M2 represents the number of

misclassifications of type II, i.e. the number of modules that were fault-prone but were

classified as not-fault-prone. Type I misclassifications err on the safer side, whereas type

II misclassifications cause some of the fault-prone modules to go undetected. Clearly a

type II misclassification is more costly than a type I misclassification.

65

8.2 Neural Network Approach

In a typical neural network approach, our experiment would have ten input nodes for

ten input variables, one output node for classification, and one to seven hidden nodes. The

network would be trained using backpropagation algorithm. In our GA approach, we fix

the network structure beforehand and then use the evolutionary method for developing the

weights of the neural network. The chromosome representation is a linear arrangement of

genes, each gene representing the weight between the input and hidden nodes and between

hidden and output nodes. To calculate the fitness of the individual, the evolved weights

are applied to the network. All the input samples are applied one by one to the network. If

the output at the end of the network is greater than 0.5 it is classified as fault-prone, else it

is classified as not-fault-prone. A confusion matrix is then built from these classifications.

8.3 Evaluation Function

Using the confusion matrix built above, we calculate the fitness of an individual clas-

sifier. The misclassification ratios of type I (mt1r) and type II (mt2r) are calculated from

the confusion matrix. From these, ratios for correct classifications of Type I (t1r) and

Type II (t2r) are calculated using the following equations.

mt1r =
M1

M1 + C1

(8.3)

mt2r =
M2

M2 + C2

(8.4)

66

t1r = 1 − mt1r (8.5)

t2r = 1 − mt2r (8.6)

Various fitness functions were applied for this task. In the first function, we calculate

the fitness as shown in Equation (8.7).

fitness = (1 − mt2r) ∗ (1 − mt1r ∗ cost) (8.7)

This function gives higher fitness values as the misclassification rates for type I and

type II errors decrease. If a classifier classifies all the modules to be of one type, the

fitness assigns the value of 0 to that classifier. The cost term enables us to scale a type I

misclassification with respect to a type II misclassification.

The second fitness function is as shown in Equation (8.8). This fitness function uses

both bonus and penalty.

fitness = (100 + t2r ∗ costC2 − mt1r) ∗ 10

if (fitness < 0) then fitness = 0 (8.8)

For every correct type II classification, a bonus is added to the fitness. costC2 allows

the type II misclassifications to be weighted as being more critical. Also, for every mis-

classification of type I, a penalty is subtracted from the fitness. Negative fitness is avoided

by starting the fitness with a positive initial value and assigning a zero value if the fitness

ends up being negative.

67

In the third function, we use the fitness evaluation method proposed by Hochman et al.

[10]. We define minimal acceptable correct classification ratio for type I (L1) and type II

(L2). Similarly, we define a higher desirable correct classification ratio limits for type I

(H1) and type II (H2). We then use the following rules for fitness evaluation.

if (t1r ≤ L1 or t2r ≤ L2)
fitness = 0.01

else if (L1 < t1r ≤ H1 and L2 < t2r ≤ H2)
fitness = 0.01 + λ*(t1r - L1) + (t2r - L2)

else if (t1r > H1 and L2 < t2r ≤ H2)
fitness = 0.01 + λ*(t1r - L1) + b1 + (t2r - L2)

else if (L2 < t1r ≤ L1 and t2r > H2)
fitness = 0.01 + λ*(t1r - L1) + (t2r - L2) + b2

else if (t1r > H1 and t2r > H2)
fitness = 0.01 + λ*(t1r - L1) + b1 + (t2r - L2) + b2

The parameter λ controls the effect of good class I identification. The parameters

b1 and b2 are bonus points added for better type I and type II classifications. Usually they

are kept low (approximately 0.05 to 0.25 in this case).

8.4 Results

We ran the experiments using all the three fitness functions. Crossover operators used

were one-point crossover, and two-point crossover. Single-point and two-point crossover

was used with equal probabilities. For mutation operators, we experimented with both

random mutation and Gaussian mutation [3]. Roulette wheel selection is used for selecting

the parents for producing offsprings.

68

Table 8.1 GA Parameters

GA Parameters GA Logistic GA NN
Population 200 100
Generations 200 100
Mutation Rate 0.03 0.03
Crossover Rate 0.9 0.9

Table 8.2 Data Sets Used in the Experiment

not-fault-prone fault-prone Total
Train 807 75 882
Test 809 95 904

Table 8.1 show the parameters of the GAs used for the experiments. Table 8.2 describes

the datasets used for this experiment. Release 2.1.1 is used as a training set and release

2.1.2 as the test set.

Table 8.3 shows the results of the GA-based logistic regression approach and Table 8.4

shows the results of the GA-based neural network approach. Results from various runs us-

ing different evaluation functions are presented. The parameters are presented depending

on the evaluation function used.

All the evaluation functions were found to be comparable in terms of accuracy of

results. Similarly the choice of standard or Gaussian mutation was not significant. The

evolutionary power of the GA seems to cancel the effects, if any, of these parameters. It

was also observed that the logistic regression approach had a lower type II error rate on the

69

Table 8.3 GA-Based Logistic Regression Results

Model
1 # 2 # 3 # 4 # 5 # 6

Parameters
cost 0.75 0.85 0.95 0.90 — —
L1 0.4 0.4
L2 0.4 0.4
H1 0.65 0.75
H2 0.65 0.75
b1 0.15 0.15
b2 0.15 0.20
λ 1.0 0.9
Mutation Type Standard Standard Standard Gaussian Standard Gaussian
Evaluation Function 1 1 2 2 3 3
Train Accuracy (%)
Ok 67.91 66.67 73.36 66.10 67.12 68.93
TypeI 33.46 34.70 26.77 35.69 34.32 32.34
TypeII 17.33 18.67 25.33 14.67 17.33 17.33
Test Accuracy (%)
Ok 65.15 64.27 69.47 63.83 64.60 62.17
TypeI 35.35 36.71 28.68 37.45 35.23 37.58
TypeII 30.53 27.37 46.32 25.26 36.84 40.00

70

Table 8.4 GA-Based Neural Network Results

Model
1 # 2 # 3 # 4 # 5 # 6

Parameters
cost 0.75 0.8 — — 0.95 0.95
L1 0.4 0.4
L2 0.4 0.4
H1 0.75 0.75
H2 0.75 0.75
b1 0.15 0.225
b2 0.15 0.225
λ 0.9 0.9
Mutation Type Standard Standard Standard Gaussian Standard Gaussian
Evaluation Function 1 1 3 3 2 2
Train Accuracy (%)
Ok 69.61 63.61 66.21 64.40 62.24 68.59
TypeI 29.37 36.68 34.45 34.57 38.04 29.62
TypeII 41.33 33.33 26.67 46.67 34.67 50.67
Test Accuracy (%)
Ok 72.23 65.60 67.37 68.47 63.83 72.23
TypeI 27.94 35.85 33.87 32.88 38.32 27.94
TypeII 26.32 22.11 22.11 20.00 17.89 26.32

71

training data, but for the test data, the neural network approach had better accuracy than

logistic regression.

CHAPTER IX

DECISION TREE MODELING

Decision trees work by building a tree-based model from the training set and using this

tree to classify the samples from the test set. The tool used for decision tree modeling in

this thesis is C 4.5 developed by Quinlan [29].

Section 9.1 describes how the C4.5 tool builds a decision tree and uses the tree to

classify the data. Section 9.2 presents release 2.1.1 models and Section 9.3 discusses

release 2.1.2 models.

9.1 C 4.5

The tree building algorithm as explained by Quinlan [29] is as follows.

Let T denote the set of training samples at a node, initially the root node. Let C1, C2,

C3 ... , Ck denote the different classes for these samples. There are four possible cases.

1. All the samples at the node T belong to one class Ci. The algorithm creates a leaf at
the node and the classification for that leaf node is Ci.

2. There are no training samples at the node T, then a leaf node is created and the
classification at that node is the majority classification at the parent node.

3. There are training samples belonging to multiple classes in T, but they cannot be
divided further because of too few samples. In such a case, the class having the
majority is the class assigned to the leaf.

4. There are samples belonging to multiple classes in T and are large enough to be split
further. An attribute is chosen and the set T is partitioned into mutually exclusive

72

73

sets T1, T2, T3, ..., Tn based on that attribute. This process is repeated iteratively on
every partitioned set. The attribute chosen to partition the set T is chosen in such
a way that it would result in a smallest decision tree. The heuristic used for this
purpose is the gain ratio criterion from information theory.

After the tree is built using the above recursive procedure, it is generally found that it

overfits the training data. C 4.5 uses error based pruning to produce a simpler tree which

can generalize better. It starts from the bottom of the tree estimating the error with each

subtree and the error when it is pruned to a leaf. If pruning lowers the error rate of the

subtree, then the subtree is pruned to a leaf. This process is repeated until we reach the

root of the tree.

The pruned tree is then used for classification. The parameters of the new sample

to be classified are used to trace down a path from the root to the leaf of the tree. The

classification of the new sample is the classification of the leaf.

The following are a couple of options in C 4.5 that were useful in building the tree.

1. Pruning Confidence Level (CF): This option controls the decision tree pruning rate.
The default value for this parameter is 25%. Lower values cause heavy pruning.

2. Weight(m): C 4.5 requires that every test in the tree should result in at least two
outcomes each with a minimum number of cases(m). The default value of this
parameter is 2.

However, we did not find a way of specifying that misclassifications of type II are more

costly than misclassification of type I. C 4.5 ’s way of classifying a sample is biased in

terms of number of training samples at the leaf node. Since our data is highly imbalanced

in favor of not-fault-prone modules, C 4.5 would classify most of the modules as not-fault-

prone.

74

We changed the code, so that we can weight these misclassifications. There are dif-

ferent ways of doing this, the way we implemented is that we keep the cost of type II

(fault-prone class) misclassification as 1, and varied the type I misclassification cost (be-

tween 0 and 1).

9.2 Release 2.1.1 Models

We built two different models, one based on the original data set and the other based on

a duplicated data set. For our initial analysis of selecting the best model, we used release

2.1.1 as the training set and 2.1.2 as the test set. The 2.1.1 original data set had 807 not-

fault-prone modules and 75 fault-prone modules, whereas in the duplicated data set, the

number of fault-prone modules was increased to 750, number of not-fault-prone modules

remaining the same. Release 2.1.2 had 809 not-fault-prone modules and 95 fault-prone

modules.

Original Data Set Model: The cost ratio variation for the original data set is shown in

Figure 9.1. The graph shows a stepwise function. The point where the value changes is

approximate. In our analysis, we are only concerned about the values of the stepwise graph

and not the actual point, where the value changes. We selected the cost ratio, where both

the type I and type II misclassification rates were approximately equal. In this case, we

selected our cost ratio to be 0.1. We resorted to very little or no pruning with this model.

75

This was to avoid pruning of the branches which might contain the very few fault-prone

modules. The CF parameter was set to 100.

0

20

40

60

80

100

120

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000

Cost

M
is

cl
as

si
fi

ca
ti

o
n

 R
at

e

Type I Type IIThe change points in the stepwise function are approximate

Figure 9.1 Cost Ratio Selection for C 4.5 on Original Data Set

Duplicated Data Set Model: For the duplicated data set, there was no variation with

the cost ratio. This is explained by the fact, that the number of fault-prone modules to

not-fault-prone modules is approximately equal. Maximum pruning was selected in this

model. The CF parameter was set to 1. However, we did observe a variation with the

m parameter. Figure 9.2 shows this variation. The point where both type I and type II

errors (lower values of m) were least, did not result into good predictions. This was

because the tree was too complex and overfitted the data. We used a validation set similar

to the one in neural networks. However, the validation set being from the same release

76

did not help much. The results on the test set were poor. This is because the decision tree

had become specific to one release. We then used a different release validation set. Thus,

the duplicated set model required 2 releases to build the model, duplicated release 2.1.1

as a training set, and release 2.1.2 as the validation set. This model was then tested on

future releases. We decided to train the model at the point, where it performs best on the

validation set.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 20 40 60 80 100 120

m

M
is

cl
as

si
fi

ca
ti

o
n

 R
at

e

Type I Type IIThe change points in the stepwise function are approximate

Figure 9.2 Cost Ratio Selection for C 4.5 on Duplicated Data Set

Table 9.1 and Table 9.2 shows the results obtained by using the decision tree built on

these two models. The original data set model seemed to perform well on releases 2.1.2,

77

Table 9.1 C 4.5 Results on Original Data Set Model

Original Data Set
Train 2.1.1 Accuracy (%)
Ok 69.50
TypeI 31.60
TypeII 18.67
Test 2.1.2 Accuracy (%)
Ok 65.27
TypeI 33.75
TypeII 43.16
Test 2.1.3 Accuracy (%)
Ok 64.30
TypeI 35.80
TypeII 32.00
Test 2.1.5 Accuracy (%)
Ok 66.45
TypeI 33.60
TypeII 32.69
Test 2.1.6 Accuracy (%)
Ok 39.37
TypeI 20.00
TypeII 62.98

78

Table 9.2 C 4.5 Results on Duplicated Data Set Model

Duplicated Data Set
Train 2.1.1 Accuracy (%)
Ok 71.61
TypeI 37.42
TypeII 18.67
Validation 2.1.2 Accuracy (%)
Ok 62.39
TypeI 38.81
TypeII 27.37
Test 2.1.3 Accuracy (%)
Ok 58.09
TypeI 42.30
TypeII 28.00
Test 2.1.5 Accuracy (%)
Ok 37.06
TypeI 64.65
TypeII 34.62
Test 2.1.6 Accuracy (%)
Ok 66.41
TypeI 34.00
TypeII 33.56

79

2.1.3, and 2.1.5 but failed on release 2.1.6. The duplicated data set model worked on

releases 2.1.2, 2.1.3, and 2.1.6 but failed on release 2.1.5.

It was observed that the original data set model had a lower type I error rate and re-

quired only one release to build the model. Hence we selected this model for further

analysis.

9.3 Release 2.1.2 Models

The original data set model built earlier was trained on release 2.1.1 and tested on the

rest of the releases. The next step was to build a series of models, trained on 2.1.2, 2.1.3,

and on 2.1.5 and test each of them on their future releases.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500

Cost

M
is

cl
as

si
fi

ca
ti

o
n

 R
at

e

Type I Type IIThe change points in the stepwise function are approximate

Figure 9.3 Cost Ratio Selection for C 4.5 Release 2.1.2 Model

80

Table 9.3 C 4.5 Release 2.1.2 Model Results

Original Data Set Model
Train 2.1.2 Accuracy (%)
Ok 79.65
TypeI 20.64
TypeII 17.89
Test 2.1.3 Accuracy (%)
Ok 73.06
TypeI 26.34
TypeII 48.00
Test 2.1.5 Accuracy (%)
Ok 60.64
TypeI 39.88
TypeII 30.77
Test 2.1.6 Accuracy (%)
Ok 46.67
TypeI 22.00
TypeII 55.13

Figure 9.3 shows the cost ratio selection of 0.1 for this model. The results are shown

in Table 9.3. The release 2.1.2 model exhibited moderate performance on releases 2.1.3

and 2.1.5. The type I and type II error rates are higher than with the release 2.1.1 models.

The models completely failed to predict correctly on the release 2.1.6 data.

Similar models were also built on 2.1.3 and 2.1.5 releases. The 2.1.3 release had 25

out of 902 modules that were fault-prone and 2.1.5 had 52 of 912 modules that were

fault-prone. However, because of the smaller number of fault-prone modules, the cost

ratio variation had only two points, one where it classified almost all modules as not-fault-

81

prone and other where it classified almost all modules as fault-prone. So for this kind of

analysis, a substantial amount of fault-prone modules are required.

Decision tree models had a different trend than the other models. Where the other

models failed on release 2.1.5, the decision tree seemed to work, but it failed on release

2.1.6 where the other models worked fine. Release 2.1.6 is the data set that has more

fault-prone than not-fault-prone modules. The trend with release 2.1.5 is interesting and

remains to be explained.

9.4 Interpretation of the Model

One of the main advantages of decision trees is that they provide a visual represen-

tation of the classification process. Figure 9.4 shows the tree obtained by training the

decision tree algorithm on release 2.1.1. FACTOR2 measures if statements, FACTOR7

measures nested routine declarations, FACTOR8 measures includes, FACTOR9 measures

data type declarations, and FACTOR10 measures extern objects.

If we consider these factors independently, FACTOR2, FACTOR7, FACTOR9, and

FACTOR10 are easy to explain. High values of these factors mean the module is fault-

prone, low values mean not-fault-prone. FACTOR8 measuring the number of includes is

difficult to explain. There are more divisions than just low or high for this factor. The

alternating pattern of 1’s and 0’s at the leaf show that this is not a linear problem.

82

1

2

> -0.181 <= -0.181

F2

F8

<= 0.254 > 0.254

3

7

> 0.4<= 0.4

F8

F7
4

<= 0.378 > 0.378

5

< = 0.326 > 0.326

6

<= -0.423 > -0.423

F9

F8

F8

8

> 0.848<= 0.848

F10

<= -0.366 > -0.366

0 0 0 1 0 1 0 0 1

Legend

0 Not fault-prone

1 Fault-prone

Decision Node

Leaf Node

Figure 9.4 Model Trained on Release 2.1.1 Original Data Set

CHAPTER X

ANALYSIS

This chapter presents the discussion of our results, provides answers to our research

questions and analyzes various factors affecting the results. Our analysis included only the

files which were modified at least once during the period of five releases. There were about

150 unchanged bug-free files which were stable and hence not included in our analysis.

10.1 Research Questions

Table 10.1 shows the results of a statistical t-test [21, 26] obtained by comparing each

of the modeling techniques with a random model. The hypothesis tested was that the

mean of the predictions of a modeling technique is equal to the mean of the predictions

of the random model. The probability column shows the probability that this hypothesis

is true. This test was carried out on 2.1.2 release data with 904 observations. Since these

probabilities are very small, it is clear that our modeling techniques are significantly better

than the random model.

How does a neural network’s accuracy compare with logistic regression?

Table 10.2 shows the neural network results compared with logistic regression results. For

release 2.1.2, the neural network had a lower type II error rate but a higher type I error

83

84

Table 10.1 Statistical t-Test for each Technique vs. the Random Model

Model t statistic Pr(Model = Random model)
Logistic regression 8.01 3.51E-15
Neural network 7.48 1.80E-13
GA trained logistic regression 6.30 4.69E-10
GA trained neural network 7.97 4.83E-15
Decision tree 6.54 1.01E-10

rate compared to logistic regression. Since the difference in type II error rates is more

important, the neural network gets the edge over logistic regression for this release. For

release 2.1.6, the neural network had lower type I and type II error rates compared to

logistic regression and was thus better.

For release 2.1.3, logistic regression performed better than the neural network. How-

ever, it is interesting to note that release 2.1.3 had only 25 modules which were fault-prone.

So, the percentages provide a magnified difference. As for release 2.1.5, both the methods

failed on that release.

Overall, neural networks and logistic regression results are comparable with neural

networks outperforming on a few occasions.

How does a decision tree’s accuracy compare with logistic regression?

Table 10.3 shows the decision tree results compared with logistic regression results.

For release 2.1.2 and 2.1.3, logistic regression had lower type I and type II error rates

than decision trees. The logistic regression failed on release 2.1.5, whereas the decision

85

Table 10.2 Neural Network vs. Logistic Regression Results

Logistic Regression Neural Network
Accuracy (%) Accuracy (%)

Train 2.1.1
Ok 70.52 75.37
TypeI 29.62 35.14
TypeII 29.33 12.96
Test 2.1.2
Ok 68.69 63.27
TypeI 30.53 38.32
TypeII 37.89 23.16
Test 2.1.3
Ok 66.85 57.32
TypeI 33.30 42.76
TypeII 28.00 40.00
Test 2.1.5
Ok 27.19 24.01
TypeI 76.40 80.12
TypeII 13.46 7.69
Test 2.1.6
Ok 78.84 83.64
TypeI 34.00 30.00
TypeII 20.42 15.57

86

tree seemed to work well. For release 2.1.6, the decision tree model failed and logistic

regression performed better.

Overall, logistic regression seemed to work better than the decision trees. An interest-

ing fact is that where both logistic regression and neural networks failed on release 2.1.5,

decision trees worked well.

How does a neural network’s accuracy compare with decision trees?

Table 10.4 shows the neural network results compared with decision tree results over

the five releases. The neural network performs better than decision trees on release 2.1.2

and 2.1.6 by the virtue of lower type II errors. Neural networks, as logistic regression,

failed on release 2.1.5, where the decision tree performed better. The decision tree also

performed better than the neural networks for release 2.1.3.

Overall, the performance of both the methods is comparable, with neural networks

being slightly better by virtue of lower type II errors.

How does the accuracy of GA trained logistic regression compare with traditional
logistic regression?

Table 10.5 presents the logistic regression model learned by GA and traditional logistic

regression results. Traditional logistic regression has a higher type II error rate. The GA

trained model had a significantly lower type II error rate and an increased type I error rate.

The GA trained model can be judged as being better since the decrease in the type II error

rate is greater than the increase in the type I error rate.

87

Table 10.3 Decision Tree vs. Logistic Regression Results

Logistic Regression C4.5 Decision Tree
Accuracy (%) Accuracy (%)

Train 2.1.1
Ok 70.52 69.50
TypeI 29.62 31.60
TypeII 29.33 18.67
Test 2.1.2
Ok 68.69 65.27
TypeI 30.53 33.75
TypeII 37.89 43.16
Test 2.1.3
Ok 66.85 64.30
TypeI 33.30 35.80
TypeII 28.00 32.00
Test 2.1.5
Ok 27.19 66.45
TypeI 76.40 33.60
TypeII 13.46 32.69
Test 2.1.6
Ok 78.84 39.37
TypeI 34.00 20.00
TypeII 20.42 62.98

88

Table 10.4 Neural Network vs. Decision Tree Results

Neural Network C4.5 Decision Tree
Accuracy (%) Accuracy (%)

Train 2.1.1
Ok 75.37 69.50
TypeI 35.14 31.60
TypeII 12.96 18.67
Test 2.1.2
Ok 63.27 65.27
TypeI 38.32 33.75
TypeII 23.16 43.16
Test 2.1.3
Ok 57.32 64.30
TypeI 42.76 35.80
TypeII 40.00 32.00
Test 2.1.5
Ok 24.01 66.45
TypeI 80.12 33.60
TypeII 7.69 32.69
Test 2.1.6
Ok 83.64 39.37
TypeI 30.00 20.00
TypeII 15.57 62.98

Table 10.5 Logistic Regression Based GA vs. Traditional Logistic Regression Results

True Logistic regression Logistic regression based GA
Accuracy (%) Accuracy (%)

Train 2.1.1
Ok 70.52 66.10
TypeI 29.62 35.69
TypeII 29.33 14.67
Test 2.1.2
Ok 68.69 63.83
TypeI 30.53 37.45
TypeII 37.89 25.26

89

How does the accuracy of a GA trained neural network compare with a traditional
backpropagation neural network?

Table 10.6 Neural Network Based GA vs. Traditional Backprop Neural Network Results

True Neural networks Neural network based GA
Accuracy (%) Accuracy (%)

Train 2.1.1
Ok 75.37 66.21
TypeI 35.14 34.45
TypeII 12.96 26.67
Test 2.1.2
Ok 63.27 67.37
TypeI 38.32 33.87
TypeII 23.16 22.11

Table 10.6 presents the results for a neural network learned by GA compared with

backpropagation neural network results. The backpropagation neural networks had better

results on the training set, but the GA trained network performed better on the test set.

The GA trained model had a slightly lower type II error rate than neural network and a

significantly lower type I error rate.

10.2 Analysis of Risks

As we found out from the previous section, the predictions for release 5 from logistic

regression, and neural nets and for release 6 from decision trees were poor. We attempted

to discover the reasons behind this failure. Can we uncover this risk before the predictions?

This would allow us to assign a quality factor to our predictions.

90

We analyzed the summary statistics of each of the releases. Table 10.7 shows the values

for the metric FilIncNbr, which measures the number of files included in a given source

file. It often approximates the number of interfaces a given file has with other files. This

metric had a significant increase between releases 2.1.3 and 2.1.5. All the other metrics

did not show any significant change between the releases.

Table 10.7 FilIncNbr Metric Values

Release Mean Value Std. Deviation Minimum Maxium
2.1.1 37.60 10.37 0 91
2.1.2 38.66 10.71 0 89
2.1.3 38.71 10.67 0 92
2.1.5 55.96 14.09 0 98
2.1.6 56.15 13.95 0 98

Such an increase in the number of include files could be due to breaking of a few large

include files into many smaller include files or due to adding several new features. Such a

transition in the metric can caution the quality analyst that these predictions are not very

dependable. This information may explain the failure of the above models on releases 5

and 6.

It was noted from the overall observations that the decision tree models performed

poorly on release 6, whereas logistic regression and neural networks performed well on

release 6. Release 6 had a 9:1 fault-prone to not-fault prone ratio compared to the 1:9 ratio

in other releases.

91

Finally, there is no one methodology that works best in all situations among the ones

we discussed here. Neural networks trained with GA do come close to the best, but we

do not have enough results to justify that. Neural networks and logistic regression have

comparable results with the former outperforming the latter on a few occasions. These

two are still better than the decision tree approach.

10.3 Threats to Internal Validity

This kind of modeling requires a large amount of data. Even though we had approx-

imately 800 not-fault-prone modules and about 75 fault-prone modules, there appeared

to be insufficient fault-prone modules. To overcome this, we duplicated the fault-prone

modules so that the class distribution was approximately even. Although it is rare to find

evenly distributed data sets in this field, a larger number of fault-prone modules helps the

task.

Our modeling is based on source code metrics. There are several other factors that

are useful for predicting if modules are fault-prone, but we were unable to gather data for

these metrics. These include various process metrics such as number of inspections for a

module, number of bugs found in the inspections, etc. The limitations of the data available

make it difficult for our method to yield predictions with very high accuracy rates.

92

10.4 Threats to External Validity

Our models are based on the PETSc releases. Therefore, these models are expected to

work for PETSc releases only. However, the methodology is general and can be extended

to build similar models for other software.

CHAPTER XI

CONCLUSIONS

11.1 Evaluation of Hypothesis

The hypothesis we were evaluating is as follows:

By analyzing past releases of an open-source software product for high per-
formance computing, one can identify high-risk faulty modules. This analysis
can be performed by statistical and machine learning modeling techniques.

From our analysis in this research, we can say that our results are good evidence that

support our hypothesis. The accuracy of the results, though, is affected by various factors

such as skewed distribution of the data, few data of the fault-prone class, lack of process

metrics etc. Also, it is possible to identify beforehand whether the predictions are very un-

certain. In essence, it is possible to identify the high-risk faulty modules by analyzing the

open-source software product for high performance computing by statistical and machine

learning techniques.

Of the techniques analyzed in this study, neural network results were comparable to

logistic regression and better on a few occasions. Both these approaches worked better

than the decision tree approach. The GA trained model for neural network gave the most

accurate results for the only set it was tested on.

93

94

11.2 Contributions

The evidence presented in this case study confirms our hypothesis and other similar

hypotheses found in the literature [14, 15, 16, 17].

The data collection technique of mining the configuration logs of a system to count

bugs is a contribution to this field. Almost every software organization maintains a con-

figuration management system making this type of data collection feasible.

This research also built upon the methodology developed by Rapur [30] to conduct

an empirical study of open-source software systems. This methodology is applicable to

the open-source software community as well as for the closed-source projects. The open-

source software community can use this methodology to find and fix the fault-prone mod-

ules thereby producing better quality software. The closed-source software community

can use this methodology to better allocate their resources for correcting fault-prone mod-

ules and uncovering any flaws in the software.

11.3 For Further Research

An interesting area is to build a fault architecture of the PETSc system over these five

releases as suggested by Von Mayrhauser et al. [36]. Such an architecture can be used to

identify the inter-related bugs between the modules while we treated each of these bugs

independently.

An approach suggested by Ying et al. [39] for predicting source code changes by

mining the change history is another good topic for further research. This can identify the

95

files that need to be changed if a particular source file is changed. This is also based on

the inter-relationship between the modules.

Another area to work on is to carry out additional case studies of different systems.

This will make our evidence more convincing and help in verifying our conclusions.

In our case study, the point of stopping the training was determined using equal cost

ratios for logistic regression and validation set for neural networks. Another approach is

to use ROC curves. Determining if ROC curves result in better models is an interesting

area for further work.

For decision trees and neural network, we fed the PCA outputs to build the model. One

school of thought is to use the normalized raw data for building decision trees and neural

network. It will be interesting to see if this technique results in significant improvements.

REFERENCES

[1] E. B. Allen, “CAREER: Assessment of Open Source Software for High-Performance
Computing,” Proposal to National Science Foundation, Mar. 2001.

[2] Datrix Metric Reference Manual, version 4.1 edition, Bell Canada, Montreal, Que-
bec, Canada, May 2001.

[3] E. Carter, Generating Gaussian Random Numbers, Taygeta Scientific Inc., 2004.

[4] M. K. Daskalantonakis, “A Practical View of Software Maintenance and Implemen-
tation Experiences,” IEEE Transactions on Software Engineering, vol. 18, no. 11,
Nov. 1992, pp. 998–1010.

[5] G. H. Dunteman, Principal Components Analysis, chapter 1, SAGE Publications,
Newbury Park, California, 1989, p. 7.

[6] J. Feller, B. Fitzgerald, F. Hecker, S. Hissam, K. Lakhani, and A. van der Hoek,
“Meeting Challanges and Surviving Success: The Second Workshop on Open Source
Software Engineering.,” Software Engineering Notes, vol. 27, no. 5, Sept. 2002, pp.
69–71.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Boston, 1989.

[8] R. B. Grady, “Successfully Applying Software Metrics,” IEEE Computer, vol. 27,
no. 9, 1994, pp. 18–25.

[9] S. Haykin, Neural Networks: A Comprehensive Foundation, second edition, chap-
ter 4, Prentice Hall, New Jersey, 1999, pp. 161–175.

[10] R. Hochman, T. M. Khoshgoftaar, E. Allen, and J. P. Hudepohl, “Using the Genetic
Algorithm to Build Optimal Neural Networks for Fault-Prone Module Detections,”
Proceedings: Seventh International Symposium on Software Reliability Engineering,
White Plains, NY, November 1996, IEEE, pp. 152–162.

[11] BitMover, Inc, http://www.bitkeeper.com, South San Fransico, California, February
2004.

[12] Statistical Analysis System, 4th edition, http://www.sas.com, Cary, North Carolina,
Sept. 1991.

96

97

[13] D. R. Jeffrey and L. Votta, “Guest Editor’s Special Section Introduction,” IEEE
Transactions on Software Engineering, vol. 25, no. 4, July 1999, pp. 435–437.

[14] T. M. Khoshgoftaar and E. B. Allen, “Logistic Regression Modelling of Software
Quality,” International Journal of Reliability, Quality and Safety Engineering, vol.
6, no. 4, 1999, pp. 303–317.

[15] T. M. Khoshgoftaar and E. B. Allen, “Ordering Fault-Prone Software Modules,”
Software Quality Journal, vol. 11, no. 1, Mar. 2003, pp. 19–37.

[16] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl, “Data Mining
of Software Development Databases,” Software Quality Journal, vol. 9, no. 3, Nov.
2001, pp. 161–176.

[17] T. M. Khoshgoftaar, D. Lanning, and A. Pandya, “A Neural Network Modeling
Methodology for the Detection of High-Risk Programs,” Proceedings: Fourth Inter-
national Symposium on Software Reliability Engineering, Denver, Colorado, 1993,
IEEE Computer Society, pp. 302–309.

[18] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam, and
J. Rosenberg, “Preliminary Guidelines for Empirical Research in Software Engi-
neering,” IEEE Transactions on Software Engineering, vol. 28, no. 8, Aug. 2002, pp.
721–733.

[19] D. G. Kleinbaum, Logistic Regression: A Self-Learning Text, Springer-Verlag New
York Inc, New York, 1994.

[20] T. Lawrie and C. Gacek, “Issues of Dependability in Open Source Software Devel-
opment,” Software Engineering Notes, vol. 27, no. 3, May 2002, pp. 34–37.

[21] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engi-
neers, 2nd edition, John Wiley and Sons, Inc., New York, 1999.

[22] I. Myrtveit and E. Stensurd, “A Controlled Experiment to Assess the Benefits of
Estimating with Analogy and Regression Models,” IEEE Transactions on Software
Engineering, vol. 25, no. 6, July 1999, pp. 510–524.

[23] D. J. Paulish and A. D. Carleton, “Case Studies of Software-Process-Improvement
Measurement,” IEEE Computer, vol. 27, no. 9, 1994, pp. 50–57.

[24] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability Maturity Model
Version 1.1,” IEEE Software, vol. 10, no. 4, 1993, pp. 18–27.

[25] J. W. Paulson, G. Succi, and A. Eberlein, “An Empirical Study of Open-Source and
Closed-Source Software Products,” IEEE Transactions on Software Engineering,
vol. 30, no. 4, Apr. 2004, pp. 246–256.

98

[26] J. Peters, “How to do a t-tests with MS Excel 2000,” 2003, http://www.cofc.edu/ pe-
tersj/SMFT639 MSExcel T-test.html (current 5 Dec. 2003).

[27] S. L. Pfleeger, “Assessing Measurement,” IEEE Software, vol. 14, no. 2, Mar. 1997,
pp. 25–26, Editor’s introduction to special issue.

[28] A. Phadke, Identifying Fault-prone Modules using Genetic Algorithms, term pa-
per, Department of Computer Science and Engineering, Mississippi State University,
Mississippi State, Mississippi, 2004.

[29] J. R. Quinlan, C 4.5: Programs for Machine Learning, 2nd edition, Morgan Kauf-
mann Publishers, San Mateo,CA, 1993.

[30] G. Rapur, Assessment of Open Source Software for High Performance Computing,
master’s thesis, Department of Computer Science and Engineering, Mississippi State,
Mississippi, December 2003.

[31] C. B. Seaman, “Qualitative Methods in Empirical Studies of Software Engineering,”
IEEE Transactions on Software Engineering, vol. 25, no. 4, July 1999, pp. 571–572.

[32] R. W. Selby and A. A. Porter, “Learning from Examples: Generation and Evaluation
of Decision Trees for Software Resource Analysis,” IEEE Transactions on Software
Engineering, vol. 14, no. 12, Dec. 1988, pp. 1743–1757.

[33] S. S. Shapiro and A. J. Gross, Statistical Modeling Techniques, 2nd edition, Marcel
Dekker,Inc, New York, 1981.

[34] J. Singer and N. G. Vinson, “Ethical Issues in Empirical Studies of Software Engi-
neering,” IEEE Transactions on Software Engineering, vol. 28, no. 12, Dec. 2002,
pp. 1171–1179.

[35] Stuttgart Neural Network Simulator User Manual, version 4.1, University
of Stuttgart, Tbingen, Germany, June 1995, http://www-ra.informatik.uni-
tuebingen.de/SNNS/.

[36] A. von Mayrhauser, J. Wang, M. Ohlsson, and C. Wohlin, “Deriving a Fault Ar-
chitecture from Defect History,” Proceedings: 10th International Symposium on
Software Reliability Engineering, Boca Raton, Florida, 1999, IEEE Computer, pp.
295–303.

[37] L. Wall, T. Christiansen, and J. Orwant, Programming Perl, 3rd edition, O’Reilly,
Sebastopol, California, 2000.

[38] M.-W. Wu and Y.-D. Lin, “Open Source Software Developement: An Overview,”
Computer, vol. 34, no. 6, June 2001, pp. 33–38.

99

[39] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting Source Code
Changes by Mining Change History,” IEEE Transactions on Software Engineering,
vol. 30, no. 9, September 2004, pp. 574–586.

[40] M. V. Zelkowitz and D. R. Wallace, “Experimental Models for Validating Technol-
ogy,” IEEE Computer, vol. 31, no. 5, May 1998, pp. 23–31.

APPENDIX A

RELEASE DISTRIBUTIONS

100

101

This appendix presents the distribution of fault-prone modules for the releases 2.1.2

to 2.1.5. Cumulative bugs present the 80% cutoff of bugs and bugs distribution show the

number of bugs per module.

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

Rank of Modules

C
u

m
u

la
ti

ve
 B

u
g

s 80 % of the Bugs
Rank 67, 114 Bugs

Figure A.1 Cumulative Bugs for PETSc Source 2.1.2

102

0

1

2

3

4

5

6

7

0 200 400 600 800 1000

Rank of Modules

N
u

m
b

er
 o

f
B

u
g

s

Figure A.2 Bugs Distribution for PETSc Source 2.1.2

0

5
10

15

20
25

30

35

40
45

50

0 200 400 600 800 1000

Rank of Modules

C
u

m
u

la
ti

ve
 b

u
g

s

80 % of the bugs
Rank 16, 36 Bugs

Figure A.3 Cumulative Bugs for PETSc Source 2.1.3

103

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000

Rank of Modules

N
u

m
b

er
 o

f
B

u
g

s

Figure A.4 Bugs Distribution for PETSc Source 2.1.3

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000

Rank of Modules

C
u

m
u

la
ti

ve
 B

u
g

s 80 % of the bugs
Rank 37, 59 Bugs

Figure A.5 Cumulative Bugs for PETSc Source 2.1.5

104

0

1

2

3

4

5

6

0 200 400 600 800 1000

Rank of Modules

N
u

m
b

er
 o

f
B

u
g

s

Figure A.6 Bugs Distribution for PETSc Source 2.1.5

APPENDIX B

PRINCIPAL COMPONENT ANALYSIS

105

106

This appendix presents the eigenvalues and rotated factor patterns for the releases 2.1.2

to 2.1.5. The PCA of all the releases resulted in ten factors. The stopping criteria used was

a minimum eigenvalue of one.

107

Table B.1 Eigenvalues for Release 2.1.2

Rank Eigenvalues Difference Proportion Cumulative
1 15.76 12.52 0.40 0.40
2 3.25 0.43 0.08 0.49
3 2.82 0.87 0.07 0.56
4 1.95 0.20 0.05 0.61
5 1.75 0.27 0.04 0.65
6 1.48 0.08 0.04 0.69
7 1.40 0.26 0.04 0.73
8 1.14 0.07 0.03 0.76
9 1.06 0.06 0.03 0.78

10 1.00 0.08 0.03 0.81
11 0.92 0.09 0.02 0.83
12 0.84 0.06 0.02 0.86
13 0.78 0.04 0.02 0.88
14 0.74 0.09 0.02 0.89
15 0.65 0.09 0.02 0.91
16 0.56 0.05 0.01 0.93
17 0.47 0.06 0.01 0.94
18 0.41 0.02 0.01 0.95
19 0.39 0.15 0.01 0.96
20 0.24 0.02 0.01 0.96
21 0.23 0.03 0.01 0.97
22 0.20 0.05 0.01 0.98
23 0.15 0.02 0.00 0.98
24 0.13 0.02 0.00 0.98
25 0.11 0.01 0.00 0.99
26 0.10 0.01 0.00 0.99
27 0.10 0.01 0.00 0.99
28 0.08 0.01 0.00 0.99
29 0.07 0.02 0.00 0.99
30 0.05 0.01 0.00 1.00
31 0.04 0.01 0.00 1.00
32 0.03 0.01 0.00 1.00
33 0.02 0.00 0.00 1.00
34 0.02 0.00 0.00 1.00
35 0.02 0.01 0.00 1.00
36 0.01 0.00 0.00 1.00
37 0.01 0.00 0.00 1.00
38 0.00 0.00 0.00 1.00
39 0.00 0.00 0.00 1.00

108

Ta
bl

e
B

.2
R

ot
at

ed
Fa

ct
or

Pa
tte

rn
fo

r
R

el
ea

se
2.

1.
2

FA
C

T
O

R
S

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

R
tn

St
m

E
xe

N
br

0.
90

0.
28

0.
19

0.
16

0.
11

0.
06

0.
03

0.
01

-0
.0

3
0.

03
R

tn
C

pl
E

xe
Su

m
0.

88
0.

23
0.

16
0.

14
0.

20
0.

01
0.

00
0.

04
-0

.0
1

0.
03

R
tn

St
m

C
tlL

op
N

br
0.

88
0.

19
0.

20
0.

15
0.

01
0.

06
0.

00
-0

.0
3

-0
.0

2
-0

.0
1

R
tn

St
m

X
pd

N
br

0.
85

0.
23

0.
10

0.
25

0.
14

0.
04

-0
.0

1
-0

.0
2

0.
09

-0
.0

1
R

tn
St

m
N

st
L

vl
Su

m
0.

82
0.

35
0.

13
0.

29
0.

07
0.

06
0.

01
0.

01
-0

.0
7

0.
01

R
tn

L
ns

N
br

0.
76

0.
46

0.
20

0.
06

0.
17

0.
05

0.
19

-0
.0

1
0.

09
0.

02
R

tn
St

m
D

ec
O

bj
N

br
0.

75
0.

48
0.

19
0.

06
0.

17
0.

03
0.

07
-0

.0
1

0.
12

0.
07

R
tn

C
al

X
pl

N
br

0.
71

0.
48

0.
14

0.
07

0.
1

-0
.0

2
0.

18
0.

00
0.

22
0.

02
R

tn
A

rg
X

pl
Su

m
0.

66
0.

40
0.

12
0.

06
0.

16
-0

.0
3

0.
20

-0
.0

4
0.

29
0.

01
R

tn
St

m
C

tlC
tn

N
br

0.
49

0.
21

0.
06

0.
08

-0
.0

1
0.

13
0.

15
-0

.1
2

0.
08

-0
.1

5
R

tn
St

m
C

tlI
fN

br
0.

19
0.

94
0.

04
0.

10
0.

04
0.

01
-0

.0
4

-0
.0

5
-0

.0
1

-0
.0

5
R

tn
Sc

pN
br

0.
33

0.
91

0.
09

0.
12

0.
04

0.
02

-0
.0

2
-0

.0
3

0.
01

-0
.0

2
R

tn
C

pl
C

tlS
um

0.
33

0.
90

0.
05

0.
12

0.
09

0.
01

-0
.0

4
-0

.0
8

-0
.0

3
-0

.0
5

R
tn

Sc
pN

st
L

vl
Su

m
0.

40
0.

86
0.

08
0.

21
0.

02
0.

03
-0

.0
3

-0
.0

4
-0

.0
1

-0
.0

3
R

tn
C

as
tX

pl
N

br
0.

38
0.

80
0.

05
0.

10
0.

03
0.

00
-0

.0
4

0.
11

-0
.0

1
0.

01
R

tn
St

m
C

tlR
et

N
br

0.
34

0.
78

0.
20

0.
03

0.
09

0.
02

0.
11

-0
.0

1
0.

29
0.

13
Fi

lD
ef

R
tn

N
br

0.
33

0.
78

0.
21

0.
03

0.
08

-0
.0

1
0.

15
0.

02
0.

30
0.

13
R

tn
St

m
D

ec
Pr

m
N

br
0.

34
0.

74
0.

17
0.

05
0.

12
0.

01
0.

08
0.

00
0.

26
0.

14
Fi

lL
ns

N
br

0.
61

0.
66

0.
19

0.
04

0.
07

0.
05

0.
21

0.
00

0.
08

0.
02

Fi
lD

ef
O

bj
G

lb
N

br
-0

.1
1

0.
54

-0
.0

2
-0

.1
2

0.
00

0.
00

0.
19

0.
06

-0
.3

6
-0

.0
8

R
tn

St
m

C
tlS

w
iN

br
0.

09
0.

11
0.

92
0.

00
0.

06
0.

00
0.

02
-0

.0
1

-0
.0

2
0.

00
R

tn
St

m
C

tlC
as

eN
br

0.
28

0.
09

0.
84

0.
06

-0
.0

6
0.

06
-0

.0
1

0.
05

-0
.0

1
-0

.0
1

109

Ta
bl

e
B

.2
R

ot
at

ed
Fa

ct
or

Pa
tte

rn
fo

r
R

el
ea

se
2.

1.
2

(c
on

tin
ue

d)

FA
C

T
O

R
S

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

R
tn

St
m

C
tlD

flt
N

br
0.

13
0.

14
0.

79
-0

.0
4

0.
06

0.
03

0.
08

-0
.0

4
-0

.0
1

0.
01

R
tn

St
m

C
tlB

rk
N

br
0.

45
0.

15
0.

73
0.

09
-0

.0
13

0.
08

0.
00

0.
01

0.
04

-0
.0

4
R

tn
Sc

pN
st

L
vl

A
vg

0.
22

0.
16

0.
01

0.
88

0.
24

0.
05

0.
03

0.
03

0.
08

-0
.0

2
R

tn
St

m
N

st
L

vl
A

vg
0.

31
0.

04
0.

03
0.

85
0.

20
0.

03
0.

00
0.

14
-0

.0
9

0.
00

R
tn

Sc
pN

st
L

vl
M

ax
0.

39
0.

29
0.

06
0.

72
0.

23
0.

05
0.

12
0.

00
0.

24
0.

05
R

tn
C

pl
C

tlA
vg

0.
01

0.
16

-0
.0

2
0.

38
0.

77
0.

05
0.

12
-0

.1
2

-0
.0

7
-0

.0
3

R
tn

C
pl

C
tlM

ax
0.

25
0.

17
-0

.0
1

0.
22

0.
72

0.
09

0.
13

-0
.1

8
-0

.2
0

0.
00

R
tn

C
pl

E
xe

M
ax

0.
45

0.
05

0.
09

0.
06

0.
62

0.
03

-0
.0

3
0.

09
0.

19
-0

.0
1

R
tn

C
pl

E
xe

A
vg

0.
07

-0
.0

4
0.

03
0.

13
0.

59
0.

96
-0

.0
2

-0
.0

1
0.

06
0.

00
R

tn
L

bl
N

br
0.

03
0.

00
0.

04
0.

04
0.

00
0.

96
-0

.0
2

0.
00

0.
23

0.
05

R
tn

St
m

C
tlG

ot
oN

br
0.

11
0.

04
0.

07
0.

06
0.

00
0.

95
-0

.0
4

0.
00

0.
04

0.
00

Fi
lI

nc
D

ir
N

br
0.

23
0.

06
0.

10
0.

14
-0

.0
6

-0
.0

4
0.

76
-0

.0
2

-0
.0

8
0.

07
Fi

lD
ec

St
ru

N
br

0.
03

0.
04

-0
.0

9
-0

.1
1

0.
18

0.
02

0.
56

0.
54

0.
14

-0
.1

0
R

tn
St

m
D

ec
Ty

pe
N

br
-0

.0
2

0.
02

0.
04

0.
13

-0
.0

2
-0

.0
3

0.
02

0.
83

-0
.0

3
0.

02
Fi

lI
nc

N
br

0.
18

0.
14

0.
07

-0
.0

2
0.

29
-0

.1
2

0.
41

-0
.4

5
0.

21
0.

02
R

tn
St

m
D

ec
R

tn
N

br
0.

02
0.

17
-0

.0
4

0.
05

0.
00

0.
09

0.
02

-0
.0

2
0.

73
-0

.0
7

Fi
lD

ec
O

bj
E

xt
N

br
-0

.0
2

0.
05

-0
.0

2
0.

00
-0

.0
1

0.
00

0.
04

-0
.0

1
-0

.0
5

0.
96

110

Table B.3 Eigenvalues for Release 2.1.3

Rank Eigenvalues Difference Proportion Cumulative
1 15.77 12.50 0.40 0.40
2 3.26 0.41 0.08 0.49
3 2.85 0.90 0.07 0.56
4 1.95 0.20 0.05 0.61
5 1.75 0.27 0.04 0.66
6 1.49 0.08 0.04 0.69
7 1.40 0.27 0.04 0.73
8 1.13 0.08 0.03 0.76
9 1.05 0.05 0.03 0.79

10 1.00 0.08 0.03 0.81
11 0.92 0.08 0.02 0.84
12 0.83 0.05 0.02 0.86
13 0.79 0.04 0.02 0.88
14 0.74 0.09 0.02 0.90
15 0.66 0.09 0.02 0.91
16 0.57 0.10 0.01 0.93
17 0.46 0.06 0.01 0.94
18 0.41 0.02 0.01 0.95
19 0.39 0.15 0.01 0.96
20 0.24 0.02 0.01 0.97
21 0.22 0.03 0.01 0.97
22 0.19 0.05 0.01 0.98
23 0.15 0.02 0.00 0.98
24 0.13 0.02 0.00 0.98
25 0.11 0.01 0.00 0.99
26 0.11 0.01 0.00 0.99
27 0.09 0.01 0.00 0.99
28 0.08 0.01 0.00 0.99
29 0.07 0.02 0.00 1.00
30 0.05 0.01 0.00 1.00
31 0.04 0.01 0.00 1.00
32 0.03 0.01 0.00 1.00
33 0.02 0.00 0.00 1.00
34 0.02 0.01 0.00 1.00
35 0.01 0.00 0.00 1.00
36 0.01 0.00 0.00 1.00
37 0.01 0.00 0.00 1.00
38 0.00 0.00 0.00 1.00
39 0.00 0.00 1.00

111

Ta
bl

e
B

.4
R

ot
at

ed
Fa

ct
or

Pa
tte

rn
fo

r
R

el
ea

se
2.

1.
3

FA
C

T
O

R
S

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

R
tn

St
m

E
xe

N
br

0.
89

0.
29

0.
18

0.
16

0.
11

0.
05

0.
04

0.
01

-0
.0

2
0.

04
R

tn
St

m
C

tlL
op

N
br

0.
88

0.
19

0.
18

0.
15

0.
01

0.
07

0.
01

-0
.0

4
-0

.0
2

-0
.0

1
R

tn
C

pl
E

xe
Su

m
0.

88
0.

23
0.

16
0.

14
0.

20
0.

01
-0

.0
1

0.
04

0.
00

0.
03

R
tn

St
m

X
pd

N
br

0.
85

0.
23

0.
10

0.
25

0.
14

0.
04

0.
00

-0
.0

3
-0

.0
9

0.
01

R
tn

St
m

N
st

L
vl

Su
m

0.
82

0.
35

0.
13

0.
29

0.
08

0.
06

0.
02

0.
01

-0
.0

7
0.

02
R

tn
L

ns
N

br
0.

77
0.

47
0.

21
0.

07
0.

09
0.

05
0.

19
0.

01
0.

10
0.

02
R

tn
St

m
D

ec
O

bj
N

br
0.

75
0.

49
0.

19
0.

06
0.

17
0.

03
0.

07
0.

00
0.

13
0.

02
R

tn
C

al
X

pl
N

br
0.

69
0.

49
0.

17
0.

07
0.

10
-0

.0
2

0.
19

0.
03

0.
22

0.
00

R
tn

A
rg

X
pl

Su
m

0.
64

0.
41

0.
15

0.
06

0.
16

-0
.0

4
0.

21
-0

.0
1

0.
29

-0
.0

3
R

tn
St

m
C

tlC
tn

N
br

0.
49

0.
22

0.
04

0.
06

0.
01

0.
03

0.
18

-0
.0

9
0.

06
-0

.1
2

R
tn

St
m

C
tlI

fN
br

0.
18

0.
95

0.
03

0.
10

0.
04

0.
01

-0
.0

2
-0

.0
5

-0
.0

2
-0

.0
3

R
tn

Sc
pN

br
0.

33
0.

91
0.

09
0.

12
0.

05
0.

02
-0

.0
1

-0
.0

3
0.

01
-0

.0
2

R
tn

C
pl

C
tlS

um
0.

32
0.

90
0.

05
0.

11
0.

10
0.

02
-0

.0
3

-0
.0

8
-0

.0
4

-0
.0

4
R

tn
Sc

pN
st

L
vl

Su
m

0.
39

0.
87

0.
07

0.
21

0.
03

0.
03

-0
.0

1
-0

.0
4

-0
.0

1
-0

.0
3

R
tn

C
as

tX
pl

N
br

0.
37

0.
80

0.
04

0.
10

0.
03

-0
.0

1
-0

.0
5

0.
11

-0
.0

3
0.

01
R

tn
St

m
C

tlR
et

N
br

0.
33

0.
79

0.
20

0.
02

0.
09

0.
02

0.
11

0.
01

0.
29

0.
09

Fi
lD

ef
R

tn
N

br
0.

32
0.

78
0.

21
0.

03
0.

08
-0

.0
1

0.
14

0.
04

0.
31

0.
05

R
tn

St
m

D
ec

Pr
m

N
br

0.
33

0.
75

0.
17

0.
05

0.
11

0.
01

0.
08

0.
02

0.
26

0.
02

112

Ta
bl

e
B

.4
R

ot
at

ed
Fa

ct
or

Pa
tte

rn
fo

r
R

el
ea

se
2.

1.
3

(c
on

tin
ue

d)

FA
C

T
O

R
S

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

Fi
lL

ns
N

br
0.

61
0.

67
0.

20
0.

03
0.

07
0.

05
0.

19
0.

02
0.

09
0.

03
Fi

lD
ef

O
bj

G
lb

N
br

-0
.1

1
0.

54
-0

.0
2

-0
.1

2
0.

02
0.

01
0.

18
0.

08
-0

.3
8

0.
01

R
tn

St
m

C
tlS

w
iN

br
0.

09
0.

11
0.

93
0.

00
0.

05
-0

.0
1

0.
03

-0
.0

2
-0

.0
2

0.
00

R
tn

St
m

C
tlC

as
eN

br
0.

29
0.

10
0.

83
0.

07
-0

.0
6

0.
07

-0
.0

1
0.

04
-0

.0
2

-0
.0

1
R

tn
St

m
C

tlD
flt

N
br

0.
12

0.
14

0.
80

-0
.0

4
0.

07
0.

02
0.

08
-0

.0
3

0.
00

0.
01

R
tn

St
m

C
tlB

rk
N

br
0.

46
0.

15
0.

72
0.

09
-0

.0
3

0.
09

0.
00

0.
00

0.
03

-0
.0

3
R

tn
Sc

pN
st

L
vl

A
vg

0.
21

0.
17

0.
01

0.
88

0.
26

0.
05

0.
04

0.
03

0.
08

-0
.0

3
R

tn
St

m
N

st
L

vl
A

vg
0.

30
0.

04
0.

03
0.

86
0.

20
0.

03
-0

.0
1

0.
12

-0
.0

9
0.

01
R

tn
Sc

pN
st

L
vl

M
ax

0.
38

0.
29

0.
06

0.
72

0.
23

0.
05

0.
13

0.
01

0.
24

-0
.0

1
R

tn
C

pl
C

tlA
vg

0.
02

0.
15

-0
.0

2
0.

35
0.

80
0.

05
0.

10
-0

.0
8

-0
.0

7
0.

00
R

tn
C

pl
C

tlM
ax

0.
26

0.
16

-0
.0

1
0.

18
0.

75
0.

08
0.

13
-0

.1
3

-0
.1

8
0.

04
R

tn
C

pl
E

xe
M

ax
0.

44
0.

05
0.

10
0.

07
0.

60
0.

01
-0

.0
6

0.
11

0.
22

-0
.0

5
R

tn
C

pl
E

xe
A

vg
0.

07
-0

.0
4

0.
04

0.
17

0.
54

-0
.2

4
-0

.2
8

0.
29

0.
22

-0
.0

3
R

tn
L

bl
N

br
0.

04
0.

00
0.

05
0.

04
0.

01
0.

96
-0

.0
2

-0
.0

1
0.

07
-0

.0
1

R
tn

St
m

C
tlG

ot
oN

br
0.

12
0.

04
0.

08
0.

06
0.

01
0.

95
-0

.0
4

-0
.0

1
0.

04
0.

00
Fi

lI
nc

D
ir

N
br

0.
23

0.
06

0.
09

0.
13

-0
.0

6
-0

.0
3

0.
77

0.
05

-0
.0

5
0.

05
Fi

lI
nc

N
br

0.
17

0.
15

0.
09

-0
.0

2
0.

29
-0

.1
3

0.
46

-0
.3

9
0.

24
-0

.0
2

R
tn

St
m

D
ec

Ty
pe

N
br

-0
.0

2
0.

02
0.

04
0.

15
-0

.0
6

-0
.0

4
-0

.0
8

0.
82

-0
.0

5
0.

02
Fi

lD
ec

St
ru

N
br

0.
03

0.
04

-0
.0

9
-0

.1
2

0.
17

0.
02

0.
48

0.
62

0.
13

-0
.0

6
R

tn
St

m
D

ec
R

tn
N

br
0.

02
0.

17
-0

.0
5

0.
04

-0
.0

1
0.

10
0.

03
0.

00
0.

71
0.

00
Fi

lD
ec

O
bj

E
xt

N
br

-0
.0

1
0.

02
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

1
0.

03
-0

.0
1

0.
00

0.
98

113

Table B.5 Eigenvalues for Release 2.1.5

Rank Eigenvalues Difference Proportion Cumulative
1 15.69 12.45 0.40 0.40
2 3.25 0.32 0.08 0.49
3 2.92 0.94 0.07 0.56
4 1.98 0.23 0.05 0.61
5 1.75 0.23 0.04 0.66
6 1.52 0.11 0.04 0.70
7 1.41 0.31 0.04 0.73
8 1.10 0.05 0.03 0.76
9 1.05 0.06 0.03 0.79

10 0.99 0.05 0.03 0.81
11 0.93 0.11 0.02 0.84
12 0.82 0.04 0.02 0.86
13 0.78 0.04 0.02 0.88
14 0.74 0.06 0.02 0.90
15 0.68 0.08 0.02 0.91
16 0.60 0.13 0.02 0.93
17 0.47 0.08 0.01 0.94
18 0.39 0.03 0.01 0.95
19 0.36 0.13 0.01 0.96
20 0.23 0.02 0.01 0.97
21 0.21 0.03 0.01 0.97
22 0.19 0.04 0.00 0.98
23 0.15 0.02 0.00 0.98
24 0.13 0.02 0.00 0.98
25 0.11 0.01 0.00 0.99
26 0.10 0.01 0.00 0.99
27 0.09 0.01 0.00 0.99
28 0.08 0.01 0.00 0.99
29 0.07 0.02 0.00 0.99
30 0.05 0.01 0.00 1.00
31 0.04 0.01 0.00 1.00
32 0.03 0.01 0.00 1.00
33 0.02 0.00 0.00 1.00
34 0.02 0.00 0.00 1.00
35 0.02 0.01 0.00 1.00
36 0.01 0.00 0.00 1.00
37 0.01 0.00 0.00 1.00
38 0.00 0.00 0.00 1.00
39 0.00 0.00 1.00

114

Ta
bl

e
B

.6
R

ot
at

ed
Fa

ct
or

Pa
tte

rn
fo

r
R

el
ea

se
2.

1.
5

FA
C

T
O

R
S

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

R
tn

St
m

C
tlI

fN
br

0.
95

0.
18

0.
10

0.
02

0.
02

-0
.0

5
0.

03
-0

.0
3

-0
.0

3
-0

.0
3

R
tn

Sc
pN

br
0.

92
0.

33
0.

12
0.

07
0.

03
-0

.0
3

0.
02

0.
00

-0
.0

1
-0

.0
2

R
tn

C
pl

C
tlS

um
0.

90
0.

31
0.

15
0.

03
0.

03
-0

.0
4

0.
07

-0
.0

5
-0

.0
4

-0
.0

4
R

tn
Sc

pN
st

L
vl

Su
m

0.
86

0.
40

0.
18

0.
05

0.
04

-0
.0

7
0.

00
0.

00
-0

.0
1

-0
.0

4
R

tn
C

as
tX

pl
N

br
0.

82
0.

34
0.

10
0.

03
0.

00
0.

02
-0

.0
9

-0
.0

1
-0

.0
5

0.
01

R
tn

St
m

C
tlR

et
N

br
0.

79
0.

32
0.

06
0.

23
0.

01
0.

10
0.

10
0.

26
0.

06
0.

09
Fi

lD
ef

R
tn

N
br

0.
79

0.
31

0.
06

0.
24

-0
.0

2
0.

12
0.

07
0.

29
0.

12
0.

06
R

tn
St

m
D

ec
Pr

m
N

br
0.

76
0.

31
0.

10
0.

19
0.

01
0.

10
0.

08
0.

23
0.

06
0.

02
Fi

lL
ns

N
br

0.
68

0.
59

0.
05

0.
21

0.
04

0.
13

0.
07

0.
08

0.
17

0.
03

Fi
lD

ef
O

bj
G

lb
N

br
0.

54
-0

.1
3

-0
.0

9
-0

.0
1

0.
00

0.
08

-0
.0

3
-0

.3
8

0.
23

0.
01

R
tn

St
m

C
tlL

op
N

br
0.

20
0.

89
0.

12
0.

16
0.

08
-0

.0
3

0.
00

-0
.0

1
0.

06
-0

.0
2

R
tn

St
m

E
xe

N
br

0.
30

0.
89

0.
17

0.
19

0.
05

0.
08

0.
04

-0
.0

1
0.

02
0.

04
R

tn
C

pl
E

xe
Su

m
0.

25
0.

87
0.

19
0.

16
0.

01
0.

16
0.

05
-0

.0
2

-0
.0

5
0.

04
R

tn
St

m
X

pd
N

br
0.

24
0.

86
0.

26
0.

09
0.

05
0.

01
0.

04
-0

.0
7

0.
00

0.
00

R
tn

St
m

N
st

L
vl

Su
m

0.
36

0.
83

0.
26

0.
12

0.
07

0.
00

-0
.0

2
-0

.0
3

0.
01

0.
01

R
tn

L
ns

N
br

0.
48

0.
76

0.
09

0.
22

0.
04

0.
14

0.
08

0.
10

0.
15

0.
03

R
tn

St
m

D
ec

O
bj

N
br

0.
50

0.
73

0.
12

0.
20

0.
03

0.
16

0.
11

0.
09

0.
04

0.
02

115

Ta
bl

e
B

.6
R

ot
at

ed
Fa

ct
or

Pa
tte

rn
fo

r
R

el
ea

se
2.

1.
5

(c
on

tin
ue

d)

FA
C

T
O

R
S

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

R
tn

C
al

X
pl

N
br

0.
50

0.
65

0.
07

0.
25

-0
.0

3
0.

19
0.

12
0.

21
0.

05
0.

02
R

tn
A

rg
X

pl
Su

m
0.

42
0.

61
0.

08
0.

24
-0

.0
5

0.
24

0.
19

0.
25

0.
02

0.
00

R
tn

St
m

C
tlC

tn
N

br
0.

22
0.

52
0.

07
0.

02
0.

04
-0

.0
6

0.
08

0.
05

0.
21

-0
.1

2
R

tn
Sc

pN
st

L
vl

A
vg

0.
15

0.
26

0.
86

-0
.0

1
0.

05
-0

.0
2

-0
.1

1
0.

16
-0

.0
1

-0
.0

5
R

tn
St

m
N

st
L

vl
A

vg
0.

03
0.

34
0.

82
0.

02
0.

04
-0

.0
5

-0
.2

5
0.

01
-0

.0
1

-0
.0

1
R

tn
C

pl
C

tlA
vg

0.
15

-0
.0

2
0.

74
0.

00
0.

02
0.

25
0.

38
-0

.1
5

0.
05

0.
03

R
tn

Sc
pN

st
L

vl
M

ax
0.

29
0.

39
0.

71
0.

06
0.

04
0.

05
-0

.0
2

0.
29

0.
09

-0
.0

2
R

tn
C

pl
C

tlM
ax

0.
17

0.
20

0.
59

0.
00

0.
06

0.
21

0.
41

-0
.2

6
0.

12
0.

08
R

tn
St

m
C

tlS
w

iN
br

0.
11

0.
10

0.
01

0.
94

-0
.0

1
0.

03
0.

05
-0

.0
2

-0
.0

3
0.

00
R

tn
St

m
C

tlD
flt

N
br

0.
14

0.
11

-0
.0

3
0.

84
0.

00
0.

06
0.

10
0.

01
-0

.0
2

0.
02

R
tn

St
m

C
tlC

as
eN

br
0.

10
0.

30
0.

03
0.

82
0.

08
-0

.0
7

-0
.1

0
-0

.0
2

0.
07

-0
.0

2
R

tn
St

m
C

tlB
rk

N
br

0.
16

0.
46

0.
06

0.
71

0.
10

-0
.0

7
-0

.0
6

0.
02

0.
08

-0
.0

4
R

tn
L

bl
N

br
0.

01
0.

05
0.

04
0.

04
0.

96
0.

00
0.

00
0.

06
0.

00
-0

.0
1

R
tn

St
m

C
tlG

ot
oN

br
0.

05
0.

12
0.

05
0.

07
0.

95
-0

.0
2

-0
.0

1
0.

04
-0

.0
2

0.
00

Fi
lD

ec
St

ru
N

br
0.

03
0.

03
-0

.0
2

-0
.0

8
0.

01
0.

78
-0

.1
6

0.
08

0.
26

-0
.0

4
R

tn
C

pl
E

xe
M

ax
0.

06
0.

37
0.

27
0.

09
0.

03
0.

63
0.

13
0.

00
-0

.1
8

-0
.0

2
R

tn
C

pl
E

xe
A

vg
-0

.0
1

0.
06

0.
41

0.
04

-0
.2

1
0.

45
-0

.1
1

0.
03

-0
.4

0
0.

00
Fi

lI
nc

N
br

0.
13

0.
17

0.
06

0.
09

-0
.0

6
0.

11
0.

67
0.

18
-0

.0
5

-0
.0

2
R

tn
St

m
D

ec
Ty

pe
N

br
0.

04
-0

.0
3

0.
11

0.
05

-0
.0

4
0.

28
-0

.7
4

0.
01

-0
.0

2
0.

02
R

tn
St

m
D

ec
R

tn
N

br
0.

17
0.

00
0.

04
-0

.0
5

0.
09

0.
07

0.
09

0.
72

0.
05

0.
01

Fi
lI

nc
D

ir
N

br
0.

06
0.

24
0.

11
0.

06
-0

.0
6

0.
11

-0
.0

3
0.

03
0.

81
0.

03
Fi

lD
ec

O
bj

E
xt

N
br

0.
02

-0
.0

1
-0

.0
2

-0
.0

2
-0

.0
1

-0
.0

5
-0

.0
2

0.
00

0.
02

0.
98

APPENDIX C

LOGISTIC REGRESSION MODELS

116

117

This appendix presents logistic regression models built on release 2.1.2 and later. For

every release, we build three models. The parameters for constructing these models are

shown in Table C.1. Cost ratio is varied on the training set to obtain the type I and type

II misclassification variations. The cost ratio where these two misclassification rates are

equal is selected for building the model.

Table C.1 Parameters for Different Models

Data Set Selection Criteria
Model 1 Original 15%
Model 2 Original 25%
Model 3 Duplicated 15%

C.1 Release 2 Models

In this phase of modeling, we built a model based on release 2.1.2 and evaluated it on

the subsequent releases. We built three different models as explained earlier. Figure C.1,

Figure C.2 and Figure C.3 show the cost ratio selections for these models. The equations

of these models are as follows.

log

(
p

1 − p

)
= −2.33 + 0.27 FACTOR1 + 0.27 FACTOR3 + 0.22 FACTOR5

+ 0.37 FACTOR7 + 0.38 FACTOR9 (C.1)

118

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 20 40 60 80 100 120 140 160

CII/CI ratio

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

e

Type II Type I

Figure C.1 Logistic Regression Modeling R2:Cost Ratio Selection for Model 1

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 20 40 60 80 100 120

CII/CI Ratio

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

es

Type I Type II

Figure C.2 Logistic Regression Modeling R2:Cost Ratio Selection for Model 2

119

log

(
p

1 − p

)
= −2.36 + 0.26 FACTOR1 + 0.28 FACTOR3 − 0.20 FACTOR4

+ 0.21 FACTOR5 + 0.39 FACTOR7 − 0.16 FACTOR8

+ 0.38 FACTOR9 (C.2)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 0.5 1 1.5 2 2.5

CII/CI ratio

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

es

Type I Type II

Figure C.3 Logistic Regression Modeling R2:Cost Ratio Selection for Model 3

log

(
p

1 − p

)
= −0.38 + 0.47 FACTOR1 + 0.21 FACTOR3 − 0.20 FACTOR4

+0.17 FACTOR5 − 0.21 FACTOR6 + 0.53 FACTOR7

−0.40 FACTOR8 + 0.61 FACTOR9 (C.3)

120

Table C.2 Logistic Regression Modeling Results: Trained on Release 2 (R2)

Percent Number of Modules
Model 1 (%) Model 2 Model 3 (%) Model 1 Model 2 Model 3

Training Accuracy 2.1.2
Ok 68.36 66.92 65.52 618 605 1096
TypeI 31.64 33.00 34.32 256 267 249
TypeII 31.58 33.68 40.00 30 32 224
Test Accuracy 2.1.3
Ok 65.08 64.08 65.52 587 578 591
TypeI 34.78 35.92 34.32 305 315 301
TypeII 40.00 36.00 40.00 10 9 10
Test Accuracy 2.1.5
Ok 43.35 27.72 24.50 391 250 221
TypeI 59.42 76.16 80.00 511 655 688
TypeII 19.23 13.46 5.77 10 7 3
Test Accuracy 2.1.6
Ok 64.99 78.63 82.88 596 721 760
TypeI 28.00 36.00 34.00 14 18 17
TypeII 35.41 20.53 16.15 7 178 140

Table C.3 Release 2: Training Set and Test Set Sizes

Fault-prone Not-fault-prone Total
Release 2.1.2

Model 1 95 809 904
Model 2 95 809 904
Model 3 760 809 1569

Release 2.1.3 25 877 902
Release 2.1.5 52 860 912
Release 2.1.6 867 50 917

121

Evaluation: The above models for revision 2 were tested with each of the subsequent

three releases 3, 5, and 6. Table C.2 and Table C.3 show the results. The models had ap-

proximately 67% accuracy on the training set and misclassification rates of approximately

30%. The evaluation on 2.1.3 test set had slightly higher misclassification rates of approx-

imately 40% and an accuracy of 65%. The model had better results with 2.1.6 test set, but

poor results with the 2.1.5 test data. This suggests that the 2.1.5 release is really different

in some way from the 2.1.1 and 2.1.2 releases.

C.2 Release 3 Models

In the third phase of modeling, we built three models based on release 2.1.2 as dis-

cussed earlier and evaluated it on the subsequent releases. Figure C.4, Figure C.5 and

Figure C.6 show the cost ratio selections for these models. The equations of these models

are as follows.

log

(
p

1 − p

)
= −4.02 + 0.51 FACTOR1 + 0.35 FACTOR2 + 0.21 FACTOR3

+ 0.21 FACTOR6 + 0.26 FACTOR7 + 0.18 FACTOR10 (C.4)

log

(
p

1 − p

)
= −4.08 + 0.46 FACTOR1 + 0.38 FACTOR2 + 0.21 FACTOR3

−0.47 FACTOR5 + 0.19 FACTOR6 + 0.21 FACTOR7

+0.19 FACTOR9 + 0.19 FACTOR10 (C.5)

122

0
5

10
15
20
25
30
35

1900 1950 2000 2050 2100

CII/CI ratio

M
is

cl
as

si
fic

at
io

n
 r

at
es

Type I Type II

Figure C.4 Logistic Regression Modeling R3:Cost Ratio Selection for Model 1

23

24

25

26

27

28

29

1740 1760 1780 1800 1820 1840 1860

CII/ CI ratio

M
is

cl
as

si
fic

at
io

n
 r

at
es

Type I Type II

Figure C.5 Logistic Regression Modeling R3:Cost Ratio Selection for Model 2

123

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3

CII/ CI ratio

M
is

cl
as

si
fic

at
io

n
 r

at
e

Type I Type II

Figure C.6 Logistic Regression Modeling R3:Cost Ratio Selection for Model 3

log

(
p

1 − p

)
= −0.76 + 0.65 FACTOR1 + 0.38 FACTOR2 − 0.18 FACTOR5

+0.25 FACTOR6 + 0.48 FACTOR7 − 0.63 FACTOR8 + 0.23 FACTOR9

+0.55 FACTOR10 (C.6)

Evaluation: The above models trained with 2.1.3 data were tested with each of the sub-

sequent releases 2.1.5, and 2.1.6. Table C.4 and Table C.5 show the results for this evalu-

ation. The training set had an accuracy of approximately 75% and misclassification rates

of 25%. These are better than those found in the earlier training sets. The models per-

formed relatively well on the 2.1.5 test data. It had an accuracy of approximately 65% and

misclassification rates of approximately 35%. This suggests that closest match for 2.1.5

124

Table C.4 Logistic Regression Modeling Results: Trained on Release 3 (R3)

Percent Number of Modules
Model 1 (%) Model 2 (%) Model 3 (%) Model 1 Model 2 Model 3

Training Accuracy 2.1.3
Ok 70.51 74.50 79.45 636 672 1392
TypeI 29.53 25.54 24.00 259 224 185
TypeII 28.00 24.00 20.00 7 6 175
Test Accuracy 2.1.5
Ok 65.46 74.56 62.83 597 680 573
TypeI 34.88 24.53 37.56 300 211 323
TypeII 28.85 40.38 30.77 15 21 16
Test Accuracy 2.1.6
Ok 39.15 29.12 42.31 359 267 388
TypeI 24.00 18.00 16.00 12 9 8
TypeII 62.98 73.93 60.09 546 641 521

Table C.5 Release 3: Training Set and Test Set Sizes

Fault-prone Not-fault-prone Total
Release 2.1.3

Model 1 25 877 902
Model 2 25 877 902
Model 3 875 877 1752

Release 2.1.5 52 860 912
Release 2.1.6 867 50 917

125

is 2.1.3 in terms of the similarity of the cause-effect relationship for bugs. However, this

model performed poorly with the 2.1.6 data.

C.3 Release 5 Models

In the last phase of modeling, we built three models based on release 2.1.5 and eval-

uated it on 2.1.6 release. Model 2 resulted in same equation as model 1. So we proceed

with models 1 and 3 for further analysis. Figure C.7 and Figure C.8 show the cost ratio

selections for these models. The equations of these models are as follows.

0

5

10

15

20

25

30

35

40

390 400 410 420 430 440 450 460

CII/CI

M
is

cl
as

si
fic

at
io

n
 r

at
es

Type I Type II

Figure C.7 Logistic Regression Modeling R5:Cost Ratio Selection for Model 1

126

log

(
p

1 − p

)
= −3.17 + 0.63 FACTOR1 + 0.34 FACTOR2 + 0.25 FACTOR3

+0.23 FACTOR4 + 0.18 FACTOR8 + 0.12 FACTOR10 (C.7)

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5

CII/CI

M
is

cl
as

si
fic

at
io

n
 r

at
es

Type I Type II

Figure C.8 Logistic Regression Modeling R5:Cost Ratio Selection for Model 3

log

(
p

1 − p

)
= −0.57 + 0.68 FACTOR1 + 0.46 FACTOR2 + 0.39 FACTOR3

+ 0.19 FACTOR4 + 0.21 FACTOR6 + 0.39 FACTOR7

+ 0.49 FACTOR8 + 0.22 FACTOR10 (C.8)

127

Table C.6 Logistic Regression Modeling Results: Trained on Release 5 (R5)

Percent Number of Modules
Model 1 (%) Model 3 (%) Model 1 Model 3

Training Accuracy 2.1.5
Ok 70.07 73.17 639 1238
TypeI 29.88 26.74 257 230
TypeII 30.77 26.92 16 224
Test Accuracy 2.1.6
Ok 13.30 6.65 122 61
TypeI 8.00 0.00 4 0
TypeII 91.23 98.73 791 856

Table C.7 Release 5: Training Set and Test Set Sizes

Fault-prone Not-fault-prone Total
Release 2.1.5

Model 1 52 860 912
Model 3 832 860 1692

Release 2.1.6 867 50 917

128

Evaluation: The above models trained on 2.1.5 data were then tested with release 2.1.6.

Table C.6 and Table C.7 show the results for this evaluation. The training set had an

accuracy of approximately 71% and misclassification rates of 29%. However, the model

performed poorly on 2.1.6 test data. These results confirmed the hypothesis that release

2.1.5 is somehow different from the rest of the releases.

	Predicting Open-Source Software Quality Using Statistical and Machine Learning Techniques
	Recommended Citation

	examplethesis.dvi

