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Walking is the oldest and foremost mode of transportation through history and the 

prevalence of walking has increased.  Effective pedestrian model is crucial to evaluate 

pedestrian facility service level and to enhance pedestrian safety, performance, and 

satisfaction. 

The objectives of this study were to: (1) validate the efficacy of utilizing queueing 

network model, which predicts cognitive information processing time and task 

performance; (2) develop a generalized queueing network based cognitive information 

processing model that can be utilized and applied to construct pedestrian cognitive 

structure and estimate the reaction time with the first moment of service time distribution; 

(3) investigate pedestrian behavior through naturalistic and experimental observations to 

analyze the effects of environment settings and psychological factors in pedestrians; and 

(4) develop pedestrian level of service (LOS) metrics that are quick and practical to 

identify improvement points in pedestrian facility design. 
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Two empirical and two analytical studies were conducted to address the research 

objectives.  The first study investigated the efficacy of utilizing queueing network in 

modeling and predicting the cognitive information processing time.  Motion capture 

system was utilized to collect detailed pedestrian movement.  The predicted reaction time 

using queueing network was compared with the results from the empirical study to 

validate the performance of the model.  No significant difference between model and 

empirical results was found with respect to mean reaction time. 

The second study endeavored to develop a generalized queueing network system 

so the task can be modeled with the approximated queueing network and its first moment 

of any service time distribution.  There was no significant difference between empirical 

study results and the proposed model with respect to mean reaction time. 

Third study investigated methods to quantify pedestrian traffic behavior, and 

analyze physical and cognitive behavior from the real-world observation and field 

experiment.  Footage from indoor and outdoor corridor was used to quantify pedestrian 

behavior.  Effects of environmental setting and/or psychological factor on travel 

performance were tested. 

Finally, adhoc and tailor-made LOS metrics were presented for simple realistic 

service level assessments.  The proposed methodologies were composed of space revision 

LOS, delay-based LOS, preferred walking speed-based LOS, and ‘blocking probability’. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview and Challenges in Pedestrian Study 

Walking is an innate ability for humans and is the oldest and foremost mode of 

transportation through history.  It is a crucial part of the transportation chain, and the 

prevalence of walking has increased.  According to the ‘2005 Traveler Opinion and 

Perception Survey’, conducted by the U.S. Federal Highway Administration (FHWA), 

around 107 million people used walking as a primary means of travel, accounting for 

approximately 51 percent of travelers (FHWA, 2005).  Even with the increased 

importance of analyzing and modeling pedestrian traffic behavior, pedestrian traffic 

flows and behaviors have only been paid restricted attention in recent research.  One of 

the reasons is the tools to analyze pedestrian traffic flows and related behaviors are 

scarce.  Interest in the field is growing due to the integral nature of walking as a part of 

the transportation chain.  There is a current need to more accurately depict pedestrian 

movements and behavioral characteristics to evaluate and improve pedestrian facility 

design. 

Modeling walking characteristics and the environment is not an easy task and has 

been of interest to researchers for nearly a decade (Helbing & Molnár, 1997; Daamen & 

Hoogendoorn, 2003; Antonini, Bierlaire, & Weber, 2006).  The design of a pedestrian 

facility should take into account the behavior of the pedestrians utilizing these facilities, 

as well as interaction with their environment.  
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The efficiency, safety, and comfort of a pedestrian facility are determined not 

only by its physical architecture but also by the behavior of the facility’s users.  The way 

people walk, choose their paths, and navigate crowds and obstacles impacts the 

effectiveness of that facility. 

When planning pedestrian facilities, designers have generally considered a 

number of tangible factors, such as facility capacity, volume, and so forth.  However, 

many factors that impact navigational performance have not yet been comprehensively 

considered in pedestrian models that evaluate pedestrian facility service level.  The 

Highway Capacity Manual (TRB, 2000) defines level of service (LOS) as a quality 

measure describing operational conditions of vehicular and pedestrian traffic based on 

service measures, such as “speed, travel time, freedom to maneuver, traffic interruptions, 

comfort and convenience”.  Even in the pedestrian study arena, researchers have given 

limited attention to modeling physical aspects of traffic performance while analyzing and 

assessing the service quality of pedestrian facilities.  Pedestrians are the primary non-

motorized users and stakeholders of walking facilities.  If researchers do not incorporate 

pertinent pedestrian navigational characteristic in their models, they cannot expect to 

obtain practicable outcomes from the models (Bleu et al., 1997; Hoogendoorn & Bovy, 

2004; Helbing et al., 2005).   

Data and statistics from empirical pedestrian studies are useful when they can be 

applied to model pedestrian behaviors for a general population.  With an appropriate 

pedestrian model, the behaviors of pedestrians can also be predicted and analyzed.  This 

dissertation research endeavored to develop a pedestrian model that encompasses the 

pedestrian cognitive processing for visual search, means of traffic flow analysis, and 

methodology for pedestrian facility service level evaluation.  Systems of interest and 
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facility conditions were: (1) pedestrian walkways and corridors under the non-interrupted 

flow situations; and (2) pedestrian facilities under normal conditions.  This study did not 

take into consideration pedestrian evacuation or egress situation (see TRB, 2000.). 

1.2 Research Aims 

The objective of this study was the development of an empirically validated 

pedestrian behavior model that considers cognitive as well as physical aspects of 

pedestrian behavior, and its impact on facility level of service.  The objective 

encompassed the development of four main analytical tools along with each empirical 

study, which included: (1) M/G/c queueing system based cognitive information 

processing model; (2) pedestrian traffic flow analysis and modeling based on empirical 

studies; and (3) pedestrian level of service (LOS) model developments.  Each model was 

tested and validated through appropriate experiments as illustrated in Figure 1.1.  The 

long-term goal of the dissertation research was to build the framework of pedestrian 

modeling and analysis tool, so that the pedestrian navigational behavior can be more 

effectively analyzed and predicted to improve pedestrian facility design. 

 

 

Figure 1.1 Structure of the Study 
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1.2.1 Study 1: Cognitive Information Processing Model (Chapters II & III) 

The first component of the proposed pedestrian model was a representation of a 

pedestrian’s cognitive processing.  The application of queueing systems to cognitive 

information processing has been demonstrated previously in human computer interaction 

and driver’s performance research areas (Liu, 1996; Wu & Liu, 2007).  The benefits of 

incorporating queueing systems into the research framework are: (1) queueing systems 

are useful to analyze traffic performance to determine the average number of customers 

(the number of information bits or pedestrians) in the system, average times in system 

(both in queue and server), and blocking probability; (2) it can be expanded as a network 

system that comprises interconnected server and customer relationships; (3) it enables 

inferences of causality by conditioning prior information if servers are linked with other 

server nodes; and (4) queueing systems model can predict the behavior of systems that 

attempts to provide service for randomly arising demands.  The specific model of interest 

was the M/G/c queueing system.  It is a multi-server system with a Markovian (Poisson 

arrival process) interarrival time and general service time distributions. 

The objective of the first study was to investigate the reaction time (i.e., delay in 

information processing) from stimuli.  The delay is likely compounded by the fact that 

pedestrians are faced with many more decision points when navigating through a dense 

crowd.  In this case, the reaction time is viewed as a performance measure (e.g., time in 

system or sojourn time) since the sojourn time is one of the primary outcomes of 

queueing systems. 

Walkers are frequently faced with various stimuli from their environment while 

they navigate, and they need to process information to complete their travel agenda. 

Within the queueing network framework, each stimulus was encoded as a customer that 
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is processed by servers.  The servers in the queueing network represented pedestrians’ 

information processing units.  The stimuli as customers, then, go through the route in the 

information processing network.  The average values such as sojourn time (total reaction 

time) and the amount of information processed (the number of stimuli) per unit time were 

investigated.  This can then be used as initial pedestrian mental characteristics for traffic 

performance analysis assuming that these metrics are correlated with pedestrian 

navigational performance.  Finally, the efficacy of queueing modeling of pedestrian 

navigational performance and mental workload is discussed. 

1.2.2 Study 2: M/G/c Queue Approximation and Its Application to Cognitive 
Information Processing (Chapter III) 

Previous researches on cognitive information processing using queueing system 

made assumptions to represent human information processing system.  The method to 

process information is confined to serial processing for all stages of information 

processes, such as perceptive, cognitive and motor processes.  This assumption may not 

be appropriate, because peripheral perceptive and motor processes continue in parallel 

and only a cognitive stage is processed in serial based on neuroscience research (Pashler, 

1994; Sigman & Dehaene, 2008).  Second, a single server system was applied to structure 

the information process.  Under this assumption, it may not be possible to represent 

multiple task situations due to its architectural limitation.  Third, the methodology 

assumed the capacity of information processing unit is infinite.  This also may violate the 

well-known theory of limits on human capacity for processing information (Miller, 

1956).   
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A queueing system was derived in order to relax the assumptions in literatures 

and model the mental process and configure the cognitive structure for pedestrian 

navigation.   

In general, customer arrivals occur irrespective of system activity, which means 

new customers arrive at the system regardless of the number of customers in the system.  

Based on this fact, a Poisson arrival process was applied in the study.  Since service 

times, however, may not necessarily be exponential, general service time distributions 

were applied in this study.  As humans perform multiple tasks and facilities serve 

multiple pedestrians at a time, this research attempts to implement a multi-server system. 

The majority of solutions for M/G/c queues are given in the format of complex 

transform, which requires taking the reverse transform to obtain the solution.  It is 

difficult to determine the exact solution as the system is more complicated with a large 

number of servers.  No exact solutions have been found for M/G/c queueing systems.  

However, a number of techniques have been presented for the M/G/1 model to obtain 

exact solutions, such as ‘imbedded Markov chain method’ and ‘supplementary variable 

technique’ (Takagi, 1991; Tijms, 1994; Gross et al., 2008).  For this reason, approximate 

approaches have been attempted to provide quick-and-dirty solutions (Cruz et al., 2005; 

Cruz & Smith, 2007).  To apply a multi-server queueing system with general service time 

distributions to the pedestrian mental processing and traffic performance models, this 

research endeavored to obtain the steady state system size (i.e., the number of 

information bits and/or pedestrians in system) without taking any transforms (e.g., 

Laplace transform or z-transform).  That is, a simple, reliable method to obtain solutions 

for predicting cognitive information processing time based on queueing network system 
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was aimed. The precision of the approximation algorithm was tested and validated 

through the comparison of the results from analytical model and simulation runs. 

Liu and his colleagues (1996, 2006) proposed the queueing network mental 

processing model, and primarily focused on M/M/1 based open queueing network, also 

known as a Jackson network (Jackson, 1963).  This methodology is simple and easy to 

implement, but it has a somewhat large number of nodes (parallel servers) to represent 

multitasking.  Moreover, there is no guarantee that the service time (mental processing 

time from perceived stimuli to reaction) follows an exponential distribution.  The 

shortfalls of their method can be surmounted by using an M/G/c queueing system, since 

the inherent feature of this structure allows for the reduction in the number of nodes to 

construct a mental model, which embraces multitasking in a simple fashion.  The 

effectiveness of the model was tested and validated by investigating the difference 

between the estimated average reaction time from the model and the direct measurement 

of reaction time from an empirical study. 

1.2.3 Study 3: Pedestrian Traffic Flow Analysis (Chapters IV) 

The third objective was to develop an analytical pedestrian traffic performance 

measure.  There are some common approaches to pedestrian behavior modeling, such as 

cellular automata, social force, magnetic force, queueing network models and so forth.  

Cellular automata consist of an array of grid cells that represent the pedestrian 

environment (Blue et al., 1997).  Pedestrian agents (each of them occupies a single cell at 

any given time) accomplish movement using updated localized neighborhood rules.  In a 

social force model, pedestrians are motivated to move in response to attractive and 

repulsive forces exerted by their surroundings (Helbing & Molnár, 1997).  Similarly, a 
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magnetic force model is composed of positive poles and negative poles that represent 

obstructions and goals, respectively (Matsushita & Okazaki, 1993).  In queueing network 

models, nodes represent the current locations that are linked to define possible routes to 

navigate (Løvås, 1994; Cruz & Smith, 2007).  Previous studies on pedestrian traffic 

modeling using queueing networks generally represented pedestrian routes by means of a 

linear fashion (Løvås, 1994; Cruz & Smith, 2007), which is not realistic compared to 

other methodologies. 

Detailed pedestrian traffic performance can be measured based on findings from 

empirical studies (walking speed, acceleration, trajectory changes, pedestrian density, and 

pedestrian spacing propensity).  The traffic flow model is composed of four main 

components: (1) the pedestrian arrival rate determined from empirical data; (2) service 

time (time spent at a node), which is affected by pedestrian density in the region of 

interest and cognitive processing time (delay) described previously; (3) node (any 

resource point in the pedestrian facility and rooms); and (4) link (a path between two 

consecutive nodes).  Pedestrians navigate from one node to another (sub-goals) to 

complete their travel agenda.  The queueing system collects traffic data from each node 

in the events of pedestrian birth (spawning or arrival) and death (exit or departure) as 

well as from within the node intermediately.  This model is expected to provide some 

critical pedestrian traffic performance information, such as average speed, blocking 

probabilities for pedestrian navigation, average inter-departure time from node to node, 

pedestrian density and flow rate, the most congested node, and average time in system 

(sojourn time).  The model will be validated by comparing difference between empirical 

data analysis results. 
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Whereas previous researches in the pedestrian literature are mainly focused on the 

physical aspect of pedestrian traffic performance, this study appended psychological 

pedestrian characteristics to the research scope.  Cognitive behaviors in the study include 

zone of comfort (Goffman, 1963, 1971; Hall, 1966), situation awareness (Bell & Lyon, 

2000), and walkability (Litman, 2007; Reid, 2008).  Associations and impacts of 

cognitive pedestrian behaviors on physical traffic performance were analyzed and 

discussed. 

1.2.4 Study 4: Level of Service Model (Chapter V) 

Finally, an assessment methodology of pedestrian facilities was developed to 

examine facility level of service (LOS).  Although there are existing LOS metrics used in 

the transportation field today, they do not address all of the factors that we have found to 

impact a pedestrian’s facility usage.  The current Highway Capacity Manual (HCM) 

(TRB, 2000) methodology for assessing pedestrian LOS over-simplifies the pedestrian 

traffic situation, and generalizes conditions with the overall average traffic performances 

within a certain period of time. 

In the study, presenting aggregated LOS metrics were aimed for more realistic 

service level assessments.  The proposed methodology includes revised LOS measures in 

addition to a subjective measure of LOS (walkability). The aggregated LOS was then 

developed combining HCM LOS and revised LOS with walkability using the multiple 

linear regression method.  It was expected that the proposed LOS metrics assist in 

determining the need to redesign the facility layout, including changes of walkway width 

and relocation or removal of services and amenities. 
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CHAPTER II 

EFFICACY OF UTILIZING QUEUEING NETWORK TO MODELING COGNITIVE 

INFORMATION PROCESSES AND PERFORMANCE IN PEDESTRIAN 

NAVIGATION 

2.1 Abstract 

This study investigates the efficacy of utilizing queueing network-model human 

processor (QN-MHP) model, which predicts cognitive information processing time and 

task performance.  Motion capture system was utilized to collect detailed pedestrian 

movement.  Twenty participants, ten male and ten female, completed lab-based 

navigational tasks under various levels of obstruction density in a constructed walkway.  

Changes in trajectory and speed, task accuracy, reaction time, and subjective workload 

under the treatment combinations of obstruction density level and designated speed level 

were measured and collected to test effects of density and speed on task performance.  

The predicted reaction time using QN-MHP was compared with the results from the 

empirical study to validate the performance of the model.  No significant difference 

between speed and space with respect to mean reaction time while efficiency and mental 

workload measures vary significantly as levels of speed and space change.  No significant 

difference between model and empirical results with respect to mean reaction time was 

found.   

Keywords: motion capture, reaction time, workload, pedestrian navigation, 

GOMS, QN-MHP. 
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2.2 Introduction 

Human cognition can be defined as the summation of representation of the world 

and computational processes.  Data from the real world represents the system, and a 

sequence of functional components process the data to reach a goal (Thagard, 2005).  To 

accomplish navigational tasks, pedestrians describe their environment based on the 

acquired information from their sensory system and decide what to take from the 

information to build an action plan for navigation (Wickens & Hollands, 1999).  When 

analyzing and modeling cognitive aspects of pedestrian walking behavior, researchers 

have encompassed a stimulus component in their models (Hoogendoorn & Bovy, 2005; 

Kachroo et al., 2008; Robin et al., 2009).  These models were mainly focused on collision 

avoidance to source of obstruction (stimulus) without identifying the time to take 

acquired information for efficient navigation as well as the amount of cognitive load to 

complete the travel agenda. 

This study endeavored to identify theory-based mechanisms of human 

performance that can account for meaningful performance differences in real-world tasks 

and settings in order to utilize the selected theoretical mechanism in pedestrian 

navigation.  The primary performance measure in this study was a reaction time.  

Reaction time is defined as the delay between stimulus presentation and response 

initiation, which is also interpreted as cognitive processing time (Liu, 1996).  The 

structure of the pedestrian cognitive information processing was constructed, and the 

computed values of reaction time and formulation of mental workload was also presented 

and incorporated into the pedestrian model to more accurately depict pedestrian behavior.  

Even though reaction time and mental workload can be estimated via either symbolism or 

connectionism model of human performance (Liu, Feyen, & Tsimhoni, 2006), direct 
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measurements of reaction time and mental workload with human subjects were necessary 

to test factorial effects with respect to the mean responses and to validate the efficacy of 

model applied. 

2.3 Background 

2.3.1 Cognitive Models 

Human information processing models represent perceptual, cognitive, and motor 

processes with different stages at which information gets transformed.  According to 

Wickens’ work (1984b), information processing can be broken into four discrete areas: 

perception, memory, decision making, and selection of action.  Each of these areas can be 

further broken down into a variety of components and all of these interact to produce 

information processing and interaction in human beings.  Even though each model in the 

literature shares similarities and bears differences as well, they usually focus on particular 

processes.  To convey the broader background for this study, the existing cognitive 

models that employ conceptual, mathematical, and computational frameworks are briefly 

reviewed. 

Conceptual models can be broken down into two major models: Information 

processing model (Wickens, 1984a, 1984b) and Skill-Rule-Knowledge (SRK) model 

(Rasmunssen, 1976, 1983).  Wickens’ information processing model depicts overall 

aspects that typically influence human cognition (e.g., perceiving, thinking about, and 

understanding the system).  This model also includes simple human information 

processing units, sequences, and environmental factors that impact the process, speed, 

and quality of response execution.  Wickens’ model is useful for conceptual 

understanding of cognition, but lacks in providing quantitative values of human 
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performance.  Likewise, Rasmunssen’s SRK model describes the sequence of 

information processing with respect to knowledge, rule and skill-based behaviors that 

elucidates dependency of decision making on the decision context.  This model is 

consistent with accepted and empirically supported models of cognitive information 

processing (Fitts, 1966; Anderson, 1996), and has been applied to a situation awareness 

model (Endsley, 1995) within a decision making framework (e.g., expert or novice 

decision making). 

Using mathematical models, a simple but rigorous prediction of information 

processing time (e.g., reaction time or movement time) can be obtained in terms of 

decision complexity or index of difficulty (Card et al., 1983; Wickens & Hollands, 1999).  

This category encompasses the Hick-Hyman law (Hick, 1952; Hyman, 1953) and Fitts’s 

law (Fitts, 1954).  The Hick-Hyman law (Hick, 1952; Hyman, 1953) enables researchers 

to characterize the dependency of response selection time on decision making, which 

formularizes: RT = a + bLog2 N, where RT is reaction time; a and b are constants; and N 

represents complexity.  The formula transforms a simple linear relationship between 

reaction time and complexity, but the model does not imply that systems designed for 

users to make simpler decisions are superior (Wickens & Hollands, 1999).  These 

mathematical models are simple and appropriate to compute the overall reaction time 

with less amount of computational effort, but not suitable for studying cognitive 

architecture in human information processing. 

The last group is classified as computational models.  Computational cognitive 

models are focused on cognitive architectural formations that cover a short period of 

execution time (e.g., a key-stroke task).  This category embraces numerous techniques as 

shown in Table 2.1.  The MHP (Model Human Processor) of Card, Moran, and Newell 
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(1983) was developed as an engineering human performance and human-computer 

interaction (HCI).  MHP includes a set of processor (i.e., perceptual, cognitive, and motor 

processors) with memory stores.  Card, Moran, and Newell also constructed GOMS 

(goals, operators, methods, and selection rules) family models which are appropriate for a 

keystroke level model with a similar structure to MHP.  The revised GOMS family 

models contributed by John and Kieras (1996) was NGOMSL (the natural GOMS 

Language), which enables GOMS-styles modeling with a more specific task analysis.  

The EPIC (Executive-Process Interactive Control) (Kieras & Meyer, 1997) model is 

similar to MHP, but it provides a production rule interpreter and unlimited cognitive 

resources allowing parallel processes, which are supported by recent empirical and 

theoretical consequences on human performance in a computer software based task.  

Unlike EPIC, The ACT-R (Adaptive Control of Thought-Rational) (Anderson et al., 

1997; Anderson & Lebiere, 1998; Anderson et al., 2004) model proposes serial discrete 

processes and it includes two types of memories (i.e., procedural memory and declarative 

memory) and goal stack.  ACT-R sets a single goal that fires a single production system 

at any point in time and has been described as an integrated (Anderson et al. 2004) and 

unified (Newell 1990) theory of cognition.  Micro Saint (Barnes & Laughery, 1996; 

Laughery, 1999) and COGNET (Zachary et. al., 1998) are simulation models of human 

performance that are focused on computing operator workload and problem-solving 

performance.  While Micro Saint covers parallel processing with switching to limited 

serial resources, COGNET deals with serial processing with switching and interruptions.  

When representing multitask resources (which are simultaneously allocated to multiple 

tasks), Micro Saint utilizes visual, auditory, cognitive and psychomotor workload, while 

COGNET considers limited attention and parallel motor/perceptual processes.  Queueing 
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network (QN) modeling of mental processes was proposed by Miller (1993) and Liu 

(1996).  The QN model was recently expanded to the QN-MHP (Queueing Network-

Model Human Processor) model (Feyen & Liu, 2001; Liu et al. 2006) that represents the 

human information processing system as queueing network servers.  The QN-MHP 

model was developed as context-free queueing network architecture (Feyen & Liu, 

2001), and was implemented to driving (Wu et al., 2008) and visual search (Lim &Liu, 

2004).  This model is composed of three subnetworks: perceptual, cognitive, and motor 

subnetworks.  QN-MHP is focused on computing time to perform the task (e.g., reaction 

time), accuracy in the task and the level of mental workload.  The summarized 

comparison table of cognitive models is displayed in Table 2.1. 
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Table 2.1 Cognitive Models: Classification and Effectiveness / Issue 

Category  Techniques  Effectiveness/Issue 

C
on

ce
pt

ua
l 

m
od

el
s 

• Information processing model: 
(Wickens, 1984a, 1984b) 

• SRK model: (Rasmunssen, 1976, 
1983) 

− Describes overall sequence of 
information processes and their 
relationships. 

− Lacks in obtaining quantitative value 
of information processing time. 

M
at

he
m

at
ic

al
 

m
od

el
s 

• Fitts’s law: (Fitts, 1954) 
• Hick-Hyman law: (Hick, 1952; 

Hyman, 1953) 

− Provides simple, but rigorous 
predicted value of information 
processing time. 

− Shows the dependency of response 
selection time on decision making. 

− Does not guarantee to make simpler 
decisions are superior. 

C
om

pu
ta

tio
na

l m
od

el
s 

(a
rc

hi
te

ct
ur

al
) 

• MHP/GOMS: (Card et al., 1983) 
• GOMS/NGOMSL: (John & 

Kieras 1996) 
• EPIC: (Kieras & Meyer, 1997) 
• ACT-R: (Anderson et al., 1997; 

Anderson & Lebiere, 1998; 
Anderson et al., 2004) 

• Micro Saint (Laughery, 1999; 
Barnes & Laughery, 1996) 

• COGNET (Zachary et. al., 1998) 
• QN-MHP (Liu, 1996; Feyen & 

Liu, 2001; Lui et al. 2006) 

− Requires detailed analysis of short 
term level interactions (not 
applicable to long term level tasks) 

− Improves productivity. 
− Enables context-free approaches or 

ignores contextual factors (GOMS, 
QN-MHP) 

− Enables to predict information 
processing time and level of 
workload (QN-MHP, Micro Saint 
and COGNET). 

− Relatively difficult to implement 
systemically. 

2.3.2 Reaction Time: Speed of Cognitive Process 

The phenomenon of the gap n time between stimulus presentation and response 

initiation is frequently observed.  The gap can be thought of as the time to execute a 

response after receiving sensory cues (e.g., visual, auditory, tactile, etc.).  Wickens and 

Hollands (1999) defined that the sum of the duration of a number of component 

processing stages equals total reaction time.  Reaction time also can be interpreted as a 

cognitive processing time, since the delay occurs due to the fact that some amount of time 

is required to process information (cognitive load) from exterior stimuli and initiate, 
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whether or not, appropriate responses (physical load).  Including reaction time and 

workload as the factors in pedestrian traffic model would be a more realistic 

representation of pedestrian behavior.  Even though reaction time and mental workload 

can be estimated using queueing systems (Wu et al., 2008), direct measurements of 

reaction time and mental workload with human subjects are necessary.  This research 

aims to validate the efficacy of applying the queueing network model in pedestrian 

collision avoidance behavior with respect to reaction time, as well as to fit the service 

time distributions at server stations in subnetworks appropriately. 

Luce (1986) categorized types of reaction time with respect to measurement 

methods: simple reaction time, choice reaction time, and recognition reaction time.  

Simple reaction time is the time required to show a single response from a single stimulus 

source.  In choice reaction time experiments, the operator should show distinct responses 

corresponding to each possible class of stimulus, as in a simple keystroke-level task.  

Recognition reaction time task involves determining an appropriate response to a 

stimulus, such as symbol and tone.  In comparing the length of reaction time, Donders 

(1868/1969) claimed that choice reaction time is longest, and simple reaction time is 

shortest. 

In the pedestrian research arena, the examples of inclusion of a stimulus 

component in pedestrian agents can be found in Hoogendoorn and Bovy (2005), Kachroo 

et al.(2008); and Robin et al.(2009).  The similarity of these approaches is to construct a 

delay function with respect to direction and walking speed.  However, these models do 

not explain the source and amount of delay in each cognitive information processing unit, 

nor do models provide validation of the delay functions with empirical results. 
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2.3.3 Subjective Workload 

As described previously, including a mental workload factor for modeling 

pedestrian traffic behavior with physical characteristics from empirical study could allow 

more realistic representation of pedestrian navigation.  This section briefly reviews 

workload measurement techniques to provide backgrounds for measuring and analyzing 

mental workload. 

Various techniques for measuring mental workload exist and can be categorized 

into primary task measures, secondary task measures, physiological measures, or 

subjective measures.  For each measurement category, there are issues with data 

collection and the establishment of a relationship to workload as described in Table 2.2. 
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Table 2.2 Workload Measurement Techniques and Issues 

Technique Description Issue 
Pr

im
ar

y 
ta

sk
 m

ea
su

re
 Primary task measures evaluate the 

most directly related task performed 
on the system or operator such as 
computer data-entry speed, driving 
deviations from the center of the 
lane, or learning comprehension 
with a particular method of 
instruction (Wickens & Hollands, 
1999).  

A problem with primary workload 
measures is that they are task-
specific.  The primary task 
measure is not a workload measure 
by itself, since it is affected by 
mental workload (Sanders 
&McCormick, 1993).  

Se
co

nd
ar

y 
ta

sk
 m

ea
su

re
 These measures ask an operator to 

perform the primary task along with 
a secondary task, causing the 
operator to use his/her spare 
attention or capacity to perform a 
secondary task (Gawron, 2000).  

Though the secondary task 
methods measure demands 
imposed by the primary task, it 
seems intrusive to operators 
performing tasks (Wickens & 
Hollands, 1999). 

Su
bj

ec
tiv

e 
ta

sk
 

m
ea

su
re

 

Subjective measures quantify 
mental workload by rating workload 
on a subjective scale. The rating 
relies on subjective perception of 
mental workload based on an 
operator’s actual experience 
(Sheridan, 1980; Wickens et al, 
2004).  

Subjective measures also have the 
limitation that human’s subjective 
perception does not always 
coincide with their task 
performance (Andre & Wickens, 
1995) because subjective 
perception can be affected by many 
factors such as an operator’s 
emotion, fatigue, stress, etc. 

Ps
yc

ho
lo

gi
ca

l 
 m

ea
su

re
 

Physiological measures quantify 
mental workload with a single-
resource model of information 
processing, such as heart rate, blink 
rate, or EEG recording (Sanders & 
McCornick, 1993; Kramer, 1987).  

Physiological measures may 
impose limitations on task 
performance as well as physical 
discomfort, fatigue and contact 
stress (Kataoka et al, 1998; Genno 
et al., 1997a). 

 

Primary task measures are associated with evaluating performance measures on 

the major task of the operators, such as typing speed, yaw and pitch for airplanes, or 

learning comprehension with a particular method of instruction (Wickens & Hollands, 

1999). As cognitive demands of a task change, changes in operator performance can be 

detected by primary task measures (Tsang & Vidulich, 2006). The primary problem with 

using primary task measures for mental workload measurement is that they are task-
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specific, making it difficult to compare between different tasks (Sanders & McCormick, 

1993).  

Secondary task measures are some of the most widely used mental workload 

measures. These measures ask an operator to perform a task in addition to their primary 

task, thereby requiring operators to allocate spare capacities or attentional resources to 

complete the secondary task (Gawron, 2000).  If performance on the primary task 

requires higher mental workload, there are fewer mental resources available for the 

completion of the secondary task.  Secondary task measures are more sensitive in 

measuring mental workload than primary task measures because they are believed to 

demonstrate difficulty level differences between primary tasks (Wickens et al, 2004; 

Slocum et al., 1971; Gawron, 2000).  However, it may be infeasible to impose a 

secondary task due to the criticality of the primary task (driving, flying, emergency 

medical technician, etc.). Therefore, the applicability and utility of these measures are 

limited.  

Subjective measures ask operators to rate their mental workload, typically on a 

scale, based on their subjective perceptions of their experience (Sheridan, 1980; Wickens 

et al, 2004). The advantage of these methods is they are easy to administer and to obtain 

ratings (Sanders & McCormick, 1993; Casali & Wierwille, 1983).  Some measures elicit 

a unidimensional rating of mental workload (e.g., the Modified Cooper Harper Scale, 

Wierwille & Casali, 1983), whereas others combine ratings along multiple dimensions 

(e.g., the NASA Task Load Index, Hart & Staveland, 1988; or Subjective Workload 

Assessment Technique, Reid & Nygren, 1988).  One limitation of subjective workload 

measures is that operators’ perceptions of mental workload do not always coincide with 

task performance (Andre & Wickens, 1995).  Further, mental workload ratings can be 
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influenced by other factors not related to the task, such as emotional stress, fatigue, etc. 

(Gaillard, 1993; Wickens et al., 2004).  It also is difficult to distinguish external task 

demand difficulty from actual workload if the tool questions or scales are not well 

defined (O’Donnell & Eggemeier, 1986).  

Physiological measures quantify mental workload with a single-resource model of 

information processing (Sanders & McCornick, 1993; Kramer, 1987; Tsang & Vidulich, 

2006).  The central nervous system (CNS) includes the brain, brain stem, and spinal cord 

cell, and CNS measures are used to detect brain activity.  Activities for the CNS can be 

autonomic (such as heart rate changes and blood vessel constriction/dilation) or voluntary 

(such as muscle contractions).  It is the autonomic responses that are of most interest in 

mental workload measurement as these are physiological responses that are not 

controlled or influenced by conscious activities.  The autonomic nervous system (ANS) is 

divided into the sympathetic nervous system (SNS) and parasympathetic nervous system 

(PNS).  SNS provides extra activation to the body in emergency situations (stress state) 

involving a fight-or-flight reaction while PNS helps to maintain homeostasis limits within 

the body system by relaxing the body as a regulatory system. Mental stress and emotional 

state are strong triggers to activate the SNS.  SNS stimulation increases mental activity, 

heart rate, and pupil size.  It also contracts the smooth muscle of the organs that constricts 

blood vessels and pores in the skin.  Vasoconstriction is related to decreases in skin 

surface temperature due to decreased blood flow in tissues.  On the other hand, PNS leads 

to decreased heart rate and pupil size, but it has no effect on mental activity, muscle, or 

skin (Guyton & Hall, 2006).  Even though physiological measures have been used 

because of problems with intrusiveness and multiple resources in other methods (Tsang 
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& Wilson, 1997), these methods may impose limitations on task performance as well as 

physical discomfort, fatigue and contact stress. 

2.4 Objectives 

The overall objective of this study was to conduct an empirical study to identify 

appropriate factors that explain characteristics of pedestrian behavior in order to build 

legitimate pedestrian models with a micro-level of measurement pedestrian reaction time.  

The study also involved in modeling and constructing cognitive information processes for 

task performance in terms of reaction time from a given stimulus to collision avoidance 

action taken in pedestrian navigation so as to provide a credible way of predicting the 

task performance.  There were two specific aims in this study: (1) utilizing motion 

capture system to collect the precise pedestrian movement and analyze behaviors with 

respect to reaction time, efficiency, and mental workload on a navigational task; and (2) 

validating the queueing network based cognitive information processing model through 

the use of empirically collected data (i.e., predicted versus measured values)  

2.5 Hypotheses 

The problem of interest is to identify the effect of density and designated walking 

speed in performance measures.  Are the tasks performances in reaction time and 

efficiency affected by obstruction density level and/or designated speed class?  The 

measured mean reaction time and mean efficiency were compared under each treatment 

combination of density and speed.  The difference between estimated and measured 

values with respect to reaction time was also tested to validate the efficacy of using 

queueing network model in pedestrian navigation.  Specific hypotheses include: 
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H1. Density level and speed class do not interact to affect performance measures 

(reaction time and efficiency).   

H2. Density level will affect the performance measures (reaction time and 

efficiency) 

H3. Walking speed will affect the performance measures (reaction time and 

efficiency) 

H4. No gender difference will be found in task performance (reaction time and 

efficiency) 

H5. Performance measures (reaction time and efficiency) will be correlated with 

workload level 

H6. No difference between measured and predicted values of reaction time will 

be found 

2.6 Methodology 

2.6.1 Experimental Design 

A 3*3 factorial arrangement of treatments on speed and density with three 

replications was made in random order to assess task performance measures (reaction 

time and efficiency) and subjective mental workload.  Gender was treated as a block to 

conduct an auxiliary test for variation due to gender.  Exposure to trials will be 

determined using a randomized complete block scheme. 

2.6.2 Participants 

Twenty participants, ten males and ten females, completed the experimental 

protocol.  Non-impaired (mobility and color blindness) participants who do not wear 

glasses were recruited from the Mississippi State University student community.  Sample 
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size was based on Wu & Liu (2008), which used similar methodology to the one 

proposed in this study. 

2.6.3 Task Description 

The study employed a simplified pedestrian navigation situation, which was 

motivated from pedestrian simulation validation research focused on the discretized 

angular choice set (Antonini et al., 2006; Robin et al., 2009) and experimental 

psychology work related with spatial behavior experiment with directional sense 

measurement (O’Keefe & Nadel, 1978).  Participants were asked to complete a walking 

task avoiding collision under the various level of density (the number of illuminated 

lamps per area of region of interest; shown as yellow circles in Figure 2.1) at designated 

speed (i.e., slow, normal, and fast at participants’ own judgment) as illustrated in Figure 

2.1.  While walking, lights were be randomly illuminated to assign density levels.  

Participants were asked to finish walking tasks when they reach at the end of the site, and 

to ignore unlit lights. 
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Figure 2.1 Designation of Experimental Site and Region of Interest (ROI) 

The distance between stimulus initiation and stimulus (light) was set based on 

pedestrian “spatial bubble” (Dornfeld, 1997) as illustrated in Figure 2.2.  It is defined as 

the preferred distance of unobstructed forward vision while walking under various 

circumstances.  It categorizes bubbles into four cases that are comfortable for a public 

event, shopping, normal walking, and pleasure walking for the average pedestrian.  The 

distance between the beginning of stimulus initiation and the blue dotted arc was about 5 
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m, which corresponds to the normal walk situation (4.6 m – 5.5 m) in Dornfield (1997) 

and sight distance (4 m) in Teknomo (2006).  Upon completion of each trial, participants 

also completed a subjective workload questionnaire using the computer-based NASA-

TLX (Hart & Staveland, 1988). 

 

 

Figure 2.2 Spatial Bubble with Forward Clear Space (Dornfeld & Conroy, 1997) 

2.6.4 Independent Variables 

Speed class and pedestrian space level were considered as independent variables.  

Speed class was composed of three levels, such as slow, normal and fast at participants’ 

judgment of each speed, and space had three levels (A, B, and C) based on pedestrian 

level of service (LOS) category in the Highway Capacity Manual (TRB, 2000) as shown 

in Table 2.3.  The Highway Capacity Manual defines pedestrian LOS as follows: space 

level A (pedestrian space > 5.6 m2 / ped) indicates that pedestrians move in desired paths 

without altering their movements in response to other pedestrians; at level B (3.7 m2 / ped 

– 5.6 m2 / ped), there is sufficient area for pedestrians to select walking speed freely to 

bypass other pedestrians, and to avoid crossing conflicts; and under the level C (2.2 m2 / 

ped – 3.7 m2 / ped), pedestrians walk with sufficient space at normal speed.  Within each 
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treatment combination, participants were asked walk at different speed (slow, normal, 

and fast).  That is to say, each participant performed the same task at three different 

walking speeds, once under each density level.  Three replications were completed for 

each treatment combination, leading to a total of 27 trials for each participant. 

Table 2.3 Speed and Space on Each Navigational Task 

  Speed 
  Slow Normal Fast 

Sp
ac

e 
LO

S A      Tasks 1-3     Tasks 4-6     Tasks 7-9 
B Tasks 10-12 Tasks 13-15 Tasks 16-18 
C Tasks 19-21 Tasks 22-24 Tasks 25-27 

2.6.5 Dependent Variables 

Dependent variables for this study were reaction time, efficiency, and subjective 

mental workload.  Reaction time and efficiency were measured using motion capture 

data, which were recorded during the trials and subjective mental workload was assessed 

after each trial. 

Reaction time.  A 14-camera motion capture system (Motion Analysis, EVaRT 

4.6, 3636 N. Laughlin Road, Suite 110 Santa Rosa, CA 95403) was used to capture 

participants’ motions as illustrated in Figure 2.3.  Motion data were collected at a rate of 

60 Hz for each task.  Six small markers (one fourth to one inch in diameter) were affixed 

to the head (three markers) and shoulder/neck (three markers) of the participant using 

recommended procedures.  Marker surfaces were covered with retroreflective tape 

allowing cameras to track marker positions within a three dimensional volume.  While 

participants navigate, a random number of stimuli (light sources) based on LOS level 

were given to participants.  The source of stimulus was a fluorescent lamp that represents 

other pedestrians in the walkway segment.  It was announced to participants that 
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illuminated lights represent other pedestrians which should be avoided.  Participants were 

asked to ignore lights that were not illuminated during the trial.  

 

 

Figure 2.3 Motion Capture Camera, Motion Capture Marker, and Lamp Placement 
and Sample Pedestrian Motion Recording of Forward Movement 
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Reaction time was measured using motion capture data, which recorded 

coordinate data at a frame rate of 60 per second under the three-dimensional Cartesian 

coordinate system as shown in the bottom of Figure 2.3.  Since this study primarily 

focused on changes in forward walking directions of pedestrians, data on x-axis and y-

axis were used projecting those onto the floor (z=0).  The measure reaction time in this 

context is the gap in time between stimulus presentation (the moment of light 

illumination) and response initiation (changes in both angular velocity and walking 

speed).  Changes in angular velocity were measured by calculating angular acceleration 

between two consecutive frame data on forehead and acromion angles.  Reaction time 

was measured, when both angular acceleration and walking acceleration were greater and 

less than their means ± standard deviations respectively.  The base time unit of reaction 

time in 16 milliseconds was used, since that of ACT-R is 15 milliseconds (Anderson et 

al., 1997).  To compare reaction times from the empirical study and QN-MHP prediction, 

reaction time was also predicted using QN-MHP model (Wu & Liu, 2008) with GOMS 

style task description.  Measuring reaction time enables to develop micro-level pedestrian 

behavioral modeling that explains pedestrian information processing (Zacharias et al., 

2008).  Since limited attention has been given in micro-level of pedestrian behavior study 

(Lee et al., 2008), the inclusion of a GOMS style task description will improve the 

pedestrian behavior model, because GOMS has been frequently utilized to train young 

pedestrians for their safety (van der Molen et al., 1983; van der Molen, 2006) and 

pedestrians who have developmental disabilities (Batu et al., 2004). 

Efficiency represents the proportion of the difference between displacement and 

actual walking distance to displacement (i.e., (displacement – distance) / displacement; 

and ).  A displacement is the shortest distance from the initial and final positions of a 
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pedestrian.  Thus, it is the length of an imaginary straight path, typically distinct from the 

path actually travelled by a pedestrian.  Whereas, a distance is a scalar measure of the 

interval between two locations measured along the actual path connecting them.  The 

observed distance would increase, if a pedestrian changed his/her walking trajectory 

frequently.  Since trajectory change is one of the major factors that impacts pedestrian 

walking performance (Antonini et al., 2006; Teknomo, 2006), the effect of trajectory 

change (i.e., efficiency) was considered in this study.  If a pedestrian walked efficiently 

with less number of trajectory changes, efficiency would approach to zero.  Otherwise, 

efficiency measure would take a negative value, since distance is usually greater than 

displacement. 

Subjective workload was measured using six scales of NASA-TLX (Hart & 

Staveland, 1988) after each trial.  The NASA-TLX measures mental, physical, and 

temporal demands, as well as, performance, effort, and frustration levels.  These demands 

were differently weighted based on pedestrian ranking of workload demand component 

and merged into a single workload index.   

2.6.6 Procedure 

Upon arrival, participants were given a verbal description of the study and asked 

to complete informed consent documents.  They were given a training session before the 

actual task are assigned.  Each participant was asked to respond to the computer-based 

NASA-TLX subjective workload rating questionnaires, followed by walking under the 

given treatment combinations with respect to levels of density and speed.  At the moment 

of experiment completion, participants were compensated for their participation. 
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2.6.7 Data Analysis 

Appropriate descriptive statistics were obtained for each dependent variable (e.g., 

means and standard deviations).  Reaction time was measured counting the number of 

frames (sixty frames per second) between the frames of stimulus presence and significant 

changes in forward angle and speed as defined previously.  Reaction time was then 

calculated by multiplying the number of frames by 0.0167.  The same manner was 

applied to calculate efficiency rates as described earlier.  A regression model was 

developed to walking speed function of reaction time, efficiency rate, mental workload 

and gender. 

Multivariate analysis of variance (MANOVA) with performance measures was 

taken to test hypotheses described previously.  Factorial ANOVA was used to assess 

factorial effects of density and speed level combinations with respect to mean 

performance measures.  As well, Fisher’s protected LSD (least significant difference) and 

Tukey’s HSD (honestly significant difference) post hoc tests were used where 

appropriate.  Correlations between each of the dependent variables were computed.  All 

findings were considered significant at an alpha (significant level) of 0.05 unless 

otherwise stated.  The SAS 9.2 for windows was used for all statistical analyses. 

2.7 Results 

Descriptive statistics for each of the dependent variables are provided in Table 

2.4.  These statistics contain reaction time in second, efficiency, and workload 

considering treatment combinations of speed and space levels, as well as gender.  The 

measured overall average (standard deviation) reaction time, efficiency, and subjective 

mental workload were 0.5089 (0.3924) seconds, -0.0152 (0.0210), and 22.52 (14.90) 

respectively. 
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Table 2.4 Descriptive Statistics for the Dependent Variables (N=540) 

Gender Speed Space Reaction time (s) Efficiency Workload 
      Mean SD Mean SD Mean SD 
Female Slow A 0.6639 0.8109 -0.0158 0.0342 22.6333 12.6973 

  
B 0.4750 0.2861 -0.0145 0.0129 23.4222 12.9262 

  
C 0.5800 0.7953 -0.0134 0.0108 23.1333 11.8992 

 
Normal A 0.4100 0.1981 -0.0077 0.0051 21.4778 11.7905 

  
B 0.4606 0.1633 -0.0072 0.0079 21.8556 12.6548 

  
C 0.5378 0.5602 -0.0216 0.0500 24.9000 13.3523 

 
Fast A 0.4295 0.1974 -0.0088 0.0133 29.8000 16.5046 

  
B 0.5122 0.3524 -0.0060 0.006 27.6555 16.5361 

    C 0.5217 0.4318 -0.0125 0.0184 28.8222 15.4038 

 
Female overall 0.5101 0.4817 -0.0119 0.0227 24.8556 13.9749 

Male Slow A 0.4961 0.2208 -0.0197 0.017 15.2889 10.6870 

  
B 0.4306 0.2200 -0.0199 0.0127 15.0667 10.6103 

  
C 0.5528 0.3278 -0.0248 0.0234 17.8667 13.7014 

 
Normal A 0.4745 0.2461 -0.0163 0.0122 13.5222 9.0489 

  
B 0.5139 0.2539 -0.0168 0.016 16.8222 11.1801 

  
C 0.5206 0.2863 -0.0205 0.0173 18.8000 12.2292 

 
Fast A 0.4856 0.1890 -0.0124 0.0133 28.6556 22.8358 

  
B 0.4995 0.2547 -0.0158 0.0233 28.7111 19.0250 

    C 0.5961 0.4225 -0.0208 0.0263 26.8333 15.7499 

 
Male overall 

 
0.5077 0.2765 -0.0185 0.0186 20.1741 15.4517 

Overall 
  

0.5089 0.3924 -0.0152 0.0210 22.5148 14.9035 
 

When participants walked under the situation of space level A, the measured 

average (standard deviation) reaction time, efficiency, and workload were 0.4932 

(0.3866) seconds, -0.0134 (0.0184), and 21.89 (15.69) respectively.  Other space levels 

were assigned and task performances were also obtained: for space level B, average 

reaction time, efficiency, and workload were 0.4819 (0.2596) seconds, -0.0134 (0.0184), 

and 21.89 (15.69) respectively; and when pedestrians walked under the space level C 

setting, the recorded performance measures with the same order of appearance as levels 

A and B were 0.5514 (0.4939) seconds, -0.0189 (0.0273), and 23.39 (14.17). 
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The measured reaction times in second at each speed class, such as slow, normal, 

and fast, were 0.5330 (0.5111), 0.4862 (0.3113), and 0.5074 (0.3229) respectively.  When 

it comes to efficiency measure with the same order of speed classes as reaction time, 

descriptive statistics showed -0.0179 (0.0202), -0.0149 (0.0237), and -0.0127 (0.0184).  

For mental workload index, it indicated that 19.56 (12.50), 19.56 (12.19), and 28.41 

(17.63). 

 

 

Figure 2.4 Average Speed and Acceleration by Time in Seconds 

The observed average (standard deviation) walking speed and acceleration were 

1.3729 (0.1052) m/s and -0.090 (1.2187) m/s2 respectively as illustrated in Figure 2.4. 

Box-Cox transformation was performed, since the variables did not hold linearity 

and homogeneity of variance assumptions.  The obtained λ’s for reaction time, efficiency, 

and workload that minimize root mean squared errors were -0.6, 0, and 0 respectively.  

Then these λ’s were plugged into the following Box-Cox power function to conduct 

statistical analysis appropriately. 
 

1,  0

ln( ),    0
trans

y
y

y

λ

λ
λ

λ

 −
≠= 

 =

                                                                           (2.1) 
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Tests for homogeneity of variance using Levene’s method showed that 

transformed dependent variables held homoscedasticity assumption.  The tests of 

homogeneity of variance for reaction time (F(8,531) = 0.88, p = 0.5345), efficiency 

(F(8,531) = 1.24, p = 0.2727), and workload (F(8,531) = 0.93, p = 0.4929) showed 

conducting ANOVA is reasonable. 

Collected data were initially analyzed using two-way MANOVA, factorial 

arrangement of treatment in a randomized complete block design (gender was treated as a 

block).  This analysis revealed significant multivariate effects for levels of speed and 

space with respect to average reaction time, efficiency, and workload, Wilk’s lambda for 

overall speed effect = 0.86 (F(6,1056) = 13.50, p < 0.0001) and Wilk’s lambda for overall 

space effect = 0.98 (F(6,1056) = 2.16, p = 0.04). 

Univariate ANOVAs were also conducted after rejecting multivariate effects.  

ANOVA resulted that speed and space do not interact to significantly affect mean 

reaction time (F(4,530) = 1.20, p = 0.31), efficiency (F(4,530) = 0.84, p = 0.50), and 

workload (F(4,530) = 0.51, p = 0.73) as shown in Table 2.5.  No significant differences in 

speed (F(2,530) = 0.09, p = 0.92), space (F(2,530) = 0.66, p = 0.52) and gender (F(1,530) 

= 2.97, p = 0.09) with respect to mean reaction time in pedestrian walking were found.  

For mean efficiency measure, at least two speed levels (F(2,530) = 18.00, p < 0.0001) 

and space levels (F(2,530) = 4.55, p = 0.01) were significantly different.  Variation due to 

gender (F(1,530) = 73.72, p < 0.0001) was also significant.  However, only speed levels 

(F(2,530) = 22.82, p < 0.0001) were significantly different with respect to mean 

workload.  Significant variation due to gender (F(1,530) = 26.33, p < 0.0001) in workload 

was found. 
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Table 2.5 Factorial ANOVA Results (p-values) 

Dependent Variables Speed Space Speed*Space Gender 
Reaction Time   0.9184 0.5155 0.3111   0.0852 
Efficiency <0.0001 0.0109 0.4983 <0.0001 
Workload <0.0001 0.2253 0.7292 <0.0001 
Note. Bold values indicate significant findings (p-value < 0.05) 

2.7.1 Reaction Time Measures 

Reaction time was not found to be affected by gender (Table 2.5).  Figure 2.4 

shows the trend of reaction time in gender.  The average (standard deviation) reaction 

times for female and male walkers were 0.5101 (0.4817) seconds and 0.5077 (0.2764) 

seconds respectively. 

 

 

Figure 2.5 Reaction Time Trends in Gender Based on Speed*Space Combination 

Note: V1, V2, and V3 indicate slow, normal, and fast walking speeds respectively.  S1, 
S2, and S3 denote space levels A, B, and C correspondingly. 

There was no significantly higher or lower reaction time when levels of speed and 

space change as shown in Table 2.6. 
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Table 2.6 Tukey’s Post-Hoc Comparisons for Reaction Time 

Treatment combination 
(Speed_Space) Mean N Groups 

V1_S1 0.5800 60 A 
V3_S3 0.5589 60 A 
V2_S2 0.4872 60 A 
V1_S3 0.5664 60 A 
V2_S3 0.5292 60 A 
V3_S2 0.5058 60 A 
V3_S1 0.4575 60 A 
V1_S2 0.4528 60 A 
V2_S1 0.4422 60 A 

 

Each mean reaction time reported in Table 2.6 was taken a reverse transformation 

from the transformed data to show each value in an actual unit of measure (in second), 

but the rank of each treatment combination was obtained from mean values calculated 

using the transformed data.  The same manners of reporting the multiple comparison 

results were applied hereafter (i.e., efficiency and mental workload measures). 

2.7.2 Efficiency Measures 

Unlike reaction time (power transformation), logarithm transformation was taken 

for efficiency to construct a valid data structure to conduct hypothetical testing.  The 

domain of logarithm function takes positive values (greater than or equal to zero), and the 

calculated efficiency measures are negative values, negative efficiency measures were 

put into a logarithm function. 

Mean transformed efficiency was significantly influenced by gender as shown in 

Table 2.7.  Figure 2.5 shows the trend of efficiency in gender.  The average (standard 

deviation) efficiency for female and male walkers were -0.0119 (0.0227) and -0.0185 
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(0.0186) respectively indicating female participants walked more effectively with less 

trajectory changes in forward movement angle than male walkers did. 

 

 

Figure 2.6 Task Efficiency Trends in Gender Based on Speed*Space Combination 

No best situation (treatment combination of speed and space levels) for pedestrian 

walking was found as shown in Table 2.7.  However, walking at fast speed with all space 

levels cases were better in mean transformed efficiency than slow speed class.  For 

pedestrian space, multiple comparisons reported that space level B was better than level 

C in mean transformed efficiency. 
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Table 2.7 Fisher’s Protected LSD Comparisons for Efficiency 

Treatment combination 
(Speed_Space) Mean N Groups 

V1_S3 -0.0190 60 
 

A  
V1_S2 -0.0172 60 

 
A  

V2_S3 -0.0210 60 B A  
V1_S1 -0.0177 60 B A C 
V2_S1 -0.0120 60 B D C 
V3_S3 -0.0166 60 E D C 
V2_S2 -0.0120 60 E D  
V3_S1 -0.0106 60 E D  
V3_S2 -0.0109 60 E   

2.7.3 Subjective Workload Measures 

Subjective mental workload was also transformed using a natural logarithm 

function to conduct hypothetical testing under ANOVA assumptions. 

Mean transformed workload was significantly influenced by gender as shown in 

Table 2.5.  Figure 2.6 shows the trend of workload in gender.  The average (standard 

deviation) workload for female and male pedestrians were 24.85 (13.97) and 20.17 

(15.45) respectively indicating female participants experienced more workload while 

walking than male walkers did. 
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Figure 2.7 Subjective Workload Trends in Gender Based on Speed*Space 
Combination 

No best treatment combination of speed and space levels that minimizes cognitive 

loading in walking tasks was found as shown in Table 2.8.  However, multiple 

comparison results revealed that walking at fast speed with all space levels cases was 

worst with respect to mean transformed workload.  Slow and normal speed levels were 

not significantly different with respect to mean workload score.  There was no significant 

effect of pedestrian space on workload. 
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Table 2.8 Fisher’s Protected LSD Comparisons for Workload 

Treatment combination 
(Speed_Space) Mean N Groups 

V3_S3 23.83607 60 
 

A 
V3_S1 23.47181 60 

 
A 

V3_S2 23.20343 60 
 

A 
V2_S3 18.24699 60 

 
B 

V1_S3 16.51716 60 C B 
V2_S2 15.83781 60 C B 
V1_S2 15.44368 60 C B 
V1_S1 15.23355 60 C B 
V2_S1 14.31489 60 C  

2.7.4 Relationship among Measures 

To obtain correlation coefficients, “PROC CORR” was performed with a 

spearman option using SAS, since some of variables were not normally distributed and 

estimating exact probability distributions for all variables were not possible.  Some weak 

but significant correlations were found between efficiency and all variables (workload, 

average observed walking speed, average acromion angle, average angular velocity of 

acromion angles, and gender), as well as between gender and most of the variables except 

angular velocity (Table 2.9).  Average speed and average acromion angle are also 

negatively correlated each other.  A strong correlation between average acromion angle 

and average angular velocity was found, since angular velocity is defined as changes 

between two consecutive acromion angles within a base measurement unit time, 0.016 

seconds. 
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2.7.5 Regression Model 

The bivariate correlations revealed three predictor variables were significantly 

related to average observed walking speed: efficiency (r = 0.37); average acromion angle 

(r = -0.12); and gender (r =-0.15) appeared in Table 2.9.  All of these correlations were 

significant at p-value < 0.01, and all were in the predicted direction.  The correlations 

between average speed and angular velocity and between average speed and reaction 

time, on the other hand, were nonsignificant with r = 0.05 and r = 0.05 respectively. 

Multiple regression with stepwise method was performed to develop a regression 

model to predict mean walking speed (mm/s) taking into consideration of variables, such 

as reaction time, efficiency, workload and gender.  Significance level of 0.15 for entering 

and removing variables was applied until no justifiable reason to enter or remove 

variables was found.  Reaction time was removed by the entering variable criterion, and 

the obtained fitted equation is as follows (equation (2.2)). 
 

 617.7988 140.0523ln( ) 26.4371ln( )
          197.5814( ) 1.5691( )

0, if male   
              where

1, if female

Speed efficiency workload
gender acromionAngle

gender
gender

= − − +
− −

=
 =               

(2.2) 

The predicted equation containing these four variables accounted for 

approximately 23% of observed variance in walking speed, F(4,535) = 39.08, p < 0.0001, 

adjusted r2 = 0.22. 

2.7.6 Cognitive Simulation Model Validation 

For validating cognitive model performance, simulation experiments were 

conducted.  Each simulation run of cognitive model in the study was treated as an actual 

experiment: the queueing network cognitive model was presented with ten stimuli 
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occurring at random interarrival times ranging from five to sixty seconds and the 

simulation was replicated twenty times for representing twenty subjects. 

Table 2.10 displays outcomes from cognitive model and comparisons with Model 

Human Processor (MHP) with respect to the predicted processing time at each 

subnetwork in the study and at each stage in MHP.  Empirical study results from motion 

capture data is also reported in Table 2.10 

Table 2.10 Information Processing Times (in seconds) Comparisons for the Simple 
Reaction Time Task 

Processing Stage Methods Minimum Mean Maximum 
Perceptual Queueing N/W 0.050 0.098 0.196 
 MHP 0.050 0.100 0.200 
Cognitive Queueing N/W 0.026 0.068 0.155 
 MHP 0.025 0.070 0.170 
Motor Queueing N/W 0.030 0.069 0.148 
 MHP 0.030 0.070 0.100 
Total Queueing N/W 0.106 0.235 0.499 
 MHP 0.105 0.240 0.470 
 Empirical 0.217 0.509 1.683 
  95 % CI: (0.475, 0.542)  

 

Pertaining to investigation of difference between MHP and queueing network 

cognitive model with respect to mean response time for both models, a single population 

mean t-tests was conducted and there was no significant difference between mean 

reaction times from both models (t(19) = 2.52, p = 0.0208).  However, significant 

differences were found between queueing model and empirical study results as well as 

MHP and empirical study outcomes.  As illustrated in Table 2.10, both results in mean 

response time did not fall within a 95% confidence interval of actual participants’ 

response times from an empirical study. 
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Figure 2.8 Box-and-Whisker Plot of Reaction Time (in seconds) 

As shown in Figure 2.8, the distribution of participants’ response times is skew to 

the right (with a skewness of 5.50) alluding that the data on response time contain 

numerous influential points that potentially impact on the central tendency of the data.  

The average response times from fast responding participants group (they responded 

immediately after they were given stimuli.), such as average of the data from minimum 

up to 25th percentile and 33rd percentile, were 0.2391 seconds and 0.2564 seconds 

respectively.  This indirectly shows that as long as participants react immediately after 

the stimulus presentation, the predicted value of reaction time using the cognitive 

simulation model is consistent to the one observed. 

2.8 Discussion 

Motion capture cameras collect the data while communicating information 

regarding time and location with motion capture makers.  There is no doubt the data 

collected with motion capture system may contain noise due to the fact that the system 

transmits the data through electro-magnetic signal.  Moreover, motion capture system 
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markers intervene in communications each other sometimes, so there is possibility of 

gathering unwanted or unintended data for these reasons.  Data are necessary to be 

smoothed and cleaned beforehand. 

Motion data regarding reaction time and efficiency for each motion capture 

markers in an x-y coordinate format were extracted from the motion capture software into 

each excel spreadsheet after taking position data smoothing.  Butterworth smoothing 

algorithm in the motion capture software was applied abiding by recommended 

smoothing procedure to account for noise in the data (Marras et al., 1993; Allard et al., 

1995). 

If all the data on pedestrian behavior have been captured, what marker data do we 

need to select for identifying participant’s forward movement?  To address and resolve 

this issue, participants’ walking trajectories were plotted and ran the correlation analysis 

with respect to forward movement angle for all markers.  As described previously, 

markers were affixed on participants’ top head, right-front head, right neck and both 

acromions.  Data from both acromion makers were selected for analysis of the study 

since they explain the dimension of participants’ body, they move together 

simultaneously maintaining constant distance between them.  Especially the forward 

movement angle and vector can be easily obtained when a perpendicular line is drawn 

from a virtual line between two acromions.  Forward movement angles were mostly 

orthogonal to a line between two acromions as illustrated in Figure 2.9. 
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Figure 2.9 Trajectory Plot of Motion Capture Markers 

Another reason for selecting acromion data was because it tells more about 

nonlinear forward movement of pedestrians, which is directly related to reaction time.  

As discussed in Chapter 4 and pedestrian literature, people are likely to change their 

waling speed rather than change their walking direction in angular degree.  Also 

participants were asked to walk straight to the end of the experimental site taking a linear 

walking direction until stimuli are given to them.  When measuring participants’ response 

time, total time spent from the moment of stimulus presentation and until significant 

angular speed and angular acceleration were monitored on motion capture system was 

recorded.  Figure 2.10 illustrates overall participants’ average acromion angle (in degree), 

average angular velocity (in degree / millimeters) and average angular acceleration (in 

degree / milimeter2).  This shows participants do not prefer to change their walking 

direction (average change in angular degree is about 5°) and most of the tasks have been 

completed within an angular degree of 10 based on their microscopic forward movement 

angles.  The overall pedestrian walking direction choices in degree are found in Figure 

2.11. 

 

Distance (in mm) 
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Figure 2.10 Box-and-Whisker Plots of Average Acromion Angle, Average Angular 
Velocity and Average Angular Acceleration for all Participants. 

Note: They are nonlinear movement indices of pedestrian walking in the study. 
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As noted in section 2.7, mean reaction time was not significantly affected by the 

combination of speed and space levels and even a single factor of space or asked speed.  

This can be interpreted as that there is no single level of speed or space that minimizes 

participants’ reaction time.  The interaction effect between each space and speed level 

was not significant that explains increasing space (speed) level does not have the same 

effect on the observed response time of pedestrians.  No trend in mean response time as a 

function of space, either overall or in relation to the different speed levels either.  At this 

point, the first research hypothesis was supported while parts of the second and the third 

hypotheses were not sustained.  Then what was the reason that the contradictory would 

happen?  This may be due to the fact that participants were not restricted to respond to 

the stimulus immediately after it is given to each participant.  They were allowed to walk 

at their own judgment of each speed and to choose the direction as they believe it was 

appropriate to avoid possible collision.  However, the reaction time averaged from its 

minimum up to 33rd percentile (0.2564 seconds) was consistent to the one predicted using 

queueing network model and MHP in terms of mean reaction time (e.g., Q1Reaction time = 

0.2391 seconds as shown in Figure 2.8.). 

The effect on mean efficiency measure and workload of space (or speed) do not 

depend on the level of speed (or space), which means F-tests on both interaction effects 

were not significant.  The differences in mean efficiency and workload between the levels 

of space are not the same at all levels of speed.  Therefore, the rest parts of hypotheses 

were supported by F-tests. 

For efficiency measure, the effects of space and speed were significant.  Unlike 

mean reaction time, variation due to gender was significant on mean efficiency.  Female 

pedestrians have more linear trajectories than male walkers do.  This can be interpreted as 
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female participants tend to change their speed rather than change walking direction 

showing higher mean value of efficiency.  There was no best speed and space 

combination that maximizes mean efficiency, but generally participants’ efficiency 

measures were higher when they were asked at their slow speed for all levels of space.  

Therefore second and third hypotheses regarding mean efficiency were supported while 

forth hypothesis about efficiency was not held.  As described previously, efficiency 

measure is a ratio of the difference between displacement and travel distance to 

displacement.  This also can be thought of as an index of linear forward movement 

 

 

Figure 2.12 Histogram of Forward Movement Angle in Degree in Walking Direction 
Choice. 

As shown in Figure 2.12, the central tendency of forward movement angle is 

almost zero with its mode of zero and the overall average efficiency is -0.0152, which 
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indicates most participants took straight linear path while walking.  Navigation tasks have 

been completed with the observed forward movement angle of less than 40 degrees as 

displayed in Figure 2.12.  The recorded minimum and maximum values of efficiency 

were -0.2761 and -0.0007 respectively, and they were observed in forward movement 

angle range between -10° and +10°.  This proves that efficiency is an appropriate 

measure for linear forward movement that minimizes travel time and use of space as well 

as mental workload.  Similar, consistent tendency of walking direction path choice was 

found in literature as shown in Figure 2.13.  Path choice alternatives 5, 6, 7, 16, 17, 18, 

27, 28, and 29 in Figure 2.13 regarding forward movement angle range between -10° and 

+10° as well. 

 

 

Figure 2.13 Histograms of Pedestrian Path Choice in the Literature (Robin et al., 2009)  

Note: The study was inspired and motivated by this pedestrian path choice model 
proposed by Robin et al. (2009) and Antonini et al. (2006).  The numeral numbers on x-
axes (i.e., path choice alternatives) have been applied to one of study protocols in the 
study as illustrated in Figure 2.1 and Figure 2.3. 

2.9 Conclusion and Future Work 

The overall objective of this study was to model and construct cognitive 

information processes of visual search in pedestrian navigation.  For detailed 
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measurement of pedestrian movement at a cognitive information processing level as 

employed in ACT-R (Anderson et al., 1997), a motion capture system was utilized.  The 

motion capture system collected pedestrian movement every 0.015 seconds.  Based on 

collected location information about affixed motion capture markers, instantaneous 

speed, acromion angle, and its angular velocity and acceleration were computed for 

further analysis. 

Effects of pedestrian space and speed on reaction time, efficiency and mental 

workload were tested.  Changes in levels of space and speed did not significantly affect 

mean reaction time since participants’ were free to choose their own moment of reaction 

as long as they not collide with obstruction.  This was compared with predicted reaction 

time to validate the mode performance for further use and development of cognitive 

information processing model discussed in the next chapter.  It has been found that there 

is no significant different difference between empirical study results and predicted one 

with respect to mean reaction time.  Unlike reaction time, efficiency and mental workload 

measures were affected by changes in levels of space and speed. 

Since queueing network cognitive model enables researchers to investigate and 

understand the architecture of human information processing, as well as to utilize tools 

for estimating the average reaction time and mental workload, one can obtain credible 

predicted values of reaction time (sometimes task completion time) and mental workload 

in a very short period of time as long as he/she has a basic understanding about 

elementary queueing systems and GOMS style task descriptions.   

However, QN-MHP model assumed that interarrival and entity (i.e., stimulus) 

processing times are exponentially distributed.  As one can notice this may be very rare 

cases to come up with in real life and sometimes just mean and variance of entity 
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processing time can be obtained without having perfect information about service time 

distribution.  To overcome and resolve this issue, another cognitive information 

processing model based on queueing network system with general service time 

distribution is considered in the next chapter so that the credible predicted reaction time 

can be obtained with the first moment of service time distribution. 
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CHAPTER III 

STOCHASTIC MODELING OF COGNITIVE INFORMATION PROCESSING USING 

APPROXIMATED QUEUEING SYSTEMS 

3.1 Abstract 

This study investigates the configuration of cognitive information process using 

task description-based queueing network to estimate the reaction time for a given task.  

The reaction time is defined as the delay between exterior stimulus presentation and 

reflection initiation.  The study of reaction time helps to better understand the possible 

structure of a mental processing system that encompasses various stimuli, information 

processing units and dynamic responses.  Approximations for the system size of queueing 

systems are presented to stochastically model the mental structure and to examine 

reaction time.  The approximation algorithm provides the system size distributions 

without taking transformation that includes a finite capacity system (M/G/c/c) and an 

infinite queue (M/G/c).  To represent cognitive structure using the proposed queueing 

system in this study, each server node is identified by neuroscience research findings, 

GOMS (goals, operators, methods and selection rules) procedure, and the routes which 

customers can take to finish service.  Customer sojourn time is used to compute reaction 

time.  The effectiveness and efficiency of the approximation method and estimated 

reaction time are discussed by comparing empirical results with simulated results for the 

mean reaction time.  
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The approximation showed high precisions when the traffic intensity were low, 

medium and medium-high while its performance got poorer as a traffic intensity is high 

(e.g., 0.95 or higher).  There was no significant difference between empirical study 

results and the proposed model with respect to mean reaction time.  Future work 

pertaining to improving the performance of the model and incorporating the model into 

the planned pedestrian simulator is discussed. 

Keywords: Cognitive process, GOMS, human information processing, M/G/c 

queue, approximation, system size distribution 

3.2 Introduction 

Understanding the human cognitive structure and the required time to process 

information is a key issue in modeling human behavior with multiple agents that 

represent human operators.  This issue has been studied in both cognitive science and 

artificial intelligence arenas for decades using knowledge-based and performance-based 

representations.  Cognitive modeling approaches with knowledge-based representation 

can be applied to resolve this issue appropriately.  Because the GOMS family models are 

versatile to describe knowledge-based procedural task that requires human operators 

maximizing task performance (Card et al., 1983), knowledge-based task description 

approach using GOMS has been used in transportation research (Wu et al., 2008).  

Queueing theory is one of the frequently used tools to construct a performance-based 

model, such as telecommunications systems (Erlang, 1909; Cooper, 1981), or production 

and transportation systems (Gross et al., 2008).  Recently, it has been applied to model 

human cognitive performance (Liu, 1996; Feyen & Liu, 2001).   
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Previous research on cognitive information processing using queueing systems 

relied on assumptions to represent human information processing system (Baron et al., 

1990).  First, the method to process information was confined to serial processing for all 

stages of information processes, such as perceptive, cognitive and motor processes.  This 

assumption may not be appropriate, because peripheral perceptive and motor processes 

continue in parallel and only a cognitive stage is processed in serial based on 

neuroscience researches (Pashler, 1994; Sigman & Dehaene, 2008).  Secondly, a single 

server system was applied to structure the information process.  Under this assumption, it 

may not be possible to represent multiple task situations due to its architectural limitation.  

Third, the methodology assumed the capacity of information processing unit is infinite.  

This also may violate the well-known theory of limits on human capacity for processing 

information (i.e., seven plus or minus two) (Miller, 1956).   

The study endeavored to encompass both a performance-based method (queueing 

systems) and a knowledge-based approach (GOMS) for modeling stochastic cognitive 

information process and obtaining the estimated information processing time, while 

relaxing assumptions in literature that models cognitive information process using 

queueing systems. 

A queueing system provides an appropriate methodology for the analysis of 

waiting phenomena such as average waiting time, average sojourn time, and average 

number of customers in the system.  There has been no exact solution for M/G/c 

queueing systems, though a number of techniques have been presented for the M/G/1 

model to obtain exact solution, such as ‘imbedded Markov chain method’, 

‘supplementary variable technique’, etc. (Tijms, 1994; Gross et al., 2008).  For this 

reason, approximation approaches have been attempted to provide quick-and-dirty 
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solutions (Cruz et al., 2005; Cruz & Smith., 2007).  Boot and Tijms (1999) discussed an 

impatient customer problem, in which the system loses a customer if the customer is not 

served within a certain period of time.  Kimura (1996) presented system size distribution 

using a solution of M/M/c system, which yields a fairly precise solution for a finite 

system.  In this research, an analytic approximation algorithm was developed to obtain 

the steady state solution for the system size of the M/G/c queueing system without taking 

transformations.  The steady state solution was derived by using a Markovian service 

time model approach and system balance equation based on types of offered load on 

waiting space.  Therefore, this study aimed to provide a simple and reliable solution that 

reduces computation time and memory space. 

Human factors researchers have used various mathematical approaches to model 

specific types of human performance tasks.  For instance, knowledge-based approaches 

replace the several individual algorithmic functions specific to each step in a task 

network model.  Whereas task networks and mathematical approaches focus on the 

activity being performed, knowledge-based approaches tend to focus on the process used 

by the human system to select and generate the desired activity.  Knowledge-based 

approaches include ACT-R (Anderson & Lebiere, 1998), EPIC (Kieras & Meyer, 1997), 

MIDAS (Laughery & Corker, 1997), the GOMS family of models (John & Kieras, 1996), 

and the Model Human Processor (Card et al., 1983).  These approaches have considerable 

strength in modeling the behaviors that a human might exhibit when interacting with a 

system.  However, neither the knowledge-based nor task network approaches are based 

on mathematical theories amenable to producing time-and-capacity-based performance 

measures (Baron et al., 1990).  The study efforts are focused on integrating the 
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advantageous factors in queueing network and knowledge-based task modeling to 

increase the effects of modeling and computation. 

Since the mathematical calculations for performance measures in queueing 

systems are often intractable, approximation algorithms for queueing systems was aimed.  

This study presented a transform-free approximation for the system size of M/G/c 

queueing systems.  When the number of customers in the system is less than or equal to 

the number of servers, its distribution was derived utilizing the Markovian service time 

model and a new parameter.  To obtain the probability of the number of customer being 

greater than the number of servers, a queue was regarded as a set of separate waiting 

spaces rather than the whole entire queue, and types of load on each waiting space were 

classified based on the number of occupied waiting spaces in the system.  The efficiency 

and effectiveness of the approximation were investigated with simulation experiments.  

To apply the developed approximate formulation for queueing system to the task 

description-based cognitive network model, the network expansion method from a single 

queueing system was also discussed.  Finally, the estimated values of minimum and 

average reaction times and related workload were presented. 

3.3 System Size Distribution 

The arrival of customers follows a Poisson process with an arrival rate of λ (i.e., 

the interarrival time is exponentially distributed).  The service time (S) of each server has 

a general distribution, G, with an average service time of E[S] = 1/μ.  The system 

contains c identical and independent servers.  Also, the interarrival time and service time 

are assumed to be statistically independent.  It is assumed that the system capacity is 

infinite and the system satisfies steady-state conditions (λ < cμ).  If there is a customer in 
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a queue, a server cannot be idle and the customer will be served as soon as any service 

finishes.  The service policy of this system is based on first-come-first-served (FCFS). 

The system size distribution is derived for the number of customer in the system being 

less than or equal to c and greater than c respectively 

3.3.1 System Size ≤ c 

Suppose that N is the number of customers in system under steady state in M/M/c 

system, then Pr( ) ( )nN n P M= =  is defined as the equation below: 
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(3.1) 

( , )C c cρ  can be thought of as the probability of all servers being busy (or 

probability of waiting for all arrival customers based on PASTA (Poisson Arrival Sees 

Time Average)) (Wolff, 1982, 1989). 

Kimura (1996) presented the solution for M/G/c model directly using M/M/c 

system solution when the number of customers in system is less than c.  A fairly good 

precision of approximation for the loss system with no extra waiting space was presented.  

Since the M/G/c system has similar characteristics to an M/M/c system if all servers are 

not busy simultaneously, the M/M/c system was used as the prototype of approximation 

for the system size distribution.  To approximate the M/G/c system size distribution, a 

new parameter, ν (0< ν <1), is assigned to equation (3.1) substituting it for ρ.  Suppose 
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( )nP G  is the probability of n customers in M/G/c system, then the equation can be 

replaced as below: 

( ) 0/ ( ),       (0 1)( )
( , )(1 ) ,           ( )

n

n n c

P M n cP G
C c c n c
λ µ

ρ ν ν −

 ≤ ≤ −= 
− =

                                     (3.2) 

Similar approximation methodologies to Equation (3.2) have been presented 

(Miyazawa, 1986; Tijms, 1994).  In many cases, researchers have used parameter ν to 

describe the ratio of busy period as a measure of load in the multi-server systems (Tijms, 

1994).  To obtain ν, Little’s law (Little, 1961) and the moment matching method are 

applied.  Little’s law is applied in this study since it is applicable for any system 

irrespective of the number of servers, service policy and service discipline.  Little’s law is 

defined as L = λW, where L is average number of customer in the system and W is 

average time in system.  Then, Little’s equations for M/M/c and M/G/c can be described 

as Lq,M/M/c = λWq,M/M/c and Lq,M/G/c = λWq,M/G/c.  After arranging equations with respect to λ, 

and perform a moment matching, the following asymptotic relationship is obtained 

(Kimura, 1996): 

, / / , / /1 1q M G c q M M cW Wρ ν
ρ ν− −

                                                                     (3.3) 

Let R be the ratio of both average waiting times: 

, / /

, / /

q M G c

q M M c

W
R

W
≡                                                                            (3.4) 

Then, the parameter, ν, in equation (3.2) can be derived using equations (3.3) and 

(3.4) : 

1
R

R
ρν
ρ ρ

=
− +

                                                                       (3.5) 
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Kimura (1996) approximates R limiting ρ to zero, 10

1lim [ ]
[ ]
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+

→
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1[ ]E T +  is the average minimum remaining service time at any time of moment, and it is 
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[ ] [min{ , , , } (1 ( ))c
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+= = −∫  implying kS +  and G+ , which are the 

remaining service time of server k and the distribution function of remaining service time 

respectively.  Wang and Wolff (1998) showed 1[ ]E T +  can be approximated, and noted it 

yields a good empirical result such that 1
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Now, ν can be obtained using equation (3.6) plugging it into equation (3.2) to derive 

0( )P G . 

0
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c

cP G P M
n
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−
                                                       (3.7) 

Putting ( )c cP G P≡  for simplicity, system size distribution of (n > c) is derived in the next 

section. 

3.3.2 System Size > c 

Arriving customers wait in the queue when the number of customer in the system 

is greater than or equal to the number of servers.  In this study, the queue is regarded as a 

set of separate waiting spaces rather than the entire queue as a whole as illustrated in 

Figure 3.1.  Each customer waits in the waiting space for the minimum remaining service 
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time of customers being served, and shifts forward toward the server by one waiting 

space whenever a busy server completes the service. 

 

 

Figure 3.1 System of Interest 

Let c rR +  be the rth waiting space.  The phenomenon c rR +  is busy, which implies 

that a customer occupies the rth waiting space.  At any point of time, the probability of the 

rth waiting space being busy is equivalent to the probability that there are at least (c + r) 

customers in the system under steady state condition.  Let c rQ +  be the utilization (offered 

load per unit-time) of the rth waiting space.  According to the number of customers in the 

system (n), the intensity of the offered load differs.  Types of offered load can be 

classified into three types based on the system state at arbitrary arrival epoch: (1) n≤c+r-

2, no load on c rR + ; (2) n=c+r-1, the arriving customer waits in the system for the 

minimum remaining service time of customers being served; and (3) n≥c+r, the arriving 

customer waits for the minimum of new service time at server c and the remaining 

service times of other busy servers.  Then the average load on rth waiting space ( c rR + , r ≥ 

1) is: 
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where 2 1 2 1min{ , , , , }cT S S S S+ + + +
−=  , which is the minimum of new service time at server c 

(i.e., S) and the remaining service times of busy servers ( 1 2 1, , , cS S S+ + +
− ).  Since Pc+r = 

Qc+r – Qc+r-1, the system size distribution (Pc+r, r ≥ 1) and probability of rth waiting space 

being occupied ( c rQ + , r ≥ 1) can be obtained by solving the balance equation in equation 

(3.8) recursively. 
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Each state probability contains two types of average service time, 1[ ]E T +  and 

2[ ]E T + .  The former was obtained in step-1, and the latter is derived as follows: 
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The previous integration equation in equation (3.11) is derived by writing G+(t) = 

z and substituting 0 < G+(t) = z < 1 for integration interval, (0 < t < ∞) to use beta 

probability distribution.  Then, 2[ ]E T +  is obtained by plugging n=1 in equation (3.11): 

2
1[ ] [ ]E T E S
c

+ =                                                                                                  (3.12) 
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The transform-free system size distribution for the M/G/c queueing system can be 

obtained arranging all the derivation results as follows: 
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As described in equation (3.13), the approximation for the system size distribution 

of infinite queues has been developed.  The approximation for finite systems (M/G/c/K) 

can be obtained by truncating and normalizing P0(M), and replacing it with the following 

term: 
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where K = c + r. 

3.4 Expansion of Queueing Systems to Cognitive Process Networks 

The expansion method adds a retrial queue (node R) for each finite queue (node) 

in the network to register blocked customers, also known as overflows.  When the 

customer is blocked (Figure 3.2b) since the next queue is at its full capacity, a retrial node 

will hold and act as a service station to the blocked customer.  If Pc is the blocking 

probability of node 2, then Pc shall be the probability of customer going through node R 

preceding the capacitated node.  The blocked customer shall proceed from node R to 
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node 2 with probability of (1 – '
cP ), or remain at the retrial node with probability '

cP  if 

node 2 is still full.  However, if node 2 is not saturated (Figure 3.2a), customers proceed 

to its queue with probability of (1 – Pc). 

 

Figure 3.2 M/G/c/c Queues Expansion 

After incurring a delay at the retrial node (node R), an overflow customer 

proceeds to the capacitated server node from which it was previously rejected.  If the 

queue is still full, it incurs another delay.  To appropriately represent this process, the 

artificial node has a feedback arc to account for these attempts. 

Combining the approximations and network expansion methodology developed 

previously, the cognitive process network is constructed.  For a couple of appropriate 

reasons described previously, the capacity of each server node is reconstructed and 

confined to a finite system.  It is generally believed and accepted that there is limitation 

on human information processing capacity of 7 ± 2 (Miller, 1956).  Therefore, the system 

of interest in this study is targeted to M/G/c/c, where c = 7 ± 2.  Additionally, the 

reversed process of the M/G/c/c state dependent queue is of the same type as the forward 

process, with customers arriving by a Poisson process with rate of λ, having workload 

distributed according to G and with the state representing the ordered residual workloads 

of customers presently in the system (i.e., the departure process, for both customers 
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completing service and those that are lost, is a Poisson process as well).  The system size 

distribution of the target queue is as follows: 
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Some appropriate definitions and assumptions are required to construct the mental 

network model with generalized queueing systems developed previously.  The basic 

components of the system encompasses node, arc, stochastic processes for interarrival 

time and service time, arrival rate, service rate, and service discipline.  Liu (1996) 

proposed a simple M/M/1 queueing network model of elementary mental processes that 

includes basic queueing network components matching mental processing system to his 

system of interest.  Even though this study takes into consideration a generalized model 

with general service time processes, multi-servers at each server station, and closed form 

of equilibrium solution, the basic definition of system components is adopted by his work 

as long as the assumption is consistent to the model of this study.  Each node (i), 

representing an information processing unit, provides a distinct type of information 

processing service to the customers (stimuli) and has been identified by Feyen (2002).  A 

node represents a server, and the total number of server nodes (S) for the system must be 

determined beforehand.  Two types of nodes are present in the network system; input and 

internal nodes. Input nodes receive customers from outside of the network, and internal 

nodes receive customers within the network either from inside of the sub-network or 
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other sub-networks assuming that input nodes may or may not provide service to 

customers immediately.  Each arc indicates the direction (i.e., a route) from a server to 

the next server.  The time between two consecutive nodes is assumed to be negligible.  

Unlike routing time between two consecutive nodes, if a server must perform a 

complicated service, it takes time for a server to complete the service (see Figure 3.3 for 

server processing times in each sub-network.).  There are two types of arrival rates: (1) 

Mean arrival rate (γi) from outside of the network to node i; and (2) the total arrival rate 

(λi) into node i from both outside the network and other nodes.  The probability (Pij) that 

a customer visits node j immediately after departing from node i, where i≠j, i=1,2,⋯,S 

and j=0,1,⋯,S with Pi0 representing the probability of customer’s leaving the network 

immediately after visiting node i.  Finally, μi indicates the mean service rate for each 

channel of node i.  A server (node) that simply routes information to another server is 

assumed to require no processing time. 
 

 

Figure 3.3 Cognitive Information Processing Network (modified from Liu et al., 2006) 
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To represent mental process into perceptual, cognitive, and motor sub-networks, 

Liu and his colleagues (2006) decompose the entire network using Model Human 

Processor (MHP) (Card et al. 1983) as illustrated in Figure 3.3.  They reviewed 

neuroscience research findings to identify relevant areas of the brain that might represent 

common cortical fields activated during the performance of a given task and to determine 

the primary connections between these fields.  In this study, three additional nodes for 

motor sub-network are included that represent the forehead, chest, and legs to actuate 

appropriate body reactions to input stimuli.  The nodes are represented in Figure 3.3 as 

nodes 22, 23, and 24.   

To estimate the average reaction time, the summation of each service time from 

the selected nodes is calculated.  The selection of nodes is identified through cognitive 

task analysis, which details the specific procedures required for the task.  Feyen and Liu 

(2001) organized the task procedure and matched each step to the appropriate node in the 

network using GOMS (Card et al., 1983).  The task procedure encompassed the 24 

operators including motor, perceptual, cognitive, memory access, and procedure flow 

operators (Liu et al., 2006).  A motor operator has functions such as reach to target, move 

object to target, apply pressure to object, release object, and delay movement for a 

specified time.  A perceptual processing operator includes glance at a target, watch target 

until stimulus data, compare stimulus data to cognitive function, verify stimulus data, and 

trigger action given stimulus.  A complex cognitive operator embraces select search 

target, decide, compute, and time check.  A memory access operator contains recall 

information from working memory, retain entity in working memory, retrieve 

information from long term memory, and forget all retained entities. A procedural flow 

operator involves accomplish goal, report goal accomplish, and go to step number.  
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Procedural flow operators are implemented in the procedural list server.  Motor, 

perceptual processing, complex cognitive, and memory access operators are defined and 

executed at the nodes Z, C, F, and C respectively as illustrated in Figure 3.3. Since the 

queueing network has a task a independent cognitive structure, to model any particular 

task (e.g., visual search task), the specific procedure that is needed to perform the task 

(i.e., task procedure) is described by the GOMS style hierarchical task description (Table 

3.1) that is used to compute the cognitive processing time for visual search task as 

indicated in Figure 3.3.  As an example, the task of a pedestrian’s visual obstacle 

detection is given.  The objective of the visual search is to find an appropriate path that a 

pedestrian can take to avoid probable collision while navigating.  A pedestrian is required 

to identify possible obstructions in the pedestrian facility. 
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Table 3.1 GOMS Style Task Description of the Visual Search in Pedestrian 
Navigation 

GOAL: Do visual path choice task 

Method for GOAL: Do visual path choice task 

• Step 1: WATCH for <sub-destination> in <facility> 
• Step 2: RETAIN <sub-destination> 
• Step 3: Walk on <path> in <facility segment> on <foot> 
• Step 4: DECIDE: If <sub-destination> is <the end of agenda>, then move step 5; 

Else go to step 
• Step 5: CEASE // task completed 

Method for GOAL: Walk on <path> in <facility segment> on <foot> 

• Step 1: DECIDE: If location of <path> in memory, then move to step 3; Else go to 
step 2 

• Step 2: Visual search for <location> of <path> in <facility segment> 
• Step 3: REACH <path> in <facility segment> on <foot> 
• Step 4: RETURN with goal accomplished 

Method for GOAL: Visual search for <path> in <facility segment> 

• Step 1: RECALL <sub-destination> from <working memory> as <target sub-
destination> 

• Step 2: WATCH for <path direction> in <facility segment> 
• Step 3: COMPARE: <path direction> with <target sub-destination> 
• Step 4: DECIDE: If match, then go to step 5; Else move to step 2 
• Step 5: RETAIN <location> of <path direction> 
• Step 6: RETURN with goal accomplished 

3.5 Execution and Validation of the Model 

Numerical analysis on the average number of customer in system was conducted 

by changing service time distribution, number of servers, and traffic intensity (ρ).  The 

arrival rate was fixed (λ) for simplicity, and service time distributions were exponential, 

Erlang-3, Erlang-8 and deterministic.  The number of servers for the experiment was 

three and five with traffic intensities of 0.1, 0.3, 0.5, 0.7, 0.9 and 0.95 respectively.  To 

compare the precision of an approximation, percent relative error was used. 
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Table 3.2 Average Number of Customers for M/M/c Systems 

c ρ Exact Approx Error (%) 

3 

0.1 0.30 0.30 0.00 
0.3 0.93 0.93 0.00 
0.5 1.74 1.74 0.00 
0.7 3.25 3.25 0.00 
0.9 10.05 10.05 0.00 
0.95 20.08 20.08 0.00 

5 

0.1 0.50 0.50 0.00 
0.3 1.51 1.51 0.00 
0.5 2.63 2.63 0.00 
0.7 4.38 4.38 0.00 
0.9 11.36 11.36 0.00 
0.95 21.43 21.43 0.00 

Note. Error = (|Exact – Approximation| / Exact) * 100 (%) 

Table 3.3 Average Number of Customers for M/E3/c Systems 

c ρ Simulation Approx. Error (%) 

3 

0.1 0.30 0.30 0.00 
0.3 0.92 0.92 0.26 
0.5 1.65 1.68 1.55 
0.7 2.86 2.96 4.69 
0.9 7.33 8.21 12.05 
0.95 12.52 15.77 25.98 

5 

0.1 0.50 0.50 0.00 
0.3 1.50 1.51 0.18 
0.5 2.58 2.60 0.53 
0.7 4.07 4.16 2.26 
0.9 9.12 9.65 5.83 
0.95 13.27 17.26 30.07 

Note. Error = (|Simulation – Approximation | / Simulation) * 100 (%) 

The approximation gives high precision for M/M/c case as shown in the Table 3.2 

and Table 3.3.  The system size comparison for M/M/c system was conducted with the 

known exact solutions not performing simulation.  When the service time distribution 

was Erlang-3 (Table 3.3), it showed good precision with relative errors less than 5%.  The 
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precision, however, worsened as ρ increases (especially ρ=0.95), that is, high traffic 

intensity cases. 

Table 3.4 Average Number of Customers for M/E3/c Systems From Literature 

c ρ Relative Error 
Kimura (1996) Miyazawa (1986) 

3 
0.3 (light) 0.41 9.13 
0.6 (medium) 0.86 3.97 
0.9 (heavy) 0.54 0.64 

 

Table 3.4 illustrates each relative error of approximation from other studies 

(Kimura, 1996; Miyazawa, 1986).  The proposed approximation in this study gives better 

precision in the light and medium traffic cases, but yields worse result under the heavy 

traffic condition. 

Table 3.5 Average Number of Customers for M/E8/c 

c ρ Simulation Approx. Error (%) 

3 

0.1 0.30 0.30 0.00 
0.3 0.92 0.92 0.15 
0.5 1.64 1.66 1.28 
0.7 2.73 2.87 5.09 
0.9 6.73 7.64 13.46 
0.95 13.45 14.43 7.25 

5 

0.1 0.50 0.50 0.00 
0.3 1.51 1.51 0.03 
0.5 2.58 2.59 0.45 
0.7 4.02 4.09 1.74 
0.9 8.29 9.11 9.84 
0.95 13.42 15.96 18.92 

Note. Error = (|Simulation – Approximation | / Simulation) * 100 (%) 
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Table 3.6 Average Number of Customers for M/D/c 

c ρ Simulation Approx. Error (%) 

3 

0.1 0.30 0.30 0.00 
0.3 0.92 0.92 0.25 
0.5 1.62 1.65 1.72 
0.7 2.66 2.82 5.89 
0.9 6.20 7.30 17.63 
0.95 11.20 13.62 21.67 

5 

0.1 0.50 0.50 0.00 
0.3 1.51 1.51 0.02 
0.5 2.57 2.58 0.42 
0.7 3.94 4.05 2.72 
0.9 7.79 8.79 12.86 
0.95 12.84 15.17 18.16 

Note. Error = (|Simulation – Approximation | / Simulation) * 100 (%) 
 

Similar to the results in Table 3.2 and Table 3.3, percent relative errors of M/E8/c 

and M/D/c systems increase as traffic intensity increases (Table 3.5 and Table 3.6).  For 

light and medium traffic cases, the approximation yields fine precision, but not in heavy 

traffic. 

Based on the numerical analysis conducted previously, the approximation in this 

study shows fine precision for small number of customers and light/medium traffic.  

Therefore, the approximation algorithm provides various types of performance measures 

(average values of system size, time in system, waiting time, etc.) easily with high 

precision. 
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Figure 3.4 Procedural Task Flow of the Visual Search in Pedestrian Navigation 

Figure 3.4 illustrates the procedural task flow that described in the previous 

chapter as well, and it was utilized to implement the visual search task in pedestrian 

navigation and to predict task completion time, which is time between stimulus 

presentation and action initiation using processing logic, decision rule and GOMS style 

task operators.  Based on the task description in Table 3.1 and the procedural task flow in 

Figure 3.4, the model was implemented using Java programming language (JDK version 
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6).  Since this study does not present a real-time walking simulator that participants 

involve navigational experiments, the simulation run was started from the moment of 

stimulus presentation.  Each simulation run of cognitive model in the study was treated as 

an actual experiment: the queueing network cognitive model was presented with ten 

stimuli occurring at random interarrival times ranging from five to sixty seconds and the 

simulation was replicated 1100 times treating first 100 times as a warm-up period. 

Table 3.7 displays estimated information processing times using the existing 

queuing network model proposed by Feyen and Liu (2001) and the one from this study.  

Empirical study results also reported in Table 3.7 to compare it with predicted values 

from both models. 

Table 3.7 Information Processing Times (in seconds) Comparisons for the Reaction 
Time Task 

Processing Stage Methods Minimum Mean Maximum 
Perceptual Feyen & Liu 0.050 0.098 0.196 
 Model 0.125 0.127 0.128 
Cognitive Feyen & Liu 0.026 0.068 0.155 
 Model 0.054 0.055 0.056 
Motor Feyen & Liu 0.030 0.069 0.148 
 Model 0.073 0.074 0.075 
Total Feyen & Liu 0.106 0.235 0.499 
 Model 0.253 0.256 0.259 
 Empirical (trunc.) 0.217 0.256 0.333 
 95 % CI: (0.251,0.261)    
 Empirical (all) 0.217 0.509 1.683 
 95 % CI: (0.475,0.542)    

Note. Empirical (trunc.) contains all reaction time data up to 33rd percentile from the fast 
(immediate) response group. 

As mentioned in the previous chapter, participants were free to choose their own 

moment of action initiation, so the observed response time had a huge gap between 

minimum and maximum of response times.  The response time was grouped into three 
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equally spaced percentiles, and the minimum, average, maximum and 95 % confidence 

interval of the first 33rd percentile of task completion times were reported in the Table 3.7 

labeled with ‘Empirical (trunk.)’ since it was believed that these response times were 

observed from those who took actions immediately after stimulus presentation, which is 

more appropriate to the current state of model development.  As shown in Table 3.7, the 

predicted minimum, mean and maximum reaction times fell within a 95% confidence 

interval of truncated reaction time.  However, Feyen’s had a wider gap between 

minimum and maximum of reaction times than the proposed model’s outcome as well as 

empirical study results. 

3.6 Conclusion and Future Work 

The study effort was to construct a framework of cognitive information 

processing structure for cognitive tasks in order to obtain predicted value of cognitive 

processing time using stochastic characteristics of queueing systems.  While existing 

queueing models assumed that stimulus interarrival and processing (i.e., service time) 

times are exponentially distributed, this study endeavored to develop a model that is 

context-free of service time distribution as long as its first and second moment are 

known. 

Since there is no exact solution for M/G/c queues, a transform-free approximation 

method for obtaining basic solution for M/G/c queueing system was developed.  The 

system size distribution for the number of customers (less than or equal to c) was 

obtained by initiating from the M/M/c model, using the ratio of M/G/c and M/M/c, and 

traffic intensity.  When the number of customers is greater than c, a queueing area was 

regarded as a set of each separate waiting space rather than the entire queue as a whole.  
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Types of offered load at an arrival epoch on each waiting space were classified to analyze 

the system thoroughly. 

The model gives high approximation precision when the traffic intensities were 

light, medium and medium-high.  Since this approximation is transform-free, there is no 

need to take the reverse transformation and the computation procedure is simple.  

Especially, system size distribution encompasses the simple format of only first and 

second moment of service time that requires less memory space and computation time.  

This study may contribute to performance analyses of multiple access 

telecommunications system and inventory system, as well as construct cognitive 

architecture in order to compute the information processing time. 

After taking generalized expansion of the system to a network structure, server 

processing and GOMS style task operator logics were added to the network model to 

construct a cognitive information processing system.  Compared to the empirical study 

outcomes discussed in the previous chapter, the minimum and maximum reaction times 

were appropriately predicted that fell within a 95% confidence interval of actual mean 

reaction time.  The current realization of cognitive information processing model is 

pertinent to investigate the cognitive structure of the simple reaction time task as well as 

predict its mean completion time.  Appropriate tasks, for example, would be key-stroke 

level of simple tasks, visual search for detecting obstacles, color detection, and so forth. 

Theoretically running the model until it converges is appropriate based on the 

natural characteristics of queueing system, but the task considered in the study was 

simple enough to reach a convergence and the simulation run was terminated with 3% of 

target error rate.  Modeling running under the various scenario settings would be 

necessary to validate the performance and sensitivity of the model comparing more 
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empirical outcomes so that the model can be applied to various situations.  Also, an 

additional model development for estimating mental workload is planned based on one of 

the model outcome, i.e., utilization, which appropriately fit mental workload 

measurement using NASA-TLX. 

So far cognitive networks that represent visual system have been implemented.  

Additional sensory systems, such as auditory and somatosensory systems, will be 

considered in order to improve model versatility that can appropriately represent complex 

multiple tasks as if human operators perform primary and secondary tasks 

simultaneously.  Empirical studies will also be conducted to validate cognitive model 

performance and its reliability while varying values of system and environment 

parameters. 

This model is under the consideration of implementing as a cognitive module for 

the pedestrian simulator based on cellular automata and state-dependent multiserver 

queueing network systems.  It is expected that it better represent pedestrian behavior with 

respect to cognitive information processing and decision making. 
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CHAPTER IV 

ANALYZING PHYSICAL AND PSYCHOLOGICAL PEDESTRIAN BEHAVIOR 

THROUGH NATURALISTIC AND EXPERIMENTAL OBSERVATIONS 

4.1 Abstract 

This study presents methods to quantify pedestrian traffic behavior, and analyze 

physical and cognitive behavior from the real-world observation and field experiment.  

Video footage from indoor and outdoor corridor settings is used to quantify pedestrian 

behavior.  Existing surveillance footage from a university building was used to 

investigate naturalistic pedestrian behavior.  A field experiment was also conducted under 

20 scenarios of varying pedestrian density, flow combination, and speed.  A coordinate 

conversion technique that maps images in the footage onto a real floor plan coordinate 

system was applied for image processing and data collection.  This study has empirically 

examined pedestrians’ preferred minimum distance from obstructions in order to identify 

association with their travel performance.  Walkability survey questionnaire was 

developed to assess perceived pedestrian comfort, performance and satisfaction in 

waking.  Data on image coordinate were converted onto a real floor coordinate with high 

precision and low standard errors.  Pedestrian space, the number of flow directions and 

speed class influenced observed speed and pedestrian zoning.  Walkability was invariant 

as long as personal distance is secured.  Pedestrians tend to keep more distance from 

other pedestrian than obstacles on walkway while changing their speed and direction.  
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Future work related to planned empirical studies, modeling strategies and walkability 

survey reliability are presented. 

Keywords: pedestrian behavior, image analysis, coordinate conversion, traffic 

performance, pedestrian zoning, walkability 

4.2 Introduction 

Pedestrian behaviors and traffic flows have only been given limited attention in 

recent research.  One of the reasons is that tools to analyze pedestrian behavior and 

pedestrian traffic flows are scarce.  There is a current need to more accurately depict 

pedestrian movements and behavior.  Understanding pedestrian behavior could lead to 

improved guidelines for transportation facility design.  This research presents a means of 

obtaining such data, and seeks to incorporate empirical studies and data into the authors’ 

ongoing pedestrian simulation model development (Usher & Strawderman, 2008). 

Behavioral studies found in the literature define a number of strategies used by 

pedestrians as they navigate through a crowd.  Related to collision avoidance, pedestrians 

tend to either change their trajectory or change their speed.  They also have a number of 

strategies that are employed when passing other pedestrians.  These collision avoidance 

patterns are impacted by the individual behavior, as well as the density of the crowd 

(Bierlaire, Antonini, & Weber, 2003).  Pedestrians demonstrate a territorial effect in that 

they tend to keep a minimum distance from others in the crowd.  They also exhibit a 

preferred minimum distance when passing obstacles.  This preferred distance, or territory, 

is smaller as the pedestrian hurries and is also reduced with growing crowd density 

(Helbing & Molnár, 1997). 
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A pedestrian’s speed and trajectory could be impacted by their goals, urgency, 

and the surrounding crowd.  The change in speed is likely compounded by the fact that 

pedestrians will be faced with many more decision points when navigating through a 

dense crowd.  They will have to have concrete situation awareness (SA), taking in a high 

amount of information, to navigate the crowd with appropriate actions.  Pedestrians have 

a tendency to choose paths to their destination that minimize the need for angular 

displacements, that is, gradual and smooth changes in trajectory (Turner & Penn, 2002).   

Another important facet of pedestrian behavior is zoning.  Individual pedestrians 

tend to keep a minimum distance from others in the crowd.  Willis et al. (2002) have 

found that the actual distance between people or objects depends both on the type of 

pedestrian and the type of obstruction.  Pedestrians take into account their familiarity 

with the surrounding pedestrians, uncertainty of the other pedestrians’ actions, and 

prioritization of trajectories when maintaining distance from other pedestrians.   

While there have been active researches on SA application in aviation (Endsley, 

1995; Bell & Lyon, 2000) and driving performance (Ma & Kaber, 2007), pedestrian SA 

has been given limited attention in recent research. 

Data and statistics from an empirical pedestrian study are useful when they can be 

applied to model behavior for a general population.  With an appropriate pedestrian 

model, we can predict and analyze the behaviors of pedestrian.  However, it is hard to 

obtain numerical solutions from the model when it is complicated itself or needs to 

process huge data sets at a time.  To resolve this issue, researchers have developed 

simulation models in pedestrian navigation (Helbing & Molnár, 1997; Daamen & 

Hoogendoorn, 2003; Antonini & Bierlaire, 2006).  There are some common approaches 

to pedestrian simulation including cellular automata, social force, magnetic force, and 
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queueing network model. Cellular automata consist of an array of grid cells that represent 

the pedestrian environment (C).  Pedestrian agents, that each occupies a single cell at any 

given time, accomplish movement using updated localized neighborhood rules.  In a 

social force model, pedestrians are motivated to move in response to attractive and 

repulsive forces exerted by their surroundings (Helbing & Molnár, 1997).  Similarly, a 

magnetic force model is composed of positive poles and negative poles that represent 

obstructions and goals, respectively (Matsushita & Okazaki, 1993).  In queueing network 

models, nodes represent the current locations that are linked to define possible routes to 

navigate (Løvås, 1994; Cruz & Smith, 2005). 

4.3 Objectives 

The study effort was focused on identifying and quantifying the fundamental 

pedestrian travel behaviors using video footage from real-world observations and 

controlled field experiments.  Whereas modeling and analyzing pedestrian behavior in the 

literature has mainly focused on physical components of pedestrian characteristics 

(Helbing & Molnár, 2001; Daamen & Hoogendoorn, 2003; Antonini & Bierlaire, 2006), 

this study took into consideration of cognitive aspects as well, such as zone of comfort, 

situation awareness, and subjective walkability.  Wakability is defined as the extent to 

which the built environment is walking friendly (Abley, 2005; PBIC), such that “…the 

extent to which walking is readily available as a safe, connected, accessible and pleasant 

mode of transport” (VTPI, 2010).  Methods for measuring these cognitive components 

were also developed and discussed.  The findings were combined to develop a pedestrian 

traffic performance model in association with cognitive components. 
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4.4 Hypotheses 

The problem of interest was to identify the effect of physical and cognitive 

pedestrian characteristics as well as environment on travel performance and perceived 

walkability.  The measured mean travel performance and mean walkability score were 

compared under each treatment combination of density and speed.  Specific hypotheses 

included:  

H1. Environmental settings will affect the pedestrian travel performance and 

walkability.  Environmental settings include pedestrian density level (LOS 

grades B, C, D, and E) and the number of flow directions (i.e., unidirectional 

and bidirectional flows). 

H2. Physical walking components will affect the pedestrian travel performance 

and walkability.  Physical components contain speed level (slow, normal, and 

fast), the number and magnitude of trajectory changes, group size, gender, and 

personal items.  

H3. Cognitive walking components will affect the travel performance and 

walkability.  Trip purpose and pedestrian SA are included in this category.  It 

is hypothesized that there is a difference in distance from corridor wall and 

other pedestrians with respect to mean travel performance.  Walking center 

and sides of the corridor will differ in mean walking speed. 

H4. Pedestrian travel performance measures will be correlated with walkability. 

4.5 Study Development Methodology 

Data collection methodologies on pedestrian travel performance, spacing 

propensity and situation awareness assessment were discussed in this section.  Video 
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footage and questionnaires were utilized to obtain pedestrian travel performance as well 

as subjective assessments of navigation. 

4.5.1 Experimental Design 

In regard to the naturalistic observation study, a completely randomized design on 

trip purpose (pass, enter, or leave), group size (one or two), and personal items (yes or no) 

was created to test travel performance. 

For the field experiment, an a*b factorial arrangement of treatments on space and 

speed/flow combinations were created in a random order to assess pedestrian travel 

performance and subjective walkability.  Flow combination and density level had 2*4 

treatment combinations fixing speed level to normal as shown in Table 4.1.  Speed and 

density involved 4*4 treatment combinations.  Both univariate and multivariate data 

analyses were conducted to test factorial effects.  There were 20 scenarios as shown 

in.Table 4.1  Exposure to trials was determined using a randomized complete block 

scheme. 

Table 4.1 Experimental Scenario Layout 

  Flow comb. 
(FC) 

Space (LOS grade) 
  B C D E 

Sp
ee

d 
co

m
bi

na
tio

n.
 Normal 

(100%) FC 100 
50-50 

Scenario 1 
Scenario 17 

Scenario 2 
Scenario 18 

Scenario 3 
Scenario 19 

Scenario 4 
Scenario 20 

Slow:Normal 
(40%:60%) FC 100 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

Fast:Normal 
(40%:60%) FC 100 Scenario 9 Scenario 10 Scenario 11 Scenario 12 

S:N:F  
(33.3% each) FC 100 Scenario 13 Scenario 14 Scenario 15 Scenario 16 

Note: S, N, and F indicate Slow, Normal, and Fast walking speeds.  LOS grade in 
pedestrian space was based on Highway Capacity Manual (TRB, 2000). 
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4.5.2 Participants 

Regarding naturalistic observation, pedestrians were observed using 20 minutes of 

video footage recorded through surveillance camera system according to the 

recommendation of pedestrian data collection in the Highway Capacity Manual (TRB, 

2000).  A total of 68 participants, 55 males and 13 females, were observed. 

The number of participants for the field experiment (n) was determined using 

Cohen’s d and power analysis with a type I error (α) of 5% and a type II error (β) of 20%, 

whereas the power of the test was 0.8 (Ott & Longnecker, 2001) using equation (4.1).  

The obtained value of n was 87, and this study recruited 100 participants for the 

experiment.  Participants ranged in age from 18 to 37 (mean of 21.4 and standard 

deviation of 3.9).  The numbers of female and male participants were 34 and 66 

respectively. 

2 2 2
/2 1 2 1 1 2 2

2
1 2

( ) ( 1) ( 1);  where  and p
p

z z x x n s n sn d s
d s n n

α β+ − − + −
= = =

+            
(4.1) 

The basic statistics for the sample size determination were from Daamen and 

Hoogendoorn (2006) (n1=n2=75, 1x =1.46, 2x =1.33, 2
1s =0.15, 2

2s =0.16.  The index 1 

describes unidirectional flow and 2 from bidirectional.  The calculated values of d and n 

were 0.3 and 87 respectively. 

4.5.3 Task Description 

No specific procedure was necessary for naturalistic observation, since footage 

from surveillance system was used.  However, specific tasks were assigned to 

participants under the various types of scenario settings for field experimental 

observation.  Participants were asked to read the task description in the task information 

card, and to walk in the constructed corridor as described in task information card (Figure 
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4.1).  Each participant received a task information card that indicates his/her ID, 

starting/ending locations, and speed class. 

 

 

Figure 4.1 Task Information Card 

In order to attain approximate level measures of density, a pedestrian entered the 

system upon another pedestrian’s departure.  In each scenario, participants answered 
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three walkability survey questions upon completing the scenario.  The experiment 

included unidirectional and bidirectional flows.  Participants were informed of their 

initial and termination locations, and were classified by normal (control group), fast, and 

slow speed groups. 

4.5.4 Data Collection Methods 

The facility for naturalistic observation was an academic building on the 

university campus.  Previously recorded video footage from a first floor corridor was 

analyzed.  The footage was gathered using a motion sensing security camera.  In order for 

it to capture footage, a pedestrian needed to be in the corridor.  Figure 4.2 displays the 

selected site and it was 3 m (10ft) * 22 m (71 ft) with an area of 66 m2 (710 ft2).  Speed 

and attribute data were collected on a sample of 68 pedestrians (12 female and 56 male).  

The footage displayed 20 minutes of behavior during the break between two class 

periods. 

 

 

Figure 4.2 Region of Interest and Point of Analysis Designation 
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Pictures from the experimental trials in the constructed site are shown in Figure 

4.3and it displays the experimental setup used for the study.  A wall was constructed to 

simulate an enclosed walkway.  Gridlines were placed on the floor for analysis.  Each 

pedestrian wore an identifying number on their shirt, as well as a matching number on a 

hat. Figure 4.4displays the camera monitoring station used during data collection. 

 

 

Figure 4.3 Experimental Setup for Empirical Study 
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Figure 4.4 Data Collection Apparatus for Empirical Study 

A video camera system was used to record participants’ walking behavior.  The 

system consisted of a 4-camera security system (including monitoring station) and one 

high definition digital video camera.  Since the viewing distance (scope) of the video 

camera wais limited (if the height of the mounted camera is not high enough), multiple 

cameras were necessary to improve the precision of coordinate conversion using 

overlapped recorded area as shown in Figure 4.5.  Four cameras for the detailed view 

were mounted on top of the guard rail at the end of audience stand (not so high because 

data coding could be harder as recorded objects get smaller) which was second floor high.  

One additional overview camera was mounted higher place in the audience stand to 

ensure wider overview capture. 
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Figure 4.5 Region of Interest and Camera Setting 

Fundamental microscopic pedestrian traffic data on speed, density, flow rate, and 

delay can be obtained by analyzing video footage.  The basic information on location and 

some attributes (e.g., sequential coordinates, gender, group size, etc.) were collected after 

analyzing footage.  The location data were subsequently used to calculate speed, 

trajectory, and distance from obstructions. 

Footage was exported onto a hard drive as an .avi file and converted to a stacked 

sequence of images at the predetermined frames per second (e.g., 2-30 frames/sec) using 

VirtualDub, an open-source image processing utility (version 1.8.8), (Lee, 1991-2009).  

Manual pedestrian tracking was performed for each video frame.  To reduce 

experimenter error and complexity, each frame was trimmed to accentuate the region of 

interest (ROI) as depicted in Figure 4.2.  It displays both the region of interest (solid lines) 

and the point of analysis (dotted line).  Pedestrians who passed through the ROI were 

included in the study. 
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The image coordinates that represent pedestrians’ current positions in each frame 

were acquired using ImageJ (Rasband, 1997-2008), an image processing and analysis 

tool (version 1.42), assuming that the middle point of a pedestrian’s feet represents 

his/her current location (ximage, yimage) in each frame as showed in Figure 4.2.  The second 

assumption was that the coordinate for the overlapped pedestrian by the front or taller 

people was forecasted with his/her previous trajectory coordinates taking moving 

averages.  Each pedestrian was assigned a unique indentifying number.  The pedestrian’s 

image coordinates were recorded in a matrix format while tracking pedestrian coordinates 

frame by frame.  This sequence of work continued from the time the pedestrian entered 

the footage until they exited.  Table 4.2 shows a sample of the data collected, including 

pedestrian ID, frame numbers, and image coordinates. 

Table 4.2 Coded Data on Image and Estimated Coordinate Values by Frame 

Ped ID Frame# X(image) Y(image) X(real) Y(real) Camera 
75 661 515 182 4.650164 2.452685 cam1 
75 662 496 184 4.475268 2.474824 cam1 
75 663 486 184 4.383268 2.473634 cam1 
75 664 473 184 4.263668 2.472087 cam1 
75 665 458 182 4.125764 2.445902 cam1 
75 666 444 181 3.997012 2.432036 cam1 
75 667 430 182 3.868164 2.44257 cam1 
75 668 422 182 3.794564 2.441618 cam1 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

 

Due to the camera angle and lens distraction, coordinate conversion is required to 

analyze pedestrian traffic performance and related behaviors because the acquired image 

does not represent the rectangular corridor area in reality.  Therefore, the real floor plan 

coordinates (xreal, yreal) were estimated from the image coordinates (ximage, yimage) with the 
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trimmed data set from ROI.  The calibration process started with recording current image 

coordinate matrix, followed by taking the affine transformation for both length (xreal) and 

width (yreal) with (ximage, yimage) and β’s (Tsai, 1987; Teknomo, 2006).  Next, multiple 

linear regression, using stepwise method, was taken to compute the estimated values of 

parameters (𝜷�’s): 
 

0 1 2

0 1 2

ˆ ˆ ˆˆ
ˆ ˆ ˆˆ

real x x image x image

real y y image y image

 = + +


= + +

x β β x β y

y β β x β y
                                                                 

(4.2) 

Equation (4.2) was applied to estimate parameters and predict real coordinates 

with randomly sampled coordinate data, which were directly measured from the corridor 

floor. 

4.5.5 Independent Variables 

4.5.5.1 Independent Variables for Naturalistic Observation 

The identified factors involved in naturalistic observation were trip purpose, size 

of the walking group, and personal items (food, backpack, etc) and they were treated as 

independent variable.  Based on observation, there were three types of trip purposes: 

passing between class rooms; entering the building; and leaving from the building.  

People in this building corridor walked alone or in groups talking to another pedestrian.  

While there are uncontrollable and limited numbers of independent variables in 

naturalistic observation, other types of factors were discussed below for conducting field 

experiments. 
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4.5.5.2 Independent Variables for Field Experiment 

4.5.5.2.1 Speed Level 

As described in task information card, there are three levels for speed, and each 

speed level was assigned appropriately to each scenario setting.  Since people do not 

walk at exact speed, participants were asked to walk at their own speeds, which were 

classified by slow, normal, and fast. 

4.5.5.2.2 Number of Pedestrians 

Pedestrian density level, that is the number of pedestrians in the system, were 

randomly populated (i.e., initial coordinate locations for each participants were 

predetermined before each scenarios begins.) in the system before new pedestrians arrive 

based on the pedestrian density grade in Highway Capacity Manual (TRB, 2000).  As 

soon as a pedestrian leaves from the system, a new pedestrian enters the system to 

maintain the current setting of density.  Pedestrians who completed the navigational tasks 

were asked to return to the waiting area to prepare for the next trial. 

4.5.5.2.3 Flow Combination 

It was constructed to conduct the experiments under the unidirectional and 

bidirectional flow situations with regard to equal flow distributions for both directions. 

4.5.6 Dependent Variables 

4.5.6.1 Traffic Performance 

Walking speed is calculated in order to analyze microscopic pedestrian behavior.  

For any observation time n, the distance between frame n and n+1, for any pedestrian 

navigation, is calculated in Euclidian space. 
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2 2
1 1Distance ( ) ( ) ( )n n n nm x x y y+ += − + −                                                 (4.3) 

 

This sequence of work continues from the birth (arrival epoch) of a pedestrian to 

their death (departure) within the specified ROI tracing pedestrian trajectory frame by 

frame.  Once we finish tracking the first pedestrian’s trajectory in ROI, we move our 

focus onto the second pedestrian, and continue tracking until there is no pedestrian left in 

the last frame.  Instantaneous pedestrian speed was obtained using the distance calculated 

in equation (4.3) and the frame rate.  We assumed that the initial speed of each pedestrian 

is zero, and we did not take it into account when calculating average instantaneous speed 

(see equation (4.4).). 
 

Instantaneous speed ( / ) (distance) (frame rate)m s = ×                                                     (4.4) 
 

The next fundamental characteristics of pedestrian traffic flow are flow rate and 

density.  These were chosen as they have high impacts on the service level of pedestrian 

facilities (e.g., level A through F with ranges, level A is the best) as well as the design 

guidelines and policies for pedestrian facilities.  Flow rate is defined as the number of 

pedestrians passing a point of analysis (as depicted in Figure 4.2) in a unit of time, that is, 

pedestrians per width of walkway per time unit (Friun, 1971; TRB, 2000) 
 

#pedestriansFlow rate(ped/min/m)
(observation time) (walkway width)

=
×                                 

(4.5) 

 

Pedestrian density is the number of pedestrians within the given unit of area 

(ped/m2).  Area module (i.e., pedestrian space), the reciprocal of pedestrian density 

(m2/ped), is used in this study because it is easier to manage and relates to facility design. 

As stated previously, instantaneous average speed was recorded tracking all the 

pedestrians in each frame, and instantaneous pedestrian space was calculated for each 
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frame by dividing the area of ROI by the number of pedestrians in each frame.  Flow rate 

was also calculated and it is equivalent to the product of instantaneous average speed and 

density in each frame. 

4.5.6.2 Walkability 

As a pedestrian perceived LOS, walkability assessment was conducted by 

participants since LOS methodology in the Highway Capacity Manual (TBR, 2000) has 

studied and calculated at researchers’ point view without considering how pedestrians 

themselves feel.  Walkability assessment allows pedestrian participants to express how 

they felt and what they experienced during the trials as shown in Figure 4.6.  This was 

used as a subjective measure of LOS to investigate the impacts of density level and flow 

combination on walkability measure (how pedestrians felt) and the relationship between 

subjective and objective (TRB, 2000) LOS measures. 
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Figure 4.6 Walkability Assessment Questionnaire 
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4.5.7 Additional Considerations 

4.5.7.1 Ratio of Side Walking 

The phenomenon of side walking is frequently observed in congested and 

multiple flow situations.  It is defined as the walking behavior that can be observed from 

participants who turn their steps either right or left side to avoid collision and keep 

current speed (Fukamachi & Nakatani, 2007; Blue et al., 1997).  The proportion of side 

steps was obtained by counting the number of frames that contains sidle steps and divides 

it by total number of frames that includes trajectory changes.  The rate of side walking 

was obtained under the pedestrian density levels of C, D, and E, since pedestrians’ room 

for free walking is limited from level C.  

4.5.7.2 Zone of Comfort 

Fruin (1971) discussed the space that pedestrians tend to keep some distance 

between themselves and obstacles the so-called pedestrian buffer zone.  He categorized 

the level of pedestrian areas into four types: touch zone (radius of individual buffer is 0.3 

m); no-touch zone (0.46 m); comfort zone (0.53 m); and circulation zone (0.61 m).  In 

this study, the pedestrian zone (private sphere) was categorized into two groups, which 

are of less and greater than or equal to zone of comfort to examine the impact of zone of 

comfort on observed pedestrian speed. 

When pedestrians are confronted with an imminent collision, they make a 

decision to pass another pedestrian changing their speed or trajectory so as to maintain 

individual preference of mutual distance. In this case, pedestrians change their speed or 

trajectory by sidesteps and adjustments (Fukamachi & Nagatani, 2007; Blue et al., 1997) 

to keep their current direction as they move toward their goal destination maintaining 
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their preferred minimum distance from other pedestrians and obstacles.  It was presumed 

that a trajectory change of 45 degree or less between two consecutive frames was a side 

step, which means no trajectory change was made, when measuring changes in trajectory. 

Using equation (4.3), the minimum distance from other pedestrians and 

obstructions (e.g., other pedestrians, corridor furniture, wall, etc.) was measured in each 

and every frame to obtain individual pedestrian’s preferred zone of comfort as they 

navigate.  All pedestrians’ minimum distances were recorded in line with instantaneous 

speeds (see equation (4.4).) in each frame to examine the association between them.  The 

initial hypothesis was that the smaller zones of comfort pedestrians have the slower speed 

they take.  The reason this was expected is because they cannot navigate at full speed 

under the congested or restricted area. 

4.5.7.3 Pedestrian Situation Awareness 

To subjectively rate each pedestrian’s situation awareness (SA), the individual 

pedestrian trajectory and level of perception (e.g. what they are looking towards) were 

recorded.  Observers then classify the level of situation awareness from their observations 

based on the way of classification described in this section.  A similar technique, 

Subjective Observer’s Rating SA (SARS), has been proposed by Bell and Lyon (2000), 

in which 31 behavioral elements of SA were identified, including pilots’ perception, 

tactical planning ability, communication, information interpretation, and appropriate 

action.  Although they presented a variety of elements of SA, it may not be appropriate to 

assess pedestrian SA because it is a completely different field of study from pilot SA 

application. 
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To construct an observer rating checklist, five key elements of SA within two 

categories were selected based on pedestrian literature (Antonini et al., 2006; 

Hoogendoorn & Bovy, 2005; Jian et al, 2005; Helbing et al., 2001; Blue et al., 1997).  

The two categories, self-organization and collision avoidance, are generally accepted 

elements that affect individual’s navigational performance (e.g., collisions, way-finding, 

travel time, etc.).  Both are essential elements, which pedestrians need to possess while 

they navigate in crowd (e.g., collision immanent or emergent situation) efficiently.   

The first category, self-organization, means that behavioral patterns are not 

externally planned, prescribed, or organized, for example, by traffic signs, laws, or 

behavioral conventions.  This phenomenon is indispensable for the optimization of 

pedestrian flows, as they determine their efficiency (measured as a pedestrian’s average 

speeds are compared to desired speed) and potential sources of obstructions.  These 

interactions are more reactive and subconscious as compared to strategic considerations 

or communication (Helbing et al., 2001).  Pedestrians frequently form flow lanes when 

they walk in the crowds to maximize their navigation performance by maintaining current 

speed and direction as they move toward their goal destination (Antonini et al., 2006).  

Another element of self-organization is a leader/neighbor following characteristic.  It also 

ensures the efficiency of movement by using the path that the leaders have already made. 

The second category, collision avoidance, entails divergence, gap selection, and 

passing strategy with changes in speed and/or trajectory based on what pedestrians 

perceived.  Unlike self-organization, this characteristic is relatively proactive and 

conscious rather than planned or organized behavior.  Pedestrians can make a sound 

decision when they have high quality of environment perception and concrete 

understanding of situation.  Collision avoidance category includes perception, and 
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appropriate changes in speed and trajectory.  When a pedestrian realizes that a collision 

with another pedestrian is imminent, they generally decide a course of action. 

Speed and attribute data were arranged with all pedestrians, who walked toward 

the surveillance camera showing their faces, to observe pedestrians’ perception and 

reaction to the environment change more easily.  If a pedestrian was cautious and vigilant 

enough watching his/her surroundings, then raters assessed higher score in ‘perception of 

surroundings/neighbors’ element.  In the same fashion, pedestrians who did not take a 

proper action to avoid collision or an effective path following (e.g., self-organizing) 

though they noticed current situation, a poor score was given.  A subject-matter-expert 

(SME) and a peer rated pedestrians’ SA with the observational checklist that contains key 

subjective observer’s rating SA elements described previously and a 5-point Likert rating 

scale system (i.e., 1=unacceptable, 2=poor, 3=neutral, 4=acceptable, and 5=outstanding).  

The SME holds an Institutional Review Board (IRB) certificate after completing the 

training about human subject research, and has involved in the pedestrian study.  The 

peer is working in the building where the surveillance camera is facilitated, and is 

familiar with the site.  The peer and SME watched different video footage, which were 

recorded by the same camera, and they were instructed how to grade pedestrian SA.  

They were not informed about traffic flow in the selected footage such as speed, travel 

time, density, flow rate, etc. 

4.5.8 Procedure 

No specific procedure was necessary for real-world observation, since footage 

from surveillance system was used and footage handling method was described 
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previously.  However, a specific procedure was developed for conducting field 

experiments. 

Upon arriving participants were given a verbal description of the study and its 

objectives, and were asked to read and complete the IRB approved informed consent 

documents.  Each pedestrian were given a set of task information cards, one for each 

scenario. Each card contains information about that scenario, including their ID numbers, 

starting and ending locations, and speed classes.  Participants were also given verbal and 

written explanations of how to answer to each question on the walkability assessment 

sheet, which is on the backside of the task information card.   

Participants were asked not to talk to each other during trials as far as possible in 

order to avoid group behavior.  Also, they were asked not to look around out of the 

corridor setting.  At the start of each scenario, a selected number of pedestrians began the 

trial in the corridor.  These pedestrians were instructed about where to stand by the 

researchers.  Once the trial begins, other pedestrians begin entering the system.  As soon 

as one participant left from the system, the next waiting pedestrian entered the system.  

They looped through the corridor (e.g. reentering the entrance queue after completing the 

walk) until the trial ended.  Both the start and stop of the trial were indicated by an 

auditory announcement made by a researcher.  After participants finished the scenario, 

they were asked to answer three questions about walkability (i.e., subjective LOS 

assessment).  Three specific tasks were assigned followed by trial runs for the experiment.  

Two trial runs were given to participants for an opportunity to better understand the tasks 

for the study.  The trial runs were intended to demonstrate the trial procedures before data 

collection begins.   
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Unidirectional flow tasks included scenarios one through 16.  Pedestrians were 

asked to follow investigators’ requests and to walk under the unidirectional flow 

formation.  The randomly selected and ordered sequence of scenarios was scenarios 13, 9, 

10, 2, 15, 6, 4, 1, 3, 14, 16, 5, 11, 7, 8, and 12.  After each scenario, each participant 

answered the three survey questions on the back of their task card. 

Bidirectional flow tasks had the same as unidirectional case, but participants had 

two different stating locations.  These settings included scenarios 17 through 20.  The 

order of scenario runs was scenarios 20, 18, 19, and 17.  After each scenario, participants 

answered the three survey questions on the back of their task card. 

4.5.9 Data Analysis 

Appropriate descriptive statistics were obtained for each dependent variable (e.g., 

means and standard deviations).  Regression models were developed to predict task 

performance in association with independent variables as well as to fit the walking speed 

as functions of pedestrian density, number of flows, gender, and body weight. 

Multivariate analysis of variance (MANOVA) with performance measures was 

taken to test hypotheses described previously, regarding factorial effects of density and 

speed level combinations with respect to mean performance measures.  As well, Fisher’s 

protected LSD (least significant difference) and two-sample t-tests were used where 

appropriate.  Correlations between each of the dependent variables were also computed.  

All findings were considered significant at an alpha (significant level) of 0.05 unless 

otherwise stated.  The SAS 9.2 for windows was used for all statistical analysis. 
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4.6 Results 

4.6.1 Naturalistic Observation 

A variety of measures were calculated to describe the ob-served pedestrian 

behavior.  A summary of these measures are shown in Table 4.3. 

Table 4.3 Overall Pedestrian Measures 

Traffic performance measures Mean Standard deviation 
Travel distance (m) 9.52 7.44 
Average instantaneous speed (m/s) 1.00 0.69 
Average instantaneous density (ped/m2) 0.04 0.02 
Instantaneous delay (s) 0.12 0.21 
Distance from wall (m) 0.87 0.40 
Distance from other pedestrians (m) 1.72 1.52 
Magnitude of trajectory change (degrees) 24.15 39.28 
Number of trajectory changes 7.98 12.41 

4.6.1.1 Speed 

The average instantaneous speed of all observed pedestrians was 1.00 m/s, with a 

standard deviation of 0.69.  The average is lower than Fruin’s (1971) average speed of 

1.35 m/s (standard deviation of 0.25) and the average speed for young pedestrians, 1.46 

m/s, reported by Fitzpatrick et al. (2006).  The difference between the observed 

pedestrian speed and those reported in literature is most likely due to the fact that the 

pedestrians in the study tended to spend a lot of time stationary while talking to 

neighbors.  It was observed that women’s walking speeds (0.68 m/s) are slower than that 

of men (1.06 m/s).  These values are also lower than the values reported by Fitzpatrick et 

al. (2006). 

The impact of these pedestrian characteristics on speed is shown in Table 2.  

Pedestrians walking alone moved at a faster travel speed than those in groups (F=8.74, 

p<0.001).  Additionally, pedestrians that were leaving the building or simply passing 
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through had a higher speed (F=7.52, p=0.001).  This is likely due to the fact that those 

84% of pedestrians classified as entering the corridor experienced delays in travel.  Of 

those leaving the corridor, 40% experienced delays, while only 13% of pedestrians 

passing through the corridor (traveling room to room) were delayed.  Many pedestrians 

encountered delays in their travel (talking to another pedestrian, waiting on an elevator, 

etc.).  When the delayed data are removed from the sample, the average instantaneous 

speed increases (reaching 1.34 m/s).  This result is much closer to the results reported by 

Fitzpatrick et al. (2006).  

Table 4.4 Speed by Pedestrian Type 

 Sample size Mean (m/s) Standard deviation 
Entire sample 68 1.00 0.69 
Group size    

1 57 1.14 0.74 
2 26 0.64 0.47 
3 9 0.37 0.21 
4 4 0.10 0.11 

Gender    
Male 55 1.06 0.69 
Female 13 0.68 0.49 

Delayed    
Yes 64 1.47 0.24 
No 4 0.96 0.68 

Trip purpose    
Pass 16 1.16 0.68 
Enter 25 0.70 0.42 
Leave 27 1.17 0.39 

Personal items    
Yes 19 1.01 0.46 
No 49 0.99 0.55 

 

Based on the appearance of pedestrians in the video footage, it was assumed that 

the age of all the pedestrians fell in the young category (less than 60 years).  Therefore, it 

was not possible to differentiate the impact of pedestrian age on their behavior using this 
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dataset.  The possession of a personal item (e.g., backpack, book, and food/drink) did not 

appear to have an impact on the pedestrian’s travel speed. 

4.6.1.2 Trajectory Change 

The path of each pedestrian was tracked frame by frame and described by 

calculating the number and magnitude of trajectory changes.  The average trajectory 

magnitude for all pedestrians in the sample was 24.15 degrees.  This was significantly 

affected by the pedestrians’ average instantaneous speed (F=10.76, p=0.002).  Slow 

walkers, defined as having a speed of less than 0.7m/s had an average trajectory change 

magnitude of 41.55 degrees, whereas fast walkers had an average magnitude of 29.14 

degrees (F=1.31, p=0.256).  Therefore, fast walkers were able to make more minute 

changes in their path, whereas slow walkers made abrupt and drastic changes.   

Another measure of pedestrian trajectory was the number of trajectory changes 

made.  This metric was defined as how many times each pedestrian made a trajectory 

change greater than 45 degrees (if a pedestrian made a 40 degree of trajectory change 

within two consecutive frames, it would be minuscule since pedestrian tracking was 

conducted frame by frame).  Anything less than this was considered a side step or simple 

maneuver.  The average number of changes was 8.70.  However, this was significantly 

different based on group size (F=3.37, p=0.024).  Individual pedestrians made an average 

of 8.37 trajectory changes, whereas pairs made an average of 2.57 changes showing 

greater forward movement force than the single pedestrians.  Additionally, the average 

instantaneous speed was a significant factor in number of trajectory changes (F=4.04, 

p=0.003).  Slow walkers made an average of 13.32 changes, whereas fast walkers made 

only 2.59 changes. 
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Figure 4.7 Speed as a Function of Trajectory Change  

The number of changes in trajectory had a negative linear relationship with 

pedestrians’ average instantaneous speed (r2=0.22, Speed = 1.2844 – 

0.03937*TrajectoryChange) as illustrated in Figure 4.7. As pedestrians made fewer 

trajectory changes, their speed was faster than those who made more changes.  The mean 

number of trajectory changes per pedestrian was 8.7.  There was a significant difference 

(p<0.001) in average instantaneous speed between those that made fewer than 8.7 

trajectory changes (1.2 m/s) and those that made more trajectory changes (0.48 m/s).   

Pedestrians with lower average instantaneous speed showed numerous 

meandering or stationary behaviors throughout the observations.  To account for this lack 

of movement, non-homogeneous data was trimmed and an improved linear association 

was found (r2=0.6, Speed = 1.867 – 0.1147*TrajectoryChange).  There was also a 

significant difference (p<0.001) in average instantaneous speed between pedestrians who 

had an average trajectory change of less than 45 degrees (1.30 m/s) and greater than 45 

degrees (0.66 m/s). Totally, 75% of the trajectory changes were 45 degree or less 
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throughout the video footage.  Based on the assumption stated previously, whereas any 

trajectory change less than 45 degrees is considered a side step, it can be said that the 

majority of people took side steps while changing their speed to avoid collision and 

maintain their current direction. 

4.6.1.3 Zone of Comfort 

Two metrics were collected to assess the pedestrians’ zones of comfort, in order 

to describe how much distance they keep from obstructions, walls, and other people.  The 

first measure was the distance a pedestrian was from the closest wall.  The average 

distance was 0.87 meters, and it was greater than Fruin’s circulation zone, 0.61 meters 

(Fruin, 1971).  This measure was significantly affected by gender (F=4.27, p=0.043).  

Men walked closer to the walls (0.85 meters) than did women (0.94 meters).  Distance 

kept from the wall was also significantly different based on trip purpose (F=3.80, 

p=0.027).  Pedestrians passing through (room to room) the system kept a larger distance 

from the wall (1.05 meters) when compared to those entering and leaving (0.88 meters 

and 0.86 meters). 

The second measure for zone of comfort was distance from other pedestrians, 

referred to as zoning.  The average zoning distance was 1.72 meters.  This is twice the 

size of the average distance kept from the wall, showing that people prefer to walk closer 

to objects rather than other people.  Zoning was marginally affected by gender (F=3.37, 

P=0.071).  Women kept further distance from others (2.18 meters) when com-pared to 

men (1.68 meters).  Another significant factor associated with zoning was trip purpose 

(F=5.27, p=0.008).  The largest average zoning distance was found with leaving 
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pedestrians (2.36 meters), followed by passing (1.80 meters) and entering pedestrians 

(1.06 meters). 

 

 

Figure 4.8 Speed as a Function of Distance from Obstruction 

Figure 4.8 displays pedestrian speed as a function of distance from obstructions 

(e.g., other pedestrians, walkway border and obstacles).  The function represents a linear 

association (Speed = 0.4731 + 0.1981*Distance) with an r2=0.25.  Based on this 

relationship, it is inferred that pedestrians who have a greater minimum distance from 

obstructions walk faster than those who have smaller minimum distance. 

4.6.1.4 Pedestrian SA 

Pedestrian SA was rated under the light pedestrian density environment.  Even 

though this is not the situation that may cause catastrophic events, evaluating pedestrian 

SA, however, could give useful insight to develop pedestrian traffic flow model that 

simulates evacuation or emergent situation.  Table 4.5 shows pedestrian SA score by core 

behavioral elements in walking. 
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Table 4.5 Pedestrian SA Scores 

ID Rater 

Self-organization Collision avoidance 
Total 
score 

Leader 
/neighbor 
following 

Maintain 
speed / 

direction 

Appropriate 
trajectory 
change 

Appropriate 
deceleration 

Perception of 
surroundings 
/ neighbors 

  1 SME 3 4 4 4 5 39 Peer 3 4 4 4 4 

  2 SME 3 4 4 2 5 35 Peer 3 4 3 3 4 

33 SME 3 3 4 4 5 37 Peer 3 3 4 4 4 

38 SME 4 2 3 2 4 33 Peer 4 3 4 3 4 

39 SME 4 2 3 2 4 32 Peer 4 3 3 3 4 

46 SME 4 2 3 2 4 29 Peer 4 2 2 2 4 

47 SME 4 3 3 2 3 29 Peer 4 2 3 2 3 

52 SME 3 4 4 4 4 40 Peer 3 3 5 5 5 

53 SME 4 5 4 4 5 46 Peer 4 5 5 5 5 

60 SME 4 2 4 4 4 39 Peer 4 3 4 5 5 

63 SME 3 2 2 2 4 27 Peer 4 2 2 2 4 

64 SME 4 4 4 3 4 37 Peer 4 3 4 3 4 
 

As literature in SA under the dynamic, complex tasks situation (e.g., Ma & Kaber, 

2007; Bell & Lyon, 2003; Endsley, 1995, etc) reported the operator task performance has 

a strong positive association with SA score (either subjective or objective rating), the 

study presumed that the faster pedestrians tend to have better SA and a high amount of 

information to help maintain their desired speed, taking appropriate actions in advance.  

However, pedestrian SA was almost uncorrelated with average speed (r2=0.0207, F=0.21, 

p=0.656).  This may be due to the fact that a couple of possible influential points were 
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found at the left top of Figure 4.9 because these pedestrians maintained their speed 

though they were eating and reading while walking.  Therefore, we cannot say that 

pedestrians who have higher SA score walk faster, and they finished their navigational 

tasks earlier than others.  

 

 

Figure 4.9 Speed as a Function of Pedestrian SA 

Also, no strong association between SA score and the number of trajectory 

changes was found (r2=0.23, F=1.32, p=0.28), which can be interpreted as people are 

more likely to change their speed rather than change trajectory. 

Figure 4.10 illustrates the relationship between pedestrian SA score and 

individual zone of comfort (r2=0.54).  It shows higher SA score holders tend to maintain 

wider personal buffer zone to keep their current direction and desired speed as well as to 

avert collision. 
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Figure 4.10 Pedestrian SA and Zone of Comfort 

4.6.1.5 Facility Evaluation 

The flow rate observed in the video footage was 1.03 ped/min/m and the 

pedestrian space was 26.87 m2/ped.  These measures are average instantaneous 

calculations.  That is, they summarize the entire 20 minutes of footage analyzed 

considering each and every frame or instance.  The high value for the pedestrian space is 

due to the fact that 68 pedestrians were in the region of interest over the entire 20 minute 

interval and the facility area was divided by the number of pedestrian observed in each 

frame to obtain average instantaneous pedestrian space across all frames for 20 minutes.  

If the video footage had shown crowded conditions, the pedestrian space would be much 

lower.  These metrics can be used in evaluating the design of a pedestrian facility, with 

maximizing flow and comfort being the primary objectives.  Additionally, it would be 

expected that the pedestrian space is a minimum threshold for human comfort. 

One of the most common assessments of pedestrian facility design is level of 

service, as defined in the Highway Capacity Manual (TRB, 2000).  The level of service 
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of this particular corridor ranges from level A (based on flow rate and space) to level E 

(based on speed).  This indicates that the width of the corridor is sufficient, but that the 

space allotment for each pedestrian may be lacking.  The main reason that this particular 

corridor was poorly rated in average speed can be interpreted as a high occurrence of 

stationary movements and meandering.  As a whole, it can be said that this corridor is 

wide enough for pedestrian navigation under usual circumstances.  However, the 

utilization was poor at the time due to situational factors. Many pedestrians in the 

hallway were waiting to enter rooms, thereby decreasing utilization.   

4.6.2 Field Experiments 

After completing the empirical study under the constructed corridor setting, the 

recorded video footage from four surveillance cameras that contains participants walking 

behavior has been securely stored on an external hard drive.  Abiding by IRB’s 

regulation, research personnel who completed IRB training had an access to video 

footage and they coded footage to a set of numeric data with respect to each participant’s 

location. 

VirtualDub and ImageJ, open-source image processing tools, have been utilized to 

create image sequences from footage and to code images.  Immediately after clicking any 

point on an image, it moves on to the next frame of image maintaining 0.1 second 

between two consecutive frames.  When clicking, a middle point participant’s feet that 

corresponds to his/her body axis has been considered as a participant’s current location. 

Since the coded data on location from the image sequence do not directly 

correspond to actual coordinate values, a coordinate conversion method was developed to 

convert image coordinate into real-world coordinate.  On the site floor, totally 120 
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arbitrary and randomly selected locations (i.e., thirty points from each camera zone) in 

terms of x-y coordinate values were collected to fit the multiple linear regression models 

as appeared in equation (4.2).  Parameters (𝛽′𝑠) were estimated using stepwise method in 

order to predict real floor plan coordinate (𝑥𝑟𝑒𝑎𝑙,𝑦𝑟𝑒𝑎𝑙), and standard errors of estimates 

and coefficient of determinations can be found in the following table (𝛼 = 0.05). 

Table 4.6 Standard Error of Parameter Estimates and Coefficients of Determination 
for the Coordinate Conversion Model 

 Camera 1 Camera 2 Camera 3 Camera 4 
𝑆𝐸(�̂�0𝑥)   0.0159* 0.0192 0.0307 0.0184 
𝑆𝐸(�̂�0𝑦) 0.0195 0.0175 0.0411 0.0152 
𝑆𝐸(�̂�1𝑥) 0.0000 0.0000 0.0000 0.0000 
𝑆𝐸(�̂�1𝑦) 0.0000 0.0000 0.0000 0.0000 
𝑆𝐸(�̂�2𝑥) 0.0000 0.0000 0.0000 0.0000 
𝑆𝐸(�̂�2𝑦) 0.0000 0.0000 0.0000 0.0000 
𝑅𝑥2 1.000 0.999 0.998 0.999 
𝑅𝑦2 0.999 0.999 0.997 1.000 

Note: Unit of measure is in meter. 

 

 

Figure 4.11 Realization of Pedestrian Trajectory with Footage from Each Camera 
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To inspect if the realized pedestrian density was matched to the planned one, both 

macro and micro level of pedestrian densities were determined as displayed in Table 4.7.  

Video footage was analyzed and density was calculated from both micro and macro 

viewpoints. Macro density is used to determine pedestrian space described in the HCM 

(TRB, 2000).  This space can be obtained by measuring the sample area of the facility 

and determining the maximum number of pedestrians (i.e., macro density) at a given 

time, usually 10-15 minutes, in the walkway area.  So it can be described as the peak 

number of pedestrians at a given time in the walkway area.  Micro density indicates the 

average number of pedestrians in each frame.   

The realized pedestrian densities for each scenario were deviated from the 

planned density levels or marginally corresponded to each range of space LOS grade in 

the Highway Capacity Manual (TRB, 2000).  A subset of the empirical data that closely 

matched to the planned density level was selected to conduct statistical analyses as shown 

at the bottom of Table 4.7 and in Figure 4.12.  When selecting a subset of data from the 

original data set, frame numbers whose density level most closely matched the planned 

density level (data within the red dotted boxes in Figure 4.12) were considered.  As an 

example, the subset of data used for scenario 1 is shown within the red dotted boxes of 

Figure 4.12.  Since the pedestrian space levels (either micro or macro level of pedestrian 

space) of the selected subset of the data fell within or marginally close to the range of 

planned space levels, the data subsets were deemed suitable for analysis with respect to 

density levels. 
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Figure 4.12 Selected Pedestrian Density for Scenario 1 

A variety of measures were obtained to show the observed pedestrian behavior as 

displayed in Table 4.8.  The observed overall average (standard deviation) walking speed, 

subjective walkability measure, and average minimum distance from obstruction (zoning 

hereafter as in Table 4.8) were 1.41 m/s (0.28), 14.28 (3.38), and 0.86 m (0.29) 

respectively.  Male participants (1.43 m/s) walked faster than female (1.39) on average.  

The statistical designs incorporated a total of eight treatment combinations for uniflow 

and biflow mixture situation fixing speed level to normal as shown in Table 4.8, and 16 

treatment combinations for all levels of each speed and pedestrian space. 
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Table 4.8 Descriptive Statistics for the Pedestrian Travel Behavior (N = 1000) 

Gender Speed Space # Speed Walkability Zoning 

 
Comb. Level Flow Mean SD Mean SD Mean SD 

Female Normal B 1 1.41 0.30 15.72 3.61 0.91 0.26 

   
2 1.44 0.11 11.36 3.80 0.80 0.28 

  
C 1 1.36 0.06 16.04 2.39 0.75 0.28 

   
2 1.39 0.06 11.88 3.97 0.86 0.28 

  
D 1 1.30 0.07 14.92 4.02 0.87 0.41 

   
2 1.43 0.09 10.84 3.76 0.83 0.24 

  
E 1 1.30 0.06 15.52 3.56 0.94 0.24 

 
  

 
2 1.29 0.08 11.40 3.45 0.96 0.21 

 
Slow - B 1 1.29 0.14 14.00 4.33 0.81 0.33 

 
Normal C 1 1.19 0.11 16.20 2.18 0.88 0.27 

  
D 1 1.17 0.10 14.96 3.03 0.79 0.27 

 
  E 1 1.08 0.17 15.20 2.77 0.86 0.35 

 
Fast -  B 1 1.86 0.25 15.00 2.83 0.84 0.30 

 
Normal C 1 1.61 0.15 13.40 3.89 0.74 0.29 

  
D 1 1.47 0.18 14.40 3.57 0.85 0.28 

 
  E 1 1.51 0.14 14.33 3.97 0.95 0.43 

 
S-N-F B 1 1.60 0.32 15.72 3.59 0.81 0.27 

  
C 1 1.38 0.27 14.56 3.88 0.85 0.29 

  
D 1 1.41 0.34 14.32 4.11 0.92 0.31 

  
E 1 1.27 0.27 13.52 4.28 0.79 0.29 

  
Female Overall 1.39 0.25 14.16 3.87 0.85 0.30 
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Table 4.8 (Continued) 

Gender Speed Space # Speed Walkability Zoning 

 
Comb. Level Flow Mean SD Mean SD Mean SD 

Male Normal B 1 1.50 0.11 15.48 2.08 0.94 0.26 

   
2 1.50 0.11 13.00 5.07 0.84 0.25 

  
C 1 1.41 0.04 15.84 2.44 0.86 0.32 

   
2 1.39 0.04 10.40 4.73 0.89 0.20 

  
D 1 1.35 0.05 15.36 2.63 0.98 0.21 

   
2 1.36 0.05 11.68 4.79 0.75 0.25 

  
E 1 1.22 0.06 16.76 1.48 1.03 0.32 

   
2 1.23 0.05 11.76 3.21 0.86 0.20 

 
Slow - B 1 1.47 0.16 13.16 3.21 0.69 0.33 

 
Normal C 1 1.27 0.04 15.48 3.11 0.96 0.31 

  
D 1 1.17 0.10 14.76 3.03 0.83 0.38 

  
E 1 0.95 0.10 16.56 1.78 0.96 0.26 

 
Fast -  B 1 2.15 0.18 15.48 2.00 0.78 0.24 

 
Normal C 1 1.75 0.13 13.64 3.88 0.77 0.27 

  
D 1 1.49 0.12 14.60 3.74 0.89 0.28 

  
E 1 1.39 0.09 15.40 3.33 0.90 0.33 

 
S-N-F B 1 1.99 0.23 15.96 3.09 0.77 0.25 

  
C 1 1.64 0.13 12.96 5.05 0.72 0.25 

  
D 1 1.37 0.15 15.33 3.31 1.03 0.26 

  
E 1 1.06 0.16 14.28 4.05 0.92 0.21 

  
Male Overall 1.43 0.30 14.39 3.80 0.87 0.29 

Overall Gender 
  

1.41 0.28 14.28 3.83 0.86 0.29 
 

When participants walked under space level A, the measured average (standard 

deviation) walking speed, subjective walkability score, and zoning were 1.62 (0.33) m/s, 

14.49 (3.72) points, and 0.82 (0.28) meters respectively.  Other space levels were 

assigned and travel performances were also measured: for space level B, average 

(standard deviation) walking speed, subjective walkability score, and zoning were 1.44 

(0.20) m/s, 14.04 (4.05) points, and 0.83 (0.28) meters respectively.; and when 

pedestrians walked under the space levels of C and D, the recorded performance 

measures with the same order of appearance as levels A and B were 1.35 (0.18) m/s, 



 

129 

14.11 (3.88), and 0.87 (0.29) meters for level C and 1.23 (0.20) m/s, 14.47 (3.68), and 

0.92 (0.29) meters for level D. 

The measured speeds (m/s) at each speed class, such as normal, slow-normal, 

fast-normal, and slow-normal-fast were 1.37 (0.13), 1.20 (0.19), 1.65 (0.28), and 1.47 

(0.36) respectively.  For walkability measure with the same order of appearance as speed, 

it showed 13.62 (4.13), 15.03 (3.13), 14.52 (3.47), and 14.58 (4.02).  For zoning, 

measured values were 0.88 (0.27) meters, 15.04 (3.140 meters, 14.53 (3.47) meters, and 

14.58 (4.02) meters respectively. 

In regard to the number of pedestrian flows, participants walked in uniflow and 

biflow situations.  When they walked in uniflow, the measured average speed, 

walkability and zoning were 1.42 (0.31) m/s, 14.96 (3.43), and 0.86 (0.30) meters.  For 

biflow case, measured travel performance in the same order of appearance as uniflow, 

were 1.38 (0.11) m/s, 11.54 (4.14), and 0.85 (0.24) respectively. 

4.6.2.1 Missing Data Imputation and Variable Transformation 

The analysis of pedestrian travel behavior (i.e., observed walking speed, 

subjective walkability, and zoning) was conducted with four different aspects: data 

arrangement; factorial effects of space and number of flows; factorial effects of space and 

speed class; and impacts of spacing propensity on observed walking speed.  Since the 

pedestrian data contained missing data points on participant weight (3.5 % of entire data), 

estimation of missing values using multiple imputation procedure was performed first. 

Pedestrian travel performance data were imputed using Multiple Imputation and 

Markov Chain Monte Carlo procedures in SAS, and the imputed (i.e., on weight variable) 

prediction equation is reported in equation (4.6) (F (4, 995) = 138.17, p < 0.0001). 
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 146.58 36.44 7.13 0.15 3.52Weight Gender Speed Walkability ZOC= + − + −                (4.6) 
 

Further analysis pertaining to participants’ weight was performed using imputed 

data, and the weight variable was categorized into two levels, such that low level (less 

than median of weight) and high level (greater than median of weight) were created for 

analytical simplicity. 

Since the variables did not hold assumptions linearity and homogeneity of 

variance, Box-Cox transformation was performed appropriately to minimize root mean 

squared errors.  The obtained λ’s for average speed, walkability, and zoning were -0.2, 

2.0 and 1.2 respectively.  Then these values were plugged into the Box-Cox power 

function to conduct statistical analysis appropriately.  Tests of homogeneity of variance 

using Levene’s method for speed (F (7, 392 )= 2.13, p = 0.040), walkability (F (7, 392) = 

2.25, p = 0.030.) and zoning (F (7, 392) = 1.94, p = 0.062) showed conducting ANOVA 

is reasonable at a significance level of 0.01 since F-test is very robust against ANOVA 

assumptions especially in a fixed effect model and equal sample sizes with a large sample 

size as the data this study explored (Kutner, et al., 2005). 

4.6.2.2 Speed, Walkability and Zoning for each Space and number of Flows 

Collected data were initially analyzed using two-way MANOVA, factorial 

arrangement of treatment in a randomized complete block design treating gender as a 

block.  This analysis revealed significant multivariate effects for levels of pedestrian 

space and number of flow with respect to mean speed, walkability and zoning.  Wilk’s 

lambda for overall space and number of flow treatment combination was 0.41 (F (21, 

1117.5) = 19.57, p < 0.0001). 
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Hierarchical (ordered) F-tests were conducted after rejecting the hypothesis of no 

overall multivariate effects.  ANOVA resulted that space and number of flow interact to 

significantly affect mean speed (F (3, 391) = 3.12, p = 0.026) and mean zoning (F (3, 

391) = 2.83, p = 0.038), but do not significantly affect mean walkability (F (3, 391) = 

1.12, p = 0.342) as shown in Table 4.9.  Both levels in number of flow were significantly 

different (F (1, 391) = 147.84, p < 0.0001) with respect to mean walkability.  However, 

no significant difference in space (F (3, 391) = 0.77, p = 0.513) was found with respect to 

mean walkability.  Also, no significant variations due to gender in speed (F (3, 391) = 

0.65, p = 0.423), walkability (F (3, 391) = 0.82, p = 0.365) and zoning (F (3, 391) = 1.20, 

p = 0.274) were reported.  Participants’ body weight did not significantly affect mean 

speed (F (1, 391) = 0.39, p = 0.5316), mean walkability score (F (1, 391) = 2.07, p = 

0.1512) and mean zoning (F (1, 391) = 0.10, p = 0.7466). 

Table 4.9 Factorial ANOVA Results (p-values) 

Dependent variables Space #Flows Space*#Flows Gender 
Speed <0.0001 0.0027 0.0261 0.4223 
Walkability 0.5133 <0.0001 0.3419 0.3651 
Zoning 0.0335 0.0188 0.0382 0.2742 
Note: Bold values indicate significant findings (p-value < 0.05) 

Average walking speed was not found to be affected by gender as shown in Table 

4.9.  Figure 4.13 shows the trend of speed in gender and results of multiple comparisons.  

The average (standard deviation) speed for female and male walkers were 1.37 (0.14) m/s 

and1.37 (0.12) m/s respectively.  A post-hoc analysis using Fisher’s LSD multiple 

comparisons showed that there were significant differences among all levels of space 

when pedestrians walked in uniflow.  However, for biflow situation, no difference was 

found between space levels C and D unlike other space levels.  The best walking 



 

132 

environment combinations of number of flow and space level were space level B with 

both flow levels, that is, regardless of number of flow space level B provided best 

walking condition improving mean walking speed. 

 

 

Figure 4.13 Speed by Gender based on Space and Number of Flow Combination (bars 
represent standard error of the mean) 

The responded mean (standard deviation) walkability measures for female and 

male were 13.46 (4.13) and 13.79 (4.13).  As revealed in factorial ANOVA result table, 

each space level did not affect mean walkability measure, but the number of flow 

significantly affected walkability meaning that pedestrians preferred to walk in the 

uniflow as shown in Figure 4.14.  Variation due to gender was not significant. 
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Figure 4.14 Walkability by Gender based on Space and Number of Flow Combination 
(bars represent standard error of the mean) 

The reported average (standard deviation) minimum distance from obstruction for 

female and male walkers were 0.87 (0.28) and 0.90 (0.27) meters.  As shown in Table 

4.9, there was no variation due to gender as speed and walkability measures.  However, 

mean zoning was significantly influenced by each level space and the number of flow.  

Figure 4.15 shows post-hoc analysis using Fisher’s LSD multiple comparisons with 

respect to combinations of each level of space and the number of flow.  For uniflow, 

there was no significant difference among space levels B, D, and E, but there was 

significant decrease in mean zoning when pedestrians walked under the space level C.  

When pedestrians walked in biflow, there was no significant change in mean zoning was 

found.  For levels of space D and E, there were significant decreases in mean zoning 

when they walked in biflow directions; otherwise no significant change in mean zoning 

was found. 

 



 

134 

 

Figure 4.15 Zoning by Gender based on Space and Number of Flow Combination (bars 
represent standard error of the mean) 

In order to investigate and identify the mathematically optimum conditions 

(environment settings) in pedestrian walking with respect to mean walkability, response 

surface modeling was conducted using response surface regression model with the 

method of least squares in SAS.  A response surface model was obtained with a non-

significant lack of fit to the data (F (3, 392) = 0.70, p = 0.5499) as illustrated in Figure 

4.16.  The perceived pedestrian walkability decreased as the number of flows increased 

from one to two, i.e., uniflow to biflow, with an approximate change in walkability of 5.5 

points.  Similar to the number of flows, the response surface showed that pedestrian space 

of A or B resulted in more preferable conditions for better walkability scores. 
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Figure 4.16 Fitted Response Surface as a Function of Space and Number of Flows 

 

 

Figure 4.17 Contour Plot for the Fitted Response Surface 
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The contour plot in Figure 4.17 shows the optimum walkability score with the 

optimal combination of space and number of flows.  The maximum walkability was 

16.49 points (with a green line at the left bottom corner in the figure) with a space level 

of A and the number of flow of one. 

Table 4.10 Means, Standers Deviations and Intercorrelations 

   Intercorrelations 
Variable Mean SD 1 2 3 4 5 
1.Efficiency 0.9785 0.0149 1.00     
2.Average speed (m/s) 1.3686 0.1291 -0.03 1.00    
3.Average zoning (m) 0.8804 0.2739 0.09 -0.07 1.00   
4.Min zoning (m) 0.4449 0.2813 0.34** 0.04 0.69** 1.00  
5.Walkability 13.6223 4.1283 0.31** -0.11* 0.14* 0.23** 1.00 

Note: N = 400.  
Efficiency indicates the ratio of displacement (distance from start to end) to travel 
distance.  Zoning means the measured minimum distance from obstructions (other 
pedestrians and both sides of corridor). 
Bold values indicates significant findings (p-value < 0.05), *p < 0.01, **p < 0.0001. 

To explore the relationship among measures, the correlation procedure in SAS 

was taken with a spearman option since some of variables were not normally distributed 

and estimating exact probability distribution for all variables were not possible.  Some 

weak but significant correlations were found between efficiency and two measures 

(minimum zoning and walkability measures) as shown in Table 4.10.  Unlike other 

significant relationship among measures, walkability was negatively correlated with 

average walking speed.  Somewhat strong association between average zoning and 

minimum zoning was found since average zoning includes all pedestrian zoning 

behaviors even minimum zoning as well. 



 

137 

4.6.2.3 Speed, Walkability and Zoning for each Space and Speed Combination 

The number of treatment combinations for space and speed class levels was 16 

since both factors had four levels each to construct an arrangement of treatments for the 

experimental observation.  An omnibus testing, a two-way MANOVA, was also 

conducted to test overall space speed class effects with respect to mean observed speed, 

responded walkability score and zoning (average minimum distance from obstruction).  

The analysis revealed significant differences across dependent variables.  Wilk’s lambda 

for overall space and speed class treatment combination was 0.34 (F (45, 2320.9) = 

22.82, p < 0.0001). 

Univariate ANOVAs were performed on each dependent variables of interest to 

assess the importance of the two factor interaction effects and main effects for the factors.  

The overall ANOVA results are given in Table 4.11.  Hierarchical F-tests were conducted 

on the factorial effects starting from the interactions. 

Table 4.11 Factorial ANOVA Results (p-values) 

Dependent variables Space SpeedComb. Space*SpeedComb Gender 
Speed <0.0001 <0.0001 <0.0001 <0.0001 
Walkability 0.5119 0.0013 <0.0001 0.5176 
Zoning 0.0003 0.0585 0.0044 0.1468 
Notes: SpeedComb indicates combination of asked walking speeds, such as slow-normal, 
normal, slow-normal-fast, and normal-fast. 
Bold values indicate significant findings (p-value < 0.05) 

ANOVA resulted that interactions between space and speed class significantly 

affected the mean speed (F (9, 783) = 12.10, p < 0.0001), mean walkability (F (9, 783) = 

3.99, p < 0.0001) and mean zoning (F (9, 783) = 2.69, p = 0.0044).  The auxiliary test for 

variation due to gender showed that it was significant only on mean speed (F (1, 783) = 

20.05, p < 0.0001) while no significant variations due to gender on mean walkability (F 
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(1, 783) = 0.42, p = 0.5176) and mean zoning (F (1, 783) = 1.06, p = 0.3036) were 

reported.  Also, variations due to participants’ body weight were not significant with 

respect to mean speed (F (1, 783) = 0.84, p = 0.3594), mean walkability score (F (1, 783) 

= 0.00, p = 0.9802) and mean zoning (F (1, 783) = 1.06, p = 0.3036). 

 

 

Figure 4.18 Speed by Gender based on Space and Asked Walking Speed Combination 
(bars represent standard error of the mean) 

Figure 4.18 shows the trend of mean speed for each space level and speed level by 

gender.  The average (standard deviation) speed for female and male walkers were 1.39 

(0.27) m/s and 1.45 (0.33) m/s respectively.  As displayed in Table 4.11, there was a 

significant variation due to gender on average speed.  A post-hoc analysis using LSD 

multiple comparisons showed that there were significant differences across all levels of 
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space and speed class, but no best treatment combination of space level and speed class 

level was found.   

For each space class, when all participants walked at their own judgment of 

normal speed, there was a significant increase in walking speed as space level decreases 

from B to C.  No significant change was found when other changes in space level.  When 

the speed class was combination of slow and normal, there were significant increases in 

walking speed as space levels increase from E to D and from C to B.  For speed 

combination of fast and normal, there were significant increases in mean walking speed 

as space levels increase from D to C and from C to B, but no significant change was 

found when space level increases from E to D.  Regarding speed combination of slow, 

normal and fast, significant increases were reported for each space level increase.  

For each space level, no significant change in mean walking speed was found 

only when the speed class changes from normal to slow, normal and fast combination.  

Otherwise, there were significant increases in mean walking speed for all other changes 

in speed levels. 
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Figure 4.19 Walkability by Gender based on Space and Asked Walking Speed 
Combination (bars represent standard error of the mean) 

The reported mean (standard deviation) walkability measures for female and male 

were 14.86 (3.58) and 15.07 (3.26) respectively.  As revealed in factorial ANOVA result 

in Table 4.11, only speed class significantly affected mean walkability measure, but 

variation due to gender was not significant.  For each speed class, there was a significant 

decrease in mean walkability only when the speed combination was slow and normal and 

space level changes from C to D.  For single walking speed class of normal, there was no 

significant change in mean walkability score as space level changed.  For speed class 

combinations of slow-normal-fast and normal-fast, significant increases in mean 

walkability were found only when space level increased from C to B. 

For each space level, there were significant decreases in mean walkability score 

when speed class changed from normal to slow-normal-fast under space levels of E and 
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C.  However, there was a significant increase in mean walkability score as speed class 

changed from normal to slow-normal-fast under space level of B.  No best treatment 

combination of space and speed class was found that maximize mean walkability 

response, but multiple comparisons results showed slow or normal walking speed 

improve walkability for all space levels. 

 

 

Figure 4.20 Zoning by Gender based on Space and Asked Walking Speed Combination 
(bars represent standard error of the mean) 

The reported average (standard deviation) minimum distance from obstruction, 

i.e., zoning, for female and male walkers were 0.85 (0.31) meters and 0.88 (0.30) meters 

respectively.  As shown in Table 4.11, no significant variation due to gender was found.  

Mean zoning measure was not significantly influenced by speed class either.  Figure 4.20 

shows pairwise comparisons for each level of space and speed class with respect to mean 
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zoning measure.  There were significant decreases in mean zoning measure when space 

level increased from D to C for speed class combinations of normal, slow-normal-fast 

and normal-fast.  Also, mean zoning decreased significantly when space level increased 

from C to B for speed class combination of slow-normal.  No significant change was 

found at all other space and speed class combinations.  For space levels of B and D, there 

were significant increases in mean zoning only when speed class changes from slow-

normal to normal.  However, mean zoning measure was significantly decreased when 

speed class changed from normal to slow-normal-fast for space levels of B and E.  Also, 

there was a significant increase when speed class changed from slow-normal to normal 

for space level of D. 

A response surface model for mean walkability score was obtained with a non-

significant lack of fit to the data (F (10, 784) = 1.8362, p = 0.0510) as illustrated in 

Figure 4.21.  The perceived pedestrian walkability was good when all pedestrian walked 

at their normal speeds while mixed speed classes (e.g., slow-normal, fast-normal or slow-

normal-fast) negatively affected mean walkability score.  However, even though they 

walked at all different speed (slow-normal-fast), walkability score was high as long as 

pedestrian space was high enough (A or B).  Generally, as space decreased walkability 

score decreased as well except the single normal walking speed.  Walkability score was 

high under the congested situation when they were asked to walk at their normal speed 

only.  The worst case was the combination of high pedestrian density and three different 

speed classes.  The observed range of walkability score between best and worst cases was 

approximately 2.25 points, which was lower than the one obtained in the previous biflow 

case. 
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Figure 4.21 Fitted Response Surface as a Function of Space and Speed Class 

 

 

Figure 4.22 Contour Plot for the Fitted Response Surface 
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The contour plot in Figure 4.22 shows the optimum walkability score with the 

optimal combination of space and speed class.  The maximum walkability was 16.47 

points (with a green line at the right bottom corner in the figure) with a space level of D 

and a normal speed class. 

Table 4.12 Means, Standers Deviations and Intercorrelations 

   Intercorrelations 
Variable Mean SD 1 2 3 4 5 
1.Efficiency 0.9758 0.0164 1.00     
2.Average speed (m/s) 1.4186 0.3049 -0.41 1.00    
3.Average zoning (m) 0.8631 0.3032 0.15 -0.17 1.00   
4.Min zoning (m) 0.4301 0.2839 0.15 -0.20 0.71 1.00  
5.Walkability 14.9632 3.4263 0.14 -0.15 0.17 0.15 1.00 

Note: N = 800. 
Efficiency indicates the ratio of displacement (distance from start to end) to travel 
distance.  Zoning means the measured minimum distance from obstructions (other 
pedestrians and both sides of corridor). 
Bold values indicates significant findings (p-value < 0.05) at p < 0.0001 

Some weak but significant correlations were found among all measures as shown 

in Table 4.12.  As reported in the previous case (number of flows and space levels were 

considered), average speed negatively correlated with zoning and walkability.  Efficiency 

had a negative association with average speed, but stronger than the previous case.  

However, it had positive correlations with other measures.  Walkability was also 

positively correlated with zoning. 

4.6.2.4 Impact of Spacing Propensity on Observed Walking Speed 

As reported in literature (Helbing & Molnár, 1997; Willis et al. 2002), pedestrians 

tend to maintain minimum distance from obstruction for their social and/or physical 

purposes while they walk in the public space.  To investigate pedestrian spacing 
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propensity under the controlled filed experiment setting, various pedestrian spacing 

measures obtained as displayed in Table 4.13. 

Table 4.13 Means and Standard Deviations for Zoning and Speed 

  Zoning (in meter)  Observed speed (in m/s) 
Spacing propensity  Mean SD  Mean SD 
Zoning (wall)  0.7991 0.3197  1.4174 0.2774 
Zoning (others)  0.9581 0.2063  1.4011 0.2782 
Zoning (center)  1.0399 0.2370  1.3862 0.2729 
Zoning (sides)  0.7701 0.2749  1.4236 0.2794 

Note: Zoning (wall) and zoning (others) indicate the average distance from corridor wall 
and the average minimum distance from other pedestrians respectively. 
Zoning (center) and zoning (sides) are defined as the average minimum distance from 
obstructions for those who walked center of the corridor and either side respectively. 

Two-sample t-test showed that there was a significant different in zoning.  

Pedestrians kept more distance from other pedestrian than from corridor walls (t(1998) = 

-12.09, p < 0.0001).  The obtained 95% confidence interval for mean difference in 

distance between wall and other pedestrians was (-0.4050, -0.2919).  Also the difference 

between these groups with respect to mean speed was tested, and no significant 

difference was found (F(1, 998) = 0.81, p = 0.3683).  However, a significant difference in 

mean speed between a group of pedestrians who walked center of the corridor and the 

other group walked either side of the corridor was reported (F(1, 998) = 4.07, p = 

0.0439). 
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Table 4.14 Means and Standard Deviations for Travel Performance Measures based on 
Speed Rank 

Measures Speed rank  Mean SD 
Efficiency Slow  0.9781 0.0294 
(displacement / distance) Normal  0.9772 0.0151 
 Fast  0.9675 0.0310 
Average Speed (m/s) Slow  1.1606 0.1290 
 Normal  1.3688 0.0436 
 Fast  1.7048 0.2488 
Average acceleration (m/s2) Slow  -0.0005 0.0059 
 Normal  -0.0036 0.0085 
 Fast  0.0013 0.0685 
Average zoning (m) Slow  0.8973 0.2934 
(overall) Normal  0.8793 0.2863 
 Fast  0.8034 0.2885 

 

The observed walking speed was ordered and categorized into three groups, such 

as slow, normal and fast, as shown in Table 4.14 to display means and standard 

deviations for each measure.  Additional F-tests were conducted to investigate any 

differences in speeds with respect to mean zoning, mean acceleration and efficiency 

measures.  It showed that at least one speed is significantly different with regard to mean 

zoning (F(2, 997) = 9.91, p < 0.0001) and mean efficiency (F(2, 997) = 16.67, p < 

0.0001).  However, no significant difference was found in speeds pertaining to mean 

acceleration (F(2, 997) = 1.32, p = 0.2676). 

4.7 Discussion 

The study take into consideration of both real-world observations and controlled 

field experiments on pedestrian behavior in order to collect microscopic pedestrian data, 

to quantify travel behavior, and to derive overall macroscopic characteristics using video 

footage.  The foremost research question is how actually to extract the pedestrian data 

that contain physical and psychological characteristic so that the data can be arranged and 
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analyzed appropriately.  With the aid of image processing tools as described previously, 

video footage split into sequences of separate images and pedestrian data were coded 

from the image sequence as a format of x-y coordinate values.  The image coordinate was 

converted into the real-world floor plan using the conversion equation as presented in 

equation (4.2) with parameter estimates.  Coefficients of determination for the coordinate 

conversion models range from 99.7% to 100% meaning that 99.7% to 100% of total 

variations are explained by regression.  However, errors still exist in the predicted value 

of constant terms.  In other words, a standard errors of a constant terms in camera 1 were 

1.59 cm for x-value and 1.95 cm for y-value, which means x-values could vary ±1.59 cm 

(3.18 cm in range) and y-values could also vary ±1.95 cm (3.9 cm in range). 

The study includes four major hypotheses with minor ones for each major testing 

category.  Basically, these research questions involves in identifying the factors or 

factorial interaction that affect the mean walking speed, mean minimum distance from 

obstructions, and mean perceived pedestrian walkability score.  Also, the questions of 

interest include testing the effect of increasing the level of the factor on pedestrian 

measures being the same for all levels of other factor. 

First, it was hypothesized that environment settings of pedestrian space level (i.e., 

space LOS grades B, C, D, and E) and the number of pedestrian flow directions (i.e., 

unidirectional and bidirectional flows) would affect pedestrian measures.  Mean observed 

walking speed was significantly affected by the environment setting combination of 

pedestrian space and the number of flow directions.  This supports the first major 

hypothesis and can be interpreted as both space and number of flows significantly 

influence on mean walking speed.  The effect of increasing space level on mean speed 

depends on the number of pedestrian flows.  When all pedestrians walk toward the same 
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direction, an increase in space significantly increases mean speed.  This is due to the fact 

as pedestrians have more space to manipulate their walking speed, especially to 

accelerate, they can reach their unimpeded free speed while walking.  However, for each 

space level, an increase in the number of flow direction from unidirection to bidirection 

negatively impacts on mean speed as reported in literature (Daamen & Hoogendoorn, 

2006; Daamen & Hoogendoorn, 2003) and mean walkability measure.  When they find 

other pedestrians who walk in the opposite direction, they need to change their walking 

direction or walking speed to avoid potential collision (Strawderman et al., 2010), and 

they might feel uncomfortable.  No matter what environment settings they are given, 

pedestrians tend to maintain minimum distance from obstruction (and more distance from 

other pedestrians) changing their walking directions or speeds more frequently. 

The second question of interest is to invest the effect of physical walking 

component of speed class (all normal, combination of slow and normal, combination of 

fast and normal, and combination of slow, normal and fast equally likely).  Tests resulted 

that speed combination significantly impacts on mean speed and mean walkability, and 

marginally affects the average minimum distance from obstruction with a p-value of 

0.058.  Also, the effect of speed combination on mean measures depends on change in 

pedestrian space level.  For each speed combination, mean walking speed increases as 

pedestrian space increases as discussed in the previous research question.  The best 

combination of space and speed class is space LOS B (the highest one in the study 

configuration) and speed combination of normal and fast (the fastest speed combination 

here) with an average (standard deviation) speed of 2.0025 (0.2584) m/s.  No variation 

due to gender was found with respect to walkability and zoning, except speed (Lee et al., 

2009; Lee et al., 2008).  Male walked faster than female unlike literature (Daamen & 
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Hoogendoorn, 2006; Fitzpatrick et al., 2006; Bierlaire et al., 2003) since participants 

were asked to complete their tasks as described on their task information card (Figure 

4.1) as well as male participants might have potential physical vigor.  An effect of body 

weight was also tested and it resulted in no significant variation due to weight due to the 

fact that participants can be categorized into young group with a mean age of 21.4 years 

and a mean weight of 171.98 lbs.  Therefore, hypotheses regarding no gender and weight 

effects on walkability and zoning were supported. 

Pertaining to pedestrian zoning characteristic numerous terminologies have been 

employed to describe pedestrian spacing.  Fruin (1997) pointed out that there is a certain 

degree of distance from obstruction for comfortable walking, called zone of comfort.  

Other jargons that contain similar meaning to zoning are territorial effect (Bierlaire & 

Antonini, 2003), social force (Helbing & Molnár, 1997), and personal distance (Hall, 

1966).  Then how far do pedestrian tend to keep distance from other pedestrians or 

obstacle?  And how does pedestrian spacing propensity impact on pedestrian travel 

performance? The third major research question involves the investigation of role of a 

zoning factor, and it was assumed that pedestrian spacing propensity (Table 4.13) would 

affect observed mean walking speed and perceived walkability score. 

The study found a significant difference in the minimum distance from other 

pedestrians and the minimum distance from corridor wall (either side); and a significant 

difference between these groups with respect to mean walkability score (not significant in 

mean speed).  It shows people are likely to keep more distance from other pedestrians 

than from corridor wall, and pedestrians who walk close to corridor wall (keeping more 

distance from other people) have higher walkability score.  This proves pedestrians have 

their own social distance to some extent and they feel more comfortable when the 
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distance is secured (overall, 0.86 m).  Pedestrian zoning explains people tend to highly 

value spacing rather than speed under the usual walking situation. 

Another spacing characteristic of walking center of the corridor and walking 

either side was taken into consideration.  There was a significant finding with respect to 

mean speed, but not mean walkability, between a group walked center of the corridor and 

the other group walked side of the corridor.  This finding confirms the statement that 

pedestrians prefer to walk side of the walkway to maintain current speed and to avoid 

collision (Helbing & Molnár, 2001).  It revealed that people who walk either side of the 

corridor have higher speed than those who walk center of the corridor, which supports the 

third research hypothesis and is coherent to findings in literature. 

The last hypothesis for the study was to explore the association among variables, 

and it assumed that travel performance measures would be correlated with walkability.  

There were weak but significant correlations between walkability and efficiency, speed, 

acceleration, and zoning (Table 4.13, Table 4.14).  Therefore, the research hypothesis is 

supported. However, even though most variables have significant association among 

them with weak to moderate correlation of coefficients, just developing a fitted 

(predicted) equation of travel performance (e.g., mean speed) to the data may not be 

appropriate since a weak or moderate correlation of coefficient would be statistically 

significant with samples in excess of 700 (O’Rourke et al., 2005).  To resolve this issue 

and obtain mathematically optimal level of factorial combination (preferable walking 

conditions in reality) for maximum pedestrian walkability, quadratic response surface 

models to the data were developed with statistically insignificant lack of fit  
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4.8 Conclusion and Future Work 

In the study, a framework to quantify pedestrian traffic behavior, and analyze 

physical and cognitive behavior from the real-world observation and field experiment 

was presented.  Data collection methods pertaining to the plan of an empirical study site, 

non-intrusive way of communication with participants between trials, and data coding 

and conversion from video footage to numeric information for further statistical analyses 

were presented.  Walkability survey questionnaire was also developed to quantify 

pedestrian comfort, performance and satisfaction in walking. 

A select number of pedestrian behaviors from the behavioral study were analyzed.  

The focus of the analysis has been on pedestrian speed, zoning and walkability.  The 

overall average speed, zoning distance and walkability score were 1.41 m/s, 0.86 m and 

14.28 points (out of 21 points) respectively.  This study presents unique findings in 

regard to pedestrian behavior.  The quantification of zoning and walkability is an 

important step to understanding the spacing of pedestrians, capacity of facilities, and 

friendliness of environment.  It allows to us see pedestrians’ preference in choosing 

center/side of the corridor and tendency in keeping their own personal distance from 

other pedestrians and obstacles.  It also demonstrates high pedestrian walkability is 

maintained as long as preferred personal distance is secured regardless of pedestrian 

density.  The types of empirical data presented are not readily found in literature.  It is 

important that further behavior studies be conducted to strengthen this body of work. 

Future studies are planned to be conducted in intermodal facilities to gather 

additional information concerning pedestrian traffic in a variety of corridors.  The goal is 

to identify common patterns of behaviors among pedestrians and to distinguish the 

pedestrians’ characteristics that contribute to their behavior in traffic under various 
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conditions.  These studies will provide the data needed to improve the behavioral models 

incorporated within the pedestrian simulator that is undergoing. 

Survey reliability and validity pertaining to walkability assessment has not been 

rigorously investigated.  Though reliability and validity are likely to be both sides of a 

coin, which is somewhat hard to improve simultaneously, more factors in the literature 

that impact pedestrian walkability will be considered putting careful wording, format and 

content to reduce significant subject's own unreliability and invalidity of survey items. 
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CHAPTER V 

ANOHER LOOK AT PEDESTRIAN LEVEL OF SERVICE 

5.1 Abstract 

The assessment of pedestrian facilities is examined through pedestrian level of 

service (LOS) criteria.  Although there are existing LOS metrics used in the 

transportation field today, they do not address all of the factors that we have found to 

impact a pedestrian’s facility usage.  The current Highway Capacity Manual (HCM) 

methodology for assessing pedestrian LOS over-simplifies the pedestrian traffic situation, 

and generalizes conditions with the overall average traffic performances within a certain 

period of time. Pedestrian traffic conditions are not simple enough to determine facility 

service level with the existing HCM methodology.  In this study, adhoc and tailor-made 

metrics are presented for more realistic service level assessments, which may provide 

practical improvement points in facility design with great efficiency and less loss of 

goods.  The proposed methodologies are composed of space revision LOS, delay-based 

LOS, preferred walking speed (PWS)-based LOS, and ‘blocking probability’ with simple 

operational examples from case studies.  Future work pertaining to improving the 

performance of revised LOS is presented. 

Keywords: level of service, spatial behavior, delay, preferred walking speed, 

blocking 
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5.2 Introduction 

Level of Service (LOS) is often used to evaluate the performance of pedestrian 

facilities, determine the need to redesign them and analyze the efficiency of them after 

proposed changes and development in facility design.  Existing pedestrian LOS studies 

are categorized into physical and psychological aspects.  A physical study is focused on 

overall average speed, pedestrian density and flow rate while the psychological study 

mainly deals with environmental factors that have impacts on pedestrian LOS.  Highway 

Capacity Manual (HCM) (TRB, 2000) describes the most commonly used methodology 

for the physical component of LOS assessment criteria.  The previous and current 

versions of the HCM are based on pedestrian behavior research from Fruin (1971), 

Millazo et al. (1999) and Rouphail et al. (2000).  Pedestrian LOS as defined in the HCM 

(Table 5.1) provides a standardized method for pedestrian traffic analysis in the United 

States.  The HCM also provides instruction on data collection needs, methods, and 

analysis.  While the HCM LOS provides a general framework for traffic analysis, it does 

not include many aspects of pedestrian traffic characteristics that impact LOS, such as 

instantaneous speed and some psychological factors.  While this is not necessarily 

incorrect, there are a number of factors involved in pedestrian movement that are not 

considered, thus making it incomplete.   

Many shortfalls of the current HCM LOS methodology exist.  Pedestrian flow 

characteristics could differ as a function of location (e.g., metropolitan area, 

transportation facility, shopping mall, etc.).  Pedestrians are likely to change their 

walking behavior and perceptions based on the heterogeneous environmental 

characteristics surrounding them.  For instance, if a group of people with multiple 

personal items were frequently observed in this location, the average speed and personal 
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spacing could be different from other locations.  The difference in walking characteristics 

between locations requires a different service quality measurement and rating scale for 

each location. 

 Preferred spacing is not addressed.  Pedestrians have their own preferred 

minimum distance from obstacles and other pedestrians.  More specifically, this 

minimum distance is impacted by type of obstruction (outdoor vs. enclosed corridor; 

moving vs. stationary obstruction), as well as pedestrian density. 

Multiple pedestrian flow directions and densities are not accounted for.  It is 

possible that a pedestrian stream varies its physical form due to an opposing predominant 

stream.  Therefore, there is a need to incorporate the impact of multiple flow directions 

on pedestrian flow rate and speed (or delay), so as to encompass the reduction in capacity 

phenomenon comparing balanced flow and unidirectional flow. 

HCM LOS assumes all pedestrians are equal, though personal characteristics 

heavily influence walking behavior.  Pedestrian traffic characteristics could be time and 

space dependent. To include these characteristics, it is necessary to conduct microscopic 

pedestrian traffic measurement based on both temporal and spatial data collection scheme 

(e.g., peak time, non-peak time, time of the day, day of the week, and location).  The 

HCM LOS rating scale was calculated based on a macroscopic view of pedestrian traffic 

with a 15 minute observation timeframe, such as overall travel speed, density, and flow 

rate. 
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Table 5.1 Pedestrian Walkway Level of Service (TRB, 2000) 

LOS 
Space Flow Rate Average Speed v/c* ratio 

(m2/ped) (ft2/ped) (ped/min/m) (ped/min/ft) (m/s) (ft/min)  
A >5.6 >60 <16 <5 >1.3 >255 0.21 
B 3.7-5.6 40-60 16-23 5-7 1.27-1.30 250-255 0.21-0.31 
C 2.2-3.7 24-40 23-33 7-10 1.22-1.27 240-250 0.31-0.44 
D 1.4-2.2 15-24 33-49 10-15 1.14-1.22 225-240 0.44-0.65 
E 0.75-1.4 8-15 49-75 15-23 0.75-1.14 150-225 0.65-1.00 
F <0.75 <8 variable variable <0.75 <150 variable 

Note: v/c* indicates volume to capacity ratio. 

Recent researches on pedestrian LOS report that there are numerous 

environmental or psychological factors that interact with LOS metrics.  There are some 

prevailing LOS methodologies to evaluate a pedestrian facility in this category, such as 

time-space analysis, regression model of pedestrian LOS, conjoint analysis’ and 

categorical analysis.  Benz (1986) suggested a time-space based approach that includes 

pedestrians’ travel agenda or trip purpose.  The amount of time-space available is 

determined by subtracting the time-space required from the total time-space available 

(m2*min) according to a travel agenda.  The resulting value is then divided by the total 

navigation time (ped*min) to obtain a space metric for the pedestrian facility.  The time-

space method is useful in that it takes into consideration a pedestrian’s travel agenda and 

it is easy to implement since it only requires macroscopic traffic performance data and 

employs existing HCM space category metrics.  However, it cannot be used in a 

pedestrian facility with different trip purposes, as the time required for various activities 

may differ.  To perform an analysis, the observation of detailed behavior is necessary 

based on predetermined types of trip purposes.  This method is a type of mesoscopic way 

of analysis.  Most of pedestrian LOS research has mainly focused on traffic performance 

(e.g., speed, density and flow rate), while some studies have been performed in the light 
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of the fact that what pedestrians experienced or how they felt regarding safety and 

comfort of pedestrian facility when navigating.   

Philips et al. (2001) presented a way of evaluating roadside walking condition.  

Participants were used to evaluate the walking condition of their environment as they 

navigated the predetermined segment of the path.  Both safety and comfort factors were 

assessed on a 6-point Likert scale (“A” is the safest and most comfortable).  Investigators 

identified LOS factors while they observed participants.  Based on the factor scores 

(maximum of 6) of participants and LOS factors determined by investigators, they 

developed a regression model for pedestrian LOS.  This method is easy to apply as well, 

but defining LOS factors is not an easy job, as well as there is no indication of what 

constitutes a reasonable number of LOS factors to use as explanatory variables.   

There have been researches to identify psychological factors as described 

previously.  The factors not included in researches were recognized and categorized using 

conjoint analysis based on the relative importance of factors, which is weighted utility, to 

pedestrians (Muraleetharan et al., 2004).  They generated eight attributes with three levels 

across the attributes, and distributed questionnaires to the sampled participants.  The 

weighted utilities were determined for sidewalk and crosswalk settings, which yielded the 

scale ranging from zero to ten (“10” is the most preferred walking condition).  Identifying 

factors with degree of importance that pedestrian felt is useful since this method is based 

on perceived walking experience, which means pedestrian subjects were familiar with the 

area.  However, it may contain participants’ biases when answering each question, and is 

somewhat too much microscopic because this approach is merely based on participants’ 

responses without considering actual traffic performance analysis.   
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Dixon (1996) presented categorical pedestrian LOS analysis that provides the 

evaluation criteria.  She hypothesized that there is a critical mass of variables that present 

in pedestrian facility to attract walkers.  The criteria encompass provision of basic 

facilities, conflicts, amenities, motor vehicle LOS, maintenance, and multimodal 

provision, which constructs the scoring system raging from one to 21.  Dixon’s method is 

a well structured rating system and offers a comprehensive definition of LOS that gives 

LOS grades from A to F with descriptions of what rating criterion (and sub-elements) 

applied.  This method can be better used when including quantitative measures of 

effectiveness because it considers more qualitative factors. 

In this study, microscopic traffic performance measures have been used to 

identify interactions between pedestrians and their environment that encompass a revision 

of pedestrian space, include an instantaneous delay metric, and take into account the ratio 

of preferred walking speed to instantaneous speed.  A macroscopic measure of blocking 

probability is also discussed. 

5.3 Revised LOS Assessment Methodology 

The adjustment of LOS began with identifying factors that potentially affect 

existing HCM LOS criteria under uninterrupted traffic situations.  Three factors have 

been found in the literature: (1) pedestrians’ preferred minimum distance from 

obstruction (TRB, 2000); (2) pedestrian delay (Bloomberg & Burden, 2006); and (3) 

pedestrian queue and blocking (Cruz & Smith, 2007; Cheah & Smith, 1994).  These 

factors were taken into consideration when revising the space LOS in the HCM and 

developing other LOS methodologies that are not in the current HCM LOS criteria.  Also 
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operational examples were provided to show the mechanism of methodology in a simple 

way using empirical data in Strawderman et al., 2010 and Lee et al., 2008. 

5.3.1 Spatial Reduction in Walkway Capacity 

One of the most important measures of effectiveness for the pedestrian facility is 

space.  It has been noted that walkway density impacts flow rate and speed when the 

density exceeds a certain threshold (Fruin, 1971; TRB, 2000).  Even an individual’s 

preferred minimum distance from obstruction in a certain location may impact his/her use 

of space (Bloomingburg & Burden, 2006).  People who have a longer preferred minimum 

distance from obstruction would tend to use a pedestrian facility ineffectively in order to 

ensure their preferred distance (see section 4.6.2.).  Moreover, when pedestrians are faced 

with the counter-flow of other pedestrians, the observed walkability, zoning (section 

4.6.2) and speed (Bloomingburg & Burden, 2006) are affected.  These phenomena are 

due to that fact that there are impacts of opposing volume friction force (Bloomingburg & 

Burden, 2006) that decreases speed and increases preferred minimum distance from 

obstruction (Matsushita & Okazaki) in terms of spatial economy.  In this case, the LOS 

grade determined using traditional measures would be higher than the one actually 

experienced or observed since the HCM LOS criteria give overall grades without 

considering personal psychological distance (e.g., preferred minimum distance from 

obstructions).  Also, there is reason to believe the phenomena may cause similar 

reductions in walkway capacity in pedestrians’ mind (Bloomingburg & Burden, 2006). 

When pedestrians walk in a corridor with their own preferred minimum distance 

from obstruction, they are likely to keep the distance from the wall as well.  Based on 

observation, this distance (around 0.8 m, Lee et al., 2008 and section 4.6.2) has never 
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been used from the beginning till the end of their navigation.  This may be a safe and 

comfort use of walkway, but not efficient or economical.  The HCM LOS provides rating 

criteria regardless of this psychological issue, so it is proposed a virtual reduction in 

corridor width to apply the HCM LOS while accounting for the phenomena described 

previously and calculating the actually observed LOS assuming that this distance reflects 

pedestrians’ propensity to maintain minimum distance from obstructions.  In other words, 

a reduction in corridor width could be practical while determining corridor capacity and 

pedestrian density since pedestrians who keep their distance from obstruction could feel 

the corridor width narrower than the actual dimension. 

This approach is applicable if the average minimum distance is greater than the 

personal comfort zone (0.54 m in radius) proposed by Fruin (1971) because it was used to 

construct a pedestrian body ellipse for designing purpose in the HCM.  If the average 

minimum distance is less than the personal comfort zone, the effect of personal zoning is 

relatively negligible and the corridor simply has higher pedestrian density.  Therefore, 

space adjustment is not necessary. If, however, the average minimum distance is greater 

than the personal comfort zone, the observed LOS grade could be lower than the grade 

calculated using the HCM LOS method due to exclusion of average minimum distance 

from obstruction.  Some equations are used to determine the average instantaneous 

minimum distance from obstruction.  Let , ' ( )i id t , , ( )i walld t  and { }, ' ,min ( ), ( )i i i wallt
d t d t  be the 

distance from other pedestrians in the frame, distance from wall in the frame, and 

minimum distance from obstruction and wall in the frame respectively.  The equations 

applied are: 
 

2 2
, ' ' '( ) ( ) ( ) , , '  in each frame t ( '); pedIDi i i i i id t x x y y i i i i i= − + − ∀ ≠ =      (5.1) 
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2 2
, ( ) ( ) ( )i wall i wall i walld t x x y y= − + −                                                             (5.2) 

 

Then, average minimum distance from obstruction (AMD) can be obtained using 

the following equation: 
 

{ }, ' ,
1

1 min ( ), ( ) ,  total number of frames.
T

i i i walltt
AMD d t d t T

T =

= =∑                    (5.3) 

 

The detailed adjustment procedure for the walkway capacity is given by: 

1) Calculate AMD 

2) If the determined AMD is less than the personal comfort zone (PCZ), stop and 

apply HCM LOS; otherwise go to step 3). 

3) Reduce walkway width by the difference by the difference between observed 

AMD and PCZ. 

4) Recalculate the capacity (area) of walkway with the modified walkway width. 

5) Calculate rate of change, which is given by [1 + |change in capacity / original 

capacity|]. 

6) Rescale LOS space category multiplying the rate of change in step 5) by the 

existing space category in HCM LOS. 

5.3.1.1 Operational Example 

The dimension of the selected site was 3 m (10 ft) * 24 m (79 ft) with an area of 

72 m2 (794 ft2).  The observed AMD from obstruction was 0.85 m.  The adjustment 

procedure follows: 

1) AMD = 0.85 m 

2) AMD > PCZ; adjustment required, continued to step 3 
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3) Adjusted width = Walkway width  – (AMD – PCZ) = 3 – (0.85 – 0.54) = 2.69 

m 

4) Modified walkway area = 2.69 m * 24 m =64.6 m2  

5) Rate of change = [1 + {(72 – 64.6) / 72}] = 1.1 

6) For instance, level A was rescaled by multiplying 5.6 by rate of change (1.1), 

providing a new value of 6.16.   

The example dealt with the case that the average minimum distance is greater 

than the personal comfort zone.  In this situation, pedestrians required more space than is 

needed for limited comfortable circulation, which means they consumed more space than 

usual (i.e., inefficient uneconomical use of walkway).  That is to say, the actually 

observed LOS grade could be lower than the grade calculated using the HCM method due 

to exclusion of average minimum distance from obstruction.  Therefore, additional space 

(e.g., body ellipse and additional space) should be taken into account for the practical 

facility service level assessment.  The modified LOS table for pedestrian space is 

displayed in Table 5.2: 

Table 5.2 Modified LOS Rating Scale for Space 

LOS in space Before (in HCM) After (proposed) 
 (m2/ped) (m2/ped) 

A ≥5.6 ≥(5.6 * 1.1)=6.1 
B 3.7-5.6 4.1-6.1 
C 2.2-3.7 2.4-4.1 
D 1.4-2.2 1.5-2.4 
E 0.75-1.4 0.8-1.5 
F ≤0.75 ≤0.8 
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5.3.2 Personal Spacing Propensity: Revised Body Ellipse with Buffer 

As stated previously, pedestrians tend to keep away from walls, walkway 

furniture, other pedestrians, and other obstructions. This characteristic requires analysts 

to discount the unused space for determining actual facility service level.  In this section, 

another way of the body ellipse representation is presented to adjust the space category in 

the HCM pedestrian LOS criterion for walkway as well.  In the HCM, there is a 

recommendation of determining effective walkway width.  The effective walkway width 

is defined as the portion of walkway that can be used effectively by pedestrians so that 

they can keep away from walkway obstructions and maintain the minimum distance from 

other pedestrians, that is, the difference between total walkway width and the minimum 

distance from obstruction (TRB, 2000).  Since it has not been considered in pedestrian 

walkway LOS in the HCM, the study proposes a method that incorporates this matter 

while revising pedestrian body ellipse for space requirement and applying it to the lowest 

level of space LOS grade. 

The first step of revising body ellipse is trimming off any distances from 

obstructions that are less than 0.2 m (0.06 ft) because, based on observations from the 

empirical study (Strawderman et al., 2010), these distances can be interpreted as the 

moment each pedestrian entered a room or elevator, sat on a bench, left/entered the 

region of interest, or walked in a group shoulder to shoulder (unavoidable distance from 

obstructions) unless they conflicted with other pedestrians.  These data were canceled 

while analyzing personal spacing characteristics in a reliable way since these were neither 

normal nor homogeneous travelling behavior in terms of general individual’s spacing 

tendency.  The next step is determining the descriptive statistics with respect to the 

percentile minimum distance from obstructions so that the lowest level of individual 
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space (i.e., level E) could be defined by the square of the revised buffer length (two times 

of lowest percentile AMD) from obstructions.  Each interval between two consecutive 

16.7th percentiles was equally spaced as proposed in pedestrian LOS literature (Sisiopiku 

et al., 2007; Muraleetharan et al., 2004; Landis et al., 2000; Khisty, 1994) and this 

approach is applied to the rest of LOS methods in the study as well.  The adjusted 

intervals of personal spacing in terms of percentile minimum distance from obstructions 

are shown in Table 5.3: 

Table 5.3 Space LOS based on Revised Body Ellipse 

Percentile Percentile AMD Buffer length Space 
 (m) 2*AMD (m) (m2) 

≥83.5 ≥1.14 ≥2.28 ≥5.20 
66.7-83.5 0.93-1.14 1.86-2.28 3.45-5.20 
50.0-66.7 0.85-0.93 1.70-1.86 2.89-3.45 
33.4-50.0 0.70-0.85 1.40-1.70 1.96-2.89 
16.7-33.4 0.48-0.70 0.96-1.40 0.92-1.96 

≤16.7 ≤0.48 ≤0.96 ≤0.92 
Note: Buffer length and revised space are determined using the percentile AMD and 
buffer length respectively. 

The revised body ellipse with buffer in lowest percentile in this study was 0.96 m, 

and the bottom line of individual space is 0.92 m2 as delineated in Table 5.3 and Figure 

5.1. 
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Figure 5.1 Body Ellipse with Buffer 

The minimum pedestrian body ellipse area for a standing pedestrian in HCM is 

0.3 m2 (0.5 m * 0.6 m), and the recommended individual area is 0.75 m2 for facility 

evaluation and design purposes.  This recommended area works as the lowest level LOS 

in the space category.  The reason why they set 0.75 m2 as the bottom line of LOS was 

that the pedestrian flow showed its peak in volume at the instant of 0.5 m2 pedestrian 

space, and they adjusted the value for design purpose.  In a similar fashion, it is suggested 

to replace the lowest value in HCM LOS with the revised lowest value in space column 

in Table 5.3 setting it as the lowest level.  This substitution yields 1.2 (= 0.92 m2 / 0.75 

m2) rate of change.  The last step is adjusting LOS rating scale for space based on the 

newly determined pedestrian space while applying a rate of change to each HCM LOS 

grade.  The revised LOS table for pedestrian space is displayed in Table 5.4. 

Table 5.4 Revised LOS for Pedestrian Space 

LOS in space Before (in HCM) After (proposed) 
 (m2/ped) (m2/ped) 

A ≥5.6 ≥ (5.6 * 1.2) = 6.72 
B 3.7-5.6 4.44-6.72 
C 2.2-3.7 2.64-4.44 
D 1.4-2.2 1.68-2.64 
E 0.75-1.4 0.92-1.68 
F ≤0.75 ≤(0.75*1.2) = 0.92 
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5.3.3 Delay based LOS 

Pedestrians usually navigate in walkways that facilitate various amenities (e.g., 

bench, water fountain, elevator, door, direction indicator, etc.).  People are frequently 

impeded when they encounter other pedestrians who are utilizing these amenities or may 

even be impeded by the amenity itself.  Additionally, pedestrians are often impeded by 

opposing pedestrians as stated previously.  This leads pedestrians to experience delay 

while heading toward their destinations even though they can walk at their free speeds if 

they do not experience impedance.  Therefore, there is a need to include a delay factor 

when measuring the service level of pedestrian walkway.  Pedestrian delay is defined as 

the time difference between walking with the average unimpeded speed and average 

speed (Bloomingburg & Burden, 2006).  To calculate the average instantaneous delay, 

the following equations can be utilized (see chapter 4 for more information about footage 

processing for data collection and computational procedure for obtaining traffic 

performance measures.): 
 

2 2
, , 1 , , 1

1
Travel distance : ( ) ( ) ( ) , pedID

T

i i t i t i t i t
t

d t x x y y i− −
=

= − + − =∑         (5.4) 

 

1
Average instantaneous speed: ( ) ( ) (number of frames/sec)

T

i i
t

s t d t
=

= ⋅∑
                         

 (5.5) 

 

,max

( ) ( )Individual's instantaneous delay : ( )
( ) ( )

i i
i

i i

d t d tD t
s t s t

= −                                                    (5.6) 

 
( )

1

,max

( )
Average instantaneous delay : ( )

( )
where : ( ) average unimpede speed,                

              
( ) the number of pedestrian up to frame 

N t

i
i

i

D t
D t

N t
s t
N t t

==

=
=

∑
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Once the average instantaneous delay (AID) is calculated, the loss in distance 

(LD) due to delay can be calculated as follows: 
 

max
( ) ( )

,max
1 1

max

LD ( ) ( ) ( ) ( )

( ) ( )
       where: ( )   and  ( )

( ) ( )

N t N t

i i
i i

s t D t s t D t

s t s t
s t s t

N t N t
= =

= −

= =
∑ ∑                                (5.8) 

 

The next step is to divide the length of walkway into six segments so as to assign 

loss in distance to appropriate unique intervals, which are defined as: level A (<16.7%); 

level B (16.7%-33.4%); level C (33.4%-50%); level D (50%-66.7%)); level E (66.7%-

83.5%); level F (>83.5%).  The procedure for the delay-oriented LOS is as follows: 

1) Calculate the instantaneous distance for each pedestrian using equation (5.4) 

2) Calculate the average instantaneous speed and maximum speed for each 

pedestrian using equation (5.5) 

3) Calculate the instantaneous delay for each pedestrian using equation (5.6) 

4) Determine the average instantaneous delay (AID) measure using equation 

(5.7) 

5) Calculate the loss in forward distance (LD) due to AID; domain change from 

time to space (distance) 

6) Split the length of walkway into six evenly that can be appropriately mapped 

to each grade A to F. 

7) Determine on which range the calculated LD falls 

5.3.3.1 Operational Example 

The same site was considered to compute delay based LOS as discussed in the 

previous operational example for the revise space LOS.  The obtained AID was 7 sec / 
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ped, average instantaneous unimpeded speed was 2.5 m/s, and average instantaneous 

speed was 1.3 m/s.  The obtained loss in distance is given by: LD = (2.5 – 1.3) m/s * 7 

sec / ped = 8.4 meters.   

Table 5.5 Delay based LOS 

Delay LOS % LD (100%) Range of LD (out of 24 m) 
A ≤16.7 ≤4 
B 16.7-33.4 4-8 
C 33.4-50.0 8-12 
D 50.0-66.7 12-16 
E 66.7-83.5 16-20 
F ≥83.5 ≥20 

Note: LOS level was divided into six equal sub-intervals as proposed in pedestrian LOS 
literature (Sisiopiku et al., 2007; Muraleetharan et al., 2004; Landis et al., 2000; Khisty, 
1994). 

5.3.4 Ratio of Average Speed to Preferred Walking Speed 

Preferred walking speed (PWS) is defined as the optimum speed that minimizes 

the gross energy cost per distance in the psychology research area (Clark-Carter et al., 

1986).  PWS can be measured by dividing distance walked by the time required, provided 

there are no obstructions.  In this section, data pertaining to any stationary movement or 

lingering behavior was excluded since PWS may not exist or be infinitesimal regarding 

these behaviors in reality.  According to observations in the study, movements with 

speeds of approximately 0.5 m/s or less were regarded as stationary or lingering 

movements.  This can be validated by assuming (based on the observation results in 

Chapter 4; Daamen & Hoogendoorn, 2006; Teknomo, 2006) that the mean speed is 1.4 

m/s with a standard deviation of 0.3 m/s (1.4 m/s – 3*0.3 m/s = 0.5m/s).  The left picture 

in Figure 5.2 illustrates the trimmed speed distribution with a mean of 1.34 m/s and a 

standard deviation of 0.9 m/s.  The next step is to extract unimpeded (preferred) speed 
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from the trimmed distribution.  This has been done by removing impeded speed out of the 

trimmed distribution and generating a new distribution as shown in the right picture in 

Figure 5.2.  The average unimpeded speed is 1.42 m/s with a standard deviation of 0.97 

m/s. 

 

 

Figure 5.2 Trimmed and Unimpeded Speed Distributions 

Table 5.6 shows each percentile speed for normal (trimmed) and unimpeded 

situations.  Since there was difference between them with respect to the number of data 

and speeds in each range, they have different average speeds as well though they have the 

same values in each range. 

Table 5.6 Percentile Trimmed and Unimpeded Speed 

Percentile Normal speed (m/s) Unimpeded speed (m/s) 
≥83.5 ≥2.12 ≥2.12 

66.7-83.5 1.42-2.12 1.42-2.12 
50.0-66.7 1.01-1.42 1.01-1.42 
33.4-50.0 0.81-1.01 0.81-1.01 
16.7-33.4 0.61-0.81 0.61-0.81 

≤16.7 ≤0.61 ≤0.61 
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5.3.4.1 Operational Example 

As indicated earlier in this section, each speed distribution has been truncated 

with the lower bound of 0.5 m/s.  To construct the rating scale with the lower (0.5 m/s) 

and upper (1.42 m/s, average unimpeded speed) bounds, the interval between them was 

uniformly divided into six sub-intervals pertaining to each level of average to PWS ratio 

as shown in Table 5.7. 

Table 5.7 Average PWS Ratio based LOS 

LOS Average to PWS ratio Speed range (m/s) 
A ≥0.88 ≥1.26 
B 0.77-0.88 1.10-1.26 
C 0.67-0.77 0.96-1.10 
D 0.56-0.67 0.80-0.96 
E 0.45-0.56 0.65-0.80 
F ≤0.45 ≤0.65 

Note: LOS level was divided into six equal sub-intervals as proposed in pedestrian LOS 
literature (Sisiopiku et al., 2007; Muraleetharan et al., 2004; Landis et al., 2000; Khisty, 
1994). 

The determined ratio of average to PWS in this study was 0.94 (1.34/1.42) since 

average speed, including both impeded and unimpeded speeds, was 1.34 m/s, and average 

unimpeded speed (PWS) was 1.42 m/s. This resulted in service level A while HCM LOS 

indicates level E with average speed of 0.99 m/s. 

5.3.5 Blocking Probability 

When analyzing emergent evacuation pedestrian flow or highly congested 

situation, it is crucial to obtain a specific measure that describes how much pedestrian 

flow is blocked.  This measure can be thought of as a performance of facility, and the 

blocking phenomenon can also be adequately examined by queueing theory.  To obtain a 

blocking probability for the pedestrian facility, it is necessary to choose an appropriate 
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model beforehand, e.g., M/G/c/c queueing system.  In this study, it was assumed that 

each pedestrian arrival epoch follows Poisson process with an arrival rate of λ, and the 

service time (S) of each server (i.e., pedestrian area) has a general distribution, G, with an 

average service time of E[S] = 1/μ.  The number of server is c, and they are identical and 

independent of each other.  The facility capacity (i.e., maximum allowable numbers of 

pedestrian including the ones being served) was also assumed to be finite, c, and the 

system satisfies steady-state condition (λ < c μ).  The service policy of this system is 

based on first-come-first-served (FCFS).  The detailed derivation of system size 

distribution can be found in Lee and Strawderman (2009). 

The system of interest (M/G/c/c) has its structure of exponential interarrival (M), 

general service time (G), c servers, and finite facility capacity of c.  When a new arriving 

pedestrian (with a rate of λ) sees all c servers are busy (cμ), then the pedestrian’s arrival 

is blocked since the facility has finite capacity as illustrated in Figure 5.3. 

 

 

Figure 5.3 State Transition Diagram for M/G/c/c Queueing System 

The facility capacity can be calculated by multiplying width (W) and length (L) of 

facility and dividing them by the area of pedestrian body dimension (A).  The detailed 

pedestrian body dimension (0.5 m * 0.6 m) is discussed in the Highway Capacity Manual 

(TRB, 2000).  So, the facility capacity (c) is calculated using equation (5.9) (Cruz & 

Smith, 2007; Cheah & Smith, 1994; Tregenza, 1976): 
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W Lc
A
⋅ =                                                                                                       

 (5.9) 

 

Then the blocking probability (probability of c pedestrians in the system) of the 

finite M/G/c/c queue is (Lee & Strawderman, 2009): 
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(5.10) 

 

Since a probability is defined between zero and one, the blocking probability-

based LOS can be constructed by uniformly dividing a total probability into six sub-

intervals (Sisiopiku et al., 2007; Muraleetharan et al., 2004; Landis et al., 2000; Khisty, 

1994) correlated with each blocking probability level.  For instance, each blocking 

probability lies: (a) less than 0.17 is level A; (b) 0.17-0.33 is level B; (c) 0.33-0.50 is 

level C; (d) 0.50-0.67 is level D; (e) 0.67-0.83 is level E; and (f) greater than 0.83 is level 

F. 

5.3.5.1 Operational Example 

The dimension of the selected site was 3 m (10 ft) * 22 m (72 ft) with an area of 

66 m2 (720 ft2).  Pedestrian interarrival time followed an exponential distribution with a 

mean of 14.4627 (sec/ped), and this has been identified by the Kolmogorov-Smirnov test 

(KS=0.163, p=0.553).  The pedestrian arrival rate (λ) was a reciprocal of mean 

interarrival time, that is, 0.0691 (ped/sec).  The service time was log-normally distributed 

with a minimum value of 1.  The mean of the included normal (μN) was 1.93, and the 
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standard deviation of the included normal (σN) was 1.19 (KS=0.162, p=0.127).  The 

M/G/c/c queueing system was applicable to analyze blocking phenomenon since the 

interarrival time is exponentially distributed.  Based on the parameters obtained 

previously, the average, variance and second moment of service time were calculated as 

follows: 
 

2 2 2/2 2 2[ ] 13.99; [ ] ( 1) 610.49;  and [ ] 806.09N N N N NE S e Var S e e E Sµ σ µ σ σ+ += = = − = =    (5.11) 
 

The service rate (μ), which is reciprocal of mean service time, was 0.072 

(ped/sec).  Therefore, traffic intensity (ρ) was 0.0044.  P0, R and ν were calculated as 

shown in equation (5.12). 
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The blocking probability (Pc) can be obtained plugging all necessary values (see 

equations (5.11) and (5.12)) into equation (5.10), and it was approximately zero (i.e., the 

chance of pedestrian blocking was scarce) for this pedestrian facility.  So, the blocking 

probability-based LOS was level A. 

5.4 Implementation and Results 

Based on the proposed LOS methodologies in the previous section, four types of 

LOS metrics were applied to evaluate the facility performance with the sidewalk data set.  

The site chosen for implementation was academic sidewalk on the campus of Mississippi 

State University.  The video footage was taken from a camera that is facilitated on top of 

the building about 10 m (33 ft) above the ground.  The dimension of selected site was 3 
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m (10 ft) * 11 m (36 ft) with an area of 33 m2 (357 ft2) as illustrated in Figure 5.4.  The 

footage displayed eight and half minutes of behavior containing 200 pedestrians. 

 

 

Figure 5.4 Screenshot of the Selected Sidewalk 

5.4.1 Space Revision LOS 

Two types of adjustment (i.e., reduction in walkway width and revision of 

personal space) have been proposed in the study.  Unlike operational examples in 

previous section, this walkway had a particular form of setting without wall (limit of 

sidewalk width).  Pedestrians sometimes walked along the extreme edge or over the 

walkway width when they were even faced with collision to maintain current speed, 

which means the first method might not be applicable for this sidewalk situation while 

the second method was still valid to apply.  Based on descriptive statistics with respect to 

percentile minimum distance from obstruction, the obtained lowest level of individual 

space and rate of change were 1.29 (m2) and 1.72 (= 1.29 m2/0.75 m2) respectively.  

Following is the revised LOS rating scale for an individual space that the rate of change 

has been taken into consideration. 
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Table 5.8 Space Revised LOS 

Space revised LOS Before (in HCM) After (proposed) 
 (m2/ped) (m2/ped) 

A ≥5.6 ≥ (5.6 * 1.72) =9.63 
B 3.7-5.6 6.36-9.63 
C 2.2-3.7 3.78-6.36 
D 1.4-2.2 2.41-3.78 
E 0.75-1.4 1.29-2.41 
F ≤0.75 ≤1.29 

 

An observed individual space in the study was 5.69 m2 categorized into an LOS 

grade C while the other grade based on HCM LOS criteria was A. 

5.4.2 Delay based LOS 

To implement delay based LOS, it was necessary to obtain the average 

instantaneous delay (AID), average unimpeded and instantaneous speeds, and loss in 

distance (LD).  As described previously (section 5.3.4), 200 pedestrians were observed 

within a selected sidewalk that was 11 meter long.  The average length of pedestrian 

trajectory was 11.2 meters since their trajectories were not linear.  AID (=3.95 sec/ped) 

was obtained using equations (5.4) through (5.7), and the determined average 

instantaneous and unimpeded speeds were 1.36 m/sec and 1.63 m/sec respectively.  Then, 

LD = (1.63-1.36)*3.95 = 1.07 m, which yields 10 % (1.07 m /11 m *100 %) of loss in 

distance out of the entire length of walkway.  Therefore, the delay based LOS of this 

study turned out to be level A as shown in Table 5.9. 
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Table 5.9 Delay based LOS Result 

Delay LOS % LD (100%) Range of LD (out of 11 m) 
A ≤16.7 ≤1.84 
B 16.7-33.4 1.84-3.67 
C 33.4-50.0 3.67-5.50 
D 50.0-66.7 5.50-7.34 
E 66.7-83.5 7.34-9.19 
F ≥83.5 ≥9.19 

 

5.4.3 Preferred Walking Speed (PWS) based LOS 

Sidewalk speed data was split into two parts to apply preferred walking speed 

based LOS as described in the following table.  For the sidewalk application, there was 

no need to truncate speed distribution because it did not contain any stationary or 

meandering movement in the footage.  The observed average instantaneous and 

unimpeded speeds were 1.34 m/s and 1.62 m/s that determined ratio of average to PWS 

in sidewalk study as 0.82 (1.34/1.62). 

Table 5.10 Percentile Normal and Unimpeded Speed 

Percentile  Normal speed (m/s) Unimpeded speed (m/s) 
≥83.5 ≥ 1.80 ≥ 1.99 

66.7-83.5 1.49-1.80 1.71-1.99 
50.0-66.7 1.31-1.49 1.50-1.71 
33.4-50.0 1.15-1.31 1.31-1.50 
16.7-33.4 0.86-1.15 1.15-1.31 

≤16.7 ≤ 0.86 ≤1.15 
 

To construct the rating scale with upper bound (1.62 m/s, average unimpeded 

speed), speed was uniformly divided into six sub-intervals as described in the previous 

section, and the PWS based LOS table was generated in Table 5.11 resulting in level B of 

PWS based LOS. 



 

180 

Table 5.11 Average to PWS Ratio based LOS 

PWS-based LOS Average to PWS ratio Speed range (m/s) 
A ≥0.84 ≥1.35 
B 0.67-0.84 1.08-1.35 
C 0.50-0.67 0.81-1.08 
D 0.33-0.50 0.54-0.81 
E 0.17-0.33 0.27-0.54 
F ≤0.17 ≤0.27 

5.4.4 Blocking Probability 

The first step that needs to be taken was to record each pedestrian’s arrival time 

and time in system (i.e., travel time) in order to obtain the information about the 

interarrival time distribution and service time distribution.  Goodness-of-fit test showed 

the interarrival time was exponentially distributed with a mean of 2.56 (sec/ped) 

(KS=0.095, p=0.068), which means there is no significant difference between distribution 

of raw data and fitted distribution, and the arrival rate (λ) was 0.39 (i.e., 1/2.56 ped/sec).  

The same test was also conducted to identify the type of service time distribution.  

Service time (S) followed a normal distribution with a mean of 8.3 and a standard 

deviation of 1.12 (KS=0.074, p=0.15).  The service rate (μ) was 0.12 (1/8.3 ped/sec).  

Following key measures can be obtained using expressions previously described in this 

section: 
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Parameters listed in equation (5.14) were used to calculate the blocking 

probability (Pc): 
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Then, the blocking probability (Pc) for pedestrian walkway in this study was 

calculated putting equations (5.13) and (5.14) into equation(5.10), and it was 

approximately zero, which means pedestrian blocking was unlikely to happen indicating 

a level A LOS. 

5.5 Discussion and Conclusion 

Pedestrian LOS defined in HCM can be thought of as a microscopic view of 

analysis while this study is based on macroscopic way.  Both approaches have inherited 

advantage and disadvantage altogether.  HCM methodology is easy to apply, and it is 

good for initial pedestrian facility service level assessment since all ingredients needed to 

analyze are overall average speed and the number of pedestrian in the region of interest 

given a certain amount of time (usually 15 minutes).  However, as pedestrian traffic 

becomes complicated, it is not enough to analyze its level of service only with space, 

speed and flow rate metrics because they do not explain the impact of numerous 

interactions due to various environment.  This study is an extension of existing HCM 

LOS that provides a revision of space as well as another use of speed metric based upon 

microscopic view of analysis to incorporate instantaneous interaction with environment.  
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This method is useful to obtain the detailed aspects after conducting initial rough analysis 

based on the HCM methodology. 

The first aspect considered was individual space.  HCM LOS has a standard type 

of body ellipse (0.5 m *0.6 m) with extended ellipse (0.75 m2) for general design 

purpose.  The determined pedestrian space was 5.69 (m2/ped) that belongs to level A 

when HCM space rating scale was applied while this study showed level C.  The reason 

that those methods indicate dissimilar results was that there was a difference in defining 

body ellipse.  HCM uses the same body ellipse for every situation, but this study applied 

situation specific ellipse based on individual average minimum distance from 

environment (obstacles, other pedestrians, amenities, etc.) with buffer.  One of the 

drawbacks of HCM methodology is it lacks individual spacing propensity that can be 

improved by using buffer area.  Buffer is generally used to describe the minimum 

distance from obstruction along the entire pedestrian trajectory within each frame.  

Encompassing a buffer area with body ellipse is crucial because walking speed and 

density can be impacted as it changes.  Pedestrians who have greater body ellipse than 

HCM’s can be regarded as they endeavor to keep their distance from obstruction while 

changing their direction or even speed, which affects pedestrian density within region of 

interest.   The utility of this approach can be better understood when aligning delay-based 

LOS discussed below. 

The delay-based LOS was useful for evaluating service level of a walkway that 

facilitates relatively many resource points for pedestrians.  Delay may occur when people 

decelerate or stop to acquire something they need if the facility contains resource points. 

This is a natural and direct cause of delay, and it can be investigated simply observing 

walking speed and acceleration.  Another phenomenon to consider is indirect delay.  It 
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has been frequently observed in this study that pedestrians keep their preferred speed 

(average or higher) though pedestrian density increases, which means they actively 

change their trajectories (non-linear fashion) to maintain preferred distance (minimum 

distance as described earlier) from obstruction keeping current speed.  In this situation, 

they appear longer in the footage than others who take linear trajectory while changing 

speed (mostly decelerating).  It can be regarded that they walk relatively longer distance 

to complete their navigational tasks since they change trajectory frequently to avoid 

collision while maintaining current speed.  This phenomenon causes increase in travel 

distance, which results in delay and loss in distance.  The obtained delay-based LOS is 

level C, and it shows the same result as space revised LOS. 

As a subsidiary analysis of speed characteristic, PWS-based LOS has been 

developed.  The calculated HCM LOS in speed is level A while PWS-based LOS is level 

B indicating that pedestrians experienced delay probably due to spacing propensity and 

loss in distance.  The difference between HCM LOS grade and PWS-based LOS grade 

shows analyzing facility service level with only an overall speed metric is not enough.  

The advantage of using PWS is that PWS can be applied to measure walking efficiency 

because LOS in speed is indirectly impacted by pedestrians’ navigational performance.  

PWS is versatile to incorporate continuously changing environment (instantaneous and 

unimpeded speeds) into PWS ratio.  An additional aspect to notice is there might be a 

situation that average speed is greater than PWS obtained if a number of pedestrians are 

in hurry and walk hastily utilizing restricted space efficiently though they are faced with 

obstructions.  The study does not comprise this situation for a certain reason.  It usually 

happens when there are a couple of dissimilar trip purposes in the sidewalk that is 

composed of distinctive pedestrians, e.g., commuters and tourists. 
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Analytic queueing systems constitute a flexible tool for investigating pedestrian 

traffic flow.  Queueing models are simple to manipulate and give credible performance 

measures such as average waiting time, throughput, blocking probability, etc.  

Understanding blocking mechanism is crucial when analyzing facility performance under 

congested or emergent situation, since pedestrian facilities are usually limited in capacity.  

This article examined blocking phenomenon, which has not been discussed in literatures 

or the Highway Capacity Manual (TRB, 2000) in authors’ knowledge.  Queueing theory 

may provide a fundamental foundation of microscopic-to-macroscopic analysis.  Even 

though two case studies in this paper showed approximately zero blocking probabilities 

(level A), there existed nonzero blocking probabilities in specific area for certain periods 

of time.  This may require decomposing system into a set of finite queues, and 

reconstructing system to a network structure with microscopic traffic factors so as to 

obtain a steady state probability through more realistic simulation if necessary. 

There are some potential future works pertaining to improving the performance of 

LOS measurement.  As a simple application of LOS, this study presented various 

methodologies for walkway service level. It is necessary to develop pertinent service 

level assessment tools that can be applicable to sidewalks and transportation facilities 

comprising diverse forms of trip purposes.  It is expected to apply different metrics at a 

time when assessing service level of a multimodal transportation facility, since it usually 

shows dissimilar facets of traffic characteristics depending on locations in the facility 

One of the most effective ways to analyze group dynamics is to study the inter-

relationship between pedestrian flows. Since HCM methodology does not include the 

effect of a predominant flow against a reverse non-dominant, it is worth investigating it 
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determining frictional force based LOS rating scale not to speak of encompassing 

microscopic view of data. 

Ramifications of bodily dimension would be another future work.  HCM proposed 

average overall body ellipse with an area of 0.3 m2 for individual and extended one of 

0.75 m2 for design evaluation.  It seems to be over-generalized. There is a need to 

provide a classification of bodily dimension in regard to age and gender based on bodily 

dimension statistical encyclopedia.  Finally, an equation that incorporates the HCM LOS 

and the proposed LOS methodologies in the study will be developed to predict pedestrian 

walkability (section 4.5) as a measure of pedestrians’ perceived LOS. 
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