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Covariant density functional theory (CDFT) is a modern theoretical tool for the de-

scription of nuclear structure phenomena. Different physical observables of the ground

and excited states in even-even nuclei have been studied within the CDFT framework em-

ploying three major classes of the state-of-the-art covariant energy density functionals.

The global assessment of the accuracy of the description of the ground state properties and

systematic theoretical uncertainties of atomic nuclei have been investigated. Large-scale

axial relativistic Hartree-Bogoliubov (RHB) calculations are performed for all Z ≤ 106

even-even nuclei between the two-proton and two-neutron drip lines. The sources of the-

oretical uncertainties in the prediction of the two-neutron drip line are analyzed in the

framework of CDFT. We concentrate on single-particle and pairing properties as poten-

tial sources of these uncertainties. The major source of these uncertainties can be traced

back to the differences in the underlying single-particle structure of the various CEDFs.

A systematic search for axial octupole deformation in the actinides and superheavy nuclei



with proton numbers Z = 88− 126 and neutron numbers from two-proton drip line up to

N = 210 has been performed in CDFT. The nuclei in the Z ∼ 96, N ∼ 196 region of oc-

tupole deformation have been investigated in detail and their systematic uncertainties have

been quantified. The structure of superheavy nuclei has been reanalyzed with inclusion

of quadrupole deformation. Theoretical uncertainties in the predictions of inner fission

barrier heights in superheavy elements have been investigated in a systematic way. The

correlations between global description of the ground state properties and nuclear matter

properties have been studied. It was concluded that the strict enforcement of the constraints

on the nuclear matter properties (NMP) defined in Ref. [1] will not necessary lead to the

functionals with good description of ground state properties. The different aspects of the

existence and stability of hyperheavy nuclei have been investigated. For the first time, we

demonstrate the existence of three regions of spherical hyperheavy nuclei centered around

(Z ∼ 138, N ∼ 230), (Z ∼ 156, N ∼ 310) and (Z ∼ 174, N ∼ 410) which are expected

to be reasonably stable against spontaneous fission.

Key words: covariant density functional theory, drip lines, triaxiality, octupole deforma-
tion, superheavy elements, hyperheavy elements, fission barriers, theoretical uncertainties
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CHAPTER I

INTRODUCTION

Atomic nuclei are self-bound systems with translational invariance. Their constituents

(protons and neutrons) have spin and isospin degrees of freedom which play an important

role in the nucleon-nucleon interaction. At present, the physics of unstable nuclei is at the

forefront of low energy nuclei physics research. Significant experimental and theoretical

efforts are focused on this direction.

There are a lot of theoretical approaches for solving the nuclear many- body prob-

lem such as the ab-initio no-core shell model [14] for very light nuclei, the shell model

approach [15] for light to medium mass nuclei and many others. All these models have

limitations with respect to the region of the nuclear chart where they can be deployed. The

density functional theory is the only theoretical framework which at present can be applied

to the entire nuclear chart.

Density functional theories (DFT) are built on a series of theorems by Kohn and Sham [16,

17]. Using these theories the properties of many-body systems can be determined by solv-

ing a system of equations characteristic of independent particle system. It has been ap-

plied with great success for many years in Coulombic systems [16, 17], where they are,

in principle, exact and where the functional can be derived without any phenomenologi-

1



cal adjustments directly from the Coulomb interaction. This approach was later extended

to nuclear physics [18]. Nuclear DFT is a reformulation of the traditional self-consistent

mean-field theory of nuclear structure. Although the exact form of the energy density func-

tional for nuclear systems is not known, phenomenological energy functionals have been

built by fitting the parameters to experimental data, and they have been very successful in

the reproduction of the properties of finite nuclei.

Among the nuclear DFTs, the relativistic variant of DFT namely, covariant density

functional theory (CDFT) is one of the most attractive. This is because it exploits the

properties of quantum chromodynamics (QCD) at low energies, such as symmetries and

the separation of scales [19]. It has been employed as widely as the the non-relativistic

DFT in the studies of nuclear structure. The CDFT provides a consistent treatment of the

spin degrees of freedom, it includes the complicated interplay between the large Lorentz

scalar and vector self-energies induced on the QCD level by the in-medium changes of

the scalar and vector quark condensates [20]. The time-odd components of the mean field

are entirely fixed by the Lorentz covariance, while the counterparts in the non-relativistic

models have significant ambiguities in their definition [21].

At present, all attempts to derive these functionals directly from the bare forces [22, 23,

24, 25] do not reach the required accuracy. Recently, modern phenomenological covariant

density functionals have been derived [26, 27, 28] which provide an excellent description

of ground and excited states all over the nuclear chart [29, 30] with a high predictive power.

Modern versions of these forces derive the density dependence of the vertices from state-
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of-the-art ab-initio calculations and use only the remaining few parameters for a fine tuning

of experimental masses in finite spherical [28] or deformed [27] nuclei.

Every physical object in macroworld can be described by its size, color, shape and many

other physical attributes associated with it. Similarly, every atomic nucleus is uniquely de-

fined by its mass, radius, deformation etc. These properties provide important information

about the internal structure of the nucleus and the forces which form it.

Significant amount of experimental data exist on the properties of stable and radioactive

nuclei in the ground state or/and at low excitation energies. The masses, charge radii, and

decay modes etc, have been studied extensively for a large number of isotopes and are, in

general, well known near the β-stability line. As we move away from the stability line

towards the borderline of known nuclei, our experimental information becomes scarce.

This has made it difficult or impossible to predict the exact limits of stability. Nuclear

masses contain basic information about nuclear structure, and with data on masses we are

able to calculate separation energies and Q-values for the calculation of α-decay, half-lives

etc. These data will help in the determination of the so called r-process path. But because

of the problem of extrapolation to nuclei with large isospin, many of nuclei with larger Z

and N values will never be studied experimentally.

In the region of heavy and superheavy nuclei, various decay modes co-exist, such as

the α-decay, β-decays, and spontaneous fission. Fission is a process in which a nucleus

splits in two or sometimes three or more fragments, its mechanism is very complicated

Nuclear fission is the main reason for the instability of heavy nuclei due to the Coulomb
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repulsive force. This implies that a better understanding of the fission mechanism will lead

to a more precise definition of the limits on the existence of nuclei with a high-Z number.

Considerable progress in the experimental synthesis of heaviest nuclei has been achieved.

The heaviest superheavy element (SHE) identified has proton number Z = 118 [31, 32]

and dedicated experimental facilities such as the Dubna Superheavy Element Factory will

hopefully allow to extend the region of SHEs up to Z = 120 and for a wider range of

neutron numbers at lower Z values.

The stability of superheavy elements is defined by the fission barriers. Also, the exper-

imental studies of SHEs are only based on the observation of α-decays and as a result only

SHEs with spontaneous fission half-lives τSF longer than the half-lives τα of the α-decays

could be observed in experiment. It must be also noted that only α-decays longer than 10

µs can be observed in experiment. Therefore, it is of great importance to study the fission

barriers in SHEs.

1.1 Purpose of this work

The aims of this work are: (i) to investigate ground state properties (masses, deforma-

tions, neutron skins, charge radii etc) of finite nuclei on a global scale and (ii) to study

fission barriers on superheavy nuclei and their systematic theoretical uncertainties using

the current generations of the covariant energy density functionals (CEDFs).

1.2 Dissertation outline

This dissertation is organized as follows:
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• In Chapter 2, I present the basic features of the covariant density functional theory

(CDFT). The second part of this chapter is dedicated to the explanation of the state-

of-the-art covariant energy density functionals (CEDF) used in this dissertation.

• In Chapter 3, the global description of the ground state observables for Z ≤ 106

even-even nuclei is presented. The aim of this project is to assess the accuracy of

the description of the ground state properties of even-even nuclei and to evaluate the

theoretical uncertainties in the description of physical observables in known regions

of the nuclear chart and their propagation towards the neutron drip line. The results

for binding energies, separation energies, charge quadrupole deformations, charge

radii, neutron skin thicknesses and the positions of the two-proton and two-neutron

drip lines will be shown. The theoretical uncertainties discussed in this chapter are

the systematic uncertainties which emerge from the underlying theoretical approxi-

mations about the form of the functional.

• Chapter 4 is devoted to the effects of single-particle energies and the pairing prop-

erties on the position of the two-neutron drip line. The first part of this chapter is

dedicated to the question of the impact of pairing and its strength on the two-neutron

drip line. The second part of this chapter deals with the shell structure and single-

particle energies at the two-neutron drip line.

• Chapter 5 discusses the octupole deformation in the ground states of even-even nu-

clei. A global survey of octupole deformed and octupole soft nuclei in the CEDF

framework across the full nuclear landscape and the analysis of related theoretical
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uncertainties have been performed. For the first time, this chapter also compares

octupole deformations in the actinides and lanthanides with experimental results.

• The impact of deformation on the properties of superheavy nuclei and in addition

the fission barriers of superheavy nuclei are analysed in chapter 6. This chapter

reanalyzes the structure of superheavy nuclei using both the full set of available ex-

perimental data on SHEs and the new generation of energy density functionals. The

first part of this chapter is devoted to the accuracy of the description of known SHEs

with the new generation of covariant energy density functionals. It also addresses

the question on whether existing experimental data allows to distinguish the pre-

dictions of different functionals for nuclei beyond the known region of SHEs. The

second part is dedicated to the evaluation of systematic theoretical uncertainties in

the regions of SHEs located beyond the presently known region.

• Chapter 7 is devoted to the impact of nuclear matter properties of the functionals on

the predictions of binding energies of known and neutron-rich nuclei.

• The study of the existence and stability of nuclei with Z ≥ 126 (hyperheavy nuclei)

is presented in chapter 8.

• Finally, chapter 9 summarizes the main results obtained in this work.
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CHAPTER II

FORMALISM: THE ENERGY DENSITY FUNCTIONAL

2.1 Basic features of covariant density functional theory

Theoretical approaches based on covariant density functional theory (CDFT) remain

undoubtedly among the most successful for the descriptions of nuclear structure. The

CDFT approaches are obtained from a Lorentz invariant density functional which con-

nects in a consistent way the spin and spatial degrees of freedom in the nucleus. In CDFT

a nucleus is described as a system of Dirac nucleons interacting via the exchange of ef-

fective mesons with finite masses leading to a finite range interaction. Three classes of

covariant density functional models have been used in this dissertation. These are the non-

linear meson-nucleon coupling model (NL), the density-dependent meson-exchange model

(DD-ME) and the density-dependent point-coupling model (DD-PC). The main differences

between them are in the treatment of the range of the interaction, the mesons and the den-

sity dependence of the interaction. The interaction in the first two classes has a finite range

that is determined by the mass of the mesons. For fixed density it is of Yukawa type and the

range is given by the inverse of the meson masses. For large meson masses, i.e. for small

ranges, the meson propagator can be expanded in terms of this range. In zeroth order we

obtain δ-forces and higher order derivative terms. This leads to the third class of density

functionals, the point coupling models. There is no meson in this type of model, therefore
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the interaction is of zero-range. The density dependence is explicit in the last two models.

They are taken into account by density dependent meson-nucleon vertices in the DD-ME

and DD-PC models. In nonlinear meson nucleon coupling model the density dependence

is introduced through the powers of the σ-meson. Each of these classes is represented by

the energy density functionals considered to be state-of-the-art. They are NL3* [33] for

the NL-models, DD-ME2 [26] and DD-MEδ [28] for the DD-ME models, and by DD-PC1

[27] for the point coupling models. The DD-MEδ model is different from the DD-ME2 by

the presence of an extra (δ) meson in the DD-MEδ model.

2.2 Covariant Energy Density Functionals
2.2.1 Meson-exchange model

The nucleus is described in meson-exchange models [33, 26, 28], as a system of Dirac

nucleons interacting via the exchange of mesons with finite masses leading to finite-range

interactions. The starting point of covariant density functional theory (CDFT) for these

two models is a standard Lagrangian density [34]

L = ψ̄
[
γ · (i∂ − gωω − gρ~ρ~τ − eA)−m− gσσ − gδ~τ~δ

]
ψ

+
1

2
(∂σ)2 − 1

2
m2
σσ

2 +
1

2
(∂~δ)2 − 1

2
m2
δ
~δ2

− 1

4
ΩµνΩ

µν +
1

2
m2
ωω

2 − 1

4
~Rµν

~Rµν +
1

2
m2
ρ~ρ

2 (2.1)

− 1

4
FµνF

µν

which contains nucleons described by the Dirac spinors ψ with the mass m and several

effective mesons characterized by the quantum numbers of spin, parity, and isospin. They

create effective fields in a Dirac equation, which corresponds to the Kohn-Sham equa-
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tion [16] of non-relativistic density functional theory. The Lagrangian (2.1) contains as

parameters the meson masses mσ, mω, mδ, and mρ and the coupling constants gσ, gω,

gδ, and gρ. e is the charge of the protons and it vanishes for neutrons. This linear model

has first been introduced by Walecka [35, 36]. However, it was realized that this simple

model failed to describe the surface properties of realistic nuclei. Especially, the resulting

incompressibility of infinite nuclear matter is much too large [37] and nuclear deforma-

tions are too small [34]. An effective density dependence was introduced by Boguta and

Bodmer [37] by replacing the term 1
2
m2
σσ

2 in Eq. (2.1) with the quartic potential

U(σ) =
1

2
m2
σσ

2 +
1

3
g2σ

3 +
1

4
g3σ

4. (2.2)

The nonlinear meson-coupling models are represented by the parameter set NL3* [33] (see

Table 2.1), which is a modern version of the widely used parameter set NL3 [38]. Both

contain no δ-meson. Apart from the fixed values for the masses m, mω and mρ, there are

six phenomenological parameters mσ, gσ, gω, gρ, g2, and g3 which have been fitted in Ref.

[33] to a set of experimental data in spherical nuclei: 12 binding energies, 9 charge radii,

and 4 neutron skin thicknesses.

The density-dependent meson-nucleon coupling model has an explicit density depen-

dence for the meson-nucleon vertices. There are no non-linear terms for the σ meson, i.e.

g2 = g3 = 0. For the form of the density dependence the Typel-Wolter ansatz [39] has

been used:

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω, δ, ρ (2.3)
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where the density dependence is given by [39, 26, 28]

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ ei)2
. (2.4)

x = ρ/ρsat, ρ and ρsat are the baryonic density at a specific location and the baryonic

density at saturation in symmetric nuclear matter, respectively. The eight real parameters

in Eq. (2.4) are not independent, but constrained as follows: fi(x = 1) = 1, f ′′
σ (x =

1) = f
′′
ω (x = 1), and f ′′

i (x = 0) = 0. In addition, the following constraints dσ = eσ

and dω = eω are used. This reduces the number of independent parameters for the density

dependence. The density-dependent meson-nucleon coupling model is represented by the

CEDF’s DD-ME2 [26] and DD-MEδ [28]. DD-MEδ is selected in order to understand the

role of the extra (δ) meson in this model. In the case of DE-ME2 we have no δ-meson and

the density dependence of Eq. (2.4) is used only for the σ and ω mesons. For the ρ meson

we have an exponential density dependence

fρ(x) = exp(−aρ(x− 1)) (2.5)

in DD-ME2.

The parameters of the NL3*, DD-ME2 and DD-MEδ CEDF’s are tabulated in the Ta-

ble 2.1 . The masses are given in MeV and the dimension of g2 in NL3* is fm−1. All other

parameters are dimensionless. Note that gσ = gσ(ρsat), gω = gω(ρsat), gδ = gδ(ρsat) and

gρ = gρ(ρsat) in the case of the DD-ME2 and DD-MEδ CEDF’s.

The major difference between the functional NL3* and other functionals considered in

this work is related to the fact that NL3* has no non-linearities in the isovector channel.

Therefore, in infinite nuclear matter, the isovector fields are proportional to the isovector
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density, which are given by N − Z. This leads to a very stiff symmetry energy as a

function of the density and to relatively large values for the symmetry energy J and its

slope L at saturation (see Table IV in the Ref. [40]). The fits of other above-mentioned

non-linear meson coupling functionals have tried to reduce this value. However, because

of the stiffness of the linear ansatz this is possible only to a certain extent. Although these

functionals are very successful for static CDFT close to the valley of stability [33], their

common feature is that the neutron skin thicknesses are larger than those of successful

Skyrme EDF’s and DD CEDF’s.

The masses m, mω and mρ of the DD-ME2 [26] functional are kept at fixed values.

As discussed above the density dependence of the coupling constants fi(x) i = σ, ω, ρ is

given by four independent parameters. Therefore, together with the four parameters mσ,

gσ(ρsat), gω(ρsat), and gρ(ρsat) DD-ME2 contains eight independent parameters which have

been fitted in Ref. [26] to a set experimental data in spherical nuclei:12 binding energies,

9 charge radii, and 3 neutron skin thicknesses.

The functional DD-MEδ [28] differs from the earlier DD-ME functionals also in the

fitting strategy. It tries to use only a minimal number of free parameters adjusted to the

data in finite nuclei and to use ab-initio calculations to determine the density dependence

of the meson-nucleon vertices. Relativistic ab-initio calculations [23, 24] show clearly that

the isovector scalar self-energy, i.e. the field of the δ-meson, is not negligible. Therefore,

the functional DD-MEδ differs also from the other functionals by including the δ-meson,

which leads to a different effective Dirac mass for protons and neutrons:

m∗n,p = m+ gσσ ± gδδ. (2.6)
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As a consequence, the splittings of the spin-orbit doublets with large orbital angular mo-

mentum l are slightly different in the models with and without a δ-meson. However, this ef-

fect is too small to be seen in present experiments [28]. All the other effects of the δ-meson

on experimental isovector properties of nuclear structure at densities below and slightly

above saturation can be completely absorbed by a renormalization of the ρ-meson-nucleon

vertex [28]. Therefore, successful phenomenological CEDF’s do not need to include the

δ-meson. However, the effects of the δ-meson are important for a proper description of

the nuclear equation of state (EoS) at higher densities (see Ref. [28] and references given

there) which play a role in heavy-ion reactions and in astrophysics.

In the earlier parameters sets DD-ME1 [41] and DD-ME2 [26], all eight independent

parameters were adjusted to experimental data in finite nuclei, whereas for DD-MEδ only

the four independent parameters mσ, gσ(ρsat), gω(ρsat), and gρ(ρsat) have been adjusted

to experimental data in finite nuclei. This data set includes 161 binding energies and 86

charge radii of spherical nuclei. The parameter gδ(ρsat) and the density dependence fi(x)

have been fitted to parameter-free ab-initio calculations of infinite nuclear matter of various

densities, as for instance the equations of state (EoS) for symmetric nuclear matter and

pure neutron matter, and the difference in the effective Dirac masses m∗p −m∗n. Thus, the

functional DD-MEδ is the most microscopically justified CEDF among functionals used

in the investigation.
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Table 2.1

The parameters of NL3*, DD-ME2 and DD-MEδ CEDF’s.

Parameter NL3* DD-ME2 DD-MEδ
m 939 939 939
mσ 502.5742 550.1238 566.1577
mω 782.600 783.000 783.00
mδ 983.0
mρ 763.000 763.000 763.0
gσ 10.0944 10.5396 10.3325
gω 12.8065 13.0189 12.2904
gδ 7.152
gρ 4.5748 3.6836 6.3128
g2 -10.8093
g3 -30.1486
aσ 1.3881 1.3927
bσ 1.0943 0.1901
cσ 1.7057 0.3679
dσ 0.4421 0.9519
eσ 0.4421 0.9519
aω 1.3892 1.4089
bω 0.9240 0.1698
cω 1.4620 0.3429
dω 0.4775 0.9860
eω 0.4775 0.9860
aδ 1.5178
bδ 0.3262
cδ 0.6041
dδ 0.4257
eδ 0.5885
aρ 0.5647 1.8877
bρ 0.0651
cρ 0.3469
dρ 0.9417
eρ 0.9737
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2.2.2 Point coupling model

The Lagrangian for the density-dependent point coupling model [42, 27] is given by

L = ψ̄ (iγ · ∂ −m)ψ − 1

4
FµνF

µν − eψ̄γ · Aψ

− 1

2
αS(ρ)

(
ψ̄ψ
) (
ψ̄ψ
)
− 1

2
αV (ρ)

(
ψ̄γµψ

) (
ψ̄γµψ

)
(2.7)

− 1

2
αTV (ρ)

(
ψ̄~τγµψ

) (
ψ̄~τγµψ

)
− 1

2
δS
(
ψ̄ψ
)
2
(
ψ̄ψ
)
.

In addition to the free-nucleon part, and the point coupling interaction terms, there is

also the coupling of the proton to the electromagnetic field. The derivative term in (2.7)

with the D’Alembert operator 2 accounts for the leading effects of finite-range interaction

that are important for the quantitative description of nuclear density distribution. In anal-

ogy to the successful meson-exchange models, this model contains isoscalar-scalar (S),

isoscalar-vector (V) and isovector-vector (TV) four-fermion interactions. The coupling

constants αi(ρ) are density dependent.

The Lagrangian (2.7) in this work represents the parametrization DD-PC1 [27] given

in Table 2.2.

αi(ρ) = ai + (bi + cix)e−dix, for i = S, V, TV (2.8)

is used for the functional form of the couplings, where x = ρ/ρsat denotes the nucleon

density in units of the saturation density of symmetric nuclear matter. In the isovector

channel a pure exponential dependence is used, i.e. aTV = 0 and cTV = 0. The remaining

set of 10 constants, aS , bS , cS , dS , aV , bV , cV , dV , bTV , and dTV that control the strength and

density dependence of the interaction Lagrangian, was adjusted in a multistep parameter

fit exclusively to the experimental masses of 64 axially deformed nuclei.
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Table 2.2

The parameters of the DD-PC1 CEDF

Parameter DD-PC1
m 939
aS -10.04616
bS -9.15042
cS -6.42729
dS 1.37235
aV 5.91946
bV 8.86370
dV 0.65835
bTV 1.83595
dTV 0.64025

2.2.3 The fitting protocols

The fitting protocols used for the derivation of the various CEDF’s differ in the number

and the type of experimental data. Figure 2.1 shows the nuclei which were used in the

fits of the different CEDF’s. NL3*, DD-ME2, DD-MEδ and DD-PC1 respectively. NL3*,

DD-ME2, and DD-MEδ were fitted to spherical nuclei. Only 12 spherical nuclei were used

in the fitting protocols of NL3* and DD-ME2. DD-MEδ was fitted to 161 spherical nuclei,

while 64 deformed nuclei were used in the fitting for DD-PC1. Magic shell closures are

shown by dashed lines in Fig. 2.1. In all these fitting protocols, the binding energies were

used. In addition, the charge radii were employed in the fitting of NL3*, DD-ME2 and

DE-MEδ. The number of independent parameters in the NL3*, DD-ME2, DD-MEδ and

DD-PC1 CEDF is 6, 8, 14, and 10, respectively. Note, however, that in the case of DD-

MEδ, only the 4 parameters are fitted to the properties of finite nuclei and additional 10

parameters are fitted to pseudo-data obtained from ab initio calculations of nuclear matter.
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TABLE II. The parameters of the DD-PC1 CEDF.

Parameter DD-PC1

m 939
aS −10.046 16
bS −9.150 42
cS −6.427 29
dS 1.372 35
aV 5.919 46
bV 8.863 70
dV 0.658 35
bT V 1.835 95
dT V 0.640 25

isoscalar-vector (V), and isovector-vector (TV) interactions.
The coupling constants αi(ρ) are density dependent.

In the present work the Lagrangian (8) is represented by the
parametrization DD-PC1 [11] given in Table II. The following
ansatz is used for the functional form of the couplings,

αi(ρ) = ai + (bi + cix)e−dix, for i = S,V,T V, (9)

where x = ρ/ρsat denotes the nucleon density in units of the
saturation density of symmetric nuclear matter. In the isovector
channel a pure exponential dependence is used, i.e., aT V = 0
and cT V = 0. The remaining set of ten constants, aS , bS ,
cS , dS , aV , bV , cV , dV , bT V , and dT V , which control the
strength and density dependence of the interaction Lagrangian,
was adjusted in a multistep parameter fit exclusively to the
experimental masses of 64 axially deformed nuclei.

The fitting protocols used for the derivation of the various
CEDF’s differ in the amount and the type of experimental
data. Figure 1 shows the nuclei which were used in the fits of
the different CEDF’s. NL3*, DD-ME2, and DD-MEδ CEDF
were fitted to spherical nuclei, while DD-PC1 was fitted to
deformed nuclei in the rare-earth and actinide regions. Only
12 spherical nuclei were used in the fitting protocols of NL3*
and DD-ME2. On the contrary, the fits of other CEDF’s rely on
more extensive sets of experimental data (161 spherical nuclei
in the DD-MEδ CEDF and 64 deformed nuclei in the DD-
PC1 CEDF). In all these fitting protocols, the binding energies
were used. In addition, the charge radii were employed in
the fitting of NL3*, DD-ME2, and DE-MEδ. In contrast to
nonrelativistic models, no single-particle information has been
used in the fits. The number of independent parameters in
the NL3*, DD-ME2, DD-MEδ, and DD-PC1 CEDF is 6, 8,
14, and 10, respectively. Note, however, that in the case of
DD-MEδ, only the 4 parameters are fitted to the properties
of finite nuclei and the additional 10 parameters are fitted to
pseudodata obtained from ab initio calculations of nuclear
matter.

III. SOLUTION OF THE RHB EQUATIONS

Pairing correlations play an important role in all open-
shell nuclei. On the mean-field level they are taken into
account by Bardeen-Cooper-Schrieffer (BCS) or Hartree-
Fock-Bogoliubov (HFB) theory and in the relativistic case
by relativistic Hartree-Bogoliubov (RHB) theory [41–43].
Therefore, DFT in nuclei always has to go beyond the simple
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FIG. 1. (Color online) The nuclei (solid squares), shown in the (N,Z) plane, which were used in the fit of indicated CDFT parametrizations.
Their total number is shown below the parametrization label. Magic shell closures are shown by dashed lines.

054320-5

Figure 2.1

The nuclei (solid squares) used in the fit of indicated CDFT parametrizations.

2.3 Pairing correlation

Pairing plays an important role in our understanding of all nuclei with open shells.

Without pairing, the relativistic theory can be only applied to few doubly magic nuclei or

to nuclei at very large angular momenta, where pairing is considerably quenched [43]. In

all other cases pairing correlations have to be taken into account in the constant gap approx-

imation. On the mean field level they are taken into account by Bardeen-Cooper-Schrieffer

(BCS) or Hartree-Fock-Bogoliubov (HFB) theory and in the relativistic case by Relativistic

Hartree-Bogoliubov(RHB) theory [44, 43, 45]. Nuclear energy density functionals depend

on two densities, the normal density

ρn1n2
= 〈Φ|c†n2

cn1
|Φ〉, (2.9)
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and the anomalous density

κn1n2
= 〈Φ|cn2

cn1
|Φ〉 (2.10)

also called the pairing tensor. |Φ〉 is the RHB wave function, a generalized Slater determi-

nant [46] and, therefore, the density ρ as well as κ depend on the pairing correlations. In

particular, the density matrix ρ is no longer a projector on the subspace of occupied states:

ρ2 − ρ = κκ∗. (2.11)

In the relativistic form the nuclear energy functional is usually given by

ERHB[ρ, κ] = ERMF [ρ] + Epair[κ], (2.12)

where ERMF [ρ] has the same functional form as the CEDF’s discussed in the last section,

but it is now a functional of the density ρ in Eq. (2.9) depending on the RHB wave function

|Φ〉. The pairing energy1. is given by

Epair[κ] =
1

4

∑
n1n2,n

′
1n

′
2

κ∗n1n2
〈n1n2|V pp|n′1n′2〉κn′

1n
′
2

(2.13)

The Dirac equation for fermion fields ψ(r) is replaced by the RHB equation. The RHB

framework with finite range pairing and its separable limit are used for a systematic study

of ground state properties of all even-even nuclei from the proton to neutron drip line. It

has the proper coupling to the continuum at the neutron drip line. This allows a correct

description of weakly bound nuclei that are close to the neutron drip line. Also nuclear

halo phenomena can be described by this method, if a proper basis is used, such as the

coordinate space [47, 48] or a Woods-Saxon basis [49].
1The details for the treatment of pairing are presented in Sec. 2.4
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The RHB equations for the fermions are given by [45]ĥD − λ ∆̂

−∆̂∗ −ĥ ∗D + λ


U(r)

V (r)


k

= Ek

U(r)

V (r)


k

(2.14)

Here, ĥD is the Dirac Hamiltonian for the nucleons with mass m; λ is the chemical po-

tential defined by the constraints on the average particle number for protons and neutrons;

Uk(r) and Vk(r) are quasiparticle Dirac spinors [44, 43, 45] and Ek denotes the quasipar-

ticle energies. The Dirac Hamiltonian

ĥD = α(p− V ) + V0 + β(m+ S). (2.15)

contains an attractive scalar potential

S(r) = gσσ(r), (2.16)

a repulsive vector potential

V0(r) = gωω0(r) + gρτ3ρ0(r) + eA0(r), (2.17)

and a magnetic potential

V (r) = gωω(r) + gρτ3ρ(r) + eA(r). (2.18)

The last term breaks time-reversal symmetry and induces currents. Time-reversal symme-

try is broken when the time-reversed orbitals are not occupied pairwise. This takes place

in odd-mass nuclei [50]. In the Dirac equation, the space-like components of the vector

mesons ω(r) and ρ(r) have the same structure as the space-like component A(r) generated

by the photons. Since A(r) is the vector potential of the magnetic field, by analogy the
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effect due to presence of the vector field V (r) is called nuclear magnetism [51]. It affects

the properties of odd-mass nuclei [50]. Thus, the spatial components of the vector mesons

are properly taken into account for such nuclei. This is done only for the study of odd-even

mass staggerings as it has been successfully done earlier for the studies of single-particle

[52, 53] and pairing [54] properties of deformed nuclei. Nuclear magnetism, i.e. currents

and time-odd mean fields, plays no role in the studies of even-even nuclei.

2.4 The effective pairing interaction

The pair field ∆̂ in RHB theory is given by

∆̂ ≡ ∆n1n2
=

1

2

∑
n′
1n

′
2

〈n1n2|V pp|n′1n′2〉κn′
1n

′
2

(2.19)

It contains the pairing tensor κ of Eq.(2.10)

κ = V ∗UT (2.20)

and the effective interaction V pp in the particle-particle channel.

Two types of realistic effective pairing interaction have been used in this investiga-

tion. Both of them have finite range and, therefore, provide an automatic cutoff of high-

momentum components. These are as follows:

• The Brink-Booker part of phenomenological non-relativistic D1S Gogny-type finite

range interaction

V pp(1, 2) = f
∑
i=1,2

e−[(r1−r2)/µi]
2

(Wi +BiP
σ −HiP

τ −MiP
σP τ ) (2.21)

The motivation for such an approach to the description of pairing is given in Refs.

[55, 45]. In Eq. (2.21), µi, Wi, Bi, Hi and Mi (i = 1, 2) are the parameters of the
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force and P σ and P τ are the exchange operators for the spin and isospin variables.

The D1S parametrization of the Gogny force [56, 57] is used here. Note that a scaling

factor f is introduced in Eq. (2.21). Its role is discussed below.

• A separable pairing interaction of finite range introduced by Tian et al [58]. Its

matrix elements in r-space have the form

V (r1, r2, r
′
1, r
′
2) = −f Gδ(R−R′)P (r)P (r′)

1

2
(1− P σ) (2.22)

with R = (r1 + r2)/2 and r = r1 − r2 being the center of mass and relative coordi-

nates. The form factor P (r) is of Gaussian shape,

P (r) =
1

(4πa2)3/2
e−r

2/4a2 . (2.23)

The parameters of this interaction have been derived by a mapping of the 1S0 pairing

gap of infinite nuclear matter to that of the Gogny force D1S. The resulting parame-

ters are: G = 738 fm3 and a = 0.636 fm [58]. The scaling factor f is the same as in

Eq. (2.21).

Both in theory and in experiment the strength of pairing correlations is usually accessed

via the three-point indicator [59]

∆(3)(N) =
πN
2

[B(N − 1) +B(N + 1)− 2B(N)] , (2.24)

which quantifies the odd-even staggering (OES) of binding energies. Here πN = (−1)N is

the number parity and B(N) is the (negative) binding energy of a system with N particles.

In Eq. (2.24), the number of protons Z is fixed, and N denotes the number of neutrons,
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i.e. this indicator gives the neutron OES. The factor depending on the number parity πN is

chosen so that the OES centered on even and odd neutron number N will both be positive.

An analogous proton OES indicator ∆(3)(Z) is obtained by fixing the neutron number N

and replacing N by Z in Eq. (2.24).

As discussed in Ref. [54], in many applications of RHB theory with the pairing force

D1S the same scaling factor f has been used across the nuclear chart. However, it was

found a decade ago that a proper description of rotational properties in actinides [52] re-

quires weaker pairing as compared with the rare-earth region [60, 45]. Subsequent sys-

tematic studies of pairing (via the three-point indicator ∆(3)) and rotational properties of

actinides confirmed this observation in Refs. [54, 61]. The investigation of odd-even mass

staggerings in spherical nuclei in Ref. [62] also confirms the need for a scaling factor f

which depends on the region in the nuclear chart. The studies of Refs. [52, 54, 62] show

also a weak dependence of the scaling factor f on the CDFT parametrization. We there-

fore introduce in Eqs. (2.21) and (2.22) a scaling factor f for a fine tuning of the effective

pairing force.

The scaling factor f used in the present investigation has been selected based on the

results of a comparison between experimental moments of inertia and those obtained in

cranked RHB calculations with the CEDF NL3*. As verified in the actinides in Ref. [54],

the strengths of pairing defined by means of the moments of inertia and by the three-

point indicators ∆(3) strongly correlate in deformed nuclei. Following the results obtained

in Ref. [54], the scaling factor has been fixed at f = 1.0 in the Z ≥ 88 actinides and

superheavy nuclei. The analysis of the moments of inertia in the rare-earth region [63]
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leads to a scaling factor of f = 1.075 for the 56 ≤ Z ≤ 76 rare-earth nuclei. For Z ≤ 44

nuclei, the scaling factor was fixed at f = 1.12 [63]. The scaling factor gradually changes

with Z in between of these regions. Since the strength parameter G of the separable force

has been determined in Ref. [58] by a direct mapping to the Gogny force D1S, the same

scaling factors are also used in the following RHB calculations with separable pairing.

22



CHAPTER III

GLOBAL PERFORMANCE OF COVARIANT ENERGY DENSITY FUNCTIONALS:

GROUND STATE OBSERVABLES OF EVEN-EVEN NUCLEI AND THE ESTIMATE

OF SYSTEMATIC THEORETICAL UNCERTAINTIES

3.1 Introduction

Theoretical description of ground state properties of nuclei is important for our un-

derstanding of their structure. It is also important for nuclear astrophysics, where we are

facing the problem of an extrapolation to the nuclei with large isospin. Many of such nuclei

will not be studied experimentally even with the next generation of facilities. Thus, it is

important to answer two questions, namely, how well the existing nuclear EDF’s describe

available experimental data, and how well do they extrapolate to the region of unknown

nuclei.

The answer to the first question is not possible for the majority of nuclear EDF’s since

their global performance is not known. This is especially true for the covariant energy

density functionals (CEDF’s). Very few of them were confronted with experimental data

on a global scale. Even the new generation of CEDF’s such as NL3* [33], DD-ME2 [26],

DD-MEδ [28] and DD-PC1 [27] have not passed this critical test before our studies. This

is because only limited sets of nuclei, usually located in the region of nuclei used in the

fitting protocol, were confronted with calculations. Thus, it is not known how well they
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describe ground state properties on a global scale and what are their strong and weak points

in that respect.

The answer on the question “How well a given CEDF extrapolates towards neutron-

rich nuclei?” is well connected with the answer to the first question. This is because

one can estimate its reliability for the description of nuclei far away from the region of

known nuclei only by assessing its global performance on existing experimental data. A

good performance in known nuclei is a necessary condition and one has to be very careful

with extrapolations of models where this good performance has been achieved with a large

number of phenomenological parameters.

It was suggested in Refs. [64, 5, 65] to use the methods of information theory and to

define the uncertainties in the EDF parameters. These uncertainties come from the selec-

tion of the form of EDF as well as from the fitting protocol details, such as the selection

of the nuclei under investigation, the physical observables etc. Some of them are called

statistical errors and can be calculated from a statistical analysis during the fit, others are

systematic errors. On the basis of these statistical errors and under certain assumptions

on the independence of the form of many EDF’s one hopes to be able to deduce in this

way theoretical error bars for the prediction of physical observables [64, 5, 65]. It is very

difficult to perform the analysis of statistical errors on a global scale since the properties of

transitional and deformed nuclei have to be calculated repeatedly for different variations

of original CEDF. Hence, such statistical analysis has been performed mostly for spherical

nuclei [64, 66] or selected isotopic chains of deformed nuclei [5].
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Even though such analysis has its own merits, at present, it does not allow to fully

estimate theoretical uncertainties in the description of physical observables. This is be-

cause they originate not only from the uncertainties in model parameters, but also from

the definition and the limitations of the model itself. The later uncertainties are difficult to

estimate. Hence, any analysis of theoretical uncertainties contains a degree of arbitrariness

related to the choice of the model and fitting protocol.

Because of these difficulties, we concentrate on the uncertainties related to the present

choice of energy density functionals which can be relatively easily deduced globally. The

theoretical systematic uncertainties is defined for a given physical observable by the spread

of theoretical predictions within the four CEDF’s

∆O(Z,N) = |Omax(Z,N)−Omin(Z,N)| (3.1)

where Omax(Z,N) and Omin(Z,N) are the largest and smallest values of the physical

observable O(Z,N) obtained with the four employed CEDF’s for the (Z,N) nucleus.

In our study, we used state-of-the-art CEDF of different classes: these are NL3*, DD-

ME2, DD-MEδ and DD-PC1. The word spread is used for these theoretical systematic

uncertainties for the CEDF’s.

3.2 Details of numerical calculation

The systematic investigations of even-even nuclei are performed within the axial RHB

computer code outlined below. As the absolute majority of nuclei are known to be ax-

ially and reflection symmetric in their ground states, we consider only axial and parity-
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conserving intrinsic states and solve the RHB-equations in an axially deformed harmonic

oscillator basis [34, 67].

We have developed a parallel version of the axial RHB computer code starting from

a considerably modified version of the computer code DIZ [67]. This code is based on

an expansion of the Dirac spinors and the meson fields in terms of harmonic oscillator

wave functions with cylindrical symmetry. The calculations are performed by successive

diagonalizations using the method of quadratic constraints [46]. The parallel version al-

lows simultaneous calculations for a significant number of nuclei and deformation points

in each nucleus. For each nucleus, we minimize

ERHB +
C20

2
(〈Q̂20〉 − q20)2 (3.2)

where ERHB in Eq. (2.12) is the total energy and 〈Q̂20〉 denotes the expectation value of

the mass quadrupole operator,

Q̂20 = 2z2 − x2 − y2 (3.3)

q20 is the constrained value of the multipole moment, and C20 the corresponding stiffness

constant [46]. In order to provide the convergence to the exact value of the desired multi-

pole moment we use the method suggested in Ref. [68]. Here the quantity q20 is replaced

by the parameter qeff20 , which is automatically modified during the iteration in such a way

that we obtain 〈Q̂20〉 = q20 for the converged solution. This method works well in our

constrained calculations. The details of the calculational scheme are as follows:

• Three classes of covariant density functional models are used throughout this thesis:

the nonlinear meson-nucleon coupling model (NL), the density-dependent meson-
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exchange model (DD-ME) and the density-dependent point-coupling model (DD-

PC). The main differences between them lay in the treatment of the range of the

interaction and in the density dependence. They are represented by four CEDFs

NL3* [33], DD-ME2 [26], DD-MEδ [28] and DD-PC1 [27]. The details have been

discussed in the preceeding chapter of this dissertation.

• The truncation of the basis is performed in such a way that all states belonging to

the major shells up to NF = 20 fermionic shells and up to NB = 20 bosonic shells

are taken into account. The comparison with the results obtained with NF = 26 and

NB = 26 shows that this truncation scheme provides sufficient numerical accuracy

for the description of weakly bound nuclei in the vicinity of the neutron drip line and

of superheavy nuclei.

• The potential energy curve for each nucleus is calculated in a large deformation

range from β2 = −0.4 up to β2 = 1.0 by means of the constraint on the quadrupole

moment q20. The lowest in energy minimum is defined from the potential energy

curve. After which the unconstrained calculations are performed in this minimum

and the correct ground state configuration and its energy are determined.

• In axial reflection-symmetric calculations for superheavy nuclei with Z ≥ 106, the

superdeformed minimum is mostly lower in energy than the normal deformed one

[69, 70]. As long as triaxial [70] and octupole [69, 70] deformations are not included,

this minimum is stabilized by the presence of an outer fission barrier. Including such

deformations, however, it often turns out that this minimum becomes a saddle point,
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unstable against fission [69, 70]. Since these deformations are not included in the

present calculations, we restrict our consideration to spherical or normal deformed

ground states in nuclei with Z ≤ 104.

The aims of the present study are as follow: (i) the assessment of global performance of

the state-of-the-art NL3*, DD-ME2, DD-MEδ, and DD-PC1 CEDF’s for even-even nuclei

within the relativistic Hartree-Bogoliubov (RHB) framework [44, 55], (ii) the estimation

of differences in the description of various physical observables on a global scale and (iii)

the comparison of the drip lines obtained in relativistic and non-relativistic DFT.

3.3 Binding energies

Table 3.1

The rms deviations ∆Erms, ∆(S2n)rms, and ∆(S2p)rms.

EDF measured measured+estimated
∆Erms ∆Erms ∆(S2n)rms ∆(S2p)rms

NL3* 2.96 3.00 1.23 1.29
DD-ME2 2.39 2.45 1.05 0.95
DD-MEδ 2.29 2.40 1.09 1.09
DD-PC1 2.01 2.15 1.16 1.03

In Table 3.1 we list the rms deviations ∆Erms, ∆(S2n)rms, and ∆(S2p)rms between

theoretical and experimental binding energies E and two-neutron(-proton) separation en-

ergies S2n (S2p) for the global RHB calculations with the different CEDF’s investigated in

this chapter of the dissertation. The masses given in the AME2012 mass evaluation [12]
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can be separated into two groups. One represents nuclei with masses defined only from

experimental data, the other contains nuclei with masses depending in addition on either

interpolation or extrapolation procedures. The masses of the nuclei in the first and second

groups as called measured and estimated, respectively. There are 640 measured and 195

estimated masses of even-even nuclei in the AME2012 mass evaluation. It can be seen in

Table 3.1 that the extension to include also estimated masses leads to a slight decrease of

the accuracy in the description of experimental data.
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Figure 3.1

The difference between theoretical and experimental masses.

Figure 3.1 is the difference between theoretical and experimental masses of 835 even-

even nuclei investigated in RHB calculations with NL3*. If Eth−Eexp < 0, the nucleus is

more bound in the calculations than in experiment.
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Figure 3.2

The same as in Fig. 3.1 but with DD-MEδ.
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Figure 3.3

The same as in Fig. 3.1 but with DD-PC1.
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To our knowledge, for relativistic density functionals, reliable1 global comparisons of

experimental and theoretical masses have been performed so far only for the parametriza-

tions NL3 [38], FSUGold [76], BSR4 [77] and TM1 [78] in the RMF+BCS approach

using the constant gap approximation in Ref. [75] and for PC-PK1 [79] in the RMF+BCS

approach with density-dependent pairing in Ref. [80]. Apart of BSR4 and PC-PK1 these

CEDF’s were fitted more than ten years ago. The rms-errors for the masses found for these

CEDF’s are 3.8 MeV for NL3, 6.5 MeV for FSUGold, 2.6 MeV for BSR4, 5.9 MeV for

TM1 and 2.6 MeV for PC-PK1 (at the mean field level).

One can see that the CEDF’s NL3*, DD-MEδ, and DD-PC1 investigated in this chapter

provide an improved description of masses across the nuclear chart. The rms deviations for

the binding energies presented in Table 3.1 are more statistically significant than those of

Refs. [75] and [80] since they are defined for 835 even-even nuclei. On the contrary, rms

deviations for binding energies for the NL3, FSUGold, BSR4 and TM1 CEDF’s are defined

only for 513 (575 for PC-PK1) even-even nuclei in Refs. [75] and [80]. The extension

of the experimental database to 835 nuclei may lead to further deterioration of the rms-

deviations for these CEDF’s.

The accuracy of the description of the masses of heavy nuclei is comparable with or

even better than that of medium-mass and light nuclei (Figs. 3.1, 3.2, and 3.3). The large

1The masses were globally studied earlier in the RMF [71] or RMF+BCS [72, 73] formalisms. However,
the pairing correlations have been completely ignored in the studies of Ref. [71]. The treatment of pairing
via the BCS approximation in Refs. [72, 73] has to be taken with care in the region of the drip line since this
approximation does not take into account the continuum properly and leads to the formation of a neutron gas
[74] in nuclei near neutron drip line. In addition, these calculations use at most 14 fermionic shells for the
harmonic oscillator basis, which according to our study and the one of Ref. [75] is not sufficient for a correct
description of binding energies of actinides and superheavy nuclei and the nuclei in the vicinity of neutron
drip line.
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deviation peaks seen in Figs. 3.1, 3.2, and 3.3 are located in the vicinity of the doubly

magic shell closures. For such nuclei, medium polarization effects associated with surface

and pairing vibrations have a substantial effect on the binding energies [81]

Previous estimates of the rms deviations for binding energies with these CEDF’s have

been obtained only with restricted sets of experimental data. For example, the RHB(NL3*)

results were compared with approximately 180 experimental even-even nuclei in Ref. [33].

But, no rms deviations for binding energies were presented for this set. An rms-deviation of

2.4 MeV has been obtained in the analysis of 161 nuclei in the RMF+BCS calculations with

DD-MEδ using monopole pairing [28]. Note, however, that the binding energies of these

nuclei were used in the fit of DD-MEδ. 93 deformed nuclei calculated in the RMF+BCS

approach with DD-PC1 CEDF were compared with experiment in Ref. [27]. The binding

energies of most of these nuclei deviate from experiment by less than 1 MeV, which is

not surprising considering that 64 of these nuclei were used in the fit of the corresponding

CEDF. However, much larger deviations have been reported for this CEDF in spherical

nuclei [27]. DD-PC1 is the only CEDF exclusively fitted to deformed nuclei.

Comparing these rms deviations with the ones presented in Table 3.1, it can be seen

that the increase of the size of experimental data set leads to a deterioration of the average

description of the binding energies. This suggests that the experimental data sets used in the

fits of the CEDF’s are not sufficiently large to provide an optimal localization of the model

parameters in the parameter space and reliable extrapolation properties of the CEDF’s with

respect to binding energies. To the best of our knowledge, no attempt to create a “mass

table” quality CEDF based on a fit to the full set of available experimental masses has been
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undertaken in CDFT. This is contrary to non-relativistic models where mass tables based

on an extensive use of experimental data were generated in the macroscopic+microscopic

model [6], the Skyrme [82] and the Gogny [83] DFT.
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Figure 3.4

The binding energy spreads ∆E(Z,N) as a function of proton and neutron number.

In Fig. 3.4 we show the binding energy spreads ∆E(Z,N) as a function of proton

and neutron number ∆E(Z,N) = |Emax(Z,N) − Emin(Z,N)|, where Emax(Z,N) and

Emin(Z,N) are the largest and the smallest binding energies for each (N,Z) nucleus ob-

tained with the four CEDF’s used in this investigation. The comparison of this figure with

Fig. 1 in Ref. [84] shows that the spreads in the predictions of binding energies stay within

5-6 MeV for the known nuclei. These spreads are even smaller (typically around 3 MeV)

for the nuclei in the valley of beta-stability. However, the theoretical systematic uncer-

tainties for the masses increase drastically when approaching the neutron-drip line and in
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some nuclei they reach 15 MeV. This is a result of the poorly defined isovector properties

of many CEDF’s.

3.4 Separation energies

Since our investigation is restricted to even-even nuclei, we only consider two-neutron

S2n = B(Z,N − 2) − B(Z,N) and two-proton S2p = B(Z − 2, N) − B(Z,N) separa-

tion energies. B(Z,N) stands for the binding energy of a nucleus with Z protons and N

neutrons. The accuracy of the description of separation energies depends on the accuracy

of the description of mass differences. As a result, not always the functional which pro-

vides the best description of masses gives the best description of two-particle separation

energies.
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Figure 3.5

Two-neutron separation energies S2n(Z,N) given for different isotopic chains as a
function of neutron number.
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In Fig. 3.5 we show the two-neutron separation energies S2n(Z,N) given for different

isotopic chains as a function of neutron number. To facilitate the comparison between

theory and experiment, five different colors are used periodically as a function of neutron

number. Black, red, green, orange and blue colors are used for isotope chains with proton

numbers ending with 2, 4, 6, 8 and 0, respectively.
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Two-proton separation energies S2p(Z,N) given for different isotonic chains as a function
of proton number.

In Fig. 3.6 we show the two-proton separation energies S2p(Z,N) given for different

isotonic chains as a function of proton number. To facilitate the comparison between theory

and experiment, five different colors are used periodically as a function of proton number.

Black, red, green, orange and blue colors are used for isotonic chains with neutron numbers

ending with 2, 4, 6, 8 and 0, respectively.
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The accuracy of the description of two-neutron and two-proton separation energies is

illustrated for different isotopic and isotonic chains on the example of RHB calculations

with DD-PC1 in Figs. 3.5 and 3.6. Similar results were obtained also in the calculations

with NL3*, and DD-MEδ. It can be seen that the two-proton separation energies are better

described than the two-neutron separation energies (see also Table 3.1). In part, this is a

consequence of the behavior of the calculated S2n curves in the vicinity of spherical shell

gaps. The experimental S2n curves are smooth as a function of neutron number between

shell gaps (Fig. 3.5). For a given isotope chain, the calculations rather well reproduce

this behavior of experimental S2n curves in the regions of a few neutrons away from shell

closures. However, the situation is different in the vicinity of the N = 82 and 126 shell

closures. Here, the calculations overestimate (underestimate) experimental S2n values for

a few nuclei before (after) the shell closure in a number of isotopic chains with Z ≥ 40.

Such problems do not exist for two-proton separation energies (Fig. 3.6). The origin

of these problems is most likely related to the relative impact of proton and neutron shell

closures. Fig. 3.11 shows that the band of nuclei with spherical or near-spherical defor-

mations (gray area in the figures) is wider around N = 82 and N = 126 as compared with

the one around Z = 50 and Z = 82. Thus, the transition from spherical shapes to well-

deformed shapes (where the mean field description is justified) proceeds faster (in terms

of particle number) for the proton subsystem than for the neutron subsystem. In contrast,

the transitional shapes requiring a beyond mean field description are expected for a wider

range of nuclei around the N = 82 and N = 126 shell closures. The neglect of these

beyond mean field correlations is most likely source for the above mentioned discrepan-
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cies between experimental and calculated S2n values in the vicinity of the N = 82 and

N = 126 shell closures.

3.5 Two-proton drip line.

The particle stability of a nuclide is specified by its separation energy. If the two-

neutron and the two-proton separation energies are positive, the nucleus is stable against

two-nucleon emission. Conversely, if one of these separation energies is negative, the

nucleus is unstable. Thus, the two-neutron or the two-proton drip line is reached when

S2n ≤ 0 or S2p ≤ 0, respectively.
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The calculated two-proton drip lines versus experimental data.

The proton drip line has been studied extensively more than a decade ago in the RHB

framework with the finite range Gogny pairing force D1S in Refs. [85, 86, 87, 88, 89, 90,
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91]. However, the main emphasis was put on the one-proton drip line, for which, at the

time of these studies, experimental data was more available than that for the two-proton

drip line. In addition, only the NL3 parametrization [38] has been used in these studies.

Therefore, no estimate of theoretical errors in the predictions of one- and two-proton drip

lines are available. These gaps in our knowledge of the CDFT performance have been filled

by us in Ref. [84], where the two-proton drip lines were studied with NL3*, DD-ME2, DD-

PC1 and DD-MEδ. Theoretical uncertainties in the definition of two-proton drip line have

been deduced.

Here, we present a detailed comparison of the RHB results with the experiment. Fig.

3.7 compares experimental data with calculated two-proton drip line obtained with DD-

PC1. The experimental two-proton drip line is delineated firmly or tentatively up to Z =

84. The red line with small solid circles shows the calculated two-proton drip line. Nuclei

to the left of this line are proton unstable in the calculations. Nuclei which are proton

unstable in experiment are shown by solid cyan squares. In the following discussions we

concern with isotope chains containing proton unstable nuclei since this provides the most

reliable experimental information on the position of two-proton drip line. One can see that

with DD-PC1, proton unbound Z = 4, 8, 16, 18, 20, 32, 34, 76, 80, and 82 nuclei are

predicted to be proton bound in the calculations and the two-proton drip line is predicted

too early for this parametrization for the Z = 56 isotopes. Similar analysis has been done

for NL3*, DD-ME2, and DD-MEδ (see Ref. [40] for details).

In general, the results of the calculations are very close to experimental data. This is

because the proton-drip line lies close to the valley of stability, hence extrapolation errors
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towards it are small. Another reason is the fact that the Coulomb barrier provides a rather

steep potential reducing considerably the coupling to the proton continuum. This leads to

a relatively low density of the single-particle states in the vicinity of the Fermi level.

Since this density is comparable with the one for the nuclei away from two-proton drip

line, the slope of the two-proton separation energy S2p as a function of proton number

for a given isotonic chain remains almost unchanged on approaching the two-proton drip

line (Fig. 3.6). As a consequence, theoretical uncertainties for the two-proton drip line are

rather small for Z ≤ 86 but somewhat larger for higher Z (see Fig. 2 in Ref. [84]) due to

the increase of the single-particle level density and the related decrease of the slope of S2p

as a function of proton number (Fig. 3.6).

According to Fig. 2 of Ref. [84], theoretical uncertainties in the predictions of the po-

sition of two-proton drip line are either very small (2 neutrons) or non-existent for isotope

chains with Z ≤ 86. These small uncertainties may be a source of observed discrepan-

cies between calculations and experiment for a number of isotope chains. However, in

a number of the cases (for example, in the Z = 32 and 34 isotopes chains) there is no

uncertainty in the predicted position of two-proton drip line (Fig. 2 in Ref. [84]). Thus,

the observed discrepancies between theory and experiment may be due to the limitations

of the model description on the mean field level. Indeed, it is well known that the Ge

(Z = 32) [92] and Se (Z = 34) [93, 94] isotopes show prolate-oblate shape coexistence

and/or γ-softness near the proton-drip line. A similar shape coexistence is also observed

in heavier Kr [95, 96, 97, 98] and Rb [99] nuclei as well as in the Z ∼ 82 proton-drip line

nuclei [100, 101]. By ignoring the correlations beyond mean field, we may introduce an
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error in the predicted position of two-proton drip line. The uncertainties in the definition

of the two-proton drip lines obtained with the CDFT and SDFT are shown in Fig. 3.8.
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The comparison of the uncertainties in the definition of two-proton and two-neutron drip
lines obtained in CDFT and SDFT.

In Figure 3.8 we show the comparison of the uncertainties in the definition of two-

proton and two-neutron drip lines obtained in CDFT and SDFT. The shaded areas are

defined by the extremes of the predictions of the corresponding drip lines obtained with

different parametrizations. The blue shaded area shows the area where the CDFT and

SDFT results overlap. Non-overlapping regions are shown by dark yellow and plum colors

for SDFT and CDFT, respectively. The results of the SDFT calculations are taken from the

supplement to Ref. [5]. The two-neutron drip lines obtained by microscopic+macroscopic

(FRDM [6]) and Gogny D1S DFT [7] calculations are shown by red and blue lines, respec-

tively.
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3.6 Two-neutron drip line.

As discussed in Refs. [5, 84], the situation is different for the two-neutron drip line.

Fig. 3.9 presents the compilation of known calculated two-neutron drip lines obtained with

the state-of-the-art relativistic and non-relativistic EDF’s. They include four two-neutron

drip lines obtained in the CDFT calculations of Ref. [84], which are tabulated in Table 3.3.

Non-relativistic results are represented by two-neutron drip lines obtained with the Gogny

functional D1S [7] and with eight functionals of Skyrme type [5, 102]. In addition, the

two-neutron drip line from the microscopic+macroscopic calculations of Ref. [6] is also

shown. It can be seen that with the exception of two encircled regions, the theoretical

differences in the location of two-neutron drip line are much larger than the ones for the

two-proton drip line.
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Two-neutron drip-lines obtained in state-of-the-art DFT calculations. The regions of well
defined localization of the two-neutron drip-line are encircled.
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The same as in Fig. 3.9 but with the four most neutron-rich two-neutron drip lines shown
in color and the rest in black.

The question whether there exist correlations between the position of the two-neutron

drip line and its nuclear matter properties for a given EDF could be asked. With that

goal Fig. 3.10 shows the four most neutron-rich two-neutron drip lines amongst the 14

compiled lines. The nuclear matter properties of the corresponding EDF’s are shown in

Table 3.2. Considering the EDF’s NL3* which leads to the most neutron-rich two-neutron

drip lines amongst the relativistic functionals, it is tempting to associate the difference in

the position of the two-neutron drip lines with different symmetry energies. But a detailed

comparison of the position of the 14 two-neutron drip lines presented in Figs. 3.9, and 3.10

with nuclear matter properties of their EDF’s (Table 3.2) does not reveal clear correlations

between the location of the two-neutron drip line and the nuclear matter properties of the
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corresponding functional. For nuclei close to the neutron drip line the Fermi surface is

very small and negative close to the continuum limit and it changes only slowly with the

neutron number. The precise position of the drip line therefore depends very much on the

behavior of the tail of the neutron density. At these very low densities the properties J and

L of the nuclear matter at saturation in not really relevant.

The possible sources of the uncertainties in the position of the two-neutron drip line

have been discussed in Ref. [84]. They include the isovector properties of the EDF’s [5] and

the underlying shell structure connected with inevitable inaccuracies of the single particle

energies in the DFT description [84].

The isovector properties of an EDF define the depth of the nucleonic potential with

respect to the continuum and may affect the location of two-neutron drip line. However,

such uncertainties in the depth of the nucleonic potential exist also in known nuclei (see

discussion in Sect. IVC of Ref. [103]). They cannot describe the observed features com-

pletely.

The shell structure effects are clearly visible in the fact that for some combinations of Z

and N there is basically no (or very little) dependence of the predicted location of the two-

neutron drip line on the CEDF. Such a weak dependence, seen in all model calculations, is

especially pronounced at spherical neutron shell closures with N = 126 and 184 around

the proton numbers Z = 54 and 80, respectively. In addition, a similar situation is seen in

the CDFT calculations at N = 258 and Z ∼ 110. This fact is easy to understand because

of the large neutron shell gap at the magic neutron numbers in all DFT’s.
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Inaccuracies in the DFT description of single particle energies [53, 103] also contribute

to increasing uncertainties in the prediction of two-neutron drip line position on moving

away from these spherical shell closures. The comparison of Figs. 3.9 and 3.11, shows

that there is a close correlation between the nuclear deformation at the neutron-drip line

and the uncertainties in their prediction. The regions of large uncertainties corresponds to

transitional and deformed nuclei. Again this is caused by the underlying level densities

of the single-particle states. The spherical nuclei under discussion are characterized by

large shell gaps and a clustering of highly degenerate single-particle states around them.

Deformation removes this high degeneracy of single-particle states and leads to a more

equal distribution of the single-particle states with energy. Moreover, the density of bound

neutron single-particle states close to the neutron continuum is substantially larger than

that on the proton-drip line which leads to a small slope of two-neutron separation energies

S2n as a function of neutron number in the vicinity of two-neutron drip line for medium

and heavy mass nuclei (see Fig. 3.5). The S2n and S2p values are described with a similar

accuracy in the various parameterizations (Table 3.1). However, the difference in the slope

of S2n and S2p as a function of proton and neutron numbers translates into much larger

uncertainties in the definition of the position of two-neutron drip line as compared with

two-proton drip line. This also indicates that the predictions for the two-neutron drip line

depend more sensitively on the single-particle energies than those for two-proton drip line.

The uncertainties in the definition of the two-neutron drip lines obtained with the CDFT

and SDFT are shown in Fig. 3.8.
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Table 3.2

Properties of symmetric nuclear matter at saturation for the EDFs used in Fig.3.9.

Parameter ρ0 [fm−3] (E/A)∞ [MeV] K [MeV] J [MeV] L0 [MeV] m*/m
four most neutron-rich two-neutron drip lines

NL3* [33] 0.150 -16.31 258 38.68 122.6 0.67
SkM* [104, 3] 0.160 -15.77 217 30.03 45.8 0.79
UNEDF1 [105] 0.159 -15.80 220 28.99 40.0 0.99
TOV-min [102] 0.161 -15.93 222 32.30 76.0 0.94

remaining parametrizations (drip-lines in the middle)
mic+mac [FRDM] [6] -16.25 240 32.73 1.00

DD-ME2 [26] 0.152 -16.14 251 32.40 49.4 0.66
SLy4 [106, 3] 0.160 -15.97 230 32.00 45.9 0.69

D1S [Gogny] [107] 0.160 -15.90 210 32.00 0.70
UNEDF0 [105] 0.161 -16.06 230 30.54 45.1 0.90
DD-MEδ [28] 0.152 -16.12 219 32.35 52.9 0.61
SkP [108, 3] 0.163 -15.95 201 30.00 19.7 1.00

SV-min [109, 3] 0.161 -15.91 222 30.66 44.8 0.95
DD-PC1 [27, 79] 0.152 -16.06 230 33.00 68.4 0.66

HFB-21 [BSk21] [110] 0.158 -16.05 246 30.00 46.6 0.80

In Table 3.2 we list the density ρ0 , the energy per particle (E/A∞), the incompressibil-

ity K∞, the symmetry energy J and its slope L0, and the isoscalar effective masses m∗/m

of a nucleon at the Fermi surface for the energy density functionals used in Fig. 3.9. In the

relativistic cases we show the Lorentz effective masses [2]. The results of the compilation

[3] is used for the Skyrme functionals when possible.

Table 3.3: Two-proton and two-neutron drip lines.

Proton Two proton drip-line Two neutron drip-line
number Z NL3* DD-MEδ DD-PC1 NL3* DD-MEδ DD-PC1

2 2 2 2 8 6 6
4 4 2 2 12 8 8
6 4 4 4 18 14 16
8 4 4 4 20 20 20
10 8 8 8 28 20 24
12 8 8 8 34 28 28
14 8 10 10 38 34 34
16 10 12 10 40 40 40

Continued on next page
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Table 3.3 – Continued from previous page
Proton Two proton drip-line Two neutron drip-line

number Z NL3* DD-MEδ DD-PC1 NL3* DD-MEδ DD-PC1
18 12 14 12 48 40 40
20 14 14 14 56 42 48
22 18 18 18 60 52 52
24 20 20 20 64 56 56
26 20 22 20 68 60 62
28 22 22 22 70 68 68
30 26 26 26 78 70 72
32 28 28 28 82 76 78
34 30 30 30 88 82 82
36 32 32 32 94 82 82
38 34 34 34 100 82 82
40 36 36 36 104 84 86
42 38 40 38 108 96 100
44 42 42 42 112 102 104
46 44 44 44 116 110 114
48 46 46 46 120 114 120
50 48 48 48 124 122 126
52 56 54 54 128 126 126
54 56 56 56 128 126 126
56 58 58 60 138 126 126
58 60 60 60 144 126 126
60 62 64 62 150 126 126
62 66 66 66 154 126* 126*
64 68 70 70 158 146 150
66 70 72 72 166 150 154
68 74 76 76 168 154 158
70 78 78 78 178 160 164
72 80 82 80 182 164 166
74 80 84 84 184 168* 184
76 84 88 86 184 184 184
78 88 90 90 184 184 184
80 90 92 92 184 184 184
82 94 96 94 184 184 184
84 104 104 104 186 184 184
86 106 106 108 206 184 184
88 108 110 110 214 184 184*
90 112 114 116 218 198* 210
92 118 118 120 224 210 216
94 122 126 126 232 216 218

Continued on next page
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Table 3.3 – Continued from previous page
Proton Two proton drip-line Two neutron drip-line

number Z NL3* DD-MEδ DD-PC1 NL3* DD-MEδ DD-PC1
96 126 130 130 252 218 220
98 130 132 130 256 222 230

100 132 134 134 258 228 232
102 134 136 136 258 232 246
104 138 140 142 258 236 250
106 142 144 144 258 250 256
108 146 148 150 258 258 258
110 150 152 154 258 258 258
112 154 156 158 258 258 258
114 158 160 162 262 258 258
116 162 164 166 270 262 274
118 166 168 172 270 276 278
120 170 172 172 270 278 286

Table 3.3 list the two-proton and two-neutron drip lines predicted by the NL3*, DD-

MEδ, and DD-PC1. An asterisk at a neutron number at the two-neutron drip line indicates

isotope chains with additional two-neutron binding at higher N -values (peninsulas).

3.7 Deformations

The solution of the variational equations of density functional theory yields values for

the single particle density ρ(r). Therefore, density functional theory not only allows us to

derive the binding energies of the system but in addition all quantities depending on ρ(r).

In this section we consider the charge quadrupole moment:

Q20 =

∫
d3rρ(r) (2z2 − r2⊥), (3.4)
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with r2⊥ = x2 + y2. This value can be directly compared with experimental data.

However, it is more convenient to transform this quantity into dimensionless deformation

parameter β2:

Q20 = 2

√
4π

5

3

4π
ZR2

0β2 (3.5)

where R0 = 1.2A1/3. Eq. (3.5) is used also in the extraction of experimental β2 deforma-

tion from measured data [111]. This justifies its application despite the fact that this simple

linear expression ignores the contributions of higher power/multipolarity deformations to

the charge quadrupole moment.

Fig. 3.11 shows the distribution of proton quadrupole β2 deformations in the (N,Z)

plane for the CEDF DD-PC1. Similar figures has been done for NL3*, DD-MEδ and

DD-ME2 (see [40]) and the results are almost the same in all the four CEDF’s under

consideration.

Direct experimental information on the deformations of nuclei can be obtained from

Coulomb excitation and lifetime measurements [111]. An alternative method is to derive

a quadrupole moment from the 2+ → 0+ transition energy by using the Grodzins rela-

tion [112] or its later refinements [113]. However, these prescriptions are applicable only

to well deformed nuclei. In general, it is estimated that experimental methods give an ac-

curacy of around 10% [113] for the static charge quadrupole deformation β2 in the case

of well deformed nuclei. The error can be larger in transitional nuclei since in this case

the deformation extracted from experimental data will contain also dynamic deformation

resulting from zero-point oscillations of the nuclear surface in the ground state [114].
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Figure 3.11

Charge quadrupole deformations β2 obtained in the RHB calculations with DD-PC1.

These considerations limit the possibilities of a comparison between calculated and

experimental β2 deformations to the well-deformed nuclei in the rare-earth and actinide

regions. Although deformation exists also in the ground states of nuclei in many other

regions, the potential energy surfaces of these nuclei are, in general, soft in β2 or γ-

deformation, leading to the phenomena of shape fluctuations, shape coexistence [115]

and quantum phase transitions [116]. For such situations, the mean field description is

not completely adequate, and, thus, a comparison between theoretical and experimental

deformation properties is not conclusive.

A systematic comparison between calculated and experimental static charge quadrupole

deformations β2 has already been performed in each of these regions (with NL3* [54] in

the actinides and DD-PC1 [27] in the rare-earth region). They describe the experimental

data well, typically within the experimental uncertainties. Fig. 3.12 shows that in these

regions of well deformed nuclei the spread of the theoretical predictions, i.e. the differ-
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ence between results obtained with various CEDF’s, is rather small for static quadrupole

deformations β2.

The width of the gray region in Fig. 3.11 along a specific magic number corresponding

to a shell closure indicates the impact of this shell closure on the structure of the neighbor-

ing nuclei. The effect of a single gap is more quantifiable away from these nuclei. One can

see in Fig. 3.11 that the neutron N = 82, 126 and 184 shell gaps have a more pronounced

effect on the nuclear deformations as compared with the proton shell gaps at Z = 50 and

Z = 82.

The comparison of Fig. 3.11 with HFB results based on the Gogny D1S force in Fig.

3a of Ref. [7], with HFB results based on six Skyrme EDF’s in Fig. 2 of the Supplement

to Ref. [5], and with the microscopic+macroscopic model in Fig. 9 of Ref. [6] shows

that the general structure of the distribution of charge quadrupole deformations β2 in the

nuclear chart is similar in all model calculations. Differences between models emerge

mostly at the boundaries between the regions of different types of deformation, i.e. in the

transitional regions, where the energy surfaces are rather flat and static deformations are

not well defined. This comparison also reveals that, similar to our relativistic results, also in

non-relativistic calculations the neutron shell gaps with N = 82, 126 and 184 have a more

pronounced effect on the nuclear deformations than the proton shell gaps with Z = 50 and

Z = 82.

Figure 3.12 shows the spreads ∆β2(Z,N) among four CEDF’s for the predicted charge

quadrupole deformations. It can be seen that this spread is either non-existent or very small

for spherical or nearly spherical nuclei as well as for well-deformed nuclei in the rare-earth
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Figure 3.12

Proton quadrupole deformation spreads ∆β2(Z,N) as a function of proton and neutron
number.

and actinide region. The largest uncertainties for predicting the equilibrium quadrupole de-

formations exist at the boundaries between regions of different deformations. Correlations

going beyond mean field have to be taken into account [98, 117, 94, 100] and shape fluctu-

ations do not allow a precise definition of deformation parameters. However, even if such

correlations and fluctuations are taken into account properly by methods based on density

functional theory and going beyond the mean field, there remain deficiencies of the current

generations of the DFT models with respect of the description of single-particle energies

[98]. When we compare the profile of the potential energy surface (PES) as a function of

the deformation in spherical or well-deformed nuclei with that in transitional nuclei, we

find that this profile depends for transitional nuclei much more sensitively on the underly-

ing single-particle structure than in the other two cases. However, it is well known that the

single-particle energies (both spherical and deformed) are not very accurately described at
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the DFT level (see Refs. [103, 53]). Considering that the PES’s obtained at the mean field

level form the starting points of many beyond mean field calculations, further improvement

in the description of the single-particle energies is needed in order to describe experimental

data in transitional and shape-coexistent nuclei reliably and consistently across the nuclear

chart.

3.8 Charge radii and neutron skin thickness.

The charge radii were calculated from the corresponding point proton radii as

rch =
√
< r2 >p +0.64 fm (3.6)

where the factor 0.64 accounts for the finite-size effects of the proton. We neglected the

small contributions to the charge radius originating from the electric neutron form factor

and the electromagnetic spin-orbit coupling [118, 119] as well as the corrections due to the

center of mass motion.

The accuracy of the description of charge radii is illustrated on the example of the

CEDF DD-PC1 in Fig. 3.13. Black, red, green, orange and blue colors are used for isotope

chains with proton numbers ending with 2, 4, 6, 8 and 0 respectively. The experimental data

are taken from Ref. [8]. Panels (b), (c) and (d) show the comparison in an enlarged scale.

We do not present such a comparison for the CEDF’s NL3* and DD-MEδ because they

show very similar results. This similarity is clearly seen from Fig. 3.14, which presents

the spreads (Eq. 3.1) in the theoretical results on charge radii, and from Table 3.4, which

presents the rms-deviations between calculated and experimental radii. These comparisons
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FIG. 23. (Color online) Experimental and theoretical charge radii as a function of neutron number. The calculations are performed with
DD-PC1. Black, red, green, orange, and blue colors are used for isotope chains with proton numbers ending with 2, 4, 6, 8, and 0, respectively.
The experimental data are taken from Ref. [128]. Panels (b), (c), and (d) show the comparison in an enlarged scale.
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Figure 3.13

Experimental and theoretical charge radii as a function of neutron number.
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are based on the latest compilation of experimental charge radii in Ref. [8], which includes

charge radii for 351 even-even nuclei.

The calculations provide in general a good description of experimental data. However,

there are four exceptions. First, there are very light nuclei He, Be and C (Fig. 3.13b), where

the mean field description has obviously limitations. The discrepancy between theory and

experiment is especially pronounced in the case of the He nuclei. Then, there is a substan-

tial discrepancy between theory and experiment for charge radii of Se, Kr and Sr isotopes

at neutron numbers N = 38− 46 (see Fig. 3.13c). The calculated ground state quadrupole

deformations of these nuclei are predicted to be either spherical or near-spherical (see Fig.

3.11). However, the potential energy surfaces are soft. This indicates that a proper descrip-

tion of their structure requires the inclusion of beyond mean field correlations. Next, the

ground states of some proton-rich Hg and Pb isotopes are predicted to be oblate (or prolate)

in contradiction with experiment. These earlier observed features [120] are in part due to

incorrect position of the proton 1h9/2 spherical subshell [120, 52] and they are present in

all the CEDF’s used here. When comparing theory with experiment we use for these nuclei

the radii from the minimum of the potential energy surface corresponding to the experi-

mental minimum, i.e. the spherical minimum for the N = 104 − 114 Pb isotopes and the

oblate minimum for the N = 100 − 108 Hg isotopes. Finally, the last case is related to

the unusual behavior of the charge radii in the U-Pu-Cm isotopes (see Fig. 3.13d). For a

fixed neutron number, the increase of proton number leads in these isotopes to an increase

of the calculated charge radius. Such a feature is seen not only for the CDFT results, but

also for the results of the non-relativistic DFT calculations based on the Gogny D1S force
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(see supplement to Ref. [7]). However, in experiment the charge radii of the Cm (Z = 96)

nuclei are lower than those of Pu (Z = 94) and U (Z = 92). This is the only case in

the nuclear chart where such an inversion exists. Considering that both the ground state

quadrupole deformations are very stable in this region, it is impossible based on the current

CDFT’s and on the Gogny functional D1S to understand this highly unusual behavior of

experimental charge radii in the Cm isotopes.

Table 3.4

The rms-deviations ∆rrms
ch between calculated and experimental charge radii.

CEDF ∆rrms
ch [fm] ∆rrms

ch [fm]
1 2 3

NL3* 0.0407 0.0283
DD-ME2 0.0376 0.0230
DD-MEδ 0.0412 0.0329
DD-PC1 0.0402 0.0253

Table 3.4 list the rms-deviations ∆rrms
ch between calculated and experimental charge

radii. They are given in fm for the indicated CEDF’s. For the calculations of the rms-

values, all experimental data are used in column 2, while the data on radii of He (Z = 2)

and Cm (Z = 96) isotopes are excluded in column 3. See text for the discussion of these

cases.
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Figure 3.14

Charge radii spread ∆rch(Z,N) as a function of proton and neutron number.

In neutron-rich nuclei the excess of neutrons over protons creates a neutron skin. The

neutron skin thickness is commonly defined as the difference of proton and neutron root-

mean-square (rms) radii

rskin =< r2n >
1/2 − < r2p >

1/2 . (3.7)

The neutron skin thickness is an important indicator of isovector properties. It is closely

related with a number of observables in finite nuclei which are sensitive to isovector prop-

erties [121, 64, 122] and it affects the physics of neutron stars [123, 124, 64, 125].

The experimental data on the neutron skin thickness in 208Pb is contradictory. There is

a large set of experiments which suggests that the neutron skin is around 0.2 fm or slightly

smaller (see Table 1 in Ref. [126]). However, these experimental data are extracted in

model dependent ways (see Ref. [127] and references quoted therein). The neutron skin

thicknesses rskin = 0.161± 0.042 [126] and rskin = 0.190± 0.028 [128] obtained recently
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Table 3.5

Neutron skin thicknesses rskin in 48Ca and 208Pb obtained in calculations with the
indicated CEDF’s.

CEDF rskin(48Ca) [fm] rskin(208Pb) [fm]
NL3* 0.236 0.288

DD-ME2 0.187 0.193
DD-MEδ 0.177 0.186
DD-PC1 0.198 0.201

from the energy of the anti-analogue giant dipole resonance rely on relativistic proton-

neutron quasiparticle random-phase approximation calculations based on the RHB model.

Another recent value of the neutron skin thickness of rskin = 0.15 ± 0.03(stat)+0.01
−0.03(sys)

fm has been extracted from coherent pion photo-production cross sections [129]. However,

the extraction of information on the nucleon density distribution depends on the compar-

ison of the measured (γ, π0) cross sections with model calculations. On the other hand,

a measurement using an electro-weak probe has very recently been carried out in parity

violating electron scattering on nuclei (PREX) [130]. It utilizes the preferential coupling

of the exchanged weak boson to neutrons. The electro-weak probe has the advantage over

experiments using hadronic probes that it allows a nearly model-independent extraction of

the neutron radius that is independent of most strong interaction uncertainties [131]. How-

ever, a first measurement at a single momentum transfer gave rskin = 0.33 ± 0.17 with a

relatively large error bar [130]. A central value of 0.33 fm is particularly intriguing since it

is around 0.13 fm higher than central values obtained in other experiments (see Table 1 in

Ref. [126]). The analysis performed in Ref. [132] has found no compelling reason to rule
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out the models with large neutron skin in 208Pb. However, as indicated in Ref. [132], the

parameters of these models do not follow from a strict optimization procedure. All sys-

tematic fits with density dependent couplings in the isovector channel for DD-ME1 [41],

DD-ME2 [26], DD-MEδ [28] and DD-PC1 [27] find for the neutron skin thickness in 208Pb

values close to 0.2 fm (see Table 3.5). Only in the first two cases the small neutron skins

have been used in the fit. For the CEDF’s DD-MEδ and DD-PC1 the density dependence

in the isovector channel has been determined from ab-initio calculations of nuclear matter.

It is clear that the already approved follow-up PREX measurement [133] designed to

achieve the original 1% error in the neutron radius of 208Pb will provide useful constraints

on the selection of the proper CEDF. Table 3.5 also provides the predictions for neutron

skin thickness in 48Ca. It will also be measured in the approved CREX experiment at JLab

with an accuracy of around 0.02 fm [133].
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Figure 3.15

Neutron skin thicknesses obtained in RHB calculations with DD-PC1.

58



On going to the neutron-drip line we observe the same trends which are already seen

in 48Ca and 208Pb (see Table 3.5). First, the neutron skin thicknesses obtained with DD

CEDF’s cluster are around the same value. Second, the neutron skin thickness obtained

with NL3* exceeds substantially those found with DD CEDF’s. It is interesting that the

neutron skin thicknesses obtained with DD CEDF’s are very close to those found in Skyrme

DFT’s calculations with SV-min and UNEDF0 in Ref. [66].

In Fig. 3.15 we present calculated distributions of neutron skin thicknesses in the

(Z,N) chart with DD-PC1. Similar distributions are presented for NL3*, DD-ME2 and

DD-MEδ in Ref [40]. These results are similar for the DD CEDF’s, and on the other side,

the neutron skin thickness is larger for NL3*. This is a consequence of two factors. First,

the neutron skin is larger for NL3* than for the DD CEDF’s already in the valley of beta-

stability and the neutron skin thickness increases with isospin. Second, the two-neutron

drip line extends to more neutron-rich nuclei in NL3* as compared with DD CEDF’s lead-

ing to these high values of rskin.

As shown in Fig. 3.16 the spreads (Eq. 3.1) of theoretical predictions in the neutron

skin thickness increase with isospin and become rather large in neutron-rich nuclei (reach-

ing 0.25 fm in some cases). They are larger than those found in Skyrme calculations in

Ref. [66]. This is a consequence of the use of NL3*, which contrary to DD CEDF’s and

the Skyrme EDF’s used in Ref. [66], favors large neutron skins. This again stresses the

importance of future PREX-II and CREX experiments. If PREX-II confirms the large neu-

tron skin in 208Pb (rskin ∼ 0.33 fm) obtained in the first PREX experiment, this would

also require to look for density dependent CEDF’s and Skyrme EDF’s with larger neutron
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Figure 3.16

Neutron skin thickness spreads ∆rskin(Z,N) as a function of proton and neutron number.

skins. If this experiment will lead to a smaller neutron skin thickness rskin ∼ 0.2 fm, then

the EDF’s with large neutron skins (such as NL3*) should be excluded from further con-

sideration. In either case, this experiment will lead to a reduction of the uncertainty in the

prediction of neutron skins in neutron-rich nuclei.

3.9 Concluding remarks.

The global performance of covariant energy density functionals has been assessed in-

vestigating the state-of-the-art functionals NL3*, DD-ME2, DD-MEδ, and DD-PC1. They

represent three classes of functionals which differ by basic model assumptions and fitting

protocols. The available experimental data on ground state properties of even-even nuclei

have been confronted with the results of the calculations. For the first time, theoretical

systematic uncertainties in the prediction of physical observables (as defined in Eq. (3.1))
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have been investigated on a global scale for relativistic functionals. Special attention has

been paid to the propagation of these uncertainties towards the neutron-drip line.

The main results can be summarized as follows:

• The current generation of CEDF’s investigated in this chapter of the dissertation

provides an improved description of masses across the nuclear chart as compared

with the previous generation. This leads not only to reduced global rms deviations

but also to improved gross trends of the deviations between theory and experiment as

a function of the mass number. The spread for binding energies increases on going

from the beta-stability valley towards the neutron-drip line. This is a consequence of

poorly defined isovector properties of the current generation of CEDF’s.

• The analysis of discrepancies between theory and experiment for two-neutron sep-

aration energies and their sources leads to a more critical look on the reappearance

of two-neutron binding with increasing neutron number beyond the primary two-

neutron drip line. This reappearance shows itself in the nuclear chart via peninsulas

emerging from the nuclear mainland and it is directly related to the behavior of two-

neutron separation S2n energies with neutron number.

• The calculated two-proton drip lines are very close to experiment. The best repro-

duction of the two-proton drip line is achieved with DD-MEδ, which is characterized

by the best residuals for the two-proton separation energies S2p. Since the proton-

drip line lies close to the valley of stability, the extrapolation errors towards it are

small. In addition, the Coulomb barrier provides a rather steep potential reducing
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considerably the coupling to the proton continuum. This leads to a relatively low

density of the single-particle states in the vicinity of the Fermi level, which helps to

minimize the errors in the prediction of two-proton drip line.

• A detailed analysis of the sources of the spread in the predictions of the two-neutron

drip lines existing in non-relativistic and covariant DFT has been performed. Poorly

known isovector properties of the EDF’s, the underlying shell structure and in-

evitable inaccuracies in the DFT description of the single-particle energies contribute

to these uncertainties.

• The experimental static β2 deformations of well-deformed nuclei are well described

in these calculations. The difference between the four CEDF’s is small and within

the experimental uncertainties. As a result, such experimental data cannot be used to

differentiate between the functionals. Theoretical uncertainties for this physical ob-

servable are either non-existent or very small for spherical or nearly spherical nuclei

as well as for well-deformed nuclei in the rare-earth and in the actinide regions. The

largest spreads for predicting the equilibrium quadrupole deformations exist at the

boundaries between regions of different deformations.

• A comparable level of accuracy is achieved by all the functionals under investigation

for charge radii. Fig. 3.14 shows that the spread in predicting charge radii are not

necessarily larger near the neutron drip line as compared with the valley of beta-

stability.
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• The experimental data on the neutron skin thickness rskin in 208Pb is somewhat con-

tradictory. Hadronic probes give rskin ∼ 0.2 fm, whereas in the PREX experiment

the electro-weak probe provides a central value of rskin = 0.3 fm, however with

very large error bars. The NL3* results come close to the central PREX value, while

DD-MEδ and DD-PC1 give much smaller neutron skins in the vicinity of rskin = 0.2

fm.

The current investigation shows that the biggest uncertainties in theoretical description

exist in transitional nuclei. On the one hand, this is expected since these nuclei have usually

flat potential energy surfaces, often in the β- and γ-directions. The minima are not well

defined in these flat energy surfaces and the fluctuations cannot be neglected. These nuclei

have to be treated by the methods going beyond mean field [134, 96, 100]. On the other

hand, the mean field is the starting point of these approaches. However, in some specific

cases we find a strong dependence of the equilibrium deformations and the potential energy

surfaces of transitional and shape-coexistent nuclei on the employed EDF which originates

from the deficiencies of mean field methods in the description of single-particle energies.

63



CHAPTER IV

NEUTRON DRIP LINE: SINGLE-PARTICLE DEGREES OF FREEDOM AND

PAIRING PROPERTIES AS SOURCES OF THEORETICAL UNCERTAINTIES

4.1 Introduction

The analysis of theoretical uncertainties in the prediction of the position of the two-

neutron and two-proton drip-lines has recently attracted great interest (chapter III and

Ref [5, 84, 40]) because of the possibility to estimate the number of nuclei which may

exist in nature. Fig. 4.1 shows the theoretical uncertainties in the definition of the position

of the two-proton and two-neutron drip lines which emerge from an analysis performed

in the framework of covariant density functional theory (CDFT) [43, 29] using four state-

of-the-art covariant energy density functionals (CEDF’s). The uncertainties in the location

of the two-proton and two-neutron drip lines are shown by violet shaded areas. They are

defined by the extremes of the predictions of the corresponding drip lines obtained with

different functionals. The uncertainties (the range of nuclei) in the location of the neutron

chemical potential λn = −2.0 MeV are shown by the blue shaded area. Experimentally

known stable and radioactive nuclei (including proton emitters) are shown by black and

green squares, respectively. The green solid line shows the limits of the nuclear chart (de-

fined as fission yield greater than 10−6) which may be achieved with dedicated existence

measurements at FRIB [9]. Red solid circles show the nuclei near the neutron drip line for
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which the single-particle properties are studied in Sect. 4.4. The detailed comparison of

these results has already been discussed in chapter III and Refs [84, 40].
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Figure 4.1

The uncertainties in the location of the two-proton and two-neutron drip lines.

As already stated in chapter III, the largest uncertainties exist in the position of the

two-neutron drip line. Several sources have been proposed for these uncertainties, but they

have not been investigated in detail before our studies. The sources of the uncertainties in

the prediction of the neutron drip line are as follows:

• The uncertainties in the definition of the isovector properties of the EDF’s (see chap-

ter III and [5]). The isovector properties of an EDF impact the depth of the nucleonic

potential with respect to the continuum and, thus, may affect the location of the two-

neutron drip line. However, an inaccurate reproduction of the depth of the nucleonic

potential exists in modern EDF’s also in known nuclei (see the discussion in Sect.

IVC of Ref. [103]). Thus, they alone cannot explain the observed features.
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• The sensitive of the underlying shell structure and the accuracy of the description of

the single-particle energies Ref. [84]. No detailed study has been performed of this

aspect of the problem before our studies.

• The impact of pairing and it strength on the position of the two-neutron dripline [135,

136].

The goal of this chapter is to investigate the impact of pairing correlations and the

underlying shell structure on the position of the two-neutron drip line and to outline the

approaches which will allow in future to decrease theoretical uncertainties in the definition

of two-neutron drip lines. Only the systematic uncertainties is discuss and not the statistical

errors which can be calculated from a statistical analysis during the fit [65].

4.2 Pairing properties: a global view
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Neutron pairing energies Epairing obtained in the RHB calculations with DD-PC1 CEDF.
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Fig. 4.2 shows the neutron pairing energies Epairing obtained with DD-PC1 CEDF. In

the region of known nuclei these energies are, in general comparable. They are very similar

in the RHB calculations with the three CEDF’s DD-ME2, DD-MEδ and DD-PC1 and

slightly higher (in absolute values) with the NL3* CEDF (see [137] for more details). On

approaching the two-neutron drip line, substantial differences develop between the pairing

energies. The largest increase of neutron pairing energies is seen near the two-neutron drip

line between N = 50 and N = 126, for other nuclei in the vicinity of two-neutron drip

line this increase is more modest(see Fig. 4.2).

Fig. 4.3 shows the evolution of the neutron pairing gaps ∆uv and pairing energies

Epairing of the Yb nuclei located between the two-proton and two-neutron drip-lines ob-

tained in the axial RHB calculations with the indicated CEDF’s. The shaded yellow area

indicates experimentally known nuclei. The ’DD-PC1(scaled)’ curves show the results of

the calculations in which the pairing strength is increased by 3.5%. It can be seen in this

figure that the RHB calculations with the three density dependent sets DD-MEδ, DD-ME2

and DD-PC1 the pairing gaps ∆uv in neutron-rich N ≥ 126 nuclei have on average the

same magnitude as pairing gaps in known nuclei (Fig. 4.3a). However, the absolute pairing

energies are larger by a factor of about 2 in neutron-rich nuclei as compared with the ones

in known nuclei (Fig. 4.3b). Both ∆uv and Epairing are more or less constant in neutron-

rich nuclei in the RHB calculations with DD-PC1 and DD-MEδ. On the contrary, a slight

increase of the absolute values of these quantities is observed with increasing isospin in

DD-ME2.
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Neutron pairing gaps ∆uv and pairing energies Epairing of Yb nuclei.

The situation is different for the NL3* functional. Its pairing correlations are only

slightly stronger in known nuclei as compared with the density dependent CEDF’s. How-

ever, more pronounced differences are seen when the results in neutron-rich nuclei are

compared with the ones in known nuclei. The pairing gaps ∆uv are on average 25% larger

in neutron-rich nuclei as compared with known ones and, in addition, they gradually in-

crease with neutron number. The absolute values of the pairing energies rapidly increase

with neutron number in neutron-rich N ≥ 126 nuclei; near two-neutron drip line these

energies are larger by a factor of 4 than average pairing energies in known nuclei.

Considering the existing differences in the ∆uv and Epairing values obtained in the cal-

culations with different CEDF’s in known nuclei (curves in shaded area of Fig. 4.3), it is
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important to understand to which extent the minimization of these differences will also

remove the differences in these quantities in neutron-rich nuclei. In order to address this

question, the calculations with the DD-PC1 CEDF have been performed with a pairing

strength increased by 3.5%. In the region of known nuclei, the ∆uv values obtained in

these calculations are on average the same as the ones obtained in the calculations with

NL3* CEDF (Fig. 4.3a). The pairing energies are also similar in both calculations (Fig.

4.3b). However, in the region of experimentally known nuclei the isospin dependences of

the quantities ∆uv and Epairing are slightly different in these calculations with NL3* and

DD-PC1 CEDF’s. These differences increase with isospin; they are especially pronounced

near the two-neutron drip line. This effect may be related to different density dependence

of these two CEDF’s in the isovector channel.

These results have some unpleasant consequences:

• First, even a careful fitting of the pairing force in known nuclei to experimental

odd-even mass staggerings will not necessary lead to a pairing force with a reliable

predictive power towards the two-neutron drip line. This is because, the ∆uv and

Epairing values obtained in the calculations with the CEDF’s NL3* and DD-PC1

(with a scaled pairing strength) differ by ∼ 30% and ∼ 100% in neutron-rich nuclei,

respectively, despite the fact that they are more or less similar in known nuclei.

• Secondly, since the form of pairing force is the same in both calculations, the ob-

served differences in the quantities ∆uv and Epairing have to be traced back to the
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underlying shell structure and its evolution with neutron number. As discussed in

detail in Sect. 4.4, this is the property most poorly constrained in modern DFT’s.

4.3 The impact of pairing properties on the position of two-neutron drip line using
Rn isotopes as an example

Knowing that there are differences in the predicted size of pairing correlations for nu-

clei with large neutron excess, it is important to understand how they affect the physical

observables of interest, in particular, the position of the two-neutron drip line. To address

this question we analyze the chain of the Rn isotopes with Z = 86. The calculations of

chapter III and Refs. [84, 40] show that the two-neutron drip line is located in this case at

N = 206 for NL3* and at N = 184 for DD-ME2, DD-MEδ, and DD-PC1 (see Table 3.3

and Table IV in Ref. [40]).
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The evolution of the λn, β2, ∆uv and Epairing
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Figure 4.4 shows the evolution of the neutron chemical potential λn (panel (a)), neutron

quadrupole deformation β2 (panel (c)), neutron pairing gap ∆uv (panel (b)) and neutron

pairing energyEpairing (panel (d)) as a function of the neutron numberN in the Rn isotopes

with N ≥ 184 obtained in RHB calculations with the CEDF NL3*. Only the results for

bound nuclei are shown. The results of the calculations for two values of the strength

of the pairing force (Eq. (2.22)) are presented. The calculational scheme labelled “A”

corresponds to the pairing force with the scaling factor f defined in Sect. 2.3 of chapter II.

The calculational scheme “B” uses a pairing strength reduced by 8% as compared with the

scheme “A”.

We perform RHB calculations with the CEDF NL3* and with a pairing strength de-

creased by 8% as compared to the one used in Ref. [40] and chapter III. This brings the

calculated pairing energies near the two-neutron drip line close to those obtained in the

calculations with DD-ME2, DD-MEδ, and DD-PC1 (Fig. 4.4d). The Rn isotopes with

N = 186, 188, 190, 202, 204 and 206, which are bound for the original pairing strength

(scheme “A”), become unbound for decreased pairing (scheme “B”). Thus, the position

of two-neutron drip line located at N = 206 is single-valued in calculational scheme A.

On the contrary, in the calculational scheme B the creation of the peninsula of stability at

N = 192 − 200 leads to primary (at N = 184) and secondary (at N = 200) two-neutron

drip lines. In addition, the deformations of the N = 192 − 200 isotopes become larger in

calculational scheme B (Figs. 4.4c). This reflects the well known fact that pairing typically

tries to reduce the nuclear deformation.
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However, the situation is more complicated. Larger pairing correlations do not neces-

sarily shift the neutron drip line to larger neutron numbers. When we increase, for instance,

in the RHB calculations with DD-ME2 and DD-PC1 the pairing strength by 8%, bringing

the calculated pairing energies closer to those for NL3*, this does not affect the position

of the two-neutron drip line for the chain of Rn isotopes in these CEDF’s because of the

details of the underlying shell structure.

The possible impact of pairing correlations on the position of the two-neutron drip

line can be understood by the following arguments. The nucleus becomes unbound when

the two-neutron separation energy becomes negative. In the majority of the cases it takes

place when the neutron chemical potential λn becomes positive. In nuclei close to two-

neutron drip line pairing correlations scatter neutron pairs from negative energy bound

states into positive energy unbound states. As a consequence, the actual position of the

neutron chemical potential depends on the energies of the involved levels, their degeneracy

and the strength of pairing correlations. In the extreme limit of no pairing, λn is equal

to the negative energy of last occupied state. For example, this takes place in the Rn

isotope with N = 184 (Fig. 4.4a and b). For a realistic pairing and for a typical shell

structure of nuclei close to the drip line the neutron chemical potential will be close to

the zero energy (Fig. 4.4a). The increase of neutron number above N = 190 triggers

the development of deformation (Fig. 4.4c) which activates a new mechanism. Now the

degeneracy of states goes down from 2j + 1 to 2 and intruder orbitals from above the

gap and extruder orbitals from below the gap start to close the spherical N = 184 gap;

this mechanism is active in the vicinity of any spherical shell gap and clearly seen in the
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Nilsson diagram (see, for example, Fig. 15 in Ref. [54]). This mechanism combined with

the gradual increase of the deformation and neutron number allows to keep the neutron

chemical potential in the vicinity of zero energy for an extended range of neutron numbers

(Fig. 4.4a). However, increasing pairing correlations produce additional binding and can

shift in some cases the neutron chemical potential below zero energy thus making the

nucleus bound. The opposite can happen for decreasing pairing correlations.

4.4 Shell structure and single-particle energies at the two-neutron drip line.

It was suggested in Ref. [84] that the position of the two-neutron drip line sensitively

depends on the underlying shell structure and that the uncertainties of the theoretical pre-

dictions of the neutron drip-line depend on the accuracy of the description of the single-

particle energies. This shell structure effects are clearly visible in the fact that for some

combinations of Z and N there is basically no (or very little) dependence of the predicted

location of the two-neutron drip line on the EDF [84, 40] (see Fig. 4.1 and Refs. [5, 84, 40]).

Such a weak (or vanishing) dependence, seen in all model calculations, is especially pro-

nounced at the spherical neutron shell closures with N = 126 and 184 around the proton

numbers Z = 54 and 80, respectively. In addition, a similar situation is seen in the CDFT

calculations at N = 258 and Z ∼ 110 (Fig. 4.1).

Although it has been pointed out in Ref. [84] that these features are due to the large

neutron shell gaps at the magic neutron numbers, these gaps and their dependence on the

CEDF have not been explored in detail. In order to fill this gap in our knowledge, we

performed a detailed investigation of the shell structure of nuclei in the areas where the
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spread in the predictions for the position of two-neutron drip line is either non-existent or

very small. These are the nuclei 114
32Ge82, 18054Xe126,

266
82Pb184, and 366

108Hs258 and their location

in the nuclear chart is shown in Fig. 4.1 with red dots. The neutron single-particle orbitals

active in the vicinity of the Fermi level of these nuclei are shown in Fig. 4.5. In order

to create a more representative statistical ensemble, the calculations have been performed

with 10 CEDF’s. Amongst those are the CEDF’s NL3* [33], DD-ME2 [26], DD-MEδ [28]

and DD-PC1 [27] used in chapter III and Ref. [40] for the global study of the performance

of the state-of-the-art CEDF’s. For these CEDF’s, the two-neutron drip lines are defined in

model calculations up toZ = 120 in chapter III and Refs. [84, 40]. Only these four CEDF’s

were used in the definition of theoretical uncertainties in the position of two-neutron drip

line shown in Fig. 4.1. In addition, we employ now the CEDF’s NL3 [38], NL1 [138],

FSUGold [76], PC-F1 [139], PC-PK1 [79], and TM1 [78] in a study of the shell structure.

The two-neutron drip lines have not been studied with these six CEDF’s so far.

The average (among ten used CEDF’s) size of the shell gap is shown by a solid circle.

Thin and thick vertical lines are used to show the spread of the sizes of the calculated

shell gaps; the top and bottom of these lines corresponds to the largest and smallest shell

gaps amongst the considered set of CEDF’s. Thin lines show this spread for all employed

CEDF’s, while thick lines are used for the subset of four CEDF’s (NL3*, DD-ME2, DD-

MEδ and DD-PC1). Neutron numbers corresponding to the shell gaps are indicated.

The results of the calculations with all these CEDF’s clearly show the presence of large

neutron shell gaps at N = 126 in 180Xe, at N = 184 in 266Pb and at N = 258 in 366Hs

and a smaller N = 82 gap in 114Ge (see Fig. 4.5). The average sizes of these gaps and
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the spreads in their predictions are summarized in Fig. 4.6. The average (among ten used

CEDF’s) size of the shell gap is shown by a solid circle. Thin and thick vertical lines are

used to show the spread of the sizes of the calculated shell gaps; the top and bottom of

these lines corresponds to the largest and smallest shell gaps amongst the considered set

of CEDF’s. Thin lines show this spread for all employed CEDF’s, while thick lines are

used for the subset of four CEDF’s (NL3*, DD-ME2, DD-MEδ and DD-PC1). Neutron

numbers corresponding to the shell gaps are indicated. The gaps at N = 126 and 184 are

around 4 MeV and they are the largest amongst these four gaps. The gap at N = 258 is

the smallest and it is slightly larger than 2 MeV. Neutron pairing is typically quenched at

these gaps (see Fig. 4.2). Definitely, the substantial size of the gap and the quenching of

neutron pairing lead to a decrease of the uncertainties in the prediction of the two-neutron

drip lines. The largest uncertainties in the position of two-neutron drip line exist around

114Ge (Fig. 4.1), where the neutron N = 82 shell gap is the smallest among the above

discussed nuclei. It is interesting that the spreads in the prediction of the size of these gaps

decrease with the increase of the neutron number.

These gaps are also compared with the calculated gaps in the doubly magic nuclei

56Ni, 100Sn, 132Sn and 208Pb (Fig. 4.6). The experimentally known gaps of these nuclei are

reasonably well described in the relativistic calculations with particle-vibration coupling

of Ref. [140, 103] with the CEDF NL3*. The general trend of the decrease of the size of

the neutron gaps with neutron number is clearly visible. However, the N = 126 gap in

180Xe and the N = 184 gap in 266Pb are only by one MeV smaller than the N = 126 gap

in doubly magic 208Pb. It is also important to mention that for the nuclei with N = 82
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and N = 126 the spread of theoretical predictions with respect to the size of the gap

only slightly increases on going from known nuclei towards nuclei in the vicinity of two-

neutron drip line. On the contrary, this spread decreases appreciably for the nuclei 266Pb

and 366Hs as compared with lighter nuclei (Fig. 4.6). These results clearly suggest that the

pronounced shell structure at the well known major shells still survives in the nuclei close

to the two-neutron drip line (see also an early investigation in this direction in Ref. [141]).
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FIG. 6. (Color online) Neutron single-particle states at spherical shape in the nuclei 114Ge, 180Xe, 266Pb, and 366Hs determined with the
indicated CEDF’s in calculations without pairing. Solid and dashed connecting lines are used for positive and negative parity states. Spherical
gaps are indicated; all the states below these gaps are occupied in the ground-state configurations.

the value of the neutron chemical potential λn = −2.0 MeV
can be used as a safe limit for which a measurable effect of
the coupling to the continuum can be expected.

We therefore compare in Fig. 1 the position of neutron
chemical potential λn = −2.0 MeV (with its theoretical
uncertainties shown by the blue shaded area) with a possible
extension (green solid line) of the experimentally known part
of the nuclear landscape by means of the new facilities for rare
isotope beams (as, for instance, FRIB, RIKEN, GANIL or
FAIR). The nuclear landscape of Fig. 1 as well as the neutron
chemical potential are obtained with four state-of-the-art
CEDF’s (NL3*, DD-ME2, DD-PC1, and DD-MEδ) [2]. Con-
sidering the discussion above, Fig. 1 suggests that in future ex-
periments the region of nuclei with measurable coupling with
the continuum is restricted to Z � 50. For higher Z nuclei,
future experimental data on neutron-rich nuclei can be safely
treated without accounting of the coupling with the continuum.

V. SHELL STRUCTURE AND SINGLE-PARTICLE
ENERGIES AT THE TWO-NEUTRON DRIP LINE.

A. Single-particle shell structure for drip line nuclei
at neutron shell closures

It was suggested in Ref. [2] that the position of the
two-neutron drip line sensitively depends on the underlying

shell structure and that the uncertainties of the theoretical
predictions of the neutron drip-line depend on the accuracy
of the description of the single-particle energies. Indeed, the
shell structure effects are clearly visible in the fact that for
some combinations of Z and N there is basically no (or very
little) dependence of the predicted location of the two-neutron
drip line on the EDF [2,3] (see Fig. 1 of the present paper
and Refs. [1–3]). Such a weak (or vanishing) dependence,
seen in all model calculations, is especially pronounced at the
spherical neutron shell closures with N = 126 and 184 around
the proton numbers Z = 54 and 80, respectively. In addition, a
similar situation is seen in the CDFT calculations at N = 258
and Z ∼ 110 (Fig. 1).

Although it was pointed out in Ref. [2] that these features
are due to the large neutron shell gaps at the magic neutron
numbers, these gaps and their dependence on the CEDF have
not been explored in detail. To fill this gap in our knowledge,
we will perform a detailed investigation of the shell structure
of nuclei in the areas where the spread in the predictions for
the position of the two-neutron drip line is either nonexistent
or very small. These are the nuclei 114

32 Ge82, 180
54 Xe126,

266
82 Pb184,

and 366
108Hs258 and their location in the nuclear chart is shown in

Fig. 1. The neutron single-particle orbitals active in the vicinity
of the Fermi level of these nuclei are shown in Fig. 6. To create a
more representative statistical ensemble, the calculations have

014324-9

Figure 4.5

Neutron single-particle states at spherical shape in the indicated nuclei.
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Neutron shell gaps ∆Egap for the nuclei under study.

4.5 Concluding remarks

Covariant density functional theory has been applied to an analysis of sources of un-

certainties in the predictions of the two-neutron drip line. The following conclusions have

been obtained:

• The differences in the underlying single-particle structure of different covariant en-

ergy density functionals represent the major source of uncertainty in the prediction

of the position of the two-neutron drip line. In particular, this position depends on

the positions of high-j orbitals below the shell gap and of high-j resonances in the

continuum above the shell gap.

• The analysis of the present results strongly suggests that the uncertainties in the de-

scription of the single-particle energies at the two-neutron drip line are dominated by

those which already exist in known nuclei. As a consequence, only an estimated one

third of the uncertainty in the description of the single-particle energies at the two-
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neutron drip line could be attributed to the uncertainties in the isovector properties of

EDF’s. This result strongly suggests that the improvement in the DFT description of

the energies of the single-particle states in known nuclei will reduce the uncertainties

in the prediction of the position of two-neutron drip line.

• The uncertainties in the pairing properties near the two-neutron drip line represent a

secondary source of uncertainty in the definition of two-neutron drip line. The pair-

ing properties in neutron rich nuclei depend substantially on the underlying CEDF,

even when these properties are similar in experimentally known nuclei. These un-

certainties in pairing properties translate into some uncertainties in the position of

two-neutron drip line. However, they are substantially smaller than the ones due to

the underlying single-particle structure.

Although the present investigation is restricted to covariant energy density function-

als, it is reasonable to expect that its results are in many respects also applicable to non-

relativistic DFT’s. This is because similar problems in the description of single-particle

and pairing properties exist also for the Skyrme and Gogny DFT’s [142, 105, 143, 144].
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CHAPTER V

OCTUPOLE DEFORMATION IN THE GROUND STATES OF EVEN-EVEN NUCLEI:

A GLOBAL ANALYSIS WITHIN THE COVARIANT DENSITY FUNCTIONAL

THEORY

5.1 Introduction

Reflection asymmetric (or octupole deformed) shapes represent an interesting example

of symmetry breaking of the nuclear mean field. The physics of such shapes in the nor-

mal deformed minimum (both in non-rotating and rotating systems) has been extensively

studied in the 80ies and 90ies of the last century (see the review in Ref. [145]). Reflection

asymmetric shapes are also present for large deformations at the outer fission barriers in

the actinides, superheavy nuclei and nuclei important in the r-process of nucleosynthesis

[145, 70, 146]. At present, there is a revival of the interest to the study of such shapes. It

is seen in a substantial number of theoretical [147, 148, 149, 150, 151, 152, 153, 154, 155,

156, 157, 158, 159, 160] and experimental [161, 162, 163, 164, 165, 166, 167, 168, 169]

studies of octupole correlations and octupole deformed nuclei in the normal deformed min-

imum. Moreover, the attempts to understand microscopically the fission process, cluster

radioactivity and the stability of superheavy elements [170, 70, 171, 172, 173, 174, 175,

176, 177, 178, 179, 180] as well as renewed interest to experimental studies of fission
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[181, 182, 183] created a substantial interest in octupole deformed shapes at large defor-

mations.

The existence of octupole deformed shapes is dictated by the underlying shell structure.

Strong octupole coupling exists for particle numbers associated with a large ∆N = 1 in-

teraction between intruder orbitals with (l, j) and normal-parity orbitals with (l− 3, j− 3)

[145]. For normal deformed nuclei not far away from beta stability the tendency towards

octupole deformation or strong octupole correlations occurs just above closed shells at

particle numbers near 34 (the coupling between the 1g9/2 and 2p3/2 orbitals), 56 (the cou-

pling between the 1h11/2 and 2d5/2 orbitals), 88 (the coupling between the 1i13/2 and 2f7/2

orbitals) and 134 (the coupling between the 1j15/2 and 2g9/2 orbitals) [145].

Some of the studies of the octupole shapes have been performed in the framework

of covariant density functional theory (CDFT) [29]. The first investigation of the role

of octupole deformation in the CDFT framework has been performed in Ref. [184]. In

this work, the occurrence of stable octupole deformation in the ground states of the Ra

isotopes and the impact of octupole deformation on fission barriers of the 226Ra, 232Th and

240Pu nuclei has been studied with the covariant energy density functionals (CEDFs) NL1,

NLSH and PL-40. However, because of some deficiencies these functionals are no longer

in use. During the last ten years some extra calculations for the ground states of octupole

deformed nuclei have been performed in the Ra [185, 156], Th [155, 156], Ba [186, 156]

and Sm [187, 156] isotope chains.

However, a number of questions are left beyond the scope of these investigations. First

of all, a global survey of octupole deformed and octupole soft nuclei in the CDFT frame-
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work across the full nuclear landscape has not been done. Secondly, the estimate of the-

oretical uncertainties in the description of octupole deformed nuclei have not been pro-

vided. The importance of such estimate become clear in the light of recent publications

[64, 65, 40, 137, 188]. Such an estimate is not possible based on the results of previous

studies since they were performed either with only one functional or for a given nucleus or

isotope chain with different frameworks.

To address these two questions, we have performed a global survey of all even-even

Z ≤ 106 nuclei located between the two-proton and two-neutron drip lines employing

the DD-PC1 [27] and NL3* [33] CEDFs. Additional studies was performed with the DD-

ME2 [26], PC-PK1 [79] and DD-MEδ [28] functionals in the known regions of octupole

deformed nuclei and their vicinity. This allows us to estimate the theoretical uncertainties

in the description of physical observables. Also, the results of our investigation are consis-

tently compared with the ones obtained in the HFB approach with the Gogny forces and,

in particular, with the microscopic+macroscopic (MM) results presented in Ref. [4]. This

investigation is a continuation of our efforts to understand the accuracy and theoretical

uncertainties in the description of the ground state observables [40], the extension of the

nuclear landscape [84, 40, 137] and the properties of superheavy nuclei [188].

5.2 Details of the theoretical calculations

The calculations were performed in the Relativistic-Hartree-Bogoliubov (RHB) ap-

proach for which a new parallel computer code RHB-OCT was developed using as a basis

the octupole deformed RMF+BCS code DOZ developed in Ref. [70]. Only axial reflection
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asymmetric shapes are considered in the RHB-OCT code. The parallel version allows si-

multaneous calculations for a significant number of nuclei and deformation points in each

nucleus.

The calculations in the RHB-OCT code perform the variation of the function

ERHB +
∑
λ=2,3

Cλ0(〈Q̂λ0〉 − qλ0)2 (5.1)

employing the method of quadratic constraints. Here ERHB is the total energy and 〈Q̂λ0〉

denote the expectation value of the quadrupole (Q̂20) moment given by Eq. (3.3) and

octupole (Q̂30) moment which is defined as

Q̂30 = z(2z2 − 3x2 − 3y2). (5.2)

C20 and C30 in Eq. (5.1) are the corresponding stiffness constants [46] and q20 and q30 are

constrained values of the quadrupole and octupole moments. In order to provide the con-

vergence to the exact value of the desired multipole moment we use the method suggested

in Ref. [68]. Here the quantity qλ0 is replaced by the parameter qeffλ0 , which is automatically

modified during the iteration in such a way that we obtain 〈Q̂λ0〉 = qλ0 for the converged

solution. This method works well in our constrained calculations. We also fix the (average)

center-of-mass of the nucleus at the origin with the constraint

< Q̂10 >= 0 (5.3)

on the center-of-mass operator Q̂10 in order to avoid a spurious motion of the center-of-

mass.
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The charge quadrupole moment is given by Eq. (3.4) and the octupole moment is

defined as

Q30 =

∫
d3rρ(r) z(2z2 − 3r2⊥) (5.4)

which is transform into a dimensionless deformation β3 using the relations

Q30 =

√
16π

7

3

4π
ZR3

0β3. (5.5)

In order to avoid the uncertainties connected with the definition of the size of the pairing

window [189], we use the separable form of the finite range Gogny pairing interaction

introduced by Tian et al [58] which has been discussed in Sec. 2.3 of chapter II. The

truncation of the basis is performed in such a way that all states belonging to the major

shells up to NF = 16 fermionic shells for the Dirac spinors and up to NB = 20 bosonic

shells for the meson fields are taken into account (for details see Ref. [34]). The potential

energy surfaces are calculated in constrained calculations in the (β2, β3) plane for the β2

values ranging from −0.2 up to 0.4 and for the β3 values ranging from 0.0 up to 0.3 with a

deformation step of 0.02 in each direction. The energies of the local minima are defined in

unconstrained calculations.

The effect of octupole deformation can be quantitatively characterized by the quantity

∆Eoct defined as

∆Eoct = Eoct(β2, β3)− Equad(β′2, β
′
3 = 0) (5.6)

where Eoct(β2, β3) and Equad(β′2, β
′
3 = 0) are the binding energies of the nucleus in two

local minima of potential energy surface; the first minimum corresponds to octupole de-

formed shapes and second one to the shapes with no octupole deformation. The quantity
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|∆Eoct| represents the gain of binding due to octupole deformation. It is also an indica-

tor of how stable the octupole deformed shapes are. Large |∆Eoct| values are typical for

well pronounced octupole minima in the PES; for such systems the stabilization of static

octupole deformation is likely. On the contrary, small |∆Eoct| values are characteristic

for soft (in octupole direction) PES typical for octupole vibrations. In such systems, be-

yond mean field effects can play an important role. They have profound effect on the

spectroscopy of the nuclei, in particular, on the E1 and enhanced E3 transition strengths

[190, 160, 191], and on the energy splittings of the positive and negative parity branches of

alternating parity rotational bands [192, 160]. On the other hand, octupole beyond-mean-

field correlations do not affect in a significant way the trends and systematics of binding

energies [193].

5.3 Octupole deformation in actinides

Several studies of the octupole deformation in the ground states of actinides and its

impact on spectroscopic properties of these nuclei have been performed so far in the CDFT

framework. The first relativistic study of octupole shapes in the ground states of atomic

nuclei has been performed twenty years ago in Ref. [184]; in this article radium isotopes

have been investigated in the RMF+BCS approach using monopole pairing with constant

pairing gap and the CEDFs NL1, NL-SH and PL-40. Shape evolution from spherical to

octupole-deformed shapes has been studied in even-even Th isotopes in the RMF+BCS

framework in Ref. [148] using monopole pairing with constant pairing gap and the NL3*

and PK1 functionals. Octupole deformed shapes in 226Ra have been investigated earlier
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in Ref. [185] within the same approach but with NL1 and NL3 functionals. The potential

energy surfaces and octupole deformations of the ground states of even-even 222−232Th and

218−228Ra nuclei have been studied in the RHB framework with the DD-PC1 functional

and separable pairing forces in Refs. [155, 156]. In a recent study, the first generator

coordinate method taking into account dynamical correlations and quadrupole-octupole

shape fluctuations have been undertaken in 224Ra employing the PC-PK1 functional [160].

They reveal rotation-induced octupole shape stabilization.

It is clear that these studies were quite limited in scope and the selection of nuclei was

guided by the previous studies in non-relativistic frameworks. A global review of octupole

deformed nuclei in this mass region paints a much richer picture. Our RHB calculations

indicate that not only Ra and Th nuclei (as suggested by previous studies) can have either

stable octupole deformation or be octupole soft, but also U, Pu, Cm, Cf, Fm, No and Sg

nuclei possess these properties. Neutron number dependencies of calculated equilibrium

quadrupole and octupole deformations as well as the gains in binding due to octupole

deformation for these isotope chains were investigated using NL3*, DD-ME2, DD-MEδ,

DD-PC1 and PC-PK1 CEDFs.

5.3.1 Discussion: theory versus experiment for Ra isotopes

The potential energy surfaces of the Ra isotopes are shown in Figs. 5.1, 5.2 and 5.3.

The white circle indicates the global minimum and the equipotential lines are shown in

steps of 0.5 MeV. Weakly deformed minima with β3 = 0.0 are the lowest in energy in the

218Ra nucleus with N = 130 see Fig 5.1 . The increase of neutron number leads to the
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formation of an octupole minimum which becomes pronounced at N = 136 (see Fig 5.2).

At higher neutron numbers the potential energy surfaces become soft in octupole direction

as shown in Fig. 5.3.
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Figure 5.1

Potential energy surfaces of the 218Ra isotopes in the (β2, β3) plane calculated with the
CEDF DD-PC1.

The maximum gain in binding energy due to octupole deformation |∆Eoct| is seen at

N ∼ 136 for the CEDFs PC-PK1, DD-ME2 and DD-PC1 and at N = 138 for NL3*

(Fig. 5.4). For these functionals the maximum |∆Eoct| values vary from around 1 MeV for

NL3* and PC-PK1 up to 2 MeV for DD-ME2. The DD-MEδ functional does not predict

octupole deformation for the nuclei of interest which contradicts both experimental data

(see Ref. [145]) and the predictions of other models.

Experimental data suggest that in the Ra isotopes the maximum effect of octupole

deformation is seen at N ∼ 136 [145]. There are some differences in the predictions of

the various models for the range of nuclei with octupole deformation and for the neutron

numbers at which the maximum gain in binding due to octupole deformation takes place.
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Figure 5.2

The same as in Fig. 5.1 but for 224Ra.

β
2
 − deformation

β
3
 −

 d
e

fo
r
m

a
ti

o
n

 

 

−0.2 −0.1 0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0

2

4

6

8

10

230
Ra

N = 142

DD−PC1

Figure 5.3

The same as in Fig. 5.1 but for 230Ra.

87



For example, the MM calculations based on folded Yukawa [4] (see also Table 5.1) and

Woods-Saxon potentials [194] predict octupole deformation in the N = 130 − 138 and

N = 134 − 138 isotopes, respectively. In these models, the maximum gain in binding

due to octupole deformation takes place at N = 132 and N = 136, respectively. Similar

investigations and analysis where done for U, Pu, Cm, Cf, Fm, No, and Sg isotope chains

(see Ref [195] for detail).
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Figure 5.4

The calculated equilibrium β2 and β3 deformations as well as the ∆Eoct quantities for Ra
isotope chain.

Figure 5.4 shows the calculated equilibrium quadrupole β2(panel (a)) and octupole β3

(panel (b)) deformations as well as the ∆Eoct quantities (panel (c)) for Ra isotope chain.
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The same as in Fig. 5.4 but for Ba isotope chain.
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5.4 Octupole deformation in lanthanides

Octupole deformation is predicted also in the ground states of the Ba, Ce, Nd and Sm

isotopes. Several features are typical for this mass region.

First, the gain in binding due to octupole deformation is substantially smaller (|∆Eoct|

is typically around 0.5 MeV) than in the actinides. Thus, the stabilization of octupole

deformation at the ground state is less likely in this region as compared with actinides.

Secondly, the results obtained with DD-MEδ still differ from the ones obtained with

other functionals. However, the differences are less pronounced as compared with the ac-

tinides where the RHB results obtained with this functional contradict drastically available

experimental data and the results of other functionals.

In general, the island of octupole deformation predicted in the RHB calculations is

close to the ones obtained in non-relativistic calculations. It is also close to the one ex-

tracted from experimental data indicating either octupole deformation or enhanced oc-

tupole correlations (see Ref. [145] for details). However, a detailed interpretation of exper-

imental data in this mass region at the mean field level is complicated by the fact that PES

are extremely soft in the octupole direction which favors the fluctuations and vibrations in

this degree of freedom.

5.4.1 Ba isotopes.

A non-zero octupole deformation is predicted for the N = 88− 94 144−150Ba isotopes

in calculations with DD-PC1, for the N = 88 − 96 144−152Ba isotopes with DD-ME2 and

NL3*, and for the N = 90−92 146−148Ba isotopes with PC-PK1 (Fig. 5.5). The maximum
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gain in binding due to octupole deformation takes place at N = 90 for DD-PC1 and PC-

PK1, at N = 92 for NL3* and at N = 94 for DD-ME2. The RMF+BCS calculations with

PK1 CEDF of Ref. [186] predict a finite octupole deformation in the N = 88 − 98 Ba

isotopes with a maximum octupole deformation around N = 92 − 94. On the contrary,

in the MM calculations with a folded Yukawa potential (Ref. [4] and Table 5.1) only the

N = 86 − 90 isotopes possess non-zero octupole deformation. The MM results of Ref.

[196] based on a Woods-Saxon potential show non-zero octupole deformation only in the

N = 88−90 nuclei. The HF+BCS calculations with Gogny D1S force of Ref. [197] predict

non-zero octupole deformation in the N = 88− 92 142−148Ba nuclei with a maximum gain

of binding due to octupole deformation at the nucleus 144Ba with N = 90. Also similar

investigations and analysis where undertaken for Xe, Ce, Nd and Sm isotope chains (see

Ref [195] for details).

5.5 Octupole deformation in superheavy region

To our knowledge no search of octupole deformation in the ground states of superheavy

Z ≥ 108 nuclei has been performed within the CDFT framework so far. To fill this gap

in our knowledge we performed such a search in the region of proton numbers 108 ≤

Z ≤ 126 and in the region of neutron numbers from the two-proton drip line up to neutron

number N = 210. For this region (Z > 106) the truncation of the basis is performed in

such a way that all states belonging to the major shells up NF = 18 fermionic shells for

the Dirac spinors and up to NB = 20 bosonic shells for the meson fields in case of meson

exchange functionals are taken into account.
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Our calculations do not reveal the presence of octupole deformation in the ground states

of superheavy nuclei with Z ≥ 110 similar to the Skyrme DFT calculations of Ref. [146] .

Two Z = 108 (two Z = 108 and one Z = 110) nuclei have non-zero octupole deformation

in the calculations with CEDF DD-PC1 (DD-ME2). These nuclei are extremely soft in

octupole deformation with very small gain in binding energy due to octupole deformation

(|∆Eoct| < 0.1 MeV).

On the contrary, the Gogny DFT Ref. [173]) and mic+mac (Ref. [6]) calculations pre-

dict the existence of such nuclei. The HFB calculations based on the Gogny D1S force

predict octupole deformation in the ground states of the (Z = 108− 126, N = 186− 190)

even-even nuclei (see Fig. 3 in Ref. [173]). These nuclei either do not have quadrupole

deformation (the N = 186 and some N = 188 nuclei) or this deformation is rather small

(β2 < 0.1) for N = 190 and some N = 188 nuclei. The octupole deformation is rather

small for most of these nuclei apart of fewN = 188 nuclei and the majority of theN = 190

nuclei which have substantial octupole deformation β3 exceeding 0.1. Note that these cal-

culations cover only nuclei with N ≤ 190. More extensive mic+mac calculations of Ref.

[6] indicate larger region of octupole deformation in the superheavy nuclei.

Table 5.1 list the calculated effect of reflection asymmetry on nuclear ground state

properties. The equilibrium quadrupole (β2) and octupole (β3) deformations as well as the

gains in binding energy due to octupole deformation |∆Eoct| are given. The results are

presented only in the case when the octupole deformed minimum is the lowest in energy.

Note that ε2 and ε3 are the quadrupole and octupole deformations (in the Nilsson perturbed-

spheroid parametrization) obtained in the MM approach of Ref. [4].

92



Table 5.1: Calculated effect of reflection asymmetry on nu-
clear ground state properties.

Nucleus DD-PC1 NL3* mic+mac
Z N A β2 β3 |∆Eoct| β2 β3 |∆Eoct| ε2 ε3 |∆Eoct|
20 36 56 -0.07 0.02 0.04

40 60 0.00 0.07 0.03

38 40 78 0.005 0.084 0.089 0.005 0.078 0.019

40 38 78 0.003 0.068 0.043 0.003 0.060 0.005
40 80 0.008 0.145 0.439 0.007 0.139 0.149

68 108 0.002 0.060 0.009
70 110 0.001 0.053 0.004
72 112 -0.003 0.094 0.133

42 40 82 -0.001 0.078 0.070 -0.001 0.064 0.007

48 42 90 -0.01 0.04 0.04

54 54 108 0.15 0.05 0.05
56 110 0.16 0.07 0.20
58 112 0.18 0.07 0.14

88 142 0.13 0.06 0.11
90 144 0.15 0.07 0.11

56 52 108 0.13 0.05 0.05
54 110 0.17 0.09 0.34
56 112 0.244 0.114 0.284 0.274 0.188 0.792 0.18 0.10 0.48
58 114 0.252 0.097 0.157 0.267 0.155 0.374 0.20 0.09 0.31
60 116 0.275 0.074 0.888

86 142 0.12 0.06 0.14
88 144 0.201 0.101 0.467 0.15 0.09 0.49
90 146 0.216 0.112 0.531 0.202 0.083 0.051 0.16 0.09 0.47
92 148 0.232 0.122 0.290 0.216 0.089 0.118
94 150 0.254 0.114 0.061 0.230 0.084 0.053

58 56 114 0.254 0.100 0.166 0.286 0.161 0.396 0.21 0.08 0.21

Continued on next page
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Table 5.1 – Continued from previous page
Nucleus DD-PC1 NL3* mic+mac

Z N A β2 β3 |∆Eoct| β2 β3 |∆Eoct| ε2 ε3 |∆Eoct|
86 144 0.13 0.07 0.22
88 146 0.205 0.113 0.631 0.194 0.097 0.224 0.16 0.09 0.46
90 148 0.222 0.125 0.714 0.215 0.113 0.390 0.19 0.07 0.02
92 150 0.246 0.134 0.111 0.236 0.120 0.384

60 86 146 0.14 0.06 0.08
88 148 0.206 0.114 0.491 0.198 0.105 0.208 0.18 0.06 0.09
90 150 0.235 0.128 0.044 0.231 0.121 0.261

62 88 150 0.211 0.098 0.253 0.206 0.091 0.091 0.19 0.04 0.02

64 132 196 0.136 0.062 0.335
134 198 0.167 0.090 0.117
136 200 0.192 0.119 0.046 0.182 0.003 0.008
138 202 0.217 0.142 0.088

66 134 200 0.176 0.049 0.274
136 202 0.202 0.090 0.200
138 204 0.231 0.106 0.368

68 130 198 0.06 0.05 0.10
132 200 0.11 0.04 0.05
134 202 0.170 0.004 0.017 0.11 0.06 0.04
136 204 0.200 0.065 0.265

70 134 0.11 0.04 0.04

76 134 0.09 0.02 0.02
78 136 0.09 0.03 0.03

80 136 0.06 0.05 0.02
138 0.08 0.05 0.14

82 98 180 0.00 0.03 0.02
100 182 0.004 0.041 0.038 0.01 0.02 0.08
102 184 0.002 0.041 0.038 0.00 0.02 0.04

134 216 0.01 0.04 0.02
136 218 0.01 0.06 0.16

Continued on next page
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Table 5.1 – Continued from previous page
Nucleus DD-PC1 NL3* mic+mac

Z N A β2 β3 |∆Eoct| β2 β3 |∆Eoct| ε2 ε3 |∆Eoct|
138 220 0.01 0.07 0.23
140 222 0.01 0.07 0.26

84 134 218 0.05 0.09 0.44
136 220 0.09 0.09 0.42
138 222 0.10 0.08 0.16

86 132 218 0.07 0.10 0.67
134 220 0.10 0.09 0.85
136 222 0.10 0.09 0.64
138 224 0.13 0.08 0.29
140 226 0.15 0.04 0.09
146 232 0.21 0.02 0.02

88 130 218 0.07 0.09 0.59
132 220 0.10 0.09 1.20
134 222 0.160 0.104 0.310 0.11 0.10 1.27
136 224 0.177 0.125 1.370 0.178 0.124 0.547 0.13 0.10 0.91
138 226 0.196 0.133 1.110 0.197 0.134 0.874 0.15 0.08 0.40
140 228 0.208 0.123 0.385 0.208 0.126 0.526 0.16 0.06 0.08
142 230 0.225 0.098 0.105

90 130 220 0.08 0.10 1.33
132 222 0.10 0.10 1.35
134 224 0.167 0.112 0.491 0.13 0.11 1.22
136 226 0.186 0.137 1.999 0.187 0.134 0.814 0.14 0.10 0.50
138 228 0.214 0.154 1.402 0.212 0.150 1.387 0.16 0.08 0.08
140 230 0.224 0.152 0.642 0.223 0.149 0.770
142 232 0.234 0.141 0.025 0.236 0.138 0.231
146 236 0.261 0.054 0.039 0.274 0.041 0.002

198 288 0.176 0.127 1.084
200 290 0.189 0.135 0.716
202 292 0.205 0.113 0.216 0.182 0.095 0.102
204 294 0.221 0.065 0.051 0.198 0.090 0.126

92 128 220 0.05 0.08 0.08
130 222 0.09 0.10 1.21
132 224 0.12 0.10 1.22

Continued on next page
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Table 5.1 – Continued from previous page
Nucleus DD-PC1 NL3* mic+mac

Z N A β2 β3 |∆Eoct| β2 β3 |∆Eoct| ε2 ε3 |∆Eoct|
134 226 0.13 0.10 0.60
136 228 0.201 0.155 1.724 0.201 0.151 1.813
138 230 0.229 0.170 1.399 0.228 0.165 1.264
140 232 0.238 0.169 0.659 0.238 0.166 0.721
142 234 0.245 0.170 0.067 0.247 0.162 0.217
146 238 0.275 0.078 0.094 0.284 0.068 0.019

198 290 0.181 0.140 1.378
200 292 0.196 0.151 0.969 0.183 0.124 0.664
202 294 0.214 0.137 0.319 0.200 0.127 0.416
204 296 0.233 0.082 0.074 0.220 0.117 0.133

94 128 222 0.05 0.08 0.35
130 224 0.09 0.10 1.09
132 226 0.12 0.10 0.59
134 228 0.170 0.134 1.260 0.167 0.129 0.354 0.14 0.10 0.04
136 230 0.197 0.155 1.535 0.196 0.152 1.251
138 232 0.246 0.161 0.622 0.240 0.159 0.501
140 234 0.263 0.133 0.125 0.261 0.142 0.121
146 240 0.284 0.066 0.099 0.290 0.054 0.010
194 288 0.131 0.108 1.156 0.119 0.089 0.132
196 290 0.156 0.131 1.774 0.151 0.118 0.780
198 292 0.176 0.146 1.419 0.171 0.135 1.046
200 294 0.192 0.158 0.965 0.187 0.142 0.770
202 296 0.216 0.141 0.162 0.206 0.143 0.327

96 128 224 0.04 0.08 0.52
130 226 0.08 0.10 0.84
132 228 0.134 0.115 0.562 0.130 0.111 0.152 0.14 0.08 0.02
134 230 0.162 0.135 1.511 0.159 0.132 1.248
136 232 0.195 0.158 1.190 0.194 0.154 0.877
138 234 0.252 0.142 0.387 0.249 0.145 0.212
140 236 0.274 0.098 0.131 0.275 0.096 0.041
146 242 0.295 0.063 0.132 0.298 0.044 0.005

190 286 0.095 0.105 0.271
192 288 0.115 0.116 1.394 0.116 0.102 0.516
194 290 0.131 0.126 1.994 0.135 0.119 0.923
196 292 0.150 0.137 1.790 0.155 0.136 1.191

Continued on next page
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Table 5.1 – Continued from previous page
Nucleus DD-PC1 NL3* mic+mac

Z N A β2 β3 |∆Eoct| β2 β3 |∆Eoct| ε2 ε3 |∆Eoct|
198 294 0.170 0.151 1.294 0.172 0.147 1.110
200 296 0.190 0.164 0.878 0.189 0.154 0.701
202 298 0.217 0.142 0.049 0.211 0.153 0.229

98 126 224 0.008 0.065 0.151 0.00 0.05 0.10
128 226 0.015 0.049 0.032 0.03 0.08 0.56
130 228 0.07 0.10 0.06
132 230 0.146 0.111 0.427 0.142 0.112 0.247
134 232 0.172 0.141 1.292 0.170 0.138 0.895
136 234 0.198 0.164 1.122 0.198 0.160 0.747
138 236 0.245 0.146 0.379 0.244 0.146 0.195
140 238 0.266 0.114 0.197 0.266 0.114 0.107

190 288 0.106 0.123 0.515 0.102 0.090 0.095
192 290 0.131 0.131 1.259 0.132 0.114 0.473
194 292 0.146 0.140 1.632 0.153 0.134 0.848
196 294 0.164 0.150 1.388 0.171 0.152 1.056
198 296 0.180 0.162 1.087 0.185 0.162 0.983
200 298 0.196 0.173 0.868 0.199 0.168 0.680
202 300 0.218 0.147 0.094 0.217 0.164 0.273

100 126 226 0.011 0.089 0.490 0.014 0.085 0.207 0.00 0.06 0.12
128 228 0.014 0.079 0.149 0.023 0.073 0.092 0.02 0.08 0.52
132 232 0.161 0.085 0.152 0.164 0.095 0.061
134 234 0.187 0.146 1.084 0.188 0.145 0.646
136 236 0.201 0.172 1.156 0.202 0.166 0.774
138 238 0.226 0.158 0.434 0.223 0.160 0.282
140 240 0.258 0.110 0.177 0.253 0.122 0.110

190 290 0.137 0.129 0.403
192 292 0.162 0.149 1.119 0.147 0.124 0.327
194 294 0.170 0.159 1.309 0.170 0.151 0.740
196 296 0.183 0.169 1.160 0.187 0.167 0.964
198 298 0.195 0.177 1.056 0.199 0.176 0.954
200 300 0.204 0.184 0.976 0.208 0.180 0.749
202 302 0.216 0.157 0.218 0.220 0.174 0.383

102 134 236 0.197 0.120 0.321
136 238 0.205 0.145 0.725 0.206 0.144 0.424

Continued on next page
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Table 5.1 – Continued from previous page
Nucleus DD-PC1 NL3* mic+mac

Z N A β2 β3 |∆Eoct| β2 β3 |∆Eoct| ε2 ε3 |∆Eoct|
138 240 0.227 0.134 0.138
140 242 0.251 0.113 0.091

182 284 0.014 0.065 0.115
184 286 0.007 0.085 0.334
186 288 -0.004 0.085 0.257
188 290 -0.033 0.082 0.214
190 292 0.176 0.122 0.357
192 294 0.172 0.139 0.776 0.153 0.110 0.173
194 296 0.181 0.145 0.717 0.174 0.136 0.512
196 298 0.194 0.152 0.602 0.192 0.148 0.646
198 300 0.206 0.156 0.550 0.206 0.156 0.619
200 302 0.214 0.159 0.445 0.219 0.157 0.454
202 304 0.235 0.138 0.230
204 306 0.248 0.105 0.095

104 138 242 0.241 0.094 0.090
140 244 0.254 0.102 0.117
142 246 0.264 0.094 0.032

184 288 0.002 0.090 0.407
186 290 -0.025 0.101 0.513
188 292 -0.039 0.100 0.536
190 294 0.195 0.105 0.454
192 296 0.201 0.116 0.366
194 298 0.179 0.115 0.340
196 300 0.230 0.126 0.226 0.218 0.134 0.402
200 304 0.232 0.131 0.276
202 306 0.246 0.111 0.145
204 308 0.256 0.086 0.067

106 142 248 0.264 0.098 0.104
144 250 0.266 0.052 0.271 0.272 0.060 0.013

182 288 -0.003 0.055 0.076
184 290 -0.003 0.084 0.320
186 292 -0.032 0.102 0.530
188 294 -0.046 0.103 0.660 -0.033 0.060 0.024
194 300 0.182 0.097 0.257

Continued on next page
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Table 5.1 – Continued from previous page
Nucleus DD-PC1 NL3* mic+mac

Z N A β2 β3 |∆Eoct| β2 β3 |∆Eoct| ε2 ε3 |∆Eoct|
196 302 0.211 0.109 0.282
198 304 0.230 0.111 0.179
200 306 0.246 0.098 0.073

5.6 Global analysis

We carried out a global search for octupole deformation, which covers all even-even

Z ≤ 106 nuclei between the two-proton and two-neutron drip lines, with CEDFs DD-

PC1 and NL3* and for Z = 88 − 126 nuclei from two-proton to two-netron drip lines

employing CEDFs DD-PC1, NL3*, DD-ME2 and PC-PK1. The DD-MEδ functional was

omitted from the global studies since it does not reproduce the experimental situation in

octupole deformed actinides (Sec. 5.3) and provides unrealistically low fission barriers in

superheavy nuclei (see Ref. [188]). The results of this search for DD-PC1 and NL3* are

summarized in Table 5.1 and in Figs. 5.7 and 5.6 and for DD-ME2 and PC-PK1 in Figs.

5.8 and 5.9 respectively.

The results for DD-PC1 and NL3* are compared with the MM results of Ref. [4]. It can

seen in Figs. 5.6 and 5.7 that in addition to the lanthanides, actinides, and the superheavy

regions discussed above there are several regions of octupole deformed nuclei. These are

nuclei around 80Zr, 110Zr and 200Dy which are octupole soft. Since the gain of binding due

to octupole deformation is quite small, no stabilization of octupole deformation is expected

in these nuclei. Calculations with the Gogny forces also indicate octupole softness of the
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nuclei around 80Zr (see Fig. 9 in Ref. [149]). However, in the MM calculations of Ref.

[149], these nuclei do not have octupole deformation (Table 5.1).

In the RHB calculations with DD-PC1 there exists a region of octupole soft Gd, Dy,

and Er nuclei with N ∼ 136 and A ∼ 200 (Fig. 5.6 and Tabler̃eftable-global). However,

in the RHB calculations with NL3* octupole softness is seen only in 200Dy (Fig. 5.7. This

difference is quite likely due to the fact that pairing correlations, which counteract octupole

deformation, are substantially stronger in neutron-rich nuclei for the NL3* functional as

compared with DD-PC1 (Ref. [137]).

In addition, octupole deformation is predicted in the ground states of the actinides and

light superheavy nuclei with neutron number aroundN ∼ 196 (Table 5.1 and Figs. 5.6, 5.7,

5.8 and 5.9). Most of the functionals predict that this region is substantially larger than the

one around Z ∼ 92, N ∼ 136. Moreover, the maximum gain in binding due to octupole

deformation is comparable in the Z ∼ 96, N ∼ 196 and Z ∼ 92, N ∼ 136 regions. This

strongly suggests the stabilization of octupole deformation in the nuclei belonging to the

central part of the Z ∼ 96, N ∼ 196 region. This region of nuclei will not be accessible

with future facilities like FRIB since it is located beyond the expected reach of FRIB.

The detailed information on calculated equilibrium quadrupole (β2) and octupole (β3)

deformations as well as the gains (∆Eoct) in binding due to octupole deformation is sum-

marized in Figs. 5.6, 5.7, 5.8 and 5.9. These results show large similarities between the

NL3* and PC-PK1 functionals on the one hand and the DD-ME2 and DD-PC1 functionals

on the other hand.
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In Figure 5.6 we show octupole deformed nuclei in the nuclear chart. Only nuclei with

non vanishing ∆Eoct are shown by squares; the colors of the squares represent the values of

|∆Eoct|with the CEDF DD-PC1. The blue dashed line shows the limits of the nuclear chart

(defined as fission yield greater than 106) which may be achieved with dedicated existence

measurements at FRIB [9]. The two-proton and two-neutron drip lines are displayed by

solid black lines.
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Figure 5.6

Octupole deformed nuclei in the nuclear chart. Only nuclei with non vanishing ∆Eoct are
shown by squares.

5.7 Concluding remarks

A global search for octupole deformation has been performed within covariant density

functional theory employing the DD-PC1 and NL3* functionals; this search covers all

even-even nuclei with Z ≤ 106 located between the two-neutron and two-proton drip

101



28

Z=50

Z=82

N=20

N=28

N=50
N=82

N=126

N=184

NL3*

 0  40  80  120  160  200
Neutron number  N

 0

 20

 40

 60

 80

 100
P

r
o
to

n
 n

u
m

b
e
r
  
Z

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Figure 5.7

The same as in Fig. 5.6 but for NL3* CDFT.
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Figure 5.8

The same as in Fig. 5.6 but for Z = 88− 110 with DD-ME2 CDFT.
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Figure 5.9

The same as in Fig. 5.8 but with PC-PK1 CDFT, and the dash line represent the neutron
drip line for NL3*.

lines. Also systematic search for axial octupole deformation has been performed in the

actinides and superheavy nuclei for proton numbers Z = 88 − 126 and neutron numbers

from two-proton drip line up to N = 210 using four state-of-the-art covariant energy

density functionals. The main results can be summarized as follows:

• The RHB calculations with the DD-PC1, PC-PK1 and DD-ME2 functionals cor-

rectly predict the islands of octupole deformation in the light lanthanides, actinides

and light superheavy regions which in general agrees with available experimental

data. The NL3* tends to place the centers (in the (Z,N) plane) of these three is-

lands by two neutrons higher than in above mentioned functionals. The DD-MEδ

functional fails to describe experimental data in the actinides.

• The gain in binding due to octupole deformation |∆Eoct| is the quantity which de-

fines the location and the extend of the islands of octupole deformation. If one

excludes the DD-MEδ functional, theoretical uncertainties in its prediction are typi-
103



cally around 0.5 MeV; however, in some nuclei they reach 1 MeV. This leads to the

differences in the predictions of the islands of octupole deformation. The most im-

portant source of these uncertainties is the difference in the prediction of underlying

single-particle structure (see Ref. [198] for comparison of different DFTs).

• Comparing different functionals, one can see that the results obtained with the co-

variant energy density functional DD-MEδ differ substantially from the results of

other functionals. The heights of the inner fission barriers in superheavy nuclei with

Z = 112−116 obtained in this functional are significantly lower than the experimen-

tal estimates and the values calculated in all other models [188]. This functional is

different from all the other functionals used here, because it has been adjusted in Ref.

[28] using only four phenomenological parameters in addition to some input from

ab initio calculations [199, 200]. All these facts suggest that either the ab initio input

for this functional is not precise enough or the number of only four phenomenologi-

cal parameters (fitted to masses of spherical nuclei) is too small to provide a proper

description of the details of the single-particle structure.
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CHAPTER VI

SUPERHEAVY NUCLEI: GROUND STATE PROPERTIES AND FISSION BARRIERS

6.1 Introduction

Science is driven by the efforts to understand unknowns. In low-energy nuclear physics

many of such unknowns are located at the extremes of the nuclear landscape (see chapter III

and Refs. [5, 84, 40]). The region of superheavy elements (SHE), characterized by the

extreme values of proton number Z, is one of such extremes. Contrary to other regions of

the nuclear chart, the SHEs are stabilized only by quantum shell effects. Because of this

attractive feature and the desire to extend the nuclear landscape to higher Z values, this

region is an arena of active experimental and theoretical studies.

Currently available experimental data reach proton number Z = 118 [31, 32] and

dedicated experimental facilities such as the Dubna Superheavy Element Factory will

hopefully allow to extend the region of SHEs up to Z = 120 and for a wider range

on neutron numbers at lower Z values. But this facility will not be able to reach the

predicted centers of the island of stability of SHEs at (Z = 114, N = 184), (Z =

120, N = 172/184) and (Z = 126, N = 184) as given by microscopic+macroscopic

(MM) approaches [201, 202, 203, 204, 205] or by covariant [206, 207, 52, 208] and Skyrme

[204, 207] density functional theories (DFT), respectively.
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Majority of systematic DFT studies of the shell structure of SHEs has been performed

in the 90ies of the last century and at the beginning of the last decade. These studies indi-

cate that the physics of SHEs is much richer in the DFT framework than in MM approaches.

This is because of the self-consistency effects which are absent in the MM approaches. In

the last ten years a new generation of energy density functionals has been developed in

covariant [26, 27, 33, 79, 28] framework; they are characterized by an improved global

performance (see chapter III and Ref. [40]). In addition, the experimental data on SHEs

became much richer [209, 10] in these years.

For the reasons stated above it is necessary to reanalyze the structure of superheavy nu-

clei using both the full set of available experimental data on SHEs and the new generation

of energy density functionals. The goals of this chapter are to (i) investigate the accuracy of

the description of the ground state observables of known SHEs with the new generation of

CEDF’s NL3*, DD-ME2, DD-MEδ, DD-PC1 and PC-PK1 and to find whether the anal-

ysis of existing experimental data allows to distinguish the predictions of these CEDF’s

for nuclei beyond the known region of SHEs, and (ii) to investigate the fission barriers

in superheavy nuclei with consideration of both the statistical and systematic theoretical

uncertainties.

6.2 Numerical details

The axially symmetric RHB framework is used for systematic studies of all Z = 96−

126 even-even actinides and SHEs from the proton-drip line ( see Table 3.3 and Refs. [84,

40, 188]) up to neutron number N = 196. The theoretical details of the calculations
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are explained in sec. 5.2 of chapter III. For each nucleus the potential energy curve is

obtained in a large deformation range from β2 = −1.0 up to β2 = 1.05 in steps of β2 =

0.02 by means of a constraint on the quadrupole moment Q20. The effect of the octupole

deformation on the binding energies of the ground states (and thus on the heights of inner

fission barriers) is also taken into account according to the results obtained in Ref. [195].

Note that octupole deformation in the ground states affects fission barriers and their spreads

only for the Z ∼ 92, N ∼ 132 and Z ∼ 96, N ∼ 196 nuclei.

For the fission barriers, we perform triaxial RHB (TRHB) calculations in a parity con-

serving cartesian oscillator basis [45, 210] using the same pairing. However, such calcula-

tions are enormously time-consuming. Therefore, they cannot be carried out on the same

global scale as axial RHB calculations. As a result, we restricted the TRHB studies to a

selected set of the Z = 112 − 120 nuclei. These nuclei are located mostly in the region

where extensive experimental studies have either been already performed or will be per-

formed in a foreseeable future. Even then the calculations of full potential energy surfaces

(PES) are numerically prohibitive for theNF = 20 fermionic basis. However, the topology

of the PESs obtained in the TRHB calculations with the truncation of the fermionic basis

at NF = 16 and NF = 20 is the same. Thus, full PESs have been calculated only with the

NF = 16 fermionic basis. These results define the positions in the deformation plane and

the energies of axial and triaxial saddles. Afterwards, they are corrected for the NF = 20

fermionic basis by performing the TRHB calculations with the NF = 20 fermionic basis

in the spherical/normal deformed minimum and at few grid points near the saddles.
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Deformation energy curves for the chain of Z = 120 isotopes obtained in axial RHB
calculations.
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6.3 The impact of deformation on the properties of superheavy nuclei

It is commonly accepted that the large spherical shell gaps at Z = 120 and N = 172

define the center of the island of stability of SHEs for the majority of the covariant func-

tionals [207, 52]. But it is important to note that these conclusions were mostly obtained in

investigations restricted to spherical shapes. Some calculations also suggest [211, 212], or

do not exclude [52], the existence of a spherical shell gap at the neutron number N = 184.

However, as discussed below, the inclusion of deformation can change the situation drasti-

cally for some functionals.

To illustrate this fact, the deformation energy curves of the Z = 120 isotopes are

presented in Fig. 6.1. We restrict our considerations to the CEDFs, NL3*, DD-ME2, DD-

MEδ, DD-PC1 and PC-PK1, whose global performance is well established in chapters III

and V and Refs. [40, 80]. In the following discussion we neglect the prolate superdeformed

minimum, which is sometimes even lower than the spherical or oblate minimum, because

of discussions in Sec. IV.A of Ref. [188].

In Fig. 6.1 the lowest spherical or oblate minimum is considered as the ground state

and indicated by a dashed horizontal line. It can be seen that the ground states of the

Z = 120 isotopes with N = 172 − 184 are spherical for NL3*, DD-ME2, and PC-PK1.

This is a consequence of the presence of the large Z = 120 spherical shell gap (see Fig.

1 of Ref. [188]). For these three functionals, the increase of neutron number N leads

to softer potential energy curves for β2 values between −0.4 and 0.0. As a result, for

N = 188 an oblate minimum either becomes lowest in energy (for NL3*) or competes

in energy with the spherical solution (for DD-ME2 and PC-PK1). This softness of the
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potential energy curves is even more pronounced for the DD-MEδ and DD-PC1, for which

the oblate solution is lower in energy than the spherical solution in all displayed nuclei

apart from N = 172 (Fig. 6.1).

It is tempting to relate this feature to the fact that the size of the Z = 120 gap is smallest

among the employed functionals for DD-MEδ in the (Z = 120, N = 172) nucleus and for

DD-PC1 in the (Z = 120, N = 184) nucleus (see Fig. 1 of Ref. [188]), this explanation

is too simplistic. This is because even for the cases when the sizes of the Z = 120 gap

are very similar, the deformations of their minima in the ground state are different. This

strongly suggest that the evolution of the single-particle structure with deformation, which

leads to negative shell correction energies at oblate shape, is responsible for the observed

features. Thus, not only the size of the spherical shell gaps but also the location of the

single-particle states below and above these gaps is responsible for the observed features.

It is important to recognize that contrary to the spherical states with a degeneracy of

2j + 1, deformed states are only two-fold degenerate. This will also impact the shell

correction energy since it depends on the averaged density of the single-particle states in

the vicinity of the Fermi surface [213, 214, 215]. As a result, close to the deformed shell

gaps the negative shell correction energy can be larger in absolute value than the one at

spherical shape even for similar sizes of the respective deformed and spherical shell gaps.

This difference can be sufficient to counteract the increase of the energy of the liquid drop

with increasing oblate deformation in SHEs [216]. The consequences of this interplay

between shell correction and liquid drop energies and the role played by the low level

density of the single-particle states in the vicinity of deformed shell gaps are clearly visible
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in the potential energy curves of the 304120 nucleus presented in Fig. 6.1 for DD-PC1 and

NL3*. For DD-PC1, the ground state is oblate with deformation β2 ∼ −0.3. However,

two excited minima are also seen at β2 ∼ −0.15 and β2 = 0.0. Although the ground

state of the nucleus 304120 is spherical for NL3*, three minima at β2 ∼ −0.4, β2 ∼ −0.3,

and β2 ∼ −0.2 are seen at excitation energies of around 1 MeV. These local minima are

the consequence of the fact that the corresponding minima in the proton and neutron shell

correction energies correspond to different deformations.

6.4 The systematics of the deformations

The calculated charge quadrupole deformations of the ground states for PC-PK1 and

DD-PC1 CEDFs are plotted in Figs. 6.2 and 6.3 respectively. Experimentally known nuclei

are shown by open circles.The information on experimentally known nuclei is taken from

Refs. [10, 11]. They are shown for the Z = 96 − 126 nuclei located between the two-

proton drip line (see Table 3.3 and Table IV in Ref. [40]) and N = 196. The width of the

gray region along a specific particle number corresponding to a shell closure indicates the

impact of this shell closure on the structure of neighbouring nuclei. Looking at the PC-PK1

functional, the width of such a band at Z ≈ 120 is on average two even-even nuclei in the

Z direction for N = 172 − 188 and the width of a corresponding band at N ≈ 184 is on

average four even-even nuclei in the N direction for Z = 96 − 122 (see Fig. 6.2). This

is contrary to existing discussions in CDFT which emphasize the impact of the N = 172

shell gap over the N = 184 gap. Similar features exist in the calculations with NL3* and
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DD-ME2 (See Fig. 6a and b of Ref. [188]). However, the impact of the Z = 120 and

N = 184 spherical shell gaps becomes less pronounced for DD-ME2.
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Figure 6.2

Charge quadrupole deformations β2 obtained with PC-PK1 CEDF.

The impact of the Z = 120 spherical shell gap is significantly reduced for DD-PC1

CEDF; only the N = 172 nuclei with Z = 118 and 120 are spherical for this functional

(see Fig. 6.3). The impact of the N = 184 shell gap is also considerably decreased;

the ground states of the N = 184 nuclei are spherical only for Z ≤ 112. The band of

spherical nuclei around N = 184 is narrow for DD-PC1. A similar situation exist in the

calculation with DD-MEδ (see Fig. 6c of Ref. [188]). These results are in contradiction to

the expectation that the large size of the spherical Z = 120 gap forces the isotopes with

Z = 120 to be spherical for a large range of neutron numbers.
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Figure 6.3

Same as Fig. 6.2 but with DD-PC1 CEDF.

Figs. 6.2 and 6.3 also shows experimentally known nuclei indicated by open circles.

One can see that, apart from the Z = 116, 118 nuclei, the predictions of these two func-

tionals (PC-PK1 and DD-PC1) for the equilibrium deformations of experimentally known

even-even nuclei are very similar. For these nuclei, PC-PK1 predicts the gradual transition

from prolate to spherical shape on going from Z = 114 to Z = 118. On the contrary, for

DD-PC1 the transition from the prolate to oblate minimum is predicted for experimentally

known nuclei on going from Z = 114 to Z = 116 and all experimentally known Z ≥ 116

nuclei are expected to be oblate. But because of the limited scope of experimental data

these differences in the description of experimentally known Z = 116 and 118 nuclei

between DD-PC1/DD-MEδ and PC-PK1/NL3*/DD-ME2 cannot be discriminated.
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Proton quadrupole deformation spreads ∆β2 as a function of proton and neutron number.

Fig. 6.4 shows the spreads in the theoretical predictions of the charge quadrupole de-

formations. They are very small in the region of known nuclei and for N < 170. Only

few experimentally known nuclei are located in the region where substantial theoretical

spreads exist. However as discussed earlier, available experimental data on these nuclei

does not allow to discriminate different predictions. Large spreads exist in the region near

the Z = 120 and N = 184 lines. This is because spherical ground states are predicted

in this region by NL3*, DD-ME2 and PC-PK1, while DD-MEδ and DD-PC1 favor oblate

shapes in these nuclei. Very large spreads exist in the Z ∼ 110, N ≥ 190 region; this is

a region where a transition from prolate to oblate shape is seen in the calculations and it

takes place at different positions in the (Z,N) chart for the different functionals (see Figs .

6.2 and 6.3). The theoretical spreads become small again in the upper right corner of the
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chart; here they are substantial only in several nuclei (shown by green color) which form

a “line” parallel to the two-proton drip line. This “line” is a consequence of the fact that

the transition from ground state deformations β2 ∼ −0.2 to β2 ∼ −0.4 takes place for

different functionals at different positions in the (N,Z) chart.

6.5 Masses and separation energies

Table 6.1

rms-deviations ∆Erms, ∆(S2n)rms and ∆(S2p)rms between calculated and experimental
data.

CEDF ∆Erms [MeV] ∆(S2n)rms [MeV] ∆(S2p)rms [MeV]
1 2 3 4

NL3* 3.02/3.39 0.71/0.68 1.33/1.34
DD-ME2 1.39/1.40 0.45/0.54 0.85/0.90
DD-MEδ 2.52/2.45 0.60/0.51 0.45/0.48
DD-PC1 0.59/0.74 0.30/0.32 0.41/0.42
PC-PK1 2.82/2.63 0.25/0.23 0.36/0.33

In Table 6.1 we list the rms-deviations ∆Erms ∆(S2n)rms and ∆(S2p)rms between cal-

culated and experimental binding energies E, two-neutron and two-proton separation en-

ergies S2n and S2p. The values of physical observables in the columns 2-4 are presented in

the following format “A/B”, where A are the values obtained from only measured masses

and B from measured+estimated masses. Only experimental data on even-even nuclei with

Z ≥ 96 is used here. In each column, bold style is used to indicate the functional with

the best rms-deviation. For each employed functional the accuracy of the description of
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the sets of measured and measured+estimated masses is comparable and does not change

substantially when the estimated masses are added to the measured ones.

As compared with the global analysis of Sec .3.3 of chapter III and Refs. [40, 80], the

accuracy of the description of masses is better for DD-PC1 and DD-ME2, comparable for

DD-MEδ and PC-PK1 and worse for NL3*. The best accuracy is achieved for DD-PC1.

This is not surprising considering that this functional has been carefully fitted to the binding

energies of deformed rare-earth nuclei and actinides in Ref. [27]. With respect to masses

it outperforms other functionals in these regions (see Figs. 6 and 7 in Ref. [40]). The

two-neutron S2n and the two-proton S2p separation energies are described with a typical

accuracy of 0.5 MeV (Table 6.1). This is better by a factor of two than the global accuracy

of around 1 MeV obtained for these functionals in chapter III and Ref .[40]. The accuracy

of the description of separation energies depends on the accuracy of the description of mass

differences. As a result, not always the functional which provides the best description of

masses gives the best description of two-particle separation energies.

6.6 α-decay properties

In superheavy nuclei spontaneous fission and α emission compete and the shortest half-

live determines the dominant decay channel and the total half-live. Only in the cases where

the spontaneous fission half-live is longer than the half-live of α emission can superheavy

nuclei be observed in experiment. In addition, only nuclei with half-lives longer than

τ = 10µs are observed in experiments.
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The α decay half-live depends on the Qα values which are calculated according to

Qα = E(Z,N)− E(Z − 2, N − 2)− E(2, 2) (6.1)

with E(2, 2) = −28.295674 MeV [12] and Z and N representing the parent nucleus.

The RHB results for the Qα values are compared with experiment in Fig. 6.5 for DD-

PC1 functional. The experimental and calculated values are shown by symbols and lines,

respectively. For a given isotope chain, the same color is used for both types of values.

Experimental Qα values are from Ref. [12]. Solid symbols are used for experimentally

measured Qα values [12] which are determined either from measured masses (for low-Z

values) or from α-decays (for high-Z values). Open symbols are used for theQα values the

determination of which involves at least one estimated mass. The rms-deviations for the

five functionals used in this chapter are listed in Table 6.2. Based on the results presented

in this table, the best agreement is obtained for PC-PK1 closely followed by DD-PC1

and DD-MEδ, and then by DD-ME2 and NL3*. The reproduction of the magnitude of

N = 162 peak is obtained for DD-PC1, PC-PK1 and DD-ME2 CEDFs whiles NL3*

CEDF somewhat underestimate its magnitude. The DD-MEδ CEDF completely misses

both the position in neutron number and the magnitude of the peak at N = 164 seen in the

experimental data for the Rf, Sg, Hs, and Ds isotope chains (see. Fig. 14c of Ref. [188]).

The α-decay half-lives were computed using the phenomenological Viola-Seaborg for-

mula [217]

log10τα =
aZ + b√
Qα

+ cZ + d (6.2)
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with the parameters a = 1.64062, b = −8.54399, c = −0.19430 and d = −33.9054 of

Ref. [218].
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The comparison of experimental and calculated Qα values for even-even superheavy
nuclei.

The comparison of calculated and experimental half-lives for the α-decays is presented

in Fig. 6.6 for DD-PC1 CEDF. The experimental and calculated values are shown by sym-

bols and lines, respectively. For a given isotope chain, the same color is used for both

types of values. The experimental data are from Ref. [13]. It can be seen that there is

a reasonable agreement between experimental and theoretical results. However, the local

increase above the general trend of the experimental half-lives near N = 152 visible in

the Cf, Fm and No isotope chains, which is due to deformed N = 152 shell gap, is not
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reproduced. For higher neutron numbers all functionals predict an increase of the half-

lives as a function of neutron number N. This trend is however interrupted in the vicinity

of the spherical shell gap with N = 184. For some isotope chains a drastic decrease of

the half-lives is observed. It is a consequence of the well known fact that for nuclei with

two neutrons outside a closed shell α-particle emission is easier than for the other nuclei in

the same isotopic chain [219]. However, above N = 184 the trend of increasing half-lives

with the increase of neutron number is restored. The impact of the N = 184 shell gap on

the α-decay half-lives clearly correlates with the impact of this gap of the deformations of

the ground states. In SHEs with high Z values its impact on the α-decay half lives is either

substantially decreased or completely vanishes.
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Experimental and calculated half-lives for α-decays of even-even superheavy nuclei.

119



Table 6.2

Same as Table 6.1 but for ∆(Qα)rms and ∆(τα)rms. In the last column, the deviations are
given in terms of orders of magnitude.

CEDF ∆(Qα)rms [MeV] ∆(τα)rms [order]
1 2 3

NL3* 0.68/0.75 2.44
DD-ME2 0.51/0.65 1.95
DD-MEδ 0.39/0.51 1.39
DD-PC1 0.36/0.47 1.40
PC-PK1 0.32/0.38 1.26

In the region under investigation the magnitude of the α decay half-lives varies in a

very wide range from 10−8 up to 1050 s (or even higher for the Cf, Fm and No nuclei with

N ∼ 190). For some SHEs with high-Z values the calculated half-lives fell below the

experimental observation limit of 10−5s.

Despite the fact that the existing experimental data on the α-decay half-lives is de-

scribed with comparable accuracy by the different functionals, for unknown regions of

nuclear chart there are some cases of substantial difference in their predictions. The most

extreme difference is seen in the Cf isotopes, where NL3* and DD-ME2 differ from DD-

MEδ and DD-PC1 by approximately 20 orders of magnitude at neutron number N = 184

and slightly below it. On the other hand, apart from the N = 184 region the differences in

the predictions of different functionals is smaller for SHEs with Z ∼ 114 where it reaches

only few orders of magnitude (see Fig . 6.6 and Fig. 15 of Ref . [188] ). In the N = 184 re-

gion of these nuclei the differences between predictions of different functionals increase by

additional few orders of magnitude. However, above Z = 120 these differences decrease
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with increasing proton number because of the diminishing role of the N = 184 spherical

shell gap.

6.7 Fission barriers of superheavy nuclei

As already stated earlier, the stability of SHEs is defined by the fission barriers. In

addition, the experimental studies of SHEs are based on the observation of α-decays. But

the α-decays properties have been discussed in the previous section. Therefore it is of great

importance to study the fission barriers in SHEs to be able to make a solid conclusions on

the stability of SHEs in the DFT using CEDFs.

6.7.1 Global investigation of inner fission barriers and related systematic theoretical
uncertainties in the axial RHB calculations
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The heights of inner fission barriers (in MeV) with DD-ME2 CEDF.
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Same as Fig. 6.7 but with DD-MEδ CEDF.

The global behavior of the inner fission barrier heights in the region of superheavy nu-

clei obtained in axially symmetric RHB calculations as a function of proton and neutron

number is shown in Figs. 6.7 and 6.8 for the DD-ME2 and DD-MEδ functionals, respec-

tively. These two functionals produce the highest and lowest fission barriers respectively

among the five employed CEDFs. The results of the calculations for the DD-ME2 and

DD-MEδ CEDFs are shown from the two-proton drip line up to N = 196

As already stated the functionals used in this chapter can be split into two group with the

first group consisting of NL3*, DD-ME2 and PC-PK1, which predicts bands of spherical

SHEs in the (Z,N) plane centered around theZ = 120 andN = 184 lines. And the second

group which is made up of DD-MEδ and DD-PC1 and does not predict spherical SHE in
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the vicinity of above mentioned particle numbers. The impact of the proton and neutron

spherical shell gaps at Z = 120 and N = 184 is very visible for DD-ME2 (see Fig .6.7);

there is a substantial increase of the inner fission barrier heights around these numbers. In

contrast, no such effect is seen in the calculations with DD-MEδ (see Fig .6.8).

The spreads in the predictions of inner fission barrier heights are shown for all five

employed functionals in Fig. 6.9. One can see that in the actinides (Z ≤ 100, N ≤ 164)

these spreads are typically smaller than 2.5 MeV. Note that in this mass region theoret-

ical uncertainties in the prediction of the ground state deformations are very small (see

Fig. 6.4 and Refs. [40, 188]). However, the ∆EB spreads drastically increase in the

Z = 112−120, N = 170−186 region where they range from 3.5 MeV up to 5.5 MeV. To a

large extent this region coincides with the region where the uncertainties in the predictions

of the ground state deformations are substantial (see Fig. 6.4 and Fig. 8 in Ref. [188]).

This clearly suggests that in this region the uncertainties in the fission barrier heights are

strongly affected by the uncertainties in the ground state deformations. A similar enhance-

ment of the ∆EB spreads is seen in the nuclei around Z ∼ 98, N ∼ 174. However, the

differences in the predictions of the ground state deformations play here a minor role since

they are almost the same for all functionals (see Fig. 6.4 and Fig. 8 in Ref. [188]). Theo-

retical ∆EB spreads decrease for N ≥ 186; here they are typically less than 3 MeV with

only a few nuclei characterized by higher spreads of around 4 MeV.
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Figure 6.9

The spreads ∆EB of the heights of inner fission barriers as a function of proton and
neutron number.

6.7.2 Systematic theoretical uncertainties in the description of inner fission barriers
for triaxial RHB calculations

It is well-known that inner fission barriers in many SHEs are affected by triaxiality; its

impact is especially pronounced in the nuclei near the Z = 120 and N = 184 (see Table V

in Ref. [70]). Thus, the axial RHB calculations provide an upper limit for the inner fission

barrier heights.

In general, triaxial deformation has to be included into the calculations for a more

realistic estimate of the heights of inner fission barriers which can be used for the compar-

ison with experiment. However, such a study requires tremendous computational power.

The computational challenge becomes especially large in the case of the analysis of sys-

tematic theoretical uncertainties because the same nucleus has to be calculated within the

TRHB framework for several CEDFs. Thus, a full global analysis of theoretical uncertain-
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ties similar to the one presented in Sec .6.7.1 in the axial RHB framework is, at present,

beyond the reach of available computational facilities. As a result, we concentrate here

on the selected set of the Z = 112 − 120 superheavy nuclei which will be in the focus

of experimental studies within the next decades. They are shown in Figs 6.11 and 6.12.

In the selection of nuclei we focus on the nuclei in which the triaxial saddle is expected

to be the lowest in energy in the region of interest. According to systematic studies in

the RMF+BCS framework with the CEDF NL3* of Ref. [70], these are the nuclei in the

vicinity of the Z = 120 and N = 184 lines. On the contrary, the axial saddles are the

lowest in energy in the nuclei which are away from these lines. For example, this takes

place for N ≤ 174 in the Z = 112, 114, 116 nuclei (see Ref. [70]). Triaxial RHB calcu-

lations for the (Z = 112, N = 164), (Z = 112, N = 172), (Z = 114, N = 166) and

(Z = 114, N = 172) nuclei (these nuclei are seen on the left side of Fig. 6.11) confirm this

observation of Ref. [70] for all CEDFs employed in the present manuscript. We will try

to establish (i) how theoretical systematic uncertainties obtained in axial RHB calculations

will be modified when triaxiality is included and (ii) to what extent theoretical uncertainties

obtained in axial and triaxial RHB calculations are correlated.

The dependence of the potential energy surfaces on the CEDF is illustrated in Fig. 6.10.

These PES are characterized by a complicated topology which, however, reveals some typ-

ical triaxial saddles. The energy difference between two neighboring equipotential lines is

equal to 0.5 MeV. The Ax, Ax-Tr, Tr-A and Tr-B saddles are shown by blue/red circles, di-

amonds, triangles, and squares, respectively. The PES are shown in the order of decreasing

height of inner fission barrier.
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Figure 6.10

Potential energy surfaces of the 300120 nucleus as obtained in the calculations with
indicated CEDFs.
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Figure 6.11

The spreads ∆ES of the energies of axial saddles for a selected set of the Z = 112− 120
nuclei as a function of proton and neutron number.
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Figure 6.12

Same as Fig .6.11 but for TRHB calculations.
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In the nucleus 300120 they are located at (β2 ∼ 0.32, γ ∼ 21◦), (β2 ∼ 0.43, γ ∼ 33◦),

and (β2 ∼ 0.49, γ ∼ 24◦) for the functionals DD-ME2, PC-PK1, NL3* and DD-PC1 (see

Fig. 6.10). The later two are also visible in the CEDF DD-MEδ. However, the first one is

shifted to smaller β2 and γ deformations, namely, to (β2 ∼ 0.20, γ ∼ 15◦).

For all functionals except DD-MEδ the axial saddle is higher in energy by roughly 0.5

MeV than the triaxial saddle at (β2 ∼ 0.32, γ ∼ 21◦) and by approximately 1.5 MeV than

the triaxial saddles at (β2 ∼ 0.43, γ ∼ 33◦) and (β2 ∼ 0.49, γ ∼ 24◦) (Fig. 6.10). The

PES of the DD-MEδ functional has a completely different topology. Although the (β2 ∼

0.20, γ ∼ 15◦) saddle is lower in energy than the axial saddle by approximately 1 MeV, the

axial saddle is located only ∼ 0.2 MeV below the triaxial saddles at (β2 ∼ 0.33, γ ∼ 25◦)

and (β2 ∼ 0.45, γ ∼ 33◦).

The presence of these saddles leads to several fission paths which have been discussed

in detail in Ref. [70]. Although this discussion is based on RMF+BCS results with NL3*,

we found that it is still valid for the TRHB results with DD-ME2, PC-PK1, NL3* and

DD-PC1. This is because for a given functional the topology of PES obtained in triaxial

RMF+BCS and RHB calculations is similar. The situation is different for DD-MEδ which

has an axial saddle located at β2 ∼ 0.13 (Fig. 6.10). Thus, the fission path will proceed

from the oblate minimum via the triaxial saddle at (β2 ∼ 0.20, γ ∼ 0.15) which has a low

excitation energy of only 3 MeV.

The accounting of triaxiality in the calculations modifies the spreads in the predictions

of the heights of inner fission barriers. This is clearly seen in Figs 6.11 and 6.12 where

these spread, obtained in axial and triaxial RHB calculations, are compared. Although,
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locally, the two calculations may differ slightly, on average, there are strong correlations

in the spreads obtained in the two calculations. This suggests that also for other regions

of the nuclear chart, not covered by the present triaxial RHB calculations, the spreads in

inner fission barrier heights obtained in the axial RHB calculations (See Fig .6.9) could be

used as a reasonable estimate of the spreads which would be obtained in the calculations

with triaxiality included.

6.8 Concluding remarks

The performance of covariant energy density functionals in the region of superheavy

nuclei has been assessed using the state-of-the-art functionals NL3*, DD-ME2, DD-MEδ,

DD-PC1, and PC-PK1. The available experimental data on ground state properties of even-

even superheavy nuclei have been confronted with the results of the calculations. Theo-

retical spreads in the predictions of physical observables and fissions barriers have been

investigated in a systematic way in this region of the nuclear chart for covariant density

functionals.

The main results of this chapter can be summarized as follows:

• Available experimental data (separation energies, Qα-values and α-decay half-lives)

on SHEs are described with comparable accuracy. Comparing different functionals

one can see that the results obtained with the covariant density functional DD-MEδ

differ substantially from the results of other functionals. This functional is different

from all the other functionals used here, because it has been adjusted in Ref. [28]
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using only four phenomenological parameters in addition to some input from ab-

inito calculations [199, 200].

• Theoretical uncertainties in the predictions of different observables have been quan-

tified. While the uncertainties in the quadrupole deformation of the ground states

of known superheavy nuclei are small, they increase on approaching nuclei with

Z = 120 and/or N = 184. As a result, even the ground state deformations of these

nuclei (whether spherical or oblate) cannot be predicted with certainty. Available

experimental data do not allow to discriminate between these predictions.

• Systematic theoretical uncertainties in the predictions of inner fission barriers and

their propagation towards unknown regions of higher Z values and of more neutron-

rich nuclei have been quantified. These uncertainties are substantial in SHEs. It

is clear that the differences in the basic model assumptions such as the range of

the interaction and the form of the density dependence together with the different

fitting protocols based only on nuclear matter and bulk properties data lead to these

uncertainties.
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CHAPTER VII

COVARIANT ENERGY DENSITY FUNCTIONALS: NUCLEAR MATTER

CONSTRAINTS

7.1 Introduction

Bound states of the nucleons manifest themself in two species: finite nuclei and neutron

stars. The former system is bound by strong forces, while the latter by gravitational ones.

The description of both types of nuclear systems is intimately connected with a concept

of nuclear matter which is an idealized infinite system of nucleons (neutrons and protons)

interacting by strong forces. Infinite volume implies no surface effects and translational

invariance. This concept is well suited for the description of the properties of interior of

neutron stars.

However, it also has some important implications for finite nuclei (see Refs. [220, 221,

222, 223, 224] in recent topical review on nuclear symmetry energy). This is because

the constraints on nuclear matter properties (NMP) enter into fitting protocols of the en-

ergy density functionals (EDF) for non-relativistic and covariant density functional theories

[144, 29]. In this way they affect the properties of finite nuclei (both static and dynamic

aspects) [144, 29, 220, 221, 222, 223].

Analysis of the 263 covariant energy density functionals with respect of NMP con-

straints has recently been performed in Ref. [1]. Small portion of these functionals (less
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than 10) have been used in a more or less systematic studies of the properties of finite

nuclei. The properties of symmetric nuclear matter, pure neutron matter, symmetry en-

ergy and its derivatives were constrained based on experimental/empirical data and model

calculations in Ref. [1]. This resulted in two sets of constraints called SET2a and SET2b

relevant for CDFT models; the part of these constraints is listed in Table 7.2 below.

Among these 263 CEDFs only 4 and 3 satisfy SET2a and SET2b NMP constraints, re-

spectively. However, these functionals have never been used in the studies of finite nuclei.

Therefore, it is impossible to verify whether good NMP of these functionals will trans-

late into good global description of binding energies, charge radii, deformations etc. The

FSUGold and DD-MEδ CEDFs are among the 263 CEDFs. The global performance of

these functionals have been studied in the RMF+BCS and RHB models in Refs. [75, 40],

respectively. Additional constraints on the functionals come from the properties of neutron

stars [225]. It turns out that FSUGold and DD-MEδ place maximum mass M of neutron

star well below and above the measured limit of 1.93 ≤ M/M� ≤ 2.05 [226, 227] where

M� is the solar mass. The DD-MEδ functional comes to this limit only when hyperons

are included; however, there are substantial uncertainties in the meson-hyperon couplings

[225] as well as in the existence of hyperons in the interior of neutron stars [228].

Thus, the number of questions emerge. Firstly, whether strict enforcement of these

NMP constraints will inevitably lead to an improvement of the description of the ground

state properties of finite nuclei in the CDFT and to a reduction of theoretical uncertainties

in the description of the properties of neutron-rich nuclei. The second question is whether

there are some physics missing in the current generation of CEDFs which could be re-
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sponsible for some mismatch of the results for finite nuclei and neutron stars. Also it is

important to understand how the details of the fitting protocols affect these conclusions.

To address these questions we perform the global analysis of the ground state observ-

ables such as binding energies and charge radii obtained with the state-of-the-art CEDFs

which differ substantially in the NMPs. CEDF DD-MEδ, which is coming very close to

satisfying all required NMP constraints, is among them.

7.2 Brief outline of the details of theoretical framework

Table 7.1

Input data for fitting protocols of different CEDFs.

CEDF E rch rskin Type of nuclei EOS
1 2 3 4 5 6

NL3* 12 9 4 S N
DD-ME2 12 9 3 S N
DD-MEδ 161 86 0 S Y
DD-PC1 64 0 0 D Y
PC-PK1 60 17 0 S N

Table 7.1 list the input data for fitting protocols of different CEDFs. Columns (2-4)

show the number of experimental data points on binding energies E, charge radii rch and

neutron skin thicknesses rskin used in the fitting protocols. Column 5 indicates which type

of nuclei (spherical (S) or deformed (D)) were used. Column 6 shows whether microscopic

equation of state (EOS) has been used in the fit of the functional or not; here “Y” stands for

“yes” and “N” for “no”. Only DD-MEδ and DD-PC1 functionals are fitted to the equation
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of state (EOS) of neutron matter obtained in microscopic calculations with realistic forces.

Although these EOS are similar at saturation densities, they differ substantially in their

stiffness at the densities typical to the centre of neutron stars [230, 231, 221]. Note that

no reliable data, either observational or experimental, exist for such densities. As a result,

there is no way to discriminate these predictions for the EOS.

The results have been obtained in the relativistic Hartree-Bogoliubov (RHB) frame-

work the details of which are discussed in chapter II. These deformed RHB calculations

are restricted to axial reflection symmetric shapes. We used four CEDFs (NL3* [33], DD-

ME2 [26], DD-PC1[27] and DD-MEδ [28]) in the global studies in chapters III and V. We

also include CEDF PC-PK1 [79] has been used with success for the studies of the masses

of known nuclei by Peking group in Refs. [80, 229].

These functionals reproduce the binding energies of known nuclei at the mean field

level with the rms-deviations of around 2.5 MeV (see Table 3.1 in chapter III). However,

they differ substantially in the underlying physics (see discussion in Sec. 2 of Ref. [40] and

Ref. [79]) and fitting protocols (see Table 7.1).

7.3 The impact of nuclear matter properties of the functionals on the predictions of
binding energies of known and neutron-rich nuclei

Although new experimental data on masses of neutron-rich nuclei generated by future

rare isotope facilities will allow to improve the isovector properties of the energy density

functionals, it is not likely that such an improvement will either eliminate or substantially

reduce all possible uncertainties. Moreover, it is not clear whether the bias towards light

and medium mass nuclei generated by future experimental data could be avoided since
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very little extension of the nuclear chart will be generated for the Z ≥ 82 nuclei by these

experiments (Fig. 7.1). This is precisely the region where most of unknown Z ≤ 120

nuclei are located and where the distance (in terms of neutrons) between the region of

known nuclei and the two-neutron drip line is the largest (see Fig. 3.4 of chapter III).
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Figure 7.1

The binding energy spread ∆E(Z,N) as a function of proton and neutron number.

Figure 7.1 show the binding energy spread ∆E(Z,N) as a function of proton and

neutron number. The squares are shown only for the nuclei which are currently known

and which will be measured with FRIB. The regions of the nuclei with measured and
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measured+estimated masses are enclosed by dashed and solid black lines, respectively.

The squares beyond these regions indicate the nuclei which may be measured with FRIB.

The fitting protocols of EDFs always contain data on finite nuclei (typically binding

energies, charge radii and occasionally neutron skin thicknesses) and pseudodata on NMP

(see Table 7.1). Binding energies and radii show different sensitivity to various terms of

the CEDFs and, in addition, there are some important correlations between the NMP and

surface properties of the functionals. For example, the calculated binding energies are

not very sensitive to the nuclear matter saturation density but are strongly influenced by

the choice of the parameters which define the surface energy coefficient as in the empirical

mass formula [27]. Strong converse relation exists between the nuclear charge radii and the

saturation density of symmetric nuclear matter ρ0 [232]. Also, there is a strong correlation

between the slope of symmetry energy L0 and neutron skins [233, 234, 232] (see Refs.

[232, 64, 233, 234, 235] for the discussion of other correlations).

Since available data on binding energies does not allow to fully establish the isovector

properties of EDFs and make reliable predictions for masses of neutron-rich nuclei, it is

important to have a closer look on NMP in order to see whether strict enforcement of NMP

constraints could reduce theoretical uncertainties in isovector properties of EDFs and mass

predictions for neutron-rich nuclei.

One way to do that is to see whether there is one-to-one correspondence between the

differences in NMP of two functionals and the differences in their description of binding

energies. Fig. 7.2 and Table 7.2 are created for such an analysis. The differences of the

binding energies of several pairs of CEDFs are compared in Fig. 7.2; they are based on the
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results of the RHB calculations obtained in Ref. [40]. Table 7.2 summarizes the NMPs of

employed functionals and the experimental/empirical ranges for the quantities of interest

obtained in Ref. [1]. The binding energy per particle E/A ∼ −16 MeV and the saturation

density ρ0 ∼ 0.15 fm−3 represent well established properties of infinite nuclear matter.

On the other hand, the incompressibility K0 of symmetric nuclear matter, its symmetry

energy J and the slope L0 of symmetry energy at saturation density are characterized by

substantial uncertainties (see Ref. [1] for details). Effective mass of the nucleon at the

Fermi surface m*/m is also poorly defined in experiment.

Table 7.2

Properties of symmetric nuclear matter at saturation.

CEDF ρ0 [fm−3] E/A [MeV] K0 [MeV] J [MeV] L0 [MeV] m*/m
1 2 3 4 5 6 7

NL3* [33] 0.150 -16.31 258 38.68 122.6 0.67
DD-ME2 [26] 0.152 -16.14 251 32.40 49.4 0.66
DD-MEδ [28] 0.152 -16.12 219 32.35 52.9 0.61

DD-PC1 [27, 79] 0.152 -16.06 230 33.00 68.4 0.66
PC-PK1 [79] 0.154 -16.12 238 35.6 113 0.65

SET2a ∼ 0.15 ∼ −16 190-270 25-35 25-115
SET2b ∼ 0.15 ∼ −16 190-270 30-35 30-80

Table 7.2 list the density ρ0, the energy per particle E/A, the incompressibility K0, the

symmetry energy J and its slope L0, and the Lorentz effective massm*/m [2] of a nucleon

at the Fermi surface. Top five lines show the values for indicated covariant energy density

functionals, while bottom two lines show two sets (SET2a and SET2b) of the constraints

on the experimental/empirical ranges for the quantities of interest defined in Ref. [1]. The
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CEDF values which are located beyond the limits of the SET2b constraint set are shown in

bold.

The smallest difference in the predictions of binding energies exists for the DD-ME2/DD-

MEδ pair of the functionals (Fig. 7.2a); for almost half of the Z ≤ 104 nuclear landscape

their predictions differ by less than 1.5 MeV and only in a few points of nuclear landscape

the differences in binding energies of two functionals are close to 5 MeV. The NMPs of

these two functionals are similar with some minor differences existing only for the incom-

pressibility K0 and Lorentz effective mass m*/m (Table 7.2). However, the similarity of

NMP does not necessarily lead to similar predictions of binding energies. This is illus-

trated in Fig. 7.2d on the example of the pair of the DD-ME2 and DD-PC1 functionals for

which substantial differences in the predictions exist for quite similar NMP (Table 7.2).

A more striking example is seen in Fig. 7.2b where the NL3*/DD-PC1 pair of the

functionals, which are characterized by a substantial differences in the energy per particle

(E/A), symmetry energy J and its slope L0 (Table 7.2), have significantly smaller differ-

ences in predicted binding energies as compared with above mentioned DD-ME2/DD-PC1

pair of the functionals. This is a consequence of a peculiar feature of the relative behavior

of the binding energies of the NL3* and DD-PC1 functionals with increasing isospin. It

should be noted that the J and L0 values of the NL3* functional are located outside the

experimental/empirical ranges for these values defined in Ref. [1] (see Table 7.2).

Although FSUGold and DD-MEδ satisfy the majority of the NMP constraints, they

still face significant problems in the description of finite nuclei. FSUGold is designed for

neutron star applications in Ref. [76] and it is characterized by the largest rms deviations
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(6.5 MeV) from experiment for binding energies among all CEDF’s the global performance

of which is known [40]. DD-MEδ which is the most microscopic functional among all

existing CEDF’s, provides quite reasonable description of binding energies (see Table 3.1

of chapter III and Refs. [40, 188]), it generates unrealistically low inner fission barriers in

superheavy elements [236] and fails to reproduce octupole deformed nuclei in actinides

[195].

From the analysis in chapters III and V it is clearly seen that the CEDFs NL3*, DD-

ME2, PC-PK1 and DD-PC1 represent better and well-rounded functionals as compared

with FSUGold and DD-MEδ. They are able to describe not only ground state properties

but also the properties of excited states [33, 53, 54, 170, 237, 172, 171, 26, 27]. This is

despite the fact that the first three functionals definitely fail to describe some of the nuclear

matter properties (see Table 7.2 and Ref. [1]). It is not clear whether that is also the case for

DD-PC1 since it was not analyzed in Ref. [1]. Therefore, one can conclude that functionals

which provide good NMPs, do not necessarily well describe finite nuclei.

As a result one can say that the NMP constraints do not allow to eliminate some of

the CEDFs from the consideration and in this way to decrease the uncertainties in the

predictions of binding energies of the neutron-rich nuclei and the position of two-neutron

drip line.

7.4 Concluding remarks

The question of how strictly nuclear matter constraints have to be imposed and which

values have to be used for the definition of covariant energy density functionals still re-
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Figure 7.2

Binding energy spreads ∆E(Z,N) for the pairs of indicated functionals.
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mains not fully answered. Definitely, the equation of state relating pressure, energy den-

sity, and temperature at a given particle number density is essential for modeling neutron

stars, core-collapse supernovae, mergers of neutron stars and the processes (such as nu-

cleosynthesis) taking places in these environments. However, there are substantial experi-

mental/empirical/model uncertainties in the definition of the NMP constraints.

In addition, the properties of finite nuclei are defined by the underlying shell structure

which depends sensitively on the single-particle features [144, 29, 188]. As a consequence,

we are facing the situation in which the functionals which are coming close to satisfying

all NMP constraints perform quite poorly in the description of finite nuclei. This was

exemplified by the FSUGold and DD-MEδ functionals. The former provides the worst

rms-deviations in global description of binding energies [75, 40], while the latter fails

to reproduce octupole deformed actinides [188] and predicts too low fission barriers in

superheavy nuclei [236] so that their existence could be questioned. On the other hand,

the functionals which fail to reproduce the NMP constraints suggested in Ref. [1] such as

NL3* and PC-PK1 are able to reproduce reasonably well the ground state properties of

finite nuclei.

141



CHAPTER VIII

HYPERHEAVY NUCLEI: EXISTENCE AND STABILITY

8.1 Introduction

The investigation of superheavy elements (SHE) remains one of the most important

sub-fields of low-energy nuclear physics [10]. The element Og with proton number Z =

118 is the highest Z element observed so far [32]. Although future observation of the

elements in the vicinity of Z ∼ 120 seems to be feasible, this is not a case for the elements

with Z beyond 122. Considering also that the highest in Z spherical shell closure in SHE

is predicted at Z = 126 in Skyrme density functional theory (DFT) [207], it is logical to

name the nuclei with Z > 126 as hyperheavy [238, 212]. The properties of such nuclei are

governed by increased Coulomb repulsion and single-particle level density; these factors

reduce the localization of shell effects in particle number [212].

Although hyperheavy nuclei have been studied both within DFTs [238, 212, 239, 208,

240, 241] and phenomenological [242, 243, 244] approaches, the majority of these studies

have been performed only for spherical shapes of the nuclei. This is a severe limitation

which leads to misinterpretation of physical situation in many cases since there is no guar-

antee that spherical minimum in potential energy surface exist even in the nuclei with rel-

ative large spherical shell gaps (see discussion in Ref. [188]). In addition, the stability of

hyperheavy nuclei against spontaneous fission could not be established in the calculations
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restricted to spherical shape. The effects of axial and triaxial deformations in hyperheavy

nuclei are considered only in Refs. [239, 245] and in Ref. [240, 246], respectively. How-

ever, only few nuclei are studied in Refs. [239, 245, 246] and according to the present study

the deformation range employed in Ref. [240] is not sufficient for Z ≥ 130 nuclei.

The investigation of hyperheavy nuclei is also intimately connected with the establish-

ments of the limits of both the nuclear landscape and periodic table of elements. The limits

of nuclear landscape at the proton and neutron drip lines and related theoretical uncertain-

ties have been extensively investigated in a number of theoretical frameworks but only for

the Z < 120 nuclei [5, 84, 40]. The atomic relativistic Hartree-Fock [247] and relativistic

Multi-Configuration Dirac-Fock [248, 249] calculations indicate that the periodic table of

elements terminates at Z = 172 and Z = 173, respectively. However, at present it is not

even clear whether such nuclei are stable against fission. In addition, Refs. [247, 248, 249]

employ phenomenological expression for charge radii and its validity for the Z ∼ 172

nuclei is not clear.

To address these deficiencies in our understanding of hyperheavy nuclei the systematic

investigation of even-even nuclei from Z = 122 up to Z = 180 is performed within the

axial relativistic Hartree-Bogoliubov (RHB) framework employing the DD-PC1 covariant

energy density functional [27]. This functional provides good description of the ground

state and fission properties of known even-even nuclei [40, 250]. To establish the stability

of nuclei with respect to triaxial distortions a number of nuclei have been studied within

the triaxial RHB [236] and relativistic mean field + BCS (RMF+BCS) [170] frameworks.

The main goals of this study are (i) to understand whether the nuclei stable against fission
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could be present in the Z ≥ 126 region and (ii) to define the most important features of

such nuclei.

8.2 Axial calculations: general structure of potential energy surfaces.

Majority of the calculations presented in this chapter employ the DD-PC1 functional

which is considered to be the best relativistic functional today based on systematic and

global studies of different physical observables (see chapter III) and Refs. ([188, 40, 236,

251, 171, 195]). Other functionals are used to assess the systematic theoretical uncertain-

ties in the predictions of the heights of fission barriers around spherical minima.

The truncation of the basis is performed in such a way that all states belonging to the

major shells up to NF fermionic shells for the Dirac spinors (and up to NB = 20 bosonic

shells for the meson fields in meson exchange functionals) are taken into account. The

comparison of the axial RHB calculations with NF = 20 and NF = 30 shows that in

208Pb the truncation of basis at NF = 20 provides sufficient accuracy for all deformations

of interest. However, in hyperheavy nuclei the required size of the basis depends both

on the nucleus and deformation range of interest. The NF = 20 basis is sufficient for

the description of deformation energy curves in the region of −1.8 < β2 < 1.8. The

deformation ranges −3.0 < β2 < −1.8 and 1.8 < β2 < 3.0 typically require NF =

24 (low-Z and low-N hyperheavy nuclei) or NF = 26 (high-Z and high-N hyperheavy

nuclei). Even more deformed ground states with β2 ∼ −4.0 are seen in high-Z/high-N

hyperheavy nuclei (see Figs. 8.1c and d for the 466156 and 426176 results); their description
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requires NF = 30. Thus, the truncation of basis is made dependent on the nucleus and

typical profile of deformation energy curves or potential energy surfaces.

Figure 8.1

Deformation energy curves of 208Pb and selected even-even hyperheavy nuclei.

Fig. 8.1 is the deformation energy curves of 208Pb and selected even-even hyperheavy

nuclei obtained in axial RHB calculations with DD-PC1 functional and theNF = 30 basis.

The insert in panel (c) shows the fission barriers around spherical state in details. Open

circles in panel (c) indicate the deformations at which the density distributions are plotted

in Fig. 8.4 below. Dashed lines show mirror reflection of the β2 > 0 part of deformation

energy curve onto negative β2 values.
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The deformation parameters β2 and γ are extracted from respective quadrupole mo-

ments: Q20 (see Eq. 3.4) and

Q22 =

∫
d3rρ(r) (x2 − y2), (8.1)

via

β2 =

√
5

16π

4π

3AR2
0

√
Q2

20 + 2Q2
22 (8.2)

γ = arctan
√

2
Q22

Q20

(8.3)

whereR0 = 1.2A1/3. Note thatQ22 = 0 and γ = 0 in axially symmetric RHB calculations.

The β2 and γ values have a standard meaning of the deformations of the ellipsoid-like

density distributions only for |β2| < 1.0 values. At higher |β2| values they should be treated

as dimensionless and particle normalized measures of the Q20 and Q22 moments. This is

because of the presence of toroidal shapes at large negative β2 values and of necking degree

of freedom at large positive β2 values. Note that physical observables are frequently shown

as a function of the Q20 and Q22 moments. However, from our point of view such way of

presentation has a disadvantage that the physical observables of different nuclei related

to the shape of the density distributions (such as deformations) are difficult to compare

because the Q20 and Q22 moments depend on particle number(s).

For each nucleus under study, the deformation energy curves in the −5.0 < β2 < 3.0

range are calculated in the axial reflection symmetric RHB framework [40]; such large

range is needed for a reliable definition of the β2 value of the lowest in energy minimum

for axial symmetry (LEMAS). This LEMAS becomes the ground state if the higher order
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deformations (triaxial, octupole) do not lead to the instability of these minima. The nuclei

up to Z = 138 are calculated using the basis with NF up to 26.

On the contrary, with the exception of the 466156 and 426176 nuclei, the Z = 140− 180

nuclei are calculated only with NF = 20. The major goals of the calculations for the

Z = 140 − 180 nuclei are (i) to define the type of the LEMAS states, (ii) to find whether

spherical or normal deformed states could be the LEMAS states of these nuclei and (iii) to

calculate the fission barriers around spherical states.

The required size of the basis limits the applicability of triaxial calculations to typically

|β2| < 2 range. The nuclei with the ground states located at the deformations below

β2 ∼ 1.0 are calculated in triaxial RHB framework [236], while a pair of nuclei with local

minima at β ∼ 2.4, γ ∼ 60◦ corresponding to toroidal shapes were calculated in triaxial

RMF+BCS framework [170]. The later framework is more numerically stable at very

large β2 values. Because of high computational cost of the calculations with triaxiality

included, only limited number of nuclei were studied in these frameworks. The role of

octupole deformation in the nuclei shown in Fig. 8.8 has been studied in the axial reflection

asymmetric RHB code of Ref. [195]. These calculations are performed with NF = 20

Fig. 8.1 illustrates the dependence of the deformation energy curves, obtained in axial

RHB calculations, on the nucleus. The Z = 82 208Pb nucleus is spherical in the ground

state. The total energy of the nucleus is increasing rapidly with increasing oblate deforma-

tion. On the prolate side, it increases with the increase of quadrupole deformation up to

β2 ∼ 1.4 and then stays more or less constant. This leads to the existence of high (∼ 30
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MeV) and very broad fission barrier which is responsible for the stable character of this

nucleus.
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Figure 1: Neutron density distributions at the local minimum with β2 = 2.30, β4 = +1.5, γ = 60◦ in the 354134 nucleus obtained in triaxial
RMF+BCS calculations. To give a full three-dimensional representation of the density distributions, they are plotted in the xy, yz and xz

planes at the positions of the Gauss-Hermite integration points in the z, x and y directions closest to zero, respectively. The density colormap
starts at ρn = 0.005 fm−3 and shows the densities in fm−3.
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Figure 2: The same as Fig. 1 but for the local minimum with β2 = 2.50, β4 = −4.4, γ = 60◦. For better visualization the density colormap
starts at ρn = 0.0002 fm−3.
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Figure 3: Potential energy surfaces of the 348138 nucleus obtained in the RMF+BCS calculations. Left panel shows the lowest in energy
solutions. The right panel shows PES for the solution with minimum at β2 ∼ 2.3, β4 ∼ +1.5, γ = 60◦. This solution is excited one in axial
RHB calculations, but it is the lowest in energy stable solution in triaxial RMF+BCS calculations. The blue line shows static fission path
from this minimum indicated by open white circle; the saddle point at 8.54 MeV (with respect of the minimum) is shown by black cross. The
energy difference between two neighboring equipotential lines is equal to 5 MeV and 2 MeV in left and right panels, respectively. The same
energy minimum is used for colormap in both panels.

2

Figure 8.2

Neutron density distributions at the local minimum with β2 = 2.30, β4 = +1.5, γ = 60◦

in the 354134 nucleus.

The 354134 nucleus shows completely different profile of the deformation energy curves

(Fig. 8.1b). The LEMAS is located at β2 ∼ −0.5 and the deformation energy curves

on the oblate side are more flat in energy as compared with 208Pb. The fission barrier

for the β2 ∼ −0.5 minimum is rather high (∼ 8.5 MeV) and broad (Fig. 8.1b) which

would suggest high stability of this nucleus against fission if the nucleus would stay axially

symmetric. Note that at β2 < −1.5 values there are two solutions; the one shown by

solid line has β4 ∼ +0.67β2 and another (which appear only in triaxial calculations at

γ = 60◦) shown by dotted line has β4 ∼ −1.7β2. The minima of these two solutions

appear at β2 ∼ −2.4. The former solution is characterized by toroidal shapes (see Fig. 8.2

which is the neutron density distributions at the local minimum with β2 = 2.30, β4 =

+1.5, γ = 60◦ in the 354134 nucleus obtained in triaxial RMF+BCS calculations. To give
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a full three-dimensional representation of the density distributions, they are plotted in the

xy, yz and xz planes at the positions of the Gauss-Hermite integration points in the z, x

and y directions closest to zero, respectively. The density colormap starts at ρn = 0.005

fm−3 and shows the densities in fm−3.), while the latter one by double banana shapes

connected by low density links (see Fig. 8.3, same as Fig. 8.2 but for the local minimum

with β2 = 2.50, β4 = −4.4, γ = 60◦. For better visualization the density colormap starts

at ρn = 0.0002 fm−3.). The β4 ∼ −1.7β2 solution is lower in energy in a number of

nuclei around the 354134 nucleus but it is unstable with respect to triaxial distortions (see

discussion below). Thus, in considering the shapes with β2 < −1.5 we focus on toroidal

shapes with positive β4 which are potentially stable with respect to triaxial distortions. In

the 354134 nucleus, the minimum of this solution with β2 ∼ −2.5 is located at 4.2 MeV

excitation energy with respect to the β2 ∼ −0.5 minimum.
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Figure 1: Neutron density distributions at the local minimum with β2 = 2.30, β4 = +1.5, γ = 60◦ in the 354134 nucleus obtained in triaxial
RMF+BCS calculations. To give a full three-dimensional representation of the density distributions, they are plotted in the xy, yz and xz

planes at the positions of the Gauss-Hermite integration points in the z, x and y directions closest to zero, respectively. The density colormap
starts at ρn = 0.005 fm−3 and shows the densities in fm−3.
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Figure 2: The same as Fig. 1 but for the local minimum with β2 = 2.50, β4 = −4.4, γ = 60◦. For better visualization the density colormap
starts at ρn = 0.0002 fm−3.
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Figure 3: Potential energy surfaces of the 348138 nucleus obtained in the RMF+BCS calculations. Left panel shows the lowest in energy
solutions. The right panel shows PES for the solution with minimum at β2 ∼ 2.3, β4 ∼ +1.5, γ = 60◦. This solution is excited one in axial
RHB calculations, but it is the lowest in energy stable solution in triaxial RMF+BCS calculations. The blue line shows static fission path
from this minimum indicated by open white circle; the saddle point at 8.54 MeV (with respect of the minimum) is shown by black cross. The
energy difference between two neighboring equipotential lines is equal to 5 MeV and 2 MeV in left and right panels, respectively. The same
energy minimum is used for colormap in both panels.

2

Figure 8.3

The same as Fig. 8.2 but for the local minimum with β2 = 2.50, β4 = −4.4, γ = 60◦.

Further increase of proton number leads to drastic modifications of the deformation

energy curves. In the 466156 and 426176 nuclei, the minimum appears at extreme β2 ∼ −4.0
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values. However, these minima are potentially unstable with respect to the transition to the

prolate shape via γ-plane and subsequent fission since prolate shapes with corresponding

quadrupole deformations are located at lower energies (compare dashed lines with solid

ones in Figs. 8.1c and d). Note also that in the 466156 nucleus there are excited local

β2 ∼ −1.2 and spherical minima which could be potentially stable against fission.

536 A.V. Afanasjev et al. / Physics Letters B 782 (2018) 533–540

Fig. 2. Neutron density distributions of the 466156 nucleus at the β2 values indicated in Fig. 1c. They are plotted in the yz plane at the position of the Gauss–Hermite 
integration points in the x directions closest to zero. The density colormap starts at ρn = 0.005 fm−3 and shows the densities in fm−3.

Fig. 3. Charge quadrupole deformations β2 of the lowest in energy particle bound minima obtained in axial RHB calculations. The calculations are performed for each second 
even-even nucleus in the isotopic chain starting at approximately two-proton drip line and ending at approximately two-neutron drip line. The nuclei with quadrupole 
deformations of −0.8 < β2 < 0.3 are shown by squares; colormap provides detailed information on their deformations. The nuclei with toroidal shapes in the lowest in 
energy minima are shown by open black squares (−2.0 < β2 < −1.5), solid dark blue circles (−2.5 < β2 < −2.0), solid cyan triangles (−3.0 < β2 < −2.5), solid dark green 
diamonds (−3.5 < β2 < −3.0) and open black circles (β2 < −3.5). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Z > 134 (and some nuclei with lower Z , see Fig. 3) if axially sym-
metric solutions are stable with respect of triaxial distortions.

However, it is well known that triaxial deformation lowers the 
fission barriers in actinides and superheavy nuclei with Z ≤ 120
and N ≤ 184 [25,43–47]. These nuclei are either prolate or spher-
ical in their ground states and thus the impact of triaxiality is 
limited: for example, the lowering of inner fission barriers in ac-
tinides due to triaxiality is typically on the level of 1–3 MeV. On 
the contrary, the impact of triaxiality on fission barriers gets much 
more pronounced in the nuclei with ground state oblate shapes 
and it generally increases with the rise of their oblate deformation. 
Not only the fission through the γ -plane gets more energetically 
favored, but also the fission path through γ -plane becomes much 
shorter than the one through the γ = 0◦ axis.

These features are illustrated in Fig. 4. The 360130 nucleus is an 
example of the coexistence of spherical ground state and excited 
(at 0.8 MeV) oblate (with β2 ∼ −0.5) minimum. The static fission 
paths from these minima are comparable in length and both of 
them have reduced (by ∼ 2 MeV) inner fission barriers as com-
pared with axial RHB calculations (see supplementary Table 1). The 
effect of the reduction of inner fission barrier due to triaxiality be-
comes much more pronounced in the 432134 nucleus. As compared 
with axial calculations, the presence of triaxiality leads to the shift 
of minimum from (β2 ∼ 0.74, γ = 60◦) to (β2 ∼ 0.82, γ ∼ 37◦) 
and the reduction of the fission barrier height from 8.16 MeV 
to 1.30 MeV. The 340122 nucleus is an example of the coexis-
tence of the ground state oblate β2 = −0.46 and slightly excited 
(by 0.72 MeV) prolate β2 = 0.25 minima in axial RHB calculations 

Figure 8.4

Neutron density distributions of the 466156 nucleus.

The evolution of the neutron density distributions with the change of the β2 values

indicated in Fig. 8.1c are shown for the 466156 nucleus in Fig. 8.4. They are plotted in

the yz plane at the position of the Gauss-Hermite integration points in the x directions
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closest to zero. The density colormap starts at ρn = 0.005 fm−3 and shows the densities

in fm−3. The nucleus at spherical shape is characterized by the density depression in the

central part of the nucleus; the maximum neutron density ρ = 0.0896 fm−3 is achieved at

radial coordinate r = 6.55 fm while the density in the center is only ρ = 0.076 fm−3. This

depression is similar (but less pronounced) to the one predicted for the 292120 superheavy

nucleus in Refs. [207, 252]. Our calculations show neither bubble nor semi-bubble shapes

(in the language of Ref. [238]) for the lowest in energy solutions of spherical nuclei shown

in Fig. 8.8 below. Note that proton density is roughly half of the neutron one and central

density depression is somewhat more pronounced in proton subsystem as compared with

neutron one. As illustrated in Fig. 8.4b, biconcave disk density distribution is formed at

large oblate deformation of β2 = −1.0. Further decrease of the β2 values leads to the

formation of toroidal shapes (Figs. 8.4c and d). It is observed that with the increase of

absolute value of β2 the radius of the toroid increases and the tube radius decreases.

The biconcave disk and toroidal shapes in atomic nuclei have been investigated in a

number of the papers [245, 246, 253, 254, 255, 256]. However, in absolute majority of the

cases such shapes correspond to highly excited states either at spin zero [246, 255] or at

extreme values of angular momentum [253, 254, 257]. The latter substantially exceed the

values of angular momentum presently achievable at the state-of-art experimental facilities

[258]. The competition of such shapes at spin zero in superheavy even-even Z = 120

isotopes with N = 166 − 190 and in the even-even N = 184 isotones with Z = 106 −

124 has been investigated in constrained Skyrme-HFB calculations in Ref. [255]. It was

concluded that investigated nuclei in toroidal shapes are unstable against returning to the
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shape of sphere-like geometry (Ref. [255]). Similar study for superheavy 316122, 340130,

352134 and 364138 nuclei has been performed in Skyrme Hartree-Fock calculations of Ref.

[246]; only in 364138 nuclei the toroidal solution is the lowest in energy. The Gogny

HFB calculations of Ref. [245] showed that toroidal shapes represent the lowest in energy

solutions at axial shape in the 416164 and 476184 nuclei.
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Figure 8.5

Charge quadrupole deformations β2 of the lowest in energy particle bound minima
obtained in axial RHB calculations.

Fig. 8.5 presents the systematics of the β2 values for the lowest in energy minima

for axial symmetry obtained in axial RHB calculations for Z = 122 − 138 nuclei. The

calculations are performed for each second even-even nucleus in the isotopic chain starting

at approximately two-proton drip line and ending at approximately two-neutron drip line.

The nuclei with quadrupole deformations of −0.8 < β2 < 0.3 are shown by squares;

colormap provides detailed information on their deformations. The nuclei with toroidal

shapes in the lowest in energy minima are shown by open black squares (−2.0 < β2 <

−1.5), solid dark blue circles (−2.5 < β2 < −2.0), solid cyan triangles (−3.0 < β2 <
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−2.5), solid dark green diamonds (−3.5 < β2 < −3.0) and open black circles (β2 <

−3.5).

Only few spherical nuclei located around Z ∼ 130, N ∼ 230 are found in the calcula-

tions. Prolate deformed nuclei are seen only at Z = 122, 124 and N = 218−236. The rest

of the nuclear chart is dominated by oblate or toroidal shapes in the LEMAS. The β2 values

of these states depend on the combination of proton and neutron numbers. However, the

general trend is that they increase with proton number. The calculations for nuclei beyond

Z = 138 are extremely time-consuming due to required increase of the fermionic basis up

to NF = 30. The scan of the deformation energy curves in axial RHB calculations with

NF = 20 for the Z = 140− 180 nuclei located between two-proton and two-neutron drip

lines does not show the presence of either prolate or spherical LEMAS states; the LEMAS

states in all Z = 140−180 nuclei have toroidal shapes with β2 < −1.4. However, because

of the limited size of the basis these values have to be considered as lower limits (in abso-

lute sense). Thus, for the first time, our systematic calculations show that toroidal shapes

should represent the lowest in energy minima of almost all hyperheavy Z > 134 (and some

nuclei with lower Z, see Fig. 8.5) if axially symmetric solutions are stable with respect of

triaxial distortions.

8.3 Triaxial calculations: the drop of stability via triaxial plane.

However, it is well known that triaxial deformation lowers the fission barriers in ac-

tinides and superheavy nuclei with Z ≤ 120 and N ≤ 184 [170, 259, 260, 179, 70, 261].

These nuclei are either prolate or spherical in their ground states and thus the impact of
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triaxiality is limited: for example, the lowering of inner fission barriers in actinides due

to triaxiality is typically on the level of 1-3 MeV. On the contrary, the impact of triaxial-

ity on fission barriers gets much more pronounced in the nuclei with ground state oblate

shapes and it generally increases with the rise of their oblate deformation. Not only the fis-

sion through the γ-plane gets more energetically favored, but also the fission path through

γ-plane becomes much shorter than the one through the γ = 0◦ axis.

These features are illustrated in Fig. 8.6. The energy difference between two neigh-

boring equipotential lines is equal to 0.5 MeV. The red lines show static fission paths from

respective minima. Open white circles show the global (and local) minimum(a). Black

crosses indicate the saddle points on these fission paths. The colormap shows the exci-

tation energies (in MeV) with respect to the energy of the deformation point with largest

binding energy.

The 360130 nucleus is an example of the coexistence of spherical ground state and

excited (at 0.8 MeV) oblate (with β2 ∼ −0.5) minimum. The static fission paths from

these minima are comparable in length and both of them have reduced (by∼ 2 MeV) inner

fission barriers as compared with axial RHB calculations (see Table 8.1). The effect of

the reduction of inner fission barrier due to triaxiality becomes much more pronounced in

the 432134 nucleus. As compared with axial calculations, the presence of triaxiality leads

to the shift of minimum from (β2 ∼ 0.74, γ = 60◦) to (β2 ∼ 0.82, γ ∼ 37◦) and the

reduction of the fission barrier height from 8.16 MeV to 1.30 MeV. The 340122 nucleus is

an example of the coexistence of the ground state oblate β2 = −0.46 and slightly excited

(by 0.72 MeV) prolate β2 = 0.25 minima in axial RHB calculations which have fission
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barriers at 5.74 and 3.19 MeV, respectively (see Table 8.1). The triaxiality leads to the γ-

softness of potential energy surfaces so that these minima drift in the γ-plane by 10− 15◦.

However, it also leads to substantial reduction of fission barrier heights down to ∼ 2 MeV

(see Table 8.1). In axial RHB calculations, the 392134 nucleus has superdeformed oblate

ground state with β2 = −0.79 and highly excited (at excitation energy of 2.69 MeV) oblate

state with β2 = −0.23. The fission barriers for these two minima are 10.24 and 7.55 MeV,

respectively. The triaxiality substantially affects the position of first minimum so it drifts

to β2 = 0.88, γ = 39◦ but has almost no effect on the second minimum. However, it has

huge impact on the heights of their fission barriers which are reduced to 0.56 and 2.08

MeV, respectively (see Table 8.1).

Table 8.1 summarizes the results of more systematic triaxial RHB calculations. The

columns 3− 5 show the results of the axial RHB calculations. Here βmin, βsaddle and EB
ax

are the equilibrium quadrupole deformation of the global (local) minimum, the quadrupole

deformation and the energy of the saddle along respective fission path. The excited minima

are indicated by asterisks (*). Their excitation energies are shown in brackets in column 3.

The results of the triaxial RHB calculations are provided in the columns 6 − 8. Note that

the allowance of triaxial deformation could shift the position of the local minimum in the

deformation plane and in absolute majority of the cases shifts the positions of the saddle

points. Thus, (β, γ)min, (β, γ)saddle and EB
triax show the deformations of the minima, the

deformations of saddle points and their energies obtained in triaxial RHB calculations. The

word ’no’ is used in respective columns in the case when the minimum and fission paths

existing in axial RHB calculations disappear in triaxial RHB calculations.
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Figure 8.6

Potential energy surfaces (PES) of indicated nuclei obtained in the RHB calculations.

156



Table 8.1

The heights of the fission barriers along the fission paths from different minima obtained
in axial and triaxial RHB calculations.

Axial RHB Triaxial RHB
Z N βmin βsaddle EB

ax (β, γ)min (β, γ)saddle EB
triax

1 2 3 4 5 6 7 8
122 182 -0.25 0.20 5.99 0.23,58 0.43,35 3.10

202 -0.43 0.04 8.18 0.43,56 0.44,46 1.59
218 -0.46 0.00 5.74 0.49,46 0.57,24 1.75

0.25* [0.72] 0.39 3.19 0.26,10 0.41,17 2.05
222 0.24 0.37 4.26 0.25,0 0.39,25 2.62

-0.48* [2.12] -0.25 3.79 0.45,60 0.47,36 1.15
242 -0.19 0.31 4.05 0.18,57 0.48,31 3.07
262 -0.23* 0.13 5.38 0.25,58 0.33,22 1.07

-0.45 [0.18] 0.13 5.56 0.45,51 0.47,40 1.09
282 0.34 0.46 1.84 0.34,0 0.41,24 1.68

-0.44* [1.64] 0.00 8.11 0.46,38 0.52,29 0.65
126 214 -0.46 0.00 8.29 0.48,47 0.52,37 2.05

234 -0.05 0.33 3.85 0.15,2 0.31,20 3.04
-0.39* [1.34] 0.33 2.51 0.40,59 0.40,30 2.09

254 -0.21 0.22 6.16 0.23,58 0.34,23 2.91
274 -0.49 -0.02 8.95 0.48,59 0.47,53 1.86
294 -0.43 0.00 6.17 0.43,56 0.46,44 0.52

-0.74 0.00 6.18 no no no
130 206 -0.74 0.00 8.99 0.82,37 0.84,31) 0.68

-0.46* [0.19] 0.00 8.80 no no no
226 -0.50 -0.25 5.22 0.50,58 0.56,33 3.02

0.12* [1.69] 0.33 3.44 0.15,2 0.35,27 1.21
-0.74* [2.19] -0.64 3.38 0.82,37 0.83,34 0.70

230 -0.01 0.32 4.86 0.00,0 0.34,26 2.77
-0.53* [0.81] 0.32 4.05 0.52,55 0.63,44 2.04

246 -0.72 0.25 6.68 0.73,59 0.75,50 0.67
-0.21* [0.28] 0.25 6.40 0.26,58 0.47,35 3.12

266 -0.47 0.01 9.05 0.48,59 0.48,54 0.56
-0.78* [0.74] 0.01 8.31 no no no
-0.23* [1.57] 0.01 7.48 0.28,33 0.34,20 0.58

286 -0.75 0.00 8.19 0.77,40 0.75,35 1.28
-0.51* [0.27] 0.00 7.92 0.54,51 0.57,38 1.35

134 258 -0.79 0.00 10.24 0.88,39 0.90,37 0.56
-0.23* [2.69] 0.00 7.55 0.25,58 0.33,25 2.08
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Table 8.1

(continued)

Axial RHB Triaxial RHB
Z N βmin βsaddle EB

ax (β, γ)min (β, γ)saddle EB
triax

1 2 3 4 5 6 7 8
134 278 -0.50 0.07 10.68 0.51,56 0.52,49 1.54

-0.79* [0.17] 0.07 10.51 0.79,38 0.79,33 2.56
298 -0.74 -0.21 8.16 0.82,37 0.85,32 1.30
318 -0.71 0.28 11.59 0.71,59 0.78,47 1.37

The general conclusion is that the barriers along the fission paths emerging from the

oblate minima located within the −1.0 < β2 ≤ 0.0 range decrease with increasing pro-

ton number. As a result, the majority of these nuclei would be unstable with respect to

fission. Similar trend of the evolution of fission barriers with proton number has also

been seen in microscopic+macroscopic (mic+mac) calculations with Woods-Saxon poten-

tial and Skyrme DFT calculations with the SLy4 functional presented in Ref. [240]. Note

that these calculations use smaller deformation plane (ranging from β2 = −0.85 up to

β2 = 0.45) as compared with the one shown in Fig. 8.6 . The Skyrme DFT calculations

provide higher fission barriers as compared with mic+mac and our RHB results. However,

the SLy4 functional substantially overestimates fission barriers in actinides and SHE [240].

The situation however is substantially complicated by the fact that with increasing pro-

ton number toroidal shapes correspond to the lowest in energy solutions in axial RHB cal-

culations (Fig. 8.5). Their large β2 values and high Z and N values require increased basis

which makes triaxial RHB and RMF+BCS calculations prohibitively time consuming. A

priori we cannot exclude the stability of such shapes against fission or multifragmentation.

158



Figure 8.7

Potential energy surfaces of the 354134 nucleus obtained in the RMF+BCS calculations.

This is illustrated by the calculations of the 354134 (Fig. 8.7: The blue line shows static

fission path from the minimum indicated by the open white circle; the saddle point at 4.4

MeV (with respect to the minimum) is shown by black cross. The energy difference be-

tween two neighboring equipotential lines is equal to 5 MeV and 2 MeV in left and right

panels, respectively.) nucleus, for which the NF = 20 basis provides acceptable numerical

accuracy. In these nuclei, the oblate minimum with β2 ∼ −2.5, β4 ∼ −4.4 is unstable

with respect to triaxial distortions (left panel of Fig. 8.7). On the contrary, the excited

β2 ∼ −2.3, β4 ∼ +1.5 minimum is stable with respect to triaxial distortions (see right

panel of Fig. 8.7).
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8.4 Metastable spherical shapes: fission barriers and their dependence on the func-
tionals.

The triaxial RHB calculations for the |β2| ≤ 1.0 part of the deformation plane clearly

indicate the general trend of the reduction of the stability of the minima located at these de-

formations with respect to fission with increasing proton number. The triaxial RMF+BCS

calculations also indicate the potential stability of toroidal shapes located in the minima

with β2 < −2.0 with β4 > 0. Unfortunately, the systematic triaxial calculations of the sta-

bility of such minima are beyond available computational power. Thus, their more detailed

investigation is left for future.

Note also that toroidal nuclei are expected to be unstable against multifragmentation

[262, 263]. The most detailed investigation of the instabilities of toroidal nuclei with re-

spect of so-called breathing and sausage deformations has been performed in Ref. [263].

The breathing deformation preserves the azimuthal symmetry of the torus and it is defined

by the radius of torus and the radius of its tube. In our calculations, this type of deforma-

tion is related to the β2 values (see discussion of Fig. 8.4 above). The results of Ref. [263]

clearly indicate the stability of toroidal nuclei with respect of breathing deformation both

in liquid-drop model calculations and in Strutinsky type calculations. This is also the case

in our calculations which show minima at large negative β2 values in deformation energy

curves presented as a function of β2 (see Fig. 8.1b,c, and d). The sausage deformations

make a torus thicker in one section(s) and thinner in another section(s); they are exam-

plified by the density distributions shown in Fig. 8.3. The analysis of Ref. [263] clearly

indicates the instability of toroidal nuclei with respect of sausage deformations in the liquid
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drop model. However, it was not excluded in Ref. [263] that the instability in the sausage

degree of freedom may be counterbalanced by shell effects at some combinations of proton

and neutron numbers and deformations. The situation here is similar to superheavy nuclei

which are unstable in liquid drop model. The instability with respect of sausage defor-

mations has not been studied so far in either Strutinsky type models [263] or in density

functional theories. However, our results for the β2 ∼ 2.5, β4 ∼ −4.4, γ = 60◦ solutions

in the 354134 and 348138 nuclei show for the first time this type of instability also in the

framework which takes shell effects into account.

The analysis of the deformation energy curves obtained in axial RHB calculations re-

veals that hyperheavy nuclei could be stabilized at spherical shapes in some regions (see

the insert to Fig. 8.1c). If the toroidal shapes in these nuclei are unstable against triaxial

distortions or multifragmentation, these states represent the ground states. From our point

of view, this is the most likely scenario. Otherwise, they are excited states frequently lo-

cated at high excitation energies (Fig. 8.1c). It was verified that these spherical states are

stable with respect to triaxial and octupole distortions. The largest island of stability of

spherical hyperheavy nuclei is centered around Z ∼ 156, N ∼ 310 (Fig. 8.8a).

The value of the fission barrier height indicated in Fig. 8.8 is defined as the lowest value

of the barriers located on the oblate and prolate sides with respect to spherical state in the

deformation energy curves (see insert in Fig. 8.1c) obtained in axial RHB calculations. The

colormap indicates the height of the fission barrier. Only the nuclei with fission barriers

higher than 2 MeV are shown. As verified by the triaxial RHB calculations for a number

of nuclei, the inclusion of triaxiality does not lower the value of fission barrier heights in
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absolute majority of the cases. In only one case the inclusion of triaxiality has lowered

fission barrier by ∼ 0.2 MeV; this is very small correction to fission barriers obtained in

axial RHB calculations. Solid lines in the top panel show the boundaries of the region in

which the systematic calculations with DD-PC1 have been performed; they correspond to

two-proton and two-neutron drip lines obtained in the calculations with NF = 20. The

same boundaries were used for the calculations shown in panels (b-d); however, these

calculations are focused on search of spherical hyperheavy nuclei and thus they cover only

−1.0 < β2 < 1.0 deformation range.

In the calculations with the DD-PC1 functional the fission barriers reach 11 MeV for

the nuclei located in the center of the island of stability. This is substantially larger than

the fission barriers predicted in the CDFT for experimentally observed superheavy nuclei

with Z ∼ 114, N ∼ 174 for which calculated inner fission barriers are around 4-5 MeV

[236]. Smaller islands of stability of spherical hyperheavy nuclei are predicted at Z ∼

138, N ∼ 230 and Z ∼ 174, N ∼ 410 (Fig. 8.8a). Since nuclei in these three regions

have N/Z ≥ 1.64 they cannot be formed in laboratory conditions. The only possible

environment in which they can be produced is the ejecta of the mergers of neutron stars

[264].

Additional calculations have been performed with the DD-ME2 [26], PC-PK1 [79]

and NL3* [33] functionals in order to evaluate systematic theoretical uncertainties [65]

in the predictions of fission barriers for spherical hyperheavy nuclei. The DD-ME2 func-

tional provides predictions comparable with the DD-PC1 one (Fig. 8.8a,b). In contrast,

the PC-PK1 and NL3* functionals predict lower fission barriers and smaller regions of
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stability (Fig. 8.8c,d). Note that the nuclear matter properties and the density dependence

are substantially better defined for density-dependent (DD*) functionals as compared with

non-linear NL3* and PC-PK1 ones [251]. As a consequence, they are expected to perform

better for large extrapolations from known regions. The large fission barriers obtained in

the density-dependent functionals will lead to substantial stability of spherical hyperheavy

nuclei against spontaneous fission. This stability is substantially lower for the NL3* and

PC-PK1 functionals.

Note that these spherical states are also relatively stable against α-decay (see supple-

mentary Fig. 4). Theoretical uncertainties in the predictions of the α-decay half-lives due

to the use of different empirical formulas for their calculations and the CEDFs are evalu-

ated for the Z ∼ 156, N ∼ 310 region of spherical hyperheavy nuclei in supplementary

Figs. 5 and 6, respectively. One can see that when combined these uncertainties could

reach 10 orders of magnitude in the center of region. However, even with these uncertain-

ties accounted the α-decay half-lives of many nuclei are substantial exceeding seconds,

hours and days ranges. Considering empirical nature of the formulas employed more mi-

croscopic studies of the α-decay half-lives would be highly desirable. It is also important

in future to investigate other competing decay modes such as cluster [265, 266] and β

[267, 268] decays to fully establish the potential stability of spherical hyperheavy nuclei.

Existing atomic calculations suggest that the periodic table of elements ends at Z ∼

172 [247, 248, 249]; this takes place when the 1s electron binding energy dives below

−2mc2. However, these calculations employ the empirical formulas for the root-mean-

square (RMS) nuclear charge radii. For example, the calculations of Ref. [247] employ the
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formula from Ref. [269] which underestimates the RMS nuclear charge radii as compared

with the ones obtained in the RHB calculations. This is exemplified by the values of RMS

nuclear charge radii in the 368138, 466156 and 584174 nuclei which are 6.52 fm (6.91 fm),

7.10 fm (7.576 fm), 7.62 fm (8.312 fm) in the calculations with empirical formula of Ref.

[269] (the RHB calculations with DD-PC1). Note that these nuclei represent the centers of

the islands of stability of spherical hyperheavy nuclei (see Fig. 8.8a). Unfortunately, the

impact of nuclear size changes on atomic properties and thus on the end of periodic table

of elements has not been investigated in Refs. [247, 248, 249]. However, these differences

in the RMS nuclear charge radii are substantial and new atomic calculations are needed to

see how they can affect the end of periodic table of elements.

8.5 Concluding remarks

In summary, covariant density functional studies have been performed for superheavy

and hyperheavy nuclei with proton numbers Z = 122 − 180. In axial RHB calculations

the nuclear landscape in the Z = 122 − 130 region is dominated by oblate shapes with

deformation of −1.0 < β2 < −0.2, while all Z > 140 nuclei have toroidal shapes in

the lowest in energy minima. The inclusion of triaxiality leads to the instability against

fission via triaxial plane of the absolute majority of the Z = 122 − 134 nuclei the ground

states deformations of which lie in the range −1.0 < β2 < −0.2. The potential stability

against triaxial distortions of toroidal shapes located in the minima with β2 ∼ −2.5 has

been exemplified by the 354134 and 348138 nuclei. However, systematic triaxial calcula-

tions for such nuclei are beyond available computational resources and thus the question
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of the stability of toroidal shapes in the Z > 130 nuclei remains open. The calculations

indicate three regions of potentially stable spherical hyperheavy nuclei centered around

(Z ∼ 138, N ∼ 230), (Z ∼ 156, N ∼ 310) and (Z ∼ 174, N ∼ 410). However, the-

oretical systematic uncertainties in the predictions of their fission barriers are substantial.

These results clearly indicate that the boundaries of nuclear landscape in hyperheavy nu-

clei are defined by spontaneous fission and not by particle emission as in lower Z nuclei.

Moreover, the current study suggests that only localized islands of stability can exist in

hyperheavy nuclei.
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Fig. 5. Potential energy surfaces of the 354134 nucleus obtained in the RMF+BCS calculations. Left panel shows the lowest in energy solutions. The right panel shows PES for 
excited solution with minimum at β2 ∼ 2.3, β4 ∼ +1.5, γ = 60◦ . The blue line shows static fission path from this minimum indicated by the open white circle; the saddle 
point at 4.4 MeV (with respect to the minimum) is shown by black cross. The energy difference between two neighboring equipotential lines is equal to 5 MeV and 2 MeV 
in left and right panels, respectively. The same energy minimum is used for colormap in both panels.

Fig. 6. The heights of the fission barriers [in MeV] around spherical states. The value 
of the fission barrier height is defined as the lowest value of the barriers located 
on the oblate and prolate sides with respect to spherical state in the deforma-
tion energy curves (see insert in Fig. 1c) obtained in axial RHB calculations. The 
colormap indicates the height of the fission barrier. Only the nuclei with fission 
barriers higher than 2 MeV are shown. As verified by the triaxial RHB calculations 
for a number of nuclei, the inclusion of triaxiality does not lower the value of fis-
sion barrier heights in absolute majority of the cases. In only one case the inclusion 
of triaxiality has lowered fission barrier by ∼ 0.2 MeV; this is very small correction 
to fission barriers obtained in axial RHB calculations. Solid lines in the top panel 
show the boundaries of the region in which the systematic calculations with DD-
PC1 have been performed; they correspond to two-proton and two-neutron drip 
lines obtained in the calculations with N F = 20. The same boundaries were used 
for the calculations shown in panels (b–d); however, these calculations are focused 
on search of spherical hyperheavy nuclei and thus they cover only −1.0 < β2 < 1.0
deformation range.

The triaxial RHB calculations for the |β2| ≤ 1.0 part of the de-
formation plane clearly indicate the general trend of the reduc-
tion of the stability of the minima located at these deformations 
with respect to fission with increasing proton number. The tri-
axial RMF+BCS calculations also indicate the potential stability of 
toroidal shapes located in the minima with β2 < −2.0 with β4 > 0. 
Unfortunately, the systematic triaxial calculations of the stability 
of such minima are beyond available computational power. Thus, 
their more detailed investigation is left for future.

Note also that toroidal nuclei are expected to be unstable 
against multifragmentation [42,51]. The most detailed investiga-
tion of the instabilities of toroidal nuclei with respect of so-
called breathing and sausage deformations has been performed in 
Ref. [51]. The breathing deformation preserves the azimuthal sym-
metry of the torus and it is defined by the radius of torus and 
the radius of its tube. In our calculations, this type of deformation 
is related to the β2 values (see discussion of Fig. 2). The results 
of Ref. [51] clearly indicate the stability of toroidal nuclei with 
respect of breathing deformation both in liquid-drop model cal-
culations and in Strutinsky type calculations. This is also the case 
in our calculations which show minima at large negative β2 values 
in deformation energy curves presented as a function of β2 (see 
Fig. 1b,c, and d). The sausage deformations make a torus thicker 
in one section(s) and thinner in another section(s); they are exam-
plified by the density distributions shown in supplementary Fig. 2. 
The analysis of Ref. [51] clearly indicates the instability of toroidal 
nuclei with respect of sausage deformations in the liquid drop 
model. However, it was not excluded in Ref. [51] that the instabil-
ity in the sausage degree of freedom may be counterbalanced by 
shell effects at some combinations of proton and neutron numbers 
and deformations. The situation here is similar to superheavy nu-
clei which are unstable in liquid drop model. The instability with 
respect of sausage deformations has not been studied so far in ei-
ther Strutinsky type models [51] or in density functional theories. 
However, our results for the β2 ∼ 2.5, β4 ∼ −4.4, γ = 60◦ solutions 
in the 354134 and 348138 nuclei show for the first time this type 
of instability also in the framework which takes shell effects into 
account.

The analysis of the deformation energy curves obtained in axial 
RHB calculations reveals that hyperheavy nuclei could be stabilized 
at spherical shapes in some regions (see the insert to Fig. 1c). If the 
toroidal shapes in these nuclei are unstable against triaxial dis-

Figure 8.8

The heights of the fission barriers [in MeV] around spherical states.
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CHAPTER IX

CONCLUSIONS

In this dissertation we studied the ground state observables of all even-even nuclei from

the proton to the neutron drip lines forZ ≤ 106, the fission properties for superheavy nuclei

with 106 ≤ Z ≤ 126 from the proton drip line to N = 196 and the existence and stability of

hyperheavy nuclei (Z>126) using the relativistic variant of the density functional theory

(covariant density functional theory, CDFT). The state-of-the-art CEDFs used for these

investigations are NL3* [33] and PC-PK1 [79] for the NL (nonlinear) models, DD-ME2

[26] and DD-MEδ [28] for the DD-ME (density dependent - meson exchange) models, and

DD-PC1 [27] for the point coupling models. The results obtained within the six projects

are summarized as following:

• The aim of the first project was to assess the global performance of the state-of-

the art CEDFs and to estimate the differences in the description of various physical

observables on a global scale. We developed a parallel version of the axial RHB

computer code which allowed us to perform simultaneous calculations for signifi-

cant number of nuclei and deformation points in each nucleus. The potential en-

ergy curves were calculated in a large deformation range from β2 = −0.4 up to

β2 = 1.0 by means of the constraint on the quadrupole moment q20. The CEDFs
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NL3*, DD-ME2, DD-MEδ and DD-PC1 were used in this investigation. The ground

state observables investigated are the binding energies, two-particle separation ener-

gies, charge quadrupole deformations, isovector deformations, charge radii, neutron

skin thicknesses and the positions of the two-proton and two-neutron drip lines. A

comparison with available experimental data was performed and the predictions for

neutron-rich systems for the different CEDFs were quantified. The systematic un-

certainties in the predictions of physical observables have been evaluated.

• In the second project, our goal was to investigate the impact of pairing correlations

and the underlying shell structure on the position of the two-neutron drip line. Only

systematic uncertainties were considered for this investigation. The neutron pairing

energies Epairing, neutron pairing gaps ∆uv and the single-particle structure were an-

alyzed. The results strongly suggest that the underlying single-particle structure of

different covariant energy density functionals represent the major source of uncer-

tainty in the prediction of the position of the two-neutron drip line.

• For the third project, our goal was to perform a global survey of the octupole de-

formed nuclei and to estimate the theoretical uncertainties associated with their de-

scription. For this project the CEDF PC-PK1 was used together with the ones used in

the first and second projects. We performed a global survey of all even-evenZ ≤ 106

nuclei located between the two-proton and two-neutron drip lines and superheavy el-

ements (SHE) with Z ≥ 108, N ∼ 190 employing the DD-PC1 and NL3* CEDFs.

For the other CEDFs, a search for octupole deformed nuclei were done around the
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regions of octupole deformations predicted with the NL3* and DD-PC1 function-

als. The calculations were performed in the Relativistic-Hartree-Bogoliubov (RHB)

approach using parallel computer code RHB-OCT developed by us. The investiga-

tion confirms the existence of the regions of octupole deformation centered around

Z ∼ 92, N ∼ 136, and Z ∼ 96, N ∼ 196 obtained with other models [146, 6].

The search for octupole deformation in the ground states of even-even superheavy

Z = 108 − 126 nuclei was performed in the CDFT framework for the first time.

With exception of two Z = 108 (two Z = 108 and one Z = 110) octupole deformed

nuclei in the calculations with CEDF DD-PC1 (DD-ME2), we did not find octupole

deformed shapes in the ground states of these nuclei. The systematic theoretical un-

certainties in the predictions of quadrupole (β2) and octupole (β3) deformations and

the gain in binding due to octupole deformation |∆Eoct| were also quantified.

• The objective of the fourth project was to study the accuracy of the description of the

ground state observables and fission barriers of superheavy elements (SHEs) with

the new generation of covariant energy density functionals. The RHB framework

was used for systematic studies of all Z = 96 − 126 even-even actinides and SHEs

from the proton-drip line up to neutron number N = 196. The ground state observ-

ables we investigated are binding energies, two-particle separation energies, charge

quadrupole deformations, α-decay properties and fission barrier heights. A compar-

ison with available experimental data was performed. The systematic uncertainties

in the predictions of physical observables and fission barrier heights were quantified.
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• In the fifth project the goal was to investigate the effects of the nuclear matter prop-

erties (NMP) on the description of the ground state properties of finite nuclei. To do

this we performed a global analysis of the ground state observables such as binding

energies and charge radii. Our investigations revealed that the functionals which are

coming close to satisfying all NMP constraints suggested in Ref. [1] perform quite

poorly in the description of finite nuclei. On the other hand, the functionals which

fail to reproduce the NMP constraints such as NL3* and PC-PK1 are able to repro-

duce reasonably well the ground state properties of finite nuclei, such as binding

energies and charge radii. It was concluded that strict enforcement of the limits on

the NMP will not necessary lead to the functionals with good description of ground

state properties of neutron-rich systems.

• Finally, in the six project, we investigated different aspects of the existence and sta-

bility of hyperheavy nuclei. We found out that beyond Z = 120 oblate deformed and

toroidal nuclei dominate. The inclusion of triaxiality leads to the instability against

fission via triaxial plane of the absolute majority of the Z = 122 − 134 nuclei. We

concluded that the boundaries of nuclear landscape in hyperheavy nuclei are defined

by spontaneous fission and not by particle emission as in lower Z nuclei.
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[26] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring. New relativistic mean-
field interaction with density-dependent meson-nucleon couplings. Phys. Rev. C,
71:024312, 2005.
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analysis of nuclear quantum phase transitions in the n ≈ 90 region. Phys. Rev. C,
79:054301, 2009.

[118] W. Bertozzi, J. Friar, J. Heisenberg, and J.W̃. Negele. Phys. Lett. B, 41:408, 1972.

179



[119] M. Nishimura and D. W.L̃. Sprung. Prog. Theor. Phys., 77:781, 1987.
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R. Lutter, K. Moschner, P. Napiorkowski, J. Pakarinen, M. Pfeiffer, D. Radeck,
P. Reiter, K. Reynders, S. V. Rigby, L. M. Robledo, M. Rudigier, S. Sambi, M. Sei-
dlitz, B. Siebeck, T. Stora, P. Thoele, P. Van Duppen, M. J. Vermeulen, M. von
Schmid, D. Voulot, N. Warr, K. Wimmer, K. Wrzosek-Lipska, C. Y. W., and
M. Zielinska. Studies of pear-shaped nuclei using accelerated radioactive beams.
Nature, 497:199–204, 2013.

183



[164] S. K. Tandel, M. Hemalatha, A. Y. Deo, S. B. Patel, R. Palit, T. Trivedi, J. Sethi,
S. Saha, D. C. Biswas, and S. Mukhopadhyay. Evolution of octupole collectivity in
221th. Phys. Rev. C, 87:034319, Mar 2013.

[165] M. Spieker, D. Bucurescu, J. Endres, T. Faestermann, R. Hertenberger, S. Pascu,
S. Skalacki, S. Weber, H.-F. Wirth, N.-V. Zamfir, and A. Zilges. Possible exper-
imental signature of octupole correlations in the 0+

2 states of the actinides. Phys.
Rev. C, 88:041303, Oct 2013.

[166] M Scheck, L P Gaffney, P A Butler, A B Hayes, F Wenander, M Albers, B Bastin,
C Bauer, A Blazhev, S Bönig, N Bree, J Cederkäil, T Chupp, D Cline, T E Cocolios,
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choo, J. A. Heredia, O. Ivanov, U. Köster, B. A. Marsh, K. Nishio, R. D. Page,
N. Patronis, M. Seliverstov, I. Tsekhanovich, P. Van den Bergh, J. Van De Walle,
M. Venhart, S. Vermote, M. Veselsky, C. Wagemans, T. Ichikawa, A. Iwamoto,
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[268] T. Shafer, J. Engel, C. Fröhlich, G. C. McLaughlin, M. Mumpower, and R. Surman.
β decay of deformed r-process nuclei near a = 80 and a = 160, including odd-a and
odd-odd nuclei, with the skyrme finite-amplitude method. Phys. Rev. C, 94:055802,
Nov 2016.

[269] I. Angeli. A consistent set of nuclear rms charge radii: properties of the radius
surface r(n,z). Atomic Data and Nuclear Data Tables, 87(2):185 – 206, 2004.

192


	Finite Nuclei in Covariant Density Functional Theory: A Global View with an Assessment of Theoretical Uncertainties
	Recommended Citation

	tmp.1633462953.pdf.w1R4S

