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Various biomedical technologies like CT, MRI and PET scanners provide detailed 

cross-sectional views of the human anatomy. The image information obtained from these 

scanning devices is typically represented as large data sets whose sizes vary from several 

hundred megabytes to about one hundred gigabytes. As these data sets cannot be stored 

on one’s local hard drive, SDSC provides a large data repository to store such data sets. 

These data sets need to be accessed by researchers around the world to collaborate in their 

research. But the size of these data sets make them diffcult to be transmitted over the cur-

rent network. This thesis presents a 3-D Haar wavelet algorithm which enables these data 

sets to be transformed into smaller hierarchical representations. These transformed data 

sets are transmitted over the network and reconstructed to a 3-D volume on the client’s 

side through progressive refnement of the images and 3-D texture mapping techniques. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

Large-scale biomedical data sets enable physicians and biologists to obtain detailed in-

sights in complex biomedical structures. Enhanced imaging techniques allow them to dis-

tinguish pathological from healthy tissue or to study microscopic cell structures in greater 

detail. But as the datasets obtained from medical imaging devices such as CT, MRI, and 

PET scanners range from a few megabytes to several gigabytes in size, the storage of these 

data sets on one’s local hard drive can prove expensive. San Diego Supercomputer Cen-

ter (SDSC) maintains a high peformance storage facility that enables researchers to store 

their data sets remotely, and enables authorized access to data for collaborators around 

the world. But another hurdle that needs to be crossed is the current transmission rate 

of the network. Transmitting large datasets over low/medium networks can prove time-

consuming. If the user needs to wait for the entire data set to be downloaded onto a local 

system, then the system lacks interactivity and responsiveness. This thesis proposes a 

wavelet-based rendering system in which a lower-resolution representation of the data set 

is initially transmitted across a network to give the end user an instant preview of the data 

set, followed by progressive transmission of detail coeffcients that ensure that the data set 

1 
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is eventually reconstructed to the fullest resolution. Texture mapping is used to render a 

series of 2-D slices into a 3-D volume on the client’s machine. 

Most graphics applications are written in C/C++ and OpenGL. Both standards have 

been developed to enable hardware-effcient implementations. However, programs using 

these standards typically lack hardware-independence. A new standard called Java was 

developed in the early 1990s at Sun Microsystems [1]. Java was designed to be platform 

independent by using a so-called Java virtual machine (JVM). Java3D is a graphics exten-

sion to Java and was introduced to enable programmers to develop graphical applications. 

The JVM that is used for the Java implementation is based on a higher-level language 

implementation which introduces an additional layer between the application and the ap-

plication programming interface (API) and therefore causes additional overhead. Another 

feature that adds to the extra overhead in Java3D is the scenegraph concept [20]. OpenGL, 

on the other hand, is an API to the graphics hardware, and it typically does not make use 

of the scenegraph concept. These reasons suggest that Java3D rendering applications are 

typically much slower than OpenGL rendering applications. The idea of this thesis is to 

show that Java3D rendering applications can be made more effcient by using improved 

hierarchical data models and storage schemes, and that Java3D is capable of providing 

comparable results to OpenGL applications. The goal of this framework is to demonstrate 

that comparable performances can be obtained by using a set of new methods. These 

methods include Haar wavelet transformation, multi-resolution representations, and 3D-

texture-based rendering techniques. 
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1.2 Motivation 

Large-scale data sets can be grouped into two categories: mesh-based and non-mesh-

based (scattered data). For our purposes, we use mesh-based biomedical data sets defned 

over a structured grid, also known as volume data sets. One of the project partners (San 

Diego Supercomputer Center, SDSC) developed a set of new fle formats to store different 

types of structured and unstructured meshes. The fle format that is used to store volume 

data sets is called the VOL fle format. The VOL format supports three different variants 

���������	�
�����
� and �������namely . If a data set contains 8-bit scalar values, it is encoded as a 

�������� fle. If the data set contains 32-bit RGB or RGBA values, then it is encoded in the 

�������� fle format. Each byte represents a color or transparency channel. If no alpha channel 

is present, then the alpha value is zero. 64-bit image data is written in the .volc format. 

The � ������� format stores image data as 64-bit RGB-alpha-beta values. The color component 

values are tructated to 10 bits of red, 12 bits for green and 10 bits for blue. The alpha and 

beta components are truncated to 16 bits each [19]. 

The ������� �˘� � �
ˇ �˙ˆ�� �˛˝ ˆ �˘° � ˜"! � ˆ$#&% � � �˛�'˝ %)( �˘* ˜,+,���˙��� ��� � ��-�� !.ˆ�� � ��ˆ�+ � ��+/ˆ ˝ (NPACI) 

has developed a set of tools that has been used to access datasets in VOL format, among 

� �������other mesh formats. These so-called 01� � , i.e., the methods defned in the Scalable 

Visualization Toolkit, enable access to large-scale data sets and have been developed as a 

part of the NPACI Alpha project 2˙3 � � � � 4��˝ 05� � +/� � �768��� ���:9;������< ���=! � ˆ?>@�˙A � � � >@ˆ��˙� �=� 2 . 

� �������The 01� � project is supposed to develop an integrated set of tools for analysis, fl -

tering, compositing, rendering, and interacting with very large multi-dimensional, mutli-
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modal, time-varying data sets that are too large to ft into main memory and swap space 

of desktops to terafops computer systems [19]. The toolkit can be used to extract 2-D 

cross-sections or subvolumes from a large volumetric data set. The toolkit is available for 

download on the Internet [19] and has been implemented both in a Java and a C++ version. 

After reading a data set from a storage device using the toolkit, Haar wavelets are used 

to transform the 3-D volumes or sub-volumes into lower-resolution representations. The 

transformation is performed on the server before the data set or a part of it is transmitted 

across the network. This transformation enables progressive transmission of various detail 

levels over the network. First, a low-resolution version is transmitted to provide the user 

with a quick preview version of the data set. Then, a set of detail coeffcients is progres-

sively transmitted to eventually enable a complete reconstruction of the data set on the 

client side. The 3-D volume is rendered at progressive levels of detail using 3D-texture-

mapping in Java3D on the client’s machine. 

Texture mapping maps an image defned in texture space onto an object defned in 

object space to change its visual appearence. This method can be used to map a texture 

image onto a polygon. To obtain a 3-D volume, a series of texture images is mapped onto 

an array of polygons in a back-to-front order. In order to enable correct blending and 

compositing, transparency and correct depth ordering are applied to display the textured 

objects. 

This thesis presents a wavelet-based rendering system that has been implemented in 

both Java/Java3D and C++/OpenGL. As Java is platform-independent and widely sup-
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ported on many systems, it is well suitable for Internet-based applications. For this reason, 

this rendering system focuses on using Java3D which is an application interface to a so-

phisticated three-dimensional graphics rendering and sound rendering system. The system 

has also been implemented in C++ to conduct a comparative study of the rendering per-

formance on both platforms. The limitation of the C++ version of the application is that it 

is platform-dependent and hence lacks portability. The purpose of all the techniques men-

tioned before is to make the system more effcient and to facilitate interactive rendering. 

This thesis focuses on a Haar wavelet implementation in 3-D and discusses in detail 

the methodologies to render a 3-D volume using texture mapping. Chapter 2 presents a 

brief backgound study and related work in this feld of research. Chapter 3 discusses the 

proposed system architecture of the wavelet-based rendering system. This section also 

discusses the principles of wavelets and reasons why Haar wavelets have been chosen for 

this particular application. A brief discussion of the structure of the rendering pipeline will 

follow. Chapter 4 deals with the implementation details which includes a description of 

the data types, the data structures, and the classes and methods are used in implementing 

the wavelet-based rendering system. Chapter 5 describes the performance statistics of the 

system and the results obtained on both the Java and the C++ platforms. This chapter 

also evaluates the statistics obtained and discusses the reasons that cause a difference in 

the performance on the two platforms. Chapter 6 presents the conclusion of this thesis 

showing that it is possible to implement an interactive volume rendering system in Java3D 

with reasonable performance, and it discusses future prospects of this research. 



CHAPTER II 

RELATED WORK 

2.1 Why Haar wavelets? 

Uncompressed data sets require massive storage capacity and transmission band-

width. Though there have been advances in mass-storage density, processor speeds, and 

digital communication system performance, demand on data storage capacity and data-

transmission bandwidth continue to pose a challenge to the existing applications. JPEG 

compression has been established as a standard for still image compression [21]. JPEG 

compression uses the discrete cosine transform (DCT) to calculate the transformation co-

effcients for a pixel block. These DCT coeffcients are then rounded off according to 

the specifed quantization matrix. JPEG is a lossy technique since quantization introduces 

artifacts due to reduction of detail information. Despite several advantages of JPEG like 

simplicity, satisfactory compression and decompression performance and availability of 

special purpose hardware implementations, there are several drawbacks, for instance, loss 

or shift of color information due to the chosen color model (YIQ), and block artifacts at 

low bit rates [23]. Wavelets have been proven to eliminate these artifacts as they typically 

don’t use color model transformations, and because their basis functions have local support 

of variable length, they usually don’t expose block artifacts. Moreover, wavelet coding is 

6 
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more robust under transmission and decoding errors because on the next level, errors are 

smoothed out, and it also facilitates progressive transmission of images (recursive image 

decomposition). Wavelets also have an inherent multiresolution nature which makes them 

suitable for applications where scalability and tolerable degradation are desirable. 

Wavelets have their roots in approximation theory and signal processing. Recently 

they have been applied to many felds in computer graphics such as image processing, 

image compression and image querying, automatic level-of-detail control for editing and 

rendering curves and surfaces, surface reconstruction from contours, and fast methods for 

solving simulation problems in animation and global illumination [26]. 

A discrete wavelet transform (DWT) can be interpreted as an improved variant or ex-

tension of a discrete fourier transform (DFT). A basic DFT is a linear, invertible function, 

which transforms a periodic signal from a spatial domain into the frequency domain. The 

basic goal of a Fourier series is to take a signal, which is considered as a function of a time 

variable � , and decompose it into its various frequency components [5]. 

One disadvantage of a Fourier series is that its building blocks, weighted sine and co-

sine functions, are periodic waves with infnite support. While a DFT is appropriate for 

fltering or compressing signals that have time-independent wave-like features, it fails for 

non-periodic signals that have localized features which cannot be represented very well 

using sine and cosine functions. Representing those features accurately would require an 

extremely large amount of detail coeffcients. In cases of signals having localized features, 

wavelets typically prove to be more advantageous. A wavelet looks like a wave segment 
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that ranges over a short period and is non-zero only over a fnite interval instead of prop-

agating forever the way sines and cosines do [5]. This means that wavelets feature local 

support. While a DFT can provide only frequency information, a DWT can keep track of 

both spatial and frequency information, and therefore preserves location. This property of 

wavelets is useful for instance for biomedical imaging to store large images, for computa-

tional fuid dynamics to store large simulation results, and for applications in geophysics 

to analyze data from seismic surveys [5]. 

Wavelets are used to represent different levels of detail. The Haar wavelet is one of 

the simplest wavelet transforms. There is a wide variety of popular wavelet algorithms, 

including Daubechies wavelets, Mexican Hat wavelets and Morlet wavelets [12]. These 

wavelet algorithms have the advantage of providing better resolution for smoothly chang-

ing time series. But they have the disadvantage of being more expensive to calculate than 

Haar wavelets [12]. Also, since we are dealing with pixel data, which resemble more a 

rectangular signal than a continuous analog signal, Haar wavelets that use box functions 

as base functions are best suited to represent the original signal. 

In most cases of image transformation wavelets have been discussed in two dimen-

sions. As volume rendering of images has become more and more important, the neces-

sity to store volume data in a more compact representation and the need for hierarchical, 

multi-resolution representations and progressive data transmission has inspired us to im-

plement a Haar wavelet transfomation in 3-D. Wavelets have proved to be faster in terms 

of their computational complexity as compared to Fast Fourier Transforms. What makes 



9 

wavelets superior to established compression methods such as JPEG is their ability to 

adapt to the size and location of features in the image. We use this technique to prove 

that the performance of a 3-D volume rendering algorithm in Java3D can be signifcantly 

improved without signifcant loss of image quality, and that this technique is suitable to 

obtain performance rates that are comparable to a C/C++ implementation. 

2.2 Basic rendering techniques 

There are various methods to visualize a large amount of scientifc data. Two major 

categories of rendering techniques are surface rendering and volume rendering [8]. Sur-

face rendering is a technique in which volumetric data is frst converted into geometric 

primitives (such as polygonal meshes or contours) which are then rendered for display 

using conventional rendering techniques [3]. The major advantage of surface rendering 

is that the 3-D data set is reduced to a set of geometric primitives which can result in a 

signifcant reduction in the amount of data to be stored and in a much faster display due 

to the hardware support. But the conversion to geometric primitives can become diffcult 

if the surfaces are not well defned (e.g. in noisy 2-D images), and the number of sur-

face polygons produced can sometimes be extremely high and exceed the capabilities of 

the rendering hardware engine [3]. Marching cubes is a 3-D surface reconstruction algo-

rithm that produces models with unprecedented detail. This algorithm creates a polygonal 

representation of iso-surfaces from a 3-D array of data [14]. 
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Volume rendering is a technique in which an object of interest is represented by a large 

number of cubic blocks called voxels [3]. A voxel is analogous to a pixel and it represents 

a measure of a unit volume. A 3-D voxel grid can be assembled from multiple 2-D images 

and then displayed by projecting the volume into a 2-D pixel space where the image is 

stored in a frame buffer. 

Volume rendering techniques has been developed to overcome problems of accurate 

representation of surfaces in isosurface techniques [2]. A major advantage of volume ren-

dering techniques is that the 3-D volume can be displayed without any knowledge of the 

geometry of the data set and hence without intermediate conversion to a surface represen-

tation. Since the entire data set is preserved in volume rendering, any part, including the 

internal structures and details, may be viewed. 

Ray tracing is a rendering technique that projects a ray from the observer through each 

pixel on the screen into the scene. If the ray intersects an object in the environment, the 

object’s color contributes to the color of the corresponding screen pixel [6]. Ray-tracing 

is a very intutive method, because it is physically plausible and, if the data set is properly 

sampled, accurate. 

Classical ray-tracing is computationally expensive as the ray intersection and shadow 

tests consume much of the available computing resources [6]. This can be deviated by 

simplifying the algorithm to neglect refected rays. This technique is called ray-casting. 

Splatting is another volume rendering technique that differs from ray tracing in the 

projection method [2]. Splatting is an object-order traversal algorithm where the vertices 
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of a grid voxel are splatted onto an image plane [11]. Splatting is computationally expen-

sive due to the complex projection of the volume data although it is more effcient than ray 

tracing and volume shearing. Splatting does not correctly render cases where the volume 

sampling rate is higher than the image sample rate (i.e., more than one voxel maps into a 

pixel) [27]. 

In this thesis, texture mapping is used to render a series of 2-D slices as a 3-D volume. 

Texture mapping is a technique that has been traditionally used to add realism to a scene 

in computer graphics. This technique can be used to enhance the appearance of an object 

in a raster scan image with only a small increase in computation. Textures are usually 

rectangle arrays of data. In basic texture mapping, a texture image is applied to a polygon 

by assigning texture coordinates to the polygon’s vertices [10]. Texture mapping can be 

implemented both in hardware and software. Software implementations beneft from the 

fact that they do not depend on the specifc hardware platform for which they are writ-

ten, which enables a certain level of platform portability. But software implementations 

have limited rendering speeds [16]. Hardware implementations can take adavantage of 

interacting with specialized graphics processors that can speed up the rendering process. 

The high-performance hardware texture mapping solutions makes hardware-accelerated 

texture-based visualization a more desirable tecnique for volume rendering [22]. OpenGL 

and the latest versions of Java3D have their own built-in hardware texture mapping rou-

tines. 
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2.3 What is Java3D? 

The Java3D Application Programming Interface (API) provides a set of object-oriented 

methods to support a simple, high-level programming model for 3D graphics. This tech-

nology enables developers to incorporate high-quality, scalable, platform-independent 3D 

graphics into Java applications and applets. The Java3D API uses the scene-graph model 

that helps the users to focus on objects and scene composition [25]. Scene graphs are hi-

erarchical structures for composing scenes containing geometric primitives, volume data 

sets and space-flling functions [20]. Scene graphs tend to speed up applications since 

programmers do not need to design specifc geometric shapes or write rendering code for 

the scene display. Rendered scenes can also be easily modifed using the scene graph con-

cept. Java3D takes advantage of existing hardware accelerators through the underlying 

low-level APIs such as OpenGL or Direct3D. This allows the Java3D API to run on any 

platform with a Java virtual machine, Java3D, and an OpenGL or Direct3D implemetation 

[25]. Java3D enables developers to create realistic and complex graphics using advanced 

texture mapping technologies such as texture cube mapping, extended texture environment 

combiners, anisotropic texture fltering, texture LOD, and texture data update. All these 

features have encouraged us to use the Java3D API to design our graphics application. 



CHAPTER III 

SYSTEM ARCHITECTURE 

The main goal of this thesis is to develop and analyze a platform-independent rendering 

system that uses the wavelet concept to transform large data sets into more compact rep-

resentations that can be easily transmitted over a low-/medium-bandwidth network. The 

purpose of the study is to fnd out whether wavelet compression techniques are suffcient 

to compensate for the loss of performance caused by the use of Java/Java3D and therefore 

introducing an additional layer between the application and the underlying graphics hard-

ware API, compared to a more direct implementation in C/C++, which avoids a language 

interpretation step and an additional API layer. The rendering system proposed here has a 

server and a client. 

To make use of enhanced storage capabilities, the data sets are stored on a High-

performance Storage System(HPSS), which allows the user to defne public and private 

user groups, and multiple copies or versions of a fle at different locations. NPACI’s Scal-

able Visualization Toolkit(Vistools) accesses the HPSS through a Storage Resource Bro-

ker(SRB) developed at SDSC. The actual storage pattern is transparent to the user. The 

data is retrived as a subset of 2-D cross-sections that are assembled into 3-D subvolumes 
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[24]. These subvolumes are transformed using a Haar wavelet transformation on the server 

before being transmitted to the client’s machine. 

On the client’s machine the transformed wavelet packets are reconstructed using a Haar 

wavelet reconstruction algorithm, and the 3-D volume is rendered using the texture map-

ping methods in Java3D. A set of 2-D planes is created and placed in a three-dimensional 

texture space in order to obtain a three-dimensional image. By changing the texture coor-

dinates, the volume can be rotated, translated or zoomed. The number of textured planes 

that are used is determined by the client application. 



15 

3.1 Extraction of 2-D cross-sections and subvolumes 

The 0B� � � ������� are available in both a Java and a C++ version. To implement a platform-

� ������� � �������independent application, the Java version of the 0B� � is used. 0B� � provide a 

method that reads a range of elements from a data set, and returns their values in the host’s 

byte order and word size. This method implements a decoder, which reads the data from 

� �������the data set and decodes its format. 0B� � transparently supports paging of data in 

and out of main memory to enable larger-than-core visualization. Sometimes there are 

situations where there is no need to render the entire data set. For example, a physican or 

biologist might be interested only in a particular part of the brain for conducting his or her 

analysis or experiment. For such cases, 05� � � �����C� support a special fle format termed as the 

� �������chunked fle format which enables the extraction of subvolumes from a data set. 05� � 
provide a method which computes a one-dimensional memory index corresponding to the 

given �ED dimensional grid coordinates in the data set. This index is used to read the data 

from the data set using the method that decodes the format of the data set [19]. The details 

about these methods will be discussed in later chapters. 

3.2 3-D Haar Wavelet Algorithm 

After the cross-sections are extracted from the data set and combined into a 3-D vol-

ume, the data needs to be transformed into a multi-resolution representation to enable 

faster transmission over present networks. The Haar wavelet transform is one of the sim-

plest and most effcient transformations. This method has been implemented in 3-D space 
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to enable transformation of a 3-D volume. The Haar wavelet transfomation decomposes 

an image into a set of low-pass flter coeffcients and a set of detail coeffcients. To give 

a better idea of the actual implementation of the wavelet transformation, we illustrate the 

procedure with a simple example. 

Assume we have a one-dimensional image with an 8-pixel resolution where the pixels 

have the following values [26]: 

By applying the Haar wavelet transformation we can represent this image in terms of a 

low-resolution image (low-pass flter coeffcients) and a set of detail coeffcients (high-pass 

flter coeffcients). The low-pass flter coeffcients are obtained by averages two consecu-

tive pixels, while the detail coeffcients represent the difference between the average and 

one of the two consecutive pixels. So the above image will be represented as follows after 

the frst cycle: 
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Now the original image can be represented as a low-resolution image ((a+b)/2), which 

consists of four pixels, and another four-pixel image which contains the detail coeffcients 

((a-b)/2). The low-resolution image constitutes the low-pass flter coeffcients after the 

wavelet tranformation. The other half contains the detail coeffcients. Recursively iterating 

this algorithm leads to an image that is reduced by a factor of two for each cycle. 

This simple 1-D scheme can be lifted to higher-dimensional cases. For a 2-D wavelet 

D Dtransformation, this algorithm is applied in F direction frst, and then in A direction. 

Similarly, in a 3-D wavelet transformation the structures are defned in 3-D and the trans-

formation algorithm is applied in F DB� A D5� and 6 D directions, respectively. One cycle for 

�ED �an dimensional data set is defned as the completion of the algorithm for all direc-

tions. The details about the data structures and implementation will be discussed in the 

next chapters. 

3.3 3-D Haar Wavelet Reconstruction 

During transmission, the low-pass flter coeffcients are sent frst while the detail co-

effcients are transmitted at a later time. When the detail coeffcients are received on the 

client side, detail information is added to the coarser volume, which has already been ren-

dered, to refne the image. The reconstruction of the image data uses simple arithmetic 

operations (integer arithmetic). As the image array received on the client side consists 

of the low-pass and high-pass flter coeffcients, the respective pixel values at each cycle 

are obtained by adding and subtracting the corresponding detail coeffcients to and from 
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the low-pass flter coeffcients. To illustrate this technique, let us consider the 1-D image, 

which was introduced in the previous section for explaining the transfomation process. 

Low-resolution image: 6 6 5 4 

Detail coefficients: 1 -3 -2 1 

To obtain the pixel values of the next higher level of detail, we add the low-pass and 

detail coeffcients to obtain one pixel of the frst pixel pair, and subtract them to get the 

second pixel of each pair. The reconstructued pixel values are 

These values are identical to the original image. After the data set has been recon-

structed using the Haar wavelet reconstruction algorithm, the volume is rendered using 

3-D texture mapping in Java3D. 

3.4 3-D Texture Mapping 

Texture mapping is a technique that maps an image from a texture space into object 

space. When mapping an image onto a object, the color of the object at each pixel is 

modifed by a color value read from a corresponding location in the texture image. Nor-

mally, the texture image is stored as a contiguous array so that it is easier to reconstruct a 
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continuous image from the samples. The individual values of the texture image are called 

texels. The texture image must be warped to match any distortion in the projected object 

being displayed. Since the texture is made up of discrete texels, fltering operations must 

be performed to map the texels onto the fragments. Texture flters are used to interpolate 

between texels. Due to the fltering calculations, texturing can be expensive, but the pres-

ence of hardware support for texture mapping makes it a fast and potentially interactive 

method of rendering. 

We have implemented two different methods for volume rendering based on textures. 

The frst one uses 2-D texture mapping and three sets of perpendicular planes. The second 

one uses 3-D texture mapping and only one set of planes that always faces the camera 

(parallel to the viewing plane). 

For the frst method, we use 2-D texture mapping to map a series of 2-D images 

onto a series of quadrilaterals to make up a 3-D volume. The 2-D images are mapped 

DB� D5� andin back-to-front order onto a series of quadrilaterals arranged parallel in the F A 
D6 direction (Figure 3.5) [7]. All the quadrilaterals are drawn as parallel planes, and the 

3-D texture coordinates are choosen accordingly. Since the cross-sections are mapped one 

behind the other, perpendicular to the viewer, only the frst cross-section is visible while 

the other sections are occluded. To make the other cross-sections visible, transparency 

values are assigned to all quadrilaterals that are used for texture mapping. The resulting 

semi-transparent images of the data set reveal the interior structure of the object. The two-

dimensional texture mapping techniques take advantage of the bilinear texture mapping 
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Figure 3.5 Simple 2-D texture mapping 
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hardware available both in Java3D and in OpenGL. However, this technique suffers from 

sampling artifacts and also requires three copies of the data sliced along the three major 

axes [13]. 

The basic idea of the second method, 3-D texture mapping, is to interpret a voxel array 

as a 3-D texture defned in a 3-D space. First, the three-dimensional data set is loaded as a 

3-D texture block into the texture buffer of the graphics system [4]. The scene comprises 

of a parallel stack of quadrilaterals that are orthogonal to the screen. Each quadrilateral 

vertex is associated with a point in texture space, and the graphics system maps values 

from the texture value onto the surface of the quadrilateral by trilinearly interpolating [13] 

the texture co-ordinates [9]. To enable to see through the planes, transparency values 

are assigned to each surface point and the data is correctly blended into the frame buffer 

[16] [28]. The quadrilaterals remain parallel to the screen even as the client changes the 

position or orientation of the texture map. As the number of quadrilaterals drawn increases 

and the spacing between the quadrilaterals decreases, the image quality gets better. With 
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fewer quadrilaterals, the rendering speed is higher. Therefore, there is a trade-off between 

rendering performance and the level-of-detail used during visualization. 

This technique requires 3-D texture mapping support of the rendering engine, but it 

has the advantage that the texture memory needs to be loaded only once no matter what 

the viewpoint is. Therefore, this method is very effcient for interactive rendering with a 

dynamic viewpoint. 

3.5 Texturing Pipeline 
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� �Texturing starts with defning a location ( F A 6 ) of a model in world co-ordinates 

Figure 3.7 [18]. This location is in reference to the model, i.e., as the model moves the 

texture also moves. The projection function is applied to the world co-ordinates to ob-

tain a set of parameter-space values ( + �G�/�GH ) that are used to access the texture. This 

process is called texture mapping. Projection functions are typically used to convert a 

three-dimensional point in space into 2-D or 3-D texture co-ordinates. Spherical, cylindri-

cal, and planar projections are the most commonly used projection functions. Before the 

new parameter-space values are used to access the texture, corresponder functions can be 

applied to transform the parameter-space values to texture space. Corresponder functions 

can be used to provide fe xibilty in applying textures to surfaces. Typical corresponder 

functions in OpenGL are wrap, repeat, and tile. The texture values read from the texture 

buffer are further transformed by a value transformation function. These values are fnally 

used to modify some property of the surface such as material or an associated shading 

normal [18]. 



CHAPTER IV 

IMPLEMENTATION 

This chapter gives a formal description of the data structures and the classes used in 

implementing the ”Wavelet Based Volume Rendering System”. The data sets that are 

� �����C�required for this application are stored in the VOL fle format. The 0B� � package 

provides classes and methods to extract data from these data sets. 

4.1 Accessing and storing the data sets 

The 05� � � �����C� architecture is composed of multiple layers Figure 4.1 [19]. Each layer 

builds upon the layer underneath it and extends the underlying layer. Raw data are read 

ˇ ˝from the local or remote storage at the bottom-most layer. The ��I %˙#&ˆ�ˆ��˙A class cre-

ates a 1-D array abstraction that enables the application and the higher level toolkits to 

˝ �
˝manipulate very large 1-D arrays of fx ed size elements. The I � and the � methods are 

˝˘��° �used to access the element bytes in a 1-D array. The J class provides a -dimensional 

structured or unstructured mesh of elements. 

The K � ˆ * ���L(B����� ��� I class implements a � ˆ ˝ ��� ˝
MN˝
�4� % ˝ ˆ method that creates a fle 

format decoder to decode the named input fle. This method returns an object of type 

� * ��� MN˝
�4� ˝ ˝˘�˘° � * ��� MN˝
�'� ˝ � ˝K ˆ % ˆ that is cast to an object of class J K ˆ % ˆ . A 3O��ˆ�+ ��+Pˆ % -
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Figure 4.1 Vistools architecture 

˝˘��° ˝˘��° � * ��� MN˝
�4� ˝J is created using the J K ˆ % ˆ . A structured mesh describes a struc-

tured arrangement of elements within a grid occupying a multi-dimensional foating-point 

coordinate space. The I ˝ �QJ ˝˘�˘° #R�S��ˆ�� +/� ˝˘� method in the 3O��ˆ�+ � ��+/ˆ ˝ %
J ˝˘�˘° class re-

turns a 3O��ˆ�+ � ��+/ˆ ˝ %TJ ˝˘��° #R�S��ˆ�� +,� ˝˘� object. Using this object, the grid dimensions can be 

obtained. The I ˝ �LU1ˆ��7% M � *V˝W�X� � �˘� #;�S��ˆ�� +,� ˝˘� method in 3O��ˆ�+ � ��+/ˆ ˝ %
J ˝˘�˘° #;�S��ˆ�� +,� ˝˘� 

class returns an object of type UBˆ��7% M � *V˝W�=� � �˘� #R�S��ˆ�� +,� ˝˘� . The I ˝ �Q3Y�76 ˝ method in the 

U1ˆ��7% M � *V˝W�X� � �˘� #;�S��ˆ�� +,� ˝˘� class retrieves the size of the grid dimension specifed. Grid 

� ˝ ˝˘�˘°dimensions 0, 1, 2 represent the width, height and depth of the 3O��ˆ�+ ��+Pˆ %
J created. 

��˝W*V˝W�The Z � class is used to hold a copy of values found within an element in the mesh. 

˝ � ˝ ˝˘��°The I � method in the 3O��ˆ�+ ��+/ˆ %TJ class retrieves a copy of the values within an 

��˝W*V˝W�element, returning them in the given Z � object. The element whose value needs to 
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Figure 4.2 Extracted 2-D cross-sections 
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��˝W*V˝W�be retrived is specifed by an index within the 3-D mesh. Z � implements a range of 

methods to access the value of the selected element feld. 

05� � � ������� support a number of fle formats. The �
����� fle format supports 8-bit scalar 

˝ ˝values. Hence, the I �L>5A�� method is used to access the value of the selected element 

feld. The ������� fle format supports 64-bit values where the frst 32-bit word contains a 

10-bit red, a 12-bit green, and a 10-bit blue value. The second 32-bit word contains 16-

bit alpha and 16-bit beta values. As each color component occupies more than 8 bits, 

the I ˝ �Q3 °,� ˆ�� method is used to extract the red, green, and blue components individually. 

If the full color resolution is not needed, the color values can be mapped into the range 

between 0 to 255 by shifting the red, green, and blue color components 2, 4, and 2 bits 

respectively to the right to obtain 8-bit red, green, and blue values. The color components 

are stored in an array which is later used for the Haar wavelet transformation. 
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4.2 Haar Wavelet Transform 

The original data is stored in a 4-D array. The Haar wavelet algorithm described 

in section 3.2 of chapter 3 is implemented in a separate class. This class implements 

the [\� �
˝
��˝ � 9 ˆ�� �X� ! � ˆ * method that takes the number of wavelet cycles that the user 

specifes to transform the data, the number of cycles for which the data has already been 

transformed, and the 4-D data array that needs to be transformed. The user is not required 

to know how many cycles the data has been previoulsy transformed. The application keeps 

track of the number of cycles the data set has been transformed previously. The frst three 

dimensions of the 4-D array represent the depth, height and width of the original data 

set rounded to the nearest powers of two. The fourth dimension represents the number 

of color components used to represent the pixel data. To implement the Haar wavelet 

DB� D Dalgorithm in 3-D the data array needs to be transformed in F A , and 6 directions. 

The implementation of the algorithm is as follows: 

1. Calculate the array indices depending on the number of wavelet cycles requested by 
the user for the storage of the low-pass flter and detail coeffcients. Care is taken 
such that at the end of each cycle the transform coeffcients occupy the upper left 
corner of the array. 

D2. Perform the Haar wavelet transform along the F direction, for all slices. A tempo-
rary array is used to store the calculated coeffcients of each row. After the transfor-
mation is complete for a single row, the contents of the temporary array are copied 
into the specifed row of the main array. This procedure is implemented to facilitate 
the usage of a single array to represent the transformed and detail coeffcients for any 
number of transformation cycles. It also makes the algorithm scalable and reduces 
the amount of main memory that is required to hold the current data set signifcantly . 

D D3. Similarly perform the Haar wavelet transform in the A and 6 direction. 

4. Repeat steps 1, 2, and 3 for the number of wavelet transformation cycles requested 
by the user. 
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Figure 4.3 One cycle of a 3-D Haar wavelet transformation 

 

27 

5. The transformed coeffcients are transmitted to the client’s machine for rendering. 

4.3 Haar Wavelet Reconstruction 

Once the scene is rendered with the low-pass coeffcients, the image can be refned by 

using the detail coeffcients. In order to initiate a progressive reconstruction of the rendered 

scene, the user or the underlying application needs to specify the number of reconstruction 

cycles. Once the request is processed the scene is rendered with the reconstructed data. 

The reconstruction algorithm is implemented in a separate class. This class implementes 

a -��˛��˝ ˆ �
˝ []� ��˝
��˝ � 9 ˆ�� �=� ! � ˆ * method that takes the number of reconstruction cycles 

requested by the user, the number of cycles the data has been transformed, and the 4-D 

transformed array, as input parameters. This method returns a reconstructed array of data. 

The I ˝ � 9 ˆ�� �X� ! � ˆ *V˝ % M ����� method selects the octant that comprises the reconstructed 

data. This selected data is used in rendering the reconstructed scene. The reconstruction 

algorithm explained in section 3.3 of chapter 3 is implemented as follows: 



                                                  
                                                                                           First iteration Second iteration 

Figure 4.4 Low-pass and high-pass flter coeffcients of a CT skull 
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Figure 4.5 Haar wavelet coeffcients of a brain cell and a MRI brain 
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1. Calculate the array indices depending on the number of reconstruction cycles to 
retrieve a low-pass flter coeffcient along with its corresponding detail coeffcient to 
calculate two adjoining pixel pair values. These pixel values are stored in the upper 
left front octant of the array. The detail coeffcients of the remaining cycles are left 
intact in the other octants of the array. 

2. The pixel pair values are calculated by summing and subtracting the corresponding 
low-pass and high-pass flter coeffcient pairs. A temporary array is used to store the 
calculated pixel pair values for a single row. Once the calculations are complete for 
a single row, the contents of the temporary array are copied into the main array. 

D5� D D3. The reconstruction process is performed in the F A and 6 directions. 

4. Steps 1, 2, and 3 are performed for the number of reconstruction cycles requested 
by the user. 

5. The reconstructed octant is transmitted and the scene is rendered with the recon-
structed data. 

4.4 Texture Mapping in Java3D 

Java3D uses a scene graph to load all the Java3D objects created to render a scene. The 

� �Cˆ���+/� � + � � ��˝ ˆ �˘˝ is the root node of the scene graph. The � �Cˆ���+/� � + � � ��˝ ˆ �
˝ is defned by 

a collection of objects that need to be rendered. Each node in a scene graph represents 

an instance of a Java3D class and the arcs represent the relationship between the data 

elements. Two kinds of relationships are represented by the arcs, namely, parent-child 

relationship and reference relationship [24]. 

The ^ ��� � ��˝ acts as a root to a subgraph of a scene graph. Its also a provides a reference 

point in the � �Cˆ���+/� � + � � ��˝ ˆ �˘˝ . The >@ˆ�� �X�'° UBˆ � +�˜ object (BG) is the root of the sub-graph 

or the branch graph. The right child of the ^ ��� � ��˝ represents the view branch graph and 

the left child represents the content branch graph. The view branch graph represents the 
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viewing location and direction. The content branch graph represents the geometry, appear-

ance, behaviours, and location. The content branch graph of the scene graph in Figure 4.6 

consists of two >@ˆ�� �˛�_° U1ˆ � +�˜ objects. One BG has another BG as its child. The sec-

˝˘° � �ond BG has three children namely B1, B2 and OG. B1 and B2 are > � � ˆ objects 

that are created to invoke the Java3D renderer on keyboard and mouse inputs. The action 

of these > ˝˘° � � � � ˆ objects will affect the 9;˝ F,��+/ˆ ˝ #R�S��ˆ�� +/� ˝˘� object when a keyboard 

or mouse event occurs while rotating, translating or scaling the texture. The OG is an 

` ˝ ˝ �ˆ�% ˆ %�UBˆ +�˜ object that is used to place the planes in a particular order for rendering. 

° �
˜ ˝
a8MThe OG object consists of several 3 nodes, which represent texture quads in our 

° �
˜ ˝
abM ˝
��*V˝ ��ˆ�A ˝ �˙ˆ�� �X�4˝scene graph. Each 3 object references a U object and an #?˜b˜ 
object. U ˝
��*V˝ ��ˆ�A represents a plane that is going to be rendered while the #?˜b˜ ˝ �˙ˆ�� �X�4˝ 

object references to various attributes of the texture such as 9;˝ F,��+/ˆ ˝ , ̌B��� A˙I �˘� #R�S��ˆ�� +/� ˝˘� , 

9;˝ F,��+/ˆ ˝ #;�S��� +,� ˝˘� , 9 ˆ�� �X� ˜,�˙ˆ ˝W�˛� A�#;�S��ˆ�� +,� ˝˘� , and c ˝W� % ˝ ˆ�� � I�#;�S��ˆ�� +,� ˝˘� . The 9;˝ F,��+/ˆ ˝ 

object holds the 3-D texture buffer that is used for 3-D texturing. The ˇB��� A˙I �˘� #R�S��ˆ�� +/� ˝˘� 

object is used for defning attributes for rendering polygon primitives. The 9;˝ F,��+Pˆ ˝ -

#R�S��ˆ�� +/� ˝˘� object is used to specify the texture mapping attributes. The c ˝W� % ˝ ˆ�� � I -

#R�S��ˆ�� +/� ˝˘� object is used to specify whether the alpha channel is used or not. The 9 ˆ�� �=� -

˜d��ˆ ˝W�X� A�#;�S��ˆ�� +,� ˝˘� object is used for alpha blending [24]. 

After the data passes the transformation and the reconstruction stages and is ready to 

-�* ��I ˝ �˘* �˘�X˝W� a8Mbe rendered, an ( ˜ � object is used to create a 3-D buffer which holds 

a series of 2-D buffered images. 2-D cross-sections are extracted from the data array and 
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Figure 4.7 Progressive reconstruction of a MRI brain 
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˝ ˝ -˙* ��I ˝ ˝ ˝ -�* �˙I ˝a 2-D image buffer is created using the >@+.!X! ˆ % object. A >@+.!X! ˆ % 

object describes an image with an accessible buffer of image data and comprises of a 

( ����� ˆ8J � % ˝
� and a ce� � � ˝ ˆ of image data. A ( ����� ˆ8J � % ˝
� is a class that handles pixel 

values represented by color and alpha information and that stores each value in a sepa-

rate data element. It is used in a ( ����� ˆ83X˜d� �4˝ . A ce� � � ˝ ˆ class is used to represent a 

M ˝rectangular array of pixels. It encapsulates a ������>@+.!X! ˆ that stores values of the 2-D 

slices, and a 3Y� * ˜ ��˝ J � % ˝
� that is used to locate a sample value in the M �˙����>@+.!X! ˝ ˆ . 

A 3Y� * ˜ ��˝ J � % ˝
� is created by creating an instance of a ( �˘* ˜ �˘�X˝W� �Q3Y� * ˜ ��˝ J � % ˝
� and 

by calling the � ˆ ˝ ��� ˝ ( ��* ˜d�˙��� �f��˝ 3Y� * ˜ ��˝ J � % ˝
� method. A ( ��* ˜ �˘�X˝W� �Q3Y� * ˜ ��˝ J � % ˝
� 

represents image data that is stored such that each value of a pixel occupies one data 

element of the M �����
>5+˛!˛! ˝ ˆ . The created 2-D >@+.!X! ˝ ˆ ˝ % -�* ��I ˝ is then added to the 

-�* ��I ˝ �˘* �˘�X˝W� abM( ˜ � object by specifying an index into the 3-D buffer. This process is 

repeated for all the 2-D cross-sections that are used to create a 3-D buffer. A 3-D texture 

is created using the 9;˝ F,��+Pˆ ˝
abM object, which requires an -�* ��I ˝ ( �˘* ˜ �˘�X˝W� � a8M object. 

° �
˜ ˝
abMOnce the 3-D texture is created, a set of parallel planes is created using the 3 
object. These planes are defned with suitable 3-D texture coordinates that are rendered 

° �
˜ ˝
abM ˝
��*V˝ ��ˆ�Ain back-to-front order. 3 is a leaf node, which consists of a U and an 

#g˜b˜ ˝ �˙ˆ�� �˛�'˝ object. The attributes defned by the #?˜b˜ ˝ �˙ˆ�� �X�4˝ object are added to the 

scene graph so that the planes that are rendered use these attributes. Once all the ob-

° jects listed above are inserted into the scene graph, the >@ˆ�� �X�'° U1ˆ��˘˜ is instantiated by 

inserting the >5ˆ�� �X�'° UBˆ��
˜ ° into the ^ ��� � ��˝ , which enables Java3D to render the scene 

mailto:������>@+.!X
mailto:������>@+.!X
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graph. All the planes are rendered in back-to-front order using the 3-D texture mapping 

hardware, displaying the 3-D recontructed volume. Alpha blending is performed during 

the rendering process by assigning an appropriate blending function to the textured planes 

[24]. 
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Figure 4.8 Progressive reconstruction of a brain cell 



CHAPTER V 

STATISTICS 

The main goal of this thesis is to show that Java3D can be used to create interac-

tive graphical applications. To obtain substantial proof for this thesis, a wavelet-based 

rendering system is implemented on both the Java and C++ platforms, and the loading, 

pre-processing and rendering performance of this system is observed. This thesis does 

not prove that Java3D applications are faster than OpenGL/C++ application but tries to 

establish that Java3D exhibits reasonable performance if compared to its C++ counterpart. 

Though Java as an interpreted language executed on a virtual machine is typically slow 

compared to C++, it has gained popularity in web-based applications. The ”Wavelet-based 

rendering system” developed for this study is also designed to be accessible via the Inter-

net. Java/Java3D is used to achieve this portability by accessing the data sets stored on 

the server through the Internet and rendering these data sets using the Java3D API and 

the hardware capabilities on the client’s machine. To analyze the rendering speeds of the 

application, the application has been implemented in both Java and C++ for comparison. 

Three different timings were taken, namely loading, preprocessing and rendering. The 

loading time is the time the application takes to load the data into a 3-D mesh structure. 

The preprocessing time comprises the time it takes to access data from the mesh structure 
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and to store it into arrays for the Haar wavelet transformations, and to create a texture 

buffer. The rendering time is the time it takes for the rendering API to render the texture 

planes. To obtain precise results, care has been taken to implement both applications in 

pretty much the same way on both the platforms, but under certain conditions the imple-

mentations tend to vary. This is described in the next section. 

5.1 Differences in Java and C++ implementations 

The main difference between the Java and the C++ implementation is the rendering method. 

Java3D uses the scene graph concept. Different components that make up the scene graph 

are explained in section 4.4 of chapter 4. OpenGL is used to implement 3-D texture map-

ping on a C++ platform. The image data that needs to be texture-mapped is stored in a 

4-D array. To create a 3-D texture, I �h9;˝ F -˙* ��I ˝
abMjilk is used. The parameters that are 

passed to this method are the target (GL TEXTURE 3D or GL PROXY TEXTURE 3D), 

the level of texture resolution, the internal format that is used to represent the texels of the 

image, the width, height and depth of the texture in powers of two, the value of the border, 

the format and data type of the texture image data, and the actual texture image data [29]. 

The mode in which the texture is to be applied can be specifed either as GL REPLACE or 

GL MODULATE. The 3-D texture is enabled using I � Z � � �f��˝ (GL TEXTURE 3D). The 

function I ��M � � � f��˝ (GL TEXTURE 3D) can be used to disable 3-D textures. Finally, the 

texture coordinates and geometric coordinates are defned to render the texture. 
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5.2 Timings 

Both the C++ and the Java version of the Wavelet-based Volume Rendering System have 

been executed on two different SGI workstations and their performance statistics are listed 

below. The timings shown below are an average of three different observations. The 

rendered images are transformed through one iteration of the wavelet algorithm. 

Machine1 is an SGI with four 400 MHZ IP27 processors with 4096 MB of main mem-

ory and has an InfnityReality3 graphics engine. Machine1 can support textures with a 

width, height and depth of 2048, 2048, and 1 respectively. Machine2 is an SGI Octane 

workstation with two 400 MHZ IP30 processors with 1024 MB of main memory and has a 

V8 graphics engine. Machine2 can support textures with width, height and depth of 4096, 

4096, and 1 respectively. 

Table 5.1 Timing of a cancer cell rendering on Machine1 

No. of 

slices/planes 

Loading (ms) Processing (ms) Rendering(ms) Total (ms) 

Java C++ Java C++ Java C++ Java C++ 

8/16 10560.6 4.2 5252 6791.1 156 .005 15968.6 6795.3 

16/32 10458.3 4.6 8360 13903.5 163.3 .005 18981.6 13908.1 

32/64 10268 4.6 17708 28952.9 166.33 .005 28142.33 28957.5 

64/128 10179.3 4.6 38370.6 61081.3 188 .005 48737.9 61085.9 

128/256 9926.3 4.5 96933.6 120153.7 229 .005 107088.9 120158.2 

256/512 10344.6 4.9 276297 241724.8 304.3 .006 286945.9 241729.7 
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Figure 5.1 Histogram showing timings for rendering a cancer cell on Machine1 

 

         

         

         

         

         

         

         

         

 

Table 5.2 Timings of a cancer cell rendering on Machine2 

No. of 

slices/planes 

Loading (ms) Processing (ms) Rendering(ms) Total (ms) 

Java C++ Java C++ Java C++ Java C++ 

8/16 10153 4.8 5849 8256.9 150.3 .005 16152.3 8261.7 

16/32 10137.6 4.5 9264.6 14528.3 157 .004 19559.2 14532.8 

32/64 10128 4.5 17898.3 27949.7 165 .004 28191.3 27954.2 

64/128 10215 4.6 40122 58282.2 183.6 .004 50520.6 58286.8 

128/256 10188.3 4.5 104429 122234.3 224.33 .004 114841.6 122243.3 

256/512 10101 4.6 298917.6 221770 304 .004 309322.6 221774.6 
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Figure 5.2 Histogram showing timings for rendering a cancer cell on Machine2 

         

         

         

         

         

         

         

 

Table 5.3 Timings of a MRI brain rendering on Machine1 

No. of Loading (ms) Processing (ms) Rendering(ms) Total (ms) 

slices/planes Java C++ Java C++ Java C++ Java C++ 

8/16 2918 331.7 3172 452.9 151.6 .006 6241.6 784.6 

16/32 2929.3 319.0 4817.3 877.9 151.6 .004 7898.2 1196.9 

32/64 2800.3 325.6 8367.6 2175.1 167 .005 7769.2 2500.7 

64/128 2923.3 336.8 16363 4818.0 187.6 .004 19473.9 5154.8 

128/256 2880 344.4 37358 11095.3 224.3 .005 40462.3 11439.7 
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Figure 5.3 Histogram showing timings for rendering a MRI brain on Machine1 
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Table 5.4 Timings of a MRI brain rendering on Machine2 

No. of Loading (ms) Processing (ms) Rendering(ms) Total (ms) 

slices/planes Java C++ Java C++ Java C++ Java C++ 

8/16 2918 331.7 3172 452.9 151.6 .006 6241.6 784.6 

16/32 2929.3 319.0 4817.3 877.9 151.6 .004 7898.2 1196.9 

32/64 2800.3 325.6 8367.6 2175.1 167 .005 7769.2 2500.7 

64/128 2923.3 336.8 16363 4818.0 187.6 .004 19473.9 5154.8 

128/256 2880 344.4 37358 11095.3 224.3 .005 40462.3 11439.7 
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Figure 5.4 Histogram showing timings for rendering a MRI brain on Machine2 
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Table 5.5 Timings of a CT skull rendering on Machine1 

No. of Loading (ms) Processing (ms) Rendering(ms) Total (ms) 

slices/planes Java C++ Java C++ Java C++ Java C++ 

8/16 1815.6 4.4 14460.3 9958.9 151.6 .005 16427.5 9963.3 

16/32 1857.3 4.8 34466.3 21316.0 157.3 .006 336480.9 21321.8 

32/64 1857.6 4.8 94608.3 46291.5 168.6 .005 96634.5 46296.3 

64/128 1861.6 4.8 275829.3 95996.1 185.6 .005 277876.5 96000.9 

128/256 2180 4.9 848489 201215.9 215 .005 850884 201220.8 
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Figure 5.5 Histogram showing timings for rendering a CT skull on Machine1 
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Table 5.6 Timings of a CT skull rendering on Machine2 

No. of Loading (ms) Processing (ms) Rendering(ms) Total (ms) 

slices/planes Java C++ Java C++ Java C++ Java C++ 

8/16 1609.6 4.8 16093 9687.7 153.3 .004 17855.9 9692.5 

16/32 1565.33 4.8 37753 19241.9 157 .004 39475.3 19246.7 

32/64 1532.33 4.8 101831 41092.1 165.6 .006 103528.9 41096.9 

64/128 1528 4.9 296632 84611.7 186.6 .005 298346.6 84616.6 

128/256 1525 4.9 951055 177003.8 234 .005 952814 177008.7 
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Figure 5.6 Histogram showing timings for rendering a CT skull on Machine2 
 

5.3 Analysis of the timings 

From the above timings it is obvious that OpenGL/C++ is much faster than Java3D/Java. 

There are several reasons why Java applications tend to be slower than C/C++ applications. 

The most obvious reason is that Java is an interpreted language and C++ is a natively 

compiled language. As an interpreted language, the Java source code is initially compiled 

into a byte code that is stored on the hard disk. At the time of execution, a class loader 

loads the byte code into memory [1]. The Java Virtual Machine (JVM) interprets the 

byte code and begins executing the code. This additional layer adds an overhead but 

introduces a layer of protection and abstraction between the computer hardware and the 

software [17]. During preprocessing, the Haar wavelet transformation has three loops for 

transforming the data along each axis. Before the loop is executed, the JVM converts the 
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loop instructions to byte code and at the time of execution the byte code is once again 

interpreted for the same number of instruction cycles as were taken while converting the 

loop instruction into a byte code. This happens whenever loop instructions are encountered 

[15]. From, the timing shown above it can be noticed that the Java implementation is 

slower during I/O and rendering. But during pre-processing, the Java implementation 

sometimes does reasonably better than the C++ implementation. This gain is mainly due 

to the garbage collector mechanism in Java. In the C++ implementation, each time a 

temporary array is no longer needed, the memory is de-referenced by using the delete() 

statement. This adds an extra instruction to the program which needs to be executed every 

time a memory location is de-referenced. This extra statement is not necessary in case of 

the Java implementation. However, the garbage collector defers memory deallocation to 

an undefned point later in time, which could cause some unexpected delays. This effect 

was not observed during the experiments. 

The texture planes are created before the scene graph is rendered. In the case of 

Java3D, hence, the time the application takes to create the planes is also included in the pre-

processing time in the Java implementation. In the C++ implementation, texture planes are 

created at the time of rendering. During the rendering stage, C++ is much faster because 

it has the ability to directly interact with the texture hardware using OpenGL libraries. 

Java3D tends to push its commands to a number of native layers before they reach the 

texture hardware. Moreover, when Java3D starts rendering, the entire scene graph has to 
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be traversed. As the number of branches increases, the traversal time tends to increase and 

so does the rendering time. 

Progressive transmission of the data will tend to decrease the delay in rendering. This 

is achieved by displaying a low-resolution wavelet image frst, while reconstructing the 

image later in a progessive way, which leads to a quicker preview image and enables 

the user to navigate the scene even if the full resolution has not been transmitted yet. 

Moreover, averaging all the timings, it is observed that the C++ version is faster than 

Java by only a factor of 3-4 times for the CT brain, while it is only a factor of 1.5 - 2.5 

times slower for the cancer cell data set. This factor can be tolerated when platform-

independency is a major design factor in the software and it shows that Java and Java3D 

can be used to implement an interactive, texture-based volume rendering with performance 

results similar to a C/C++ implementation, which proves the original hypothesis. 



      
 

                                                                                 
       

 

       
 

                                                                                 
        

 

     
 

                                                                                   
       

 

Java version C++ version 
cell.volc (251 x 70 x 312 elements). 

Java version C++ version 
brain_stride_8.volc ( 223 x 144 x 184 elements) 

Java version C++ version 
brain_stride_8.volc (94 x 113 x 131 elements). 

Figure 5.7 Rendered images of Haar-wavelet-transformed data sets 
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CHAPTER VI 

CONCLUSIONS 

The wavelet-based rendering system proposed in this thesis aims at enabling web-

based access to medical data sets. Through progressive transmission, the user can view 

a preview of the data set immediately while subsequently the volume is progressively 

reconstructed to it fullest resolution. Biomedical images need to be represented accurately 

cannot afford to loose large amounts of detail. The use of wavelets in Java for enabling 

progressive transmission has proved to provide satisfactory performance results compared 

to a C++ implementation with no data loss during the transformation and reconstruction 

(lossless transformation). Quantization can be used to obtain better compression rates, 

but this is beyond the scope of this work. The purpose of this study was to show that the 

multiresolution representation of a wavelet-transformed data set is suffcient to compensate 

for the performance loss due to the use of a virtual machine and an interpreted language 

rather than a native code implementation in C/C++. The results in chapter V show that the 

original hypothesis is true and that an interactive, texture-based volume rendering system 

can be implemented in Java using the wavelet representations to compensate for the loss 

in the performance and to provide comparable results. The difference in the performance 

was only a small factor (1.5....4), which proves that the technique proposed in this thesis 
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works for the given test cases. We expect that the results are scalable and also apply for 

larger data sets, but further studies would be required to verify the results for larger data 

sets. Some of the data sets used are larger than core memory, and the effects like memory 

swapping were observed as described in chapter V. 

3-D texture mapping techniques used in this system have produced fat-shaded images. 

The blending functions used in the system can be varied to produce more realistic images. 

In the present system, the entire data set is transformed into a low-resolution volume before 

being transmitted to the client’s machine. The mBnSo_pLq�q�r�o provide a methods to extract sub-

volumes. In future versions, this method will be used to extract a particular region-of-

interest. 

Looking into the pros and cons of Java3D, though speed is a limiting factor for the 

application, the need to implement web-based technologies will motivate to look into fac-

tors that will improve the performance of Java implementations. With the advent of the 

JIT (just-in-time) compiler for Java, it is possible to translate and store the entire class fle. 

This eliminates the need for repeated translations of each byte code instruction [15], thus 

improving the execution time. 

In the future, various code optimizations will be considered to make the application 

even faster. The present implementation of the system supports a single user at a time. 

In the coming versions of the wavelet based rendering system, web-based user interfaces 

and servers that support simultaneous access from various sites will be implemented. The 

system will be integrated with a network module (client/server) in future versions. 
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