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The study and design of light-weight automobiles has emerged as an important

area of interest in the government, academia, and the manufacturing industry. Significant

advances in vehicle weight reduction technologies have taken place in almost all fields of

transportation. Weight reduction is identified as a key factor to achieving fuel-economy,

energy efficiency and environmental safety.

The main objective of this thesis is to investigate cost effective design methodolo-

gies that enable fabrication of light weight structures, which subsequently result in a fuel

saving. A few important techniques and trends of weight reduction in the automotive in-

dustry over the past few years are studied as part of the thesis. A summary from the survey

of various approaches to weight reduction is presented in the literature review.

This thesis is based on the theory of semi-tension fields, which was originally

applied towards the design of structures in the aircraft industry. A semi-tension field is a



post buckling phenomenon in which the load is continued to be carried even after the web

has buckled. The advantage of semi-tension fields is two-fold: first, by using this theory

the structural stability of the original structure is retained; and secondly, its application

replaces a comparatively heavy-weight shear resistant web with a thin web, potentially

resulting in reduced weight.

The semi-tension field theory is applied to the redesign of back panel of a proto-

type pick up truck, which was modeled and analyzed using IDEAS Master Series 8 FEA

software.

The literature review also consists of the survey of several advances in the Semi-

tension fields theory, and the corresponding trends in weight reduction. Analytical theories

related to semi-tension field-based design and the respective mathematical formulations

have also been described. Finite element analyses of the design that resulted from the

application of the theory were carried out and results were validated using analytical the-

ories. A technical paper demonstrating the redesign of a door beam was also studied and

results are presented as an appendix.
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CHAPTER I

INTRODUCTION

1.1 Background

In recent years importance of the design and development of lightweight vehicles has

grown tremendously. Lightweight vehicles are considered a top priority in perspective

of several factors related to automotive functionality, fuel-efficiency, economy, and also

because of stricter regulations imposed by the government under various environmental

safety and energy efficiency programs.

The primary factors motivating continued research and development of light weight

automotive structures, as well as materials can be summarized as follows.

• Fuel-economy: “75% of vehicle gas consumption is directly related to factors as-
sociated with vehicle weight” [9]. Reducing the vehicle weight results in smaller
body parts, including the engines and energy storage systems, contributing to the
corresponding cost and/or performance benefits. It is observed that for every 220lb
of mass reduction in the vehicle structure, approximately 0.0009 to 0.0017 gal/mile
of fuel can be saved depending on the type of engine [7].

• Lighter vehicles are deemed as important for the success of several DOE Energy
Efficiency (DOE-EE) projects, which call for efficient and environmentally safe ve-
hicles.

• Consumer preferences limit the vehicle downsizing options available to automak-
ers, consequently pushing them to develop newer and efficient techniques for light-
weight designs.

1
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• Environmental, Safety, and Health (ES & H) regulations from the government ne-
cessitate development of fuel-efficient vehicles for the much needed realization of
reducing global warming by minimizing the use of conventional energy resources.

Two basic approaches to vehicle weight reduction are:

1. Improving automotive design techniques

2. Development and application of new lightweight materials for vehicle design

There is an on-going trend towards using lighter metals and their alloys in manufacturing

automotive components and body. The most commonly used materials are aluminum,

magnesium, and their alloys, including high-strength steels. Usage of these new high tech

materials results in 60% lighter weight components as opposed to the conventional low-

carbon or “mild” steels [7].

Steel has been used as a dominant material for automotive manufacturing in the

industry for several years. Steel provides the necessary rigidity and strength to automotive

bodies. It also contributes to passenger safety during car accidents. In order to compete

with the new generation of alternative light weight materials the steel industry has initiated

several projects that promise to advance the steel used in automotive design. Projects such

as ULSAB, ULSAC (Ultra Light Steel Auto Body, Closures respectively) and LTS (Light

Truck Study) have demonstrated significant weight reduction and performance improve-

ment potential of automotive sheet-steel [12, 13, 15].

The Partnership for a New Generation of Vehicles (PNGV) [8, 11] is a successor

of ULSAB, and targets to build the next generation of light weight vehicles capable of

delivering 80 miles per gallon fuel economy at 2000lb curb weight. Current research
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activity in the field of lightweight structures focuses on methodologies for layout, design

and analysis. Factors such as deformation, stress responses, and load carrying capacity,

etc., are studied and analyzed.

1.2 Approaches to vehicle weight reduction

Several techniques have been demonstrated and utilized in the past to achieve vehicle

weight reduction. A survey conducted by Kobe Steel company [14] categorizes these

techniques as follows.

• Material Selection: Use of appropriate materials for vehicle design will lead to sig-
nificant weight savings. Two separate methodologies for such a design are a) Reduc-
ing the thickness of existing materials, which relies on improved strength, corrosion
resistance and quality of such materials, and b) Employing light weight materials
such as aluminum and titanium alloys.

• Design Technology: Optimization of parts and wall thickness in accordance with
application conditions proves to be an effective method for saving weight. It’s es-
sentially a redesign process which can be validated by using structure analysis and
strength analysis software. This process enables quick and accurate analysis of ma-
terial structure and re-evaluation of strength when the parts are redesigned.

• Manufacturing Technology: Highly functional materials needed for reducing weight
demand development of advanced processing technology. There has been significant
improvement in rolling, extrusion, precision casting, and forging techniques to meet
increased precision of profiles.

1.3 Overview

This thesis incorporates an innovative approach that couples a newer design technique

with an appropriate material selection. The technique is applied to the back panel of a

Ford F-150 pickup truck. The main objective is to optimize the design of the back panel
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over its current model, this consists of a sheet metal with corrugations supported by beams

on the top and bottom, and the sides. The main requirements of the redesigned model are

to weigh less than the original model, and to preserve its structural stability.

The redesign process used in this thesis is based on the theory ofsemi-tension

fields. The theory was originally applied for the design of aircraft structures and was

proved to be more effective than traditional design practices. The span of an aircraft’s

wings usually comprises of an upper and a lower flange connected by thin stiffened webs.

Thin webs buckle under shear stresses at a fraction of their ultimate load, becausethey

are relatively weak under compression and the compressive stress eventually reaches the

buckling stress. Standard practice assumes that shear-webs lose their load-bearing capacity

when the web buckles under load. However, a theory originally proposed by Wagner [10]

demonstrated that the thin web, as opposed to the shear-resistant web, does not really fail

when it buckles; it develops a series of diagonal folds, which function as a series of tension

diagonals. Consequently, the thin web continues to carry the load, even after buckling.

Based on this theory, buckling of the webs is permitted in aircraft structures unlike the

standard structures.

Hence, the concept of semi-tension fields is essentially a post-buckling phenomenon

in which the web continues to carry the load even after buckling. The advantage of semi-

tension fields is two-fold: first, by using this theory the structural stability of the orig-

inal structure is retained, and secondly, it replaces a comparatively heavy-weight shear-

resistant web with thin webs, consequently resulting in reduced weight.
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Semi-tension fields theory is applied to the back panel of the F-150 prototype truck,

and the resultant model is investigated for possible weight benefits. The model of the back

panel is drawn and analyzed using IDEAS Master Series 8 FEA Package. As previously

discussed, semi-tension field theory is a concept that was originally applied to the design of

aircraft structures. The same theory is now applied to the design of automotive structures

on an experimental basis in order to evaluate the resultant weight savings. A static analysis

of the back panel gives an estimate of the maximum load that it can carry under the given

boundary conditions. Few other problems related to the redesign are also studied, analyzed

and presented in the thesis. Finally, weight savings due to this new design are discussed.

1.4 Motivation

The IMPACT (Improved Materials for Power train Architectures for 21st Century Trucks)

program is a collaborative effort among various industrial, government, and academic or-

ganizations. The program aims to develop robust light-weight and dual-use trucks, using

higher-strength, low cost steels and optimized designs [6]. The first phase of this three-

phase program established that cost-effective weight reductions of up to 25% are possible

using steel, since it offers the most structural benefit per unit cost [5]. The second phase

of the program consists of designing and prototyping vehicles, which achieve up to 25%

weight reduction without compromising the other vehicle parameters. The initial design

and analysis of these prototypes is based on the Ford F-150 pickup trucks. This thesis

partially contributes towards the second phase of this program, and focuses on an opti-
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mized design for the back panel of the prototype F-150. The motivation for this thesis

comes from the fact that semi-tension fields theory has not been considered in the past for

its applicability to automotive structures. This thesis is an attempt to apply the theory to

the back panel of F-150 pickup truck in anticipation of further weight savings over the

current model. Hence the driving motivation for this thesis comes from the coupled effect

of the following factors: 1. Current efforts by the auto industry to achieve weight reduc-

tion by optimizing certain parts of the vehicle, without compromising stability, need to be

complemented with further academic research. 2. Semi-tension fields theory, which was

successfully applied in the past to aircraft designs, and proved to achieve weight savings,

remains as an unexplored area for automotive construction.

1.5 Hypothesis and Basis

This thesis proposes to optimize and enhance the current design of the back panel of the

F-150 pick up truck in order to achieve significant weight savings, consequently improv-

ing its performance and fuel economy. The hypothesis of this work is that applying the

theory of semi-tension fields to the redesign of the back panel of the truck enables weight

reduction, without affecting its structural stability. The previous success of semi-tension

field theory in the aircraft industry is the basis for this thesis. The results of this thesis

give a general impression regarding the applicability of semi-tension field theory in the

automotive industry. The validity and the subsequent applicability of the theory will rely

on a successful analysis of the back panel of the F-150 prototype truck under the current
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study, plus possibly extending it to other parts of the vehicle, and other models as well in

the future.



CHAPTER II

THEORY OF SEMI-TENSION FIELDS

2.1 Introduction

The design and development of structures is rapidly progressing with increased availabil-

ity of new materials. Various types of structures and design techniques are continually

researched and studied in order to devise efficient designs that minimize weight with-

out affecting the stability of the structure. The current study focuses on one such design

methodology, which was originally applied in the design of aircraft structures. The current

design is based on the principles of semi-tension fields theory.

The theory of semi-tension fields was originally developed by Wagner [3] based on

an observation of a phenomenon that occurred in thin webs under shear load. Thin webs

are generally used in the design of aircraft wings, which typically consist of an upper flange

and a lower flange fastened by thin webs. Standard structural design theories previously

assumed that thin webs tend to buckle under shear stresses even before the ultimate load is

reached. Buckling of the web is caused due to diagonal compressive stresses. This results

in a wrinkling type of a structure as shown in figure 2.1 [10], which can support only the

diagonal tensile stresses, in a direction perpendicular to the buckling direction.

8
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Figure 2.1 Severe wrinkling of the web.

From reference [10]

This type of beam is referred to as acomplete tension field beam or pure tension

field beam. A diagonal tension beam is defined as a thin web that buckles into diagonal

wrinkles much below the design (failing) load.
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2.2 Complete tension field beams

Standard structural design principles assume that when the web buckles, the shear web

loses the ability to hold the load bearing capacity and eventually it fails. Wagner proved

with reasoning and experiments that a thin web with transverse stiffeners does not really

fail when it buckles. The thin buckled web develops wrinkles, which act as diagonal

tension field. The compressive forces in the stiffeners resist the tendency of tensile stresses

to pull the beam flanges together [1, 10].

The action of a tension field beam is explained using a simple structure such as

a single bay truss with double diagonal members (A) and (B) carrying an external load

P. For small values of P, both the diagonal members carry equal and opposite stresses;

tensile and compressive respectively. As the load P is increased, at a certain limit the

compressed diagonal member A cannot take further load, and consequently it buckles.

However, the other member, being in tension, can take further load until it reaches its

ultimate strength. Therefore, any increase of the shear due to increase of external load

P, after one of the members has buckled, is handled by the additional diagonal bracing

provided by the tensile member.

Based on the above theory, a similar structure, obtained by replacing the two diagonals by

a flat sheet web (figure 2.2), is studied for tension field action.

Under a small load P, web does not buckle and both the tensile and compressive

stresses equal the shear stress in the web at this point. Practically, the sheet is in a state of

pure shear with tensile and compressive stresses at450 to the axes. The thin flat sheet, be-
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Figure 2.2 Diagonal Tension Field Action.

ing relatively weak in compression, buckles when the compressive stress reaches buckling

stress as load is increased. However, the panel does not collapse because further increase

in load is handled by increase in diagonal tension of the sheet web. As the load P reaches

a critical value, the tensile stresses become prevalent over compressive stresses.

Since the shear load on the panel is transferred by diagonal tension in the web and

due to efficiency of flat sheet in tension, this method of carrying shear load allows the use

of relatively thin webs.

2.3 Pure tension field beams

Two types of webs have been primarily considered as guiding reference over the years

for use in design practices [10]. The first type,Shear resistantwebs, are those in which
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Table 2.1 Parameters relevant to figure 2.2

P Shear load on the panel
A Diagonal member in compression
B Diagonal member in tension

σc, σt Compressive and tensile stresses in members

buckling does not take place before failure. The second type is calledPure diagonal

tensionweb, which is a theoretical limiting case, in which buckling of the web takes place

at an infinitesimally small load. The weight saving opportunity in automobiles comes

about because virtually all automotive structures have shear resistant beam webs which

are heavier than semi-tension field webs, pure diagonal tension can be only approached

asymptotically. It has been found that the state of pure diagonal tension is approached

when the applied load is several hundred times the buckling load [10]. In a typical scenario,

the ratio of failing load to the buckling load is very low. For lower values of this ratio, the

theory of pure diagonal tension gives poorer approximations. Hence, for this thesis, the

web is considered to fall into an intermediate category ofincomplete diagonal tension or

semi-tension fields. It was observed that semi-tension field webs could withstand some

diagonal compressive stress after buckling, so that before the time of failing they act in an

intermediate range between shear resistant webs and pure tension field webs [2].
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2.4 Basic Mathematical formulation for pure-tension fields

An elementary approximation of the beam equations, which were developed by Wagner

is presented in this section from reference [1]. A cantilever beam with parallel chords

and vertical stiffeners subjected to single shear load V at its free end is considered for the

following derivations.The dashed lines in the figure 2.3 indicate the wrinkling when the

web buckles.The vertical and horizontal shearing stress is constant and is given by

σs = V/ht (2.1)
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Figure 2.3 Cantilever loaded at its end.

Free body diagram (figure 2.4) of a small segment of the web is drawn and ana-

lyzed for equilibrium.
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Table 2.2 Determination of shearing stress for the cantilever beam

t Web thickness
h Distance between the centroids of flange rivets
V Vertical shear load
σs Shear stress

45

vtdx= 2P σ

s tdxσ 

/sqrt(2)t1
P tdx  = σ 

c
σ = 0

dx

45

Figure 2.4 Free body diagram of a segment on the uppermost layer of beam.

The thin web, being weak in compression, can carry very small loads in compres-

sion before buckling. Therefore, compressive stress on the small segment is neglected.

Hence,

ΣFX = 0 ⇒ −σstdx + (σtdx/
√

2) ∗ 1/
√

2 = 0 (2.2)

From the shearing stress equation 2.2,σt = 2σs = 2V/ht Similarly,

ΣFY = 0 ⇒ σvtdx− (σttdx/
√

2) ∗ 1/
√

2 = 0 (2.3)

Henceσt = 2σv. Thereforeσv = σs.
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Table 2.3 Determination of forces acting on the sheet element

t Web thickness
h Distance between the centroids of flange rivets
V Vertical shear load
σs Web shearing stress
σt Web tensile stress

Rivets attach stiffeners and flanges to the web and they are subjected to an ax-

ial load and a normal load each being equal toσstdx. Therefore, The resultant force =

√
2σstdx For one inch of the segment, resultant load will be

√
2σst.

P

d
d

d

45
Ps

Figure 2.5 Stiffener Load Calculation.

The web in the tension field beam action tends to pull the flanges together and this

is prevented by vertical stiffeners attached to the web. Thus, uprights serve as compression

posts. Uprights are acted upon by an axial compressive loadPs which is equal to the

vertical web tensile stress over a distance d.
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Table 2.4 Stiffener load calculation

t Web thickness
h Distance between the centroids of flange rivets
V Vertical shear load
σs Web shearing stress
σt Web tensile stress
Ps Axial compressive load
P Tensile Load
d Distance between stiffeners

From figure 2.5Ps = P sin 450 Where: P = σtdt/
√

2 Hence,Ps = σtdt/2 =

V d/h A free body diagram (figure 2.6) of a portion of the beam at a distance x from an

end is drawn and analyzed.
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Figure 2.6 Determination of flange axial loads.

Equating internal and external bending moments,

ΣMB = MX − Fth
′ − σt cos 450h′t cos 450h′/2 = 0 (2.4)
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Table 2.5 Flange axial load calculation

t Web thickness
h’ Distance between the centroids of flanges
V Vertical shear load
σs Web shearing stress
σt Web tensile stress
Mx External bending moment at Section AB
Ft Tensile flange axial load
Fc Compressive flange axial load
d Distance between stiffeners

σt = 2σs ⇒ σs = V/h′t ⇒ σt = 2V/h′t (2.5)

Substituting,

MX − Fth
′ − V h′/2 = 0 ⇒ Ft = MX/h′ − V/2 (2.6)

ΣX = 0 ⇒ Fc = MX/h′ + V/2

Due to bending, compressive flange axial load increased by V/2 and tensile load decreased

by V/2(due to horizontal component of web tension field).

2.5 General equations for tension field beams

The earlier section was an elementary derivation of various stresses under complete tension

field action where the angle of diagonal tensionα was assumed to be450. Practically, the

angle of diagonal tension is not450, but depends on other factors such as flange areas,

beam height, stiffener spacing, etc. [1]
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The equations to determine stresses for a general case are given as below

Diagonal tensile stress in web:

σt = (2V/ht) ∗ 1/ sin 2α (2.7)

Flange axial load in tension:

Ft = M/h′ − (V/2) ∗ cot α (2.8)

Flange axial load in the compression:

Fc = M/h′ + (V/2) ∗ cot α (2.9)

Axial force in the stiffeners:

Fstiff = −(V d/h) cot α (2.10)

Figure 2.7 Web Stress Concentration.

From reference [10]

The above equations are based on the assumption that the flanges were infinitely

stiff in bending. But the flanges due to the lateral pull of web tension field, will act as a
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Table 2.6 Parameters for tension field equations

t Web thickness
h’ Distance between the centroids of flanges
h Distance between the centroids of flange-web rivets
V Vertical shear load
α angle of diagonal tension
σs Web shearing stress
σt Web tensile stress
M External bending moment
Ft Tensile flange axial load
Fc Compressive flange axial load

Fstiff Axial force in stiffeners
d Distance between stiffeners
R Correction factor due to web stress concentration

Au, AL Areas of upper and lower flanges
As Area of stiffener

Iu, IL Moment Of Inertia of upper and lower flanges

continuous beam over the stiffeners as supports as shown in figure 2.7. The deflections of

the flanges relieves the web stress in the center and concentrates near the stiffeners where

the deflection of flanges is prevented.

A correction factor R to take care of the web stress concentration due to flange

deflection was developed by Wagner[3]. This factor R can be determined by calculating

the flange-flexibilitywd and looking up a corresponding value of R in the graph as shown

in figure 2.8.

wd = 1.25d sin α 4

√
t/(Iu + IL)h (2.11)
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Figure 2.8 Relation between Correction Factor R andwd.

From reference [1]

Web angle is determined as follows:

a =
1 + ht

Au+AL

dt
As
− ht

Au+AL

sin2 α =
√

a2 + a− a (2.12)
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2.6 Modified Wagner equations

In the development of the basic equations outlined previously, Wagner made several con-

servative assumptions such as that the shear strength of beam flanges and the shear carried

by the web before it buckles are negligible. The modified Wagner equations consider that

the remaining beam shear is actually carried by the web in the form of diagonal tension

field, which is obtained by subtracting the above two factors.

2.6.1 Shear load carried by flanges

b

P
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Figure 2.9 Flexural shear stress and shear flow.

A cantilever beam with rectangular cross-section is chosen to demonstrate the pro-

cedure involved in determining the shear load. As shown in figure ( 2.9), load P is applied
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at one of its ends. The force acting on the element due to the stressσx is given by the

equation:

F = σxdA =
MydA

I
(2.13)

Therefore, force acting on the left edge of the element can be calculated as

F1x =
∫ c

y

My

I
dA (2.14)

Force acting on the right edge of the element is equal to

F2x =
∫ c

y

M + dM

I
ydA (2.15)

Hence, difference in forces can be determined as

F2x − F1x = τbdx =
∫ c

y

M + dM

I
ydA −

∫ c

y

My

I
dA (2.16)

whereτ is the shear stress.

τbdx =
∫ c

y

dMy

I
dA (2.17)

τ =
dM

dx

1

Ib

∫ c

y
ydA (2.18)

The loading function q(x) can be expressed as

q(x) =
dV

dx
=

d2M

dx2
(2.19)

The term dM/dx = V based on the above equation. Therefore,τ = V Q
Ib

where Q equals the

static moment of area denoted by
∫ c
y ydA It is assumed the shear stresses are approximately

constant between the centroids of the flange-web rivets. Therefore, Q in the above equation

equals the static moment of flange area and I equals moment of Inertia of flange area about
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neutral axis. Static moment of area of flanges dominates over the static moment of area of

flanges + web. Hence static moment of area of flanges is chosen for determining the total

shear load and same is the case for moment of Inertia.

The shear load resisted by web alone is given by

Vw = V Qh/I (2.20)

where, h is the effective web depth or the distance between the centroids of flange web

rivets.

Therefore, the total shear load resisted by both flange and web is equal to

V = VwI/Qh (2.21)

Hence the difference between the total shear load and that carried by the web gives the

shear load carried by the flanges.

2.6.2 Shear load carried by web

Until the point when the web buckles, shear stress distribution is assumed to be constant

over the web. But when the web buckles, the web can practically hold the compressive

stress but cannot increase it. With increase in the shear load resistance is provided by the

increase in diagonal tension field. Therefore, for loads after the web has buckled, web

is in a state of pure tension field beam, because the compressive shear stress is relatively

insignificant compared to the tensile stress.
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2.6.2.1 Shear load carried by web at web buckling point

From the figure 2.10, the vertical shear stresses have been replaced by diagonal tensile

and compressive stresses each equal to the critical shearing stress. Hence the shear load

(Vcr) carried by web at the web buckling stress equals

Vcr = σscrht

The critical shear buckling stress (σscr) is given by:

σscr =
π2ksE(t/b)2

12(1− ν2)

Where,ks is a function of the aspect ratio a/b of the panel and the edge conditions.
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Figure 2.10 Critical stress at web buckling point.

2.6.2.2 Shear load carried by web after buckling

When the shear load increases beyond the web buckling stress, web buckles down into

a tension field and the diagonal tensile stress tends to pull the flanges together and thus

cause bending in the flanges. The diagonal tensile stressσt for shear resistant web does
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Table 2.7 Calculation of the total shear load developed by web after buckling

σtmax Maximum combined tensile stress in the web
σt Diagonal tensile stress

σscr Critical shear buckling stress
σty Yield strength of the material
R Concentration factor
I Moment of Inertia of section
Q Static moment of area of flanges

not produce such action, therefore, a concentration factor 1/R must be multiplied to the

tensile stressσt. Hence,

σtmax = (σt/R + σscr) ⇒ σt = (σtmax − σscr)R

The vertical component of the diagonal tensile stress equals the shear load developed by

the web after buckling. shear loadVt is obtained as(from equation 2.7)

Vt = (σtmax − σscr)Rht sin α cos α (2.22)

Total shear load developed by the web after bucklingVty when the maximum stress equals

the yield stress(σty) can be calculated as:

Vty = (σty − σscr)Rht sin α cos α (2.23)

Total yield shear resistance (VWty) of the web equals:

VWty = (Vcr + Vty) (2.24)

Therefore total beam shear resistance can be calculated as:

Vyield =
I(Vcr + Vty)

Qh
(2.25)
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2.7 Flange loads calculation

Axial flange loads are primarily caused by the stresses due to primary bending of the

beam according to the flexural theory and also due to stresses produced by the tension

field. Bending of the flanges because of the tension field also produces additional stresses

that are termed as secondary bending stresses.

Stresses due to primary bending: Bending stress can be determined using the following

equation:

σb = ±Mcry

I
± (M −Mcr)y

IF

(2.26)

The first term in equation 2.26 represents the bending stress till the point where the web

breaks down into a tension field and thus the web is still effective in computation of mo-

ment of inertia. The second term denotes the bending stress when the beam acts as a

tension field web. Therefore, the buckled web is assumed to be ineffective in calculating

moment of inertia.

Table 2.8 Calculation of stresses due to primary bending

I Moment of Inertia of total section about neutral axis
IF Moment of Inertia of section without web about neutral axis
Mcr Bending moment for load which causes web buckling
M Total bending moment on section
σb Bending stress
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Flange axial stresses due to tension field: The upper and lower flanges are subjected

to a compressive load, due to the horizontal component of the tension field, which is equal

to

FH = −Vt

2
cot α

Table 2.9 Calculation of flange axial stresses

Vt Shear load carried by tension field action
α Angle of diagonal tension

FH Compressive and tensile flange loads respectively

Secondary Bending Stresses: In order the compute the secondary bending mo-

ments due to lateral pull of tension field, the flange is treated as a continuous beam with

spans equal to stiffener spacing. The component of the web diagonal tensile stresses nor-

mal to flange is equal to

wv =
Vt

h
tan α

The moment(average) over the supports, for a continuous beam of equal spans, is calcu-

lated as:

Mavg =
1

12
wvd

2

The deflections of the beam flanges relieves the web stress in the midportions of the panels

which reduces the continuity moment over the support. A relieving factor C is introduced
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to be used when calculating the moment. Therefore, secondary bending moment(average)

on flanges is

Msec =
1

12
C

Vt

h
d2 tan α (2.27)

Table 2.10 Calculation of secondary bending moment on flanges

Vt Shear load carried by web in diagonal tension
α Angle of diagonal tension

Msec Secondary bending moment on flanges
C Relieving factor
d Spacing between stiffeners



CHAPTER III

FINITE ELEMENT ANALYSIS

3.1 Analysis of Current Back Panel

Figure 3.1 Snap shot of the Back Panel.

The current design( 3.1) of the back panel of prototype F-150 pick up truck consists

of a corrugated sheet supported by beams on either sides, top and bottom. The idea is to

implement the concept of semi-tension fields to design a completely new back panel with

reduced weight while retaining the benefits of the current model. Initial step towards

29
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designing the new model would be to determine the design load that the panel has to be

designed to. A Finite Element Analysis has been performed on the current panel subjected

to a unit shear load. Thus, the design load can be calculated based on the maximum stress

of the back panel.

The new design of back panel is based on semi-tension field theory. In order to

permit semi-tension field action the existing panel has to be replaced by a thin continuous

sheet web supported by vertical stiffeners.

Calculation of Design Load:

Figure 3.2 Calculation of Design Load.
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From figure 3.2, it is observed that the highest value of stress is equal to 141psi.

But, this value corresponds to those locations which are subjected to either the loading or

boundary conditions. Hence, the value that is prevalent over the entire panel uniformly

is chosen for the purpose of the calculation of design load. Maximum stress from Finite

Element Analysis of Panel, for a unit load = 28.1 psi

Maximum allowable stress is calculated assuming a factor of safety 2 = Yield Strength/Factor

of Safety = 24000/2 = 12000 psi

Hence design load for this material = Max. allowable stress/ Max. stress = 12000/28.1 =

427 lb

Calculation of thickness:

α

63 in

δ

16.5 in

427 lb

24000

Figure 3.3 Calculation of thickness.

As shown in figure 3.3, only the web, without the flanges and vertical stiffeners, is

chosen in order to determine the optimum value of thickness that can withstand the loading
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conditions. It should also be noted that for this calculation, the height of the panel does

not include the flanges. An infinitesimal element(see figure 3.3)of widthδ and thickness

t is chosen for the following calculations.

Total shear load on the back panel = 427 lb

Width of the element = 63*sinα in

Applying conditions of equilibrium to the element,

24000 ∗ 63 ∗ sin α ∗ t ∗ sin α = 427 (3.1)

Referring to equation 2.12,

sin2 α =
√

a2 + a− a

From equation 2.5,

a =
1 + ht

Au+AL

dt
As
− ht

Au+AL

=
1 + 24.47 ∗ t

41.77 ∗ t

Substituting the values of ”a” and ”sin2 α” in the equation 3.1, equation simplifies to

24.47 ∗ t2 + 0.986 ∗ t− 0.00056834 = 0

Only positive root value t = 0.000568.

Thickness t = 0.0006in This is a case of over design since thickness values lower than 0.02

in are not allowable. Therefore, thickness is chosen to be = 0.02 in.
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Table 3.1 Calculation of thickness according to the new design

d Stiffener spacing 15.5in
Au, AL Area of upper and lower flange 0.3985in2

As Area of the stiffener 0.23in2

A Area of cross-section of upper and lower flanges0.44in2

3.2 Strength Analysis of Web and Flanges of the New Back Panel

Figure 3.4 shows the proposed new design of Back panel, which consists of a thin

web of thickness 0.02 in supported by three vertical stiffeners and the upper and lower

flanges(shown in fig 3.5).

21
.5

in

Stiffener

15.5 in

Figure 3.4 Proposed new design of the Back Panel.
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From the mathematical review in chapter II, various parameters can be determined

as follows:

Critical buckling stress is given by

σscr =
π2ksE(t/b)2

12(1− ν2
e )

= 261.83psi.

critical shear loadVcr = σscr ∗ h ∗ t = 99.495 lb

Table 3.2 Parameters for calculation of critical buckling stress

ks Shear buckling coefficient 5.8
E Elastic modulus of the material 3.00 ∗ 107

t Thickness 0.02in
b Distance between the stiffeners 15.5 in
ν Poisons ratio 0.3

Determining angle of diagonal tension:

Vertical Stiffener

0.125 in

1 in

2

4
Area = 0.3985 in

I = 0.4413 in
NA

NA

2.0 in

2.
5i

n

2.
5i

n

2.0 in

NA

NA
I = 0.4413 in

Area = 0.3985 in
4

2

Lower FlangeUpper Flange

0.0625 in

0.0625 in

Figure 3.5 Upper,Lower Flanges and Vertical Stiffener.
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This requires calculation of value ’a’, which can be calculated as follows:

Referring to equation 2.5,

a =
1 + ht

Au+AL

dt
As
− ht

Au+AL

= 1.696

From equation 2.12,sin2 α =
√

a2 + a− a thussin2 α = 0.4427 ⇒ α = 41.70

Web stress concentration factor:

Table 3.3 Calculation of web stress concentration factor

d Stiffener spacing 15.5 in
h Distance between flange centroids 19in
t web thickness 0.02in
R Web stress Concentration factor 0.76
α Angle of diagonal tension 41.70

Iu, IL Moments of Inertia of upper and lower flanges0.4413in4

From equation 2.11,flange flexibility factor can be determined as:

wd = 1.25d sin α 4

√
t/(Iu + IL)h = 2.394

The web stress concentration factor can be determined as R = 0.86 from the graph in figure

2.8

Shear Load carried by web after buckling:
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Table 3.4 Calculation of total shear load

d Stiffener spacing 15.5 in
h Distance between flange centroids 19in
R Web stress Concentration factor 0.86
α Angle of diagonal tension 41.70

INA Moment of Inertia of the section about NA 72.81in4

Q Static moment of area of flanges 3.786in3

Vcr Shear load resistance developed by web up to buckling99.495lb
σscr Critical buckling shear stress 261.83

For Mild steel, Yield stress in tension is equal to 24000 psi(σty) Shear strength of

the web acting as tension field after buckling is given by:

Vty = (σty − σscr)Rht sin α cos α

⇒ Vty = (24000− 261.83) ∗ 0.76 ∗ 19 ∗ 0.02 ∗ 0.6652 ∗ 0.7466 = 3852.74lb

Web Neglected

10
.7

5 
in

10
.7

5 
in

10
.7

5 
in

10
.7

5 
in

NANA

Web Effective

NA
4I = 81.233 inI = 72.81 in

2
Total Area = 4.5095 in

NA
4

2Total Area = 0.797 in

Figure 3.6 Calculation of Moment of Inertia.
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Moment of Inertia I is computed asINA(Moment of Inertia of section without web)

= IuC
+ Au ∗ d2 + IlC + Al ∗ d2= (0.4413 + 0.3985*9.5*9.5)*2 = 72.81in4

Static moment of flange area about the Neutral AxisQ =
∫

ydA = 0.3985∗9.5 = 3.786in3

Total shear load including strength of flanges is given by equation 2.21,

Vyield =
I(Vcr + Vty)

Qh

Vyield = (72.81)(3404.75 + 99.495)/(3.786 ∗ 19) = 4000.365lb

The results show that the beam shear resistance can be proportioned as:

Carried by the web in pure shear =Vcr/Vyield = 99.495 ∗ 100/4000.365 = 2.5%

Carried by the web as a diagonal tension field =Vty/Vyield = 3852.74 ∗ 100/4000.365 =

96.3%

Remaining 1.2% is carried by the shear strength of the flanges

Due to the thin web thickness, web buckles at a relatively low stress, thus the percent of

the external shear carried by web at buckling is quite small.

Flange Strength Analysis: Design bending moment is calculated to be M = 427*63 =

26901 lb-in.

The bending moment due to a shear of 99.495 lb will be resisted by the entire cross-section

and the web =Mcr = 99.495 ∗ 63 = 6268.19lb− in
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Table 3.5 Calculation of bending stresses

M Design bending moment 26901 lb-in
Mcr Bending moment due to the shear load 6268.19 lb-in

y Distance from neutral axis 10.75in
I Moment of Inertia of total section about NA 81.233in4

IF Moment of Inertia of section without web 72.81in2

σbUF
Upper flange bending stress 3875.825psi

σbLF
Lower flange bending stress -3875.825psi

Bending moment for tension field beam(M −Mcr) = 26901 - 6433.2 = 20632.81

lb-in

Upper Flange Bending Stresses: Referring to equation 2.26,

σbUF
=
−(−6268.19 ∗ 10.75)

81.233
+
−(−20632.81.8 ∗ 10.75)

72.81
= 3875.825psi

Lower Flange Bending Stresses:

σbLF
=
−(−6268.19 ∗ −10.75)

81.233
+
−(−20632.81 ∗ −10.75)

72.81
= −3875.825psi

Average Axial Flange Loads Due to Bending:

Total Flange Load = M/h = 26901/19 = 1415.84lb

Upper Flange

σtavg = 1415.84/.3985 = 3552.92psi

Lower Flange

σcavg = −1415.84/.3985 = −3552.92psi
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Table 3.6 Calculation of flange axial loads due to bending

σtavg Upper flange average axial load due to bending3552.92lb
σcavg Lower flange average axial load due to bending-3552.92lb
Vt Shear load carried by tensile field 322.37lb
FH Axial load in flanges due to diagonal tension -180.91lb

σt, σc Average stresses on upper and lower flanges-453.98 psi

Flange Axial Loads due to Tension Field Action:

If Vt is the shear load carried by the tensile field under the given shear load of 427 lb, then

from equation 2.25,

427 =
72.81

3.786 ∗ 19
(99.495 + Vt) ⇒ Vt = 322.37lb

Axial Load in each flange due to diagonal tension in the web:

FH = −.5 ∗ Vt ∗ cot α = .5 ∗ 322.37 ∗ cot(41.7) = −180.91lb

Average Stress on Upper Flange equals,σt = −180.91/0.3985 = −453.98psi

Average Stress on the Lower Flange equals,σc = −180.91/0.3985 = −453.98psi

Combined Flange Axial Stresses: Upper Flange Extreme Fiber:

σte = 3875.825− 453.98 = 3421.845psi

Average Stress:σtav = 3552.92− 453.98 = 3098.94psi

Lower Flange Extreme Fiber:
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Table 3.7 Calculation of flange axial loads due to tension field

σte combined stress on upper flange extreme fiber3421.845 psi
σtav average stress on upper flange 3098.94psi
σce combined stress on lower flange extreme fiber-4329.28psi
σcav average stress on lower flange -4006.9 psi

σce = −3875.825− 453.98 = −4329.805psi

Average Stress:σcav = −3552.92− 453.98 = −4006.9psi

Flange Secondary Bending Stresses: Upper and Lower flanges act as continuous beams

with stiffeners as the support points under the transverse load(equal to the vertical com-

ponent of the web diagonal tensile stresses.) Secondary bending moment(Average) can be

approximated asMsec = 1/12 ∗ C ∗ Vt/h ∗ d2 ∗ tan α = 279.95lbin where, C = .925 for

wd = 2.394

Secondary Bending Stresses on Upper Flange:

SectionModulus(Z) = I/c(Lower fiber)= 0.4413/1.25= 0.35304

SectionModulus(Z) = I/c(Upper fiber)= 0.4413/1.25= 0.35304

Table 3.8 Calculation of secondary bending stresses of upper flange

σbUFLF
Upper flange bending stress on lower fiber -792.97psi

σbUFUF
Upper flange bending stress on upper fiber 792.97psi

σUFLF Combined stress on upper flange lower fiber2305.97psi
σUFUF Combined stress on upper flange upper fiber4214.815psi



41

Upper Flange bending stress on lower fiberσbUFLF
= 279.95/0.35304 = -792.97 psi

Bending Stress on upper fiberσbUFUF
= 279.95/0.35304 = 792.97 psi

Combined Stress on the lower fiberσUFLF = -792.97psi + 3098.94 psi = 2305.97 psi

Combined Stress on the upper fiberσUFUF = 792.97 + 3421.845 = 4214.815 psi

Secondary Bending Stresses on Lower Flange:

SectionModulus(Z) = I/c(Lower fiber)= 0.4413/1.25= 0.35304

SectionModulus(Z) = I/y(Upper fiber)= 0.4413/1.25= 0.35304

Table 3.9 Calculation of secondary bending stresses of lower flange

σbLFLF
Lower flange bending stress on lower fiber 792.97psi

σbLFUF
Lower flange bending stress on upper fiber-792.97psi

σLFLF Combined stress on lower flange lower fiber-3213.93psi
σLFUF Combined stress on lower flange upper fiber-5122.25psi

Bending Stress on lower fiberσbLFLF
= 279.95/0.35304 = 792.97 psi

Bending Stress on upper fiberσbLFUF
= 279.95/0.35304 = -792.97 psi

Combined Stress on the lower fiberσLFLF = -4006.9 + 792.97 = -3213.93 psi

Combined Stress on the upper fiberσLFUF = -4329.805 - 792.97 = -5122.77 psi

Vertical Stiffener Strength: Column load in stiffener is given by

Fstiff = −Vt
d

h
tan α = −322.37 ∗ 15.5 ∗ tan(41.7)/19 = −234.3lb

Slenderness ratioSr = length of the column/radius of gyration of the section = l/k
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Radius of gyration = 0.267,Sr = 19/0.267 = 71.16

According to the Euler-Johnson theory, if(Sr < (l/k1)) then,

σc = Sy −
S2

yS
2
r

4π2

1

E

where l/k1 =
√

2π2E/Sy ⇒ l/k1 = 157.08,Sy = 24000 psi

σc = 21537.3 psi

Stiffener strength =σc ∗ As = 4953.58 lb

The column load being only 234.3 lb, this is an over design and can be redesigned to save

further weight.

Weight Savings:

Weight of the existing Back Panel = D(told*w*l + A*l +A*l)= 39.39 lb

Weight according to the new design = D(tnew*w*l + A*l*2 + As* ls*3 ) = 23.55 lb

Total weight savings = 15.84 lb

Table 3.10 Calculation of weight savings

told Thickness of the existing panel 0.082 in
tnew Thickness of the new panel 0.02in
w Width of the panel 16.5in
l Length of the panel 63in
A Area of cross-section of upper and lower flanges0.3985in2

As Area of stiffener 0.23in2

ls Length of the vertical stiffener 19in
D Density of the material 0.28lb/in3



CHAPTER IV

CONCLUSIONS

As the need arises for stronger, lighter, and environmentally safe vehicles, various

design ideas and newer materials are constantly explored. The original material, mild

steel, is the material of choice for the new design due to the following reasons:

• reduction in the total structural weight with the new design

• retention of the structural stability

• decrease in the overall material cost

• fuel-savings because of light weight

In the current design, the theory of semi-tension fields has been applied, which is a post

buckling phenomenon in which the web continues to carry the load after buckling. The

existing back panel of the truck is replaced by a flat sheet thin web supported by vertical

stiffeners to allow semi-tension field action. Web is also supported by upper and lower

flanges in the form of beams.

A finite element analysis of the newly designed back panel was performed using

IDEAS Master series 8 to calculate the maximum load that the back panel can carry. The

design load has been determined to be 427 lb. Based on the value of the design load,

optimum value of thickness was calculated. Weight savings obtained in the back panel

43
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as a result of the redesign are estimated to be 15.84 lb, which is about 40current weight.

Strength analysis of the web had the following results:

• Total shear strength of the panel = 4000.365 lb

• Resistance carried by web in pure shear = 99.495 lb (2.5%)

• Resistance carried by web in tension field = 3852.74 lb (96.3%)

• Remaining 1.2% is carried by the flanges

Strength analysis of the flanges can be summarized as:

• Upper Flange: Stress on the lower fiber = 2305.97 psi
Stress on the upper fiber = 4212.815 psi

• Lower Flange: Stress on the lower fiber = -3213.93 psi
Stress on the upper fiber = -5120.25 psi

Tensile and Compressive yield stresses of mild steel being 24000 psi, the upper and lower

flanges with the failing stresses around 5000 psi are in a comfortable region with respect

to factor of safety.

Strength analysis of the vertical stiffener: The column load that the stiffener is

subjected is equal to -234.3 lb. The total strength of the vertical stiffener being 4953.58 lb.

The stiffener is far from failing and can be redesigned to save more weight.

Redesign of the back panel by applying the semi-tension field theory proves to be

advantageous in perspective of the weight savings as well as the factors of safety. The

corresponding analytical results support this argument. This work can be further extended

by applying semi-tension fields theory to other parts of the truck to include all the closures.

Also, a variety of other new materials with better properties may be applied in order to
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further contribute to the overall weight reduction of the vehicle. The theory can be further

extended to other types of light truck designs.
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This chapter reviews previous work done by [4] in order to analyze various factors

in the redesign of door beams using aluminum extrusions, which provide the advantages

of possessing the same bending strength and energy absorption characteristics as that of

high tensile strength steel designs. The study mainly focuses on the redesign technique

used to achieve weight reduction in vehicle components. This study has been conducted

as part of the literature survey on automobile weight reduction.

The study includes discussion about the effects of varying cross-section and type

of alloy used on the performance of the aluminum extrusions. The door beam is a small

part used inside the door to prevent the door from being damaged and also to reduce

the effect of shock due to collision. Properties such as maximum strength and absorbed

energy were determined by the authors, using an approach based upon the three point

bending of a beam simply supported at its both ends. Although, the door beam is very

small, it is still expected to have high rigidity and strength. Therefore, the possibility of

aluminum extrusions, whose cross-section can be varied, is explored for suitability as door

beams. The objective of this paper was to show that aluminum extrusions have the desired

properties of high tensile strength steel in addition to the advantages aluminum extrusions

can offer such as reduced weight, versatility of cross-sections.

As an initial step towards the development of aluminum door beams with the same

characteristics as that of the beam made of high strength steel pipe with an outer diameter

of 31.5 mm and a wall thickness of 2mm, authors concluded that aluminum alloys with

tensile strength at least 400 N/mm2 are needed to reduce weight and also have the same
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bending strength as that of steel pipe . Alloys were researched for both the characteristics

of strength and extrudability. An alloy Z6W was found suitable for this application.

Table A.1 Typical mechanical properties and possibility of hollow extrusion

Material TS (N/mm2) YS (N/mm2) δ(%) Extrudability

A7075S-T6 529 461 14 Poor
A7N01S-T6 363 294 15 Excellent
Z6W-T5 480 420 14 Excellent
1470N steel 1529 1029 10 -

Steel

22

32

5.5

31.8

27

Aluminium

Figure A.1 Cross-sections of Aluminum box section and steel pipe.

In this problem, hollow box section is chosen as the initial cross-section. Table Ta-

ble A.1 shows that even the high strength aluminum alloys have only half the yield strength

and one third tensile strength of high strength steel. Therefore, it becomes necessary to

design a cross-section which should be able to support aluminum extrusions and prove fa-
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vorable when compared to high strength steel. Hence hollow box section is chosen as the

basic section and it is worked on further in this paper, to design an optimum cross-section.

The effects of following factors of the box section on the performance of aluminum

extrusions have been studied by doing relevant finite element analyses.

• Wall thickness of the flange and web

• Position of the web

• corner radius

From the theory of bending, bending strength is proportional to the yield strength times

section modulus of that particular cross-section. It is observed that moving material away

from neutral axis increases the section modulus. The cross-section is investigated for

optimum wall thickness of the flange and web. Box section with a constant height of

32mm with varying thickness of flange tf, thickness of webtw and flange width L was

used. A graph is plotted for unit weight versus the width of the flange for different values

of flange thickness and web thickness. Appropriate wall thickness and width of the flange

are determined using the graph.

It is known that section modulus is independent of the position of the web. There-

fore, maximum bending strength is the same even when the web position is changed.

Authors have tried to investigate using three point bending test for the five different cross-

sections. The author has validated those results by performing a FEM analysis. A graph

is plotted between web position and maximum bending strength. This graph shows that

maximum bending strength obtained through FEM changes with web position though the
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Figure A.2 Box cross-section.

section modulus is still the same. Hence optimum web position can be determined from

the graph. A sample calculation is shown below:

Bending Stress obtained from IDEAS= 31371lb-in

Converting this into kN to match the graph plotted by the authors(as shown in figure

A.5),

Tensile Strength of the material= (480N/mm2) ∗ 145

= 69600 ∗ 1000psi

Ratio = 69600000/31371

= 2.22lbf

Bending strength = 2.22 ∗ 4.448 ∗ 1000

= 9.875kN

Similarly, bending stress obtained for the ratio,

B/L1 = 1

= 29321.55lb− in. (From FEA as shown in figure A.3)
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Figure A.3 Maximum bending strength Calculation.

Following the same procedure described above

Ratio of tensile strength and bending stress= 69600000/29321.55

= 2.3737.

Therefore, Bending strength = 10.55kN

Hand calculation:

Bending stress= (Max. bending moment)/(Section modulus) (A.1)

Section modulus = I/c (A.2)

Where:

I = Moment of inertia= 0.16917in

c = Distance from the neutral axis= 0.63in

z = 0.16917/.63 = 0.2686

Bending stress= 8250/.2686 = 30714.82psi
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Figure A.4 Graph showing Bending Strength versus web position.

(see figure A.5)

Following the above procedure for conversion into bending strength = 10.08kN

Corner radius: Maximum bending strength was calculated from FEM analyses for the

following modified cross-sections.

• Basic:tw = 1.9 R = 1

• With different corner radius (R = 4)

• With differenttw(= 2.2), R = 4

Bending strength ratio:

= (Bending stress of basic)/(Bending stress of modified section) (A.3)
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Figure A.5 Results from the Paper.

Therefore, ratio = 1.04

Modified corner case = 7791.7/7453.902

Ratio (modified web thickness)= 7791.7/7312.705

= 1.07
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Table A.2 Values of strength for modified corner radius and web thickness

Weight Maximum strength

Basic section 1.00 1.00
Modification of corner 1.05 1.04
Addition web thickness 1.09 1.07

Authors have concluded based on the above results that aluminum door beams can

be successfully developed that have a maximum bending strength equivalent to that of the

high strength steel door beam and achieve a weight savings of 22% over the steel beams.

But the conclusion is not entirely right. Evidently, results remain valid for the specific

cross-sections(steel pipe and aluminum box)chosen. Alternatively, steel pipe can be hy-

droformed to a box cross-section and the values can be recalculated. The new dimensions

of the hydroformed steel cross-section can be calculated as follows:

Outer diameter of the steel pipedo = 31.8 mm

Inner diameter of the steel pipedi = 27 mm

Moment of inertia of outer circleIo = π ∗ d4
o/64 = 5.02 *104 mm4

Moment of inertia of inner circleIi = π ∗ d4
i /64 = 2.61 *104 mm4

Moment of inertia of the steel pipe cross-sectionIcircle = Io − Ii = 2.41 *104 mm4

Area of the pipe cross-sectionAcircle = π(d2
o − d2

i )/4 = 221.67mm2

Thickness of the hydroformed section t =do−di
2

= 2.4 mm

Height of the hydroformed section h = 32 mm

Width of the hydroformed section b =(Acircle + 4t2 − 2ht)/2t = 18.9814 mm
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Table A.3 Dimensions of the steel pipe and hydroformed section

do, di Outer and Inner diameters of steel pipe31.8, 27 mm
w Width of the hydroformed section 18.9814 mm
h Height of the hydroformed section 32 mm
t Thickness of the hydroformed section 2.4 mm

Moment of inertia of the hydroformed rectangular section(outer)IrectO = bh3/12 =

5.183*104mm4

Inner dimensions of the rectangular section can be calculated as: height h1 = h - 2t = 27.2

mm

width b1 = b - 2t = 14.18 mm

Moment of inertia of the inner rectangular sectionIrectI = b1h13/12 = 2.378 *104mm4

Ratio of moments of inertia of circle to rectangular ratio =Icircle/Irect = 0.8595

It is seen that the hydroformed section has higher moment of inertia than the original pipe

design. Therefore dimensions are recalculated based on the ratio so that the new section

and old section do not differ significantly.

Modified area of the rectangular sectionAr = Acircle * ratio = 190.5336

Similarly, modified thickness t1 = t*ratio/1.038 = 1.9874 mm

Therefore, the new height h1 = h - 2t1 = 28.0253 mm

New width b1 = b - 2t1 = 15.0067 mm

Moment of Inertia of the rectangular section (modified dimensions)Irect1i = b1 ∗

h13/12 = 2.7527 *104
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Table A.4 Modified Dimensions of the hydroformed section

w1 New Width of the hydroformed section 15.0067 mm
h1 New Height of the hydroformed section 28.0253 mm
t1 New Thickness of the hydroformed section1.9874 mm

Moment of Inertia of the total sectionIrect1 = IrectO − Irect1i = 2.4305 *104

Increase in Inertia(pipe-rectangular) =Irect1/Icircle = 1.0085

Area of cross-section of the modified section A1 = bh - b1h1 = 186.8367

Weight of the modified section = original weight of the pipe* A1/Acircle = 1.48*186.8387/221.67

= 1.2474 kg/m

New Bending strength = original bending strength *Irect1/Icircle = 11.8956 kN

Therefore, the hydroformed section of steel has comparable values of bending strength

and weight with the aluminum box section.

Table A.5 Results comparison of Aluminum and Steel door beams

Material Maximum Strength (kN) Unit Weight (kg/m)
1470N steel 11.8 1.48
Aluminum 11.5 1.16

Hydroformed steel pipe 11.8956 1.2474

Though the calculations and experimental values in the paper are verified to be

correct, conclusions made by the authors with respect to achieving weight savings of 22%
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when compared to steel designs are not acceptable and has been demonstrated by taking

an alternative cross-section of steel section.
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