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Reinforcement learning (RL) has received attention in recent years from agent-

based researchers because it can be applied to problems where autonomous agents learn 

to select proper actions for achieving their goals based on interactions with their 

environment. Each time an agent performs an action, the environment’s response, as 

indicated by its new state, is used by the agent to reward or penalize its action. The 

agent’s goal is to maximize the total amount of reward it receives over the long run. 

Although there have been several successful examples demonstrating the usefulness of 

RL, its application to manufacturing systems has not been fully explored. The objective  

of this research is to develop a set of guidelines for applying the Q-learning algorithm to 

enable an individual agent to develop a decision making policy for use in agent-based 

production scheduling applications such as dispatching rule selection and job routing.  



For the dispatching rule selection problem, a single machine agent employs the Q-

learning algorithm to develop a decision-making policy on selecting the appropriate 

dispatching rule from among three given dispatching rules. In the job routing problem, a 

simulated job shop system is used for examining the implementation of the Q-learning 

algorithm for use by job agents when making routing decisions in such an environment. 

Two factorial experiment designs for studying the settings used to apply Q-learning to the 

single machine dispatching rule selection problem and the job routing problem are carried 

out. This study not only investigates the main effects of this Q-learning application but 

also provides recommendations for factor settings and useful guidelines for future 

applications of Q-learning to agent-based production scheduling. 
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CHAPTER I 

INTRODUCTION 

1.1.  Manufacturing Scheduling 

A long and profitable life is every enterprise’s goal. For a manufacturing 

enterprise, to maintain profitability requires that they continually excel in converting raw 

materials into value-added products that meet the customers’ needs. This conversion 

procedure consists of a set of complicated and interrelated activities such as designing, 

planning, production, inventory control, quality assurance, etc. To remain competitive in 

the market, manufacturers must focus on continually improving their processes. 

Production scheduling that translates the detailed process plans into the shop floor 

schedule is one of the most important processes in manufacturing systems. A good 

production schedule can provide such benefits as increased shop throughput, enhanced 

customer satisfaction, lower inventory levels, and increased utilization of resources. 

Therefore, there is a great need for good scheduling strategies. 

Scheduling problems essentially involve completing a set of jobs with a limited 

number of manufacturing resources under a number of constraints to optimize a particular 

objective function. These problems are known to be hard and usually belong to the NP-

complete class of problems (Morton and Pentico, 1993; Pinedo, 1995). Research in 

production scheduling has been conducted for many decades and a large number of 

algorithms and heuristics have been developed for various scheduling problems. A 
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scheduling problem consists of three components: a machine environment, specific job 

characteristics, and one or more optimality criteria (Brucker, 2001). The machine 

environment represents the type of the manufacturing system that will execute the 

developed schedule. The manufacturing system may be a job shop system, flexible 

manufacturing system (FMS), cellular manufacturing system, transfer line, etc. Job 

characteristics represent such factors as the number of operations, the precedence 

relations among operations, and the possibility of preemption (whether the job can be 

split). Optimality criteria are the objectives to pursue when scheduling the jobs. Common 

objectives include minimizing makespan, mean flow time, mean lateness, the number of 

tardy jobs, and mean tardiness. All the three components mentioned above specify the 

variety and complexity of each scheduling problem.  

A scheduling problem may be comprised of two sub-problems: job routing and 

job sequencing problems. A job routing problem involves assigning the operations of 

jobs to the specific machines. Such problems result from the allowance of routing 

flexibility. Routing flexibility depends on the capability of the machines. A versatile 

machine is capable of performing different operations. The versatility of the various 

machines in a shop essentially supports the possibility for the existence of alternative 

process plans for a job. Routing flexibility is a key issue that has increasingly attracted 

attention in modern manufacturing systems. A FMS, which consists of a set of computer 

numerically controlled machines (CNC) linked with an automated material handling 

system, is a computerized system that is able to produce mid-volume and mid-variety 

products with high levels of efficiency. The FMS provides routing flexibility due to the 

capability of NC machines. Once the route of a job is specified, decision makers must 
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determine the production sequence of the jobs awaiting their next process in the machine 

queue. A simple approach to such problems is to adopt dispatching rules. A dispatching 

rule is a priority rule used to determine the order in which the jobs waiting in the machine 

queue are to be processed as soon as a machine becomes available. Dispatching rules are 

useful for finding a reasonably good schedule. The dispatching rules are attractive 

because of their simplicity and ease of implementation. A variety of dispatching rules 

have been proposed in recent decades, with Panwalkar and Iskander (1977) identifying 

the existence of more than 100 distinct rules. Scheduling in industry may require meeting 

several objectives simultaneously. However, a dispatching rule often favors one 

performance measure only at the expense of other performance measures. In addition, the 

manufacturing environment usually changes over time. Therefore, the specific 

dispatching rule employed in such a dynamic environment should be free to change as 

well.  

One of the most notoriously difficult systems for the scheduling community is the 

job shop system. The strategy of a job shop is based on producing a wide variety of 

products in very low volumes. Producing such variable products requires different 

sequences. In a traditional job shop layout, machines are functionally grouped together. 

For the case of an actual shop floor, uncertainties (i.e., machine breakdowns, material or 

tool shortages, transportation delays, etc.) complicate the scheduling problem making it 

more difficult to solve. Therefore, several assumptions are usually made to simplify the 

problem (i.e., resources are always available, all the jobs are known in advance, all the 

operation processing times are known and constant, transportation times are ignored, 

etc.). However, application of too many such assumptions may result in the treatment of 
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scheduling problems that would be considered unrealistic. That is why the job shop 

scheduling problems have attracted so much attention over many decades.  

 
1.2. Agent-Based Approach 

Due to the structural rigidity of classical centralized control architectures in 

manufacturing, the decentralized (or heterarchical) control structure has drawn more 

attention (Crowe and Stahlman, 1995; Dilts et al., 1991; Duffie and Prabhu, 1994). One 

of the most important properties of the heterarchical structure is that the decision-making 

responsibilities are fully distributed to each component of the system. Each component is 

autonomous and possesses local knowledge that is sufficient to accomplish its own task. 

The task that a single component is unable to finish alone may require the cooperation of 

a cluster of components. Communication is a means of establishing such cooperation 

between the autonomous components. Under the guidance of such a control architecture, 

the requirements of the next generation of manufacturing systems, such as good fault-

tolerance, ease of reconfigurability and adaptability, and agility, can be achieved (Shaw 

and Norrie, 1999). 

In recent years, a new paradigm called agent technology has been widely 

recognized as a promising paradigm for developing software applications able to support 

complex tasks. From the perspective of a software application, an agent can be viewed as 

a computational module that is able to act autonomously to achieve its goal (Weiss, 1999; 

Brenner et al., 1998; Shen et al., 2000). Wooldridge and Jennings defined an intelligent 

agent as a hardware or software-based computer system with the properties such as 

autonomy, social ability, reactivity and pro-activeness (Murch and Johnson, 1998). The 

idea of agent-based approaches has also offered a promising solution for controlling 
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future manufacturing systems requiring flexibility, reliability, adaptability, and 

reconfigurability. Agent technology fits naturally into the decentralized control structure 

for manufacturing systems because the autonomous component can easily be represented 

by an agent that is defined as an autonomous, pro-active element with the capability to 

communicate with other agents (Weiss, 1999). In fact, agents can be used to represent 

physical shop-floor components such as parts, machines, tools, and even human beings. 

Under the application of multi-agent systems, each agent is in charge of information 

collection, data storage, and decision-making for the corresponding shop floor 

component. A popular scheme to achieve cooperation among autonomous agents is 

through the negotiation-based contract-net protocol (Smith, 1980). The contract-net 

protocol provides the advantage of real-time information exchange, making it suitable for 

shop floor scheduling and control.     

 
1.3. Reinforcement Learning 

One significant issue for improving an autonomous agent’s capability is that of 

how to enhance the agent’s intelligence. Learning is one mechanism that could provide 

the ability for an agent to increase its intelligence while in operation. Developed in the 

early 1990s, reinforcement learning (RL) has generated a lot of interest from the research 

community. As opposed to the popular approach of supervised learning whereby an agent 

learns from examples provided by a knowledgeable external supervisor (Weiss, 1999), 

reinforcement learning requires that the agent learn by directly interacting with the 

system (its environment) and responding to the receipt of rewards or penalties based on 

the impact each action has on the system. Although there have been several RL 

applications demonstrating the usefulness of RL (Sutton and Barto, 1999; Mahadevan 
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and Kaelbing, 1996), its application to manufacturing systems has not been fully 

explored.  

 
1.4. Problem Statement 

This study proposed the use of an agent-based approach for handling a dynamic 

job-shop scheduling problem. Every customer order consists of a batch of identical parts 

with each part comprised of a set number of features defined by the customer. Each 

feature requires at least one operation. Routing flexibility is considered here by providing 

alternative processing routes to produce the same product. These alternatives are taken 

into account in the process plan and arise due to the availability of multiple machine 

types for processing a specific operation.  

Two types of agents are used in the system: job agents and machine cell agents. 

Each job agent representing a specific job is in charge of determining proper operation 

routing by negotiating with the cell agents that have the potential to finish the operations. 

Each machine cell agent represents one machine cell that may be comprised of one (or 

more than one) identical machine. All the machines in the same cell share the same 

buffer. Each machine cell agent determines the next job (from the buffer) for processing 

when any machine in the cell is available. That is, the job agents are responsible for 

solving the routing problem, while the cell agents work out the sequencing problem. 

In this study, job routes are dynamically determined through negotiation between 

job and machine cell agents. A contract net-based mechanism is implemented for agent 

negotiation. On the other hand, Dispatching rules (DR) are employed to solve the job 

sequencing problems. However, no single DR can be really dominant across all possible 

scenarios (Chiu and Yih, 1995; Kouiss et al., 1997; Pierrval and Mebarki, 1997; 
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Subramaniam et al., 2000). Employing an appropriate DR should depend on the real-time 

shop circumstances. Therefore, the sequencing problem in this study is actually becoming 

a DR selection problem. This research is concerned with investigating the application of a 

reinforcement learning (RL) approach proposed for training job agents to learn a good 

policy for dynamic making routing decisions and for training machine cell agents to learn 

a good policy for selecting an appropriate dispatching rule. To apply RL in this study, the 

following issues must be dealt with: 

1. How to specify the states, actions, and penalties and rewards? 

2. How do various state determination criteria affect learning performance?    

3. How do the parameters of the RL approach impact learning performance? 

4. How do various reward functions affect learning performance? 

Currently, implementing multi-agent systems in dynamic scheduling is still a 

highly popular research area. Performance of the agent-based approaches not only relies 

on the cooperation among the agents but the capability of the agents. In this research, 

enhancing the agent’s capability in terms of making good decisions will significantly 

benefit applying agent technology to complex dynamic scheduling problems. 

 
1.5. Objective of the Research 

The overall goal of this research is to develop a set of guidelines (or 

recommendations) for applying the Q-learning algorithm to enable an individual agent to 

develop a decision making policy for use in production scheduling applications such as 

dispatching rule selection and job routing. The focus of the study is specific to agent-

based systems employed in dynamic job shop environments. Suresh and Chaudhuri (1993) 

surveyed the approaches for the dynamic scheduling problems and identified some 
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essential characteristics of a good scheduling system. According to their survey, a good 

scheduling system should be efficient in terms of meeting due dates and reducing cost, 

generate schedules using actual information from the current environment, and provide 

flexibility to react to disruptions in an efficient and timely manner. Agent-based 

approaches seem promising for building a good scheduling system. Currently, 

implementing multi-agent systems in dynamic scheduling is still one of the most active 

research areas. In this study, a multi-agent heterarchical system is developed for solving 

complex production scheduling problems.  

Applications of RL techniques to manufacturing systems have not been 

thoroughly explored yet. The proposed study investigates how Q-learning algorithm can 

be used by job agents to construct policies for making real-time routing decisions and by 

machine agents to discover a policy for selecting a proper DR. At present, most of the 

agent-based research focuses on the issues of negotiation and cooperation among agents. 

Addressing learning in a multi-agent environment can help agents improve both their 

performance and that of the system as well (Shen et al. 2000). RL requires that the agent 

learn by directly interacting with its environment and receive rewards or penalties based 

on the impact each of its actions has on the system. Therefore, RL may provide an on-line 

learning capability for individual agents. The successful application of the Q-learning 

algorithm to agent-based scheduling problems in this research will provide researchers 

with additional knowledge on the application of RL techniques to agent-based 

manufacturing systems.   

The next chapter provides a review of the literature that introduces related 

research work providing more details about manufacturing control structures, traditional 
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approaches and agent-based approaches to dynamic scheduling problems, and 

applications of reinforcement learning to manufacturing systems. The methodologies of 

this research will be described in Chapter 3 and Chapter 4. Chapter 5 consists of the 

experimental results and discussion. The conclusions are presented in Chapter 6.  
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CHAPTER II 

LITERATURE REVIEW 

2.1. Control Structures of Agent-Based Manufacturing Systems 

The control architecture employed in manufacturing systems plays an important 

role in defining the interactions among the manufacturing components because it 

identifies the decision-making responsibilities of each system component. The earliest 

control architecture is the centralized structure. The characteristics of the centralized 

control architecture is that there exists only one central computer performing all the 

information processing functions and maintaining global databases to record all the 

activities of the system. The centralized control architecture simplifies optimization since 

it holds all global information in a single control unit. The overall system status can be 

obtained by accessing the single control unit. As well, communication overhead is low in 

such a system. These advantages of centralized control structures are tarnished because of 

a complete reliance on the fault tolerance of a single central computer. As the size of the 

manufacturing system grows and becomes more complicated, the speed of response may 

be degraded due to the limited capability of the central computer. 

To resolve the deficiencies of the centralized structure, the load on the central 

computer must be distributed. One approach employs a hierarchical control structure 

consisting of a small number of layers (usually three to five). The upper-level layers have 

more authority and responsibility for decision-making than the lower-level layers. The 
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structure defines rigid master/slave relationships between components on one layer and 

those below and above and each component in the hierarchy is only able to only 

communicate with these components. Command information flows top-down, and 

feedback information flows bottom-up. All the components in the system are assumed to 

possess deterministic behavior.  

The hierarchical control structure became popular in manufacturing starting in 

early 1980s and was supported by such efforts as that of NIST’s AMRF (Jones and 

McLean, 1986). Although achieving global optimization may be possible with this type 

of control structure, such systems may not be sensitive to the unexpected events (e.g., 

machine breakdown, rush orders, etc.) in the manufacturing environment because 

information exchanges between system components are not very efficient. For example, 

the information of each lower-level component must pass through an upper-level 

controller to reach another lower-level component. In addition, use of the rigid 

hierarchical structure makes it difficult to modify or extend the existing system. 

Therefore, the hierarchical control structure is unable to handle the expansion and 

frequent reconfiguration needs required of future manufacturing systems (Maturana et al., 

1999).  

In order to overcome the weaknesses of the hierarchical architecture, a 

heterarchical (decentralized) control approach has been recommended for future 

manufacturing systems (Duffie and Prabhu, 1994). It is a completely decentralized 

structure containing no supervisor level where the decision making responsibilities are 

fully distributed to each component of the system. Each component is autonomous and 

possesses sufficient local knowledge to accomplish its own task. A task that a single 
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component is unable to finish alone may require the cooperation of a cluster of 

components. Communication is the key for achieving cooperation between the 

autonomous components.  

Crowe and Stahlman (1995) point out that the overall system complexity and 

supervisory costs can be reduced when using heterarchical control structures. They also 

state that system maintenance and modification is simplified for such systems compared 

to hierarchical control. Okubo et al. (2000) compared the abilities of distributed and 

centralized production control systems on response time, planning scope, and progressive 

accuracy. Progressive accuracy is the difference between the prescribed plan and the 

results from actual production. The larger the differences between estimated and actual 

processing times are, the longer the lead time will be. Okubo et al. found that a 

decentralized system allows a larger gap (poorer accuracy) than a centralized system.  

Their simulation results showed that a distributed control system enables a shorter 

response time, narrower planning scope, and higher progressive accuracy than a 

centralized control system. However, when the system is under a heavy load the 

centralized control system provides shorter lead-times than decentralized control because 

the centralized system controls the WIP level with a more global perspective . One of the 

major inherent defects of the heterarchical control structure is poor global optimization 

(Dilts et al., 1991). This problem results from the high autonomy of the individual 

components that do not possess a global perspective. Resolving this defect requires a 

robust mechanism to support cooperation between the autonomous components. It is 

believed that the benefits that a decentralized control architecture provides include fault-

tolerance, ease of reconfigurability and adaptability, and local autonomy, and thereby, 
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fulfill the requirements of future manufacturing systems (Dilts et al., 1991; Shen and 

Norrie, 1999). Table 2.1 provides a summary of control architrctures. 

 
 
Table 2.1. Summary of Control architectures 
 
Architecture Features Advantages Disadvantages 
Centralized  • Single control 

unit 
 

• Global optimization 
• Easy to access to 

global information  

• Heavy load on the 
central control unit 

• Poor fault-
tolerance 

Hierarchical  • Master/slave 
relationship 

• Commands flow 
top-down. 

• Feedbacks flow 
bottom-up 

• Possible global 
optimization  

• Good predictability 

• Poor scalability 
• Poor 

reconfigurability 
• Poor adaptability 
• Heavier load for 

higher level 
components 

Heterarchical • Local Autonomy 
• Peer to peer 

communication 
• Cooperation 

• Reduced complexity 
• Good fault-tolerance 
• Good scalability 
• Good 

reconfigurability  
• Good adaptability 

• Poor global 
optimization 

• Poor predictability 

 
 
 

2.2. Dynamic Job Shop Scheduling Problems 

As was introduced in the previous chapter, the variety, complexity, and scope of a 

scheduling problem is determined by the machine environment, specific job 

characteristics, and performance criteria.  A review of dynamic job shop scheduling 

problems reveals that a variety of problem assumptions have been employed in the 

various research studies. Therefore, it is impossible to directly compare the strategies for 

these scheduling problems.  In general, manufacturing scheduling problems can be 

classified into routing problems and sequencing problems. The next two sub-sections 

provide a review of the literature for these two problems.  
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2.2.1 Job Routing problems 

In the context of this study, a job is considered to be a job order consisting of a 

batch of identical discrete engineered parts. Each part requires the service of one or more 

machines in order to complete the processing necessary to satisfy the order. A job routing 

problem results from the allowance of flexibility in the routing of a job through the shop. 

Routing flexibility of a manufacturing system can be defined as the ability to 

manufacture a product by alternative routes (Das, 1996). Lin and Solberg (1991) 

identified four types of routing flexibility based on the availability of alternative 

machines for an operation, alternative operations for a feature, and alternative operations 

sequences for a job. For the case of no routing flexibility, a job is completed using a fixed 

sequence of operations and each operation must be processed on a specific machine. 

There are no alternative machines capable of performing the same operation. For the 

fixed sequencing type, the operations of a job must be performed in a fixed sequence, but 

there can be more than one machine capable of processing any given operation. This case 

is extended in third type, flexible sequencing, where alternative sequences of the 

operations are permitted. The last type is flexibly processing where alternative sequences 

are permitted whereby alternative operations may be available for machining each feature 

and alternative machines employed to perform the selected operation. The comparison of 

these four types of routing flexibility is shown in Table 2.2.  

Lin and Solberg (1991) compared different cases of these four types of routing 

flexibility and concluded that the flexible processing case is always superior to the other 

three cases. Chan (2001) used Taguchi experimental design techniques to study the 

effects of different levels of routing flexibility on the performance of a FMS. In his study, 
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routing flexibility is defined as a measure of the average number of choices of a machine 

that an individual part can choose. He found that increasing routing flexibility doesn't 

guarantee an improvement in system performance.  Chan concluded routing flexibility 

with a measure of 2 (meaning that on average, each job has two options of which 

machine to use for its next operation) provided the best system performance under the 

measures of makespan and flow time.     

 
 

Table 2.2. Types of Routing Flexibility  
 
 No 

Flexibility 
Fixed 

Sequencing 
Flexible 

Sequencing 
Flexible 

Processing 
Alternative M/C for an operation No Yes Yes Yes 
Alternative operation for a feature No No No Yes 
Operation sequence of a job Fixed Fixed Flexible Flexible 

 
 
2.2.1.1 Heuristics 

Choi and Malstrom (1988) evaluated the performance of traditional scheduling 

rules using a simulation of an FMS system constructed using data from a real FMS. The 

rules evaluated consist of seven job dispatching rules and four machine selection rules 

creating a total of 28 combinations. Each combination was evaluated by six performance 

criteria. Their simulation results indicated that the WINQ (the least work in queue in 

terms of processing time) was the best machine selection rule.  

Ro and Kim (1990) proposed three machine selection heuristics (ARD, ARP, and 

ARPD). The ARD rule is a rule to select the machine that has the shortest time composed 

of a sum of travel time, queuing time, and processing time. Use of the ARP rule requires 

that routes be determined by a linear programming (LP) model whose objective is to 

minimize makespan. Implementation of the ARP rule requires that the LP model be 
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solved whenever a new job arrival or a machine breakdowns. The ARPD rule is a 

combination of ARD and ARP. Initially, the routes are determined by solving the LP 

model, but if the primary machine (from LP solution) is busy, a machine is selected based 

on the ARD rule. Ro and Kim compared their three heuristics with two other heuristics 

(NAR and WINQ). The NAR is a rule to select the route with the minimum total 

processing time (no alternative routes are permitted). From their simulation results, ARD 

gave the best results in four performance measures (makespan, mean flow time, mean 

tardiness, and maximum tardiness) except for system utilization. They also found that 

ARD, APRD, and WINQ were significantly better than ARP and NAR in every 

performance measure.  

Yao and Pei (1990) proposed another definition for the measure of routing 

flexibility. Their measure of routing flexibility was called “entropy”. The entropy 

measure takes into account the number of all the immediate next operations, the 

alternative machines for each of these operations, and the reliability of these machines. 

Yao and Pei then proposed a heuristic approach called “least reduction in entropy” (LRE), 

which consists of a machine selection rule and a job selection rule on the basis of 

incurring the least reduction in entropy. They compared LRE with SPT using a simulated 

four-machine production system. Their results showed that LRE either outperforms or is 

as good as SPT in the measures of makespan and machine utilization. 

Shmilovici and Maimon (1992) compared three routing heuristics, fixed priorities 

(FP), least reduction in entropy (LRE), and minimum flow resistance (MFR), and 

analyzed the computational complexity of these three heuristics. According to their 

experimental results, FP was easy to implement and required less computational effort, 
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LRE was not as effective as reported by Yao and Pei (1990), and MFR outperformed the 

other heuristics in terms of throughput but required more expense due to increased buffer 

size. They also found that controlling buffer size had a significant impact to the system 

throughput for any of the three heuristics. 

Chandra and Talavage (1991) developed a heuristic dispatching system for FMS. 

In their system, a part after completing an operation is not routed to a specific machine, 

but is sent to a global buffer. The routing decisions are not made by the parts, but by the 

machines. Their dispatching mechanism categorizes and selects the jobs based on a pre-

defined algorithm. The mechanism was also able to deal with a scheduling problem with 

multiple objectives. The authors compared their system to the four traditional dispatching 

rules (SPT, EDD, LSPO, LRS). Their dispatching system consistently outperformed 

those dispatching rules under various circumstances. They concluded that making 

decisions with simple commonsense reasoning combining some empirically proven 

dispatching rules could achieve a significant improvement.   

Subramaniam et al. (2000a) proposed three route selection rules: LAC, LAP, and 

LACP. LAC selects the machine with the lowest average cost of processing every 

operation in the machine queue. For LAP machine selection is based on the lowest 

average processing time of every operation in the machine queue. LCAP awards the 

highest priority to the machine that has the minimum aggregate cost and processing time. 

Their results found that LAC and LAP rules perform well for the mean cost and mean 

tardiness performance measures, respectively, while the LACP rule exhibits performance 

that is between the LAC and LAP rules. 
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Among the above routing heuristics, WNIQ, ARD, LAC, and LAP are the 

approaches that are not only able to provide promising results, but also easy to implement 

in real time. Some of these approaches will be used as benchmarking approaches in this 

research.  

 
2.2.1.2 Knowledge-Based System  

Bowden and Bullington (1996) developed a machine learning system called 

Genetic Algorithm Rule Discovery System (GARDS) to discover the best control 

strategies for the dynamic routing problems. GARDS consists of two components: the 

Unsupervised Learner and the Plan Manager/Evaluator. The Unsupervised Learner 

component used a rule-based GA (a rule represents a chromosome) to evolve new 

populations of control strategies. The Plan Manage/Evaluator component connected with 

the problem domain’s simulation model to evaluate the population of the solutions 

generated by the Unsupervised Learner. The authors demonstrated that GARDS is able to 

learn effective routing control strategies in a three parallel machine problem as well as a 

flexible cellular manufacturing system consisting of 13 machines arranged in 4 cells. 

However, learning in GARDS is long and requires hundreds of simulation runs.  

Palmer (1996) developed another learning system called Genetic Algorithm 

Prototype Learning System (GAPLS). GAPLS is similar to GARDS except that instead 

of using a rule-based knowledge representation, GAPLS employed prototypes of clusters 

to represent knowledge. Using prototypes rather than rules in the GA essentially reduces 

the complexity of the genetic operators used in searching the control knowledge (Palmer, 

1996). The author compared GAPLS with GARDS. GAPLS outperformed GARDS by 

providing a better routing solution as well as a quicker learning speed.  
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2.2.1.3. Agent-Based Approaches 

2.2.1.3.1. Contract Net-Based Approaches 

In an agent-based dynamic routing problem, agents are used to represent each 

resource and job. The job agent associated with a job will announce its requirements for 

the next operation to those resource agents that have the potential to perform that 

operation. The resource agents who receive the announcement message will respond with 

a bid message to the job agent. All the bids submitted for the job’s next operation will be 

evaluated by the job agent based on a set of heuristics and then one resource will be 

selected and awarded a contract for performing the operation. The above bidding 

procedure is the core of the contract-net protocol. Bidding schemes based on the contract-

net protocol may differ in such aspects as the timing of message exchanges involving 

announcements and bid collection, information reported within the bid, and the rules used 

in bid evaluation.  

Shaw (1988) employed the contract-net method for dynamic scheduling in 

cellular manufacturing systems. In his approach, when an operation of a job at a cell is 

finished, the cell’s control unit will make the decision regarding which cell the job should 

visit next. To do that, the cell’s control unit broadcasts the task announcements to the 

other cell control units. The cell control unit who received a task announcement checks if 

the required operation is within its capability and submits its estimation on the earliest 

finishing time (EFT) or shortest processing time (SPT). There is no job agent in this case. 

Each job’s route is determined through the negotiation between the cells. Shaw’s 

experimental results indicated that the bidding scheme with EFT (earliest finishing time) 

outperformed the bidding scheme with SPT (shortest processing time).  
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Saad et al. (1997) proposed a contract-net-based heterarchical scheduling 

approach for flexible manufacturing systems. In their study, two scheduling mechanisms 

were tested. The first is the Production Reservation (PR) method where all the operations 

of a job are scheduled completely at the time when it arrives to the system. The other 

method, referred to as Single Step Production Reservation (SSPR), schedules one 

operation at a time with the job agent delaying negotiation of its next operation until the 

current operation is finished. In the contract-net protocol, a job agent selects the machine 

that can finish processing the required operation first. If at least two alternatives are tied 

for this criterion, the job agent will choose the machine with fewer jobs in its reservation 

list. They compared the PR and SSPR approaches with some traditional dispatching rules. 

Their results showed that PR outperformed the traditional dispatching rules, while SSPR 

only outperformed PR on average tardiness. However, unexpected events such as 

machine breakdowns or emergent jobs were not considered in their experiments. 

Otherwise, SSPR should be able to take the advantage in the face of these uncertainties. 

Xue et al. (2001) developed an intelligent optimal scheduling mechanism that 

uses a constraint-based search mechanism to identify the best sequence to accomplish the 

required tasks, as well as timing parameter values (the earliest and the latest task finish 

times). Given the timing parameter values, the agent-based collaborative mechanism was 

used to generate a production schedule. Their agent-based collaborative mechanism 

consists of a bidding mechanism and a mediator mechanism. Their bidding mechanism is 

implemented based on the contract-net protocol. The mediation mechanism is used to 

coordinate the activities of the relevant agents to improve the scheduling efficiency. In 

their approach, the manufacturing resources, including facilities and persons are modeled 



 

 

21

as agents. Two mediators, facility mediator and personnel mediator, are used to 

coordinate the activities of the resource agents. 

Oulhadj et al. (1998) presented a negotiation strategy similar to the approach of 

Shaw (1988). The resource agent is responsible for establishing the negotiation with other 

resource agents in order to select the most appropriate resources to allocate to the specific 

task operations. The PR method was employed in their study. Oulhadj et al. (1999) 

extended the contract-net protocol to a multi-contract net protocol. It provided the 

function of scheduling several tasks simultaneously. Their experimental results showed 

that the time required to schedule operations with this approach and the run time 

including scheduling and execution both are linear rather than exponential with the 

increase of the number of scheduled tasks. 

Sousa and Ramos (1996, 1998, 1999) proposed a contract net-based negotiation 

protocol for scheduling in manufacturing systems. The bid submitted from the resource 

agent consists of the information concerning the time windows that the resources are free. 

Selecting bid was based on the resources being able to finish the part before the due date 

and with more free time intervals. The authors also mentioned about renegotiation phase 

when a machine malfunctions. However, no further explanation is given on how to deal 

with the scheduled operations that are affected by this malfunction. 

 
2.2.1.3.2 Market-Based Approaches 

The other agent negotiation approach called market-like approach is very similar 

to the contract-net protocol except currency is used for bid evaluation. Each job agent 

carries some amount of currency and pays the resource agent for processing the 

operation. In every bidding process, the job agent who is able to offer the highest bid 
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takes priority of being processed. The agent negotiation strategies in the studies presented 

below employ a market-based approach.  

Lin and Solberg (1992) presented an agent-based shop floor scheduling and 

control framework based on a market-like model that combined the objective and price 

mechanisms. In their system, each job agent with its unique set of weighted objectives 

enters the system with some currency and alternative process plans. To achieve the 

objectives, job agents will try to fulfill the processing requirements by bargaining with 

resource agents. Each resource agent sets its charging price based on its status. The part 

agent tries to minimize the price paid, but the resource agent’s goal is to maximize the 

price charged. Each deal is completed once the part agent and resource agent are 

mutually committed. One important feature of this market-like mechanism is that the 

negotiation among agents is invisibly guided by an adjustable price to improve the 

system performance. Lin and Solbergs’ results essentially showed that their system was 

able to handle unexpected resource failures and part objective changes. Lin and Solberg 

(1994) later presented a manufacturing simulation system based on the dynamic price 

mechanism for agent negotiation. The proposed agent-based framework simplifies 

implementation of different negotiation strategies in manufacturing systems.  

Dewan and Joshi (2000, 2001) developed an auction-based scheduling mechanism 

for a job shop environment. They also used currency as a means for agent negotiation. 

Their market-like approach differed from Lin and Solbergs’ (1992) in using Lagrangian 

relaxation to decompose the problem formulation. Whenever a machine agent is 

available, it announces an auction for time slots from the current time to the end of the 

time horizon. Each job agent will bid for the time slots with the cost that they are willing 
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to pay. The job agent’s goal is to minimize cost, while the machine agent uses the 

submitted bids for price adjustment. If more than one job demands the same time slot, the 

price for that slot will increase. The price adjustment and bid calculation continue 

iteratively until the price converges. The machine agent determines the best bid for the 

earliest time slot as the next operation. After processing is finished for that operation, the 

above auction procedure is executed again. Dewan and Joshi (2000) further used the 

above mechanism to schedule the jobs with different objectives. 

Ottaway and Burns (2000) proposed an agent-based negotiation involving a 

currency scheme. In their model, the amount of currency that a job agent carries is based 

on the job’s objective function, a weighted linear combination of time, cost, and quality. 

The resources determine the amount of currency to be charged for their production 

services based on their capabilities and the demand for their services. It is noted that there 

is an incentive factor for preventing a job from being stuck in the system due to a lack of 

currency. This factor is used to increase the budgeted funds for the jobs that kept failing 

in the bidding process. Ottaway and Burns also addressed the importance of using 

supervisor agents to balance the production load and maximize overall throughput. The 

supervisor agents essentially played a key role for dynamically switching the system 

structure between a hierarchy and a heterarchy.  Table 2.3. shows a comparison of the 

agent-based approaches mentioned earlier. The features of the systems considered are 

defined as:  

1. Control structure: (Hi) hierarchy, (He) heterarchy, or (Q) quasi-heterarchy. 

2. Negotiation approach: (C) Contract-net protocol, (M) Market-like mechanism, 

or (O) others) 
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3. What agent initiates the negotiation process? ((P) Part agent  or (R) Resource 

agents) 

4. What agent makes the final decision for each negotiation? ((P) Part agent, (R) 

Resource agent, (B) Both, or (M) Mediator) 

5. How many passes of messages are required for routing a job to a machine? ((S) 

Single pass or (M) Multiple passes) 

6. Decision-making frequency: (PR) PR, or (SS) SSPR. 

 
 
Table 2.3. Comparison of the Agent-Based Approaches 
 
Agent-related studies 1 2 3 4 5 6 
Dewan and Joshi (2000,2001) He M R R M SS 
Kpothapall and Deshmukh (1999) He M P P S SS 
Lin and Solberg (1992) He M P P S SS 
Ouelhadj et al. (1998) He C R R S PR 
Ottaway and Burns (2000) Q M P P S SS 
Saad et al. (1997) He C P P S PR, SS 
Shaw (1988) He C P P S SS 
Sousa and Ramos (1996, 1998, 1999) He C P R S PR 
Xue et al. (2001) He C R M S PR 

 
 
2.2.1.3.3. Other Approaches 

Cicirello and Smith (2001) proposed an ant colony approach in multi-agent 

systems in shop floor routing. In their approach, an agent is considered as an ant. When a 

job is released to the shop floor, it is assigned to an ant to carry it through the shop. There 

is no direct communication between resources and ants. All communication is carried out 

indirectly with the pheromone that each ant leaves on the resources that they use. In other 

words, the ants dynamically make the shop routing decisions through the use of simulated 

pheromone trails. Their experiment results showed that the ant colony control approach 
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outperformed the local decision making approaches from the standpoint of global 

performance. The most complex case in their experiments is a flow shop with four 

machines and processing only two job types. More complicated experiments need to be 

conducted to prove the robustness of this approach. Also, implementing this approach 

requires four parameters. The authors did not clearly explain how to set these parameters.   

 
2.2.2. Job Sequencing Problems 

Dynamic job sequencing problems make use of two principal approaches: 

scheduling/rescheduling and dispatching rules (DR). For the scheduling/rescheduling 

approach, a schedule is generated for all the given operations in the beginning before a 

job is released. Rescheduling is triggered in response to some unexpected event or a 

change in the status of the shop. The computational time and the frequency for 

scheduling are crucial when employing this approach. A job sequencing problem can be 

NP-complete and very time-consuming to solve. Scheduling too frequently may result in 

the delay of actual operations. On the other hand, scheduling infrequently may result in 

poor system performance due to ignoring some events that may significant impact system 

status (Sabuncuoglu and Karabuk, 1999).  

Scheduling by using dispatching rules is an on-line scheduling approach in which 

operations are scheduled one at a time. A dispatching rule is concerned with selecting a 

job from the queue of a particular machine to be processed based on some criteria. This 

local decision can be made very quickly. Use of dispatching rules is attractive because of 

their simplicity and ease of implementation. However, the dispatching rules have the 

following shortcomings: 
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1. A DR always blindly pursues a single objective. (Chandra and Talavage, 

1991) In reality, a set of objectives may be important simultaneously.  

2. No single DR can be really dominant across all possible scenarios (Chiu and 

Yih, 1995; Kouiss et al., 1997; Pierrval and Mebarki, 1997; Subramaniam et 

al., 2000b). 

3. A DR does not take in account the status of the other resources. 

  
2.2.2.1. Rolling Horizon-Based Approaches 

In the rolling time horizon approach, a scheduling problem is decomposed into a 

series of sub-problems by time intervals. The next three sub-sections provide a review of 

three types of rolling horizon-based approaches. 

 
2.2.2.1.1. Rolling Horizon-Based Approach (by Genetic Algorithm)  

A genetic algorithm (GA) is a promising search technique. The algorithm starts 

with a set of solutions (represented by chromosomes) called a population. Solutions from 

one population are taken and used to generate a new population (offspring). Solutions 

from the new population are selected according to their fitness value (the more suitable 

they are the more chances they will be selected). The selected solutions will be used to 

generate the next population making use of the two key GA operators: crossover and 

mutation. The above procedure is repeated until either no significant improvement in the 

fitness is seen from one generation to the next, or the number of generations created 

reaches a predefined maximum. GAs have received considerable attention and been 

widely applied in the area of production scheduling because of their capability of dealing 

with problems with large search spaces. 
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Fang and Xi (1997) proposed a periodic and event-driven rolling horizon job shop 

rescheduling strategy in a dynamic environment. In their study, rescheduling is 

performed not only periodically but also when some unpredictable events (job arrivals, 

machine breakdown, machine recovery, and changes of due dates of jobs) happen. In 

their rescheduling procedure, a GA is employed to make decisions on job routing and 

EDD is adopted for dispatching jobs in the buffer of each machine. Their results showed 

that the proposed rescheduling strategy was capable of handling the unexpected events 

that can not be tackled by use of a static strategy. 

Khoo et al. (2000) developed a prototype GA-enhanced multi-objective scheduler 

for manufacturing systems. Their prototype system was validated to generate near-

optimal schedules in well-known deterministic scheduling problems. Moreover, this 

prototype system also demonstrated its capability of handling a dynamic event such as an 

unexpected rush order. Jian and Elmaraghy (1997) employed the genetic algorithm to 

generate an initial schedule for a FMS. In their research, the initial schedule must be 

modified considering the following four uncertainties: machine breakdown, the arrival of 

rush orders, increased order priority (change in due dates), and order cancellation. The 

proposed algorithms can be used in conjunction with the classic dispatching rules such as 

SPT, EDD, FIFO, etc. Chang and Lo (2001) developed an algorithm for solving job-shop 

scheduling problems with multiple qualitative (marketing criteria) and quantitative 

(production criteria) objective functions. Their approach incorporated Tabu search (TS) 

algorithms and GAs. The proposed rescheduling scheme based on their TS/GA mixture 

approach was able to handle uncertainties such as rush orders, machine breakdowns, job 
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cancellations, material shortage, and due-date changes. Their results also showed that the 

TS/GA mixture approach is superior to the GA alone.  

In the GA-based studies that have been mentioned above, all the jobs are defined 

before scheduling and a GA is used to generate a new schedule responding to the 

unexpected events such as machine breakdowns and modifications of existing orders. If 

the jobs are not known in advance, a new schedule for all the jobs in the system is 

generated by the GA-based system whenever a new job arrives at the system. Lin et al. 

(1997) proposed a GA-based scheduling system that can be implemented for dynamic 

job-shop scheduling problems where details of the arriving jobs are not known in 

advance. Their experiment showed that their GA-based scheduling system outperformed 

the common dispatching rules under different manufacturing environments for various 

objectives. Chryssoloris and Subramaniam (2001) proposed a GA-based scheduling 

method for a dynamic job shop with unreliable machines, flexible job routes, and 

multiple scheduling criteria. They compared their method with several common 

dispatching rules by conducting a simulated job shop under varied conditions. Their 

results showed that the proposed GA method significantly outperformed those common 

dispatching rules when seeking to minimize mean job tardiness and mean job costs. Rossi 

and Dini (2000) proposed a scheduling system capable of giving a fast optimal response 

by using a genetic algorithm to determine the optimal solution. Their scheduler is able to 

respond to events such as new arrival jobs, failures of feeding system, and machine 

breakdowns. Rossi and Dini compared their scheduling system with a rule-oriented 

algorithm selecting the best schedule among a set of common dispatching rules. The 
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results showed that their system is superior to the rule-oriented algorithm on the measures 

of makespan and computation time of scheduling.   

 
2.2.2.1.2. Rolling Horizon Approaches (by Dispatching Rules) 

The idea of the rolling horizon approach can also be applied for use with a DR 

selection policy. A set of DRs can be evaluated by using a simulation technique and the 

best DR is employed for the simulated interval. Ishii and Talavage (1991) proposed a 

transient-based approach to define the next scheduling interval. This approach adapts the 

length of the next scheduling interval automatically based on the real-time status of the 

system. By simulating the system ahead, a dispatching rule can be determined for a short 

period before it is actually carried out.  Once the next scheduling interval is determined, 

simulation is used again to evaluate each rule. The rule that performed the best is selected 

as a dispatching rule for the next scheduling interval. Their results showed that the 

proposed approach improved the performance up to 16.5% against the traditional 

scheduling algorithm that uses a single dispatching rule for the entire manufacturing 

period. 

Kim and Kim (1994) proposed a simulation-based real-time scheduling 

mechanism for a FMS. Their scheduling mechanism consists of a simulation model and a 

real-time control system. The simulation model was used to evaluate 13 dispatching rules 

and select the best rule the next horizon based on an estimated performance value it 

generates for each rule (the schedule result). The real-time control system then 

periodically monitors the shop floor and finds the actual performance value. The selected 

dispatching rule is used until the difference of the actual and the estimated performance 

values exceeds a predetermined limit. Jeong and Kim (1998) conducted a further study of 
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the factors that may influence this real-time scheduling mechanism. They examined 

variant approaches for determining when to select a new rule. They also tested the impact 

on the performance by using two simulation models (one includes unknown future 

disturbance and the other does not). Their results indicated that the performance of the 

scheduling mechanism was affected by the method of determining the time to select a 

rule, while not significantly affected by the type of simulation model.        

Shafaei and Brunn (1999a) identified the best scheduling rule based on the rolling 

horizon approach from seven rules recently developed. They used cost as the 

performance measure in their research. From their simulation results, SPT-C/R is the best 

dispatching rule over various rescheduling intervals and under different conditions. The 

results indicated that a scheduling rule requiring more global information does not 

necessarily provide a better schedule than one that only requires local information. The 

results also indicated that the length of the rescheduling interval should rely on the due 

date tightness. For orders with tight due dates, rescheduling more frequently is highly 

recommended. Shafaei and Brunn (1999b) then continued investigating the robustness of 

scheduling rules in dynamic and stochastic environments using the rolling time horizon 

approach. They stated that the robustness of a scheduling approach should be gauged 

based on its ability to maintain its performance in the presence of uncertainties. In that 

study, Shafaei and Brunn evaluated the influence of the uncertainties in stochastic 

processing times and machine breakdown. They concluded that the performance of the 

scheduling rules in uncertain conditions is very sensitive to the rescheduling policy. That 

is, to reduce the effects of the uncertainties, frequent rescheduling is a promising 

approach. Based on the above study, Shafaei and Brunn (2000) found that the 
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performance of a robust scheduling method not only depends on a frequent rescheduling 

policy but also on how well the shop load is balanced and controlled. To control and 

balance the shop load, Shafaei and Brunn found it necessary to integrate the planning (i.e. 

job release and job routing) and scheduling functions. Finally they proposed a framework 

employing the SPT-C/R, which showed a good potential in their previous research, with 

the rolling time approach to integrate the above three functions for dynamically 

generating robust schedules. 

 
2.2.2.1.3. Rolling Horizon Approaches (by Heuristics) 

Sun and Lin (1994) proposed a backward scheduling approach on the basis of the 

rolling time approach. Their approach in dynamic scheduling was to decompose a 

dynamic scheduling problem into a series of static scheduling problems. Each static 

scheduling problem can be dealt with in a specific time window. The scheduling system 

consists of two modules: order module and scheduling module. The order module is 

responsible for order acceptance and due-date assignment, while the scheduling module 

has two functional sub-modules, a boundary condition module and a backward 

scheduling module. The boundary condition module decomposes the dynamic scheduling 

problem into a series of static scheduling problems over the rolling time period. The 

backward scheduling module carries out the backward scheduling approach based on the 

boundary information given by the boundary condition module. The backward 

scheduling module not only provides the finished schedule but also determines the job 

release time. The backward scheduling method is also able to evaluate the alternative 

due-date assignment for the order module. In each rolling time window, the due-date 

performance and the inventory cost can be controlled by the backward scheduling 
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approach. Based on the authors’ results, the proposed backward scheduling approach 

outperformed the forward scheduling approach. The authors addressed the importance of 

effectively decomposing a scheduling horizon but did not provide any further discussion. 

 
 
Table 2.4. Summary of Rolling Horizon-Based Approaches 
 
Research Rolling Horizon 

Approach 
Scheduling method 

Chang and Lo (2001) Event driven GA for sequencing all the 
available jobs 

Chryssoloris and 
Subramaniam (2001) 

Event driven GA for sequencing all the 
available jobs 

Fang and Xi (1997) Periodically and 
event driven 

GA for routing, EDD for 
dispatching 

Ishii and Talavage(1991) Periodically Evaluate a set of DRs through 
simulation and select the best 
rule for next horizon 

Jian and Elmaraghy (1997) Event driven GA for sequencing all the 
available jobs 

Khoo et al. (2000) Event driven GA for sequencing all the 
available jobs 

Kim and Kim (1994) 
Jeong and Kim (1998) 

Periodically Evaluate a set of DRs through 
simulation and select the best 
rule for next horizon 

Lin et al. (1997) Event driven GA for sequencing all the 
available jobs 

Rossi and Dini (2000) Event driven GA for sequencing all the 
available jobs 

Shadaei and Brunn (1999a, 
1999b, 2000) 

Periodically Evaluate a set of DRs through 
simulation and select the best 
rule for next horizon 

Sun and Lin (1994) Periodically Backward scheduling approach 
 
 
2.2.2.2. Knowledge-Based Scheduling System 

As pointed out by Nakasika and Yoshida (1992), an effective real-time scheduling 

system should require the following characteristics: 
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1. Rule selection must take into account a variety of real-time information about the 

manufacturing system. 

2. Rule selection must be completed in such a short time that the real operation is 

not delayed.  

However, the rolling horizon approaches mentioned before for dynamically 

selecting dispatching rules require either performing some computation or running one or 

more simulations in real time. If the system becomes complex, then the simulation and 

rule selection procedures may not be finished in time resulting in a delay to the real 

operation. To overcome this problem, Priore et al. (2001a) recommends using 

“scheduling knowledge” of the manufacturing system to save time and get a rapid 

response in a dynamically changing environment. One of the most important issues for 

developing a knowledge-based system is how to acquire useful knowledge about the 

manufacturing system for use in real time intelligent decision-making. Machine leaning 

techniques are the popular tools used to acquire knowledge.   

 
2.2.2.2.1. Inductive Learning 

Inductive learning can be defined as the process of inferring the description of a 

class from the description of individual objects of the class (Shaw et al., 1992). In other 

word, the inductive learning approach is capable of obtaining general domain knowledge 

from the specific knowledge provided by domain examples.  

Nakasika and Yoshida (1992) proposed a learning scheme for acquiring 

knowledge concerning real-time switching dispatching rules based on the production 

system status. In their approach, a set of learning problems (examples) are generated and 

simulated to search for the best scheduling rules. The simulation results are used to 
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extract the data that are used as the input of the new inductive learning algorithm 

proposed in their approach. Finally, a binary decision tree is generated based on the 

proposed learning algorithm. The results showed that their scheduling system 

outperformed each of the dispatching rules used as the candidates in their system. Their 

study identified two problems that need to be addressed. The first is a need to reduce the 

computation time required to generate the binary decision tree and the second is to 

explore how to set the various parameter values used in their learning system. 

Shaw et al. (1992) proposed a scheduling system called PDS (Pattern-Directed 

Scheduling) for selecting an appropriate dispatching rule in FMS. In order to select the 

appropriate dispatching rule, the authors considered due date tightness, relative workload 

imbalance, job routing flexibility (the average number of alternative machines available 

for processing a given operation), and limitation on buffer size at individual machines as 

the key factors that represent the patterns of a FMS. In their approach, a number of 

simulation experiments were conducted with various dispatching rules under various 

manufacturing environments. The results of these experiments would then be fed as input 

to the inductive learning process. This process would then generate a decision tree for use 

in selecting appropriate dispatching rules. The inductive learning algorithm used here was 

ID3. This approach provided the capabilities of selecting the appropriate rule and 

switching between different rules in real time based on changes in the state of the system. 

Park et al. (1997) employed the inductive learning algorithm C4.5, which is a refinement 

of the ID3, to improve the performance of the original PDS. They also added a rule 

refinement mechanism for their new version of the PDS. The new PDS was tested by a 

real system producing 41 different products on two identical production lines. The results 
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showed that PDS was superior to any of the candidate dispatching rules applied in PDS. 

Piramuthu et al. (2000) demonstrated the use of genetic algorithm for generating a 

knowledge base for sequencing applications of PDS.  

Priore et al. (2001b) also built a scheduling system that obtains knowledge by 

using the inductive learning algorithm C4.5. However, they found that, on some 

occasions, their system didn’t perform as expected because it reacts precipitously to 

changes in control attributes that may be only transitory. The authors, therefore, 

developed a mechanism to dampen these transitory scenarios. Their results showed an 

improvement in mean tardiness of 8% compared to use of the single dispatching rule that 

performs best when used individually. They also pointed out that the major drawback of 

their approach is the need to perform a large number of simulations in order to generate 

sufficient training examples.  

 
2.2.2.2.2. Neural Networks 

Sim et al. (1994) developed a neural network approach that incorporates an expert 

system and applied it to dynamic job shop scheduling. Their artificial neural network is 

based on the back-propagation neural network model. The expert system reduced the 

training time for the neural network by allowing sub-networks to be trained separately. 

The input layer consists of 14 neurons representing various scheduling factors for each 

job. These neurons include 10 nodes for representing 10 different dispatching rules, three 

nodes representing three different levels of system load, and one node for representing 

two different criteria. For each dispatching rule, 5,000 jobs are simulated for 8 different 

arrival rates and 2 different criteria. The composite rule expert system was developed 

based on the simulation results and is able to select the best dispatching rule based on the 
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prevailing workload condition and scheduling criteria. The authors compared their expert 

neural network system with each of the dispatching rules employed in the system. Their 

results indicated that the expert system is able to maintain the performance of the best 

rules across the different arrival rates for both scheduling criteria, a feat that none of the 

dispatching rules could accomplish.  

Liu and Dong (1996) also used simulation results to train a neural network to 

capture knowledge that can be used to select the most appropriate dispatching rules. The 

input data for training the network is the operation sequence of each job and the 

associated processing times that are randomly generated for each operation. The output 

data is the best dispatching rule coming from the results of the simulation. Liu and Dong 

showed that the better rules have high probabilities of being selected by their neural 

network rule selector than the least desirable rules. The authors also pointed out that the 

rule selector’s ability to make a good decision in real time required that the neural 

network receive sufficient training. However, they had no answers regarding how many 

simulation runs would be enough to cover all or most of the dispatching conditions in a 

given shop floor. 

 
2.2.2.2.3. GA-Based Learning 

Jahangirian and Conroy (2000) proposed a scheduling framework consisting of 

two modules, a simulation module and a GA-based learning module. The simulation 

module with a scheduling knowledge base continues to generate learning examples that 

comprise the system status, the selected dispatching rule, and the results of these 

decisions. The learning examples will be transferred to the learning module. The GA in 

the learning module was employed to refine the old knowledge base. Each rule set is 
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represented as a chromosome in their study. They tested results on a single machine 

problem with a number of dynamic events such as machine breakdown. The learned 

knowledge base outperformed the individual dispatching rules used in their study.  

Chiu and Yih (1995) proposed a knowledge-based scheduling system that 

dynamically selects dispatching rules. In their approach, a genetic algorithm was used to 

search for good schedules. From the good schedules obtained, inductive learning was 

used to extract scheduling knowledge. Their experimental results showed that the 

proposed dynamic scheduling system outperformed the dispatching rules (SPT, SIO, 

SLACK/RO, and EDD) in the weighted performance measures consisting of makespan, 

number of tardy jobs, and lateness. 

 
2.2.2.3. Other Approaches 

Pierreval and Mebarki (1997) proposed a scheduling strategy for dynamic 

dispatching rule selection. Whenever a machine is available for the next operation, the 

pre-defined symptoms must be detected. These symptoms include such conditions as 

recognition that the tardiness of the WIP is increasing, the machine has too many waiting 

jobs, or possibly that a job has waited too long. These symptoms become active when 

some observed variables (e.g., utilization, queue length, waiting time, etc.) exceed some 

specific threshold values. These thresholds are problem dependent and tuned with a the 

Hooke and Jeeve’s simulation-optimization technique. Their approach was compared 

with some common dispatching rules on a job shop problem. The results showed 

significant improvements in the measures of the mean tardiness. 

Subramaniam et al. (2000b) proposed an approach of dynamic dispatching rule 

selection based on the analytic hierarchy process (AHP), which considers the shop 
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conditions existing at every decision point. In fact, AHP is an approach to help the 

decision makers to make better decisions in problems involving multiple objectives. The 

AHP provides a framework that ranks the alternatives based on the decision maker’s 

knowledge and preferences. The results in the article showed that the AHP method is not 

guaranteed to generate the optimal schedule, but it is superior to the method using single 

dispatching rule for the measure of makespan.    

Ariz (1995) proposed a two level distributed production control system (DPCS) 

for on-line scheduling in a multi-cell flexible manufacturing system. Each flexible 

manufacturing cell is independently controlled by its own cell-controller using a two 

level heuristic procedure. The upper level procedure is used to select parts to be 

processed in the cell, while the lower level procedure is used to control the part flow 

within the cell. Their results show that the proposed DPCS is able to achieve high 

throughput with almost no tardiness. However, this DPCS is governed by a set of control 

parameters that suit a particular order stream only. The values of these parameters need to 

be recalibrated whenever there is a change in the order stream. 

 
2.2.2.4. Summary 

In the review of various rolling horizon-based approaches, one of the important 

issues that has not received attention is if the new scheduling policy can be developed in 

real time. Developing a new scheduling policy for the next horizon may be time-

consuming and result in an actual operational delay. This issue can be resolved by using a 

knowledge–based scheduling system. The knowledge-based system has the advantage of 

rapidly responding to the environment changes. However, some changes that the existing 

knowledge bases do not cover may result in a bad or infeasible schedule. For instance, if 
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the system configurations or objectives are changed, the existing knowledge bases are no 

longer applicable and it becomes necessary to build new knowledge bases for the system. 

This is because it is unreasonable to construct a knowledge base that can cover all the 

possible system conditions. Therefore, updating the knowledge bases in real time for 

covering a new circumstance will be important. This leads to the motivation for building 

a knowledge-based system with on-line learning capability.  

In all studies about dynamically selecting dispatching rules, all resources follow 

the same rule selection policy at the same period of time. From the perspective of agent 

technology, an agent representing a resource is autonomous and therefore may have a 

different rule selection policy than the others. Kouiss et al. (1997) proposed an approach 

based on a multi-agent architecture where each resource agent in the system selects, 

locally and dynamically, the DR that seems most suited to the operating conditions, the 

production objectives, and the current shop status. The selection of the DR employed by 

each resource agent is carried out based on the strategy proposed by Pierreval and 

Mebarki (1997).  That is, detecting the pre-defined local symptoms (for resource agent) 

and DR selection is based on the currently active symptoms. The authors added a 

supervisory agent for monitoring the system status (i.e. global symptoms for the 

supervisor agent). The supervisory agent may impose a particular DR for all the resource 

agents if the global symptom is active. Otherwise, each resource agent can autonomously 

select the DR from a set of pre-selected DRs based on the status of the resource it 

represents and the other resource’s conditions. However, the authors did not explain what 

information a resource agent would requests from the other resource agents. Therefore, 
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research on DR selection by agent-based approaches still has some questions that need to 

be answered.  

 
2.3. Reinforcement Learning 

Reinforcement learning (RL) has received some attention from agent-based 

researchers because it deals with the problem of how an autonomous agent can learn to 

select proper actions for achieving its goals through interacting with its environment. In 

the RL framework, a learning agent must be able to perceive information from its 

environment. The perceived information is used to determine the current state of the 

environment. The agent then chooses an action to perform based on the perceived state. 

The action taken may result in a change in the state of the environment. Based on the new 

state, there is an immediate reinforcement that is used to reward or penalize the selected 

action. These interactions between the agent and its environment continue until the agent 

learns a decision-making strategy that maximizes the total reward. Sutton and Barto 

(1999) defined four key elements for dealing with the RL problems: a policy, a reward 

function, a value function and a model of the environment. A policy defines the agent’s 

behavior in a given state. A reward function specifies the overall goal of the agent that 

guides the agent toward learning to achieve the goal. A value function specifies the value 

of a state or a state-action pair indicating how good it (the state or the state-action pair) is 

in the long run. A model of the environment predicts the next state given the current state 

and a proposed action.  
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2.3.1. Markov Decision Process 

Besides the above four elements, a key assumption in the RL framework is that 

the definition of the current state used by each agent to make its decision should 

summarize everything important about the complete sequence of past states leading to it. 

Some of the information about the complete sequence may be lost, but all that really 

matters for the future is contained within the current state signal. This is called the 

Markov property. Therefore, if an environment has the Markov property, then its next 

state can be predicted given the current state and action. This significant assumption 

enables the current state to be a good basis for predicting the next state. Under this 

assumption, the interaction of an agent and its environment can be called a Markov 

Decision Process (MDP).  

 
2.3.2. Generalization and Function Approximation 

For a small RL problem, the estimates of value functions can be represented as a 

table with one entry for each state or for each state-action pair. However, for a large 

problem with a large number of states or actions, updating information accurately in such 

a large table may be a problem. Function approximation is currently a popular method to 

resolve this issue. Function approximation is an approach generalizing experience from a 

small subset of examples to develop an approximation over a larger subset. Currently, 

employing neural networks is the most popular approach for function approximation in 

large RL problems (Sutton and Barto, 1999). 
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2.3.3. Exploration and Exploitation 

Exploration and exploitation is another important issue in RL problems. 

Exploration entails the agent trying something that hasn’t been done before in order to get 

more reward, while in exploitation the agent favors actions that were previously taken 

and rewarded. Exploitation may take advantage of guaranteeing a good expected reward 

in one play, but exploration provides more opportunities to find the maximum total 

reward in the long run. One popular approach to deal with this trade-off issue is the e–

greedy method. The e–greedy method involves selecting, with probability (1-e), the 

action with the best value, otherwise, with small probability e, an action is selected 

randomly.  

 
2.3.4. RL Applications to Manufacturing Systems 

Mahadevan et al. (1997b, 1999) developed a new model-free average-reward 

algorithm called SMART for continuous-time semi-Markov decision processes. They 

applied the SMART algorithm to the problem of optimal preventative maintenance in a 

production inventory system. In their system, there was a single machine capable of 

producing multiple types of products with multiple buffers for storing each of the 

different products. Whenever a job is finished, the machine needs to decide to either 

undergo maintenance or start another job. Machine maintenance costs and time are less 

than repair costs and time. In other words, frequent maintenance may be not economical 

but machine failures resulting from rare maintenance will require more repair costs and 

time. In their maintenance problem, the state of the system is a 10-dimensional vector of 

integers that consists of the numbers of five different products manufactured since the 

last repair or maintenance and the buffer levels of the five products. They compared the 



 

 

43

maintenance policy learned from SMART to two well-known maintenance heuristics. 

They found that SMART is more flexible than the two heuristics in finding proper 

maintenance schedules as the costs are varied. Mahadevan and Theocharous (1998) 

applied SMART to the problem of optimizing a 3-machine transfer line producing a 

single product type. The system goal is to maximize the throughput of the transfer line 

while minimizing the Work-In-Process (WIP) inventory and failures. They compared the 

policy from SMART to the kanban heuristic. Their results showed that the policy learned 

by SMART requires fewer items in inventory and results in fewer failures than with the 

Kanban heuristic. Paternina-Arboleda and Das (2001) extended the work of Mahadevan 

and Teocharous (1998) to deal with a 4-machine serial line and compared SMART to 

more existing control WIP policies. They examined the system with constant demand rate 

and Poisson demand rate. Under these two circumstances, SMART outperformed those 

heuristic policies on average WIP level and average WIP costs. 

Zhang and Dietterich (1995) applied RL to a job shop scheduling problem 

involving the scheduling of the various tasks that must be performed to install and test the 

payloads placed in the cargo bay of the NASA space shuttle for each mission. The 

objective of this problem was to schedule a set of tasks without violating any resource 

constraints while minimizing the total duration. The scheduling approach Zhang and 

Dietterich employed was an iterative repair-based scheduling method that started with 

generating a critical path schedule by ignoring the resource constraints and incrementally 

repairing the schedule to find a shortest conflict-free schedule. In their system, each state 

is a complete schedule and each action is a schedule modification. They applied the 

temporal difference algorithm TD(?) (an RL algorithm) to this scheduling problem. After 
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taking an action to repair the schedule the scheduler receives a negative reward if the new 

state still contains constraint violations. This reward function essentially forces the 

scheduler to not only find a conflict-free schedule but to do it in fewer iterations. The 

performance of the iterative repair-based procedure with a simulated annealing (SA) 

method was compared with the one using the TD method. Their results showed that one 

iteration of the method with TD is equivalent to about 1.8 iterations of the method with 

SA.  

Aydin and Ozrtemel (2000) proposed an intelligent agent-based scheduling 

system in which agents are trained by a new RL algorithm they refer to as Q-? . They 

employed Q-III to train the resource agents to dynamically select dispatching rules. Their 

state determination criteria consist of the buffer size of the machine and the mean slack 

time of the queue. The rewards were generated based on some selection rules obtained 

from the literature (i.e., SPT is best when the system is overloaded). The thresholds used 

in the rules for determining the systems status were obtained through trial-and-error 

procedures. Three dispatching rules: SPT, COVERT, and CR, are available for each 

resource agent to select for their use. The authors compared the proposed scheduling 

system trained by their RL mechanism to the above three dispatching rules. Their results 

showed the RL-scheduling system outperformed the use of each of the three rules 

individually in mean tardiness for most of the testing cases.    

  
2.3.5. Other Applications of RL 

More and more work on practical implementations of RL techniques to different 

fields has been reported. One of the successful stories about RL applications was 

Tesauro’s TD-Gammon (1995), which was used to play backgammon. TD-Gammon was 
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developed based on the TD(λ) algorithm and a multi-layer neural network for function 

approximation. The latest version of the TD-Gammon was able to play the backgammon 

game close to the level of the best human player in the world.  Another famous 

application was the elevator-dispatching problem. Modern elevator dispatchers are 

usually designed heuristically. Crites and Barto (1996) applied the Q-learning to a four-

elevator, ten-floor system. Each elevator made its own decision independently of the 

other elevators. There were some constraints placed on the decisions. The system they 

dealt with had more than 1022 states. Like TD-Gammon, Crites and Barto also employed 

a neural network to represent the action-value function. Their RL-based dispatchers 

outperformed other existing dispatching heuristics on the customer’s average waiting 

time and average squared waiting time. RL also has been widely applied to robotics 

motion control. Singh and Bertsekas (1997) used the TD(0) algorithm to find dynamic 

channel allocation policies in cellular telephone systems. Their study showed that RL 

with a linear function approximation is able to find better dynamic channel allocation 

policies than two other existing policies. Sutton (1996) applied a RL algorithm, called the 

Sarsa algorithm, to controlling the motions of a two-link robot. Mahadevan et al. (1997a) 

successfully applied RL to navigating a delivery robot around an indoor office 

environment.  

 
2.4. Summary of Literature Review 

The heterarchical control structure is believed to be a promising architecture for 

the next generation of manufacturing systems. Agent-based approaches can be applied in 

the implementation of a heterarchical control system. For dynamic job routing problems, 

most of the existing agent-based approaches focus on the issues of cooperation and 
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negotiation among autonomous agents. Enhancing the intelligence of an individual agent 

has not received much attention. For job sequencing problems, DRs are very useful and 

efficient. Although the dispatching rules do not guarantee an optimal schedule, they 

usually provide a reasonably good schedule. To use DRs appropriately for sequencing 

jobs, dynamic rule selection is required since the manufacturing shop status may change 

over time. A knowledge-based rule selection system can be used to rapidly respond to the 

changes of the shop status. However, the existing knowledge-based systems have the 

shortcoming that knowledge is acquired based on the use of off-line machine learning 

techniques. In addition, every resource selects the rules based on the same knowledge 

bases at the same period of time. The agent-based approach in which each resource agent 

has its own knowledge base for DR selection has not been explored yet.  

Table 2.5 provides a summary of the assumptions made in previous published 

research studies. Table 2.6 provides a summary of the characteristics of the problems 

explored in previous research studies. Based on these results there is an average of eight 

machines in the system, with the system being able to manufacture twelve different jobs, 

with each job requiring four operations. Table 2.7 provides a summary of the problem 

objectives of those same systems. The five most popular objectives used involve 

minimizing something related to tardiness (mean tardiness, weighted mean tardiness, 

penalty due to tardiness, etc.), minimizing mean flow time/weighted mean flow time, 

minimizing mean makespan, minimizing number of tardy jobs, and maximizing profit. 
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Table 2.5 A Summary of Problem Assumptions in Previous Studies 
 

Previous Research Research Assumptions  
Authors (Year) 1 2 3 4 5 6 7 8 

ROUTING PROBLEMS 
Bowden and Bullington (1996)     *  * * 
Chandra and Talavage (1991)   *   * * * 
Cicirello and Smith (2001)    * * * *  
Dewan and Joshi (2000, 2001)  * *  * * * * 
Krothapalli and Deshmukh (1999)  *   *  * * 
Ottaway and Burns (2000)   *   * *  
Saad et al. (1997)   *   *   
Shaw (1988)  * *   *  * 
Shmilovici and Maimon (1992) *  *    * * 
Subramaniam et al. (2000a)   *    * * 
Yao and Pei (1990) *  * *   * * 
Xue et al. (2001)  N/A 

DISPATCHING PROBLEMS 
Ariz (1995)    *   * * 
Chang and Lo (2001) *  *  *  * * 
Chiu and Yih (1995) * *  *  *  * 
Chryssolouris and Subramaniam (2001)   * * *  * * 
Fang and Xi (1997)   * *   *  
Ishii and Talavage (1991)  * * * * * * * 
Jahangirian, M. and Conroy, C. V. (2000)  * *  *  * * 
Jain and ElMaraghy (1997) *  * *   * * 
Khoo et al. (2000) * * * * * * * * 
Kim and Kim (1994)   *  *   * 
Kouiss et al. (1997)  * *   * * * 
Lin et al. (1997)   * * * * * * 
Liu and Dong (1996)  * *  * * * * 
Matsuura et al. (1993)  * *  *  * * 
Nakasuka and Yoshida (1992)  * * * * * * * 
Park et al. (1997)     *  * * 
Pierreval and Mebarki (1997)  * *   * * * 
Piramuthu et al. (2000)     *  * * 
Priore et al. (2001)  * *  * * * * 
Rossi and Dini (2000) *   * *  * * 
Shaw et al. (1992)     *  * * 
Shafaei and Brunn (1999a)  * * * * * * * 
Shafaei and Brunn (1999b)  * *  *  * * 
Shafaei and Brunn (2000) *  * *  * * * 
Sim et al. (1994)  * *      
Subramaniam et al. (2000b) * * * * * * * * 
Sun and Lin (1994)  * *  * * * * 
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Table 2.5. (continued). 
 
* Represents the assumption was made in the research. 

NOTE:  
1. All jobs have been given. 
2. Each operation has been pre-assigned to a unique machine type. The operation 

sequence for each job is fixed (No routing decisions). 
3. No Parallel machine clusters. 
4. Deterministic set-up and processing times. 
5. No reentrant machines. 
6. No machine breakdown. 
7. Transportation times between machines are ignored. 
8. Set-up times are sequence-independent. 
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Table 2.6. A Summary of the Problem Size of the Examples in Previous Studies 
  

Previous Research # M/Cs # Jobs # Ops. 
ROUTING PROBLEMS 

Bowden and Bullington (1996) 11 (4 cells) 3 3 
Chandra and Talavage (1991) 10 10 3-7 
Cicirello and Smith (2001) 4 2 2 
Dewan and Joshi (2000, 2001) 6 80 3 
Krothapalli and Deshmukh (1999) 40 (5 cells) 5 5 
Ottaway and Burns (2000)  6 16 3 or 6 
Saad et al. (1997) 9 N/A 5 
Shaw (1988) N/A N/A N/A 
Shmilovici and Maimon (1992) 4 1 4 
Subramaniam et al. (2000a) 4 20 2-10 
Xue et al. (2001) 11 N/A 7 
Yao and Pei (1990) 4 1 6 

SEQUENCING PROBLEMS 
Ariz (1995) 9 (2 cells) 12 3-5 
Chang and Lo (2001)  8 10 4-6 
Chiu and Yih (1995) 8 8 2-5 
Chryssolouris and Subramaniam (2001) 6 20 2-10 
Fang and Xi (1997) 4 3 3 or 4 
Ishii and Talavage (1991) 6 6 5 or 6 
Jahangirian, M. and Conroy, C. V. (2000) 1 N/A 1 
Jain and Elmaraghy (1997) 5 4 3 
Khoo et al. (2000) 5 20 N/A 
Kim and Kim (1994) 11 N/A 3-6 
Kouiss et al. (1997) 4 N/A 2-6 
Lin et al. (1997) 5 N/A 5 
Liu and Dong (1996) 5 5 1-5 
Matsuura et al. (1993) 9 N/A 5 
Nakasuka and Yoshida (1992) 3 3 3 
Park et al. (1997) 6 N/A 3-5 
Pierreval and Mebarki (1997) 4 N/A 2-6 
Piramuthu et al. (2000) 6 N/A 3-5 
Priore et al. (2001) 4 N/A 1-4 
Rossi and Dini (2000) 16 14 1 or 2 
Shaw et al. (1992) 8 N/A 1-8 
Shafaei and Brunn (1999) 15 N/A 4-15 
Shafaei and Brunn (1999) 15 N/A 4-15 
Shafaei and Brunn (2000) 4 8 4 
Sim et al. (1994) 9 N/A 3-6 
Subramaniam et al. (2000b) 10 6 3 
Sun and Lin (1994) 10 10 N/A 
Average  8 12 4 
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Table 2.6. (continued). 
 
NOTE:  
# M/Cs: Number of Machines. 
# Jobs: Number of Job types. 
# Ops.: Number of Operations Required for Each Job. 
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Table 2.7. A Summary of Performance Measures in Previous Studies 
 

Previous Research Performance Measures 
Authors (Year) 1 2 3 4 5 6 7 8 9 10 11 

ROUTING PROBLEMS 
Bowden and Bullington (1996)  *          
Chandra and Talavage (1991) *  *   *      
Cicirello and Smith (2001)      *      
Dewan and Joshi (2000, 2001)   *        * 
Krothapalli and Deshmukh (1999) *  *     *    
Ottaway and Burns (2000)      *  *  *  
Saad et al. (1997) * * *         
Shaw (1988) * * *    *     
Shmilovici and Maimon (1992)      *      
Subramaniam et al. (2000)   *      *   
Xue et al. (2001) N/A 
Yao and Pei (1990)     *       

SEQUENCING PROBLEMS 
Ariz (1995)   *   *      
Chang and Lo (2001)     *    *   
Chiu and Yih (1995)  *  * *       
Chryssolouris and Subramaniam (2001)   *      *   
Fang and Xi (1997)     *       
Ishii and Talavage (1991) *  *         
Jahangirian, M. and Conroy, C. V. (2000) *  *         
Jain and ElMaraghy (1997) *  *     *    
Khoo et al. (2000)   *  *    *   
Kim and Kim (1994) *  *         
Kouiss et al. (1997) *  *         
Lin et al. (1997)  * * *        
Liu and Dong (1992) * *          
Matsuura et al. (1993)     *       
Nakasuka and Yoshida (1992)   *  *       
Park et al. (1997)   *         
Pierreval and Mebarki (1997) *  *         
Piramuthu et al. (2000)   *         
Priore et al. (2001)   *         
Rossi and Dini (2000)     *       
Shaw et al. (1992)   *         
Shafaei and Brunn (1999a)         *   
Shafaei and Brunn (1999b)         *   
Shafaei and Brunn (2000)   *         
Sim et al. (1994)  * *         
Subramaniam et al. (2000b)     *       
Sun and Lin (1994) *  *         
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Table 2.7. (continued). 

* Represents the performance measures employed in the research. 

NOTE: 
1. Minimize mean flow time/weighted mean flow time. 
2. Minimize percentage/number of tardy jobs. 
3. Minimize mean tardiness/ weighted mean tardiness/ conditional mean tardiness/ 

normalized job tardiness/ penalty due to tardiness. 
4. Minimize mean lateness/ weighted mean lateness/ conditional mean lateness/ 

normalized job lateness. 
5. Minimize makespan. 
6. Maximize throughput. 
7. Minimize average queuing time. 
8. Maximize resource utilization. 
9. Minimize mean job cost/ maximize profit. 
10. Minimize average WIP. 
11. Minimize earliness-tardiness. 
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CHAPTER III 

Q-LEARNING FOR SINGLE MACHINE JOB DISPATCHING 

3.1. Single Machine Dispatching Rule Selection 

To develop a set of recommendations for applying the Q-learning algorithm for 

machine agents to construct a good policy for DR selection, this research considers 

conducting an experiment on a single machine dispatching rule selection problem. The 

single-machine production system contains a single buffer for storing jobs awaiting 

processing. Jobs arrive continuously according to a Poisson process. Each job consists of 

only one operation requiring variant processing time and the machine can process only 

one job at a time. If the machine is idle when a job arrives then the job will start 

processing immediately, otherwise the job will be sent to the buffer. In this research, 

selection of the next job from the buffer for processing is conducted based on one of the 

three dispatching rules, EDD, SPT, and FIFO. The system objective is to minimize the 

mean tardiness of the finished jobs. The selection of a dispatching rule will be based on 

the current policy in use by the Q-learning algorithm. The response is the mean tardiness 

measured after the learning process achieves steady state. The effects of applying the Q-

learning technique to the dispatching rule selection problem are examined under various 

system conditions involving variations in system loading conditions and job due date 

tightness.  
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3.2. Q-Learning Algorithm 

The original Q-learning algorithm was proposed by Watkins in 1989. The goal of 

this algorithm is to learn the state-action pair value, Q(s, a), which represents the long-

term expected reward for each pair of state and action (denoted by s and a, respectively). 

The Q values learned with this algorithm have been proven to converge to the optimal 

state-action values, Q* (Tesauro, 1995). The optimal state-action values for a system 

represent the optimal policy that the agent intends to learn. The standard procedure of the 

Q-Learning algorithm is presented in Fig. 3.1. (Sutton and Barto, 1999): 

 
 

 
Step 1. Initialize the Q(s, a) value functions arbitrarily 
Step 2. Perceive the current state, s0 
Step 3. Following a certain policy (e.g. e–greedy), select an appropriate action (a) for 

the given state (s0) 
Step 4. Execute the selected action (a), receive immediate reward (r), and perceive the 

next state s1  
Step 5. Update the value function as follows:  
                         Q(s0, a) = Q(s0, a) + a [ r + ? max b  Q(s1, b) – Q(s0, a)]                 (3-1) 
Step 6. Let s0 = s1 
Step 7. Go to step 3 until state s0 represents a terminal state 
Step 8. Repeat steps 2 to 7 for a number of episodes. 

 
 
Figure 3.1. The Q-Learning Algorithm (Sutton and Barto, 1999) 
 
 

In Figure 3.1, each iteration of steps 2 through 7 represents a learning cycle, also 

called an “episode”. The parameter, a, is the step-size parameter influencing the learning 

rate. The parameter, ?, is called the discount-rate parameter, 0 = ? = 1, and impacts the 

present value of future rewards. The Q(s, a) values can be initialized arbitrarily. If no 

actions for any specific states are preferred, then when starting the Q-learning procedure 

all the Q(s, a) values in the policy table can be initialized with the same value. If some 
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prior knowledge about the benefit of certain actions is available, the agent may prefer 

taking those actions in the beginning by initializing those Q(s, a) values with larger 

values than the others. Then these actions will initially be selected. This can shorten the 

learning period. Step 3 involves the tradeoff of exploration and exploitation and many 

state-action pair selection methods may be used in this step. 

 
3.3. Factors for Applying Q-learning to Single Machine Dispatching Rule Selection 

There are a number of factors that one can manipulate in applying the Q-learning 

algorithm. The research goal was to determine the significance of the various factors for 

this application and to provide recommendations for factor settings. The main factors that 

are investigated include the following:  

 
A. Number of states.  

B. The threshold value setting for determining states. 

C. Number of ranges for determining reward/penalty. 

D. The threshold value setting for determining reward/penalty ranges. 

E. Approaches to setting reward/penalty magnitude. 

F. Initial Q values in the policy table. 

G. Step Size (a). 

H. Discount rate (γ). 

I. Approaches for exploration and exploitation.  

 
These factors are described in more detail in the subsections that follow.  

 
3.3.1. Factors for Constructing the Policy Table 
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Factors A and B influence the construction of the rule-selection policy table. In 

the single-machine system, the learning agent’s decision on which dispatch rule to 

employ for selecting a job from the buffer is based on the status of the system buffer. 

Several choices are available for defining the buffer’s status; these include such measures 

as the number of the jobs in the buffer, the number of the tardy jobs in the buffer, or the 

tardiness or lateness of those jobs. For this study, the estimated mean lateness of the 

number of jobs in the buffer is adopted as the state determination criterion in the policy 

table. This value was chosen over job tardiness since it is able to distinguish between 

early jobs (unlike the tardiness measure). When constructing a policy table, the individual 

states defining the buffer’s status have to be associated with specified ranges of possible 

values. Therefore, defining (A) number of ranges, and the endpoints (thresholds) of (B) 

the range of values for each state represents those factors that must be considered in the 

learning algorithm’s design.  

Given that the agent’s decision involves selecting an appropriate dispatching rule, 

two special conditions need to be considered. The first is when the buffer is empty and 

the second occurs when there is only one job in the buffer. For the former condition, no 

dispatching rule is needed to determine what job to process next because there is no job 

in the buffer. In the latter condition, since there is only one job, no matter what 

dispatching rule is employed the same job will be selected. The conditions for these two 

special cases are represented in the policy table using two dummy states. Therefore, only 

when there are two or more jobs in the buffer does the Q-learning algorithm select one of 

the three dispatching rules. In order to implement this capability, the system also 
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maintains a measure of the number of jobs in the buffer, as well as the estimated mean 

lateness of those jobs.  

Factor A defines the number of states (without counting the dummy states) in the 

policy table and Factor B defines the thresholds values for each state thereby creating the 

specific range of values. For a given number of states, the range for each state is defined 

as a multiple (m) of the expected mean processing time (EMPT). At smaller values of m 

for factor B the system is better able to distinguish differences between jobs at the lower 

end of the lateness spectrum with jobs that are very late being grouped together in the last 

interval as it acts as the catchall. As the value of m increases, more intervals are provided 

for differentiating late jobs, but at the expense of decreased resolution of the other 

intervals. In this experimental study, m is set to either 1 or 3. Table 3.1 provides an 

example of a policy table with 10 states (factor A).  

 
 
Table 3.1. An Example of a 10-state Policy Table  
 
State State criteria EDD SPT FIFO 
Dummy  No job in queue 0 0 0 
Dummy  One job in queue 0 0 0 
1                     mean_lateness < 0   Q(1,1) Q(1,2) Q(1,3) 
2                0  ≤ mean_lateness < m × EMPT Q(2,1) Q(2,2) Q(2,3) 
3   m × EMPT ≤ mean_lateness < 2m × EMPT Q(3,1) Q(3,2) Q(3,3) 
4 2m × EMPT ≤ mean_lateness < 3m × EMPT Q(4,1) Q(4,2) Q(4,3) 
5 3m × EMPT ≤ mean_lateness < 4m × EMPT Q(5,1) Q(5,2) Q(5,3) 
6 4m × EMPT ≤ mean_lateness < 5m × EMPT Q(6,1) Q(6,2) Q(6,3) 
7 5m × EMPT ≤ mean_lateness < 6m × EMPT Q(7,1) Q(7,2) Q(7,3) 
8 6m × EMPT ≤ mean_lateness < 7m × EMPT Q(8,1) Q(8,2) Q(8,3) 
9 7m × EMPT ≤ mean_lateness < 8m × EMPT Q(9,1) Q(9,2) Q(9,3) 
10 8m × EMPT ≤ mean_lateness   Q(10,1) Q(10,2) Q(10,3) 
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When running the Q-learning algorithm, if the previous system state corresponds 

to a dummy state, updating Q(s, a) is unnecessary because the decision of taking next 

action is made without considering Q-learning algorithm. However, if the previous state 

is not a dummy state but the new state is one of the two dummy states (i.e., one job in 

queue), then an update in this situation must be treated differently because the Q(s, a) 

values for both dummy states is fixed at zero. The agent should still get the 

reward/penalty for such decisions, so under these circumstances, the Q(s, a) value is 

updated using the following equation instead of equation (3-1) (In Fig. 3.1.).   

 
Q(s0, a) = Q(s0, a) + a r    (3-2) 

 
 

3.3.2. Factors for Developing the Reward Function 

Factors C, D, and E are concerned with the development of an appropriate reward 

function. A reward function is guided based on the goal of the learning agent. In this 

study, the machine agent’s goal is to minimize the mean tardiness of the finished jobs. 

Therefore, a job’s tardiness is used to determine the amount of the reward or penalty for 

the agent’s decision (dispatching rule selection). The tardier a job is, the greater the 

penalties assigned to the learning agent. The agent receives a reward only when the 

selected job is finished prior to or on its due date (tardiness is non-negative).  

Factor C defines the number of ranges for determining the amount of 

reward/penalty. The use of more ranges in the reward function permits the reward or 

penalty associated with each decision the agent has made to be expressed more precisely. 

Using too few ranges results in the system not being able to differentiate between the 

decisions made by the agent in that the outcomes (measured by tardiness) are not 
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distinguishable since they lie within the same range and therefore result in the same 

penalty or reward.  

Factor D determines the size of each range, and therefore, with a finite number of 

ranges, it also defines the overall range the reward function covers. Like factor B, each 

range is determined using a multiple (n) of the expected mean processing time (EMPT), 

which is also set to either 1 or 3. Similar to factor B, a large value of n for factor D 

permits distinguishing between jobs that are extremely tardy when the system is under 

heavy loading condition or employing some dispatching rules like SPT. 

Factor E impacts the magnitude of the reward and penalty assigned to each range 

of the reward function. By design the penalty is made to increase linearly across the 

ranges as job tardiness grows. However, a reward is assigned only in the case which the 

job tardiness is zero. The question then becomes how much reward should be appropriate 

with respect to the linearly increasing penalties. In this experimental study, two values of 

factor E (1 or 10) are used for rewarding job that finish before their due date. The 

penalties applied to ranges associated with tardy jobs were fixed to permit us to study the 

influence of various rewards.  

 
Factor E may impact the Q(s, a) values in the policy table. When the system is 

under heavy loading conditions or jobs are assigned with very tight due dates, most of the 

jobs will be tardy. The Q(s, a) values in the policy table may be all negative. Under such 

circumstances (very few early jobs), a decision for an early job is very important because 

it provides some positive amount (reward) for the Q(s, a) value. Using a larger reward for 

the decisions resulting in early jobs should more strongly influence the Q(s, a) values. 

Table 3.2 presents an example of a 10-range reward function.  
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Table 3.2. An Example of 10-range Reward Function 
 
Range  Reward/Penalty 
1                        Tardiness = 0   r = 1  (or  r = 10) 
2                 0  < Tardiness  < n × EMPT r = -1   
3   n × EMPT ≤ Tardiness < 2n × EMPT r = -2   
4 2n × EMPT ≤ Tardiness < 3n × EMPT r = -3   
5 3n × EMPT ≤ Tardiness < 4n × EMPT r = -4   
6 4n × EMPT ≤ Tardiness < 5n × EMPT r = -5   
7 5n × EMPT ≤ Tardiness < 6n × EMPT r = -6   
8 6n × EMPT ≤ Tardiness < 7n × EMPT r = -7   
9 7n × EMPT ≤ Tardiness < 8n × EMPT r = -8   
10 8n × EMPT ≤ Tardiness   r = -9   

 
 
 

3.3.3. The Other Factors 

When starting the Q-learning algorithm, the values of the state-action pairs, Q(s, 

a) can be initialized arbitrarily or assigned specific relative values to represent the 

confidence in favoring each possible alternative. Factor F represents the strategy of 

setting the initial values of the state-action pairs. In this study, all the values of the state-

action pairs are initialized to zero since all the actions for each state are assumed to be an 

equally valid choice.  This approach starts the system from a neutral state assuming no a 

priori knowledge of which dispatching rule is best to use in any situation. Therefore, the 

system would be required to learn from scratch. Other possible alternatives might have 

been to favor the wrong choice or correct choice initially. It is believed that either 

approach would have only impacted the run time making it take longer or shorter 

depending on how far off or close the initial values were to the best case.  

Factor G is the step-size parameter, a, which is a small positive fraction that 

influences the learning rate. The value of this factor can be constant or varied from step 
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to step. In the latter case, the steps become smaller and smaller as learning progresses to 

assure convergence of Q(s, a) values. With a constant step-size parameter, the Q(s, a) 

values never completely converge but continue to vary in response to the most recently 

received rewards. This is more desirable for a non-stationary system (Sutton and Barto, 

1999). 

Factor H is the discount-rate parameter, γ. As γ approaches zero, the agent is more 

myopic because it takes immediate reward into account more strongly. On the other hand, 

as γ approaches 1, the agent will be more farsighted reducing the impact that recent 

results have on the learned policy. 

Factor I concerns the approach for exploration and exploitation. The e–greedy 

method is adopted in this study. If e is set to 0.1, then 10% of the time the strategy will be 

to randomly select one of the three dispatching rules independent of their Q(s, a) values, 

while the other 90% of the time the dispatching rule with the best Q(s, a) value is 

selected.  

Several example systems, such as those illustrated in Sutton and Barto (1999) 

apply the Q-learning algorithm with settings of a = 0.1, γ = 0.9, and ε = 0.1. This study 

uses these same common parameter settings for the three factors G, H, and I across all 

experimental runs. Table 3.3 summarizes the experimental factors and their levels. 

 
 
Table 3.3. Experimental Factors and Their Levels 
 
Experimental Factors Level 1 Level 2 
A. Number of states 10 states 20 states 
B. Threshold value settings for determining state.  m = 1 m = 3 
C. Number of ranges in reward function  10 ranges 20 ranges 
D. Threshold value settings for reward function.  n = 1 n = 3 
E. Reward magnitude r = 1 r = 10 
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3.4. Design of Experiment 

The purpose of this study is to identify the factors related to the application of the 

Q-learning algorithm that are significant when used by an agent for learning an 

appropriate policy for dispatching rule selection. The factors considered in 

experimentation and their levels are shown in Table 3.3. Testing involved using a 

simulation of a single-machine with an infinite buffer with no consideration of potential 

machine failures.  

The simulation is conducted under four different sets of system conditions by 

varying the mean inter-arrival time of jobs to the system and due date tightness. The time 

between job arrivals to the system follows an exponential distribution with a mean of 8 

representing a heavy loading condition and 10 for a light loading condition. The 

estimated processing times (EPT) of jobs were uniformly distributed between 6 and 8. 

The resulting mean system utilization is 87.5% under the heavy loading condition and 

70% under the light loading condition. The due date of the job was determined based on 

the following equation:  

   
Due Date = Arrival time + Allowance factor × EPT      (3-3) 

 
 
Due date tightness is controlled by adjusting the allowance factor. In this study, the 

allowance factor is drawn from the uniform distribution between 1.2 and 1.8, U[1.2, 1.8], 

for jobs with tight due dates and between 1.7 and 2.3, U[1.7, 2.3], for jobs with loose due 

dates. The real processing time (RPT) of each job was generated using a normal 

distribution with a mean of EPT and standard deviation of EPT/10. Given the possibility 
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that a normal distribution may generate an extreme value, the RPT values were 

constrained to be within ±3 times the standard deviation.  

For each control factor combination setting used in the experiment, the learning 

horizon was monitored and analyzed to make sure that the learning process had reached 

steady state. As a result, a horizon of 200,000 job completions was determined as an 

appropriate run length under all conditions in order to guarantee that learning had reached 

steady state. After completing these 200,000 jobs as a system warm-up, 300,000 

additional jobs are processed by the system and the mean tardiness of these additional 

jobs is calculated and recorded as a single observation for an experiment. A full factorial 

(25) experiment was conducted with ten replications under each of the four different 

system conditions (see Table 3.4).    

 
 
Table 3.4. A full factorial (25) experiment is conducted under the following conditions 
 
System Conditions M/C Utilization Allowance Factor 
Heavy Loading/Tight Due Date (HT) 87.5 % U[1.2, 1.8] 
Heavy Loading/Loose Due Date (HL) 87.5 % U[1.7, 2.3] 
Light Loading/Tight Due Date (LT) 70 % U[1.2, 1.8] 
Light Loading/Loose Due Date (LL) 70 % U[1.7, 2.3] 
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CHAPTER IV 

Q-LEARNING FOR JOB ROUTING 

4.1. Agent-Based Job Shop System 

To develop a set of recommendations for applying the Q-learning algorithm to job 

routing problems, a simulated job shop system is used for examining the implementation 

of the Q-learning algorithm for use by agents when making routing decisions in such an 

environment. The control structure in this system is pure heterarchical and no supervisory 

agents are employed. There are only two types of agents in the system: job agents and 

machine cell agents. Each machine cell agent represents one machine cell that may be 

comprised of one (or more than one) identical machine. All the machines in the same cell 

share a buffer. Each job agent represents a specific job and is in charge of determining 

proper operation routing by negotiating with specific cell agents that have the potential to 

finish the operations. The agent negotiation scheme is based on the contract-net protocol.  

In this study, every customer order is considered a job and consists of a batch of 

identical parts with each part comprised of a set number of features defined by the 

customer. Each feature requires one operation. Routing flexibility is available allowing a 

job agent to direct the manufacture of a product using alternative processing routes. 

These alternatives are taken into account in the process plan and arise due to an 

availability of multiple machine types for processing a specific operation. The following
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subsections will detail what each job and cell agent’s responsibilities are in the 

negotiation strategy.     

 
4.1.1. Job Agent 

Each job agent carries the process plan for the part it represents and this plan 

specifies the alternative routes. The job agent initially sends requests for bids to the cell 

agents that have the capability to process the job’s next operation. The request indicates 

what feature is to be processed next. The job agent may send more than one request to the 

same cell agent if multiple features satisfy precedence and can be processed on the same 

machine cell. The cell agents immediately respond with their bids. Each bid contains 

information regarding the current status of the machine cell such the number of jobs in 

the buffer and how much work, in terms of the total processing time of the jobs in the 

buffer. After collecting the bids, the job agent evaluates them and selects one bid for the 

next operation. The selected bid identifies what operation will be processed on what 

machine cell next. After identifying the next machine cell, the job is routed there. If all 

the machines in the cell are busy, the job is placed in the buffer. Whenever a job’s current 

operation is completed, the job agent sends bid requests for the next operation. This 

bidding procedure continues until all the requested features of a job are finished. We 

assume that the time delay due to the exchange of messages during negotiation can be 

ignored compared to the operation processing time.   

 
4.1.2. Machine Cell Agent 

Each cell agent is responsible for preparing bids and dispatching the jobs in the 

buffer to the next available machine in the cell. In this study, the cell agents use job 
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dispatching rules to select the jobs for processing from the buffer. Because dispatching 

rule selection is not our focus in this part of the study, FIFO (first in first out) is the only 

dispatching rule employed in this routing problem.  

For bid preparation, the cell agent has knowledge about its capability in terms of 

what operations can be done at what pace. Using this knowledge, the cell agent is able to 

estimate the processing time for a bid. The cell agent is also able to detect the current 

status of its buffer in terms of its size and accumulate the processing times of the jobs in 

the buffer. With the information supplied by each bid response, in contract net 

negotiation, the job agent must decide which machine to use for a single operation. In this 

study, a job agent is able to evaluate the collected bids either based on the routing 

heuristic (NINQ) in which the machine cell with the fewest number of jobs in its queue is 

selected or based on the other heuristic (WINQ) where the machine cell with the least 

total estimated processing time of the jobs in its queue is selected. For both of these 

heuristics, a tie is broken by random selection.  

 
4.2. Factors for Applying Q-learning to Job Routing 

There are a number of factors that could be manipulated in applying the Q-

learning algorithm. The research goal was to determine the significance of the various 

factors for this application. The factors that are investigated include the following:  

 
A. State Determination Criteria. 

B. Number of ranges for determining reward/penalty. 

C. The threshold value settings for determining reward/penalty ranges. 

D. Approaches to setting magnitude of reward/penalty. 
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E. Initial Q values in the policy table. 

F. Step Size (a). 

G. Discount rate (γ). 

H. Approaches for exploration and exploitation.  

 
Factor E, F, G, and H are the same as was discussed in Chapter 3. The factors for 

constructing the policy table and the reward functions are relatively different from the 

ones in Chapter 3 and are therefore described in the subsections that follow.  

 
4.2.1. State Determination Criteria 

A policy table is used by an agent to make decisions based on its current state. In 

the job routing problem, more specifically, the policy table for a job agent is a mapping 

from the job’s current state to possible machines it can select for its next operation. To 

determine the current state, a job agent may only consider information it currently knows 

or that provided by the machine agents during negotiations. .  

Factor A defines the state determination criteria used to construct the policy table. 

Three state determination criteria are considered in this study. One possible criterion to 

use is the type of feature (feature ID) to be created as some point in the part’s processing. 

Table 4.1 presents an example of a policy table developed using the feature ID as the 

state determination criterion where features 1, 3, and 5 must be machined sequentially to 

complete the job according to the job’s process plan. Using this criterion, two dummy 

states are needed in the policy table. The first dummy state represents the situation where 

the job has not started processing yet, while the other represents the situation when the 

job is complete. The actions, shown in column 4, define which specific machine cells are 
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available for processing the stated feature. The merit of these possible actions 

corresponds to the magnitude of the associated Q(s, a) value given in column 3 of the 

same table. 

 
 
Table 4.1. A Policy Table Using Feature ID as the State Determination Criterion 
 

 State Criteria Q Values Actions 
State Feature ID Action 1 Action2 Action 1 Action 2 

Dummy  Not Started Processing 0 0 N/A N/A 
1 Processing Feature 1 Q(1, 1) Q(1, 2) M/C 1 M/C 3 
2 Processing Feature 3 Q(2, 1) Q(2, 2) M/C 2 M/C 4 
3 Processing Feature 5 Q(3, 1) Q(3, 2) M/C 1 M/C 5 

Dummy  Completed Processing 0 0 N/A N/A 
 
 
 
Table 4.2. A Policy Table Using Feature ID and NIQ as the State Determination Criteria 
 

 State Criteria Q Values Actions 
State Feature ID No. of Jobs in Queue Action 1 Action 2 Action 1 Action 2 

Dummy Not Started Processing 0 0 N/A N/A 
1 NIQ1 < NIQ3 Q(1, 1) Q(1, 2) M/C 1 M/C 3 
2 NIQ1 > NIQ3 Q(2, 1) Q(2, 2) M/C 1 M/C 3 
3 

1 

NIQ1 = NIQ3 Q(3, 1) Q(3, 2) M/C 1 M/C 3 
4 NIQ2 < NIQ4 Q(4, 1) Q(4, 2) M/C 2 M/C 4 
5 NIQ2 > NIQ4 Q(5, 1) Q(5, 2) M/C 2 M/C 4 
6 

3 

NIQ2 = NIQ4 Q(6, 1) Q(6, 2) M/C 2 M/C 4 
7 NIQ1 < NIQ5 Q(7, 1) Q(7, 2) M/C 1 M/C 5 
8 NIQ1 > NIQ5 Q(8, 1) Q(8, 2) M/C 1 M/C 5 
9 

5 

NIQ1 = NIQ5 Q(9, 1) Q(9, 2) M/C 1 M/C 5 
Dummy Completed Processing 0 0 N/A N/A 

 
 

Besides feature ID, information provided by machine cell agents such as the 

number of jobs in the buffer or total work in the buffer could also be employed as a state 

determination criterion. An example of a policy table for determining state using both the 

processing feature and the number of jobs in the buffer is shown in Table 4.2. Assume 

that a job receives two bids (one from cell 2 and the other from cell 4) for processing 
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feature 3. Given that NIQ2 and NIQ4 denote the number of jobs in the buffer of cell 2 and 

cell 4, respectively, if NIQ2 is greater than NIQ4, the job’s new state will be state 5 with 

possible actions involving the use of machine 2 or machine 4 to process that feature. 

With the capability of estimating the processing time of each job, the cell agent is 

able to estimate the total work (in terms of processing time) represented by the jobs in its 

buffer. WIQi denotes the total estimated processing time of the jobs in the buffer of cell i. 

Table 4.3 presents an example of a policy table where the state determination criteria is 

based on both the feature type and the estimated total work in the buffer. For an operation, 

due to a variety of machine capability, the WIQ values provided by various machine cells 

are hardly the same except when there are no jobs in their buffers. For cases when the 

WIQ values are very close, it is hard to determine which machine cell the job should be 

routed to because the WIQ values are only estimates. To overcome this issue, the relative 

difference between the two WIQ values must exceed some threshold in order for 

difference to be considered distinct. Suppose that cell x and cell y are able to perform the 

same operation and each cell responds with its estimate of the total estimated processing 

time of buffered jobs as WIQx and WIQy, respectively. If AWIQxy denotes the average of 

these two WIQ values and ∆WIQxy denotes the absolute value of the difference of these 

two WIQ values, then a ratio, DIFFxy, indicating the difference of the two WIQ values to 

their mean value can be defined as the quotient of ∆WIQxy and AWIQxy as follows. 

 
AWIQxy = (WIQx + WIQy)/2          (4-1) 
∆WIQxy = | WIQx – WIQy |         (4-2) 
DIFFxy = ∆WIQxy / AWIQxy        (4-3) 

 
To set the threshold value, accuracy of the processing time estimates provided by 

the machine cell agents must be considered. The more accurate the time estimates, the 
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smaller the value of the threshold. If no prior knowledge is available regarding the 

accuracy of the estimates, this threshold value may be set arbitrarily. However, setting 

too large a value may result in degradation of system performance. We set the threshold 

value at 10% of the average of the two WIQ values. Since the approach used here is 

unique, there is no prior study or reference regarding how to set this threshold value. A 

better threshold value setting may be possible. Searching for the best setting for this 

threshold value is beyond the scope of this research. 

 
 

Table 4.3. A Policy Table Using Feature ID and WIQ as the State Determination criteria 
 

 State Criteria Q Values Actions 
State Feature 

ID 
Total Work in Queue Action 

 1 
Action 

 2 
Action 

1 
Action 

2 
Dummy Not Started Processing 0 0 N/A N/A 

1 DIFF13 > 0.1 and WIQ1 < WIQ3 Q(1, 1) Q(1, 2) M/C 1 M/C 3 
2 DIFF13 > 0.1 and WIQ1 > WIQ3  Q(2, 1) Q(2, 2) M/C 1 M/C 3 
3 

1 
 

DIFF13 < 0.1 Q(3, 1) Q(3, 2) M/C 1 M/C 3 
4 DIFF24 > 0.1 and WIQ2 < WIQ4 Q(4, 1) Q(4, 2) M/C 2 M/C 4 
5 DIFF24 > 0.1 and WIQ2 > WIQ4  Q(5, 1) Q(5, 2) M/C 2 M/C 4 
6 

3 

DIFF24 < 0.1 Q(6, 1) Q(6, 2) M/C 2 M/C 4 
7 DIFF15 > 0.1 and WIQ1 < WIQ5 Q(7, 1) Q(7, 2) M/C 1 M/C 5 
8 DIFF13 > 0.1 and WIQ1 > WIQ5  Q(8, 1) Q(8, 2) M/C 1 M/C 5 
9 

5 

DIFF15 < 0.1 Q(9, 1) Q(9, 2) M/C 1 M/C 5 
Dummy Completed Processing 0 0 N/A N/A 

 
   

To illustrate the use of this measure, suppose that a job agent is making a decision 

for selecting either machine cell 2 or cell 4 for machining feature 3. Machine cell 2 

provided its WIQ value as 23.56 and machine cell 4 provided its WIQ values as 27.42. 

The desired computations are now carried out (Equation 4-1, 4-2, and 4-3): 

          AWIQ24 = (WIQ2 + WIQ4)/2 = (23.56 + 27.42)/2 = 25.49 
          ∆WIQ24 = | WIQ2 – WIQ4 | = | 23.56 – 27.42 | = 3.86 
         DIFF24 = ∆WIQ24 / AWIQ24  = 3.86/25.49 = 0.15 > 0.1  
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Since DIFF24 > 0.1 and WIQ2 < WIQ4, then state 4 is determined based on Table 4.3. If 

two WIQ values are close (DIFF24 < 0.1), the estimated work in both queues is 

considered equal. This research examines how use of any of the above three various 

criteria impact the performance of the routing decisions of job agents.   

 
4.2.2. Factors for Developing the Reward Function 

Similar to Factor C, D, and E in Chapter 3, the factors (B, C, and D) are used for 

developing the reward function. In this study, the system’s overall goal is to minimize the 

mean tardiness of the finished jobs. The objective of each job agent is to finish the 

required operations before the final due date. The job agent has the knowledge of the 

estimated processing time for each operation which is calculated as the average of the 

estimated processing times of the machine cells that are able to perform that operation. 

Therefore, the job agent is able to estimate the total processing time for completing the 

job. With the due date and the estimated total processing time, the job agent can 

determine the allowance factor by using the following equation: 

 
Allowance factor = (due date – arrival time)/ estimated total processing time  

 
Based on the allowance factor, the job agent can determine the intermediate due date for 

each required operation. The intermediate due date is used by the job agent to check if the 

corresponding operation to this intermediate due date is behind. . The goal of the job 

agent is to route the corresponding job to meet the intermediate due date of every 

required operation. If the machine cell selected by the job agent finishes the operation 
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before the intermediate due date, the learning agent receives a reward for this action 

(routing selection); otherwise, the job agent received a penalty.  

As with the factors of reward function development in Chapter 3, Factor B defines 

the number of ranges for determining the amount of reward/penalty, and Factor D 

determines the size of the interval for each range. Factor E is concern with assigning the 

magnitude of the reward and penalty to each range of the reward function. As in Chapter 

3, we assumed that the machine agent has knowledge about the expected mean 

processing time (EMPT) of the operations that it is able to perform and uses EMPT as a 

measure to set the tardiness ranges for the reward function. Table 4.4 presents an example 

of a 10-range reward function.  

 
 
Table 4.4. An Example of 10-range Reward Function 
 
Range  Reward/Penalty 
1                        Tardiness = 0   r = 1  (or  r = 10) 
2                 0  < Tardiness  < n × EMPT r = -1   
3   n × EMPT ≤ Tardiness < 2n × EMPT r = -2   
4 2n × EMPT ≤ Tardiness < 3n × EMPT r = -3   
5 3n × EMPT ≤ Tardiness < 4n × EMPT r = -4   
6 4n × EMPT ≤ Tardiness < 5n × EMPT r = -5   
7 5n × EMPT ≤ Tardiness < 6n × EMPT r = -6   
8 6n × EMPT ≤ Tardiness < 7n × EMPT r = -7   
9 7n × EMPT ≤ Tardiness < 8n × EMPT r = -8   
10 8n × EMPT ≤ Tardiness   r = -9   

 
 

4.3. Design of Experiment 

The factors considered in experimentation and their levels are shown in Table 4.5.  

To examine these factors, a simulation of a small-sized job shop system consisting of ten 

machines is carried out to measure effectiveness of these factors. This simulation model 
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is programmed in Visual C++ and implemented on a personal computer installed with 

Intel Pentium 4 2.8GHz CPU. The job shop system is comprised of five types of machine 

cells, each consisting of from one to three identical machines. There is only one buffer 

associated with each machine cell. At most seven variant features can be machined in this 

shop. The system can manufacture only three different jobs (type A, B, and C).  

 
 
Table 4.5 Experimental Factors and Their Levels 
 
Experimental Factors Level 1 Level 2 Level 3 
A. State Determination Criteria Feature ID Feature ID 

and NIQ 
Feature ID 
and WIQ 

B. Number of ranges in reward function  10 ranges 20 ranges  
C. Threshold value settings for reward function.  n = 0.1 n = 0.15  
D. Reward magnitude r = 1 r = 10  

 
 
 
Table 4.6. Process Plan 
 

Job Type Required Features 
(Fixed Sequencing) 

Alternative 
Machine 

Alternative 
Machine 

1 1 3 
3 2 4 

A 

5 1 5 
2 4 5 
4 1 3 

B 

7 3 5 
1 1 3 
2 4 5 

C 

6 2 4 
 
 

Job arrivals follow a Poisson distribution and the type of job is defined following 

a uniform distribution. Each job type requires three features and the process plan of each 

job type is presented in Table 4.6. Job type B and type C are routed using the NINQ 

routing heuristic where jobs are routed by selecting the machine cell that has the fewest 
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number of jobs in its buffer. Ties are broken using random selection. Only job type A 

employs the Q-learning algorithm to learn a routing policy. All machine cell agents 

employ FIFO to select a job from the buffer for processing. The batch size for each job is 

uniformly distributed between twenty and seventy units.  

 
 
Table 4.7. Machine Capability 
 

Machine 
ID 

Number of 
Machines 

Feature 
ID 

Estimated  
Setup Time 

Estimated 
Processing Time 

1 0.3 0.22 
4 0.1 0.17 

1 2 

5 0.5 0.31 
3 0.5 0.21 2 1 
6 0.3 0.2 
1 0.1 0.17 
4 0.4 0.19 

3 2 

7 0.7 0.15 
2 0.2 0.15 
3 0.3 0.22 

4 3 

6 0.5 0.25 
2 0.3 0.17 
5 0.27 0.11 

5 2 

7 0.4 0.17 
  
 

Table 4.7 shows the information about machine capability. All the setup and 

processing times are estimates of experienced engineers. These values were used as the 

mean values of the normal distribution used to generate the values used in the simulation 

runs. The following assumptions are also made for the simulation.    

1. Each machine can process only one operation at a time. 

2. Each job is released to the system immediately after arrival. 

3. Individual operations are not preemptable. 
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4. Set-up and processing times for each operation are not deterministic, but their 

expected values are available. 

5. The job may revisit the same machine cell before completing all its manufacturing 

steps. 

6. No machine breakdown occurs.  

7. Transportation times between machines are not considered. 

8. Set-up times are sequence-independent.   

The simulation is conducted under four different sets of system conditions by 

varying the mean inter-arrival time of jobs to the system and due date tightness. In the 

dispatching rule selection problem of Chapter 3, 70% and 87.5% machine utilization was 

set for light and heavy loading condition, respectively. To make the system conditions 

consistent, the time between job arrivals to the system follows an exponential distribution 

with a mean of 3 representing a heavy loading condition and 4 for a light loading 

condition in this case. Use of these values results in a utilization of the bottleneck 

machine cell of around 90% under the heavy loading condition and 70% under the light 

loading condition. The due date of each job is determined based on the following 

equation: 

 Due Date = Arrival time + Allowance factor × Total Expected Processing Time  
 
 
Due date tightness is controlled by adjusting the allowance factor. In this study, an 

allowance factor is drawn from a uniform distribution between 1.2 and 1.8, U[1.2, 1.8], 

for jobs with tight due dates and between 1.7 and 2.3, U[1.7, 2.3], for jobs with loose due 

dates. The total expected processing time of a job is the sum of estimated mean 

processing times of its required operations. The mean processing time of each operation 
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is estimated by averaging the estimated processing times (EPT in Table 4.7) provided by 

different machine cell agents that are able to machine the same feature. The real 

processing time (RPT) of each operation used in the simulation is generated using a 

normal distribution with a mean of EPT and standard deviation of EPT/10. Given the 

possibility that a normal distribution may generate an extreme value, the RPT values 

were constrained to be within ±3 times the standard deviation.  

 

Figure 4.1. An Example of the Observed Learning Progress 
(with Setting A3_BCd)
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For each control factor combination setting used in the experiment, the mean 

tardiness of every 1000 completed type-A jobs is monitored to determine the sufficient 

warm-up period for the system. 10,000 type-A job completions was determined as 

sufficient for a system warm-up period for all four system conditions. All these jobs are 

routed using the NINQ heuristic during this period. Figure 4.1 presents a plot of the mean 

tardiness for every 1000 type-A jobs observed for an experimental run. This plot 

illustrates the change of the mean tardiness as learning progresses. After completing these 
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10,000 type-A jobs, type-A jobs are routed based on Q-learning algorithm, while job type 

B and C are routed using the NINQ heuristic. A horizon of the next 20,000 type-A job 

completions was monitored and determined as an appropriate run length in order to 

guarantee that learning had reached steady state. After completing these 30,000 type-A 

jobs, the next 30,000 jobs completion are processed by the system and the mean tardiness 

of these additional jobs is calculated and recorded as a single observation for an 

experiment. A 3×2×2×2 factorial experiment was conducted with ten replications under 

each of the four different system conditions (see Table 4.8). 

 
 
Table 4.8. A 3×2×2×2 factorial experiment is conducted under the following conditions 
 
System Conditions Inter-arrival Time Allowance Factor 
Heavy Loading/Tight Due Date (HT) 3 U[1.2, 1.8] 
Heavy Loading/Loose Due Date (HL) 3 U[1.7, 2.3] 
Light Loading/Tight Due Date (LT) 4 U[1.2, 1.8] 
Light Loading/Loose Due Date (LL) 4 U[1.7, 2.3] 
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CHAPTER V 

EXPERIMENTAL RESULTS 

5.1. The Single-Machine Dispatching Rule Selection Problem 

5.1.1. Experimental Results 

Table 5.2 provides a summary of the experimental results for the single-machine 

dispatching rule selection problem. Each value in this table represents the mean of ten 

replications for each experimental run involving the factor settings defined in Table 3.3. 

For each system condition, analysis of variance (ANOVA) is used to identify strong 

effects and their interactions on a response at a level of significance of 0.05. These 

significant interactions are presented in Table 5.1.  

 
 

Table 5.1. Significant Interaction found by ANOVA 
 

System 
Conditions 

Significant Interactions (α = 0.05) 

HT  BCD    ABDE   
HL A  BDE CDE     
LT      ABDE ABCE BCDE 
LL  BCD BDE CDE ADE  ABCE  

 
 

The ANOVA results indicated that primarily only various combinations of higher-

order interactions were significant with no combination common across all system 

conditions. To further investigate the best factor level combination, Duncan’s multiple 

range test (at 0.05 level of significance) was applied to each identified 
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significant interaction. The ANOVA and Duncan’s test in this research were conducted 

by SAS software. For the significant interactions under the HT system condition (high 

load with tight due dates), Table 5.3 shows the results of Duncan test. In the table, a 

lowercase letter for a factor represents the level 1 setting for that factor while an 

uppercase letter indicates the level 2 setting. For each significant interaction, Duncan’s 

test is testing every pair of means for all the possible factor settings. The Duncan 

grouping letters in the table indicate if there is a significant difference between a pair of 

means for the factor settings. For example, there is no significant difference between 

factor setting AbDe and abDe since their corresponding Duncan grouping letters are the 

same (group A), while there is a significant difference between factor setting abDe and 

aBDe since their grouping letters are different (abDe – group A, aBDe – group B).  In the 

up-left cell of Table 5.3, the best group for the interaction of control factors A, B, D, and 

E, found is group J in which all the factors are at level 2. For the significant interaction of 

control factors B, C, and D, the best group identified by the Duncan test consists of four 

settings BCD, BCd, bCd, and bcd. There is no significant difference found between these 

four settings. According to the best groups a common factor level setting (ABCDE) can 

be concluded and used as the recommended control factor level combination for system 

condition HT. Going through this same process for the other system conditions, HL, LT, 

and LL, the results of Duncan tests are presented in Table 5.4, Table 5.5, and Table 5.6, 

respectively. Table 5.7 summaries the favorable settings found for each of the four 

system conditions.  
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Table 5.2.  Experimental Results of Single-Machine Dispatching Rule Selection 

Problem (0: level 1, 1: level 2) 
 

Experiment No. A B C D E HT HL LT LL 
1 0 0 0 0 0 20.533 18.444 5.884 4.437 
2 0 0 0 0 1 20.463 18.457 5.855 4.458 
3 0 0 0 1 0 20.654 18.478 5.921 4.464 
4 0 0 0 1 1 20.461 18.453 5.861 4.453 
5 0 0 1 0 0 20.529 18.424 5.888 4.403 
6 0 0 1 0 1 20.464 18.456 5.858 4.460 
7 0 0 1 1 0 20.652 18.469 5.914 4.448 
8 0 0 1 1 1 20.459 18.444 5.856 4.454 
9 0 1 0 0 0 20.542 18.450 5.891 4.434 

10 0 1 0 0 1 20.470 18.463 5.856 4.457 
11 0 1 0 1 0 20.584 18.456 5.909 4.460 
12 0 1 0 1 1 20.455 18.453 5.860 4.455 
13 0 1 1 0 0 20.548 18.434 5.894 4.407 
14 0 1 1 0 1 20.470 18.461 5.860 4.462 
15 0 1 1 1 0 20.585 18.476 5.907 4.441 
16 0 1 1 1 1 20.443 18.445 5.856 4.455 
17 1 0 0 0 0 20.532 18.439 5.889 4.426 
18 1 0 0 0 1 20.463 18.448 5.853 4.445 
19 1 0 0 1 0 20.655 18.464 5.940 4.449 
20 1 0 0 1 1 20.460 18.443 5.859 4.442 
21 1 0 1 0 0 20.528 18.413 5.884 4.394 
22 1 0 1 0 1 20.458 18.447 5.856 4.447 
23 1 0 1 1 0 20.657 18.454 5.911 4.435 
24 1 0 1 1 1 20.454 18.435 5.853 4.443 
25 1 1 0 0 0 20.516 18.447 5.881 4.432 
26 1 1 0 0 1 20.454 18.452 5.853 4.444 
27 1 1 0 1 0 20.544 18.448 5.895 4.449 
28 1 1 0 1 1 20.446 18.442 5.857 4.443 
29 1 1 1 0 0 20.524 18.426 5.882 4.409 
30 1 1 1 0 1 20.458 18.447 5.857 4.448 
31 1 1 1 1 0 20.541 18.438 5.891 4.439 
32 1 1 1 1 1 20.434 18.438 5.854 4.443 
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Table 5.3. The Results of Duncan’s Test for System Condition HT (a = 0.05) 
 

 
 

Significant Interaction: ABDE 
                                       
 Duncan                           
Grouping      Mean         Factor Setting  
                                                                                                
       A       20.655780      AbDe                               
       A                                                            
       A       20.652935      abDe                               
                                                                                                
       B       20.584795      aBDe  
                               
       C       20.544890      aBde                               
       C                                                            
       C       20.542550      ABDe                             
                                                                                                
       D       20.531015      abde                               
       D                                                            
       D       20.530000      Abde                               
                                                                                                
       E       20.520050      ABde                               
                                                                                                
       F       20.470065      aBdE                               
                                                                                                
       G       20.463285      abdE                               
       G                                                            
H    G       20.460425      AbdE                               
H    G                                                            
H    G       20.460020      abDE                               
H    G                                                            
H    G       20.457215      AbDE                               
H                                                                  
H              20.455950      ABdE                                                                                                                          
                                                                                                
       I        20.448890      aBDE                               
                                                                                                
       J        20.440020      ABDE                               

Significant Interaction: BCD  
                 
 Duncan                      
Grouping      Mean         Factor Setting 
                                    
     A          20.55764        bcD                                  
     A                                                               
     A          20.55534        bCD                                  
                                                                                                
     B          20.50406        BCD                                  
     B                                                               
     B          20.49774        BCd                                  
     B                                                               
     B          20.49749        bcd                                  
     B                                                               
     B          20.49488        bCd 

Recommended Factor Setting: ABCDE 
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Table 5.4. The Results of Duncan’s Test for System Condition HL (a = 0.05) 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Significant Interaction: BDE 
                                    
Duncan                   
Grouping       Mean            Factor Setting                                 
                                                          
       A           18.466173         bDe                                
                                                                                                
       B           18.455680         BdE                                
       B                                                            
       B           18.454768         BDe                                
       B                                                            
C    B           18.451988         bdE                       
C                                                                  
C    D           18.444490         BDE                                
C    D                                                            
C    D           18.443750        bDE                                
       D                                                            
       D           18.439418        Bde                                
                     
       E            18.430098        bde                   

Significant Interaction: CDE  
                 
Duncan                      
Grouping        Mean      Factor Setting                               
                                                                                                
      A           18.461683        cDe                             
      A                                                               
      A           18.459258        CDe                             
      A                                                               
B    A           18.455155        cdE                             
B    A                                                               
B    A    C    18.452513        CdE                             
B           C                                                          
B    D    C    18.447763        cDE                             
       D    C                                                          
       D    C    18.445045        cde                             
       D                                                               
       D           18.440478       CDE                             
                                                                                                
       E            18.424470       Cde                             

Recommended Factor Setting: AbCde 
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Table 5.5. The Results of Duncan’s Test for System Condition LT (a = 0.05) 
 

Significant Interaction: 
ABCE 
 
Duncan                     Factor 
Grouping   Mean      Setting                              
                                                                 
A          5.914409       Abce                                 
                                                                                                
B          5.902350       abce                                 
B                                                              
B          5.901245       abCe                                 
B                                                              
B          5.900314       aBCe                                 
B                                                              
B          5.900240       aBce                                 
B                                                              
B          5.897646       AbCe                                 
                                                                   
C          5.888190       ABce                                 
C                                                              
C          5.886626       ABCe                             
                                                                                                
D          5.858200       aBcE                                 
D                                                              
D          5.857725       aBCE                                 
D                                                              
D          5.857550       abcE                                 
D                                                              
D          5.856855       abCE                                 
D                                                              
D          5.856210       AbcE                                 
D                                                              
D          5.855462       ABCE                                 
D                                                              
D          5.855170       ABcE                                 
D                                                              
D          5.854471       AbCE                                 

Significant Interaction: 
ABDE                   
 
Duncan                   Factor 
Grouping   Mean    Setting                                    
                                                                          
A           5.925640     AbDe                                 
                                                                                                
B           5.917450     abDe                                 
                                                                                                
C           5.907903     aBDe                                 
                                                                                                
D           5.892848     ABDe                                 
D                                                              
D           5.892651     aBde                                 
                                                                             
E           5.886415     Abde                                 
E                                                              
E           5.886145     abde                                 
                                                                                                
F           5.881968     ABde                                 
                                                                                                
G           5.858280     abDE                
G                                                              
G           5.857963     aBdE                                 
G                                                              
G           5.857962     aBDE                  
G                                                              
G           5.856300     AbDE                                 
G                                                              
G           5.856125     abdE                    
G                                                              
G           5.855523     ABDE                                 
G                                                              
G           5.855109     ABdE                      
G                                                              
G           5.854381     AbdE                                 

Significant Interaction: 
BCDE   
 
Duncan                       Factor 
Grouping    Mean       Setting                  
                                                                                                
        A    5.930400    bcDe                               
                                                                                
        B    5.912690    bCDe                               
                                                                                                
        C    5.901987    BcDe                               
        C                                                            
        C    5.898764    BCDe                               
                                                                                                
        D    5.888176    BCde                   
        D                                                            
        D    5.886443    Bcde                               
        D                                                            
        D    5.886359    bcde             
        D                                                            
        D    5.886201    bCde                               
                                                                                                
        E    5.859890    bcDE                               
        E                                                            
F      E    5.858596    BcDE                               
F      E                                                            
F      E    5.858298    BCdE                               
F      E                                                            
F      E    5.856636    bCdE                               
F                                                                 
F            5.854890    BCDE                               
F                                                                 
F            5.854775    BcdE                               
F                                                                 
F            5.854689    bCDE                               
F                                                                 
F            5.853870    bcdE                               

Recommended Factor Setting: abcdE, abCdE, abCDE, aBcdE, aBcDE, aBCdE, aBCDE, 
AbcdE, AbCdE, AbCDE, ABcdE, ABcDE, ABCdE, and ABCDE. 
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Table 5.6. The Results of Duncan’s Test for System Condition LL (a = 0.05) 
 

Significant Interaction: ADE 
Duncan  
Grouping          Mean            Factor Setting                                   
                                                                                                
      A              4.459071            adE                                  
                                                                                                
      B              4.454097            aDE                                  
      B                                                               
      B              4.453107            aDe                                  
                                                                                                
      C              4.446260            AdE                          
      C                                                               
      C              4.443005            ADe                                  
      C                                                               
      C              4.442796            ADE                                  
                                                                                                
      D              4.420151            ade             
 
      E              4.415288             Ade                                                

Significant Interaction: ABCE                         
Duncan 
Grouping          Mean          Factor Setting                               
                                                                                                
       A                4.458381           aBCE                            
       A                                                              
       A                4.456660           abCE                            
       A                                                              
       A                4.455841           aBcE                            
       A                                                              
       A                4.455456           abcE                            
       A                                                              
B     A               4.450227           abce                            
B                                                                    
B     C               4.447011           aBce                            
B     C                                                              
B     C     D       4.445651          ABCE                            
B     C     D                                                       
B     C     D       4.444895          AbCE                 
B     C     D                                                         
B     C     D       4.443857          ABcE                            
B     C     D                                                         
B     C     D       4.443710          AbcE                            
       C     D                                                         
       C     D       4.440630           ABce                            
               D                                                         
               D       4.437370           Abce                            
                                                                                                
       E               4.425476            abCe                            
       E                                                               
       E               4.424357           ABCe                            
       E                                                              
       E               4.423803           aBCe                            
                                                                                                
       F               4.414230           AbCe                            
 
 

Significant Interaction: BDE                      
Duncan 
Grouping          Mean         Factor Setting                                  
                                                                         
           A          4.452906           BdE                                
           A                                                            
   B      A          4.452426           bdE                                
   B      A                                                            
   B      A          4.448959           BDE                                
   B      A                                                            
   B      A          4.448652           bDe                                
   B      A                                                            
   B      A          4.447934           bDE                                
   B                                                                  
   B                   4.447460           BDe                                
                                                                                                
            C          4.420440           Bde                                
                                                                                                
            D          4.414999           bde   

Significant Interaction: CDE 
Duncan  
Grouping          Mean         Factor Setting                                   
                                                                                                
      A              4.455438           cDe                             

Significant Interaction: BCD                      
Duncan  
Grouping          Mean          Factor Setting                                  
                                                                                                
        A           4.451953           bcD                        
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Table 5.6. (continued). 
 
      A                                                               
      A              4.454273           CdE                                  
                                                                                                
      B              4.451059            cdE                                  
      B                                                               
      B              4.448520           CDE                                  
      B                                                               
      B              4.448373           cDE                                  
                                                                                                
      C              4.440674           CDe                  
                                                                                                
      D              4.432181           cde                                  
                                                                                                
      E               4.403259          Cde                                  

        A           4.451953           bcD                                
        A                                                             
        A           4.451859           BcD                                
        A                                                             
 B     A           4.444634           bCD                                
 B     A                                                             
 B     A           4.444560           BCD                                
 B                                                                  
 B                   4.441811           Bcd                                
 B                                                                  
 B                   4.441429           bcd                                
                                                                                     
        C            4.431535           BCd                                
        C                                                             
        C            4.425997           bCd   

Recommended Factor Setting: AbCde 
 
 
 

Table 5.7. Best Factor Level Combinations for Various System Conditions 
 

Conditions Significant Interactions Best Factor Level Combinations 
HT ABDE, BCD ABCDE 
HL A, BDE, CDE AbCde 
LT ABDE, ABCE, BCDE abcdE, abCdE, abCDE, aBcdE, 

aBcDE, aBCdE, aBCDE, AbcdE, 
AbCdE, AbCDE, ABcdE, ABcDE, 
ABCdE, and ABCDE. 

LL ABCE, BDE, ADE, CDE, BCD AbCde 
 
 

As a basis of another comparison, the performance of the system was determined 

while operating under each one of the three dispatching rules (EDD, SPT, or FIFO). 

These results were compared with the Q-learning algorithm using the recommended 

factor settings. Table 5.8 shows the resulting system performance for each case under 

each of the four system conditions. Of the three dispatching rules, SPT was identified as 

the favored rule for system conditions HT, HL, and LT, while EDD outperformed the 

other two rules for system condition LL. These results align with the scheduling strategy 
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prescribed by Morton and Pentico (1993) based on their study of several heuristics for a 

static single-machine problem. They found that to minimize tardiness, one should 

schedule lightly loaded shops using EDD and schedule heavily loaded shops using 

WSPT. 

 
Table 5.8. Results of using the individual Dispatching Rules and the Q-learning 
algorithm.   
 
Dispatching Rules\Conditions HT HL LT LL 
EDD 21.907 19.234 6.031 4.292 
SPT 20.298 18.422 5.831 4.499 
FIFO 21.966 19.319 6.071 4.354 
Q-Learning 
(Recommended Factor Setting) 
EDD Selection Percentage 
SPT Selection Percentage 
FIFO Selection Percentage 

20.434 
(ABCDE) 
4.05% 
91.66% 
4.29% 

18.413 
(AbCde) 
10.29% 
79.87% 
9.84% 

5.854 
(ABCDE) 
4.99% 
89.67% 
5.34% 

4.394 
(AbCde) 
15.03% 
69.65% 
15.32% 

 
 

When the Q-learning algorithm was applied with the recommended factor 

settings, the learning agent yielded the best performance for one (HL) of the four system 

conditions. However, in three of the four cases, the resulting policy derived by Q-learning 

favored the best rule for the condition. It selected the SPT rule 91.7%, 79.9%, and 89.7% 

of the time for system condition HT, HL, and LT, respectively, but selected SPT only 

69.7% of the time for system condition LL. SPT is the best among these three rules for 

minimizing the number of tardy jobs. (Under system condition LL, the percentage of jobs 

that reported as tardy using EDD, SPT, and FIFO is 41.6%, 28.1%, and 41.5%, 

respectively.) However, for minimizing mean tardiness (the measure used here), SPT 

may cause some jobs with long processing times to be very tardy causing the overall 

mean tardiness to be worse even though there are only a few tardy jobs. In the reward 

function, only non-tardy jobs receive a reward, therefore it is not surprising that the 
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selection percentage of SPT for the LL case is this high. A high selection percentage for 

SPT means that, most of the time, the Q value representing the action of selecting SPT is 

larger than the Q values for the other two rules. Given that the performance of the system 

when employing either EDD or FIFO are nearly the same, it is not surprising that the 

selection percentages for EDD and FIFO are so close for all the four system conditions. 

For the LL case, if the reward function is modified to assign larger penalties to the 

actions causing jobs to be very tardy, then the EDD selection percentage may come out 

on top.   

 
5.1.2. Discussion 

Given prior success at applying Q-learning for the dispatching rule selection 

problem (Wang and Usher, 2002), this study conducted a factorial experiment for 

studying the factors important to the design and implementation of the Q-learning 

algorithm to the single machine dispatching rule selection problem. According to the 

results in Table 5.7, it is better to design the policy table with more states (control factor 

A) and the reward function with more ranges (control factor C) independent of the due 

date tightness when the system is under heavy loading conditions. With the mean lateness 

of the jobs in the buffer as the state determination, the number of states can be infinite. 

Then a large amount of memory may be required to build up approximations of the value 

functions. Although the tabular method (arrays or tables with one entry for each state) in 

this study is much simpler and easier to implement, the experimental results reveal that 

more states are better. Therefore, using the function approximation approach instead of 

the tabular method is suggested.  
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Based on the experimental results, the ranges for determining the states (control 

factor B) and penalties (control factor D) should be wider when job due dates are tight. 

This is because the tight due date setting may result in some jobs being very tardy, 

particularly when applying SPT as the selection rule. The use of wider ranges (control 

factor B and D) permits the system agent to better distinguish the different jobs at these 

higher tardiness levels providing a more accurate identity of the real system status. Also, 

a reward function that is more able to distinguish between the various levels of the tardy 

jobs provides more accurate responses regarding the agent’s decisions.  

Also, under the condition with tight due date jobs, it is better to assign more 

reward (control factor E) to the action for early jobs. When most of the completed jobs 

register as tardy, a lot of the Q values in the policy table accumulate and become very 

large negative values. Hence, the reward magnitude (a positive value) becomes important 

because it is better able to provide a larger impact when a proper action is selected. The 

experimental results indicate that the best factor level combinations found for the 

conditions with loose due dates (system condition HL and LL) are the same and favor 

more states with narrower ranges for the policy table and likewise for the reward 

function.    

 
5.2. The Ten Machine Job Routing Problem 

5.2.1 Experimental Results 

The experimental results for the ten-machine job routing problem are presented in 

Table 5.10. Each result value in the table represents the mean of ten replications for each 

experimental run involving the factor settings defined in Table 4.5.  Again, ANOVA is 

used to identify strong effects and their interactions on a response for each system 
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condition. Based on the results of ANOVA at significance level of 0.05, the significant 

interactions detected are shown in Table 5.9.  

For the significant interactions for system condition HT, the interaction plots 

(Figures 5.1, 5.2, and 5.3) show that level 2 setting for factor B and factor C, and level 1 

setting for factor D are good when factor A is set at level 1, while any setting for factors 

B, C, and D would be fine if factor A is set at level 3. In the figures, A1, A2, and A3 

represent the level 1, level 2, and level 3 setting, respectively, for factor A. For factors B, 

C, and D, a lowercase letter represents the level 1 setting for that factor while an 

uppercase letter indicates use of the level 2 setting. Figure 5.4 shows that level 2 for 

factor B and level 1 for factor D are good settings for interaction BD.  

These same results can be found by applying Duncan’s test. Table 5.11 shows the 

results of Duncan’s test (at 0.05 level of significance) for these four interactions. Overall, 

A3_BCd (Level 3 for factor A, level 2 for factor B, level 2 for factor C, and level 1 for 

factor D) can be concluded as the recommended factor level combination for system 

condition HT. The results of Duncan’s test for the other system conditions (HL, LT, and 

LL) are presented in Table 5.12, Table 5.13, and Table 5.14, respectively. For system 

condition HL and LL, A3_bCd and A3BCd are identified as the recommended settings, 

while A3_BCd is recommended for system condition LT. Table 5.15 summarizes these 

favorable settings found for each of the four system conditions.  

 
Table 5.9. Significant Interaction found by ANOVA 
 

System Conditions Significant Interactions (α = 0.05) 
HT AB AC AD BD    
HL  AC AD BD    
LT AB AC AD  CD   
LL      ABD ACD 
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Figure 5.2. A-B Interaction under HT condition 
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Figure 5.3. A-C Interaction under HT condition
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Figure 5.4. A-D Interaction under HT condition
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Figure 5.5. B-D Interaction under HT condition
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Table 5.10. Experimental Results of Job Routing Problem  
(0: level 1, 1: level 2, 2: level 3) 

 
Experiment No. A B C D HT HL LT LL 

1 0 0 0 0 9.017 4.622 2.275 0.794 
2 0 0 0 1 9.708 5.186 2.428 0.875 
3 0 0 1 0 8.367 4.327 2.136 0.726 
4 0 0 1 1 9.14 4.947 2.418 0.869 
5 0 1 0 0 8.919 4.605 2.241 0.781 
6 0 1 0 1 9.511 5.044 2.334 0.804 
7 0 1 1 0 8.262 4.326 2.104 0.747 
8 0 1 1 1 8.787 4.705 2.297 0.79 
9 1 0 0 0 7.252 3.462 1.889 0.45 

10 1 0 0 1 7.406 3.627 1.933 0.471 
11 1 0 1 0 7.067 3.442 1.917 0.442 
12 1 0 1 1 7.294 3.465 1.966 0.462 
13 1 1 0 0 7.225 3.513 1.888 0.458 
14 1 1 0 1 7.395 3.621 1.913 0.456 
15 1 1 1 0 7.276 3.399 1.845 0.441 
16 1 1 1 1 7.289 3.563 1.943 0.431 
17 2 0 0 0 7.017 3.34 1.819 0.433 
18 2 0 0 1 7.155 3.43 1.875 0.444 
19 2 0 1 0 7.088 3.257 1.803 0.425 
20 2 0 1 1 7.031 3.387 1.885 0.441 
21 2 1 0 0 7.132 3.371 1.843 0.436 
22 2 1 0 1 7.042 3.439 1.854 0.434 
23 2 1 1 0 7.048 3.301 1.815 0.433 
24 2 1 1 1 7.087 3.29 1.883 0.43 
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Table 5.11. The Results of Duncan’s Test for System Condition HT (a = 0.05) 

 
 
 
 
 
 
 
 
 
 
 

Significant Interaction: AB 
                                       
 Duncan                           
Grouping      Mean         Factor Setting  
   A            9.05825         A1_b 
    
   B            8.86949         A1_B 
    
   C            7.29607         A2_B 
   C 
   C            7.25464         A2_b 
    
   D            7.07698         A3_B 
   D 
   D            7.07288         A3_b                                                                               
 

Significant Interaction: AC 
                 
 Duncan                      
Grouping      Mean         Factor Setting 
    A            9.28879         A1_c 
    
    B            8.63895         A1_C 
     
    C            7.31931         A2_c 
    C 
    C            7.23140         A2_C 
     
    D            7.08639         A3_c 
    D 
    D            7.06346         A3_C 
 

Significant Interaction: AD 
                                       
 Duncan                           
Grouping      Mean         Factor Setting  
   A            9.28647          A1_D 
 
   B            8.64127           A1_d 
 
   C            7.34583           A2_D 
 
   D            7.20488           A2_d 
 
   E            7.07863            A3_D 
   E 
   E            7.07122            A3_d 
 

Significant Interaction: AD 
                                       
 Duncan                           
Grouping      Mean         Factor Setting  
 
    A           7.9557             bD 
    A 
    A           7.8516             BD 
    A 
    A           7.6435             Bd 
    A 
    A           7.6348             bd 
 

Recommended Factor Setting: A3_BCd 
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Table 5.12. The Results of Duncan’s Test for System Condition HL (a = 0.05) 

 
Significant Interaction: BD 
Duncan  
Grouping          Mean            Factor Setting                                   
                                                                                                
      A                4.0244               bD                                 
      A                                                             
B    A                3.9419              BD                                 
B                                                                  
B                       3.7525               Bd                                
B                                                                  
B                       3.7417               bd  

Significant Interaction: AC                       
Duncan 
Grouping          Mean          Factor Setting                               
      A             4.86425           A1_c 
 
      B             4.57623           A1_C 
 
      C             3.55569           A2_c 
      C 
D   C             3.49349           A2_C 
D 
D   E              3.39225          A3_c 
      E 
      E              3.30891          A3_C 
 

Significant Interaction: CD                      
Duncan 
Grouping          Mean         Factor Setting                                  
       A               4.97050         A1_D 
 
       B               4.46997         A1_d 
 
       C               3.59515         A2_D 
 
       D               3.45403         A2_d 
       D 
 E    D               3.38385         A3_D 
 E 
 E                      3.31731         A3_d 
  

Recommended Factor Setting: A3_bCd, A3BCd 
 
 



 

 

95

Table 5.13. The Results of Duncan’s Test for System Condition LT (a = 0.05) 
 

 

Significant Interaction: AB 
                                       
 Duncan                           
Grouping      Mean         Factor Setting  
  A              2.31410         A1_b 
 
  B              2.24422         A1_B 
 
  C              1.92627         A2_b 
  C 
  C              1.89729         A2_B 
 
  D              1.84869         A3_B 
  D 
  D              1.84575         A3_b 
 

Significant Interaction: AC 
                 
 Duncan                      
Grouping      Mean         Factor Setting 
   A            2.31954         A1_c                                 
                                                                                                
   B            2.23878         A1_C                                 
                                                                                                
   C            1.91775         A2_C                                 
   C                                                               
   C            1.90581         A2_c                                 
                                                                                                
   D            1.84800         A3_c                                 
   D                                                               
   D            1.84644         A3_C    
 

Significant Interaction: AD 
                                       
 Duncan                           
Grouping      Mean         Factor Setting  
   A            2.36930         A1_D 
 
   B            2.18902         A1_d 
 
   C            1.93873         A2_D 
 
   D            1.88484         A2_d 
   D 
   D            1.87442         A3_D 
 
   E             1.82002         A3_d 
 

Significant Interaction: AD 
                                       
 Duncan                           
Grouping      Mean         Factor Setting  
 
      A         2.06528           CD 
      A 
      A         2.05635           cD 
      A 
B    A          1.99255          cd 
B 
B                1.93670           Cd 
 

Recommended Factor Setting: A3_BCd 
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Table 5.14. The Results of Duncan’s Test for System Condition LL (a = 0.05) 
 

 
 
 
Table 5.15. Best Factor level Combinations for Various System Conditions 
 
Conditions Significant Interactions Best Factor Level Combinations 
HT AB, AC, AD, BD A3_BCd 
HL AC, AD, BD A3_bCd, A3_BCd 
LT AB, AC, AD, CD A3_BCd 
LL ABD, ACD A3_bCd, A3_BCd 

 

Significant Interaction: ABD 
                                       
 Duncan                           
Grouping      Mean         Factor Setting  
      A        0.87225           A1_bD 
 
      B        0.79729           A1_BD 
 
      C        0.76369          A1_Bd 
      C 
      C        0.75992          A1_bd 
 
      D        0.46636          A2_bD 
      D 
E    D        0.44945         A2_Bd 
E    D 
E    D        0.44622         A2_bd 
E 
E               0.44382         A2_BD 
E 
E               0.44259         A3_bD 
E 
E               0.43452         A3_Bd 
E 
E               0.43191         A3_BD 
E 
E               0.42888         A3_bd 
 

Significant Interaction: ACD  
                 
 Duncan                      
Grouping      Mean         Factor Setting 
      A             0.83961         A1_cD 
      A 
      A             0.82992         A1_CD 
 
      B             0.78746         A1_cd 
 
      C             0.73615         A1_Cd 
 
      D             0.46341         A2_cD 
      D 
E    D             0.45404         A2_cd 
E    D 
E    D    F       0.44677         A2_CD 
E    D    F 
E    D    F       0.44163         A2_Cd 
E           F 
E           F       0.43901         A3_cD 
E           F 
E           F       0.43550         A3_CD 
E           F 
E           F       0.43451         A3_cd 
             F 
             F       0.42889         A3_Cd 
 

Recommended Factor Setting: A3_bCd, A3_BCd 
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5.2.2. Discussion 

 Level 1 for factor A (A1) represents the case in which the policy table is 

constructed using only feature ID as the state determination criterion. Since this does not 

take into account any information regarding the current buffer status of the machine cells 

that are able to perform the job agent’s next operation, it makes sense that the other two 

settings of factor A (A2 and A3), in which additional information is considered (number 

of jobs in queue (NIQ) and estimate work in queue (WIQ)), outperformed A1 for all of 

the four system conditions. To further compare the cases of A2 and A3, for system 

condition HT, HL, and LT, it was found that A3 is better than the A2. For the cases using 

the A2 setting, the job agents use the feature ID and NIQ as the state determination 

criteria, whereas, for the cases of A3, the cell agents make a further estimate of the total 

work of those jobs in the queue (WIQ). The WIQ measure provides more details for a job 

agent to more precisely determine the states they encounter. For the remaining system 

condition LL, Duncan’s test revealed no significant difference among the settings of 

A2_bCd, A2_BCd, and A2_BCD, and any set of settings with A3. This indicates that the 

advantage from incorporating WIQ has less of an impact under the LL system condition.  

In tables 5.11 and 5.13, for significant interaction AB, the cases with A3 setting 

(A3_b and A3_B) are grouped together (group D), and the cases with A2 setting (A2_b 

and A2_B) are grouped together (group C), while the setting A1_b and A1_B are 

assigned to different groups, group A and B, respectively. In other words, for the system 

conditions involving jobs with tight due-dates (HT and LT), the number of ranges (factor 

B) for the reward function is not important for those cases with the A2 or A3 setting. 

However, if factor A is set at level 1, the use of more ranges for rewards is better. 
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Therefore, if this approach is applied to a system where the machine agents have no 

capability of providing their buffer status, the use of more ranges for reward functions is 

suggested.    

Toward reward function development, factor C defines the size of the interval for 

each range of the reward function. In table 5.11, 5.12, and 5.13, for significant interaction 

AC, the cases with A3 setting (A3_c and A3_C) are in the same group (group D in table 

5.11 and 5.13, group E in table 5.12), and the cases with A2 setting (A2_c and A2_C) are 

in group C, while the setting A1_c and A1_C are in different groups, group A and B, 

respectively. Therefore, for system conditions HT, HL, and LT, the levels of factor C do 

not affect the job tardiness when factor A is set either at level 2 or level 3, while the use 

of wider ranges is recommended for the cases using the A1 setting. This means, again, if 

the machine agent is unable to provide information concerning NIQ and WIQ, it is better 

to design the reward function with wider ranges under most system conditions.    

 For factor D, Duncan’s test shows that level 1 (d) is either the same as, or better 

than, level 2 (D) when factor A is set at level 1 under any system condition. That means 

the reward magnitude should be set small. According to the simulation results, around 

one fourth of the completed jobs are tardy under system condition HT (the most heavy 

loading system with tight due date jobs), this indicates that the job agent receives a 

reward for its routing decision with high possibility (around 75%). That may be why the 

use of a small value for the reward resulted in better performance than a large value in 

this case.  
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5.2.3. Mean Tardiness of Prior Operations 

In this experiment, it is assumed that the machine agent has knowledge of the 

estimated mean processing time (EMPT) of the operations that the machine is able to 

perform but has no prior knowledge about how much the magnitude of job tardiness may 

be. Therefore, EMPT is used as the measure to set the tardiness ranges for the reward 

function. However, job tardiness varies under different system conditions, even for the 

same system conditions job tardiness may vary from time to time. Therefore, EMPT is 

not a good measure to set the tardiness ranges for the reward function because EMPT is 

not adjusted with the changing system conditions. To overcome this issue, a suggested 

approach is to use the mean tardiness for prior operations (MTPO) as the measure to set 

the tardiness ranges for the reward function.  

As described in Chapter 4, using an allowance factor, the job agent can determine 

an intermediate due date for each required operation of a job. The intermediate due date 

is used by the job agent to check if the corresponding operation is behind and therefore 

assign a tardiness value for this operation. The mean tardiness for a specific operation can 

then be computed and updated whenever the operation is performed. In the system of this 

study, there are seven operations for seven features (one operation for each feature). Thus 

there would be seven mean tardiness values updated in real-time. Table 5.16 shows an 

example of using MTPO to set the ranges for measuring the tardiness of an operation. 

Figure 5.5 compares the performance of using EMPT and MTPO as the measure for 

setting the ranges of the reward function. MTPO makes the job mean tardiness drop by as 

much as 15% under system condition HL, compared with using EMPT. This result 

proved that EMPT is not a good measure for designing the reward function since the 
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EMPT value is not altered with the system changes. This result also indicates that MTPO 

is a good measure for setting ranges of the reward function since MTPO is updated as 

system condition changes.   

 
Table 5.16. An Example of 10-range Reward Function 
 
Range  Reward/Penalty 
1                        Tardiness = 0   r = 1  (or  r = 10) 
2                 0  < Tardiness  < n × MTPO r = -1   
3   n × MTPO ≤ Tardiness < 2n × MTPO r = -2   
4 2n × MTPO ≤ Tardiness < 3n × MTPO r = -3   
5 3n × MTPO ≤ Tardiness < 4n × MTPO r = -4   
6 4n × MTPO ≤ Tardiness < 5n × MTPO r = -5   
7 5n × MTPO ≤ Tardiness < 6n × MTPO r = -6   
8 6n × MTPO ≤ Tardiness < 7n × MTPO r = -7   
9 7n × MTPO ≤ Tardiness < 8n × MTPO r = -8   
10 8n × MTPO ≤ Tardiness   r = -9   

 
 
 

Figure 5.5. Performance Improvement (MTPO vs EMPT) 
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5.2.4. Traditional Routing Heuristics and the Q-learning Routing Policies 

 Table 5.17 provides a performance comparison for job routing by using the 

routing heuristics (NINQ and WINQ) and the routing policies learned by the Q-learning 

algorithm with EMPT and MTPO as a measure for setting tardiness ranges for the reward 

function and at the recommended setting (A3_BCd). It can be observed that the routing 

policy learned by the Q-learning algorithm MTPO as a measure for setting tardiness 

ranges and at A3_BCd is very competitive under system condition HT and LT. That is, 

the Q-learning performs well when the system is operating under tight due-dates. The 

percentages of tardy jobs are 22.3%, 10.3%, 11.7%, and 3.3% for the system condition 

HT, HL, LT, and LL, respectively. Although the mean tardiness of each job for system 

condition HL (2.827) is higher than the one for system condition LT (1.608), the 

percentage of tardy jobs for system condition LT (11.7%) is higher than the one for 

system condition HL (10.3%). This may indicate that in cases where there are a greater 

number of tardy jobs the Q-learning performs better. In the reward function, there are 

several levels of penalty to determine the job tardiness but only one level of reward. In 

other words, the reward function does not provide a measure differentiating the value of a 

decision is when it is good, but it does distinguish between cases is when the decision is 

bad. More than likely, that is why the Q-learning does not perform well for the light due 

date cases. 

 
Table 5.17. Performance Comparison: Heuristics versus Q-Learning Policies   
 
 HT HL LT LL 
NINQ  (Heuristic) 6.324 2.367 2.171 0.379 
WINQ (Heuristic)  5.943 2.113 2.094 0.341 
EMPT (Recommended Setting: A3_BCd) 7.048 3.301 1.815 0.433 
MTPO (Recommended Setting: A3_BCd) 5.983 2.827 1.608 0.427 
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CHAPTER VI 

CONCLUSIONS 

6.1. Summary and Conclusions 

Reinforcement learning (RL) has recently become an active research interest 

within the field of machine learning. Although there have been several examples 

demonstrating the usefulness of RL, its application to manufacturing systems has not yet 

been fully explored. In addition, most of the current agent-based research in 

manufacturing systems focuses on the issues of negotiation and cooperation among 

agents, overlooking learning as a means for giving an agent an ability to increase its 

perceived intelligence for making decisions. This research investigated how the Q-

learning algorithm can be used by job agents to generate policies for making real-time 

routing decisions and by machine agents to discover a policy for selecting a proper 

dispatching rule.  

Several recommendations were derived from the results of this research. For 

applying Q-learning to dispatching rule selection, more states in the policy table and 

more ranges for the reward function essentially improve learning performance. When job 

due dates are tight, the use of wider ranges for determining the states and for determining 

penalties resulted in better performance than use of narrow ranges. In addition, the 

reward magnitude proved crucial under such conditions. If most of the completed jobs are 

tardy, a larger value for the reward magnitude is preferred. 
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When applying the Q-learning method to the job routing problem, it is strongly 

recommended that the current buffer status of the machines be included as one part of the 

state determination criteria. When the buffer status is included as one of the state 

determination criteria, then the number of ranges and size of each range for the reward 

function do not seem to have much effect on system performance in terms of mean job 

tardiness. However, if buffer status is not considered as part of the state determination 

criteria, increasing the number of ranges used and the width of each range is 

recommended.  

The reward magnitude also proved crucial in this problem with the experimental 

results recommending the use of a small reward magnitude setting (compared to the 

penalty magnitude setting). The ratio of the number of tardy jobs to total number of 

completed jobs may need to be taken into account for setting this reward/penalty 

magnitude. In this study, the ratio for the worst case (HT condition) was 25%, where a 

small reward magnitude setting was recommended. If the ratio is large, for example, 

more than 50% of the jobs are tardy, then a larger reward setting is suggested so that 

learning can be reinforced from the fewer good decisions. In addition, it was determined 

that the use of the mean tardiness computed from previous job’s operations (MTPO) 

proved much better than the use of the estimated mean processing time (EMPT) as the 

measure for setting tardiness ranges of the reward function. Therefore, a mechanism for 

collecting, recording and updating mean tardiness values for system operations is highly 

recommended.  

The conclusions of this study are based solely on the experimental results of the 

simulation systems considered in this research. The simulation study was conducted 
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under system loading conditions with machine utilizations of 70% and 90%, and job due 

date tightness employing allowance factors of 1.5 and 2. These parameter settings for 

various system conditions are important and can be used as reference materials to apply 

the conclusions of this study to other systems. Therefore, an understanding of the loading 

conditions and allowance factors for any other system is required. On the other hand, 

conclusions regarding how the percentage of tardy jobs to total completed jobs influences 

the reward magnitude settings and how the use of MTPO benefits the learning 

performance are applicable for any other system.  

 
 
 

6.2. Directions for Future Research 

 Future research will be needed in a number of areas to fully explore the 

application of reinforcement learning in the area of production scheduling. In this section, 

several issues for future research directions are addressed.   

 In this research, we dealt with the problem concerning fixed-sequencing routing 

flexibility (Table 2.2). That is, the operations of a job must be performed in a fixed 

sequence, but there can be more than one machine capable of processing any given 

operation. To further extend this study, flexible sequencing of the operations may be 

considered. This will increase the number of possible routes. To deal with the problem, 

the Q-learning algorithm can again be applied to construct a policy table for selecting an 

operation sequence. The selection of an operation sequence will be based on the current 

policy in use by the Q-learning algorithm. Once a sequence is selected, the approach in 

this research can be implemented for constructing a policy table of selecting machines. 

However, since one policy table for selecting machines needs to be learned for one 
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operation sequence. Therefore, if there are numerous possible operation sequences, then 

it will be very time-consuming for the agent to learn all the machine-selection policy 

tables for all the sequences.  

In this study, the agent-negotiation schema is not complex. The job agent makes a 

routing decision based on the bids provided by the machine cell agents. Each decision 

takes only one round of message exchange (requesting – bidding). However, a 

complicated negotiation schema may require more than one round of message exchange 

to make a routing decision. For each message submission, the agent actually makes a 

negotiation decision and then a routing decision is derived from these negotiation 

decisions. The intermediate due date for an operation of a job can be used to determine 

the reward or penalty for a routing decision (using the proposed approach in this 

research). When applying reinforcement learning to make a negotiation decision, some 

problems need to be considered. First, decisions in the early rounds of negotiation may 

lead to either a good or a bad routing decision. In addition, since the negotiation decisions 

are made sequentially, one bad negotiation decision may result in a bad routing decision 

even though all the other negotiation decisions were good. Therefore, as more rounds of 

negotiation take place, it will be difficult to identify if a negotiation decision should be 

rewarded or penalized and to determine how much reward/penalty to apply for a decision.. 

Some negotiation schema involve employing a coordination agent who is responsible for 

solving the conflict among agents. In such cases, the decision-making policy derived by 

reinforcement learning must take into account the relationship of the coordination agent 

to the other agents based on the negotiation schema implemented in the system. The 
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learning policy table will become more complicated (more states and more actions) and 

more time will be needed for learning a proper policy. 

The reinforcement learning approach applied in this research is called one-step 

tabular Q-learning method. It is one of the most widely used reinforcement learning 

methods (Sutton and Barto, 1999). Future work may focus on applying some other 

reinforcement learning methods such as the Sarsa algorithm, R-learning algorithm, or 

actor-critic methods to the same scheduling problems of this research. Details for these 

methods can be found in Sutton and Barto (1999). The issue of exploration and 

exploitation may be crucial for reinforcement learning. In this research, the exploration 

method implemented in this research is the ε-greedy method. Future research may also 

focus on implementing other exploration strategies. Details for these other exploration 

strategies can be found in the observations by Mahadevan and Kaelbling (1996).   

The system objective in this research is minimizing mean tardiness, which is one 

of the most popular objectives for production scheduling problems (based on a review of 

the literature). Future studies may focus on applying reinforcement learning approaches 

to the scheduling problems for other popular objectives such as minimizing mean flow 

time and minimizing number of tardy jobs. The reward function proposed in this study 

must be modified to fit different objectives. For minimizing mean flow time, the 

difficulties will be in how to determine when an agent’s decision should be rewarded or 

penalized. For minimizing number of tardy job, the reward function can be designed as 

assigning one positive unit for an early job and one negative unit for a late job. This case 

is much simpler than the ones with the objectives of minimizing mean flow time and 

mean tardiness. 
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