
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-13-2003

Application of Reinforcement Learning to Multi-Agent Production Application of Reinforcement Learning to Multi-Agent Production

Scheduling Scheduling

Yi-chi Wang

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Wang, Yi-chi, "Application of Reinforcement Learning to Multi-Agent Production Scheduling" (2003).
Theses and Dissertations. 714.
https://scholarsjunction.msstate.edu/td/714

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/714?utm_source=scholarsjunction.msstate.edu%2Ftd%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

APPLICATION OF REINFORCEMENT LEARNING TO MULTI-AGENT

PRODUCTION SCHEDULING

By

Yi-Chi Wang

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Industrial Engineering
 in the Department of Industrial Engineering

Mississippi State, Mississippi

December 2003

Copyright by

Yi-Chi Wang

2003

APPLICATION OF REINFORCEMENT LEARNING TO MULTI-AGENT

PRODUCTION SCHEDULING

By

Yi-Chi Wang

Approved:

John M. Usher Royce O. Bowden
Professor of Industrial Engineering Professor of Industrial Engineering
(Director of Dissertation) (Committee Member)

William N. Smyer Steven R. Daniewicz
Associate Professor of Industrial Associate Professor of Mechanical
Engineering Engineering
(Committee Member) (Committee Member)

A. Wayne Bennett Stanely F. Bullington
Dean of the College of Engineering Professor of Industrial Engineering
 Graduate Coordinator in the
 Department of Industrial Engineering
 (Committee Member)

Name: Yi-Chi Wang

Date of Degree: December 13, 2003

Institution: Mississippi State University

Major Field: Engineering (Industrial Engineering)

Major Professor: Dr. John M. Usher

Title of Study: APPLICATION OF REINFORCEMENT LEARNING TO MULTI-
AGENT PRODUCTION SCHEDULING

Pages in Study: 114

Candidate for Degree of Doctor of Philosophy

Reinforcement learning (RL) has received attention in recent years from agent-

based researchers because it can be applied to problems where autonomous agents learn

to select proper actions for achieving their goals based on interactions with their

environment. Each time an agent performs an action, the environment’s response, as

indicated by its new state, is used by the agent to reward or penalize its action. The

agent’s goal is to maximize the total amount of reward it receives over the long run.

Although there have been several successful examples demonstrating the usefulness of

RL, its application to manufacturing systems has not been fully explored. The objective

of this research is to develop a set of guidelines for applying the Q-learning algorithm to

enable an individual agent to develop a decision making policy for use in agent-based

production scheduling applications such as dispatching rule selection and job routing.

For the dispatching rule selection problem, a single machine agent employs the Q-

learning algorithm to develop a decision-making policy on selecting the appropriate

dispatching rule from among three given dispatching rules. In the job routing problem, a

simulated job shop system is used for examining the implementation of the Q-learning

algorithm for use by job agents when making routing decisions in such an environment.

Two factorial experiment designs for studying the settings used to apply Q-learning to the

single machine dispatching rule selection problem and the job routing problem are carried

out. This study not only investigates the main effects of this Q-learning application but

also provides recommendations for factor settings and useful guidelines for future

applications of Q-learning to agent-based production scheduling.

 ii

DEDICATION

This dissertation is dedicated to my mother and the memory of my father.

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Dr. John Usher,

who has been a friend, a counselor, and an excellent role model of a hard worker, for his

patience, guidance, and encouragement during my graduate program. Appreciation is also

expressed to Dr. Stanely Bullington, Dr. Royce Bowden, Dr. William Smyer, and Dr.

Steven Daniewicz for serving as my dissertation committee members and providing their

invaluable time, advice, and guidance. I wish to thank my family for believing in me and

supporting me for all these years. Without their encouragement and patience this

endeavor would not have been possible.

 iv

TABLE OF CONTENTS

Page

DEDICATION .. ii

ACKNOWLEDGEMENTS ..iii

LIST OF TABLES ...vii

LIST OF FIGURES .. ix

CHAPTER

 I. INTRODUCTION ..1

1.1 Manufacturing Scheduling..1
1.2 Agent-Based Approach...4
1.3 Reinforcement Learning ...5
1.4 Problem Statement ..6
1.5 Objectives of Research ..7

 II. LITERATURE REVIEW ...10

2.1 Control Structure of Agent-Based Manufacturing Systems10
2.2 Dynamic Job Shop Scheduling Problems ...13

2.2.1 Job Routing Problems ...14
2.2.1.1 Heuristics ..15
2.2.1.2 Knowledge-Based System..18
2.2.1.3 Agent-Based Approaches ...19

2.2.1.3.1 Contract Net-Based Approaches ..19
2.2.1.3.2 Market-Based Approaches ...21
2.2.1.3.3 Other Approaches...24

2.2.2 Job Sequencing Problems ...25
2.2.2.1 Rolling Horizon-Based Approaches ...26

2.2.2.1.1 Rolling Horizon-Based Approaches
 (by Genetic Algorithm) ..26
2.2.2.1.2 Rolling Horizon-Based Approaches
 (by Dispatching Rules)...29
2.2.2.1.3 Rolling Horizon-Based Approaches (by Heuristics)31

2.2.2.2 Knowledge-Based Scheduling Systems32
2.2.2.2.1 Inductive Learning ...33

 v

CHAPTER Page

2.2.2.2.2 Neural Networks ..35
2.2.2.2.3 GA-Based Learning..36

2.2.2.3 Other Approaches ...37
2.2.2.4 Summary...38

2.3 Reinforcement Learning ...40
2.3.1 Markov Decision Process ...41
2.3.2 Generalization and Function Approximation ...41
2.3.3 Exploration and Exploitation..42
2.3.4 RL Applications to Manufacturing Systems ...42
2.3.5 Other Applications of RL ...44

2.4 Summary of Literature Review...45

 III. Q-LEARNING FOR SINGLE MACHINE JOB DISPATCHING........................53

3.1 Single Machine Dispatching Rule Selection...53
3.2 Q-Learning Algorithm ..54
3.3 Factors for Applying Q-Learning to Single Machine Dispatching
 Rule Selection..55

3.3.1 Factors for Constructing the Policy Table ..55
3.3.2 Factors for Developing the Reward Function...58
3.3.3 The Other Factors ...60

3.4 Design of Experiment ...62

 IV. Q-LEARNING FOR JOB ROUTING..64

4.1 Agent-Based Job Shop System...64
4.1.1 Job Agent ..65
4.1.2 Machine Cell Agent ..65

4.2 Factors for Applying Q-Learning to Job Routing...66
4.2.1 State Determination Criteria ...67
4.2.2 Factors for Developing the Reward Function...71

4.3 Design of Experiment ...72

 V. EXPERIMENTAL RESULTS ...78

5.1 The Single-Machine Dispatching Rule Selection Problem..............................78
5.1.1 Experimental Results ..78
5.1.2 Discussion...87

5.2 The Ten Machine Job Routing Problem...88
5.2.1 Experimental Results ..88
5.2.2 Discussion...97
5.2.3 Mean Tardiness of Prior Operations ...99
5.3.4 Traditional Routing Heuristics and Q-Learning Routing Policies101

 VI. CONCLUSIONS ..102

 vi

CHAPTER Page

6.1 Summary and Conclusions ...102
6.2 Directions for Future Research...104

REFERENCES ..107

 vii

LIST OF TABLES

TABLE Page

2.1 Summary of Control architectures ...13

2.2 Types of Routing Flexibility..15

2.3 Comparison of the Agent-Based Approaches..24

2.4 Summary of Rolling Horizon-Based Approaches ...32

2.5 A Summary of Problem Assumptions in Previous Studies47

2.6 A Summary of the Problem Size of the Examples in Previous Studies49

2.7 A Summary of Performance Measures in Previous Studies51

3.1 An Example of a 10-state Policy Table ...57

3.2 An Example of 10-range Reward Function...60

3.3 Experimental Factors and Their Levels ...61

3.4 A full factorial (25) experiment is conducted under the following conditions63

4.1 A Policy Table Using Feature ID as the State Determination Criterion....................68

4.2 A Policy Table Using Feature ID and NIQ as the State Determination Criteria68

4.3 A Policy Table Using Feature ID and WIQ as the State Determination criteria70

4.4 An Example of 10-range Reward Function...72

4.5 Experimental Factors and Their Levels ...73

4.6 Process Plan...73

4.7 Machine Capability..74

 viii

TABLE Page

4.8 A 3×2×2×2 factorial experiment is conducted under the following conditions77

5.1 Significant Interaction found by ANOVA...78

5.2 Experimental Results of Single-Machine Dispatching Rule Selection Problem (0:
level 1, 1: level 2) ..80

5.3 The Results of Duncan’s Test for System Condition HT (a = 0.05).........................81

5.4 The Results of Duncan’s Test for System Condition HL (a = 0.05).........................82

5.5 The Results of Duncan’s Test for System Condition LT (a = 0.05)83

5.6 The Results of Duncan’s Test for System Condition LL (a = 0.05)84

5.7 Best Factor Level Combinations for Various System Conditions85

5.8 Results of using the individual Dispatching Rules and the Q-learning algorithm86

5.9 Significant Interaction found by ANOVA...89

5.10 Experimental Results of Job Routing Problem (0: level 1, 1: level 2, 2: level 3) ...92

5.11 The Results of Duncan’s Test for System Condition HT (a = 0.05).........................93

5.12 The Results of Duncan’s Test for System Condition HL (a = 0.05).........................94

5.13 The Results of Duncan’s Test for System Condition LT (a = 0.05)95

5.14 The Results of Duncan’s Test for System Condition LL (a = 0.05)96

5.15 Best Factor level Combinations for Various System Conditions96

5.16 An Example of 10-range Reward Function...100

5.17 Performance Comparison: Heuristics versus Q-Learning Policies 101

 ix

LIST OF FIGURES

FIGURE Page

3.1 The Q-Learning Algorithm (Sutton and Barto, 1999) ...54

4.1 An Example of the Observed Learning Progress (with Setting A3_BCd)76

5.1 A-B Interaction Under HT Condition..90

5.2 A-C Interaction Under HT Condition..90

5.3 A-D Interaction Under HT Condition..91

5.4 B-D Interaction Under HT Condition..91

5.5 Performance Improvement (MTPO vs. EMPT) ..100

 1

CHAPTER I

INTRODUCTION

1.1. Manufacturing Scheduling

A long and profitable life is every enterprise’s goal. For a manufacturing

enterprise, to maintain profitability requires that they continually excel in converting raw

materials into value-added products that meet the customers’ needs. This conversion

procedure consists of a set of complicated and interrelated activities such as designing,

planning, production, inventory control, quality assurance, etc. To remain competitive in

the market, manufacturers must focus on continually improving their processes.

Production scheduling that translates the detailed process plans into the shop floor

schedule is one of the most important processes in manufacturing systems. A good

production schedule can provide such benefits as increased shop throughput, enhanced

customer satisfaction, lower inventory levels, and increased utilization of resources.

Therefore, there is a great need for good scheduling strategies.

Scheduling problems essentially involve completing a set of jobs with a limited

number of manufacturing resources under a number of constraints to optimize a particular

objective function. These problems are known to be hard and usually belong to the NP-

complete class of problems (Morton and Pentico, 1993; Pinedo, 1995). Research in

production scheduling has been conducted for many decades and a large number of

algorithms and heuristics have been developed for various scheduling problems. A

2

scheduling problem consists of three components: a machine environment, specific job

characteristics, and one or more optimality criteria (Brucker, 2001). The machine

environment represents the type of the manufacturing system that will execute the

developed schedule. The manufacturing system may be a job shop system, flexible

manufacturing system (FMS), cellular manufacturing system, transfer line, etc. Job

characteristics represent such factors as the number of operations, the precedence

relations among operations, and the possibility of preemption (whether the job can be

split). Optimality criteria are the objectives to pursue when scheduling the jobs. Common

objectives include minimizing makespan, mean flow time, mean lateness, the number of

tardy jobs, and mean tardiness. All the three components mentioned above specify the

variety and complexity of each scheduling problem.

A scheduling problem may be comprised of two sub-problems: job routing and

job sequencing problems. A job routing problem involves assigning the operations of

jobs to the specific machines. Such problems result from the allowance of routing

flexibility. Routing flexibility depends on the capability of the machines. A versatile

machine is capable of performing different operations. The versatility of the various

machines in a shop essentially supports the possibility for the existence of alternative

process plans for a job. Routing flexibility is a key issue that has increasingly attracted

attention in modern manufacturing systems. A FMS, which consists of a set of computer

numerically controlled machines (CNC) linked with an automated material handling

system, is a computerized system that is able to produce mid-volume and mid-variety

products with high levels of efficiency. The FMS provides routing flexibility due to the

capability of NC machines. Once the route of a job is specified, decision makers must

3

determine the production sequence of the jobs awaiting their next process in the machine

queue. A simple approach to such problems is to adopt dispatching rules. A dispatching

rule is a priority rule used to determine the order in which the jobs waiting in the machine

queue are to be processed as soon as a machine becomes available. Dispatching rules are

useful for finding a reasonably good schedule. The dispatching rules are attractive

because of their simplicity and ease of implementation. A variety of dispatching rules

have been proposed in recent decades, with Panwalkar and Iskander (1977) identifying

the existence of more than 100 distinct rules. Scheduling in industry may require meeting

several objectives simultaneously. However, a dispatching rule often favors one

performance measure only at the expense of other performance measures. In addition, the

manufacturing environment usually changes over time. Therefore, the specific

dispatching rule employed in such a dynamic environment should be free to change as

well.

One of the most notoriously difficult systems for the scheduling community is the

job shop system. The strategy of a job shop is based on producing a wide variety of

products in very low volumes. Producing such variable products requires different

sequences. In a traditional job shop layout, machines are functionally grouped together.

For the case of an actual shop floor, uncertainties (i.e., machine breakdowns, material or

tool shortages, transportation delays, etc.) complicate the scheduling problem making it

more difficult to solve. Therefore, several assumptions are usually made to simplify the

problem (i.e., resources are always available, all the jobs are known in advance, all the

operation processing times are known and constant, transportation times are ignored,

etc.). However, application of too many such assumptions may result in the treatment of

4

scheduling problems that would be considered unrealistic. That is why the job shop

scheduling problems have attracted so much attention over many decades.

1.2. Agent-Based Approach

Due to the structural rigidity of classical centralized control architectures in

manufacturing, the decentralized (or heterarchical) control structure has drawn more

attention (Crowe and Stahlman, 1995; Dilts et al., 1991; Duffie and Prabhu, 1994). One

of the most important properties of the heterarchical structure is that the decision-making

responsibilities are fully distributed to each component of the system. Each component is

autonomous and possesses local knowledge that is sufficient to accomplish its own task.

The task that a single component is unable to finish alone may require the cooperation of

a cluster of components. Communication is a means of establishing such cooperation

between the autonomous components. Under the guidance of such a control architecture,

the requirements of the next generation of manufacturing systems, such as good fault-

tolerance, ease of reconfigurability and adaptability, and agility, can be achieved (Shaw

and Norrie, 1999).

In recent years, a new paradigm called agent technology has been widely

recognized as a promising paradigm for developing software applications able to support

complex tasks. From the perspective of a software application, an agent can be viewed as

a computational module that is able to act autonomously to achieve its goal (Weiss, 1999;

Brenner et al., 1998; Shen et al., 2000). Wooldridge and Jennings defined an intelligent

agent as a hardware or software-based computer system with the properties such as

autonomy, social ability, reactivity and pro-activeness (Murch and Johnson, 1998). The

idea of agent-based approaches has also offered a promising solution for controlling

5

future manufacturing systems requiring flexibility, reliability, adaptability, and

reconfigurability. Agent technology fits naturally into the decentralized control structure

for manufacturing systems because the autonomous component can easily be represented

by an agent that is defined as an autonomous, pro-active element with the capability to

communicate with other agents (Weiss, 1999). In fact, agents can be used to represent

physical shop-floor components such as parts, machines, tools, and even human beings.

Under the application of multi-agent systems, each agent is in charge of information

collection, data storage, and decision-making for the corresponding shop floor

component. A popular scheme to achieve cooperation among autonomous agents is

through the negotiation-based contract-net protocol (Smith, 1980). The contract-net

protocol provides the advantage of real-time information exchange, making it suitable for

shop floor scheduling and control.

1.3. Reinforcement Learning

One significant issue for improving an autonomous agent’s capability is that of

how to enhance the agent’s intelligence. Learning is one mechanism that could provide

the ability for an agent to increase its intelligence while in operation. Developed in the

early 1990s, reinforcement learning (RL) has generated a lot of interest from the research

community. As opposed to the popular approach of supervised learning whereby an agent

learns from examples provided by a knowledgeable external supervisor (Weiss, 1999),

reinforcement learning requires that the agent learn by directly interacting with the

system (its environment) and responding to the receipt of rewards or penalties based on

the impact each action has on the system. Although there have been several RL

applications demonstrating the usefulness of RL (Sutton and Barto, 1999; Mahadevan

6

and Kaelbing, 1996), its application to manufacturing systems has not been fully

explored.

1.4. Problem Statement

This study proposed the use of an agent-based approach for handling a dynamic

job-shop scheduling problem. Every customer order consists of a batch of identical parts

with each part comprised of a set number of features defined by the customer. Each

feature requires at least one operation. Routing flexibility is considered here by providing

alternative processing routes to produce the same product. These alternatives are taken

into account in the process plan and arise due to the availability of multiple machine

types for processing a specific operation.

Two types of agents are used in the system: job agents and machine cell agents.

Each job agent representing a specific job is in charge of determining proper operation

routing by negotiating with the cell agents that have the potential to finish the operations.

Each machine cell agent represents one machine cell that may be comprised of one (or

more than one) identical machine. All the machines in the same cell share the same

buffer. Each machine cell agent determines the next job (from the buffer) for processing

when any machine in the cell is available. That is, the job agents are responsible for

solving the routing problem, while the cell agents work out the sequencing problem.

In this study, job routes are dynamically determined through negotiation between

job and machine cell agents. A contract net-based mechanism is implemented for agent

negotiation. On the other hand, Dispatching rules (DR) are employed to solve the job

sequencing problems. However, no single DR can be really dominant across all possible

scenarios (Chiu and Yih, 1995; Kouiss et al., 1997; Pierrval and Mebarki, 1997;

7

Subramaniam et al., 2000). Employing an appropriate DR should depend on the real-time

shop circumstances. Therefore, the sequencing problem in this study is actually becoming

a DR selection problem. This research is concerned with investigating the application of a

reinforcement learning (RL) approach proposed for training job agents to learn a good

policy for dynamic making routing decisions and for training machine cell agents to learn

a good policy for selecting an appropriate dispatching rule. To apply RL in this study, the

following issues must be dealt with:

1. How to specify the states, actions, and penalties and rewards?

2. How do various state determination criteria affect learning performance?

3. How do the parameters of the RL approach impact learning performance?

4. How do various reward functions affect learning performance?

Currently, implementing multi-agent systems in dynamic scheduling is still a

highly popular research area. Performance of the agent-based approaches not only relies

on the cooperation among the agents but the capability of the agents. In this research,

enhancing the agent’s capability in terms of making good decisions will significantly

benefit applying agent technology to complex dynamic scheduling problems.

1.5. Objective of the Research

The overall goal of this research is to develop a set of guidelines (or

recommendations) for applying the Q-learning algorithm to enable an individual agent to

develop a decision making policy for use in production scheduling applications such as

dispatching rule selection and job routing. The focus of the study is specific to agent-

based systems employed in dynamic job shop environments. Suresh and Chaudhuri (1993)

surveyed the approaches for the dynamic scheduling problems and identified some

8

essential characteristics of a good scheduling system. According to their survey, a good

scheduling system should be efficient in terms of meeting due dates and reducing cost,

generate schedules using actual information from the current environment, and provide

flexibility to react to disruptions in an efficient and timely manner. Agent-based

approaches seem promising for building a good scheduling system. Currently,

implementing multi-agent systems in dynamic scheduling is still one of the most active

research areas. In this study, a multi-agent heterarchical system is developed for solving

complex production scheduling problems.

Applications of RL techniques to manufacturing systems have not been

thoroughly explored yet. The proposed study investigates how Q-learning algorithm can

be used by job agents to construct policies for making real-time routing decisions and by

machine agents to discover a policy for selecting a proper DR. At present, most of the

agent-based research focuses on the issues of negotiation and cooperation among agents.

Addressing learning in a multi-agent environment can help agents improve both their

performance and that of the system as well (Shen et al. 2000). RL requires that the agent

learn by directly interacting with its environment and receive rewards or penalties based

on the impact each of its actions has on the system. Therefore, RL may provide an on-line

learning capability for individual agents. The successful application of the Q-learning

algorithm to agent-based scheduling problems in this research will provide researchers

with additional knowledge on the application of RL techniques to agent-based

manufacturing systems.

The next chapter provides a review of the literature that introduces related

research work providing more details about manufacturing control structures, traditional

9

approaches and agent-based approaches to dynamic scheduling problems, and

applications of reinforcement learning to manufacturing systems. The methodologies of

this research will be described in Chapter 3 and Chapter 4. Chapter 5 consists of the

experimental results and discussion. The conclusions are presented in Chapter 6.

 10

CHAPTER II

LITERATURE REVIEW

2.1. Control Structures of Agent-Based Manufacturing Systems

The control architecture employed in manufacturing systems plays an important

role in defining the interactions among the manufacturing components because it

identifies the decision-making responsibilities of each system component. The earliest

control architecture is the centralized structure. The characteristics of the centralized

control architecture is that there exists only one central computer performing all the

information processing functions and maintaining global databases to record all the

activities of the system. The centralized control architecture simplifies optimization since

it holds all global information in a single control unit. The overall system status can be

obtained by accessing the single control unit. As well, communication overhead is low in

such a system. These advantages of centralized control structures are tarnished because of

a complete reliance on the fault tolerance of a single central computer. As the size of the

manufacturing system grows and becomes more complicated, the speed of response may

be degraded due to the limited capability of the central computer.

To resolve the deficiencies of the centralized structure, the load on the central

computer must be distributed. One approach employs a hierarchical control structure

consisting of a small number of layers (usually three to five). The upper-level layers have

more authority and responsibility for decision-making than the lower-level layers. The

11

structure defines rigid master/slave relationships between components on one layer and

those below and above and each component in the hierarchy is only able to only

communicate with these components. Command information flows top-down, and

feedback information flows bottom-up. All the components in the system are assumed to

possess deterministic behavior.

The hierarchical control structure became popular in manufacturing starting in

early 1980s and was supported by such efforts as that of NIST’s AMRF (Jones and

McLean, 1986). Although achieving global optimization may be possible with this type

of control structure, such systems may not be sensitive to the unexpected events (e.g.,

machine breakdown, rush orders, etc.) in the manufacturing environment because

information exchanges between system components are not very efficient. For example,

the information of each lower-level component must pass through an upper-level

controller to reach another lower-level component. In addition, use of the rigid

hierarchical structure makes it difficult to modify or extend the existing system.

Therefore, the hierarchical control structure is unable to handle the expansion and

frequent reconfiguration needs required of future manufacturing systems (Maturana et al.,

1999).

In order to overcome the weaknesses of the hierarchical architecture, a

heterarchical (decentralized) control approach has been recommended for future

manufacturing systems (Duffie and Prabhu, 1994). It is a completely decentralized

structure containing no supervisor level where the decision making responsibilities are

fully distributed to each component of the system. Each component is autonomous and

possesses sufficient local knowledge to accomplish its own task. A task that a single

12

component is unable to finish alone may require the cooperation of a cluster of

components. Communication is the key for achieving cooperation between the

autonomous components.

Crowe and Stahlman (1995) point out that the overall system complexity and

supervisory costs can be reduced when using heterarchical control structures. They also

state that system maintenance and modification is simplified for such systems compared

to hierarchical control. Okubo et al. (2000) compared the abilities of distributed and

centralized production control systems on response time, planning scope, and progressive

accuracy. Progressive accuracy is the difference between the prescribed plan and the

results from actual production. The larger the differences between estimated and actual

processing times are, the longer the lead time will be. Okubo et al. found that a

decentralized system allows a larger gap (poorer accuracy) than a centralized system.

Their simulation results showed that a distributed control system enables a shorter

response time, narrower planning scope, and higher progressive accuracy than a

centralized control system. However, when the system is under a heavy load the

centralized control system provides shorter lead-times than decentralized control because

the centralized system controls the WIP level with a more global perspective . One of the

major inherent defects of the heterarchical control structure is poor global optimization

(Dilts et al., 1991). This problem results from the high autonomy of the individual

components that do not possess a global perspective. Resolving this defect requires a

robust mechanism to support cooperation between the autonomous components. It is

believed that the benefits that a decentralized control architecture provides include fault-

tolerance, ease of reconfigurability and adaptability, and local autonomy, and thereby,

13

fulfill the requirements of future manufacturing systems (Dilts et al., 1991; Shen and

Norrie, 1999). Table 2.1 provides a summary of control architrctures.

Table 2.1. Summary of Control architectures

Architecture Features Advantages Disadvantages
Centralized • Single control

unit

• Global optimization
• Easy to access to

global information

• Heavy load on the
central control unit

• Poor fault-
tolerance

Hierarchical • Master/slave
relationship

• Commands flow
top-down.

• Feedbacks flow
bottom-up

• Possible global
optimization

• Good predictability

• Poor scalability
• Poor

reconfigurability
• Poor adaptability
• Heavier load for

higher level
components

Heterarchical • Local Autonomy
• Peer to peer

communication
• Cooperation

• Reduced complexity
• Good fault-tolerance
• Good scalability
• Good

reconfigurability
• Good adaptability

• Poor global
optimization

• Poor predictability

2.2. Dynamic Job Shop Scheduling Problems

As was introduced in the previous chapter, the variety, complexity, and scope of a

scheduling problem is determined by the machine environment, specific job

characteristics, and performance criteria. A review of dynamic job shop scheduling

problems reveals that a variety of problem assumptions have been employed in the

various research studies. Therefore, it is impossible to directly compare the strategies for

these scheduling problems. In general, manufacturing scheduling problems can be

classified into routing problems and sequencing problems. The next two sub-sections

provide a review of the literature for these two problems.

14

2.2.1 Job Routing problems

In the context of this study, a job is considered to be a job order consisting of a

batch of identical discrete engineered parts. Each part requires the service of one or more

machines in order to complete the processing necessary to satisfy the order. A job routing

problem results from the allowance of flexibility in the routing of a job through the shop.

Routing flexibility of a manufacturing system can be defined as the ability to

manufacture a product by alternative routes (Das, 1996). Lin and Solberg (1991)

identified four types of routing flexibility based on the availability of alternative

machines for an operation, alternative operations for a feature, and alternative operations

sequences for a job. For the case of no routing flexibility, a job is completed using a fixed

sequence of operations and each operation must be processed on a specific machine.

There are no alternative machines capable of performing the same operation. For the

fixed sequencing type, the operations of a job must be performed in a fixed sequence, but

there can be more than one machine capable of processing any given operation. This case

is extended in third type, flexible sequencing, where alternative sequences of the

operations are permitted. The last type is flexibly processing where alternative sequences

are permitted whereby alternative operations may be available for machining each feature

and alternative machines employed to perform the selected operation. The comparison of

these four types of routing flexibility is shown in Table 2.2.

Lin and Solberg (1991) compared different cases of these four types of routing

flexibility and concluded that the flexible processing case is always superior to the other

three cases. Chan (2001) used Taguchi experimental design techniques to study the

effects of different levels of routing flexibility on the performance of a FMS. In his study,

15

routing flexibility is defined as a measure of the average number of choices of a machine

that an individual part can choose. He found that increasing routing flexibility doesn't

guarantee an improvement in system performance. Chan concluded routing flexibility

with a measure of 2 (meaning that on average, each job has two options of which

machine to use for its next operation) provided the best system performance under the

measures of makespan and flow time.

Table 2.2. Types of Routing Flexibility

 No

Flexibility
Fixed

Sequencing
Flexible

Sequencing
Flexible

Processing
Alternative M/C for an operation No Yes Yes Yes
Alternative operation for a feature No No No Yes
Operation sequence of a job Fixed Fixed Flexible Flexible

2.2.1.1 Heuristics

Choi and Malstrom (1988) evaluated the performance of traditional scheduling

rules using a simulation of an FMS system constructed using data from a real FMS. The

rules evaluated consist of seven job dispatching rules and four machine selection rules

creating a total of 28 combinations. Each combination was evaluated by six performance

criteria. Their simulation results indicated that the WINQ (the least work in queue in

terms of processing time) was the best machine selection rule.

Ro and Kim (1990) proposed three machine selection heuristics (ARD, ARP, and

ARPD). The ARD rule is a rule to select the machine that has the shortest time composed

of a sum of travel time, queuing time, and processing time. Use of the ARP rule requires

that routes be determined by a linear programming (LP) model whose objective is to

minimize makespan. Implementation of the ARP rule requires that the LP model be

16

solved whenever a new job arrival or a machine breakdowns. The ARPD rule is a

combination of ARD and ARP. Initially, the routes are determined by solving the LP

model, but if the primary machine (from LP solution) is busy, a machine is selected based

on the ARD rule. Ro and Kim compared their three heuristics with two other heuristics

(NAR and WINQ). The NAR is a rule to select the route with the minimum total

processing time (no alternative routes are permitted). From their simulation results, ARD

gave the best results in four performance measures (makespan, mean flow time, mean

tardiness, and maximum tardiness) except for system utilization. They also found that

ARD, APRD, and WINQ were significantly better than ARP and NAR in every

performance measure.

Yao and Pei (1990) proposed another definition for the measure of routing

flexibility. Their measure of routing flexibility was called “entropy”. The entropy

measure takes into account the number of all the immediate next operations, the

alternative machines for each of these operations, and the reliability of these machines.

Yao and Pei then proposed a heuristic approach called “least reduction in entropy” (LRE),

which consists of a machine selection rule and a job selection rule on the basis of

incurring the least reduction in entropy. They compared LRE with SPT using a simulated

four-machine production system. Their results showed that LRE either outperforms or is

as good as SPT in the measures of makespan and machine utilization.

Shmilovici and Maimon (1992) compared three routing heuristics, fixed priorities

(FP), least reduction in entropy (LRE), and minimum flow resistance (MFR), and

analyzed the computational complexity of these three heuristics. According to their

experimental results, FP was easy to implement and required less computational effort,

17

LRE was not as effective as reported by Yao and Pei (1990), and MFR outperformed the

other heuristics in terms of throughput but required more expense due to increased buffer

size. They also found that controlling buffer size had a significant impact to the system

throughput for any of the three heuristics.

Chandra and Talavage (1991) developed a heuristic dispatching system for FMS.

In their system, a part after completing an operation is not routed to a specific machine,

but is sent to a global buffer. The routing decisions are not made by the parts, but by the

machines. Their dispatching mechanism categorizes and selects the jobs based on a pre-

defined algorithm. The mechanism was also able to deal with a scheduling problem with

multiple objectives. The authors compared their system to the four traditional dispatching

rules (SPT, EDD, LSPO, LRS). Their dispatching system consistently outperformed

those dispatching rules under various circumstances. They concluded that making

decisions with simple commonsense reasoning combining some empirically proven

dispatching rules could achieve a significant improvement.

Subramaniam et al. (2000a) proposed three route selection rules: LAC, LAP, and

LACP. LAC selects the machine with the lowest average cost of processing every

operation in the machine queue. For LAP machine selection is based on the lowest

average processing time of every operation in the machine queue. LCAP awards the

highest priority to the machine that has the minimum aggregate cost and processing time.

Their results found that LAC and LAP rules perform well for the mean cost and mean

tardiness performance measures, respectively, while the LACP rule exhibits performance

that is between the LAC and LAP rules.

18

Among the above routing heuristics, WNIQ, ARD, LAC, and LAP are the

approaches that are not only able to provide promising results, but also easy to implement

in real time. Some of these approaches will be used as benchmarking approaches in this

research.

2.2.1.2 Knowledge-Based System

Bowden and Bullington (1996) developed a machine learning system called

Genetic Algorithm Rule Discovery System (GARDS) to discover the best control

strategies for the dynamic routing problems. GARDS consists of two components: the

Unsupervised Learner and the Plan Manager/Evaluator. The Unsupervised Learner

component used a rule-based GA (a rule represents a chromosome) to evolve new

populations of control strategies. The Plan Manage/Evaluator component connected with

the problem domain’s simulation model to evaluate the population of the solutions

generated by the Unsupervised Learner. The authors demonstrated that GARDS is able to

learn effective routing control strategies in a three parallel machine problem as well as a

flexible cellular manufacturing system consisting of 13 machines arranged in 4 cells.

However, learning in GARDS is long and requires hundreds of simulation runs.

Palmer (1996) developed another learning system called Genetic Algorithm

Prototype Learning System (GAPLS). GAPLS is similar to GARDS except that instead

of using a rule-based knowledge representation, GAPLS employed prototypes of clusters

to represent knowledge. Using prototypes rather than rules in the GA essentially reduces

the complexity of the genetic operators used in searching the control knowledge (Palmer,

1996). The author compared GAPLS with GARDS. GAPLS outperformed GARDS by

providing a better routing solution as well as a quicker learning speed.

19

2.2.1.3. Agent-Based Approaches

2.2.1.3.1. Contract Net-Based Approaches

In an agent-based dynamic routing problem, agents are used to represent each

resource and job. The job agent associated with a job will announce its requirements for

the next operation to those resource agents that have the potential to perform that

operation. The resource agents who receive the announcement message will respond with

a bid message to the job agent. All the bids submitted for the job’s next operation will be

evaluated by the job agent based on a set of heuristics and then one resource will be

selected and awarded a contract for performing the operation. The above bidding

procedure is the core of the contract-net protocol. Bidding schemes based on the contract-

net protocol may differ in such aspects as the timing of message exchanges involving

announcements and bid collection, information reported within the bid, and the rules used

in bid evaluation.

Shaw (1988) employed the contract-net method for dynamic scheduling in

cellular manufacturing systems. In his approach, when an operation of a job at a cell is

finished, the cell’s control unit will make the decision regarding which cell the job should

visit next. To do that, the cell’s control unit broadcasts the task announcements to the

other cell control units. The cell control unit who received a task announcement checks if

the required operation is within its capability and submits its estimation on the earliest

finishing time (EFT) or shortest processing time (SPT). There is no job agent in this case.

Each job’s route is determined through the negotiation between the cells. Shaw’s

experimental results indicated that the bidding scheme with EFT (earliest finishing time)

outperformed the bidding scheme with SPT (shortest processing time).

20

Saad et al. (1997) proposed a contract-net-based heterarchical scheduling

approach for flexible manufacturing systems. In their study, two scheduling mechanisms

were tested. The first is the Production Reservation (PR) method where all the operations

of a job are scheduled completely at the time when it arrives to the system. The other

method, referred to as Single Step Production Reservation (SSPR), schedules one

operation at a time with the job agent delaying negotiation of its next operation until the

current operation is finished. In the contract-net protocol, a job agent selects the machine

that can finish processing the required operation first. If at least two alternatives are tied

for this criterion, the job agent will choose the machine with fewer jobs in its reservation

list. They compared the PR and SSPR approaches with some traditional dispatching rules.

Their results showed that PR outperformed the traditional dispatching rules, while SSPR

only outperformed PR on average tardiness. However, unexpected events such as

machine breakdowns or emergent jobs were not considered in their experiments.

Otherwise, SSPR should be able to take the advantage in the face of these uncertainties.

Xue et al. (2001) developed an intelligent optimal scheduling mechanism that

uses a constraint-based search mechanism to identify the best sequence to accomplish the

required tasks, as well as timing parameter values (the earliest and the latest task finish

times). Given the timing parameter values, the agent-based collaborative mechanism was

used to generate a production schedule. Their agent-based collaborative mechanism

consists of a bidding mechanism and a mediator mechanism. Their bidding mechanism is

implemented based on the contract-net protocol. The mediation mechanism is used to

coordinate the activities of the relevant agents to improve the scheduling efficiency. In

their approach, the manufacturing resources, including facilities and persons are modeled

21

as agents. Two mediators, facility mediator and personnel mediator, are used to

coordinate the activities of the resource agents.

Oulhadj et al. (1998) presented a negotiation strategy similar to the approach of

Shaw (1988). The resource agent is responsible for establishing the negotiation with other

resource agents in order to select the most appropriate resources to allocate to the specific

task operations. The PR method was employed in their study. Oulhadj et al. (1999)

extended the contract-net protocol to a multi-contract net protocol. It provided the

function of scheduling several tasks simultaneously. Their experimental results showed

that the time required to schedule operations with this approach and the run time

including scheduling and execution both are linear rather than exponential with the

increase of the number of scheduled tasks.

Sousa and Ramos (1996, 1998, 1999) proposed a contract net-based negotiation

protocol for scheduling in manufacturing systems. The bid submitted from the resource

agent consists of the information concerning the time windows that the resources are free.

Selecting bid was based on the resources being able to finish the part before the due date

and with more free time intervals. The authors also mentioned about renegotiation phase

when a machine malfunctions. However, no further explanation is given on how to deal

with the scheduled operations that are affected by this malfunction.

2.2.1.3.2 Market-Based Approaches

The other agent negotiation approach called market-like approach is very similar

to the contract-net protocol except currency is used for bid evaluation. Each job agent

carries some amount of currency and pays the resource agent for processing the

operation. In every bidding process, the job agent who is able to offer the highest bid

22

takes priority of being processed. The agent negotiation strategies in the studies presented

below employ a market-based approach.

Lin and Solberg (1992) presented an agent-based shop floor scheduling and

control framework based on a market-like model that combined the objective and price

mechanisms. In their system, each job agent with its unique set of weighted objectives

enters the system with some currency and alternative process plans. To achieve the

objectives, job agents will try to fulfill the processing requirements by bargaining with

resource agents. Each resource agent sets its charging price based on its status. The part

agent tries to minimize the price paid, but the resource agent’s goal is to maximize the

price charged. Each deal is completed once the part agent and resource agent are

mutually committed. One important feature of this market-like mechanism is that the

negotiation among agents is invisibly guided by an adjustable price to improve the

system performance. Lin and Solbergs’ results essentially showed that their system was

able to handle unexpected resource failures and part objective changes. Lin and Solberg

(1994) later presented a manufacturing simulation system based on the dynamic price

mechanism for agent negotiation. The proposed agent-based framework simplifies

implementation of different negotiation strategies in manufacturing systems.

Dewan and Joshi (2000, 2001) developed an auction-based scheduling mechanism

for a job shop environment. They also used currency as a means for agent negotiation.

Their market-like approach differed from Lin and Solbergs’ (1992) in using Lagrangian

relaxation to decompose the problem formulation. Whenever a machine agent is

available, it announces an auction for time slots from the current time to the end of the

time horizon. Each job agent will bid for the time slots with the cost that they are willing

23

to pay. The job agent’s goal is to minimize cost, while the machine agent uses the

submitted bids for price adjustment. If more than one job demands the same time slot, the

price for that slot will increase. The price adjustment and bid calculation continue

iteratively until the price converges. The machine agent determines the best bid for the

earliest time slot as the next operation. After processing is finished for that operation, the

above auction procedure is executed again. Dewan and Joshi (2000) further used the

above mechanism to schedule the jobs with different objectives.

Ottaway and Burns (2000) proposed an agent-based negotiation involving a

currency scheme. In their model, the amount of currency that a job agent carries is based

on the job’s objective function, a weighted linear combination of time, cost, and quality.

The resources determine the amount of currency to be charged for their production

services based on their capabilities and the demand for their services. It is noted that there

is an incentive factor for preventing a job from being stuck in the system due to a lack of

currency. This factor is used to increase the budgeted funds for the jobs that kept failing

in the bidding process. Ottaway and Burns also addressed the importance of using

supervisor agents to balance the production load and maximize overall throughput. The

supervisor agents essentially played a key role for dynamically switching the system

structure between a hierarchy and a heterarchy. Table 2.3. shows a comparison of the

agent-based approaches mentioned earlier. The features of the systems considered are

defined as:

1. Control structure: (Hi) hierarchy, (He) heterarchy, or (Q) quasi-heterarchy.

2. Negotiation approach: (C) Contract-net protocol, (M) Market-like mechanism,

or (O) others)

24

3. What agent initiates the negotiation process? ((P) Part agent or (R) Resource

agents)

4. What agent makes the final decision for each negotiation? ((P) Part agent, (R)

Resource agent, (B) Both, or (M) Mediator)

5. How many passes of messages are required for routing a job to a machine? ((S)

Single pass or (M) Multiple passes)

6. Decision-making frequency: (PR) PR, or (SS) SSPR.

Table 2.3. Comparison of the Agent-Based Approaches

Agent-related studies 1 2 3 4 5 6
Dewan and Joshi (2000,2001) He M R R M SS
Kpothapall and Deshmukh (1999) He M P P S SS
Lin and Solberg (1992) He M P P S SS
Ouelhadj et al. (1998) He C R R S PR
Ottaway and Burns (2000) Q M P P S SS
Saad et al. (1997) He C P P S PR, SS
Shaw (1988) He C P P S SS
Sousa and Ramos (1996, 1998, 1999) He C P R S PR
Xue et al. (2001) He C R M S PR

2.2.1.3.3. Other Approaches

Cicirello and Smith (2001) proposed an ant colony approach in multi-agent

systems in shop floor routing. In their approach, an agent is considered as an ant. When a

job is released to the shop floor, it is assigned to an ant to carry it through the shop. There

is no direct communication between resources and ants. All communication is carried out

indirectly with the pheromone that each ant leaves on the resources that they use. In other

words, the ants dynamically make the shop routing decisions through the use of simulated

pheromone trails. Their experiment results showed that the ant colony control approach

25

outperformed the local decision making approaches from the standpoint of global

performance. The most complex case in their experiments is a flow shop with four

machines and processing only two job types. More complicated experiments need to be

conducted to prove the robustness of this approach. Also, implementing this approach

requires four parameters. The authors did not clearly explain how to set these parameters.

2.2.2. Job Sequencing Problems

Dynamic job sequencing problems make use of two principal approaches:

scheduling/rescheduling and dispatching rules (DR). For the scheduling/rescheduling

approach, a schedule is generated for all the given operations in the beginning before a

job is released. Rescheduling is triggered in response to some unexpected event or a

change in the status of the shop. The computational time and the frequency for

scheduling are crucial when employing this approach. A job sequencing problem can be

NP-complete and very time-consuming to solve. Scheduling too frequently may result in

the delay of actual operations. On the other hand, scheduling infrequently may result in

poor system performance due to ignoring some events that may significant impact system

status (Sabuncuoglu and Karabuk, 1999).

Scheduling by using dispatching rules is an on-line scheduling approach in which

operations are scheduled one at a time. A dispatching rule is concerned with selecting a

job from the queue of a particular machine to be processed based on some criteria. This

local decision can be made very quickly. Use of dispatching rules is attractive because of

their simplicity and ease of implementation. However, the dispatching rules have the

following shortcomings:

26

1. A DR always blindly pursues a single objective. (Chandra and Talavage,

1991) In reality, a set of objectives may be important simultaneously.

2. No single DR can be really dominant across all possible scenarios (Chiu and

Yih, 1995; Kouiss et al., 1997; Pierrval and Mebarki, 1997; Subramaniam et

al., 2000b).

3. A DR does not take in account the status of the other resources.

2.2.2.1. Rolling Horizon-Based Approaches

In the rolling time horizon approach, a scheduling problem is decomposed into a

series of sub-problems by time intervals. The next three sub-sections provide a review of

three types of rolling horizon-based approaches.

2.2.2.1.1. Rolling Horizon-Based Approach (by Genetic Algorithm)

A genetic algorithm (GA) is a promising search technique. The algorithm starts

with a set of solutions (represented by chromosomes) called a population. Solutions from

one population are taken and used to generate a new population (offspring). Solutions

from the new population are selected according to their fitness value (the more suitable

they are the more chances they will be selected). The selected solutions will be used to

generate the next population making use of the two key GA operators: crossover and

mutation. The above procedure is repeated until either no significant improvement in the

fitness is seen from one generation to the next, or the number of generations created

reaches a predefined maximum. GAs have received considerable attention and been

widely applied in the area of production scheduling because of their capability of dealing

with problems with large search spaces.

27

Fang and Xi (1997) proposed a periodic and event-driven rolling horizon job shop

rescheduling strategy in a dynamic environment. In their study, rescheduling is

performed not only periodically but also when some unpredictable events (job arrivals,

machine breakdown, machine recovery, and changes of due dates of jobs) happen. In

their rescheduling procedure, a GA is employed to make decisions on job routing and

EDD is adopted for dispatching jobs in the buffer of each machine. Their results showed

that the proposed rescheduling strategy was capable of handling the unexpected events

that can not be tackled by use of a static strategy.

Khoo et al. (2000) developed a prototype GA-enhanced multi-objective scheduler

for manufacturing systems. Their prototype system was validated to generate near-

optimal schedules in well-known deterministic scheduling problems. Moreover, this

prototype system also demonstrated its capability of handling a dynamic event such as an

unexpected rush order. Jian and Elmaraghy (1997) employed the genetic algorithm to

generate an initial schedule for a FMS. In their research, the initial schedule must be

modified considering the following four uncertainties: machine breakdown, the arrival of

rush orders, increased order priority (change in due dates), and order cancellation. The

proposed algorithms can be used in conjunction with the classic dispatching rules such as

SPT, EDD, FIFO, etc. Chang and Lo (2001) developed an algorithm for solving job-shop

scheduling problems with multiple qualitative (marketing criteria) and quantitative

(production criteria) objective functions. Their approach incorporated Tabu search (TS)

algorithms and GAs. The proposed rescheduling scheme based on their TS/GA mixture

approach was able to handle uncertainties such as rush orders, machine breakdowns, job

28

cancellations, material shortage, and due-date changes. Their results also showed that the

TS/GA mixture approach is superior to the GA alone.

In the GA-based studies that have been mentioned above, all the jobs are defined

before scheduling and a GA is used to generate a new schedule responding to the

unexpected events such as machine breakdowns and modifications of existing orders. If

the jobs are not known in advance, a new schedule for all the jobs in the system is

generated by the GA-based system whenever a new job arrives at the system. Lin et al.

(1997) proposed a GA-based scheduling system that can be implemented for dynamic

job-shop scheduling problems where details of the arriving jobs are not known in

advance. Their experiment showed that their GA-based scheduling system outperformed

the common dispatching rules under different manufacturing environments for various

objectives. Chryssoloris and Subramaniam (2001) proposed a GA-based scheduling

method for a dynamic job shop with unreliable machines, flexible job routes, and

multiple scheduling criteria. They compared their method with several common

dispatching rules by conducting a simulated job shop under varied conditions. Their

results showed that the proposed GA method significantly outperformed those common

dispatching rules when seeking to minimize mean job tardiness and mean job costs. Rossi

and Dini (2000) proposed a scheduling system capable of giving a fast optimal response

by using a genetic algorithm to determine the optimal solution. Their scheduler is able to

respond to events such as new arrival jobs, failures of feeding system, and machine

breakdowns. Rossi and Dini compared their scheduling system with a rule-oriented

algorithm selecting the best schedule among a set of common dispatching rules. The

29

results showed that their system is superior to the rule-oriented algorithm on the measures

of makespan and computation time of scheduling.

2.2.2.1.2. Rolling Horizon Approaches (by Dispatching Rules)

The idea of the rolling horizon approach can also be applied for use with a DR

selection policy. A set of DRs can be evaluated by using a simulation technique and the

best DR is employed for the simulated interval. Ishii and Talavage (1991) proposed a

transient-based approach to define the next scheduling interval. This approach adapts the

length of the next scheduling interval automatically based on the real-time status of the

system. By simulating the system ahead, a dispatching rule can be determined for a short

period before it is actually carried out. Once the next scheduling interval is determined,

simulation is used again to evaluate each rule. The rule that performed the best is selected

as a dispatching rule for the next scheduling interval. Their results showed that the

proposed approach improved the performance up to 16.5% against the traditional

scheduling algorithm that uses a single dispatching rule for the entire manufacturing

period.

Kim and Kim (1994) proposed a simulation-based real-time scheduling

mechanism for a FMS. Their scheduling mechanism consists of a simulation model and a

real-time control system. The simulation model was used to evaluate 13 dispatching rules

and select the best rule the next horizon based on an estimated performance value it

generates for each rule (the schedule result). The real-time control system then

periodically monitors the shop floor and finds the actual performance value. The selected

dispatching rule is used until the difference of the actual and the estimated performance

values exceeds a predetermined limit. Jeong and Kim (1998) conducted a further study of

30

the factors that may influence this real-time scheduling mechanism. They examined

variant approaches for determining when to select a new rule. They also tested the impact

on the performance by using two simulation models (one includes unknown future

disturbance and the other does not). Their results indicated that the performance of the

scheduling mechanism was affected by the method of determining the time to select a

rule, while not significantly affected by the type of simulation model.

Shafaei and Brunn (1999a) identified the best scheduling rule based on the rolling

horizon approach from seven rules recently developed. They used cost as the

performance measure in their research. From their simulation results, SPT-C/R is the best

dispatching rule over various rescheduling intervals and under different conditions. The

results indicated that a scheduling rule requiring more global information does not

necessarily provide a better schedule than one that only requires local information. The

results also indicated that the length of the rescheduling interval should rely on the due

date tightness. For orders with tight due dates, rescheduling more frequently is highly

recommended. Shafaei and Brunn (1999b) then continued investigating the robustness of

scheduling rules in dynamic and stochastic environments using the rolling time horizon

approach. They stated that the robustness of a scheduling approach should be gauged

based on its ability to maintain its performance in the presence of uncertainties. In that

study, Shafaei and Brunn evaluated the influence of the uncertainties in stochastic

processing times and machine breakdown. They concluded that the performance of the

scheduling rules in uncertain conditions is very sensitive to the rescheduling policy. That

is, to reduce the effects of the uncertainties, frequent rescheduling is a promising

approach. Based on the above study, Shafaei and Brunn (2000) found that the

31

performance of a robust scheduling method not only depends on a frequent rescheduling

policy but also on how well the shop load is balanced and controlled. To control and

balance the shop load, Shafaei and Brunn found it necessary to integrate the planning (i.e.

job release and job routing) and scheduling functions. Finally they proposed a framework

employing the SPT-C/R, which showed a good potential in their previous research, with

the rolling time approach to integrate the above three functions for dynamically

generating robust schedules.

2.2.2.1.3. Rolling Horizon Approaches (by Heuristics)

Sun and Lin (1994) proposed a backward scheduling approach on the basis of the

rolling time approach. Their approach in dynamic scheduling was to decompose a

dynamic scheduling problem into a series of static scheduling problems. Each static

scheduling problem can be dealt with in a specific time window. The scheduling system

consists of two modules: order module and scheduling module. The order module is

responsible for order acceptance and due-date assignment, while the scheduling module

has two functional sub-modules, a boundary condition module and a backward

scheduling module. The boundary condition module decomposes the dynamic scheduling

problem into a series of static scheduling problems over the rolling time period. The

backward scheduling module carries out the backward scheduling approach based on the

boundary information given by the boundary condition module. The backward

scheduling module not only provides the finished schedule but also determines the job

release time. The backward scheduling method is also able to evaluate the alternative

due-date assignment for the order module. In each rolling time window, the due-date

performance and the inventory cost can be controlled by the backward scheduling

32

approach. Based on the authors’ results, the proposed backward scheduling approach

outperformed the forward scheduling approach. The authors addressed the importance of

effectively decomposing a scheduling horizon but did not provide any further discussion.

Table 2.4. Summary of Rolling Horizon-Based Approaches

Research Rolling Horizon

Approach
Scheduling method

Chang and Lo (2001) Event driven GA for sequencing all the
available jobs

Chryssoloris and
Subramaniam (2001)

Event driven GA for sequencing all the
available jobs

Fang and Xi (1997) Periodically and
event driven

GA for routing, EDD for
dispatching

Ishii and Talavage(1991) Periodically Evaluate a set of DRs through
simulation and select the best
rule for next horizon

Jian and Elmaraghy (1997) Event driven GA for sequencing all the
available jobs

Khoo et al. (2000) Event driven GA for sequencing all the
available jobs

Kim and Kim (1994)
Jeong and Kim (1998)

Periodically Evaluate a set of DRs through
simulation and select the best
rule for next horizon

Lin et al. (1997) Event driven GA for sequencing all the
available jobs

Rossi and Dini (2000) Event driven GA for sequencing all the
available jobs

Shadaei and Brunn (1999a,
1999b, 2000)

Periodically Evaluate a set of DRs through
simulation and select the best
rule for next horizon

Sun and Lin (1994) Periodically Backward scheduling approach

2.2.2.2. Knowledge-Based Scheduling System

As pointed out by Nakasika and Yoshida (1992), an effective real-time scheduling

system should require the following characteristics:

33

1. Rule selection must take into account a variety of real-time information about the

manufacturing system.

2. Rule selection must be completed in such a short time that the real operation is

not delayed.

However, the rolling horizon approaches mentioned before for dynamically

selecting dispatching rules require either performing some computation or running one or

more simulations in real time. If the system becomes complex, then the simulation and

rule selection procedures may not be finished in time resulting in a delay to the real

operation. To overcome this problem, Priore et al. (2001a) recommends using

“scheduling knowledge” of the manufacturing system to save time and get a rapid

response in a dynamically changing environment. One of the most important issues for

developing a knowledge-based system is how to acquire useful knowledge about the

manufacturing system for use in real time intelligent decision-making. Machine leaning

techniques are the popular tools used to acquire knowledge.

2.2.2.2.1. Inductive Learning

Inductive learning can be defined as the process of inferring the description of a

class from the description of individual objects of the class (Shaw et al., 1992). In other

word, the inductive learning approach is capable of obtaining general domain knowledge

from the specific knowledge provided by domain examples.

Nakasika and Yoshida (1992) proposed a learning scheme for acquiring

knowledge concerning real-time switching dispatching rules based on the production

system status. In their approach, a set of learning problems (examples) are generated and

simulated to search for the best scheduling rules. The simulation results are used to

34

extract the data that are used as the input of the new inductive learning algorithm

proposed in their approach. Finally, a binary decision tree is generated based on the

proposed learning algorithm. The results showed that their scheduling system

outperformed each of the dispatching rules used as the candidates in their system. Their

study identified two problems that need to be addressed. The first is a need to reduce the

computation time required to generate the binary decision tree and the second is to

explore how to set the various parameter values used in their learning system.

Shaw et al. (1992) proposed a scheduling system called PDS (Pattern-Directed

Scheduling) for selecting an appropriate dispatching rule in FMS. In order to select the

appropriate dispatching rule, the authors considered due date tightness, relative workload

imbalance, job routing flexibility (the average number of alternative machines available

for processing a given operation), and limitation on buffer size at individual machines as

the key factors that represent the patterns of a FMS. In their approach, a number of

simulation experiments were conducted with various dispatching rules under various

manufacturing environments. The results of these experiments would then be fed as input

to the inductive learning process. This process would then generate a decision tree for use

in selecting appropriate dispatching rules. The inductive learning algorithm used here was

ID3. This approach provided the capabilities of selecting the appropriate rule and

switching between different rules in real time based on changes in the state of the system.

Park et al. (1997) employed the inductive learning algorithm C4.5, which is a refinement

of the ID3, to improve the performance of the original PDS. They also added a rule

refinement mechanism for their new version of the PDS. The new PDS was tested by a

real system producing 41 different products on two identical production lines. The results

35

showed that PDS was superior to any of the candidate dispatching rules applied in PDS.

Piramuthu et al. (2000) demonstrated the use of genetic algorithm for generating a

knowledge base for sequencing applications of PDS.

Priore et al. (2001b) also built a scheduling system that obtains knowledge by

using the inductive learning algorithm C4.5. However, they found that, on some

occasions, their system didn’t perform as expected because it reacts precipitously to

changes in control attributes that may be only transitory. The authors, therefore,

developed a mechanism to dampen these transitory scenarios. Their results showed an

improvement in mean tardiness of 8% compared to use of the single dispatching rule that

performs best when used individually. They also pointed out that the major drawback of

their approach is the need to perform a large number of simulations in order to generate

sufficient training examples.

2.2.2.2.2. Neural Networks

Sim et al. (1994) developed a neural network approach that incorporates an expert

system and applied it to dynamic job shop scheduling. Their artificial neural network is

based on the back-propagation neural network model. The expert system reduced the

training time for the neural network by allowing sub-networks to be trained separately.

The input layer consists of 14 neurons representing various scheduling factors for each

job. These neurons include 10 nodes for representing 10 different dispatching rules, three

nodes representing three different levels of system load, and one node for representing

two different criteria. For each dispatching rule, 5,000 jobs are simulated for 8 different

arrival rates and 2 different criteria. The composite rule expert system was developed

based on the simulation results and is able to select the best dispatching rule based on the

36

prevailing workload condition and scheduling criteria. The authors compared their expert

neural network system with each of the dispatching rules employed in the system. Their

results indicated that the expert system is able to maintain the performance of the best

rules across the different arrival rates for both scheduling criteria, a feat that none of the

dispatching rules could accomplish.

Liu and Dong (1996) also used simulation results to train a neural network to

capture knowledge that can be used to select the most appropriate dispatching rules. The

input data for training the network is the operation sequence of each job and the

associated processing times that are randomly generated for each operation. The output

data is the best dispatching rule coming from the results of the simulation. Liu and Dong

showed that the better rules have high probabilities of being selected by their neural

network rule selector than the least desirable rules. The authors also pointed out that the

rule selector’s ability to make a good decision in real time required that the neural

network receive sufficient training. However, they had no answers regarding how many

simulation runs would be enough to cover all or most of the dispatching conditions in a

given shop floor.

2.2.2.2.3. GA-Based Learning

Jahangirian and Conroy (2000) proposed a scheduling framework consisting of

two modules, a simulation module and a GA-based learning module. The simulation

module with a scheduling knowledge base continues to generate learning examples that

comprise the system status, the selected dispatching rule, and the results of these

decisions. The learning examples will be transferred to the learning module. The GA in

the learning module was employed to refine the old knowledge base. Each rule set is

37

represented as a chromosome in their study. They tested results on a single machine

problem with a number of dynamic events such as machine breakdown. The learned

knowledge base outperformed the individual dispatching rules used in their study.

Chiu and Yih (1995) proposed a knowledge-based scheduling system that

dynamically selects dispatching rules. In their approach, a genetic algorithm was used to

search for good schedules. From the good schedules obtained, inductive learning was

used to extract scheduling knowledge. Their experimental results showed that the

proposed dynamic scheduling system outperformed the dispatching rules (SPT, SIO,

SLACK/RO, and EDD) in the weighted performance measures consisting of makespan,

number of tardy jobs, and lateness.

2.2.2.3. Other Approaches

Pierreval and Mebarki (1997) proposed a scheduling strategy for dynamic

dispatching rule selection. Whenever a machine is available for the next operation, the

pre-defined symptoms must be detected. These symptoms include such conditions as

recognition that the tardiness of the WIP is increasing, the machine has too many waiting

jobs, or possibly that a job has waited too long. These symptoms become active when

some observed variables (e.g., utilization, queue length, waiting time, etc.) exceed some

specific threshold values. These thresholds are problem dependent and tuned with a the

Hooke and Jeeve’s simulation-optimization technique. Their approach was compared

with some common dispatching rules on a job shop problem. The results showed

significant improvements in the measures of the mean tardiness.

Subramaniam et al. (2000b) proposed an approach of dynamic dispatching rule

selection based on the analytic hierarchy process (AHP), which considers the shop

38

conditions existing at every decision point. In fact, AHP is an approach to help the

decision makers to make better decisions in problems involving multiple objectives. The

AHP provides a framework that ranks the alternatives based on the decision maker’s

knowledge and preferences. The results in the article showed that the AHP method is not

guaranteed to generate the optimal schedule, but it is superior to the method using single

dispatching rule for the measure of makespan.

Ariz (1995) proposed a two level distributed production control system (DPCS)

for on-line scheduling in a multi-cell flexible manufacturing system. Each flexible

manufacturing cell is independently controlled by its own cell-controller using a two

level heuristic procedure. The upper level procedure is used to select parts to be

processed in the cell, while the lower level procedure is used to control the part flow

within the cell. Their results show that the proposed DPCS is able to achieve high

throughput with almost no tardiness. However, this DPCS is governed by a set of control

parameters that suit a particular order stream only. The values of these parameters need to

be recalibrated whenever there is a change in the order stream.

2.2.2.4. Summary

In the review of various rolling horizon-based approaches, one of the important

issues that has not received attention is if the new scheduling policy can be developed in

real time. Developing a new scheduling policy for the next horizon may be time-

consuming and result in an actual operational delay. This issue can be resolved by using a

knowledge–based scheduling system. The knowledge-based system has the advantage of

rapidly responding to the environment changes. However, some changes that the existing

knowledge bases do not cover may result in a bad or infeasible schedule. For instance, if

39

the system configurations or objectives are changed, the existing knowledge bases are no

longer applicable and it becomes necessary to build new knowledge bases for the system.

This is because it is unreasonable to construct a knowledge base that can cover all the

possible system conditions. Therefore, updating the knowledge bases in real time for

covering a new circumstance will be important. This leads to the motivation for building

a knowledge-based system with on-line learning capability.

In all studies about dynamically selecting dispatching rules, all resources follow

the same rule selection policy at the same period of time. From the perspective of agent

technology, an agent representing a resource is autonomous and therefore may have a

different rule selection policy than the others. Kouiss et al. (1997) proposed an approach

based on a multi-agent architecture where each resource agent in the system selects,

locally and dynamically, the DR that seems most suited to the operating conditions, the

production objectives, and the current shop status. The selection of the DR employed by

each resource agent is carried out based on the strategy proposed by Pierreval and

Mebarki (1997). That is, detecting the pre-defined local symptoms (for resource agent)

and DR selection is based on the currently active symptoms. The authors added a

supervisory agent for monitoring the system status (i.e. global symptoms for the

supervisor agent). The supervisory agent may impose a particular DR for all the resource

agents if the global symptom is active. Otherwise, each resource agent can autonomously

select the DR from a set of pre-selected DRs based on the status of the resource it

represents and the other resource’s conditions. However, the authors did not explain what

information a resource agent would requests from the other resource agents. Therefore,

40

research on DR selection by agent-based approaches still has some questions that need to

be answered.

2.3. Reinforcement Learning

Reinforcement learning (RL) has received some attention from agent-based

researchers because it deals with the problem of how an autonomous agent can learn to

select proper actions for achieving its goals through interacting with its environment. In

the RL framework, a learning agent must be able to perceive information from its

environment. The perceived information is used to determine the current state of the

environment. The agent then chooses an action to perform based on the perceived state.

The action taken may result in a change in the state of the environment. Based on the new

state, there is an immediate reinforcement that is used to reward or penalize the selected

action. These interactions between the agent and its environment continue until the agent

learns a decision-making strategy that maximizes the total reward. Sutton and Barto

(1999) defined four key elements for dealing with the RL problems: a policy, a reward

function, a value function and a model of the environment. A policy defines the agent’s

behavior in a given state. A reward function specifies the overall goal of the agent that

guides the agent toward learning to achieve the goal. A value function specifies the value

of a state or a state-action pair indicating how good it (the state or the state-action pair) is

in the long run. A model of the environment predicts the next state given the current state

and a proposed action.

41

2.3.1. Markov Decision Process

Besides the above four elements, a key assumption in the RL framework is that

the definition of the current state used by each agent to make its decision should

summarize everything important about the complete sequence of past states leading to it.

Some of the information about the complete sequence may be lost, but all that really

matters for the future is contained within the current state signal. This is called the

Markov property. Therefore, if an environment has the Markov property, then its next

state can be predicted given the current state and action. This significant assumption

enables the current state to be a good basis for predicting the next state. Under this

assumption, the interaction of an agent and its environment can be called a Markov

Decision Process (MDP).

2.3.2. Generalization and Function Approximation

For a small RL problem, the estimates of value functions can be represented as a

table with one entry for each state or for each state-action pair. However, for a large

problem with a large number of states or actions, updating information accurately in such

a large table may be a problem. Function approximation is currently a popular method to

resolve this issue. Function approximation is an approach generalizing experience from a

small subset of examples to develop an approximation over a larger subset. Currently,

employing neural networks is the most popular approach for function approximation in

large RL problems (Sutton and Barto, 1999).

42

2.3.3. Exploration and Exploitation

Exploration and exploitation is another important issue in RL problems.

Exploration entails the agent trying something that hasn’t been done before in order to get

more reward, while in exploitation the agent favors actions that were previously taken

and rewarded. Exploitation may take advantage of guaranteeing a good expected reward

in one play, but exploration provides more opportunities to find the maximum total

reward in the long run. One popular approach to deal with this trade-off issue is the e–

greedy method. The e–greedy method involves selecting, with probability (1-e), the

action with the best value, otherwise, with small probability e, an action is selected

randomly.

2.3.4. RL Applications to Manufacturing Systems

Mahadevan et al. (1997b, 1999) developed a new model-free average-reward

algorithm called SMART for continuous-time semi-Markov decision processes. They

applied the SMART algorithm to the problem of optimal preventative maintenance in a

production inventory system. In their system, there was a single machine capable of

producing multiple types of products with multiple buffers for storing each of the

different products. Whenever a job is finished, the machine needs to decide to either

undergo maintenance or start another job. Machine maintenance costs and time are less

than repair costs and time. In other words, frequent maintenance may be not economical

but machine failures resulting from rare maintenance will require more repair costs and

time. In their maintenance problem, the state of the system is a 10-dimensional vector of

integers that consists of the numbers of five different products manufactured since the

last repair or maintenance and the buffer levels of the five products. They compared the

43

maintenance policy learned from SMART to two well-known maintenance heuristics.

They found that SMART is more flexible than the two heuristics in finding proper

maintenance schedules as the costs are varied. Mahadevan and Theocharous (1998)

applied SMART to the problem of optimizing a 3-machine transfer line producing a

single product type. The system goal is to maximize the throughput of the transfer line

while minimizing the Work-In-Process (WIP) inventory and failures. They compared the

policy from SMART to the kanban heuristic. Their results showed that the policy learned

by SMART requires fewer items in inventory and results in fewer failures than with the

Kanban heuristic. Paternina-Arboleda and Das (2001) extended the work of Mahadevan

and Teocharous (1998) to deal with a 4-machine serial line and compared SMART to

more existing control WIP policies. They examined the system with constant demand rate

and Poisson demand rate. Under these two circumstances, SMART outperformed those

heuristic policies on average WIP level and average WIP costs.

Zhang and Dietterich (1995) applied RL to a job shop scheduling problem

involving the scheduling of the various tasks that must be performed to install and test the

payloads placed in the cargo bay of the NASA space shuttle for each mission. The

objective of this problem was to schedule a set of tasks without violating any resource

constraints while minimizing the total duration. The scheduling approach Zhang and

Dietterich employed was an iterative repair-based scheduling method that started with

generating a critical path schedule by ignoring the resource constraints and incrementally

repairing the schedule to find a shortest conflict-free schedule. In their system, each state

is a complete schedule and each action is a schedule modification. They applied the

temporal difference algorithm TD(?) (an RL algorithm) to this scheduling problem. After

44

taking an action to repair the schedule the scheduler receives a negative reward if the new

state still contains constraint violations. This reward function essentially forces the

scheduler to not only find a conflict-free schedule but to do it in fewer iterations. The

performance of the iterative repair-based procedure with a simulated annealing (SA)

method was compared with the one using the TD method. Their results showed that one

iteration of the method with TD is equivalent to about 1.8 iterations of the method with

SA.

Aydin and Ozrtemel (2000) proposed an intelligent agent-based scheduling

system in which agents are trained by a new RL algorithm they refer to as Q-? . They

employed Q-III to train the resource agents to dynamically select dispatching rules. Their

state determination criteria consist of the buffer size of the machine and the mean slack

time of the queue. The rewards were generated based on some selection rules obtained

from the literature (i.e., SPT is best when the system is overloaded). The thresholds used

in the rules for determining the systems status were obtained through trial-and-error

procedures. Three dispatching rules: SPT, COVERT, and CR, are available for each

resource agent to select for their use. The authors compared the proposed scheduling

system trained by their RL mechanism to the above three dispatching rules. Their results

showed the RL-scheduling system outperformed the use of each of the three rules

individually in mean tardiness for most of the testing cases.

2.3.5. Other Applications of RL

More and more work on practical implementations of RL techniques to different

fields has been reported. One of the successful stories about RL applications was

Tesauro’s TD-Gammon (1995), which was used to play backgammon. TD-Gammon was

45

developed based on the TD(λ) algorithm and a multi-layer neural network for function

approximation. The latest version of the TD-Gammon was able to play the backgammon

game close to the level of the best human player in the world. Another famous

application was the elevator-dispatching problem. Modern elevator dispatchers are

usually designed heuristically. Crites and Barto (1996) applied the Q-learning to a four-

elevator, ten-floor system. Each elevator made its own decision independently of the

other elevators. There were some constraints placed on the decisions. The system they

dealt with had more than 1022 states. Like TD-Gammon, Crites and Barto also employed

a neural network to represent the action-value function. Their RL-based dispatchers

outperformed other existing dispatching heuristics on the customer’s average waiting

time and average squared waiting time. RL also has been widely applied to robotics

motion control. Singh and Bertsekas (1997) used the TD(0) algorithm to find dynamic

channel allocation policies in cellular telephone systems. Their study showed that RL

with a linear function approximation is able to find better dynamic channel allocation

policies than two other existing policies. Sutton (1996) applied a RL algorithm, called the

Sarsa algorithm, to controlling the motions of a two-link robot. Mahadevan et al. (1997a)

successfully applied RL to navigating a delivery robot around an indoor office

environment.

2.4. Summary of Literature Review

The heterarchical control structure is believed to be a promising architecture for

the next generation of manufacturing systems. Agent-based approaches can be applied in

the implementation of a heterarchical control system. For dynamic job routing problems,

most of the existing agent-based approaches focus on the issues of cooperation and

46

negotiation among autonomous agents. Enhancing the intelligence of an individual agent

has not received much attention. For job sequencing problems, DRs are very useful and

efficient. Although the dispatching rules do not guarantee an optimal schedule, they

usually provide a reasonably good schedule. To use DRs appropriately for sequencing

jobs, dynamic rule selection is required since the manufacturing shop status may change

over time. A knowledge-based rule selection system can be used to rapidly respond to the

changes of the shop status. However, the existing knowledge-based systems have the

shortcoming that knowledge is acquired based on the use of off-line machine learning

techniques. In addition, every resource selects the rules based on the same knowledge

bases at the same period of time. The agent-based approach in which each resource agent

has its own knowledge base for DR selection has not been explored yet.

Table 2.5 provides a summary of the assumptions made in previous published

research studies. Table 2.6 provides a summary of the characteristics of the problems

explored in previous research studies. Based on these results there is an average of eight

machines in the system, with the system being able to manufacture twelve different jobs,

with each job requiring four operations. Table 2.7 provides a summary of the problem

objectives of those same systems. The five most popular objectives used involve

minimizing something related to tardiness (mean tardiness, weighted mean tardiness,

penalty due to tardiness, etc.), minimizing mean flow time/weighted mean flow time,

minimizing mean makespan, minimizing number of tardy jobs, and maximizing profit.

47

Table 2.5 A Summary of Problem Assumptions in Previous Studies

Previous Research Research Assumptions
Authors (Year) 1 2 3 4 5 6 7 8

ROUTING PROBLEMS
Bowden and Bullington (1996) * * *
Chandra and Talavage (1991) * * * *
Cicirello and Smith (2001) * * * *
Dewan and Joshi (2000, 2001) * * * * * *
Krothapalli and Deshmukh (1999) * * * *
Ottaway and Burns (2000) * * *
Saad et al. (1997) * *
Shaw (1988) * * * *
Shmilovici and Maimon (1992) * * * *
Subramaniam et al. (2000a) * * *
Yao and Pei (1990) * * * * *
Xue et al. (2001) N/A

DISPATCHING PROBLEMS
Ariz (1995) * * *
Chang and Lo (2001) * * * * *
Chiu and Yih (1995) * * * * *
Chryssolouris and Subramaniam (2001) * * * * *
Fang and Xi (1997) * * *
Ishii and Talavage (1991) * * * * * * *
Jahangirian, M. and Conroy, C. V. (2000) * * * * *
Jain and ElMaraghy (1997) * * * * *
Khoo et al. (2000) * * * * * * * *
Kim and Kim (1994) * * *
Kouiss et al. (1997) * * * * *
Lin et al. (1997) * * * * * *
Liu and Dong (1996) * * * * * *
Matsuura et al. (1993) * * * * *
Nakasuka and Yoshida (1992) * * * * * * *
Park et al. (1997) * * *
Pierreval and Mebarki (1997) * * * * *
Piramuthu et al. (2000) * * *
Priore et al. (2001) * * * * * *
Rossi and Dini (2000) * * * * *
Shaw et al. (1992) * * *
Shafaei and Brunn (1999a) * * * * * * *
Shafaei and Brunn (1999b) * * * * *
Shafaei and Brunn (2000) * * * * * *
Sim et al. (1994) * *
Subramaniam et al. (2000b) * * * * * * * *
Sun and Lin (1994) * * * * * *

48

Table 2.5. (continued).

* Represents the assumption was made in the research.

NOTE:
1. All jobs have been given.
2. Each operation has been pre-assigned to a unique machine type. The operation

sequence for each job is fixed (No routing decisions).
3. No Parallel machine clusters.
4. Deterministic set-up and processing times.
5. No reentrant machines.
6. No machine breakdown.
7. Transportation times between machines are ignored.
8. Set-up times are sequence-independent.

49

Table 2.6. A Summary of the Problem Size of the Examples in Previous Studies

Previous Research # M/Cs # Jobs # Ops.
ROUTING PROBLEMS

Bowden and Bullington (1996) 11 (4 cells) 3 3
Chandra and Talavage (1991) 10 10 3-7
Cicirello and Smith (2001) 4 2 2
Dewan and Joshi (2000, 2001) 6 80 3
Krothapalli and Deshmukh (1999) 40 (5 cells) 5 5
Ottaway and Burns (2000) 6 16 3 or 6
Saad et al. (1997) 9 N/A 5
Shaw (1988) N/A N/A N/A
Shmilovici and Maimon (1992) 4 1 4
Subramaniam et al. (2000a) 4 20 2-10
Xue et al. (2001) 11 N/A 7
Yao and Pei (1990) 4 1 6

SEQUENCING PROBLEMS
Ariz (1995) 9 (2 cells) 12 3-5
Chang and Lo (2001) 8 10 4-6
Chiu and Yih (1995) 8 8 2-5
Chryssolouris and Subramaniam (2001) 6 20 2-10
Fang and Xi (1997) 4 3 3 or 4
Ishii and Talavage (1991) 6 6 5 or 6
Jahangirian, M. and Conroy, C. V. (2000) 1 N/A 1
Jain and Elmaraghy (1997) 5 4 3
Khoo et al. (2000) 5 20 N/A
Kim and Kim (1994) 11 N/A 3-6
Kouiss et al. (1997) 4 N/A 2-6
Lin et al. (1997) 5 N/A 5
Liu and Dong (1996) 5 5 1-5
Matsuura et al. (1993) 9 N/A 5
Nakasuka and Yoshida (1992) 3 3 3
Park et al. (1997) 6 N/A 3-5
Pierreval and Mebarki (1997) 4 N/A 2-6
Piramuthu et al. (2000) 6 N/A 3-5
Priore et al. (2001) 4 N/A 1-4
Rossi and Dini (2000) 16 14 1 or 2
Shaw et al. (1992) 8 N/A 1-8
Shafaei and Brunn (1999) 15 N/A 4-15
Shafaei and Brunn (1999) 15 N/A 4-15
Shafaei and Brunn (2000) 4 8 4
Sim et al. (1994) 9 N/A 3-6
Subramaniam et al. (2000b) 10 6 3
Sun and Lin (1994) 10 10 N/A
Average 8 12 4

50

Table 2.6. (continued).

NOTE:
M/Cs: Number of Machines.
Jobs: Number of Job types.
Ops.: Number of Operations Required for Each Job.

51

Table 2.7. A Summary of Performance Measures in Previous Studies

Previous Research Performance Measures
Authors (Year) 1 2 3 4 5 6 7 8 9 10 11

ROUTING PROBLEMS
Bowden and Bullington (1996) *
Chandra and Talavage (1991) * * *
Cicirello and Smith (2001) *
Dewan and Joshi (2000, 2001) * *
Krothapalli and Deshmukh (1999) * * *
Ottaway and Burns (2000) * * *
Saad et al. (1997) * * *
Shaw (1988) * * * *
Shmilovici and Maimon (1992) *
Subramaniam et al. (2000) * *
Xue et al. (2001) N/A
Yao and Pei (1990) *

SEQUENCING PROBLEMS
Ariz (1995) * *
Chang and Lo (2001) * *
Chiu and Yih (1995) * * *
Chryssolouris and Subramaniam (2001) * *
Fang and Xi (1997) *
Ishii and Talavage (1991) * *
Jahangirian, M. and Conroy, C. V. (2000) * *
Jain and ElMaraghy (1997) * * *
Khoo et al. (2000) * * *
Kim and Kim (1994) * *
Kouiss et al. (1997) * *
Lin et al. (1997) * * *
Liu and Dong (1992) * *
Matsuura et al. (1993) *
Nakasuka and Yoshida (1992) * *
Park et al. (1997) *
Pierreval and Mebarki (1997) * *
Piramuthu et al. (2000) *
Priore et al. (2001) *
Rossi and Dini (2000) *
Shaw et al. (1992) *
Shafaei and Brunn (1999a) *
Shafaei and Brunn (1999b) *
Shafaei and Brunn (2000) *
Sim et al. (1994) * *
Subramaniam et al. (2000b) *
Sun and Lin (1994) * *

52

Table 2.7. (continued).

* Represents the performance measures employed in the research.

NOTE:
1. Minimize mean flow time/weighted mean flow time.
2. Minimize percentage/number of tardy jobs.
3. Minimize mean tardiness/ weighted mean tardiness/ conditional mean tardiness/

normalized job tardiness/ penalty due to tardiness.
4. Minimize mean lateness/ weighted mean lateness/ conditional mean lateness/

normalized job lateness.
5. Minimize makespan.
6. Maximize throughput.
7. Minimize average queuing time.
8. Maximize resource utilization.
9. Minimize mean job cost/ maximize profit.
10. Minimize average WIP.
11. Minimize earliness-tardiness.

 53

CHAPTER III

Q-LEARNING FOR SINGLE MACHINE JOB DISPATCHING

3.1. Single Machine Dispatching Rule Selection

To develop a set of recommendations for applying the Q-learning algorithm for

machine agents to construct a good policy for DR selection, this research considers

conducting an experiment on a single machine dispatching rule selection problem. The

single-machine production system contains a single buffer for storing jobs awaiting

processing. Jobs arrive continuously according to a Poisson process. Each job consists of

only one operation requiring variant processing time and the machine can process only

one job at a time. If the machine is idle when a job arrives then the job will start

processing immediately, otherwise the job will be sent to the buffer. In this research,

selection of the next job from the buffer for processing is conducted based on one of the

three dispatching rules, EDD, SPT, and FIFO. The system objective is to minimize the

mean tardiness of the finished jobs. The selection of a dispatching rule will be based on

the current policy in use by the Q-learning algorithm. The response is the mean tardiness

measured after the learning process achieves steady state. The effects of applying the Q-

learning technique to the dispatching rule selection problem are examined under various

system conditions involving variations in system loading conditions and job due date

tightness.

54

3.2. Q-Learning Algorithm

The original Q-learning algorithm was proposed by Watkins in 1989. The goal of

this algorithm is to learn the state-action pair value, Q(s, a), which represents the long-

term expected reward for each pair of state and action (denoted by s and a, respectively).

The Q values learned with this algorithm have been proven to converge to the optimal

state-action values, Q* (Tesauro, 1995). The optimal state-action values for a system

represent the optimal policy that the agent intends to learn. The standard procedure of the

Q-Learning algorithm is presented in Fig. 3.1. (Sutton and Barto, 1999):

Step 1. Initialize the Q(s, a) value functions arbitrarily
Step 2. Perceive the current state, s0
Step 3. Following a certain policy (e.g. e–greedy), select an appropriate action (a) for

the given state (s0)
Step 4. Execute the selected action (a), receive immediate reward (r), and perceive the

next state s1
Step 5. Update the value function as follows:
 Q(s0, a) = Q(s0, a) + a [r + ? max b Q(s1, b) – Q(s0, a)] (3-1)
Step 6. Let s0 = s1
Step 7. Go to step 3 until state s0 represents a terminal state
Step 8. Repeat steps 2 to 7 for a number of episodes.

Figure 3.1. The Q-Learning Algorithm (Sutton and Barto, 1999)

In Figure 3.1, each iteration of steps 2 through 7 represents a learning cycle, also

called an “episode”. The parameter, a, is the step-size parameter influencing the learning

rate. The parameter, ?, is called the discount-rate parameter, 0 = ? = 1, and impacts the

present value of future rewards. The Q(s, a) values can be initialized arbitrarily. If no

actions for any specific states are preferred, then when starting the Q-learning procedure

all the Q(s, a) values in the policy table can be initialized with the same value. If some

55

prior knowledge about the benefit of certain actions is available, the agent may prefer

taking those actions in the beginning by initializing those Q(s, a) values with larger

values than the others. Then these actions will initially be selected. This can shorten the

learning period. Step 3 involves the tradeoff of exploration and exploitation and many

state-action pair selection methods may be used in this step.

3.3. Factors for Applying Q-learning to Single Machine Dispatching Rule Selection

There are a number of factors that one can manipulate in applying the Q-learning

algorithm. The research goal was to determine the significance of the various factors for

this application and to provide recommendations for factor settings. The main factors that

are investigated include the following:

A. Number of states.

B. The threshold value setting for determining states.

C. Number of ranges for determining reward/penalty.

D. The threshold value setting for determining reward/penalty ranges.

E. Approaches to setting reward/penalty magnitude.

F. Initial Q values in the policy table.

G. Step Size (a).

H. Discount rate (γ).

I. Approaches for exploration and exploitation.

These factors are described in more detail in the subsections that follow.

3.3.1. Factors for Constructing the Policy Table

56

Factors A and B influence the construction of the rule-selection policy table. In

the single-machine system, the learning agent’s decision on which dispatch rule to

employ for selecting a job from the buffer is based on the status of the system buffer.

Several choices are available for defining the buffer’s status; these include such measures

as the number of the jobs in the buffer, the number of the tardy jobs in the buffer, or the

tardiness or lateness of those jobs. For this study, the estimated mean lateness of the

number of jobs in the buffer is adopted as the state determination criterion in the policy

table. This value was chosen over job tardiness since it is able to distinguish between

early jobs (unlike the tardiness measure). When constructing a policy table, the individual

states defining the buffer’s status have to be associated with specified ranges of possible

values. Therefore, defining (A) number of ranges, and the endpoints (thresholds) of (B)

the range of values for each state represents those factors that must be considered in the

learning algorithm’s design.

Given that the agent’s decision involves selecting an appropriate dispatching rule,

two special conditions need to be considered. The first is when the buffer is empty and

the second occurs when there is only one job in the buffer. For the former condition, no

dispatching rule is needed to determine what job to process next because there is no job

in the buffer. In the latter condition, since there is only one job, no matter what

dispatching rule is employed the same job will be selected. The conditions for these two

special cases are represented in the policy table using two dummy states. Therefore, only

when there are two or more jobs in the buffer does the Q-learning algorithm select one of

the three dispatching rules. In order to implement this capability, the system also

57

maintains a measure of the number of jobs in the buffer, as well as the estimated mean

lateness of those jobs.

Factor A defines the number of states (without counting the dummy states) in the

policy table and Factor B defines the thresholds values for each state thereby creating the

specific range of values. For a given number of states, the range for each state is defined

as a multiple (m) of the expected mean processing time (EMPT). At smaller values of m

for factor B the system is better able to distinguish differences between jobs at the lower

end of the lateness spectrum with jobs that are very late being grouped together in the last

interval as it acts as the catchall. As the value of m increases, more intervals are provided

for differentiating late jobs, but at the expense of decreased resolution of the other

intervals. In this experimental study, m is set to either 1 or 3. Table 3.1 provides an

example of a policy table with 10 states (factor A).

Table 3.1. An Example of a 10-state Policy Table

State State criteria EDD SPT FIFO
Dummy No job in queue 0 0 0
Dummy One job in queue 0 0 0
1 mean_lateness < 0 Q(1,1) Q(1,2) Q(1,3)
2 0 ≤ mean_lateness < m × EMPT Q(2,1) Q(2,2) Q(2,3)
3 m × EMPT ≤ mean_lateness < 2m × EMPT Q(3,1) Q(3,2) Q(3,3)
4 2m × EMPT ≤ mean_lateness < 3m × EMPT Q(4,1) Q(4,2) Q(4,3)
5 3m × EMPT ≤ mean_lateness < 4m × EMPT Q(5,1) Q(5,2) Q(5,3)
6 4m × EMPT ≤ mean_lateness < 5m × EMPT Q(6,1) Q(6,2) Q(6,3)
7 5m × EMPT ≤ mean_lateness < 6m × EMPT Q(7,1) Q(7,2) Q(7,3)
8 6m × EMPT ≤ mean_lateness < 7m × EMPT Q(8,1) Q(8,2) Q(8,3)
9 7m × EMPT ≤ mean_lateness < 8m × EMPT Q(9,1) Q(9,2) Q(9,3)
10 8m × EMPT ≤ mean_lateness Q(10,1) Q(10,2) Q(10,3)

58

When running the Q-learning algorithm, if the previous system state corresponds

to a dummy state, updating Q(s, a) is unnecessary because the decision of taking next

action is made without considering Q-learning algorithm. However, if the previous state

is not a dummy state but the new state is one of the two dummy states (i.e., one job in

queue), then an update in this situation must be treated differently because the Q(s, a)

values for both dummy states is fixed at zero. The agent should still get the

reward/penalty for such decisions, so under these circumstances, the Q(s, a) value is

updated using the following equation instead of equation (3-1) (In Fig. 3.1.).

Q(s0, a) = Q(s0, a) + a r (3-2)

3.3.2. Factors for Developing the Reward Function

Factors C, D, and E are concerned with the development of an appropriate reward

function. A reward function is guided based on the goal of the learning agent. In this

study, the machine agent’s goal is to minimize the mean tardiness of the finished jobs.

Therefore, a job’s tardiness is used to determine the amount of the reward or penalty for

the agent’s decision (dispatching rule selection). The tardier a job is, the greater the

penalties assigned to the learning agent. The agent receives a reward only when the

selected job is finished prior to or on its due date (tardiness is non-negative).

Factor C defines the number of ranges for determining the amount of

reward/penalty. The use of more ranges in the reward function permits the reward or

penalty associated with each decision the agent has made to be expressed more precisely.

Using too few ranges results in the system not being able to differentiate between the

decisions made by the agent in that the outcomes (measured by tardiness) are not

59

distinguishable since they lie within the same range and therefore result in the same

penalty or reward.

Factor D determines the size of each range, and therefore, with a finite number of

ranges, it also defines the overall range the reward function covers. Like factor B, each

range is determined using a multiple (n) of the expected mean processing time (EMPT),

which is also set to either 1 or 3. Similar to factor B, a large value of n for factor D

permits distinguishing between jobs that are extremely tardy when the system is under

heavy loading condition or employing some dispatching rules like SPT.

Factor E impacts the magnitude of the reward and penalty assigned to each range

of the reward function. By design the penalty is made to increase linearly across the

ranges as job tardiness grows. However, a reward is assigned only in the case which the

job tardiness is zero. The question then becomes how much reward should be appropriate

with respect to the linearly increasing penalties. In this experimental study, two values of

factor E (1 or 10) are used for rewarding job that finish before their due date. The

penalties applied to ranges associated with tardy jobs were fixed to permit us to study the

influence of various rewards.

Factor E may impact the Q(s, a) values in the policy table. When the system is

under heavy loading conditions or jobs are assigned with very tight due dates, most of the

jobs will be tardy. The Q(s, a) values in the policy table may be all negative. Under such

circumstances (very few early jobs), a decision for an early job is very important because

it provides some positive amount (reward) for the Q(s, a) value. Using a larger reward for

the decisions resulting in early jobs should more strongly influence the Q(s, a) values.

Table 3.2 presents an example of a 10-range reward function.

60

Table 3.2. An Example of 10-range Reward Function

Range Reward/Penalty
1 Tardiness = 0 r = 1 (or r = 10)
2 0 < Tardiness < n × EMPT r = -1
3 n × EMPT ≤ Tardiness < 2n × EMPT r = -2
4 2n × EMPT ≤ Tardiness < 3n × EMPT r = -3
5 3n × EMPT ≤ Tardiness < 4n × EMPT r = -4
6 4n × EMPT ≤ Tardiness < 5n × EMPT r = -5
7 5n × EMPT ≤ Tardiness < 6n × EMPT r = -6
8 6n × EMPT ≤ Tardiness < 7n × EMPT r = -7
9 7n × EMPT ≤ Tardiness < 8n × EMPT r = -8
10 8n × EMPT ≤ Tardiness r = -9

3.3.3. The Other Factors

When starting the Q-learning algorithm, the values of the state-action pairs, Q(s,

a) can be initialized arbitrarily or assigned specific relative values to represent the

confidence in favoring each possible alternative. Factor F represents the strategy of

setting the initial values of the state-action pairs. In this study, all the values of the state-

action pairs are initialized to zero since all the actions for each state are assumed to be an

equally valid choice. This approach starts the system from a neutral state assuming no a

priori knowledge of which dispatching rule is best to use in any situation. Therefore, the

system would be required to learn from scratch. Other possible alternatives might have

been to favor the wrong choice or correct choice initially. It is believed that either

approach would have only impacted the run time making it take longer or shorter

depending on how far off or close the initial values were to the best case.

Factor G is the step-size parameter, a, which is a small positive fraction that

influences the learning rate. The value of this factor can be constant or varied from step

61

to step. In the latter case, the steps become smaller and smaller as learning progresses to

assure convergence of Q(s, a) values. With a constant step-size parameter, the Q(s, a)

values never completely converge but continue to vary in response to the most recently

received rewards. This is more desirable for a non-stationary system (Sutton and Barto,

1999).

Factor H is the discount-rate parameter, γ. As γ approaches zero, the agent is more

myopic because it takes immediate reward into account more strongly. On the other hand,

as γ approaches 1, the agent will be more farsighted reducing the impact that recent

results have on the learned policy.

Factor I concerns the approach for exploration and exploitation. The e–greedy

method is adopted in this study. If e is set to 0.1, then 10% of the time the strategy will be

to randomly select one of the three dispatching rules independent of their Q(s, a) values,

while the other 90% of the time the dispatching rule with the best Q(s, a) value is

selected.

Several example systems, such as those illustrated in Sutton and Barto (1999)

apply the Q-learning algorithm with settings of a = 0.1, γ = 0.9, and ε = 0.1. This study

uses these same common parameter settings for the three factors G, H, and I across all

experimental runs. Table 3.3 summarizes the experimental factors and their levels.

Table 3.3. Experimental Factors and Their Levels

Experimental Factors Level 1 Level 2
A. Number of states 10 states 20 states
B. Threshold value settings for determining state. m = 1 m = 3
C. Number of ranges in reward function 10 ranges 20 ranges
D. Threshold value settings for reward function. n = 1 n = 3
E. Reward magnitude r = 1 r = 10

62

3.4. Design of Experiment

The purpose of this study is to identify the factors related to the application of the

Q-learning algorithm that are significant when used by an agent for learning an

appropriate policy for dispatching rule selection. The factors considered in

experimentation and their levels are shown in Table 3.3. Testing involved using a

simulation of a single-machine with an infinite buffer with no consideration of potential

machine failures.

The simulation is conducted under four different sets of system conditions by

varying the mean inter-arrival time of jobs to the system and due date tightness. The time

between job arrivals to the system follows an exponential distribution with a mean of 8

representing a heavy loading condition and 10 for a light loading condition. The

estimated processing times (EPT) of jobs were uniformly distributed between 6 and 8.

The resulting mean system utilization is 87.5% under the heavy loading condition and

70% under the light loading condition. The due date of the job was determined based on

the following equation:

Due Date = Arrival time + Allowance factor × EPT (3-3)

Due date tightness is controlled by adjusting the allowance factor. In this study, the

allowance factor is drawn from the uniform distribution between 1.2 and 1.8, U[1.2, 1.8],

for jobs with tight due dates and between 1.7 and 2.3, U[1.7, 2.3], for jobs with loose due

dates. The real processing time (RPT) of each job was generated using a normal

distribution with a mean of EPT and standard deviation of EPT/10. Given the possibility

63

that a normal distribution may generate an extreme value, the RPT values were

constrained to be within ±3 times the standard deviation.

For each control factor combination setting used in the experiment, the learning

horizon was monitored and analyzed to make sure that the learning process had reached

steady state. As a result, a horizon of 200,000 job completions was determined as an

appropriate run length under all conditions in order to guarantee that learning had reached

steady state. After completing these 200,000 jobs as a system warm-up, 300,000

additional jobs are processed by the system and the mean tardiness of these additional

jobs is calculated and recorded as a single observation for an experiment. A full factorial

(25) experiment was conducted with ten replications under each of the four different

system conditions (see Table 3.4).

Table 3.4. A full factorial (25) experiment is conducted under the following conditions

System Conditions M/C Utilization Allowance Factor
Heavy Loading/Tight Due Date (HT) 87.5 % U[1.2, 1.8]
Heavy Loading/Loose Due Date (HL) 87.5 % U[1.7, 2.3]
Light Loading/Tight Due Date (LT) 70 % U[1.2, 1.8]
Light Loading/Loose Due Date (LL) 70 % U[1.7, 2.3]

 64

CHAPTER IV

Q-LEARNING FOR JOB ROUTING

4.1. Agent-Based Job Shop System

To develop a set of recommendations for applying the Q-learning algorithm to job

routing problems, a simulated job shop system is used for examining the implementation

of the Q-learning algorithm for use by agents when making routing decisions in such an

environment. The control structure in this system is pure heterarchical and no supervisory

agents are employed. There are only two types of agents in the system: job agents and

machine cell agents. Each machine cell agent represents one machine cell that may be

comprised of one (or more than one) identical machine. All the machines in the same cell

share a buffer. Each job agent represents a specific job and is in charge of determining

proper operation routing by negotiating with specific cell agents that have the potential to

finish the operations. The agent negotiation scheme is based on the contract-net protocol.

In this study, every customer order is considered a job and consists of a batch of

identical parts with each part comprised of a set number of features defined by the

customer. Each feature requires one operation. Routing flexibility is available allowing a

job agent to direct the manufacture of a product using alternative processing routes.

These alternatives are taken into account in the process plan and arise due to an

availability of multiple machine types for processing a specific operation. The following

65

subsections will detail what each job and cell agent’s responsibilities are in the

negotiation strategy.

4.1.1. Job Agent

Each job agent carries the process plan for the part it represents and this plan

specifies the alternative routes. The job agent initially sends requests for bids to the cell

agents that have the capability to process the job’s next operation. The request indicates

what feature is to be processed next. The job agent may send more than one request to the

same cell agent if multiple features satisfy precedence and can be processed on the same

machine cell. The cell agents immediately respond with their bids. Each bid contains

information regarding the current status of the machine cell such the number of jobs in

the buffer and how much work, in terms of the total processing time of the jobs in the

buffer. After collecting the bids, the job agent evaluates them and selects one bid for the

next operation. The selected bid identifies what operation will be processed on what

machine cell next. After identifying the next machine cell, the job is routed there. If all

the machines in the cell are busy, the job is placed in the buffer. Whenever a job’s current

operation is completed, the job agent sends bid requests for the next operation. This

bidding procedure continues until all the requested features of a job are finished. We

assume that the time delay due to the exchange of messages during negotiation can be

ignored compared to the operation processing time.

4.1.2. Machine Cell Agent

Each cell agent is responsible for preparing bids and dispatching the jobs in the

buffer to the next available machine in the cell. In this study, the cell agents use job

66

dispatching rules to select the jobs for processing from the buffer. Because dispatching

rule selection is not our focus in this part of the study, FIFO (first in first out) is the only

dispatching rule employed in this routing problem.

For bid preparation, the cell agent has knowledge about its capability in terms of

what operations can be done at what pace. Using this knowledge, the cell agent is able to

estimate the processing time for a bid. The cell agent is also able to detect the current

status of its buffer in terms of its size and accumulate the processing times of the jobs in

the buffer. With the information supplied by each bid response, in contract net

negotiation, the job agent must decide which machine to use for a single operation. In this

study, a job agent is able to evaluate the collected bids either based on the routing

heuristic (NINQ) in which the machine cell with the fewest number of jobs in its queue is

selected or based on the other heuristic (WINQ) where the machine cell with the least

total estimated processing time of the jobs in its queue is selected. For both of these

heuristics, a tie is broken by random selection.

4.2. Factors for Applying Q-learning to Job Routing

There are a number of factors that could be manipulated in applying the Q-

learning algorithm. The research goal was to determine the significance of the various

factors for this application. The factors that are investigated include the following:

A. State Determination Criteria.

B. Number of ranges for determining reward/penalty.

C. The threshold value settings for determining reward/penalty ranges.

D. Approaches to setting magnitude of reward/penalty.

67

E. Initial Q values in the policy table.

F. Step Size (a).

G. Discount rate (γ).

H. Approaches for exploration and exploitation.

Factor E, F, G, and H are the same as was discussed in Chapter 3. The factors for

constructing the policy table and the reward functions are relatively different from the

ones in Chapter 3 and are therefore described in the subsections that follow.

4.2.1. State Determination Criteria

A policy table is used by an agent to make decisions based on its current state. In

the job routing problem, more specifically, the policy table for a job agent is a mapping

from the job’s current state to possible machines it can select for its next operation. To

determine the current state, a job agent may only consider information it currently knows

or that provided by the machine agents during negotiations. .

Factor A defines the state determination criteria used to construct the policy table.

Three state determination criteria are considered in this study. One possible criterion to

use is the type of feature (feature ID) to be created as some point in the part’s processing.

Table 4.1 presents an example of a policy table developed using the feature ID as the

state determination criterion where features 1, 3, and 5 must be machined sequentially to

complete the job according to the job’s process plan. Using this criterion, two dummy

states are needed in the policy table. The first dummy state represents the situation where

the job has not started processing yet, while the other represents the situation when the

job is complete. The actions, shown in column 4, define which specific machine cells are

68

available for processing the stated feature. The merit of these possible actions

corresponds to the magnitude of the associated Q(s, a) value given in column 3 of the

same table.

Table 4.1. A Policy Table Using Feature ID as the State Determination Criterion

 State Criteria Q Values Actions
State Feature ID Action 1 Action2 Action 1 Action 2

Dummy Not Started Processing 0 0 N/A N/A
1 Processing Feature 1 Q(1, 1) Q(1, 2) M/C 1 M/C 3
2 Processing Feature 3 Q(2, 1) Q(2, 2) M/C 2 M/C 4
3 Processing Feature 5 Q(3, 1) Q(3, 2) M/C 1 M/C 5

Dummy Completed Processing 0 0 N/A N/A

Table 4.2. A Policy Table Using Feature ID and NIQ as the State Determination Criteria

 State Criteria Q Values Actions
State Feature ID No. of Jobs in Queue Action 1 Action 2 Action 1 Action 2

Dummy Not Started Processing 0 0 N/A N/A
1 NIQ1 < NIQ3 Q(1, 1) Q(1, 2) M/C 1 M/C 3
2 NIQ1 > NIQ3 Q(2, 1) Q(2, 2) M/C 1 M/C 3
3

1

NIQ1 = NIQ3 Q(3, 1) Q(3, 2) M/C 1 M/C 3
4 NIQ2 < NIQ4 Q(4, 1) Q(4, 2) M/C 2 M/C 4
5 NIQ2 > NIQ4 Q(5, 1) Q(5, 2) M/C 2 M/C 4
6

3

NIQ2 = NIQ4 Q(6, 1) Q(6, 2) M/C 2 M/C 4
7 NIQ1 < NIQ5 Q(7, 1) Q(7, 2) M/C 1 M/C 5
8 NIQ1 > NIQ5 Q(8, 1) Q(8, 2) M/C 1 M/C 5
9

5

NIQ1 = NIQ5 Q(9, 1) Q(9, 2) M/C 1 M/C 5
Dummy Completed Processing 0 0 N/A N/A

Besides feature ID, information provided by machine cell agents such as the

number of jobs in the buffer or total work in the buffer could also be employed as a state

determination criterion. An example of a policy table for determining state using both the

processing feature and the number of jobs in the buffer is shown in Table 4.2. Assume

that a job receives two bids (one from cell 2 and the other from cell 4) for processing

69

feature 3. Given that NIQ2 and NIQ4 denote the number of jobs in the buffer of cell 2 and

cell 4, respectively, if NIQ2 is greater than NIQ4, the job’s new state will be state 5 with

possible actions involving the use of machine 2 or machine 4 to process that feature.

With the capability of estimating the processing time of each job, the cell agent is

able to estimate the total work (in terms of processing time) represented by the jobs in its

buffer. WIQi denotes the total estimated processing time of the jobs in the buffer of cell i.

Table 4.3 presents an example of a policy table where the state determination criteria is

based on both the feature type and the estimated total work in the buffer. For an operation,

due to a variety of machine capability, the WIQ values provided by various machine cells

are hardly the same except when there are no jobs in their buffers. For cases when the

WIQ values are very close, it is hard to determine which machine cell the job should be

routed to because the WIQ values are only estimates. To overcome this issue, the relative

difference between the two WIQ values must exceed some threshold in order for

difference to be considered distinct. Suppose that cell x and cell y are able to perform the

same operation and each cell responds with its estimate of the total estimated processing

time of buffered jobs as WIQx and WIQy, respectively. If AWIQxy denotes the average of

these two WIQ values and ∆WIQxy denotes the absolute value of the difference of these

two WIQ values, then a ratio, DIFFxy, indicating the difference of the two WIQ values to

their mean value can be defined as the quotient of ∆WIQxy and AWIQxy as follows.

AWIQxy = (WIQx + WIQy)/2 (4-1)
∆WIQxy = | WIQx – WIQy | (4-2)
DIFFxy = ∆WIQxy / AWIQxy (4-3)

To set the threshold value, accuracy of the processing time estimates provided by

the machine cell agents must be considered. The more accurate the time estimates, the

70

smaller the value of the threshold. If no prior knowledge is available regarding the

accuracy of the estimates, this threshold value may be set arbitrarily. However, setting

too large a value may result in degradation of system performance. We set the threshold

value at 10% of the average of the two WIQ values. Since the approach used here is

unique, there is no prior study or reference regarding how to set this threshold value. A

better threshold value setting may be possible. Searching for the best setting for this

threshold value is beyond the scope of this research.

Table 4.3. A Policy Table Using Feature ID and WIQ as the State Determination criteria

 State Criteria Q Values Actions
State Feature

ID
Total Work in Queue Action

 1
Action

 2
Action

1
Action

2
Dummy Not Started Processing 0 0 N/A N/A

1 DIFF13 > 0.1 and WIQ1 < WIQ3 Q(1, 1) Q(1, 2) M/C 1 M/C 3
2 DIFF13 > 0.1 and WIQ1 > WIQ3 Q(2, 1) Q(2, 2) M/C 1 M/C 3
3

1

DIFF13 < 0.1 Q(3, 1) Q(3, 2) M/C 1 M/C 3
4 DIFF24 > 0.1 and WIQ2 < WIQ4 Q(4, 1) Q(4, 2) M/C 2 M/C 4
5 DIFF24 > 0.1 and WIQ2 > WIQ4 Q(5, 1) Q(5, 2) M/C 2 M/C 4
6

3

DIFF24 < 0.1 Q(6, 1) Q(6, 2) M/C 2 M/C 4
7 DIFF15 > 0.1 and WIQ1 < WIQ5 Q(7, 1) Q(7, 2) M/C 1 M/C 5
8 DIFF13 > 0.1 and WIQ1 > WIQ5 Q(8, 1) Q(8, 2) M/C 1 M/C 5
9

5

DIFF15 < 0.1 Q(9, 1) Q(9, 2) M/C 1 M/C 5
Dummy Completed Processing 0 0 N/A N/A

To illustrate the use of this measure, suppose that a job agent is making a decision

for selecting either machine cell 2 or cell 4 for machining feature 3. Machine cell 2

provided its WIQ value as 23.56 and machine cell 4 provided its WIQ values as 27.42.

The desired computations are now carried out (Equation 4-1, 4-2, and 4-3):

 AWIQ24 = (WIQ2 + WIQ4)/2 = (23.56 + 27.42)/2 = 25.49
 ∆WIQ24 = | WIQ2 – WIQ4 | = | 23.56 – 27.42 | = 3.86
 DIFF24 = ∆WIQ24 / AWIQ24 = 3.86/25.49 = 0.15 > 0.1

71

Since DIFF24 > 0.1 and WIQ2 < WIQ4, then state 4 is determined based on Table 4.3. If

two WIQ values are close (DIFF24 < 0.1), the estimated work in both queues is

considered equal. This research examines how use of any of the above three various

criteria impact the performance of the routing decisions of job agents.

4.2.2. Factors for Developing the Reward Function

Similar to Factor C, D, and E in Chapter 3, the factors (B, C, and D) are used for

developing the reward function. In this study, the system’s overall goal is to minimize the

mean tardiness of the finished jobs. The objective of each job agent is to finish the

required operations before the final due date. The job agent has the knowledge of the

estimated processing time for each operation which is calculated as the average of the

estimated processing times of the machine cells that are able to perform that operation.

Therefore, the job agent is able to estimate the total processing time for completing the

job. With the due date and the estimated total processing time, the job agent can

determine the allowance factor by using the following equation:

Allowance factor = (due date – arrival time)/ estimated total processing time

Based on the allowance factor, the job agent can determine the intermediate due date for

each required operation. The intermediate due date is used by the job agent to check if the

corresponding operation to this intermediate due date is behind. . The goal of the job

agent is to route the corresponding job to meet the intermediate due date of every

required operation. If the machine cell selected by the job agent finishes the operation

72

before the intermediate due date, the learning agent receives a reward for this action

(routing selection); otherwise, the job agent received a penalty.

As with the factors of reward function development in Chapter 3, Factor B defines

the number of ranges for determining the amount of reward/penalty, and Factor D

determines the size of the interval for each range. Factor E is concern with assigning the

magnitude of the reward and penalty to each range of the reward function. As in Chapter

3, we assumed that the machine agent has knowledge about the expected mean

processing time (EMPT) of the operations that it is able to perform and uses EMPT as a

measure to set the tardiness ranges for the reward function. Table 4.4 presents an example

of a 10-range reward function.

Table 4.4. An Example of 10-range Reward Function

Range Reward/Penalty
1 Tardiness = 0 r = 1 (or r = 10)
2 0 < Tardiness < n × EMPT r = -1
3 n × EMPT ≤ Tardiness < 2n × EMPT r = -2
4 2n × EMPT ≤ Tardiness < 3n × EMPT r = -3
5 3n × EMPT ≤ Tardiness < 4n × EMPT r = -4
6 4n × EMPT ≤ Tardiness < 5n × EMPT r = -5
7 5n × EMPT ≤ Tardiness < 6n × EMPT r = -6
8 6n × EMPT ≤ Tardiness < 7n × EMPT r = -7
9 7n × EMPT ≤ Tardiness < 8n × EMPT r = -8
10 8n × EMPT ≤ Tardiness r = -9

4.3. Design of Experiment

The factors considered in experimentation and their levels are shown in Table 4.5.

To examine these factors, a simulation of a small-sized job shop system consisting of ten

machines is carried out to measure effectiveness of these factors. This simulation model

73

is programmed in Visual C++ and implemented on a personal computer installed with

Intel Pentium 4 2.8GHz CPU. The job shop system is comprised of five types of machine

cells, each consisting of from one to three identical machines. There is only one buffer

associated with each machine cell. At most seven variant features can be machined in this

shop. The system can manufacture only three different jobs (type A, B, and C).

Table 4.5 Experimental Factors and Their Levels

Experimental Factors Level 1 Level 2 Level 3
A. State Determination Criteria Feature ID Feature ID

and NIQ
Feature ID
and WIQ

B. Number of ranges in reward function 10 ranges 20 ranges
C. Threshold value settings for reward function. n = 0.1 n = 0.15
D. Reward magnitude r = 1 r = 10

Table 4.6. Process Plan

Job Type Required Features
(Fixed Sequencing)

Alternative
Machine

Alternative
Machine

1 1 3
3 2 4

A

5 1 5
2 4 5
4 1 3

B

7 3 5
1 1 3
2 4 5

C

6 2 4

Job arrivals follow a Poisson distribution and the type of job is defined following

a uniform distribution. Each job type requires three features and the process plan of each

job type is presented in Table 4.6. Job type B and type C are routed using the NINQ

routing heuristic where jobs are routed by selecting the machine cell that has the fewest

74

number of jobs in its buffer. Ties are broken using random selection. Only job type A

employs the Q-learning algorithm to learn a routing policy. All machine cell agents

employ FIFO to select a job from the buffer for processing. The batch size for each job is

uniformly distributed between twenty and seventy units.

Table 4.7. Machine Capability

Machine
ID

Number of
Machines

Feature
ID

Estimated
Setup Time

Estimated
Processing Time

1 0.3 0.22
4 0.1 0.17

1 2

5 0.5 0.31
3 0.5 0.21 2 1
6 0.3 0.2
1 0.1 0.17
4 0.4 0.19

3 2

7 0.7 0.15
2 0.2 0.15
3 0.3 0.22

4 3

6 0.5 0.25
2 0.3 0.17
5 0.27 0.11

5 2

7 0.4 0.17

Table 4.7 shows the information about machine capability. All the setup and

processing times are estimates of experienced engineers. These values were used as the

mean values of the normal distribution used to generate the values used in the simulation

runs. The following assumptions are also made for the simulation.

1. Each machine can process only one operation at a time.

2. Each job is released to the system immediately after arrival.

3. Individual operations are not preemptable.

75

4. Set-up and processing times for each operation are not deterministic, but their

expected values are available.

5. The job may revisit the same machine cell before completing all its manufacturing

steps.

6. No machine breakdown occurs.

7. Transportation times between machines are not considered.

8. Set-up times are sequence-independent.

The simulation is conducted under four different sets of system conditions by

varying the mean inter-arrival time of jobs to the system and due date tightness. In the

dispatching rule selection problem of Chapter 3, 70% and 87.5% machine utilization was

set for light and heavy loading condition, respectively. To make the system conditions

consistent, the time between job arrivals to the system follows an exponential distribution

with a mean of 3 representing a heavy loading condition and 4 for a light loading

condition in this case. Use of these values results in a utilization of the bottleneck

machine cell of around 90% under the heavy loading condition and 70% under the light

loading condition. The due date of each job is determined based on the following

equation:

 Due Date = Arrival time + Allowance factor × Total Expected Processing Time

Due date tightness is controlled by adjusting the allowance factor. In this study, an

allowance factor is drawn from a uniform distribution between 1.2 and 1.8, U[1.2, 1.8],

for jobs with tight due dates and between 1.7 and 2.3, U[1.7, 2.3], for jobs with loose due

dates. The total expected processing time of a job is the sum of estimated mean

processing times of its required operations. The mean processing time of each operation

76

is estimated by averaging the estimated processing times (EPT in Table 4.7) provided by

different machine cell agents that are able to machine the same feature. The real

processing time (RPT) of each operation used in the simulation is generated using a

normal distribution with a mean of EPT and standard deviation of EPT/10. Given the

possibility that a normal distribution may generate an extreme value, the RPT values

were constrained to be within ±3 times the standard deviation.

Figure 4.1. An Example of the Observed Learning Progress
(with Setting A3_BCd)

0

0.5

1

1.5

2

2.5

1 11 21 31 41 51

x1,000 jobs

M
ea

n
Ta

di
ne

ss

For each control factor combination setting used in the experiment, the mean

tardiness of every 1000 completed type-A jobs is monitored to determine the sufficient

warm-up period for the system. 10,000 type-A job completions was determined as

sufficient for a system warm-up period for all four system conditions. All these jobs are

routed using the NINQ heuristic during this period. Figure 4.1 presents a plot of the mean

tardiness for every 1000 type-A jobs observed for an experimental run. This plot

illustrates the change of the mean tardiness as learning progresses. After completing these

77

10,000 type-A jobs, type-A jobs are routed based on Q-learning algorithm, while job type

B and C are routed using the NINQ heuristic. A horizon of the next 20,000 type-A job

completions was monitored and determined as an appropriate run length in order to

guarantee that learning had reached steady state. After completing these 30,000 type-A

jobs, the next 30,000 jobs completion are processed by the system and the mean tardiness

of these additional jobs is calculated and recorded as a single observation for an

experiment. A 3×2×2×2 factorial experiment was conducted with ten replications under

each of the four different system conditions (see Table 4.8).

Table 4.8. A 3×2×2×2 factorial experiment is conducted under the following conditions

System Conditions Inter-arrival Time Allowance Factor
Heavy Loading/Tight Due Date (HT) 3 U[1.2, 1.8]
Heavy Loading/Loose Due Date (HL) 3 U[1.7, 2.3]
Light Loading/Tight Due Date (LT) 4 U[1.2, 1.8]
Light Loading/Loose Due Date (LL) 4 U[1.7, 2.3]

 78

CHAPTER V

EXPERIMENTAL RESULTS

5.1. The Single-Machine Dispatching Rule Selection Problem

5.1.1. Experimental Results

Table 5.2 provides a summary of the experimental results for the single-machine

dispatching rule selection problem. Each value in this table represents the mean of ten

replications for each experimental run involving the factor settings defined in Table 3.3.

For each system condition, analysis of variance (ANOVA) is used to identify strong

effects and their interactions on a response at a level of significance of 0.05. These

significant interactions are presented in Table 5.1.

Table 5.1. Significant Interaction found by ANOVA

System
Conditions

Significant Interactions (α = 0.05)

HT BCD ABDE
HL A BDE CDE
LT ABDE ABCE BCDE
LL BCD BDE CDE ADE ABCE

The ANOVA results indicated that primarily only various combinations of higher-

order interactions were significant with no combination common across all system

conditions. To further investigate the best factor level combination, Duncan’s multiple

range test (at 0.05 level of significance) was applied to each identified

79

significant interaction. The ANOVA and Duncan’s test in this research were conducted

by SAS software. For the significant interactions under the HT system condition (high

load with tight due dates), Table 5.3 shows the results of Duncan test. In the table, a

lowercase letter for a factor represents the level 1 setting for that factor while an

uppercase letter indicates the level 2 setting. For each significant interaction, Duncan’s

test is testing every pair of means for all the possible factor settings. The Duncan

grouping letters in the table indicate if there is a significant difference between a pair of

means for the factor settings. For example, there is no significant difference between

factor setting AbDe and abDe since their corresponding Duncan grouping letters are the

same (group A), while there is a significant difference between factor setting abDe and

aBDe since their grouping letters are different (abDe – group A, aBDe – group B). In the

up-left cell of Table 5.3, the best group for the interaction of control factors A, B, D, and

E, found is group J in which all the factors are at level 2. For the significant interaction of

control factors B, C, and D, the best group identified by the Duncan test consists of four

settings BCD, BCd, bCd, and bcd. There is no significant difference found between these

four settings. According to the best groups a common factor level setting (ABCDE) can

be concluded and used as the recommended control factor level combination for system

condition HT. Going through this same process for the other system conditions, HL, LT,

and LL, the results of Duncan tests are presented in Table 5.4, Table 5.5, and Table 5.6,

respectively. Table 5.7 summaries the favorable settings found for each of the four

system conditions.

80

Table 5.2. Experimental Results of Single-Machine Dispatching Rule Selection

Problem (0: level 1, 1: level 2)

Experiment No. A B C D E HT HL LT LL
1 0 0 0 0 0 20.533 18.444 5.884 4.437
2 0 0 0 0 1 20.463 18.457 5.855 4.458
3 0 0 0 1 0 20.654 18.478 5.921 4.464
4 0 0 0 1 1 20.461 18.453 5.861 4.453
5 0 0 1 0 0 20.529 18.424 5.888 4.403
6 0 0 1 0 1 20.464 18.456 5.858 4.460
7 0 0 1 1 0 20.652 18.469 5.914 4.448
8 0 0 1 1 1 20.459 18.444 5.856 4.454
9 0 1 0 0 0 20.542 18.450 5.891 4.434

10 0 1 0 0 1 20.470 18.463 5.856 4.457
11 0 1 0 1 0 20.584 18.456 5.909 4.460
12 0 1 0 1 1 20.455 18.453 5.860 4.455
13 0 1 1 0 0 20.548 18.434 5.894 4.407
14 0 1 1 0 1 20.470 18.461 5.860 4.462
15 0 1 1 1 0 20.585 18.476 5.907 4.441
16 0 1 1 1 1 20.443 18.445 5.856 4.455
17 1 0 0 0 0 20.532 18.439 5.889 4.426
18 1 0 0 0 1 20.463 18.448 5.853 4.445
19 1 0 0 1 0 20.655 18.464 5.940 4.449
20 1 0 0 1 1 20.460 18.443 5.859 4.442
21 1 0 1 0 0 20.528 18.413 5.884 4.394
22 1 0 1 0 1 20.458 18.447 5.856 4.447
23 1 0 1 1 0 20.657 18.454 5.911 4.435
24 1 0 1 1 1 20.454 18.435 5.853 4.443
25 1 1 0 0 0 20.516 18.447 5.881 4.432
26 1 1 0 0 1 20.454 18.452 5.853 4.444
27 1 1 0 1 0 20.544 18.448 5.895 4.449
28 1 1 0 1 1 20.446 18.442 5.857 4.443
29 1 1 1 0 0 20.524 18.426 5.882 4.409
30 1 1 1 0 1 20.458 18.447 5.857 4.448
31 1 1 1 1 0 20.541 18.438 5.891 4.439
32 1 1 1 1 1 20.434 18.438 5.854 4.443

81

Table 5.3. The Results of Duncan’s Test for System Condition HT (a = 0.05)

Significant Interaction: ABDE

 Duncan
Grouping Mean Factor Setting

 A 20.655780 AbDe
 A
 A 20.652935 abDe

 B 20.584795 aBDe

 C 20.544890 aBde
 C
 C 20.542550 ABDe

 D 20.531015 abde
 D
 D 20.530000 Abde

 E 20.520050 ABde

 F 20.470065 aBdE

 G 20.463285 abdE
 G
H G 20.460425 AbdE
H G
H G 20.460020 abDE
H G
H G 20.457215 AbDE
H
H 20.455950 ABdE

 I 20.448890 aBDE

 J 20.440020 ABDE

Significant Interaction: BCD

 Duncan
Grouping Mean Factor Setting

 A 20.55764 bcD
 A
 A 20.55534 bCD

 B 20.50406 BCD
 B
 B 20.49774 BCd
 B
 B 20.49749 bcd
 B
 B 20.49488 bCd

Recommended Factor Setting: ABCDE

82

Table 5.4. The Results of Duncan’s Test for System Condition HL (a = 0.05)

Significant Interaction: BDE

Duncan
Grouping Mean Factor Setting

 A 18.466173 bDe

 B 18.455680 BdE
 B
 B 18.454768 BDe
 B
C B 18.451988 bdE
C
C D 18.444490 BDE
C D
C D 18.443750 bDE
 D
 D 18.439418 Bde

 E 18.430098 bde

Significant Interaction: CDE

Duncan
Grouping Mean Factor Setting

 A 18.461683 cDe
 A
 A 18.459258 CDe
 A
B A 18.455155 cdE
B A
B A C 18.452513 CdE
B C
B D C 18.447763 cDE
 D C
 D C 18.445045 cde
 D
 D 18.440478 CDE

 E 18.424470 Cde

Recommended Factor Setting: AbCde

83

Table 5.5. The Results of Duncan’s Test for System Condition LT (a = 0.05)

Significant Interaction:
ABCE

Duncan Factor
Grouping Mean Setting

A 5.914409 Abce

B 5.902350 abce
B
B 5.901245 abCe
B
B 5.900314 aBCe
B
B 5.900240 aBce
B
B 5.897646 AbCe

C 5.888190 ABce
C
C 5.886626 ABCe

D 5.858200 aBcE
D
D 5.857725 aBCE
D
D 5.857550 abcE
D
D 5.856855 abCE
D
D 5.856210 AbcE
D
D 5.855462 ABCE
D
D 5.855170 ABcE
D
D 5.854471 AbCE

Significant Interaction:
ABDE

Duncan Factor
Grouping Mean Setting

A 5.925640 AbDe

B 5.917450 abDe

C 5.907903 aBDe

D 5.892848 ABDe
D
D 5.892651 aBde

E 5.886415 Abde
E
E 5.886145 abde

F 5.881968 ABde

G 5.858280 abDE
G
G 5.857963 aBdE
G
G 5.857962 aBDE
G
G 5.856300 AbDE
G
G 5.856125 abdE
G
G 5.855523 ABDE
G
G 5.855109 ABdE
G
G 5.854381 AbdE

Significant Interaction:
BCDE

Duncan Factor
Grouping Mean Setting

 A 5.930400 bcDe

 B 5.912690 bCDe

 C 5.901987 BcDe
 C
 C 5.898764 BCDe

 D 5.888176 BCde
 D
 D 5.886443 Bcde
 D
 D 5.886359 bcde
 D
 D 5.886201 bCde

 E 5.859890 bcDE
 E
F E 5.858596 BcDE
F E
F E 5.858298 BCdE
F E
F E 5.856636 bCdE
F
F 5.854890 BCDE
F
F 5.854775 BcdE
F
F 5.854689 bCDE
F
F 5.853870 bcdE

Recommended Factor Setting: abcdE, abCdE, abCDE, aBcdE, aBcDE, aBCdE, aBCDE,
AbcdE, AbCdE, AbCDE, ABcdE, ABcDE, ABCdE, and ABCDE.

84

Table 5.6. The Results of Duncan’s Test for System Condition LL (a = 0.05)

Significant Interaction: ADE
Duncan
Grouping Mean Factor Setting

 A 4.459071 adE

 B 4.454097 aDE
 B
 B 4.453107 aDe

 C 4.446260 AdE
 C
 C 4.443005 ADe
 C
 C 4.442796 ADE

 D 4.420151 ade

 E 4.415288 Ade

Significant Interaction: ABCE
Duncan
Grouping Mean Factor Setting

 A 4.458381 aBCE
 A
 A 4.456660 abCE
 A
 A 4.455841 aBcE
 A
 A 4.455456 abcE
 A
B A 4.450227 abce
B
B C 4.447011 aBce
B C
B C D 4.445651 ABCE
B C D
B C D 4.444895 AbCE
B C D
B C D 4.443857 ABcE
B C D
B C D 4.443710 AbcE
 C D
 C D 4.440630 ABce
 D
 D 4.437370 Abce

 E 4.425476 abCe
 E
 E 4.424357 ABCe
 E
 E 4.423803 aBCe

 F 4.414230 AbCe

Significant Interaction: BDE
Duncan
Grouping Mean Factor Setting

 A 4.452906 BdE
 A
 B A 4.452426 bdE
 B A
 B A 4.448959 BDE
 B A
 B A 4.448652 bDe
 B A
 B A 4.447934 bDE
 B
 B 4.447460 BDe

 C 4.420440 Bde

 D 4.414999 bde

Significant Interaction: CDE
Duncan
Grouping Mean Factor Setting

 A 4.455438 cDe

Significant Interaction: BCD
Duncan
Grouping Mean Factor Setting

 A 4.451953 bcD

85

Table 5.6. (continued).

 A
 A 4.454273 CdE

 B 4.451059 cdE
 B
 B 4.448520 CDE
 B
 B 4.448373 cDE

 C 4.440674 CDe

 D 4.432181 cde

 E 4.403259 Cde

 A 4.451953 bcD
 A
 A 4.451859 BcD
 A
 B A 4.444634 bCD
 B A
 B A 4.444560 BCD
 B
 B 4.441811 Bcd
 B
 B 4.441429 bcd

 C 4.431535 BCd
 C
 C 4.425997 bCd

Recommended Factor Setting: AbCde

Table 5.7. Best Factor Level Combinations for Various System Conditions

Conditions Significant Interactions Best Factor Level Combinations
HT ABDE, BCD ABCDE
HL A, BDE, CDE AbCde
LT ABDE, ABCE, BCDE abcdE, abCdE, abCDE, aBcdE,

aBcDE, aBCdE, aBCDE, AbcdE,
AbCdE, AbCDE, ABcdE, ABcDE,
ABCdE, and ABCDE.

LL ABCE, BDE, ADE, CDE, BCD AbCde

As a basis of another comparison, the performance of the system was determined

while operating under each one of the three dispatching rules (EDD, SPT, or FIFO).

These results were compared with the Q-learning algorithm using the recommended

factor settings. Table 5.8 shows the resulting system performance for each case under

each of the four system conditions. Of the three dispatching rules, SPT was identified as

the favored rule for system conditions HT, HL, and LT, while EDD outperformed the

other two rules for system condition LL. These results align with the scheduling strategy

86

prescribed by Morton and Pentico (1993) based on their study of several heuristics for a

static single-machine problem. They found that to minimize tardiness, one should

schedule lightly loaded shops using EDD and schedule heavily loaded shops using

WSPT.

Table 5.8. Results of using the individual Dispatching Rules and the Q-learning
algorithm.

Dispatching Rules\Conditions HT HL LT LL
EDD 21.907 19.234 6.031 4.292
SPT 20.298 18.422 5.831 4.499
FIFO 21.966 19.319 6.071 4.354
Q-Learning
(Recommended Factor Setting)
EDD Selection Percentage
SPT Selection Percentage
FIFO Selection Percentage

20.434
(ABCDE)
4.05%
91.66%
4.29%

18.413
(AbCde)
10.29%
79.87%
9.84%

5.854
(ABCDE)
4.99%
89.67%
5.34%

4.394
(AbCde)
15.03%
69.65%
15.32%

When the Q-learning algorithm was applied with the recommended factor

settings, the learning agent yielded the best performance for one (HL) of the four system

conditions. However, in three of the four cases, the resulting policy derived by Q-learning

favored the best rule for the condition. It selected the SPT rule 91.7%, 79.9%, and 89.7%

of the time for system condition HT, HL, and LT, respectively, but selected SPT only

69.7% of the time for system condition LL. SPT is the best among these three rules for

minimizing the number of tardy jobs. (Under system condition LL, the percentage of jobs

that reported as tardy using EDD, SPT, and FIFO is 41.6%, 28.1%, and 41.5%,

respectively.) However, for minimizing mean tardiness (the measure used here), SPT

may cause some jobs with long processing times to be very tardy causing the overall

mean tardiness to be worse even though there are only a few tardy jobs. In the reward

function, only non-tardy jobs receive a reward, therefore it is not surprising that the

87

selection percentage of SPT for the LL case is this high. A high selection percentage for

SPT means that, most of the time, the Q value representing the action of selecting SPT is

larger than the Q values for the other two rules. Given that the performance of the system

when employing either EDD or FIFO are nearly the same, it is not surprising that the

selection percentages for EDD and FIFO are so close for all the four system conditions.

For the LL case, if the reward function is modified to assign larger penalties to the

actions causing jobs to be very tardy, then the EDD selection percentage may come out

on top.

5.1.2. Discussion

Given prior success at applying Q-learning for the dispatching rule selection

problem (Wang and Usher, 2002), this study conducted a factorial experiment for

studying the factors important to the design and implementation of the Q-learning

algorithm to the single machine dispatching rule selection problem. According to the

results in Table 5.7, it is better to design the policy table with more states (control factor

A) and the reward function with more ranges (control factor C) independent of the due

date tightness when the system is under heavy loading conditions. With the mean lateness

of the jobs in the buffer as the state determination, the number of states can be infinite.

Then a large amount of memory may be required to build up approximations of the value

functions. Although the tabular method (arrays or tables with one entry for each state) in

this study is much simpler and easier to implement, the experimental results reveal that

more states are better. Therefore, using the function approximation approach instead of

the tabular method is suggested.

88

Based on the experimental results, the ranges for determining the states (control

factor B) and penalties (control factor D) should be wider when job due dates are tight.

This is because the tight due date setting may result in some jobs being very tardy,

particularly when applying SPT as the selection rule. The use of wider ranges (control

factor B and D) permits the system agent to better distinguish the different jobs at these

higher tardiness levels providing a more accurate identity of the real system status. Also,

a reward function that is more able to distinguish between the various levels of the tardy

jobs provides more accurate responses regarding the agent’s decisions.

Also, under the condition with tight due date jobs, it is better to assign more

reward (control factor E) to the action for early jobs. When most of the completed jobs

register as tardy, a lot of the Q values in the policy table accumulate and become very

large negative values. Hence, the reward magnitude (a positive value) becomes important

because it is better able to provide a larger impact when a proper action is selected. The

experimental results indicate that the best factor level combinations found for the

conditions with loose due dates (system condition HL and LL) are the same and favor

more states with narrower ranges for the policy table and likewise for the reward

function.

5.2. The Ten Machine Job Routing Problem

5.2.1 Experimental Results

The experimental results for the ten-machine job routing problem are presented in

Table 5.10. Each result value in the table represents the mean of ten replications for each

experimental run involving the factor settings defined in Table 4.5. Again, ANOVA is

used to identify strong effects and their interactions on a response for each system

89

condition. Based on the results of ANOVA at significance level of 0.05, the significant

interactions detected are shown in Table 5.9.

For the significant interactions for system condition HT, the interaction plots

(Figures 5.1, 5.2, and 5.3) show that level 2 setting for factor B and factor C, and level 1

setting for factor D are good when factor A is set at level 1, while any setting for factors

B, C, and D would be fine if factor A is set at level 3. In the figures, A1, A2, and A3

represent the level 1, level 2, and level 3 setting, respectively, for factor A. For factors B,

C, and D, a lowercase letter represents the level 1 setting for that factor while an

uppercase letter indicates use of the level 2 setting. Figure 5.4 shows that level 2 for

factor B and level 1 for factor D are good settings for interaction BD.

These same results can be found by applying Duncan’s test. Table 5.11 shows the

results of Duncan’s test (at 0.05 level of significance) for these four interactions. Overall,

A3_BCd (Level 3 for factor A, level 2 for factor B, level 2 for factor C, and level 1 for

factor D) can be concluded as the recommended factor level combination for system

condition HT. The results of Duncan’s test for the other system conditions (HL, LT, and

LL) are presented in Table 5.12, Table 5.13, and Table 5.14, respectively. For system

condition HL and LL, A3_bCd and A3BCd are identified as the recommended settings,

while A3_BCd is recommended for system condition LT. Table 5.15 summarizes these

favorable settings found for each of the four system conditions.

Table 5.9. Significant Interaction found by ANOVA

System Conditions Significant Interactions (α = 0.05)
HT AB AC AD BD
HL AC AD BD
LT AB AC AD CD
LL ABD ACD

90

Figure 5.2. A-B Interaction under HT condition

7

8

9

10

A1 A2 A3

Level of Factor A

M
ea

n
 T

ar
d

in
es

s b

B

Figure 5.3. A-C Interaction under HT condition

7

8

9

10

A1 A2 A3

Level of Factor A

M
ea

n
 T

ar
d

in
es

s c

C

91

Figure 5.4. A-D Interaction under HT condition

7

8

9

10

A1 A2 A3

Level of Factor A

M
ea

n
 T

ar
d

in
es

s d

D

Figure 5.5. B-D Interaction under HT condition

7.4

7.6

7.8

8

d D

Level of Factor D

M
ea

n
 T

ar
d

in
es

s

b

B

92

Table 5.10. Experimental Results of Job Routing Problem
(0: level 1, 1: level 2, 2: level 3)

Experiment No. A B C D HT HL LT LL

1 0 0 0 0 9.017 4.622 2.275 0.794
2 0 0 0 1 9.708 5.186 2.428 0.875
3 0 0 1 0 8.367 4.327 2.136 0.726
4 0 0 1 1 9.14 4.947 2.418 0.869
5 0 1 0 0 8.919 4.605 2.241 0.781
6 0 1 0 1 9.511 5.044 2.334 0.804
7 0 1 1 0 8.262 4.326 2.104 0.747
8 0 1 1 1 8.787 4.705 2.297 0.79
9 1 0 0 0 7.252 3.462 1.889 0.45

10 1 0 0 1 7.406 3.627 1.933 0.471
11 1 0 1 0 7.067 3.442 1.917 0.442
12 1 0 1 1 7.294 3.465 1.966 0.462
13 1 1 0 0 7.225 3.513 1.888 0.458
14 1 1 0 1 7.395 3.621 1.913 0.456
15 1 1 1 0 7.276 3.399 1.845 0.441
16 1 1 1 1 7.289 3.563 1.943 0.431
17 2 0 0 0 7.017 3.34 1.819 0.433
18 2 0 0 1 7.155 3.43 1.875 0.444
19 2 0 1 0 7.088 3.257 1.803 0.425
20 2 0 1 1 7.031 3.387 1.885 0.441
21 2 1 0 0 7.132 3.371 1.843 0.436
22 2 1 0 1 7.042 3.439 1.854 0.434
23 2 1 1 0 7.048 3.301 1.815 0.433
24 2 1 1 1 7.087 3.29 1.883 0.43

93

Table 5.11. The Results of Duncan’s Test for System Condition HT (a = 0.05)

Significant Interaction: AB

 Duncan
Grouping Mean Factor Setting
 A 9.05825 A1_b

 B 8.86949 A1_B

 C 7.29607 A2_B
 C
 C 7.25464 A2_b

 D 7.07698 A3_B
 D
 D 7.07288 A3_b

Significant Interaction: AC

 Duncan
Grouping Mean Factor Setting
 A 9.28879 A1_c

 B 8.63895 A1_C

 C 7.31931 A2_c
 C
 C 7.23140 A2_C

 D 7.08639 A3_c
 D
 D 7.06346 A3_C

Significant Interaction: AD

 Duncan
Grouping Mean Factor Setting
 A 9.28647 A1_D

 B 8.64127 A1_d

 C 7.34583 A2_D

 D 7.20488 A2_d

 E 7.07863 A3_D
 E
 E 7.07122 A3_d

Significant Interaction: AD

 Duncan
Grouping Mean Factor Setting

 A 7.9557 bD
 A
 A 7.8516 BD
 A
 A 7.6435 Bd
 A
 A 7.6348 bd

Recommended Factor Setting: A3_BCd

94

Table 5.12. The Results of Duncan’s Test for System Condition HL (a = 0.05)

Significant Interaction: BD
Duncan
Grouping Mean Factor Setting

 A 4.0244 bD
 A
B A 3.9419 BD
B
B 3.7525 Bd
B
B 3.7417 bd

Significant Interaction: AC
Duncan
Grouping Mean Factor Setting
 A 4.86425 A1_c

 B 4.57623 A1_C

 C 3.55569 A2_c
 C
D C 3.49349 A2_C
D
D E 3.39225 A3_c
 E
 E 3.30891 A3_C

Significant Interaction: CD
Duncan
Grouping Mean Factor Setting
 A 4.97050 A1_D

 B 4.46997 A1_d

 C 3.59515 A2_D

 D 3.45403 A2_d
 D
 E D 3.38385 A3_D
 E
 E 3.31731 A3_d

Recommended Factor Setting: A3_bCd, A3BCd

95

Table 5.13. The Results of Duncan’s Test for System Condition LT (a = 0.05)

Significant Interaction: AB

 Duncan
Grouping Mean Factor Setting
 A 2.31410 A1_b

 B 2.24422 A1_B

 C 1.92627 A2_b
 C
 C 1.89729 A2_B

 D 1.84869 A3_B
 D
 D 1.84575 A3_b

Significant Interaction: AC

 Duncan
Grouping Mean Factor Setting
 A 2.31954 A1_c

 B 2.23878 A1_C

 C 1.91775 A2_C
 C
 C 1.90581 A2_c

 D 1.84800 A3_c
 D
 D 1.84644 A3_C

Significant Interaction: AD

 Duncan
Grouping Mean Factor Setting
 A 2.36930 A1_D

 B 2.18902 A1_d

 C 1.93873 A2_D

 D 1.88484 A2_d
 D
 D 1.87442 A3_D

 E 1.82002 A3_d

Significant Interaction: AD

 Duncan
Grouping Mean Factor Setting

 A 2.06528 CD
 A
 A 2.05635 cD
 A
B A 1.99255 cd
B
B 1.93670 Cd

Recommended Factor Setting: A3_BCd

96

Table 5.14. The Results of Duncan’s Test for System Condition LL (a = 0.05)

Table 5.15. Best Factor level Combinations for Various System Conditions

Conditions Significant Interactions Best Factor Level Combinations
HT AB, AC, AD, BD A3_BCd
HL AC, AD, BD A3_bCd, A3_BCd
LT AB, AC, AD, CD A3_BCd
LL ABD, ACD A3_bCd, A3_BCd

Significant Interaction: ABD

 Duncan
Grouping Mean Factor Setting
 A 0.87225 A1_bD

 B 0.79729 A1_BD

 C 0.76369 A1_Bd
 C
 C 0.75992 A1_bd

 D 0.46636 A2_bD
 D
E D 0.44945 A2_Bd
E D
E D 0.44622 A2_bd
E
E 0.44382 A2_BD
E
E 0.44259 A3_bD
E
E 0.43452 A3_Bd
E
E 0.43191 A3_BD
E
E 0.42888 A3_bd

Significant Interaction: ACD

 Duncan
Grouping Mean Factor Setting
 A 0.83961 A1_cD
 A
 A 0.82992 A1_CD

 B 0.78746 A1_cd

 C 0.73615 A1_Cd

 D 0.46341 A2_cD
 D
E D 0.45404 A2_cd
E D
E D F 0.44677 A2_CD
E D F
E D F 0.44163 A2_Cd
E F
E F 0.43901 A3_cD
E F
E F 0.43550 A3_CD
E F
E F 0.43451 A3_cd
 F
 F 0.42889 A3_Cd

Recommended Factor Setting: A3_bCd, A3_BCd

97

5.2.2. Discussion

 Level 1 for factor A (A1) represents the case in which the policy table is

constructed using only feature ID as the state determination criterion. Since this does not

take into account any information regarding the current buffer status of the machine cells

that are able to perform the job agent’s next operation, it makes sense that the other two

settings of factor A (A2 and A3), in which additional information is considered (number

of jobs in queue (NIQ) and estimate work in queue (WIQ)), outperformed A1 for all of

the four system conditions. To further compare the cases of A2 and A3, for system

condition HT, HL, and LT, it was found that A3 is better than the A2. For the cases using

the A2 setting, the job agents use the feature ID and NIQ as the state determination

criteria, whereas, for the cases of A3, the cell agents make a further estimate of the total

work of those jobs in the queue (WIQ). The WIQ measure provides more details for a job

agent to more precisely determine the states they encounter. For the remaining system

condition LL, Duncan’s test revealed no significant difference among the settings of

A2_bCd, A2_BCd, and A2_BCD, and any set of settings with A3. This indicates that the

advantage from incorporating WIQ has less of an impact under the LL system condition.

In tables 5.11 and 5.13, for significant interaction AB, the cases with A3 setting

(A3_b and A3_B) are grouped together (group D), and the cases with A2 setting (A2_b

and A2_B) are grouped together (group C), while the setting A1_b and A1_B are

assigned to different groups, group A and B, respectively. In other words, for the system

conditions involving jobs with tight due-dates (HT and LT), the number of ranges (factor

B) for the reward function is not important for those cases with the A2 or A3 setting.

However, if factor A is set at level 1, the use of more ranges for rewards is better.

98

Therefore, if this approach is applied to a system where the machine agents have no

capability of providing their buffer status, the use of more ranges for reward functions is

suggested.

Toward reward function development, factor C defines the size of the interval for

each range of the reward function. In table 5.11, 5.12, and 5.13, for significant interaction

AC, the cases with A3 setting (A3_c and A3_C) are in the same group (group D in table

5.11 and 5.13, group E in table 5.12), and the cases with A2 setting (A2_c and A2_C) are

in group C, while the setting A1_c and A1_C are in different groups, group A and B,

respectively. Therefore, for system conditions HT, HL, and LT, the levels of factor C do

not affect the job tardiness when factor A is set either at level 2 or level 3, while the use

of wider ranges is recommended for the cases using the A1 setting. This means, again, if

the machine agent is unable to provide information concerning NIQ and WIQ, it is better

to design the reward function with wider ranges under most system conditions.

 For factor D, Duncan’s test shows that level 1 (d) is either the same as, or better

than, level 2 (D) when factor A is set at level 1 under any system condition. That means

the reward magnitude should be set small. According to the simulation results, around

one fourth of the completed jobs are tardy under system condition HT (the most heavy

loading system with tight due date jobs), this indicates that the job agent receives a

reward for its routing decision with high possibility (around 75%). That may be why the

use of a small value for the reward resulted in better performance than a large value in

this case.

99

5.2.3. Mean Tardiness of Prior Operations

In this experiment, it is assumed that the machine agent has knowledge of the

estimated mean processing time (EMPT) of the operations that the machine is able to

perform but has no prior knowledge about how much the magnitude of job tardiness may

be. Therefore, EMPT is used as the measure to set the tardiness ranges for the reward

function. However, job tardiness varies under different system conditions, even for the

same system conditions job tardiness may vary from time to time. Therefore, EMPT is

not a good measure to set the tardiness ranges for the reward function because EMPT is

not adjusted with the changing system conditions. To overcome this issue, a suggested

approach is to use the mean tardiness for prior operations (MTPO) as the measure to set

the tardiness ranges for the reward function.

As described in Chapter 4, using an allowance factor, the job agent can determine

an intermediate due date for each required operation of a job. The intermediate due date

is used by the job agent to check if the corresponding operation is behind and therefore

assign a tardiness value for this operation. The mean tardiness for a specific operation can

then be computed and updated whenever the operation is performed. In the system of this

study, there are seven operations for seven features (one operation for each feature). Thus

there would be seven mean tardiness values updated in real-time. Table 5.16 shows an

example of using MTPO to set the ranges for measuring the tardiness of an operation.

Figure 5.5 compares the performance of using EMPT and MTPO as the measure for

setting the ranges of the reward function. MTPO makes the job mean tardiness drop by as

much as 15% under system condition HL, compared with using EMPT. This result

proved that EMPT is not a good measure for designing the reward function since the

100

EMPT value is not altered with the system changes. This result also indicates that MTPO

is a good measure for setting ranges of the reward function since MTPO is updated as

system condition changes.

Table 5.16. An Example of 10-range Reward Function

Range Reward/Penalty
1 Tardiness = 0 r = 1 (or r = 10)
2 0 < Tardiness < n × MTPO r = -1
3 n × MTPO ≤ Tardiness < 2n × MTPO r = -2
4 2n × MTPO ≤ Tardiness < 3n × MTPO r = -3
5 3n × MTPO ≤ Tardiness < 4n × MTPO r = -4
6 4n × MTPO ≤ Tardiness < 5n × MTPO r = -5
7 5n × MTPO ≤ Tardiness < 6n × MTPO r = -6
8 6n × MTPO ≤ Tardiness < 7n × MTPO r = -7
9 7n × MTPO ≤ Tardiness < 8n × MTPO r = -8
10 8n × MTPO ≤ Tardiness r = -9

Figure 5.5. Performance Improvement (MTPO vs EMPT)

0

2

4

6

8

10

12

14

16

HT HL LT LL

System Conditions

P
er

ce
nt

 (
%

)

101

5.2.4. Traditional Routing Heuristics and the Q-learning Routing Policies

 Table 5.17 provides a performance comparison for job routing by using the

routing heuristics (NINQ and WINQ) and the routing policies learned by the Q-learning

algorithm with EMPT and MTPO as a measure for setting tardiness ranges for the reward

function and at the recommended setting (A3_BCd). It can be observed that the routing

policy learned by the Q-learning algorithm MTPO as a measure for setting tardiness

ranges and at A3_BCd is very competitive under system condition HT and LT. That is,

the Q-learning performs well when the system is operating under tight due-dates. The

percentages of tardy jobs are 22.3%, 10.3%, 11.7%, and 3.3% for the system condition

HT, HL, LT, and LL, respectively. Although the mean tardiness of each job for system

condition HL (2.827) is higher than the one for system condition LT (1.608), the

percentage of tardy jobs for system condition LT (11.7%) is higher than the one for

system condition HL (10.3%). This may indicate that in cases where there are a greater

number of tardy jobs the Q-learning performs better. In the reward function, there are

several levels of penalty to determine the job tardiness but only one level of reward. In

other words, the reward function does not provide a measure differentiating the value of a

decision is when it is good, but it does distinguish between cases is when the decision is

bad. More than likely, that is why the Q-learning does not perform well for the light due

date cases.

Table 5.17. Performance Comparison: Heuristics versus Q-Learning Policies

 HT HL LT LL
NINQ (Heuristic) 6.324 2.367 2.171 0.379
WINQ (Heuristic) 5.943 2.113 2.094 0.341
EMPT (Recommended Setting: A3_BCd) 7.048 3.301 1.815 0.433
MTPO (Recommended Setting: A3_BCd) 5.983 2.827 1.608 0.427

 102

CHAPTER VI

CONCLUSIONS

6.1. Summary and Conclusions

Reinforcement learning (RL) has recently become an active research interest

within the field of machine learning. Although there have been several examples

demonstrating the usefulness of RL, its application to manufacturing systems has not yet

been fully explored. In addition, most of the current agent-based research in

manufacturing systems focuses on the issues of negotiation and cooperation among

agents, overlooking learning as a means for giving an agent an ability to increase its

perceived intelligence for making decisions. This research investigated how the Q-

learning algorithm can be used by job agents to generate policies for making real-time

routing decisions and by machine agents to discover a policy for selecting a proper

dispatching rule.

Several recommendations were derived from the results of this research. For

applying Q-learning to dispatching rule selection, more states in the policy table and

more ranges for the reward function essentially improve learning performance. When job

due dates are tight, the use of wider ranges for determining the states and for determining

penalties resulted in better performance than use of narrow ranges. In addition, the

reward magnitude proved crucial under such conditions. If most of the completed jobs are

tardy, a larger value for the reward magnitude is preferred.

103

When applying the Q-learning method to the job routing problem, it is strongly

recommended that the current buffer status of the machines be included as one part of the

state determination criteria. When the buffer status is included as one of the state

determination criteria, then the number of ranges and size of each range for the reward

function do not seem to have much effect on system performance in terms of mean job

tardiness. However, if buffer status is not considered as part of the state determination

criteria, increasing the number of ranges used and the width of each range is

recommended.

The reward magnitude also proved crucial in this problem with the experimental

results recommending the use of a small reward magnitude setting (compared to the

penalty magnitude setting). The ratio of the number of tardy jobs to total number of

completed jobs may need to be taken into account for setting this reward/penalty

magnitude. In this study, the ratio for the worst case (HT condition) was 25%, where a

small reward magnitude setting was recommended. If the ratio is large, for example,

more than 50% of the jobs are tardy, then a larger reward setting is suggested so that

learning can be reinforced from the fewer good decisions. In addition, it was determined

that the use of the mean tardiness computed from previous job’s operations (MTPO)

proved much better than the use of the estimated mean processing time (EMPT) as the

measure for setting tardiness ranges of the reward function. Therefore, a mechanism for

collecting, recording and updating mean tardiness values for system operations is highly

recommended.

The conclusions of this study are based solely on the experimental results of the

simulation systems considered in this research. The simulation study was conducted

104

under system loading conditions with machine utilizations of 70% and 90%, and job due

date tightness employing allowance factors of 1.5 and 2. These parameter settings for

various system conditions are important and can be used as reference materials to apply

the conclusions of this study to other systems. Therefore, an understanding of the loading

conditions and allowance factors for any other system is required. On the other hand,

conclusions regarding how the percentage of tardy jobs to total completed jobs influences

the reward magnitude settings and how the use of MTPO benefits the learning

performance are applicable for any other system.

6.2. Directions for Future Research

 Future research will be needed in a number of areas to fully explore the

application of reinforcement learning in the area of production scheduling. In this section,

several issues for future research directions are addressed.

 In this research, we dealt with the problem concerning fixed-sequencing routing

flexibility (Table 2.2). That is, the operations of a job must be performed in a fixed

sequence, but there can be more than one machine capable of processing any given

operation. To further extend this study, flexible sequencing of the operations may be

considered. This will increase the number of possible routes. To deal with the problem,

the Q-learning algorithm can again be applied to construct a policy table for selecting an

operation sequence. The selection of an operation sequence will be based on the current

policy in use by the Q-learning algorithm. Once a sequence is selected, the approach in

this research can be implemented for constructing a policy table of selecting machines.

However, since one policy table for selecting machines needs to be learned for one

105

operation sequence. Therefore, if there are numerous possible operation sequences, then

it will be very time-consuming for the agent to learn all the machine-selection policy

tables for all the sequences.

In this study, the agent-negotiation schema is not complex. The job agent makes a

routing decision based on the bids provided by the machine cell agents. Each decision

takes only one round of message exchange (requesting – bidding). However, a

complicated negotiation schema may require more than one round of message exchange

to make a routing decision. For each message submission, the agent actually makes a

negotiation decision and then a routing decision is derived from these negotiation

decisions. The intermediate due date for an operation of a job can be used to determine

the reward or penalty for a routing decision (using the proposed approach in this

research). When applying reinforcement learning to make a negotiation decision, some

problems need to be considered. First, decisions in the early rounds of negotiation may

lead to either a good or a bad routing decision. In addition, since the negotiation decisions

are made sequentially, one bad negotiation decision may result in a bad routing decision

even though all the other negotiation decisions were good. Therefore, as more rounds of

negotiation take place, it will be difficult to identify if a negotiation decision should be

rewarded or penalized and to determine how much reward/penalty to apply for a decision..

Some negotiation schema involve employing a coordination agent who is responsible for

solving the conflict among agents. In such cases, the decision-making policy derived by

reinforcement learning must take into account the relationship of the coordination agent

to the other agents based on the negotiation schema implemented in the system. The

106

learning policy table will become more complicated (more states and more actions) and

more time will be needed for learning a proper policy.

The reinforcement learning approach applied in this research is called one-step

tabular Q-learning method. It is one of the most widely used reinforcement learning

methods (Sutton and Barto, 1999). Future work may focus on applying some other

reinforcement learning methods such as the Sarsa algorithm, R-learning algorithm, or

actor-critic methods to the same scheduling problems of this research. Details for these

methods can be found in Sutton and Barto (1999). The issue of exploration and

exploitation may be crucial for reinforcement learning. In this research, the exploration

method implemented in this research is the ε-greedy method. Future research may also

focus on implementing other exploration strategies. Details for these other exploration

strategies can be found in the observations by Mahadevan and Kaelbling (1996).

The system objective in this research is minimizing mean tardiness, which is one

of the most popular objectives for production scheduling problems (based on a review of

the literature). Future studies may focus on applying reinforcement learning approaches

to the scheduling problems for other popular objectives such as minimizing mean flow

time and minimizing number of tardy jobs. The reward function proposed in this study

must be modified to fit different objectives. For minimizing mean flow time, the

difficulties will be in how to determine when an agent’s decision should be rewarded or

penalized. For minimizing number of tardy job, the reward function can be designed as

assigning one positive unit for an early job and one negative unit for a late job. This case

is much simpler than the ones with the objectives of minimizing mean flow time and

mean tardiness.

 107

REFERENCES

Ariz, Y. (1995). On-Line Scheduling in a Multi-Cell Flexible Manufacturing System.

International Journal of Production Research, 33, 12, 3283-3300.

Aydin, M. E. and Oztemel, E. (2000). Dynamic Job-Shop Scheduling using
Reinforcement Learning Agents. Robotics and Autonomous Systems, 33, 2, 169-
178.

Bowden, R. O. and Bullington, S. F. (1996). Development of Manufacturing Control
Strategies using Unsupervised Machine Learning. IIE Transactions, 28, 4, 319-331.

Brenner, W., Zarnekow, R., and Witting, H. (1998). Intelligent Software Agents:
Foundations and Applications. Springer Verlag.

Brucker, P. (2001). Scheduling Algorithms. Springer Verlag.

Caskey, K. and Storch, R. L. (1996). Heterogeneous Dispatching Rules in Job and Flow
Shops. Production Planning and Control, 7, 4, 351-361.

Chan, F. T. S. (2001). The Effects of Routing Flexibility on a Flexible Manufacturing
System. International Journal of Computer Integrated Manufacturing, 14, 5, 431-
445.

Chandra, J. and Talavage, J. (1991). Intelligent Dispatching for Flexible Manufacturing.
International Journal of Production Research, 29, 11, 2259-2278.

Chang, P-T. and Lo, Y-T. (2001). Modeling of Job-Shop Scheduling with Multiple
Quantitative and Qualitative Objectives and a GA/TS Mixture Approach.
International Journal of Computer Integrated Manufacturing, 14, 4, 367-384.

Chiu, C. and Yih, Y. (1995). A Learning-Based Methodology for Dynamic Scheduling in
Distributed Manufacturing Systems. International Journal of Production Research,
33, 11, 3217-3232.

Choi, R. H. and Malstrom, E. M. (1988). Evaluation of Traditional Work Scheduling
Rules in a Flexible Manufacturing System with a Physical Simulator. Journal of
Manufacturing Systems, 7, 1, 33-45.

Chryssolouris, G. and Subramaniam, V. (2001). Dynamic Scheduling of Manufacturing
Job Shops using Genetic Algorithm. Journal of Intelligent Manufacturing, 12, 3,
281-293.

108

Cicirello and Smith (2001). 5th International Symposium on Autonomous Decentralized
Systems, IEEE Computer Society Press, March, 2001.

Crites, R. H. and Barto, A.G. (1996). Improving Elevator Performance using
Reinforcement Learning. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E.
(Eds.), Advances in Neural Information Processing Systems: Proceedings of the
1995 Conference, MIT Press, Cambridge, MA, 1017-1023.

Crowe, T.J. and Stahlman, E.J. (1995). A Proposed Structure for Distributed Shopfloor
Control. Integrated Manufacturing Systems, 6, 6, 31-36.

Das, S. K. (1996). The Measurement of Flexibility in Manufacturing Systems. The
International Journal of Flexible Manufacturing Systems, 8, 1, 67-93.

Das, T. K., Gosavi, A., Mahadevan, S., and Marchalleck, N. (1999). Solving Semi-
Markov Decision Problems Using Average Reward Reinforcement Learning.
Management Science, 45, 4, 560-574.

Dewan, P. and Joshi, S. (2000). Dynamic Single Machine Scheduling Under Distributed
Decision Making. International Journal of Production Research, 38, 16, 3759-3777.

Dewan, P. and Joshi, S. (2001). Implementation of an Auction-Based Distributed
Scheduling Model for a Dynamic Job Shop Environment. International Journal of
Computer Integrated Manufacturing, 14, 5, 446-456.

Dilts, D.M., Boyd, N.P., and Whorms, H.H. (1991). The Evolution of Control
Architectures for Automated Manufacturing Systems. Journal of Manufacturing
Systems, 10, 1, 79-93.

Duffie, N.A. and Prabhu, V.V. (1994). Real-Time Distributed Scheduling of
Heterarchical Manufacturing Systems. Journal of Manufacturing Systems, 13, 2, 94-
107.

Fang, J. and Xi, Y. (1997). A Rolling Horizon Job Shop Rescheduling Strategy in the
Dynamic Environment. International Journal of Advanced Manufacturing
Technology, 13, 3, 227-232.

Ishii, N. and Talavage, J. (1991). A Transient-Based Real-Time Scheduling algorithm in
FMS. International Journal of Production Research, 29, 12, 2501-2520.

Jahangirian, M. and Conroy, G. V. (2000). Intelligent Dynamic Scheduling System: the
Application of Genetic Algorithms. Integrated Manufacturing Systems, 11, 4, 247-
257.

Jeong, K.-C. and Kim, Y.-D. (1998). A Real-Time Scheduling Mechanism for a Flexible
Manufacturing System: Using Simulation and Dispatching Rules. International
Journal of Production Research, 36, 9, 2609-2626.

109

Jian, A. K. and Elmaraghy, H. A. (1997). Production Scheduling/Rescheduling in
Flexible Manufacturing. International Journal of Production Research, 35, 1, 281-
309.

Jones, A. T. and McLean, C. R. (1986). A Proposed Hierarchical Control Model for
Automated Manufacturing Systems. Journal of Manufacturing Systems, 5, 1, 15-25.

Khoo, L. P., Lee, S. G., and Yin, X. F. (2000). A Prototype Genetic Algorithm-Enhanced
Multi-Objective Scheduler for Manufacturing Systems. International Journal of
Advanced Manufacturing Technology, 16, 2, 131-138.

Kim, M. H. and Kim, Y.-D. (1994). Simulation-Based Real-Time Scheduling in a
Flexible Manufacturing System. Journal of Manufacturing Systems, 13, 2, 85-93.

Lin, S-C., Goodman, E. D., and Punch, W. F. (1997). A Genetic Algorithm Approach to
Dynamic Job Shop Scheduling Problems. Proceedings of the 7th International
Conference on Genetic Algorithms. San Francisco, 481-488.

Lin, G. Y. and Solberg, J. J. (1991). Effective of Flexible Routing Control. The
International Journal of Flexible Manufacturing Systems, 3, 3-4, 189-211.

Lin, G.Y. and Solberg, J.J. (1992). Integrated Shop Floor Control Using Autonomous
Agents. IIE Transactions, 24, 3, 57-71.

Lin, G.Y. and Solberg, J.J. (1994). An Agent-Based Flexible Routing Manufacturing
Control Simulation System. Proceedings of the 1994 Winter Simulation Conference,
970-977.

Liu, H. and Dong, J. (1996). Dispatching Rule Selection Using Artificial Neural
Networks for Dynamic Planning and Scheduling. Journal of Intelligent
Manufacturing, 7, 3, 243-150.

Mahadevan, S. and Kaelbling, L. P. (1996). The NSF Workshop on Reinforcement
Learning: Summary and Observations. AI Magazine, Winter, 89-97.

Mahadevan, S., Khaleeli, N., and Marchalleck, N. (1997a). Designing Agent Controllers
using Discrete-Event Markov Models. AAAI Fall Symposium on Model-Directed
Autonomous Systems, MIT, Cambridge.

Mahadevan, S., Marchalleck, N., Das, T. K., and Gosavi, A. (1997b). Self-Improving
Factory Simulation using Continuous-time Average-Reward Reinforcement
Learning. Proceedings of the 4th International Machine Learning Conference, 202-
210.

Mahadevan, S. and Theocharous, G. (1998). Optimizing Production Manufacturing using
Reinforcement Learning. The 11th International FLAIRS Conference, AAAI Press,
372-377.

110

Mahmoodi, F., Mosier, C. T., and Guerin, R. E. (1996). The Effect of Combining Simple
Priority Heuristics in Flow-Dominant Shops. International Journal of Production
Research, 34, 3, 819-839.

Matsuura, H., Tsubone, H., and Kanezashi, M. (1993). Sequencing, Dsipatching, and
Switching in a Dynamic Manufacturing Environment. International Journal of
Production Research, 31, 7, 1671-1688.

Maturana, F., Shen, W., Norrie, D. H. (1999). MetaMorph: An Adaptive Agent-Based
Architecture for Intelligent Manuacturing. International Journal of Production
Research, 37, 10, 2159-2174.

Moon, D. H. and Christy, D. P. (1998). A Simulation Study for Dynamic Scheduling in a
Hybrid Assembly/Job Shop Considering the JIT Context. Production Planning &
Control. 9, 6, 532-541.

Morton, T. E. and Pentico, D. W. (1993) Heuristic Scheduling Systems With
Applications to Production Systems and Project Management. John Wiley & Sons,
Inc.

Murch, R. and Johnson, T. (1998). Intelligent Software Agents. Prentice Hall.

Okubo, H., Jiahua, W., and Onari, H. (2000). Characteristics of Distributed Autonomous
Production Control. International Journal of Production Research, 28, 17, 4205-
4215.

Nakasuka, S. and Yoshida, T. (1992). Dynamic Scheduling System Utilizing Machine
Learning as A Knowledge Acquisition Tool. International Journal of Production
Research, 30, 2, 411-431.

Okubo, H., Jiahua, W., and Onari, H. (2000). Characteristics of Distributed Autonomous
Production Control. International Journal of Production Research, 28, 17, 4205-
4215.

Ouelhadj, D., Hanachi, C., and Bouzouia, B. (1998) Multi-Agent Systems for Dynamic
Scheduling and Control in Manufacturing Cells. Proceedings of the 1998 IEEE
International Conference on Robotics & Automation, May 1998, Leuven, Belgium,
2128-2133.

Ouelhadj, D., Hanachi, C., Bouzouia, B., Moualek, A., and Farhi, A. (1999). A Multi-
Contract Net Protocol for Dynamic Scheduling in Flexible Manufacturing Systems.
Proceedings of the 1999 IEEE International Conference on Robotics & Automation,
May 1999, Detroit, Chicago, 1114-1119.

Ottaway, T.A. and Burns, J.R. (2000) An Adaptive Production Control System Utilizing
Agent Technology. International Journal of Production Research, 38, 4, 721-737.

111

Palmer, D. A. (1996). Integrating Genetic Algorithms, Clustering and Reinforcement
Learning to Evolve Manufacturing Control Knowledge. Master Thesis, Mississippi
State University.

Panwalkar, S. S. and Iskander, W. (1977). A Survey of Scheduling Rules. Operations
Research, 25, 1, 45-62.

Park, S. C., Raman, N., and Shaw, M. J. (1997). Adaptive Scheduling in Dynamic
Flexible Manufacturing Systems: A Dynamic Rule Selection Approach. IEEE
Transactions on Robotics and Automation, 13, 4, 486-502.

Paternina-Arboleda, C. D. and Das, T. K. (2001). Intelligent Dynamic Control Policies
for Serial Production Lines. IIE Transactions, 33, 1, 65-77.

Pierreval, H. and Mebarki, N. (1997). Dynamic Selection of Dispatching Rules for
Manufacturing System Scheduling. International journal of Production Research, 35,
6, 1575-1591.

Pinedo, M. (1995). Scheduling Theory, Algorithms, and Systems. Prentice Hall.

Piramuthu, S., Shaw, M., and Fulkerson, B. (2000). Information-Based Dynamic
Manufacturing System Scheduling. International Journal of Flexible Manufacturing
Systems, 12, 2-3, 219-234.

Priore, P., Fuente, D. D. L., Gomez, A., and Puente, J. (2001a). A Review of Machine
Learning in Dynamic Scheduling of Flexible Manufacturing Systems. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 15, 3, 251-263.

Priore, P., Fuente, D. D. L., Gomez, A., and Puente, J. (2001b). Dynamic Scheduling of
Manufacturing Systems with Machine Learning. International Journal of
Foundations of Computer Science, 12, 6, 751-762.

Ro, I.-K. and Kim, J.-I. (1990). Multi-Criteria Operational Control Rules in Flexible
Manufacturing Systems (FMSs). International Journal of Production Research, 28, 1,
47-63.

Rossi, A. and Dini, G. (2000). Dynamic Scheduling of FMS using a Real-Time Genetic
Algorithm. International Journal of Production Research, 38, 1, 1-20.

Saad, A., Kawamura, K., and Biswas, G. (1997). Performance Evaluation of Contract
Net-Based Heterarchical Scheduling for Flexible Manufacturing Systems. Intelligent
Autonomous and Soft Computing, 3, 3, 229-248.

Sabuncuoglu, I. and Karabuk, S. (1999). Rescheduling Frequency in an FMS with
Uncertain Processing Times and Unreliable Machines. Journal of Manufacturing
Systems, 18, 4, 268-283.

112

Saygin, C., Chen, F. F., and Singh, J. (2001). Real-Time Manipulation of Alternative
Routings in Flexible Manufacturing Systems: A Simulation Study. International
Journal of Advanced Manufacturing Technology, 18, 10, 755-763.

Shafaei, R. and Brunn, P. (1999a). Workshop Scheduling using Practical (Inaccurate)
Data Part 1: The Performance of Heuristic Scheduling Rules in a Dynamic Job Shop
Environment using a Rolling Time Horizon Approach. International Journal of
Production Research, 37, 17, 3913-3925.

Shafaei, R. and Brunn, P. (1999b). Workshop Scheduling using Practical (Inaccurate)
Data Part 2: An Investigation of the Robustness of Scheduling Rules in a Dynamic
and Stochastic Environment. International Journal of Production Research, 37, 18,
4105-4117.

Shafaei, R. and Brunn, P. (2000) Workshop Scheduling using Practical (Inaccurate) Data
Part 3: A Framwork to Integrate Job Releasing, Routing and Scheduling Functions to
Create a Robust Predictive Schedule. International Journal of Production Research,
38, 1, 85-99.

Shaw, J. M. (1988) Dynamic Scheduling in Cellular Manufacturing Systems: A
Framework for Network Decision Making. Journal of Manufacturing Systems, 7, 2,
83-94.

Shaw, M. J., Park, S., and Raman, N. (1992). Intelligent Scheduling with Machine
Learning Capabilities: The Induction of Scheduling Knowledge. IIE Transactions,
24, 2, 156-168.

Shen, W. and Norrie, D.H. (1999). Agent-Based Systems for Intelligent Manufacturing:
A State-of-the-Art Survey. Knowledge and Information Systems: an International
Journal, 1, 2, 129-156.

Shen,W., Norrie, D.H., and Barthes J.-P. A. (2000). Multi-Agent System for Concurrent
Intelligent Design and Manufacturing. Taylor & Francis.

Shmilovici, A. and Maimon, O. Z. (1992). Heuristic for Dynamic Selection and Routing
of Parts in an FMS. Journal of Manufacturing Systems, 11, 4, 285-296.

Sim S. K., Yeo, K. T., and Lee, W. H. (1994). An Expert Neural Network System for
Dynamic Job Shop Scheduling. International Journal of Production Research, 32, 8,
1759-1773.

Singh, S. P. and Bertsekas, D. (1997). Reinforcement Learning for Dynamic Channel
Allocation in Cellular Telephone Systems. Advances in Neural Information
Processing Systems: Proceedings of the 1996 Conference, MIT Press, Cambridge,
MA, 974-980.

Smith, R. (1980). The Contract Net Protocol: High Level Communication and Control in
Distributed Problem Solver. IEEE Transactions on Computers, 29, 12, 1104-1113.

113

Sousa, P. and Ramos, C. (1996). A Holonic Approach for Task Scheduling in
Manufacturing Systems. Proceedings of the 1996 IEEE International Conference on
Robotics and Automation, Minneapolis, Minnesota, April 1996, 2511-2516.

Sousa, P. and Ramos, C. (1998). A Dynamic Scheduling Holon for Manufacturing
Orders. Journal of Intelligent Manufacturing, 9, 2, 107-112.

Sousa, P. and Ramos, C. (1999). A Distributed Architecture and Negotiation Protocol for
Scheduling in Manufacturing Systems. Computers in Industry, 38, 2, 103-113.

Subramaniam, V., Lee, G. K., Ramesh, T., Hong, G. S., and Wong, Y. S. (2000a).
Machine Selection Rules in a Dynamic Job Shop. International Journal of Advanced
Manufacturing Technology, 16, 12, 902-908.

Subramaniam, V., Lee, G. K., Hong, G. S., Wong, Y. S., and Ramesh, T. (2000b).
Dynamic Selection of Dispatching Rules for Job Shop Scheduling. Production
Planning & Control, 11, 1, 73-81.

Sun, D. and Lin L. (1994). A Dynamic Job Shop Scheduling Framework: A Backward
Approach. International Journal of Production Research, 32, 4, 967-985.

Suresh, V. and Chaudhuri, D. (1993). Dynamic Scheduling – A Survey of Reseach.
International Journal of Production Economics, 32, 1, 53-63.

Sutton, R. S. (1996). Generalization in Reinforcement Learning: Successful Examples
using Spare Coarse Coding. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E.
(Eds.), Advances in Neural Information Processing Systems: Proceedings of the
1995 Conference, MIT Press, Cambridge, MA, 1038-1044.

Sutton, R. S. and Barto, A. G. (1999). Reinforcement Learning: An Introduction. The
MIT Press.

Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon. Commun. of the
ACM, 38, 3, 58-67.

Wang, Y.-C. and Usher, J. M. (2002) A Study of Reinforcement Learning to Dynamic
Single-Machine Job Dispatching. Proceedings of the 6th International Engineering
Design and Automation.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8, 3-4, 279-
292.

Weiss, G., 1999, Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. The MIT Press.

Xue, D., Sun, J., and Norrie, D. H. (2001). An Intelligent Optimal Production Scheduling
Approach using Constraint-based Search and Agent-based Collaboration. Computers
in Industry, 46, 2, 209-231.

114

Yao, D. D. and Pei, F. F. (1990). Flexible Parts Routing in Manufacturing Systems, IIE
Transactions, 22, 1, 48-55.

Zhang, W. and Dietterich, T. G. (1995). A Reinforcement Learning Approach to Job-
Shop Scheduling. Proceedings of the 14th International Joint Conference on Artificial
Intelligence, 1114-1120.

	Application of Reinforcement Learning to Multi-Agent Production Scheduling
	Recommended Citation

	Dissertation_v6.doc

