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This work presents a solution for a real-time fire suppression 

control system. It also serves as a support tool that allows creation of 

virtual ship models and testing them against a range of representative 

fire scenarios. Model testing includes generating predictions faster than 

real time, using the simulation network model developed by Hughes 

Associates, Inc., their visualization, as well as interactive modification of 

the model settings through the user interface. 

In the example, the ship geometry represents ex-USS Shadwell, 

test area 688, imitating a submarine. Applying the designed visualization 

techniques to the example model revealed the ability of the system to 

process, store and render data much faster than the real time (in average 

, 40 times faster). 
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CHAPTER I  

INTRODUCTION 

1.1 Role of Study of Fire and Smoke Propagation 

In both peacetime and war, fire represents a significant threat to 

any ship. A fire, whether started by a mechanical failure or damage by 

from a weapon hit, threatens the ship in a number of ways. The crew's 

health and ability to operate the ship are affected by direct exposure to 

the fire or by the spread of smoke and toxic gases through the ship by 

either natural or mechanical ventilation. Electrical systems can be 

degraded by thermal exposure, exposure acid gases in the combustion 

products, or by electrical failure resulting from soot deposition, which 

might include hampered cooling or dielectric breakdown from the 

electrical conductivity of the soot. Mechanical systems can suffer thermal 

damage. Lastly, on a vessel carrying munitions, fire can potentially ignite 

explosive materials, rocket motors, aviation fuel or other highly 

flammable substances, which could possibly result in temperatures or 

overpressures high enough to affect the ship structurally. 
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There currently exist a number of analytical tools for examining 

the effects of a fire that can be applied on a ship and to its crew. One 

could use hand calculations for examining simple scenarios in single 

compartments. Simple rules can be used to extend this approach to 

multiple compartments. Zone models are suitable for examining more 

complex, time-dependent scenarios involving multiple compartments and 

levels, but numerical stability can be a problem for multi-level scenarios, 

scenarios with Heating, Ventilation and Air Conditioning (HVAC) systems 

and for post-flashover conditions. Computational fluid dynamics (CFD) 

models can yield detailed information about temperatures, heat fluxes, 

and species concentrations; however, the time penalty of this approach 

currently makes using CFD unfeasible for long periods of real time or for 

large computational domains. There exist a variety of network models to 

mode ventilation systems in buildings or fluid flow in piping networks, 

but they lack the physical mechanisms needed for fire modeling. Given 

an increased desire for performance-based examination of a response to 

a fire, there is the need for a new class of fire model. What is needed is a 

model that can handle very large, complex structures with ventilation 

and suppression systems, such as naval vessels. 

Modeling of fire and shipboard fire suppression systems is an 

instrument that may be used to eliminate unsuitable designs prior to 

real testing and can provide useful optimization insight, namely the 
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structure of the ventilation, firemain and other onboard systems. It can 

also reduce the number of tests required to identify a suitable design 

thus lowering the overall system design cost. 

The primary input for fire analysis is empirical test data.  Due to 

the large scale of this data, post-processing tools need to be used. Study 

of this data can reveal design flaws and non-optimality. Consequently, 

rebuilding and additional testing is required. The next step is an ability 

to overcome such overhead and to be able to build fire suppression 

systems that are close to the optimal structure from the very beginning. 

Logically, ship designers want to have tools that allow them to create 

virtual models of ships and test these models against a range of 

representative fire scenarios.  These tests, if designed properly, identify 

the limits of performance of the system against a realistic range of 

conditions, including worst-case scenarios, and establish agreed-upon 

and measurable performance objectives [4]. 

The conclusion is that the development of new ships, real-time 

control of fire and fire suppression systems, as well as preliminary 

training of personnel, is an integral part of the modern ship design 

process. Computerized modeling and testing allows manufacturers to 

benefit by identifying the variables that have the greatest effects on the 

system performance and would aid in the development of an optimized 

design. 
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This work presents a solution that ultimately is aimed at providing 

real-time fire suppression control system, serving as a design tool for 

ship modelers as well as a crew training tool. In the considered example, 

ship geometry was produced by Havlovic Engineering Services, and it 

represents ex-USS Shadwell, test area 688, imitating a submarine. The 

simulation network model was developed by Hughes Associates, Inc. 

(HAI). 

1.2 Hypothesis 

With the given condition that there are limitations from the 

available hardware, namely a single processor PC with Pentium 4 class 

CPU running Windows NT/XP, and that a fire model must run near to or 

faster than real time, it is possible to develop a simulation system that 

can be used as a tactical tool to support onboard fire control and 

suppression. This system will: 

• Generate predictions faster than real time. 

• Allow interactive modification of model settings to 

accommodate the actual conditions of the ship through 

intuitive and simple to operate graphical user interface (GUI). 

• Provide accurate, easy-to-read, real-time visualizations of the 

model output. 
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The two major challenges are minimization of the CPU load 

imposed by visualizations, allowing the model to run as fast as possible, 

and design GUI and output visualizations that add to the fire 

suppression process in extreme operational conditions during an 

onboard fire, with immediate threat of the lives of crew members or the 

ship altogether. 
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CHAPTER II  

LITERATURE AND TECHNOLOGY REVIEW 

2.1 Software 

1.2.1 Fire Protection ASCOS 

Analysis of Smoke Control Systems (ASCOS) is a software package 

written to predict the impact of a smoke management system on building 

airflows [7]. ASCOS solves the steady-state airflow through a connected 

series of compartments, which are defined at a fixed pressure and 

temperature. Various correlations are used to account for flow losses in 

shafts, stairwells, and other form loss types. As a steady-state code, its 

overall solver is not applicable to a fire model; however, the specialized 

correlations for flow losses in shafts, hallways, and stairwells would be 

useful to incorporate into a fire model. 

1.2.2 CFAST 

Consolidated Model of Fire Growth and Smoke Transport (CFAST) 

is a zone model fire code written by the Building and Fire Research 
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Laboratory at the National Institute of Standards and Technology 

(NIST/BFRL) [4]. CFAST solves a zone-model set of flow equations for a 

multi-compartment, multi-level structure with a ventilation network. 

CFAST includes simple ignition, radiation heat transfer, wall/ceiling jet, 

flame spread, and intercompartment conduction models. CFAST also has 

GUI for preprocessing, execution monitoring and post processing. The 

GUI is based on pre-Windows®, MS-DOS® technology and as such is 

awkward and dated looking. However, some of the overall concepts with 

regard to the overall setup of the input processor and the ability to 

monitor parameters during runtime are not valuable. 

CFAST, when executing properly, is fast-running and capable of 

real-time computational speeds. However, the CFAST solver does not 

contain a sufficient degree of intercompartment coupling for the pressure 

solution or the ventilation network submodels. As a result CFAST is often 

unstable and can be overly sensitive to small changes in input 

conditions. Therefore, while it is a fast solver with many of the 

phenomena needed for a real-time shipboard model, it is not reliable 

enough to be considered as a source for the primary solution algorithm. 

1.2.3 Berkeley Firewalk 

Berkeley Firewalk [25] is an offshoot of the Berkeley Walkthrough 

program, whose original intent was to interactively model architectural 
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environments from floor plans. Research into integrated simulations in 

3D virtual environments combined the CFAST zone model with this basic 

visualization system to form Firewalk. The system allows a CFAST server, 

which can run on the user's machine or a separate machine to distribute 

the computing load, to connect to a Walkthrough client program and 3D 

visualizer. From the client, the user can walk through the building 

interactively and initiate, control, and view the impact of CFAST runs in 

the building being visualized. A VCR-style panel controls the playback of 

the events being simulated, and a number of viewing modes simulate 

what the environment would look like and what physical conditions are 

in the various rooms. Quantitative displays are available to graph or list 

numerical quantities. 

The system can automatically export building geometry to CFAST 

from the Walkthrough model, allowing the user to model with the 

Walkthrough tools, providing for an easier and more visual entry of new 

buildings. The system is designed to provide rapid prototyping, easily 

understandable visualizations, and greater ease of comparative modeling 

for the user. The system is part of an ongoing research program into 

richly interactive virtual environment systems. 
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1.2.4 Multi Room Fire Code 

Multi Room Fire Code (MFRC) [34] is multi-room fire model used as 

a simulation model for calculation of smoke movement and temperature 

load on structures. It is capable to calculate the evolving distribution of 

smoke, fire gases and heat throughout a constructed facility during a 

fire. The size of the fire is variable during simulation. The model also 

incorporates the evolution of the species, such as carbon monoxide, 

which is important to the safety of individuals subjected to a fire 

environment. 

Version 2.7.3 models up to 40 compartments, 100 openings, fan or 

duct systems, several individual fires, up to one flame-spread object, 

multiple plumes, ceiling jets, multiple sprinklers and the seven species 

considered most important in toxicity of fires. The geometry includes 

variable area/height relations, thermo-physical and pyrolysis databases, 

multi-layered walls, wind, the stack effect, building leakage and flow 

through holes in floor/ceiling connections. The distribution includes text 

report generators, even for graphics with common plotting packages, and 

a system for comparing many runs done for parameters estimation. 

1.2.5 Fire Dynamics Simulator 

Fire Dynamics Simulator (FDS) [27] is a large-eddy simulation CFD 

code written by the NIST/BFRL [11]. FDS solves a low-mach number 
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form of the Navier-Stokes equations using a fast Fourier transform solver 

for pressure, a Smagorinski subgrid scale model for turbulence and a 

mixture fraction combustion model. FDS can run in a direct numerical 

simulation (DNS) mode if certain node resolution conditions are met. In 

DNS mode, FDS can also use a single-step, finite-rate kinetics model for 

combustion. FDS has submodels for radiative heat transfer, ID 

conductive heat transfer, sprinkler nozzles, droplet transport and 

evaporation, simple pyrolysis, fuel sprays, liquid fuel pools and multi-

grid operation. FDS has a companion program called Smoke view, which 

is an OpenGL application for viewing FDS results with high resolution, 

and 3D animations. 

 

Figure 1:  Examples from Fire Dynamics Simulator work – testing area 
on the left, temperature distribution of the right. 

The FDS source is publicly available and the lead authors of FDS 

and Smoke view are highly responsive to user feedback of the model. 
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FDS has undergone some verification and validation and compares well 

with test data in pre-flashover compartments. However, while a CFD tool 

such as FDS has the greatest potential for accuracy and precision in 

modeling fires and the associated heat and mass transfer, CFD has a 

significant drawback. CFD is very computationally intensive, both in 

terms of time and memory requirements. Real-time CFD for large-scale, 

complex structures is only possible with large, massively parallel 

supercomputers. These machines consume space, electric power and 

cooling resources, and they are costly to acquire, maintain and operate. 

Furthermore, a successful CFD simulation of fire growth and spread 

requires detailed knowledge of the fundamental behavior of real life 

materials exposed to a time-varying heat flux. This is knowledge that 

does not exist for most solid phase combustibles. Adding the capability to 

simulate suppression systems only complicates the issue. CFD is not a 

realistic option [22]. 

In Figure 1, two levels of a townhouse are modeled by a 10.0 m 

(32.8 ft) x 6.0 m (19.7 ft) x 5.1m (16.8 ft) tall rectangular volume.  For the 

FDS simulation this volume was divided into 76,500 computational cells.  

Each cell had dimensions 0.2 m (7.9 in) x 0.2 m (7.9 in) x 0.1 m (3.9 in). 

The problem of this package is that the maximum case size for 512 

MB of main memory will be around 600,000 cells. If we consider a 

normal-sized ship, then it might even be impossible for this tool just to 



12 

allocate enough resources. In addition, it was not designed to work in 

real-time.   

1.2.6 STAR-CD 

Star-CD [24] is a general purpose, unstructured CFD code that 

contains industry-standard models for modeling fire and smoke 

movement. It is a powerful general purpose CFD code that benefits from 

an easy-to-use GUI, which allows complex scenarios to be developed, 

simulated and analyzed without difficulty. Star-CD is widely used by 

building and transport service companies to investigate fire and smoke 

movement in different types of buildings. The scenario of interest can be 

generated via the GUI or imported from many popular CAD packages, 

allowing for simple geometries and the extremely complex scenarios often 

encountered in many industrial situations to be simulated. 

 

Figure 2: Examples of STAR-CD simulations. 
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Analysis of the simulation can be carried out using the GUI. 

Powerful post-processing allows the users to investigate the simulation 

results in great detail. The information gained can be used to easily 

manipulate or refine the mesh for further simulations and parametric 

studies. Two- and three-dimensional plots can be exported to well-known 

image formats, such as GIF and postscript. 

1.2.7 Summary 

There are also many other software packages, but none of them 

satisfy the system requirements. Visualization must be much faster than 

real time, but CFD-based models are unable to achieve such 

performance. Simulations must be interactive, i.e. the user must be able 

to change the states of objects during simulation runs, but none of the 

presented packages has such GUI capabilities. Finally, a system must 

accept output from the Network model by HAI, which is obviously 

impossible for any of them due to specificity of the output format. Thus, 

it is necessary to develop a system from scratch, though considering 

existing software as references. 

2.2 Technology 

Generally, modern visualization software relies on powerful 

graphics hardware. In fact, graphics hardware plays the leading role in 

the whole visualization process, dramatically decreasing the load on the 
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main CPU and leaving more room for increasingly complex 

computational tasks. Nowadays leaders in graphics hardware (NVIDIA 

[30], ATI [23] and others) offer unprecedented hardware power for regular 

PC workstations. In addition, they continue developing standards and 

libraries to access and use the capabilities of their hardware.  

The OpenGL [32] graphics system is a software interface to 

graphics hardware. It allows creation of interactive programs that 

produce color images of moving three-dimensional objects. With OpenGL, 

it is possible to control computer graphics technology to produce realistic 

pictures or pictures that depart from reality in imaginative ways [21].  

Microsoft Corporation proposes DirectX [29], a proprietary graphics 

hardware access interface that is very similar to OpenGL but more 

naturally integrated with the Windows operating system. 

These two interfaces are widely acceptable and supported by the 

major, if not all, hardware vendors. 

Sun Microsystems has also designed platform-independent 

Java3D, which is an OpenGL-like standard [22]. Although Sun is still 

working on performance issues, it is another big step towards expansion 

of availability of graphics and visualization to the public. Java3D 

provides functionality to present 3-D objects and scenes to a user in a 

regular browser, therefore globalizing access to local visualization 

resources. 
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As hardware evolves, more and more algorithms may be moved to 

the hardware unloading the main CPU. Exploiting these features is very 

perspective and performance beneficial, so in the future, the system may 

incorporate some of such shifts, for example order-independent 

transparency [31]. 

The graphics interface is one of the numerous parts that comprises 

a software product and assists in its development. It represents a lower 

algorithmic level and must be always supported with a great deal of code 

written in a high-level programming language. C++ and Java are natural 

choices for such tasks due to their extreme popularity based on 

sophisticated language structures, e.g. C++ templates, which allow 

creation of highly customizable and performance code [18], or exceptional 

error handling and a wide range of freely accessible support libraries. In 

addition to simple math routings, there are many sophisticated packages 

that help to develop user interface, access file system, database, etc. 

They greatly reduce the time necessary to create similar code with native 

language tools. Microsoft Foundation Classes (MFC) [14] and MOTIF [33] 

are examples of such libraries. 
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CHAPTER III  

SYSTEM DESIGN 

3.1 Requirements 

1.3.1 General Description 

The lifetime management of future naval vessels dictates its own 

requirements in addition to the phenomenological ones. It is necessary 

that during the ship’s exploitation, it is accompanied by all information 

related to its design, construction, operation, crew training and 

maintenance. This data must be stored in a digital library or database 

and carried with the ship. The ability to perform fire modeling is needed 

throughout the ship life cycle.  

Fire modeling is needed to evaluate ship designs and design 

philosophies in order to quickly arrive at an overall concept to meet 

required performance goals. As the ship concept is refined, fire modeling 

is continued to evaluate ship vulnerability and to begin the process of 

defining ship operations.  

During operation and crew training, the requirements imposed 

upon a fire model change drastically as fire models will be used to aid in 
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damage control and recoverability efforts. In the design phases, the 

computational time of the various modeling techniques are not critical, 

but in the operational phases of a ship's lifetime, the model must provide 

information faster than fire-related events happen on board the ship, 

while maximally preserving accuracy of prediction.  

The collaborative work of HAI, The Naval Research Laboratory 

(NRL) and a group at MSU made a decision to develop a system with GUI 

and visualization capabilities.  HAI provided a one-zone based network 

model: it assumes that the modeled environment in each compartment 

can be represented by one set of physical variables, as opposed to 

multiple set zone or CFD models. As such, a network model will be 

capable of modeling an entire ship and its ventilation system. Since the 

number of variables being solved for is kept to a minimum – one per 

compartment – a network model also has the potential for the fastest 

computations. [26]. 

The system is not intended to be pre- and post-processing 

software. The ultimate goal is to achieve a level when a model is used on 

the ship so the methods how a crew will control the system must be 

carefully considered. The GUI must be relatively simple and 

straightforward to use – there will be no time for clicking buttons and 

making out complex schemes and diagrams when a fire is near ship’s 
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control room. Moreover, a crew does not need the exact data values, only 

a general picture. 

The next requirement is that crew members do not have to possess 

any knowledge of fire physics or fire protection engineering. In general, 

none of the future users of the systems will be experts in fire protection 

or fire science. 

Finally, the system must not be overwhelming. That is, only a 

minimum of information that is highly relevant or recommended for fire 

suppression activity must be shown, e.g. if a fire is occurring on deck 1, 

frame1, there is no need to show deck 4, frame 200. 

1.3.2 Simulated Parameters 

Fire simulations must produce enough information for making 

adequate conclusions about environment and ship object states. This 

information must include the physics and chemistry of the fire, namely 

temperature, pressure, visibility (smoke) and species concentrations 

(toxins and oxygen). 

In addition, the network must simulate detection systems and 

determine from available shipboard sensors the current physical status 

of the ship. 
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1.3.3 Coding 

The design platform is Windows NT/XP. The general system design 

will be developed with help of Unified Modeling Language (UML) [2]. The 

graphical user interface will be written with ANSI C++ programming 

language [18] and Microsoft Foundation Classes (MFC) library [14]. 

Windows API will provide functionality for multithreading [15]. 

Visualization algorithms will use OpenGL. Database structure design and 

integrity checking will exploit SQL and PL/SQL [20].  

1.3.4 Use Cases 

The developed system is intended to serve as a design tool, a 

tactical tool, or a training tool depending on the configuration. This 

dictates what kind of operations must be provided and how they will be 

used. 

Fire Modeler

Edit Ship Structure

Analize Ship Structure

CompareChange Fire Parameters Replay

Analize Simulations

Trainer

Simulate Fire

Change Objects State

Shipyard Model 
Designer

Import CAD Model

 

Figure 3: The Use-case diagram. 
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Firstly, a design tool for shipyard designers must provide a solid 

feedback on geometry, ducts and other elements, coming from CAD 

systems. A designer must be able to analyze ship structure and possibly 

edit it. 

Secondly, after a model is ready, the fire modeler must be able to 

extensively test and validate it. In addition, a modeler must also be able 

to change ship structure to study the effects, and possibly optimize it for 

more effective fire suppression. 

 

Figure 4: System component diagram. 
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Finally, the system will be used for training the ship personnel. 

Thus, a qualified expert must be able to access simulations stored in the 

database and discuss them with trainees.  

1.3.5 System Components 

The component diagram below represents a possible system 

structure. It contains important system elements as well as logical links. 

It helps gain understanding of the important system parts and 

collaboration between them (Figure 4). 

There are four logical elements comprising system’s structure. The 

first is the database, the storage of all data including geometry, material 

properties and simulations. The second is the GUI, a mechanism that 

allows the user to interact with the model (set the states of ship’s objects 

and fire parameters) and run simulations. The third is the Runtime 

Simulation Environment (a standalone application) that includes 

generation of the model input file from data stored in the database and 

provided by the user through the GUI. The fourth part is the 

Visualization Engine, a machinery designated for displaying a model 

geometry and generated simulations. 
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3.2 Class Hierarchies 

2.3.1 Class Identification 

The object-oriented approach in design is an obvious choice today. 

It is more difficult to use than the function-based approach, but it 

produces a solid understanding of core processes that occur in the 

system and their initiators and participants. The system is represented 

by a complicated network of objects and their collaborations. A simple 

but powerful approach of noun extraction was applied to identify them 

[16].  

First of all, the problem should be defined in a concise manner: 

A ship is built of compartments. It also includes active elements 

like doors, hatches, scuttles, a ventilation system with fans and dampers 

and a firemain system with plugs and valves. 

Now additional constrains and more details should be added:  

A ship is built of compartments. A compartment is composed of 

sides, each of which belongs to a wall. Each side is a set of vertices. A 

wall is built of two sides. It also includes active elements like doors, 

hatches, scuttles, a ventilation system with fans and dampers and a 

firemain system with plugs and valves. The ventilation system is built of 

ventilation duct sections, which are composed of a pair of ventilation 

nodes. A ventilation node can be a simple node, a fan or a damper. The 
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firemain system consists of firemain sections, which are built of pairs of 

firemain nodes. In addition, a firemain node can be a valve or a plug. The 

activity of an object suggests its ability to be in multiple states. A duct 

section can have the following states: fake (virtual object not affecting 

simulation equations), disabled or enabled. A door can be fake, disabled, 

closed, opened or be a joiner. A hatch, scuttle, fan, damper, valve or plug 

can be fake, disabled, closed or opened.  

The nouns are in italics, and they define candidates for real 

classes. “Ship” is a general definition of the model, so it should be 

ignored. Also “state” is not actually a real entity; it is a property of the 

object, so it is also ignored as being represented as a class. 

The denoted general idea about the system allows start of 

developing possible classes and its hierarchies. All classes can be divided 

into two groups: scene classes and general classes. Scene classes can be 

split into two groups: geometry and systems (ventilation and firemain). 

Geometry is defined by compartments, walls and sides, whereas systems 

include the ventilation system, which is composed of doors, hatches, 

scuttles and a duct, and the firemain system. 

In following sections, the design of classes of each group is 

considered separately in details. 
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2.3.2 Geometry Classes 

A compartment represents a volume in space bounded by sides 

belonging to it. A wall is also defined by sides. Therefore, a side is a main 

visual element that will define geometric representation of the model. 

Compartment Wall

Side

Vertex

x : float
y : float
z : float

 

Figure 5: Geometry class associations. 

A definition of a side is straightforward. It is a flat (in sense of 

projection on one of three main planes) polygon represented by a list of 

vertices, number of which is fixed to four. Similarly, a compartment and 

a wall are lists of sides. 

2.3.3 Ventilation and Firemain Systems 

The next observation is that a door, a hatch and a scuttle have the 

same semantic meaning – they are openings in a wall, floor or ceiling. As 

any opening does, they all have a position and size (Figure 6).  
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Generally speaking, a ship may have not only mentioned openings, 

but potentially any arbitrary located object that can be represented as 

one and that appears anywhere due to a ship structure modification or 

outside impact-caused structural damage. The described structure 

satisfies such cases by adding a new class derived from the Opening 

class. 

Opening

pos : Vector3f
size : Vector3f

Door Hatch Scuttle

 

Figure 6: Openings class hierarchy. 

The next structural elements are ducts, namely a ventilation duct 

and a firemain duct. A duct is represented as a network of duct sections. 

Each section in turn is a pair of nodes, or points in 3-D space. Thus, a 

network is a collection of interconnected nodes. Connectivity of a given 

network is represented by duct sections. 
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DuctNode

Vertex

x : float
y  : float
z : float

Fan Damper Plug Valve

NodeNetwork

DuctSection

VentDuctSection FiremainDuctSection

VentilationDuct FiremainDuct

 

Figure 7: Ducts class hierarchy. 

A duct node may carry a meaning that is wider than just a point. It 

may possess some characteristics or behavioral attributes that may 

affect a network it belongs to. Nodes of a ventilation duct can be fans or 

dampers; nodes of a firemain system can be plugs and valves (Figure 7).  
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Further extension of this class family is also easy. It can be done 

by deriving from class bases, namely the DuctNode, the DuctSection and 

the NodeNetwork. 

2.3.4 Scene Classes 

The previously considered classes are not complete and ready for 

explicit rendering. They should be turned into classes that may be shown 

on the screen, i.e. scene classes. A classical approach suggests using an 

abstract scene class that will represent a base for all other elements and 

encapsulate all necessary behavioral attributes like ability to draw itself.  

This is the SceneObjectBase. 

The SceneObjectBase class allows the generalization of objects’ 

representation and unification of the drawing process. Most often each 

object should have a position and a color as attributes, as well as a 

drawing routing for calling by the render. 

Not all of the ship elements are suited for rendering, i.e. drawing is 

meaningful only for ship geometry and systems. Also, some objects must 

be able to interact with a user and accept requests for changing their 

state. The object state may affect its appearance, physical or behavioral 

properties. Doors, hatches and scuttles can be examples of such objects. 

Thus, another hierarchy layer should be introduced. It will define the 

ability of an object to change its state dynamically.  
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2.3.5 Main Scene 

At this moment, it is possible to proceed with developing a 

manager of scene objects that will be responsible for maintaining their 

creation, manipulation and finally release. 

The previous section describes a range of scene classes. Among 

them, at least two groups should be distinguished: static and active 

objects. Thus, classes that do not have any dynamically updated 

properties will be children of the general scene base class, whereas for 

classes with active features (state, for one) a common parent will be 

created, which will provide its descendants a functionality necessary for 

maintaining their dynamically updatable properties. 

The system should also provide access to instances of the same 

class so that they can be treated differently from others. The 

SceneObjectMngr class, a manager of scene objects, serves for these 

needs. It stores instances of the same class as a separate list, thus, 

always allowing identification and use of them independently. It 

extensively exploits C++ Standard Template Library [7], which provides 

unprecedented flexibility, controllability and speed.  

The SceneBase class is the hierarchy top most class. It manages 

the whole rendering process and uses the SceneObjectMngr for scene 

objects management. The SceneBase provides a set of virtual functions 
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for scene initialization, manipulation and drawing. The functions of that 

set can be overridden to enhance or change predefined behavior. 

SceneObjectBase

pos : Vector3f
color : Vector3f

<<abstract>> draw()

SceneCompartment SceneActiveObject

state : INTEGER

<<const>> get_state()
set_state()

SceneDoor

SceneHatch

SceneScuttle

SceneDuctSection SceneDuctNode

SceneFan

SceneDamper

ScenePlug

SceneValve

SceneOpening

SceneVentSection

SceneFiremainSection

SceneVentNode

SceneFiremainNode

T
U

map
(from std)

T

vector
(from std)

tObjList
<<typedef>>

tObjMap
<<typedef>>

SceneBase

<<virtual>> init()
<<virtual>> render()

SceneObjectMngr

add()
remove()
clear()
selectObjList()
operator []()
render()

-objects_

-objMngr_

 

Figure 8: Complete scene class hierarchy. 

3.3 Database Structure 

3.3.1 Geometry 

The Compartment represents a rather simple class that does not 

carry much information so far. Actually, the only additional field besides 

id is a description field. As mentioned before, each compartment is 

composed of sides, which in turn is represented as a set of four vertices 

or points in 3-D space. Each side also belongs to a wall. Generally, a wall 

consists of two sides and separates two compartments (Figure 9). 
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Vertices

ID : INTEGER
x : FLOAT(0)
y : FLOAT(0)
z : FLOAT(0)

Compartments
ID : INTEGER
Desc : VARCHAR(1)

SideVertices

SideID : INTEGER
Vertices_ID : INTEGER

0..*

1

0..*

1

<<Identifying>>

Sides

CmptID : INTEGER
NUM : INTEGER
ID : INTEGER

0..1

1

0..1

1
<<Identifying>>

0..*

1

0..*

1

<<Identifying>>

Walls

ID : INTEGER
SideID : INTEGER

0..1

1

0..1

1
<<Identifying>>

 

Figure 9: Geometry tables. 

From the database standpoint all given counts are not important. 

Moreover, having the ability to compose, for example, a side from more 

than four vertices, adds greater flexibility for future system evolution. All 

following tables are developed to avoid the mentioned rigidity. 

3.3.2 Ventilation System 

The ventilation system is represented by a ventilation duct and 

openings. A ventilation duct is a network of ventilation sections, each of 
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which is a pair of ventilation nodes, i.e. points in 3-D space. 

Theoretically, a section may consist of more than two nodes.  

A node can be simple or complex. A complex node is a node that 

actively participates in the ventilation process. Currently, the only 

complex nodes are fans and dampers. The following structure reflects the 

described relationship: 

VentilationFans

NodeID : INTEGER

VentilationDampers

NodeID : INTEGER

VentilationNodes

ID : INTEGER
x : FLOAT(0)
y : FLOAT(0)
z : FLOAT(0)

0..1

1

0..1

1

<<Identify ing>> 0..1

1

0..1

1
<<Identify ing>>

VentilationDuct

ID : INTEGER
NodeID : INTEGER

0..1

1

0..1

1
<<Identify ing>>

 

Figure 10: Ventilation duct tables. 

Doors, hatches and scuttles have the same physical meaning so it 

is possible to store the information about them in one table. But for more 

convenience, three separate tables may be created. Each opening should 

possess knowledge of what wall it belongs to. 
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Walls

ID : INTEGER
SideID : INTEGER

Openigns

ID : INTEGER
x : FLOAT(0)
y : FLOAT(0)
z : FLOAT(0)
width : FLOAT(0)
height : FLOAT(0)
WallID : INTEGER

0..*

1

0..*

1

<<Non-Identify ing>>

 

Figure 11: Openings table. 

3.3.3 Firemain System 

The firemain system is very similar to the ventilation duct. It is 

also a network of node sections. The current active nodes of a firemain 

system are plugs and valves. The database table structure looks as 

follows: 

FiremainDuct

ID : INTEGER
NodeID : INTEGER

FiremainValves

ID : INTEGER

FiremainNodes

ID : INTEGER
x : FLOAT(0)
y  : FLOAT(0)
z : FLOAT(0)

0..1

1

0..1

1
<<Identify ing>>

0..1

1

0..1

1

<<Identify ing>>

FiremainPlugs

ID : INTEGER

0..1

1

0..1

1

<<Identify ing>>

 

Figure 12: Firemain tables. 



33 

3.3.4 Simulation Data 

The results of the work of the Network simulator need to be saved 

for future analysis and replays. The simulator produces a data block that 

contains the following scalar parameters (not exactly in the same order): 

• Compartment temperatures. 

• Compartment pressures. 

• Compartment O2. 

• Compartment CO. 

• Compartment soot. 

• Compartment heat release. 

• Duct node temperatures (not used). 

• Duct node pressures (not used). 

• Front surface temperatures (not used). 

• Back surface temperatures (not used). 

• Fire size (not used). 

Compartment related data is combined into one table. Similarly, 

duct node data is placed into another table. 
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Compartments

ID : INTEGER
Desc : VARCHAR(255)

SimCompartmentData

ID : SMALLINT
CmptID : INTEGER
temp : FLOAT
pressure : FLOAT
O2 : FLOAT
CO : FLOAT
soot : FLOAT
heat : FLOAT

0..*

1

0..*

1

<<Identify ing>>

Simulations

ID : SMALLINT
Desc : VARCHAR(255)
Duration : FLOAT
AmbTemp : FLOAT
AmbPressure : FLOAT
O2part : FLOAT

0..*

1

0..*

1

<<Identify ing>>

VentilationNodes

ID : INTEGER
x : FLOAT(0)
y : FLOAT(0)
z : FLOAT(0)

SimDuctNodeData

ID : SMALLINT
VentNodeID : INTEGER

0..*

1

0..*

1

<<Identify ing>>

0..*

1

0..*

1
<<Identify ing>>

 

Figure 13: Tables for storing simulation data. 

Using these tables, it is very easy to access and study the 

simulation results in the scope of compartments (all or single), ducts, 

time or space. 

3.4 Database Buffering 

4.3.1 Motivation 

Scene classes described above are able to render themselves, but 

they still need to know where they should do it on the screen, i.e. they 
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need to know their coordinates. This information comes solely from the 

database. Database access is fast but still incomparably slower than 

access to data stored in the main computer memory. As far as rendering 

is an extremely demanding process, the best performance of which highly 

depends on amount of information to render and access information 

speed, critical information should read, or pre-buffered, from the 

database into the main memory. 

tElementRefs
(from BuiltOf)

<<typedef>>

Element

BuiltO f

id_ : int

BuiltO f()
BuiltO f()
operator =()
<<const>> id()
<<const>> count()
operator[]()
<<const>> operator[]()
addElement()

#elements_

T

vector
(from std)

 

Figure 14: Generic class for representing a complex entity (for example, 
side is composed of vertices). 

The most significant data is ship geometry. Due to complexity, a 

very quick access to all ducts, e.g. a ventilation duct, must also be 

provided. The next section presents the data structures for storing and 

manipulating mentioned types of the data. 
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4.3.2 Classes and Structures 

As referred before, some elements of the geometry are composed of 

smaller units, e.g. vertices comprise a side, and sides comprise a wall or 

a compartment. This general approach helps to create a class, 

customization of which easily allows us to reflect described relationships. 

BuiltO f<V entNodeBase>
(from Global Data Types)

<<anony mous_ty pe>>

WallBase
(from Shadwell)

<<struct>>C ompartmentBase

deck : int
frame : int
pos : int
desc : std::string

(from Shadwell)

<<struct>>
F ireMainSectionBase

diameter : float
(from Shadwell)

<<struct>>
SideBase

cmptId : UINT
(from Shadwell)

<<struct>>
V entDuctBase

diameter : float
w idth : float
height : float

(from Shadwell)

<<struct>>

BuiltO f<SideBase>
(from Global Data Types)

<<anony mous_ty pe>>
BuiltO f<F ireMainNodeBase>

(from Global Data Types)

<<anony mous_ty pe>>
BuiltO f<V ertexBase>

(from Global Data Types)

<<anony mous_ty pe>>

tElementRefs
(from BuiltOf)

<<ty pedef>>

Element

BuiltO f

id_ : int
(from Shadwell)#elements_

 

Figure 15: Geometry data storage classes. 

The class represents a wrapper around an array of pointers to 

instances of arbitrary classes. It provides functionality to access 

interesting elements of the array. Using this generic representation, it is 

possible to build a data structure or class that will accommodate the 

information from the database (Figure 14). This class serves as a base 

class for all complex geometry elements (Figure 15). 
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A centralized class management increases code accuracy, 

efficiency and maintainability. The BodyStructure class serves as a 

depository of all geometric data (Figure 16). 

<<anony mous_ty pe>>

tIntSet
<<ty pedef>>

T

Entity A rray

Entity A rray ()
<<const>> count()
operator[]()
by Id()
add()

<<struct>>

tA rray O fT
(from EntityArray)

<<ty pedef>>+v alues

Entity A rray <V ertex>
<<anony mous_ty pe>>

Entity A rray <Side>
<<anony mous_ty pe>>

Entity A rray <Door>
<<anony mous_ty pe>>

Entity A rray <Hatch>
<<anony mous_ty pe>>

Entity A rray <Scuttle>
<<anony mous_ty pe>>

Entity A rray <F ireMainNode>
<<anony mous_ty pe>>

Entity A rray <F ireMainSection>
<<anony mous_ty pe>>

Entity A rray <V entNode>
<<anony mous_ty pe>>

Entity A rray <C ompartment>
<<anony mous_ty pe>>

Body StructureBase

Body StructureBase()
Body StructureBase()
operator =()
~Body StructureBase()
operator &()

+v entDucts

+decks
+frames

+positions

+v ertices

+sides

+doors

+hatches

+scuttles

+fireMainNodes

+fireMainSections

+v entNodes

+compartments

Entity A rray <Wall>
<<anony mous_ty pe>> +walls

 

Figure 16: The BodyStructure class – a container for all ship data.  

The most important detail about the design is that it does not 

duplicate any data. The simplest unit of the geometry is a vertex. Vertices 

are read from the database as they are. A set of vertices defines a side, so 

a side has knowledge of them by creating an array of references to 

already created and loaded vertices. In turn, a wall or compartment 

contains references to sides. This is a very flexible and memory efficient 

scheme that also is extensible and easily evolvable. 
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The described hierarchy also needs a very sophisticated loader. It 

can be designed in the manner that it will provide a generic functionality 

capable of reading different parts of the geometry data with just a few 

customization details due to the fact that it is built with templates. A 

source of data is transparent for a loader, i.e. it uses a bridged 

connection, or interface, to access information (data bridging is described 

in further sections). After data reading, a loader creates necessary data 

interconnections by means of references. 

4.3.3 Scene Classes Dependence 

In the motivation for data buffering, it was mentioned that scene 

objects must possess information on how to draw themselves. The 

classes described in the previous section are intended to provide such 

information. The dependence between them is straight – a scene class is 

associated with a corresponding data buffering class {Figure 17}. 

SceneDoor DoorBase
(from Shadwell)

<<struct>>
-geometry_

SceneHatch HatchBase
(from Shadwell)

<<typedef>>-geometry_

SceneScuttle ScuttleBase
(from Shadwell)

<<struct>>
-geometry_

SceneCompartment CompartmentBase
(from Shadwell)

<<struct>>-geometry_
SceneVentNode VentNodeBase

(from Shadwell)

<<struct>>-geometry_

SceneFiremainNode FireMainNodeBase
(from Shadwell)

<<typedef>>-geometry_

SceneVentSection VentDuctSectionBase
(from Shadwell)

<<struct>>
-geometry_

SceneFiremainSection FireMainSectionBase
(from Shadwell)

<<struct>>-geometry_

 

Figure 17: Relationships between scene and data buffering classes. 
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CHAPTER IV  

IMPLEMENTATION DETAILS 

4.1 Fire Simulation 

1.4.1 The Model Input File 

The Network simulator is a standalone application written in 

FORTRAN 95 that accepts input in the form of a text file a namelist file 

and produces formatted text output. A namelist file, a standard 

FORTRAN language feature, comprises lines of formatted text data. 

Simplifying the FORTRAN standard, definition of the format of the 

namelist file is as follows: 

NAMELIST /namelist-group-name/ [attribute=value[, attribute=value…]] 

Each namelist-group-name defines its own set of attributes. For 

example, junctions – objects connecting two others (openings and duct 

sections – in the Network model are defined like this: 
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&JUNC id=5,kloss=2.04,height=-2.66,-2.66,span=1.88,1.88, 

area=0.95,location= 3,4,orientation=4, 

bidirectional=.TRUE./Door 1' Control-NAV 

The modeler accepts the following tags: 

• EXEC – general simulation parameters. 

• FIRE – fire source parameters. 

• JUNC – junction parameters. 

• CTRL – control element parameters. 

• COMP – compartment data. 

• SURF – surface data. 

• MTRL – compartment walls material data. 

• CMPN – component of a material. 

• RDCT – ventilation system. 

• RNOD – ventilation system nodes. 

• RFAN – ventilation fan parameters.  

• CURV – an item of tabular data.  

Generation of a namelist file is considered in section 4.1.3.1. 

1.4.2 Simulation Multithreading 

The Network simulator should be run as a separate thread for 

several reasons. First, the rendering functionality must be available for 

redrawing a ship model after each time step. Secondly, interaction with 
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the user, which includes pausing, resuming and stopping simulation 

execution, is still necessary. 

Multithreading under the Windows operating system can be 

achieved in different ways. I use Windows native functions:  

• CreateThread for a simulation thread properties initialization 

and its start. 

• CloseHandle for releasing system resources allocated for a 

thread. 

• SuspendThread for pausing or suspending a running 

simulation thread. 

• ResumeThread for resuming execution of a suspended 

simulation thread. 

• TerminateThread for exiting from or forced termination of a 

running simulation thread. 

A simulation thread can stop normally or forcedly. A normal 

completion of its execution happens only in case when given simulation 

time is achieved. In all other cases, that is, preliminary termination by 

the user or exiting from the program during a simulation, the system 

imposes a forced thread termination.  

1.4.3 Simulation Modes 

There are three modes of fire simulation: 
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1. Creation of new simulations using the Network simulator. 

2. Replay of previously created simulations. 

3. Comparison of two previously created simulations. 

4.1.3.1 New Simulation 

Creation of a new simulation begins with the definition of states of 

the ship’s active objects (doors, fans and etc.), setting simulation 

(duration of the simulation and ambient environment parameters) and 

fire propagation parameters (number of fire sources, their strength and 

etc.) though the GUI. 

 

Figure 18: The Object State Edit dialog window. 

Each active object may be in several different states depending on 

the type. Any object can be fake (not related to any physical object 

included in the simulation area) or disabled (existing but invalidated for 
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changing its state).  In addition, an opening can be in an off (or closed) 

state and an on (or opened) state. A door also can be in a joiner state 

(ability to vary its area due to construction) (Figure 18). 

There are additional features on the dialog window above. One is 

the ability to set all active objects to the same state by selecting a sought 

state and clicking on the Set All button. Another is the switching time, 

the time when a selected element changes its state to the opposite, e.g. if 

a current state is opened and switching time is 60 seconds, then the 

state of the element will be changed to closed after the 60th second 

during a simulation run. The final feature is the ability to include or 

exclude the Frame Bays in the simulation. Frame Bays is a submarine 

specific ventilation system feature. In reality they are model specific, so 

they may not be present on other ship models. They represent additional 

ventilation channels between selected compartments or decks. Frame 

Bays are displayed as vertical flat ventilation sections (Figure 28). 

A ship model can have hundreds of active elements. It is 

impractical to oblige a user to set all of them for each new simulation. To 

overcome this problem, several default modes may be provided, each of 

which will define a unique set of states for all active elements. For the 

currently used ship model, there are three predefined modes: 

Recirculation, Snorkel and Pierside. By default, the system is set to the 

most frequently used one. 
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ObjState
mode : int
state : int
switchTime : flo at

ObjState()

<<struct>>

 

Figure 19: The ObjState class. 

According to the given description, the implementation of an active 

object state property concludes in the definition of a class, the UML 

representation of which is as follows: 
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Figure 20: The Fire Simulation dialog window. 
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Setting the parameters of a simulation run is the next step. In the 

top of Figure 20, the user should provide a description of the simulation, 

necessary for further simulation identification in the list of simulations 

available for replays, a physical name of the input namelist file for the 

Network simulator, the duration of the simulation, environment ambient 

parameters and a species concentration. Each of these data fields has a 

default value, including a description, which will be set into a name of 

the input namelist file in case no description is given. 

After that, the user should define fire sources. Each fire source has 

a unique set of parameters that includes fire type (constant, t² fire and 

tabular), power, starting and ending times, fuel parameters (middle part 

of Figure 20) and others. By default, a fire source is constant in time with 

a power of 100 Watts. A simulation can have several fire sources, each of 

which may have different settings. 

Assuming validity of all user inputs, an input file for the Network 

model (1.4.1) is created, in addition using data stored in the database. 

This process includes processing notation of the ship’s geometry, 

definition of openings and other junctions, wall structure, and behavioral 

functions for some active elements.  

The step occurs when the user clicks on the Start button. If it 

succeeds, the system starts the Network model in the separate thread 

and begins processing its output step by step. The user may pause or 
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suspend this process, resume execution of a suspended simulation or 

stop it by clicking on the corresponding button (Figure 20). 

The window also offers assistance to the user, providing clocks 

that show the time passed after the simulation start and a set of controls 

that allow selection of a parameter to visualize as the simulation is 

running. 

4.1.3.2 Simulation Replay 

The same dialog window provides the user with the ability to replay 

previously run simulations (Figure 21). A user may see the parameters of 

a selected simulation as well as the states of the ship’s active objects, but 

it is impossible to change them. 

 

Figure 21: The Replay tab of the Fire Simulation dialog window. 

To replay a simulation, the user must select it from the list of 

available simulations, which contains names of namelist files and 
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descriptions of simulations. After that a selected namelist file is parsed, 

and the system sets the ship’s objects into the appropriate states. To 

start the replay, the user must press the Start button. The functionality 

of the rest of the buttons is the same as described before. 

 

Figure 22: The Available Simulations dialog window. 

A user must have an ability to jump instantly to a particular time 

step. Theoretically, this operation can be performed in O(1) due to the 

practically invariant amount of time required to perform the same SQL 

query to the database. However, it does not hold true in the case of 

storing data in the text files because they provide only sequential access. 
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Navigating through the text files may be guided by tags. This 

technique is sufficient for stepping forward, but it may have significant 

performance issues while explicitly going backwards. To retrieve the next 

time step, the system simply finds the next tag identifying a beginning of 

the step, but while moving backwards, a current position must be reset 

and all steps preceding a requested must be skipped. Stepping should be 

used carefully in case of rather big ship models and long simulations due 

to the significant size of time steps generated by the Network model. The 

big size of steps causes a considerable performance overhead during step 

skipping. 

The user may sample through the data using sampling in space or 

step-by-step sampling. During sampled-in-space replays, the system 

reads each time step and skips it if its id is not divisible by the size of the 

step (Figure 23). 

The output is not uniform in time. That is, frequency of steps is 

higher, or the size of a time step is less or varies during particularly 

important changes of environment that have a greater effect on 

subsequent fire distribution. Thus, plain step-by-step execution will fail 

for a study of the results in real time because it will run slower when 

density of steps per time unit is higher. To achieve true real time replays, 

or more generally arbitrary replay speed constant in time, is what 

sampling in time was designed for.  



50 

Additional controlling functionality is a pause between steps. By 

default, the system visualizes the data with maximum possible speed, 

reading data step-by-step and instantly showing it on the screen. To 

better understand the process of fire, one may decrease this speed by 

introducing a short delay after each step. The system allows use of a 

delay in the interval from 0 to 1 second inclusive.  

 

Figure 23: Sampling in space algorithm. 
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The sampling in time algorithm has a catch, which is pausing 

between steps. It is incorrect to only wait for a selected amount of time 

after each step because time required for reading and showing each data 

block is not zero. This pause must be included into the overall delay as 

its fraction. In fact, reading time may comprise a significant part of a 

user defined delay. 

 

Figure 24: Sampling in time algorithm. 
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To achieve the best match of a real delay with a requested, time 

measurements should be performed at the right moments, namely before 

reading a data block when the timer is started and after displaying it is 

stopped (Figure 24). 

4.1.3.3 Comparison of Two Simulations 

Comparison of two simulations represents an extension of the 

replay mode, only in this case two data sources and two ship models are 

needed. The Compare tab looks very much like the Replay tab. Additional 

overhead is processing and showing two data inputs instead of one, 

though in the same manner. 

The functionality of the Select buttons is the same – they offer to 

select one of the existing simulations. To preview fire source parameters, 

the user must select an edit box with a name of an interesting 

simulation. Sampling in time and a variable pause between each step are 

available; step sampling will be added in the future.  

 

Figure 25: The Compare tab of the Fire Simulation dialog window. 
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4.2 Visualization 

2.4.1 Geometry 

4.2.1.1 Compartments 

The compartment is the most significant visualization object. It 

defines what the whole scene looks like, and making compartments 

visually attractive is the important issue. Solving this problem will 

greatly contribute to the overall visualization success. 

Each compartment is a set of flat planes or patches. Physically 

every patch may be different due to various materials that may be used 

when it is built. For now, the differences are not distinguishable on the 

screen.  

 

Figure 26: Compartment interior with enabled polygon offset. 
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The compartment walls closest to a view point should be removed 

revealing the compartment interior. The OpenGL culling mechanism 

delivers this functionality. By convention, polygons whose vertices 

appear in counterclockwise order on the screen are called front-facing. 

The surface of any reasonable solid can be constructed from polygons of 

consistent orientation [20]. Drawing the compartment walls so that each 

patch’s face is inside of related compartment, and setting OpenGL to 

remove back-facing polygons will produce the desired effect of looking 

inside (Figure 26). 

 

Figure 27: Polygon offset is disabled. 

Figure 26 also shows a compartment wireframe defined by wall 

patches. A wireframe is usually produced by setting a polygon drawing 

style to GL_LINES as an argument for glPolygonMode function call. In the 

considered case the situation is different since both compartments walls 

and patch contours should be shown simultaneously. Sequential 
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rendering of the compartment walls and then the patch contours does not 

produce quality results because the edges of polygons in both cases 

coincide, thus OpenGL cannot perform adequate depth resolution (Figure 

27). 

Using glPolygonOffset provides a solution. It is useful for rendering 

hidden-line images, for applying decals to surfaces, and for rendering 

solids with highlighted edges. glPolygonOffset sets the scale and units 

OpenGL uses to calculate depth values. When it is enabled, each 

fragment's depth value will be offset after it is interpolated from the 

depth values of the appropriate vertices. The value of the offset is: 

unitsrzfactoroffset ⋅+∆⋅= ,  

where Δz is a measurement of the change in depth relative to the screen 

area of the polygon, and r is the smallest value that is guaranteed to 

produce a resolvable offset for a given implementation. The offset is 

added before the depth test is performed and before the value is written 

into the depth buffer [20]. The results of applying glPolygonOffset(1.0, 

1.0) are clearly seen on Figure 26. 

4.2.1.2 Openings 

Currently, openings are represented by doors, hatches and 

scuttles. A door and a hatch are similar – a rectangular object with a 
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predefined width and height. A scuttle is a round object with a 

predefined diameter. Described physical characteristics define the way 

each object is shown. 

Each opening has a position and physical dimension, which are 

linearly mapped to pixel size. In addition, each opening possesses 

knowledge of what wall it belongs to. This information is used to obtain a 

normal vector of a given wall and detect orientation of a given opening.  

The algorithm of rendering of an opening consists of the following 

steps: 

• Calculate orientation (done once). 

• Translate to a given position using glTranslate. 

• Draw geometry. 

In some cases spatial positions of the hatch and scuttle match, i.e. 

they have the same coordinates in 3-D, as well as orientation. Again 

there is a problem of depth resolution. It can be solved in two ways: 

drawing objects with different thickness (implemented now) or using 

glPolygonOffset as described in the previous section. 

4.2.1.3 Ducts 

Generally, a duct is a network of connected tubes, probably of 

different characteristics. Each tube is represented by a pair of nodes plus 

some parameters like physical dimension. A duct can be shown as a 
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graph, edges of which are lines in the case of simplified visualization, or 

like in most cases, cylinders. Generally, a duct can also be 

interconnected objects with arbitrary shaped cross-section, but then how 

to define them is a problem that should be solved. 

Representing a duct section as a line is simple, and that was a 

method used in the very beginning. Obviously, it is not visually 

attractive. More importantly, it does not provide a good understanding of 

a duct structure due to a lack of correct physical depicturing. This leads 

to user inability to predict the simulation results. The better way is to 

have close to real shaped objects, and using cylinders as building blocks 

for duct sections satisfies this demand. 

GLE is a library package of C functions that draw extruded 

surfaces, including surfaces of revolution, sweeps, tubes, polycones, 

polycylinders and helicoids. Generically, the extruded surface is specified 

with a 2D polyline that is extruded along a 3D path.  A local coordinate 

system allows for additional flexibility in the primitives drawn.  

Extrusions may be texture mapped in a variety of ways.  The GLE library 

generates 3D triangle coordinates, lighting normal vectors and texture 

coordinates as output. GLE uses the OpenGL API's to perform the actual 

rendering [20]. 

At this point, such powerful elements of the GLE library like 

polyobjects, namely polycylinders, which are intended to provide the 
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capability to draw a cylinder network with different section diameters. 

The currently used approach has advantages and drawbacks. First, it 

greatly simplifies dynamic manipulation with each duct section – hiding, 

showing, changing section’s state, etc. – since they are represented as 

independent class instances. On the other hand, additional objects like 

spheres have to be used as section joiners to avoid discontinuity. 

 

Figure 28: Ventilation duct with fans (blue) and dampers (brown). 

The next part of the duct is the nodes. As mentioned before, each 

node of the duct can be simple or complex. A simple node is a point in 3-

D space. A complex node can represent an active element of the duct, 

e.g. a pump or damper. In the former case, the node is shown as a 

sphere and in the latter as a custom drawn object. 
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The overhead of using cylinders and spheres is obvious – each is a 

set of many triangles (e.g. in average each sphere is 8x8x2=64 triangles), 

and having rather sophisticated duct networks may have a significant 

impact on the overall system performance. Therefore, simplification of 

representation of ducts is an issue that should be considered in the 

future. 

2.4.2 Parameters Representation 

The currently used Network modeler provides one-zone 

representation of output data. That is, one value for each parameter per 

bounded volume, e.g. compartment. This way of data representation does 

not provide enough information for creating a quality value gradient in 

the scope of that volume. For example, if there were more than a single 

value for the smoke then it would be possible to visualize it as a non-

homogeneous instance inside of compartments. 

Nevertheless we can still get a picture that will decently reflect the 

processes taking place during the fire by using color maps, which is one 

of the best ways to represent physical values changing in time or space. 

Moreover, such data granularity is satisfying for real-time ship control 

and making appropriate decisions in case of emergency. 
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4.2.2.1 Options Dialog Tab: Species Color Mapping 

The simulator produces a data block that contains several scalar 

output values – temperature, density of smoke (soot) or visibility, 

concentration of oxygen and, finally, concentration of toxic materials (e.g. 

CO).  

Figure 29: Color mapping with two critical levels and constant gradient. 

A good representation of such a type of data is a color. According 

to studies in cognitive science color saturation should be used to 

represent a magnitude of scalars [12]. Indeed, changing from light gray to 

dark gray indicates that a displayed parameter either gained or lost in its 

magnitude, whereas changing from yellow to red supposes qualitative 

parameter transitions. The exception can be a desire to show some 
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critical levels. For such cases, dramatic change in color hue vividly 

notifies the user about passing some important points (Figure 29). 

The scalar parameter, e.g. temperature, has several ranges: 

• Normal value range. 

• Value range safe for protected staff. 

• Hazardous value range, when any human presence is life 

threatening. 

Thus, there should be at least three colors used, and the algorithm 

is simple: 

• Get value. 

• Get range it hits. 

• Select corresponding color. 

• Draw related object. 

This technique is not sufficient. A person who makes simulations 

or who controls a ship in real-time also wants to know when a value is 

close to critical points in order to be prepared to take appropriate actions 

(for example, to give a command to put on protective suits). Therefore, 

the selection function should be modified so that in the end of each 

range (except for the last one) there will be a region showing a transition 

from a current value range to the next. 



62 

 
Figure 30: Color mapping with two critical levels and two gradients in the 

end of each critical value range. 

Thus, additional two values must be given, namely, the beginnings of 
transition regions, which will define when a color must start representing 
a mixture of adjacent ones. They are called ramp values since they 
represent ascending parts of the curve ( 

Figure 30). 

The algorithm for color selection gets more complicated – the 

problem of a correct changing of color channels has to be considered. 

The logic behind a transition from one color to another is a gradual 

changing of proper channels. For example, yellow is an RGB triplet with 

values (1, 1, 0); red is (1, 0, 0). Thus, reducing the green channel from 1 

to 0 will produce a desired color set. To provide the ability to set up 

custom color map is the next step for future work 
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The currently existing color selection algorithm uses three color 

channels, known as an RGB triplet, and the following transitions 

between them: 

210 CCC →→  

or: 

BBB

GGG

RRR

CCC
CCC
CCC

210

210

210

→→

→→

→→

 

The user provides a pair of colors to use by a scalar value of the 

given parameter. The first step is normalization in scope of a given ramp 

region, e.g. for a lower ramp region it is: 

LowRampLow
LowRampvv
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or if k-th value range is represented as a pair of numbers: 
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Next, this value is appled to a color channel variation: 
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Notice that a channel value can as easily increase as decrease 

depending on the sign of a channel variation, defined as a difference of 

corresponding adjacent RGB channel pairs. 

 

Figure 31: The Options dialog window. 

The biggest advantage of the described method of color selection is 

a relative flexibility in changing a number of critical points, or, in other 

words, transition regions. Indeed, the only thing to be done is to define 

these regions and provide a proper range identification mechanism to be 

able correctly normalize a parameter value in scope of that range. 
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There are three scalar value parameters simulated by the Network 

model – temperature, oxygen and toxicity (CO). Critical levels for each of 

them were recommended by Hughes Associates, Inc., but the user also 

has ability to change them through the Species Color Mapping tab in the 

Options dialog window (Figure 31). 

4.2.2.2 Legend Dialog 

Legend dialog is a helper window, which contains thresholds for 

the currently selected parameter. It modifies color mapping and text 

labels, depending on threshold values (Figure 32). 

Implementation of the dialog above uses the OpenGL ability to 

interpolate between two colors, i.e. it is only necessary to set the colors of 

four points to achieve presented gradients between 313K and 333K 

temperature values, two for each horizontal line, and OpenGL takes care 

to create a smooth transition from grey to yellow. The same logic applies 

to levels of transparency, with the exception that in this case RGB 

channels are constant, and only the alpha channel varies. The ends of 

the bar are open to stress that everything above or below given extremes 

is not important. 
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Figure 32: The Legend dialog window: temperature color map and critical 
levels on the left; smoke gradient and critical levels on the 
right. 

The main rendering algorithm for this scene consists of several 

parts executed in the following order:  

• Render background object (for visibility only). 

• Render color map and labels. 

• Render boundaries. 
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The background object is used to reproduce the degrading of 

visibility with an increasing amount of smoke, i.e. alpha channel value. A 

white rectangle is intended to reproduce such objects of the main scene 

as a ventilation duct section or an open door. 

The color map is essentially a set of rectangles stacked on top of 

each other. The pattern of their colors reflects the threshold curve 

described above, namely, that every odd rectangle has a constant color 

and every even has a transition from one color to another. Despite this 

fact, each of them can be rendered uniformly, only adjusting color 

parameters on their edges accordingly. 

Another important characteristic of the legend is a realistic 

representation of a distribution of displayed simulation parameter 

values. Indeed, only a value range, in which a current measurement falls, 

represents the user interest, whereas the precise value is unimportant. 

Consequently, division of the bar into equal parts is not enough. The 

solution is to apply value ranges inside of the area of the bar defined by 

two extremes. Such an approach offers to the user a good understanding 

of the system state and appropriate actions that should be taken. 

The example of rendering of the temperature color map is 

considered below. First of all, we have a range of temperatures from 

313K to 458K, which gives 145K difference. Second, a size of the working 
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region of the legend bar is, say, 300 pixels. Thus, each pixel is ∆ = 0.48(3) 

K. The procedure of getting the Y value is as follows:  

• Get a temperature value. 

• Subtract a lower temperature extreme (313K). 

• Multiply it by ∆. 

• Add 0Y  - a pixel position of the lower extreme. 

2.4.3 Temperature, Toxicity and Oxygen 

These species are represented with color maps described in the 

previous section with color applied to compartments’ walls. The user gets 

a full picture of species propagation and predicts its consequent 

development by analyzing current environment conditions and settings. 

It is possible to switch currently visualized species with controls in the 

bottom of the simulation dialog (Figure 20). 

2.4.4 Smoke 

Finally, the last of the simulated parameters is visibility or smoke. 

The smoke is perceived as a loss of clearness of details of objects that it 

covers. There can be different ways of achieving this effect.  

First, using particle systems or volumetric smoke can produce the 

most realistic smoke. Even though results are very persuasive, the 

degree of rendering complexity is very high. Each particle is represented 

as an individual object, so for very dense smoke the number of particles 
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must be rather high. Taking into account additional overhead on 

physics, smoke takes significant processing time. As long as the project’s 

destination platform is a standalone PC or laptop, this fact starts playing 

an important role.  

 

Figure 33: Smoke visualization: the top compartments and the bottom 
left are partially smoked; the compartment in the middle is 
free of smoke; a bottom front compartment has high 
concentration of smoke than any. 

The second approach that can be used is imposing another semi-

transparent object in front of obstructed model details. In this case, the 

controlling amount of smoke degrades to manipulating with the color’s 

alpha channel; there is less smoke when an alpha value is lower, and 



70 

vice versa. There is a good reason for using this method – a data block 

produced by the simulator is very sparse, that is, it has just a single data 

value for each compartment. Such conditions prevent a quality smoke 

analysis inside each compartment, so making complex smoke 

representations with particle system is hardly possible and even 

redundant. Nevertheless, volumetric smoke is considered for future work.  

The compartment is represented as a set of sides, or quadrangles. 

Thus, an effect of smoky room can achieved by drawing the same 

compartment over again with a side color different from the original in its 

alpha channel value; an alpha blending will produce desired results. The 

class representing the compartment interior is called the 

SceneCompartmentInterior. 

To render a transparent object properly into a scene requires 

sorting. First, opaque objects are rendered, and then the transparent 

objects are blended on top of them in back-to-front order. Blending in 

arbitrary order can produce serious artifacts, because the blending 

equation is order dependent [12]. By virtue of the 3-D nature of interior 

objects, two steps sorting is necessary: compartment side sorting and 

compartment sorting. 
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2.4.5 Multiple Species Visualization 

There is a great example from history that shows multidimensional 

scalar values visualization. It is Charles Minard French engineer’s 

diagram, which shows the terrible fate of Napoleon’s army in Russia [10].  

 

Figure 34: Charles Minard’s multidimensional diagram. 

Six variables are plotted: the size of the army, its location on a two-

dimensional surface, direction of the army’s movement and temperature 

on various dates during the retreat from Moscow. It may be the best 

statistical graphic ever drawn [15]. 

To display such an amount of information in a very easy way to 

perceive and understand is the most important goal of any visualization. 

Unfortunately, in our case it is hardy possible to show more than two 
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variable without making things confusing. Representing parameters with 

color does not leave much space for variation. Good training is required if 

two parameters are shown as a mixture of two colors because it looks 

absolutely different from the originals. 

 

Figure 35: Different levels of smoke transparency and aggregation of 
compartment wall color. 

Two variables are still possible to have at once – any parameter 

with scalar scale and smoke. Smoke is represented as an object that 

repeats the geometry of the compartment but with transparent walls, the 

level of transparency of which is defined by smoke concentration. There 

can be two directions of approaching the problem: 

• Show scalar value as colored compartment walls and smoke 
as an object with transparent gray walls. 

• Show scalar value as colored compartment walls and smoke 
as an object with transparent walls the color of which is 
borrowed from a scalar value. 
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Experiments showed that the first approach does not work well 

because with a high concentration of smoke, the information about a 

scalar value is lost due to inability to observe compartment walls through 

the almost solid smoke object’s walls. On the other hand, too much color 

may stress a scalar value parameter, whereas both variables are 

important in making a correct decision. Two cutoffs help to define the 

maximum level of wall opacity and the percentage of wall color effect on 

the smoke (Figure 35). 

4.3 Auxiliary Classes 

3.4.1 Command Line Parameters Manager 

Most programs accept additional parameters that come from a 

command line. It is often necessary to have access to this information in 

many places of the code. Generally, the C++ compiler allows a 

programmer to obtain a list of user-given parameters, which are fed 

through the main function as its parameters. As a result, a user has a 

pointer to a variable size array of null-terminated strings and a number 

of elements in this array. Just having this information may be 

inconvenient – it is not necessary that every parameter is a string, or, in 

other words, an array contains homogeneous data. Moreover, it is often 

the case that a parameter may be preceded by a symbol like a hyphen or 
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slash. For such cases, manipulating these parameters becomes 

extremely complicated and error-prone. 

The CmdParams class is designed for handling described problems. 

Its main purpose is to store user-given command-line parameters and 

yield their values according to a requested type.  

An important characteristic of the considered class is its logical 

singularity in the scope of the application. Indeed, why should one need 

more than one instance of the CmdParams class if, once given, 

parameters are never change? Therefore, CmdParams should be a 

singleton. 

The idea that lies behind a singleton is relatively simple, but 

implementation issues are rather complicated. The very first attempts to 

create such a class were made in 1995 by the famous Gang of Four. In 

their book, they described the Singleton design pattern as a way to 

“ensure a class only has one instance, and provide a global point of 

access to it” [4].  

A singleton is an improved global variable. The improvement that 

singleton brings is that it is impossible to create a secondary object of the 

singleton’s type. Thus, the Singleton pattern should be used to model 

types that conceptually have a unique instance in the application. Being 

able to instantiate these types more than once is unnatural at best and 

often dangerous [1]. 
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The main principle that lies behind the Singleton pattern is a use of 

static class members. Several things must be taken into account while 

developing a singleton. First of all, constructors must be private to 

ensure that the user cannot create any instances of a singleton. This 

constrain enforces its uniqueness at compile time. Following the same 

logic, all auto-generated class members, namely, a copy constructor, an 

equal operator and destructor, must be made private (Figure 36). 

Singleton

pInstance_ : Singleton* = NULL

Instance() : Singleton&
Singleton()
Singleton(right : const Singleton&)
operator=(right : const Singleton&) : Singleton&
~Singleton()  

Figure 36: The Singleton class prototype. 

The system’s code uses a very solid and sophisticated 

implementation of the Singleton pattern offered by Loki library, which 

also includes a set of other templates. Loki extends the idea and provides 

a holder for singleton classes that is very flexible and easy to use.  

T

SingletonHolder
(from Loki)

CmpParams
<<typedef>> tCmdParam

T

vector
(from std)

CmdParamsBase
tCmdParamArray

<<typedef>>

-params_
 

Figure 37: The CmdParams class. 
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3.4.2 Data Bridging 

Currently, the model data is represented in two ways. Initially it 

was a set of text files of a particular structure, and during the time of the 

project evolution, it transformed into SQL database format, a more 

natural and highly acceptable way of data managing. Nevertheless, the 

former data format did not lose its attractiveness – its beauty is in its 

simplicity. Having text files as a mechanism for data storing allows 

trouble-free application distribution. Indeed, native file processing 

routings of C++ help to avoid purchasing and installation of an SQL 

database server and communication interface like ODBC. On the other 

hand, text files are good for a relatively small database size, and what is 

more important, it delegates all data integrity controlling functionality 

solely to the application. Moreover, text files are static information, and 

they may require significantly more processing time in case of dynamic 

data accumulation, happening during simulations. In addition, storing 

historic data is extremely complicated and error-prone. 

Both ways of data acquisition and submittion for further saving 

and reuse are developed. Logically, the application should not know what 

kind of data source – text files or a database – it uses. Concealing this 

knowledge behind an interface is a widely used technique. The 

IDataBridge interface provides desired functionality. 
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IDataBridge

FileDataBridge

DBDataBridge

IDataBridge

 

Figure 38: Data interfaces. 

An interface is an abstract entity that provides only behavioral 

properties for its children. It means that an interface does not have any 

class data members; it is a set of abstract class member functions. 

Moreover, an interface does not even provide particular predefined 

behavior – it is just a declaration of possible function calls.  

Interfaces are often used to describe the peripheral abilities of a 

class, not the central identity, e.g. the Automobile class might implement 

the Recyclable interface, which could apply to many otherwise totally 

unrelated objects. 
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CHAPTER V  

RESULTS 

5.1 Designed Software 

 

Figure 39: The main application window. 
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This work resulted in a designed and working prototype of the 

onboard fire and smoke propagation simulation system. It consists of 

several parts: the GUI, the Network model and the database. 

Figure 39 shows the display right after the start of the program. 3-

D geometry and objects are represented in the main middle area. A user 

has the ability to manipulate the scene and apply such actions as 

rotation, translation and zooming using a mouse. The backbone of the 

geometry is the compartments depicted as front-side opened gray boxes. 

Doors, hatches and scuttles are visualized as dark (or light, depending 

on its state) gray rectangles or disks. 

 

Figure 40: Changed level of details: no compartment walls. 
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It is possible to change the levels of detail of the view using the 

Perspective Details menu bar. It contains buttons that allows showing or 

hiding of different kinds of objects like compartments, wireframe and 

others (Figure 40). The results on Figure 28 also were produced using 

this menu bar. 

 

Figure 41: Fire simulation: visualization of temperature. 

3-D geometry details of an individual compartment may be studied 

in the lower part of the window. The most left subwindow presents 
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compartment geometry, whereas the other two allow selection of a 

compartment by clicking on it on the Desk View in the middle and the 

Orthographic View on the right. 

 

Figure 42: Fire simulation: visualization of smoke. 

In the simulation window (Figure 20), the user controls running, 

replaying and comparing of simulations. In any case, the simulation 

results appear in the main application window. Scalar values (e.g. 

temperature) are represented as color maps that affect the color of walls 
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(Figure 41), whereas smoke is represented as a transparent object inside 

of each compartment (Figure 42). 

 

Figure 43: Fire simulation: visualization of temperature and smoke. 

It is possible to view parameters, temperature and smoke at once. 

In this case, the color of smoke of a compartment is affected by the 

temperature in that compartment (Figure 43). Analyzing this view does 

require some eye training to be able to adequately estimate a scalar value 

of compartment temperature and amount of smoke. The user must 
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remember that parameters have two critical levels that have the greatest 

impact in the color and level of transparency. The Legend window offers 

assistance in identifying values of parameters as well as values of critical 

levels (Figure 32). 

 

Figure 44: Fire simulation: smoke. 

Switching off compartment walls produces a very good perception 

of smoke, as a resulting color is a mixture of the smoke color and a clean 

background, unaffected by the color of the walls. The effect is even 
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stronger due to increased number of visual clues revealed by the absence 

of the walls (Figure 44). 

Finally, the user is able to compare two simulations for better 

analysis and optimization. This simulation mode s represented by two 

similar perspective views separated horizontally (Figure 45). It provides 

the same interaction and functionality as described before. 

 

Figure 45: Fire simulations: comparison of two simulations. 

This work is a small part of complex onboard ship fire suppression 

system. Currently, it provides functionality for: 
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• Import geometry and duct information from a third party 

CAD system.  

• Visualization of the ship’s geometry and systems.  

• Simulation a fire with a visual feedback to a process. 

• Comparison of previously run simulations. 

Visualization of fire parameters includes two techniques – color 

maps and variable transparency objects. Color maps helped to represent 

scalar values like temperature, oxygen and etc., whereas transparency 

produced very convincing results for the smoke. Design of color maps 

required developing map function that realizes transition between a value 

and a color. 

Visualization of smoke was and is a challenge. Currently, an object 

with transparent walls helps to produce effect of smoke. This effect is 

very convincing, but it is expected to fail on the later developmental 

stages, when a walking inside of the smoked volume is considered. 

Currently, such a mode is not required, but it may be extremely useful 

for training purposes and understanding processes, happening during a 

fire.  

Another challenge was processing the visualization input data and 

producing an input file for the Network simulator. Currently, the input 

data comes from a ship model designer in a text format, which due to its 

nature is very unsteady, thus, unreliable. Hence, creating reading 
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routings required higher concerns about formats of the files. With a 

properly organized database, this issue will be a straightforward task. 

Moreover, using a database will be also very beneficial from other aspects 

of the system development beginning from a simplicity and higher speed 

of data access and ending with a flexible data structure management and 

deeper results analysis. 

The project at its current state was demonstrated at the Workshop 

on Fire Suppression Technologies held in February, 2003. 

5.2 Hypothesis Validation 

The goal stated the hypothesis is to prove that simulations in near 

to or faster than real time are possible. The visualization algorithms 

demonstrated a good performance reserve by running much faster than 

real time. This fact can be clearly observed by recording replay speed of 

simulations. Step-by-step replays on average run 40 times faster than 

real time. Hence, it is practically possible to achieve running simulations 

with such speed. Visualization produces a relatively low load on the main 

CPU during simulation runs – around 15-20% – whereas the Network 

model consumes the rest available, which is usually close to maximum 

80%. Thus, even though the Network model is a current bottleneck, the 

presented software is able to process, store and finally render data in a 

much higher speed than the Network model can offer. Consequently, the 

stated hypothesis of developing a visualization system that may run near 

to or faster than real-time can be claim proven. 
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CHAPTER VI  

FUTURE WORK 

The project is still on its early development stages so there is a 

wide range of activities in the nearest future. 

This paragraph presents brief descriptions of thing under 

consideration. Design a database structure has a high priority due to 

performance penalties causes by using text files as a data source. A 

proper and sophisticated error handling may help to turn this prototype 

into a robust and reliable product. The interaction with the user while a 

simulation is running does not exist due to inability the Network 

simulator to handle the user’s requests. An example of such an iteration 

process is changing object states through the GUI. 

The next direction of work is improving or changing currently used 

visualization techniques like: 

• Custom color maps for visualizing different simulation 

species. Currently, two critical levels seen represented with 

yellow and red.  
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• Simplification of graphical duct representations, namely, 

removing spheres as section joiners. 

• Plane representation of 3-D networks, e.g. ducts, which is 

simple, thus, helpful and important in critical situations. 

A wall is built with some material. Different walls may use different 

materials, but a few are used during ship construction. They play an 

overwhelming role in fire rise and distribution. Providing the user with 

the ability to analyze simulation scenarios with different wall material 

settings may reveal valuable information for ship builders. It requires 

creating a mechanism for editing materials parameters, wall structures, 

and the ability to change wall settings interactively. 

Smoke representation raises two issues: correct transparent color 

and using volumetric smoke.  

The implemented approach of smoke representation uses the 

transparent polygons to obscure objects and produce a smoke effect. It 

requires sorting. Recently, Cass Everitt represented a method for 

rendering transparent objects order-independently [31]. He has described 

how hardware of a new generation can help to avoid a great deal of 

headache by using depth peeling mechanism. Depth peeling is a 

fragment-level depth sorting technique described by Mammen using 

Virtual Pixel Maps [9] and by Diefenbach using a dual depth buffer [1]. 
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The peeling of a layer requires a single order-independent pass over the 

scene. 

In addition to programming efforts, volumetric smoke requires 

considering its applicable use cases. Being very resource demanding due 

to its complexity, it must be used only in rare cases like gaming 

environment (walking through a smoked volume) or animations. 

Representing an opening as an independent object is arguable. 

Indeed, each opening connects two or more compartments and it belongs 

to a wall. Thus, it may be thought as a property of a wall. Consequently, 

it may be preferable to aggregate an opening class to compartment. 

Aggregation would allow retrieval of additional information like adjacent 

compartments. Furthermore, it would assist in drawing only the 

compartment related objects, as well as in a depth resolution problem. 
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