
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-2-2002

A Lightweight Intrusion Detection System for the Cluster A Lightweight Intrusion Detection System for the Cluster

Environment Environment

Zhen Liu

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Liu, Zhen, "A Lightweight Intrusion Detection System for the Cluster Environment" (2002). Theses and
Dissertations. 162.
https://scholarsjunction.msstate.edu/td/162

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/162?utm_source=scholarsjunction.msstate.edu%2Ftd%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

A LIGHTWEIGHT INTRUSION DETECTION SYSTEM FOR

THE CLUSTER ENVIRONMENT

By

ZHEN LIU

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2003

A LIGHTWEIGHT INTRUSION DETECTION SYSTEM FOR

THE CLUSTER ENVIRONMENT

By

Zhen Liu

Approved:

Susan Bridges Julian E. Boggess
Professor of Computer Science Associate Professor of Computer Science
and Engineering and Engineering
(Director of Thesis and (Committee Member)
 Graduate Coordinator of the
 Department of Computer Science
 and Engineering)

Rayford Vaughn A. Wayne Bennett
Associate Professor of Computer Science Dean of the Bagley College of
and Engineering Engineering
(Committee Member)

Name: Zhen Liu

Date of Degree: August 2, 2003

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Susan M. Bridges

Title of Study: A LIGHTWEIGHT INTRUSION DETECTION SYSTEM FOR

THE CLUSTER ENVIRONMENT

Pages in Study: 78

Candidate for Degree of Master of Science

As clusters of Linux workstations have gained in popularity, security in this

environment has become increasingly important. While prevention methods such as

access control can enhance the security level of a cluster system, intrusions are still

possible and therefore intrusion detection and recovery methods are necessary. In this

thesis, a system architecture for an intrusion detection system in a cluster environment is

presented. A prototype system called pShield based on this architecture for a Linux

cluster environment is described and its capability to detect unique attacks on MPI

programs is demonstrated.

The pShield system was implemented as a loadable kernel module that uses a

neural network classifier to model normal behavior of processes. A new method for

generating artificial anomalous data is described that uses a limited amount of attack data

in training the neural network. Experimental results demonstrate that using this method

rather than randomly generated anomalies reduces the false positive rate without

compromising the ability to detect novel attacks. A neural network with a simple

activation function is used in order to facilitate fast classification of new instances after

training and to ease implementation in kernel space.

Our goal is to classify the entire trace of a program’s execution based on neural

network classification of short sequences in the trace. Therefore, the effect of anomalous

sequences in a trace must be accumulated. Several trace classification methods were

compared. The results demonstrate that methods that use information about locality of

anomalies are more effective than those that only look at the number of anomalies.

The impact of pShield on system performance was evaluated on an 8-node

cluster. Although pShield adds some overhead for each API for MPI communication, the

experimental results show that a real world parallel computing benchmark was slowed

only slightly by the intrusion detection system. The results demonstrate the effectiveness

of pShield as a light-weight intrusion detection system in a cluster environment. This

work is part of the Intelligent Intrusion Detection project of the Center for Computer

Security Research at Mississippi State University.

ii

ACKNOWLEDGEMENTS

I am deeply grateful to Dr. Susan Bridges for directing my graduate study and

research work during last two years. In this research, she has often given me insights and

guided me back to the right path. She always encouraged me to learn new things and

think independently. I would like to thank Dr. Lois Boggess for her valuable neural

networks course and useful advice. I also want to express my appreciation to my

committee members, Dr. Rayford Vaughn and Dr. Julian E. Boggess, for their invaluable

aid, direction, and ideas in this area. A special thanks to German Florez and Miguel

Torres for their help and insightful discussion. I would also thank other faculty members

and students in the Center for Computer Security Research (CCSR).

iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS.. ii

LIST OF TABLES.. v

LIST OF FIGURES ... vi

CHAPTER

I. Introduction .. 1

1.1 Motivation.. 3
1.2 Contributions.. 4
1.3 Overview.. 6

II. Literature Review.. 8

2.1 Intrusion detection ... 8
2.2 System call analysis ... 11

2.2.1 Access control database .. 11
2.2.2 Sequences analysis.. 12

2.3 Artificial intelligence in system call analysis .. 13
2.3.1 Enumerating sequences... 13
2.3.2 Rule learning systems ... 14
2.3.3 Hidden Markov Model.. 15
2.3.4 Program specification ... 16
2.3.5 Inductive sequential patterns... 16
2.3.6 Neural networks .. 17

2.4 System call capture .. 17
2.4.1 Library interposition ... 18
2.4.2 Debug mechanism... 18
2.4.3 Kernel methods ... 19

2.5 Data preprocessing... 20
2.5.1 Data representation ... 20
2.5.2 Artificial anomaly generation ... 21

2.6 Neural network learning algorithm.. 22

III. Prototype System Architecture and Implementation .. 25

iv

CHAPTER Page

3.1 Introduction to prototype system ... 25
3.2 System architecture.. 27
3.3 Data structures ... 32

IV. Experiments and Results... 37

4.1 Introduction to experiments ... 37
4.1.1 Attack Scenarios on MPI Programs.. 38
4.1.2 Description of Datasets ... 40
4.1.3 ROC curves for analysis of classifier performance 44

4.2 Using backpropagation neural network for intrusion detection................... 45
4.2.1 Training the neural network.. 46
4.2.2 Embedding the neural network in the kernel 47

4.3 Trace classification methods.. 50
4.4 Artificial anomaly generation methods.. 51
4.5 Experiments and results discussion ... 55

4.5.1 Design of experiments .. 55
4.5.2 Comparison of different trace classification methods 57
4.5.3 Comparison of different artificial anomaly generation methods .. 63

4.6 Performance evaluation ... 67

V. Conclusions and Future Work... 71

REFERENCES ... 74

v

LIST OF TABLES

TABLE Page

2.1 Sequences of system calls... 13

4.1 Statistical summary of the MPI ring dataset ... 43

4.2 Comparison of error rates using a simple sigmoid function and the standard
sigmoid function ... 49

4.3 Comparison of online classification methods with an unseen normal run 58

4.4 Comparison of online classification methods with the RingFile attack 58

4.5 Results with the IS benchmark ... 68

vi

LIST OF FIGURES

FIGURE Page

2.1 Distribution-based artificial anomaly generation algorithm (from [13])........ 22

3.1 A comparison of a system call invocation without (a) and with (b) pShield
loaded.. 28

3.2 Structure of the Microcosm cluster... 29

3.3 System architecture... 30

3.4 Data structure log_buffer_t definition .. 33

3.5 Data structure PROGRAMProfile_t definition... 34

3.6 Data structure PROGRAMMonitoring_t definition 36

4.1 Comparison of convergence speed using simple sigmoid function and the

standard sigmoid function... 48

4.2 Program behavior represented in pattern space .. 54

4.3 Distribution of anomalies in the first process of the ring program under the
RingFile attack .. 59

4.4 ROC curve of pure anomaly detection with different online and offline trace

classification methods with the ring program dataset............................... 60

4.5 ROC curve of pure anomaly detection with different online and offline trace
classification methods with the LU factorization dataset 61

4.6 ROC curve for pure anomaly detection with the sendmail dataset................. 62

4.7 ROC curve of IPB with different online methods with the ring dataset 63

vii

FIGURE Page

4.8 ROC curve of IPB detection with different online and offline trace
classification methods with the LU factorization dataset 64

4.9 ROC curve for IPB with the sendmail dataset .. 65

4.10 ROC curve for comparison of anomaly and IPB data generation methods

using burst counter with the sendmail dataset .. 66

4.11 Latency of MPI send tested with MPBench ... 68

4.12 Performance of MPI reduce tested with MPBench... 69

4.13 Performance of MPI broadcast tested with MPBench.................................... 70

1

Chapter I

Introduction

With the wide use of computers, the emergence of electronic commerce, and the

rapid growth of the Internet, computer security has become more and more important.

Many different techniques and tools have been designed to enforce computer security.

They fall into three general categories, prevention (firewall, cryptography, etc.), detection

(IDS, Tripwire, etc.), and reaction (disk backup, automatically changing firewall policy).

Intrusion detection is an essential and critical component of modern computer

systems. One of the reasons is that it is not technically feasible to build a system without

any vulnerability [9]. It is also very difficult to test the security capabilities of a system

since it is almost impossible to anticipate all intrusion patterns. In addition, attackers

sometimes use completely unknown patterns that are unexpected and difficult to detect.

Intrusions can also originate from authorized system users who choose to abuse their

access rights and circumvent protection mechanisms [9].

Jain and Sekar [25] list several methods that an intruder can use to implement an

attack.

• Exploit software errors in privileged programs to gain root privilege.

• Exploit vulnerabilities in the system configuration to access confidential data.

2

• Rely on a legitimate system user to download and run a Trojan horse program that

inflicts damage.

Many techniques have been developed over the past several years to protect

against malicious attacks. These techniques use audit data such as TCP/IP packet data,

TCP/IP connection data, statistical data about CPU usage, number of processes a user

created, or the bash command log of users. Recently some researchers have tried to find

more resources that can be used to detect intrusions, including “the number of references

to particular memory locations, the time spent executing different parts of a program, the

frequency and quantity of communication among nodes of a multiprocessor system, and

I/O resource usage” [33]. Moreover, Forrest and Hofmeyr [15] used sequences of system

calls invoked during execution of a program to build normal profiles for privileged

programs. Their techniques are based on the assumption that a system or a program under

attack will exhibit changes in behavior and that these changes can be observed by looking

at the sequences of system calls used by these processes. Other researchers [1, 25] have

also shown that the damage caused by an attack can ultimately be inflicted via system

calls. “It is thus possible to identify (and prevent) damage if we can monitor every system

call made by every process, and launch actions to preempt any damage, e.g., abort the

system call, change its operands (e.g., open a different file from one that is specified) or

even terminate the process” [25].

Process-based intrusion detection has become the focus of recent intrusion

detection research, although user-based and connection-based intrusion detection

continues to have an important role in intrusion detection techniques [20]. Process-based

3

monitoring intrusion detection tools analyze the behavior of executing processes to detect

possible intrusive or misused activity. “The premise of process monitoring for intrusion

detection is that most computer security violations are made possible by misusing

programs” [19]. Based on the assumption that a program’s behavior will differ from its

normal usage if a program is misused, intrusion detection can be applied by observing the

behavior of the program. A compact representation of the behavior of a program must be

developed to effectively distinguish the normal and abnormal behavior. “Two possible

approaches to monitoring process behavior are: instrument programs to capture their

internal states or monitoring the operating system to capture external system calls made

by a program” [19]. The second is the method used by Forrest and Hofmeyr [15].

Forrest and Hofmeyr [15] demonstrated that the representation of a program’s

behavior using sequences of system calls provides a powerful approach for detecting

intrusions. This thesis extends their idea to the detector of anomalies in a cluster

environment. A new real-time intrusion detection prototype system architecture is

presented and the ability of a neural network to analyze system call data is explored and

different methods to generate artificial anomaly data for training are compared. The

remainder of this chapter explains the motivation for this work and summarizes the

contributions of this thesis. Finally, an outline of subsequent chapters is presented.

1.1 Motivation

As computer systems have become increasingly complex, they have also become

more unpredictable and unreliable. Today dozens of programs are run on any given

4

computer. This situation becomes worse in a cluster environment where it is difficult to

correctly configure a cluster environment that involves more and more software

participation. Each of the software components may have its own vulnerability. New

vulnerabilities are found almost every day on most major computer platforms.

Configuration errors can prevent components from working together correctly.

Moreover, network failure and CPU misuse may lead an entire system into abnormal

behavior. Many monitoring tools have already been designed to help system

administrators identify system failures. However, with the increasing size of clusters, it is

difficult for the administrator to monitor all of the hosts. Therefore, we need a tool to

automatically detect abnormal behavior of the system.

1.2 Contributions

In Somayaji’s work [39], he presented a method for learning program behavior by

analysis of system calls and demonstrated that this method is capable of detecting buffer

overflows, Trojan horse code, and kernel flaws. The work described in this thesis extends

Somayaji’s work by using a different method to collect the system call log and by using

neural networks to learn a normal profile for a program from the system call traces. The

method has also been ported to a cluster environment and its capability to detect unique

attacks on MPI programs is demonstrated. A new method for generating artificial

anomalies is presented and its effectiveness in improving the performance of the neural

network classifier is shown. Several methods for monitoring the alarm level of a program

trace are also compared.

5

System calls provide a rich source of information about the behavior of a

program. In this thesis, we demonstrate the capability to detect unique attacks on an MPI

program in real-time by using a built-in-kernel neural network to analyze the sequence of

system calls. A prototype system has been built in a Linux cluster in the Department of

Computer Science and Engineering, Mississippi State University. The prototype system

consists of two main components: a data collection and response module (LKM) and a

detection module (neural network).

In SunOS and Solaris, BSM can be used to generate the system call log. But in

other operating systems there are no such tools to collect the system call logs.

Researchers have conducted a lot of work in this area. Some of them change the kernel

source code, while others use debugging mechanisms provided by the operating system

to obtain logs at the user level [25]. In this thesis, we use a loadable kernel module

(LKM) to fulfill this task.

A kernel module is used to collect the system call log. The kernel module is a

loadable kernel module that intercepts system calls to perform pre-call and post-call

processing. Our module generates a system call log and can provide an additional layer of

fine-grained security control. Its key features are that it can be set up to be non-

bypassable since it is in the kernel, and it is easy to install requiring no modification to

the kernel or to the applications that are being monitored.

We use neural networks to build the detection module. The use of neural networks

for constructing classifiers has become popular in recent years. Compared with other

approaches to classifier construction such as template matching, statistical analysis and

6

rule-based decision trees, neural network models typically have the advantages of

relatively low dependence on domain specific knowledge and efficient learning

algorithms available for classifier training [24]. Ghosh, Schwartzbard, and Schatz have

shown that neural networks can be used to analyze sequences of system calls [20]. We

show that by using attack patterns derived from known attacks, the performance of the

classifier can be improved without losing the capability to detect novel attacks.

A cluster is a group of workstations in which each node has its own operating

system and cooperates with other nodes by communicating on a high speed or normal

TCP/IP network. A cluster faces the same problems of susceptibilities to attack and

system failure as traditional systems. We implemented our prototype system in a cluster

environment and demonstrated its ability to detect attacks on MPI programs. Since our

method is based on learning a program’s normal behavior, this system is also able to

detect abnormal behavior caused by system errors, hardware failures or program misuse.

1.3 Overview

The goal of this thesis is to demonstrate effective methods that can be used to

create a real-time intrusion detection system in a cluster environment. A prototype system

called pShield has been designed and implemented to demonstrate the capability of our

methods. The remainder of this thesis proceeds as follows. Chapter 2 introduces the work

that other researchers have done in this area. Chapter 3 gives the high level design of our

system. The system architecture and important data structures are also described. Chapter

4 describes different methods used in building and training the detection module and

7

evaluates the system’s performance. Different trace classification methods are described

and compared. A new algorithm to generate artificial anomalies is introduced and

compared with other methods. The overhead added to the operating system by pShield is

also evaluated. Chapter 5 summarizes our work, analyzes its strengths and shortcomings,

and presents ideas for future work.

8

Chapter II

Literature Review

Using sequences of system calls as the data source for an intrusion detection

system has been shown to be a good way to detect many attacks. This method can detect

buffer overflows, format string attacks, Trojan horse programs, and symbolic link attacks

[26]. A great deal of work has been done in this area since it was first introduced by

Stephanie Forrest and her colleagues [15]. Researchers have used different methods to

obtain the system call log from the operating system and different algorithms to analyze

the data. Markov chain models were shown to yield high accuracy but training was

reported to require days [43]. The Stide algorithm is fast and its performance is as good

as other more complicated learning algorithms [15]. The Ripper, a rule learning method,

provides a good tradeoff in accuracy and efficiency [28]. A number of different IDS

models have been used. Some perform misuse detection while others do anomaly

detection. Different models have different characteristics.

2.1 Intrusion detection

Intrusion detection can be defined as the detection of outside intruders “who are

using a computer system without authorization” and inside intruders “who have

9

legitimate access to the system but are abusing their privileges” [32]. Intrusion detection

systems are usually built to identify unauthorized behaviors of outside or inside intruders

and to enforce the security policy of computer systems.

Intrusion detection systems can be classified in several ways. One classification

divides the systems into host-based intrusion detection systems and network-based

intrusion detection systems. The main difference between these two types of systems is

that they deal with different data sources. In host-based intrusion detection systems, the

audit data includes information such as I/O activity, CPU usage of a program, CPU usage

of a user session, bash commands used by a user, and resources used by a program

(signal, pipe, memory etc.). Network-based intrusion detection systems process TCP/IP

audit data including TCP/IP header data and TCP/IP packet content data. IDSs can also

be classified as misuse detection or anomaly detection systems, based on their data

analysis models. Misuse detection is based on the knowledge of system vulnerabilities

and known attack patterns, while anomaly detection assumes that an intrusion will always

reflect some deviations from normal patterns. The advantages of misuse detection are the

potential for low false alarm rates, and the information they are able to impart to a system

security officer about a detected attack. Such information is often encoded in the rules or

patterns central to the functionality of such systems. However, misuse detection has

several disadvantages. Since the set of anomalous patterns is based on known attacks,

new attacks cannot be discovered and patterns corresponding to the attack must be

manually constructed. Moreover, a sophisticated attacker can easily fool a misuse

detection system by using a stealthy attack [8]. Anomaly detection is an approach to

10

address the shortcomings of misuse detection. The IDS constructs a normal profile for

each object (a user, a session, a program, CPU usage etc). Normal profiles have been

represented by several methods including a rule base [28], a classifier [26] or a finite state

machine [37]. However, most commercial products are misuse intrusion detection

systems, because anomaly detection often gives many false positive alarms and in the real

world an administrator cannot accept a high false positive alarm rate. Recent commercial

products tend to combine misuse and anomaly detection to obtain better performance.

In order to obtain acceptable performance, an IDS requires not only a good

analysis algorithm, but also high quality data for training and evaluation. A learning

phase is required for anomaly detection. A good data set can be used to generate an

accurate normal profile, which leads to good performance. In misuse detection, high

quality data can give more detailed information about normal and intrusive behavior and

can help the security expert define useful intrusion patterns. Two well-known data

repositories for intrusion detection exist. The DARPA-MIT (http://ideval.ll.mit.edu) data

repository includes Tcpdump, BSM, and other system logs which were collected over

long period for a real network. The goal of the DARPA-MIT project was to provide a

good data source for evaluating different intrusion detection systems [8]. Another dataset

is from the University of New Mexico (http://www.cs.unm.edu/immsec/systemcalls.htm)

[43]. This data set includes system call data that contains many intrusions such as buffer

overflow, symbolic link attacks, and Trojan horse programs.

11

2.2 System call analysis

On UNIX and UNIX-like systems, user programs do not have direct access to

hardware resources; instead, one program called the kernel runs with full access to the

hardware, and regular programs must ask the kernel to perform tasks on their behalf [1].

The system call interface is the only way that a user space program can communicate

with the kernel. “Intrusion detection and prevention could be achieved if the OS could

monitor every system call made by every process, and prevent malicious or unexpected

invocations of system calls from being completed” [1]. A normal profile for each

application can be built regarding the usage of system calls. An immediate detection and

response system can potentially be implemented by having the operating system monitor

the system calls invoked during the execution of the application. This could allow

prevention to be conducted before the real damage occurs. Two approaches for confining

the system call interface have been described in the literature. A description of these two

methods follows.

2.2.1 Access control database

Bernaschi, Gabrielli and Mancini [1] created a security-enhanced operating

system called REMUS. The basic idea is to add more access control capability into the

original OS. They present a complete classification of the UNIX system calls according

to their level of threat. Various threats including user-to-root and denial of service attacks

are considered during their system call analysis. The focus of their considerations refers

mainly to threats by which an intruder tries to gain direct access to the system as a

12

privileged user. In their system, they have defined an access control database. The

programs are restricted by the rules in the database. The rules define the constraints on

the arguments used by system calls. Bernaschi, Gabrielli and Mancini list the following

key issues addressed by their work [1].

1. Provide a complete analysis of the critical system calls from the security

viewpoint;

2. Detect illegal invocation of critical system calls before they complete so as to

prevent attackers from hijacking control of any privileged process;

3. Allow an efficient check of the argument values of the system calls;

4. Implement a secure OS by means of lightweight extensions of the kernel, in

particular without requiring changes in existing data structures and

algorithms; and

5. Support, thanks to the immediate detection of possible attacks, other

extensions of the OS to confine and tolerate intrusive processes running

together with legitimate processes. This could allow a safe analysis of the

attack while the intrusion is in progress.

The difficulty with this method is defining a good access control database.

2.2.2 Sequence analysis

Instead of looking at the arguments of system calls, Forrest, et al. [15] use the

sequence order of system calls to detect anomalies. They ignore everything about the

system calls except for their type and relative order.

Consider the following short trace of one run of a program,

13

open, read, write, close, close.

To learn the profile of this program, Forrest, et al [15] divide this trace into small

sequences with a user defined window size. A sliding window is used to slide along the

whole trace producing short sequences. For example, if we define a window size of three,

the trace above generates the sequences shown in Table 2.1.

After the small sequences are generated, different learning algorithms can be used

to create a normal profile for the program. An overview of artificial intelligence methods

that have been used in system call analysis is given in next section.

Table 2.1 Sequences of system calls

open read write
read write close
write close close

2.3 Artificial intelligence in system call analysis

Many researchers have used artificial intelligence algorithms to analyze system

call logs and build classifiers using these algorithms. An overview of different

approaches is given below.

2.3.1 Enumerating sequences

Forrest, Hofmeyr, Somayaji, and Longstaff first reported system call logs as an

intrusion detection data source in 1996 [15]. In their paper, they gave a method that

depends only on enumerating sequences formed by normal traces and subsequently

14

monitoring for unknown patterns. Two different methods of enumeration were tried:

lookahead pairs and contiguous sequences. They showed that contiguous sequences of

some fixed length have better discrimination than lookahead pairs.

In the contiguous sequences method, the unique contiguous sequences extracted

from a trace of an application based on a predetermined fixed window size are used to

build the normal profile for this application. The sequences are stored as trees to save

space and to speed up comparisons. Building such a database requires only a single pass

through the data. At classification time, sequences from the test trace are compared to

those in the normal database. Any sequence not found in the database is called a

mismatch. Any individual mismatch could indicate anomalous behavior, or it could be a

sequence that was not included in the normal training data [23].

The learning process of this method is very fast. It just creates a new path in the

tree when it finds a new sequence. The learning process needs only one pass through the

data. During classification, sequences are compared with the patterns in the tree. When

the sequence window is small, this process is very fast; therefore it can be used for real-

time detection. The disadvantage of enumerating sequences is its lack of generalization.

2.3.2 Rule learning systems

RIPPER (Repeated Incremental Pruning to Produce Error Reduction) is a rule

learning system developed by William Cohen [4]. RIPPER extracts rules from training

data that are first order hypotheses. For example, class A :- a1 = x, a2 = y (a1, a2 are

attributes in the training set) means class A is chosen if attribute a1 is x and a2 is y.

15

Lee and Stolfo adapted RIPPER to intrusion detection [28]. Like enumerating

sequences, this method also divides the long trace into small sequences according to a

user specified window k. The advantage of RIPPER is it is able to generalize the system

call sequence information in the training set to a set of concise and accurate rules.

Warrender et al. [43] compared several methods of analysis sequence of system calls.

They found that the rule sets learned by RIPPER contained 200 to 280 rules with 2 or 3

attributes per rule compared to a set of about 1500 entries generated when using

enumerating sequences [28].

2.3.3 Hidden Markov Model

“A Hidden Markov Model (HMM) describes a doubly stochastic process. The

states of an HMM represent some unobservable condition of the system being modeled.

In each state, there is a certain probability of producing any of the observable system

outputs and a separate probability indicating the likely next states” [43]. During learning,

the system constructs a finite state machine with a probability on each edge. During

classification, the HMM detects if a system call in the test trace requires unusual state

transitions and/or symbol outputs.

Warrender, Forrest and Pearlmutter found that a Hidden Markov Model gave

better accuracy on average than the RIPPER or enumerating sequences methods, but the

computational time was very expensive. “Calculations for each trace in each pass through

the training data take O(TS2), where T is the length of the trace and S is the number of

states in the HMM. It often required days to train an HMM” [43].

16

2.3.4 Program specification

Wagner and Dean [42] showed how static analysis might be used to automatically

derive a model of application behavior. The idea is to perform static analysis on the

source code of the program and use some specification language to model the program’s

normal behavior. This method can accurately capture the characteristics of a program. It

not only checks the sequence of calls, but also checks the arguments of these calls. The

result of static analysis is a host-based intrusion detection system with three advantages:

“a high degree of automation, protection against a broad class of attacks based on

corrupted code, and the elimination of false alarms” [42]. However, the authors do not

present any experimental results, so the performance of this method cannot be judged.

2.3.5 Inductive sequential patterns

The Time-based Inductive Machine (TIM) has been proposed by Teng, Chen and

Lu [40] to learn sequential patterns automatically from audit data for real-time anomaly

detection. The original system they designed was not to process system call events, but it

could be easily adapted to this area. The format of the sequential rules inferred from audit

trails by TIM can be illustrated with the following example:

%).10%;90(==→− DCBA This rule is interpreted to mean that if event A is directly

followed by event B, then the next event will be C or D with the probabilities of 90% and

10%, respectively. Then any event sequence that does not match the normal sequential

patterns inductively learned by TIM will be marked as an anomaly.

17

The main advantage of introducing an inductive learning mechanism to anomaly

detection is that sequential patterns can be learned automatically and updated adaptively.

This allows new audit data to be used to train the system to find new normal patterns.

2.3.6 Neural networks

Ghosh, Schwartzbard and Schatz [20] have used neural networks to analyze

system log data. The goal in using neural networks for intrusion detection is to be able to

generalize from incomplete data and to be able to classify online data as being normal or

anomalous. An artificial neural network is composed of simple processing units, or

nodes, and connections between them. The functionality of a neural network is to

correctly map the input to output after training. The authors compared their method with

the Enumerating Sequences method and demonstrated that the neural networks have

better generalization on the data.

2.4 System call capture

All the approaches mentioned above are “based on the following observation

about attacks: regardless of the nature of an attack, damage can ultimately be affected

only via system calls made by processes running on the target system. It is thus possible

to identify (prevent) damage if we can monitor every system call made by every process,

and launch actions to preempt any damage, e.g., abort the system call, change its

operands or even terminate the process” [25]. Several methods can be used to intercept

the system calls in a UNIX system.

18

2.4.1 Library interposition

The library interposition method places a new or different library function

between the application and its reference to a library function. “This technique allows a

programmer to intercept function calls to code located in shared libraries by directing the

dynamic linker to first attempt to reference a function definition in a specified set of

libraries before consulting the normal library search path” [6]. This is useful for testing

new libraries or for inserting debugging code. For a detailed description refer to [6].

On Solaris and Linux, a shared object can be interposed by setting the

LD_PRELOAD environment variable before the execution of a program that we want to

be interposed. When a function call is made that is undefined in the application, the

dynamic linker will first check for definitions of this function in the objects listed in the

LD_PRELOAD variable, and then check the usual library search path.

This approach has the benefit of being easy to implement. An important drawback

of this approach is that these wrapper functions can be bypassed. For instance, it is

possible for a program to directly invoke a system call using a lower level mechanism

such as the assembly command INT 0x80 in x86 Linux.

2.4.2 Debug mechanism

Almost all versions of UNIX provide a mechanism for one process to trace and

control the execution of another process and/or access its memory using the function

ptrace(). The ptrace() function allows a parent process to control the execution of a child

process. Its primary use is for the implementation of breakpoint debugging. The child

process behaves normally until it encounters a signal (see signal (5) in man page), at

19

which time it enters a stopped state and its parent is notified via the wait (2) function.

When the child is in the stopped state, its parent can examine and modify its “core

image” using ptrace(). Also, the parent can cause the child either to terminate or

continue, with the possibility of ignoring the signal that caused it to stop (Unix man

page).

Goldberg, et al. [21] and Jain and Sekar [25] used this technique to build their

monitoring program. The disadvantage of this method is that it adds substantial overhead

to the operation of the system. To monitor a process, this method requires two more

passes through the kernel. Another disadvantage is that the monitor is in user space.

Therefore, the function ptrace() cannot access important process specific information

such as the environment variables. These problems arise because ptrace() was designed

for debugging.

2.4.3 Kernel methods

In kernel methods, system call interception is implemented within the operating

system kernel and all of the extension code runs in kernel mode. This approach has been

adopted by several researchers [16, 18, 31]. Extensions that use kernel-level interposition

have a broad range of capabilities. “Extensions can provide security guarantees (for

example, patching security flaws or providing access control lists), modify data

(transparently compressing or encrypting files), re-route events (sending events across the

network for distributed systems extensions), or inspect events and data (tracing, logging)”

[31]. The major advantage of this method is that it cannot be bypassed. All programs

must call the system call interface to access low level functionality implemented by the

20

kernel. Another advantage is that it does not need to change the code of programs. Only

the kernel needs to be changed. The disadvantage is that a security hole in the monitor

program is much more dangerous than in other methods. It can cause the system to crash

or grant root privilege.

There are two different kernel methods:

1. Kernel patching: Kernel patching patches the kernel source code.

Therefore, after patching the user must recompile the kernel. The method

is not flexible, but it cannot be circumvented because the kernel image is

patched and is loaded into memory at the first start up of the system.

2. Loadable Kernel Module: LKMs are used by the Linux kernel to expand

its functionality. An LKM can access all the variables in the kernel and do

whatever kernel patching can do. This method is more flexible because it

does not require changes to the kernel source code. A privileged user can

load it or unload it anytime. The disadvantage is the attacker can install

malicious code in the kernel before the tool is loaded. This can be solved

by adding the tool into a start script.

2.5 Data preprocessing

2.5.1 Data representation

When we train a neural network using sequences of system calls, we must decide

how to encode the data for input to the network. Two possibilities are the following [29]:

21

1. Divide the system call trace into a fixed length window of size k.

Enumerate all observed system call sequences as the encoding based on

the window.

2. Again divide the trace into sequences. But compute the frequency of

occurrence of different system calls in a window as the encoding.

In previous work [29] comparing these two methods, we found that the first

option generally works better.

2.5.2 Artificial anomaly generation

A major difficulty in using machine learning methods for anomaly detection lies

in making the learner discover boundaries between known and unknown classes. In order

to train neural networks, it is necessary to expose them to both normal data and

anomalous data.

Fan et al. [13] have developed a method called distribution-based artificial

anomaly generation. Since the exact decision boundary between the known and

anomalous instances is not known, they assume that the boundary may be very close to

the existing data. “To generate artificial anomalies close to the known data, a useful

heuristic is to randomly change the value of one feature of an example while leaving the

other features unaltered” [13].

 “The training space is divided into different regions. Some regions of known data

in the training space may be sparsely populated. Some may be dense” [13]. To amplify

sparse regions, Fan et al. [13] proportionally generate more artificial anomalies around

sparse regions depending on their density using the algorithm presented in

22

Figure 2.1. Ghosh et al. [20] also generate artificial anomalies for training neural

networks by randomly generating data spread throughout the training space.

Input: D ; Output: 'D
1. let F = set of all features of D
2. let fV = set of unique values of some feature Ff ∈
3. let 'D = φ
4. for each Ff ∈ :

• let maxcountV = the number of occurrences of the most

frequently occurring value in fV

• for each fVv∈

° let countV = the number of occurrences of v in
D

° loop i : maxcountVicountV ≤< :
 let d=a randomly chosen datum Dd ∈
 let fv = the value of feature f for d

 replace fv with a randomly chosen value

fvvvvtsv ≠∧≠ ''' .. to create 'd

 }{' 'dDD ∪←
5. return 'D

Note: The algorithm can be modified to take a factor, n, and produce
Dn × artificial anomalies

Figure 2.1 Distribution-based artificial anomaly generation algorithm (from [13])

2.6 Neural network learning algorithm

Neural networks are weighted directed graphs in which the vertices are artificial

neurons and the edges represent the weighted connections between neuron outputs and

inputs. “Knowledge is acquired by the network through a learning process. Interneuron

connection strengths known as synaptic weights are used to store the knowledge” [22].

Weights are the primary means of long-term storage in neural networks and a learning

23

phase is used to update the weights and tailor the knowledge stored in the network. “A

neural network derives its computing power through its massively parallel distributed

structure and its ability to learn and therefore generalize. Generalization refers to the

neural network producing reasonable outputs for inputs not encountered during training

(learning)” [22]. This property is useful for building intrusion detection systems because

it may enable a system to detect unknown attacks while maintaining a low false positive

rate.

Back-propagation is probably the most widely used algorithm for generating

classifiers and it is often used for benchmarking other learning algorithms [22]. A back-

propagation neural network is a feed-forward multi-layer neural network. It has two

stages: a forward pass and a backward pass. The forward pass involves presenting a

sample input to the network and letting activations flow until they reach the output layer.

The activation function can be any function. The linear sum, sigmoid function and

Gaussian function are three commonly used functions. During the backward pass, the

network’s actual output (from the forward pass) is compared with the target output and

error estimates are computed for the output units. The weights connected to the output

units can be adjusted in order to reduce those errors. We can then use the error estimates

of the output units to derive error estimates for the units in the hidden layers. Finally,

errors are propagated back to the connections stemming from the input units. A detailed

description of the back-propagation algorithm can be found in [10, 22].

Several key parameters used during construction of back-propagation networks

are the learning rate, number of epochs, momentum and the number of hidden nodes.

24

Different parameter values will cause different performance. In standard back-

propagation, a learning rate that is too low will make the network learn very slowly. A

learning rate that is too high will make the weights and objective function diverge, so

there is no learning at all. In other words, a high learning rate will cause the network to

jump around the desired solution and never converge to it. The number of hidden nodes

will also affect the capability of the back-propagation network. Too few hidden nodes

make the network unable to find the correct function within the training set. Too many

hidden nodes make the network learn much more slowly and limit its ability to

generalize. The back-propagation learning algorithm may also need regularization to

prevent overfitting. Overfitting refers to the problem that occurs when a classifier

memorizes the training instances rather than generalizing the mapping from input to

outputs. Many regularization methods have been developed to prevent overfitting

including early stopping and weight decay [24].

25

Chapter III

Prototype System Architecture and Implementation

In this thesis, we demonstrate the feasibility of detecting unique attacks in real-

time in a cluster environment using an intrusion detection system based on behavior

analysis of programs. A prototype system called pShield has been implemented based on

the proposed architecture and its ability to detect attacks on MPI programs is analyzed.

Since analysis of sequences of system calls has been shown by others to be an effective

approach for intrusion detection, we extend this method into the cluster environment. The

prototype system has been implemented as a loadable kernel module in Linux and can

easily be ported to other Unix-like system. In this chapter we will introduce the

architecture of the prototype system and describe how it has been implemented in Linux.

The first section introduces the basic functionality of the prototype and discusses why a

kernel implementation was chosen. The architecture of the prototype system is described

in Section 3.2. Section 3.3 introduces important data structures used in pShield.

3.1 Introduction to the prototype system

Much of recent research in intrusion detection concerns network-based detection.

However, network-based intrusion detection systems have difficulty detecting some kinds

of attacks that are based on exploitation of security holes in programs. There are two

26

reasons for using host-based IDSs in addition to network-based IDSs. First, efforts to

capture application layer exploits often require substantial overhead for the NIDSs. In a

fully saturated network, the NIDSs will lose some packets and the performance will

degrade. Second, some attacks will not have a signature in the network packets and

cannot be detected by NIDSs. Therefore we need host-based IDSs to detect and respond

to such attacks.

Other researchers [15, 19, 20, 23, 26, 28, 37, 38, 39, 43] have already shown that

system call analysis can be effectively used to detect attacks such as buffer overflow,

Trojan horse, etc. In this thesis, we describe the design of a real-time host-based IDS for

the MPI environment which can help an administrator detect both intrusive and abnormal

program behavior. The system has two fundamental components: a mechanism that

captures system calls and an analysis engine. Both reside in kernel space. A user space

program has been created to collect the system call log for training the analysis module.

To use the system, a system call log for the program to be monitored must be collected. A

neural network analysis module is then trained using this log. Finally, the trained module

is loaded into the kernel to monitor the program. Our system supports monitoring of

several programs at the same time and programs can be added and removed from the

monitoring list at run-time without deleting and reloading the system.

The most important parts of the prototype system reside in the kernel space. In

section 2.4, different methods for capturing the system call log were discussed. The

strace program is a user space utility for debugging that uses the ptrace() system call to

monitor the system calls of another process. However, other research groups have

27

reported that strace often causes security-critical programs like sendmail to crash, and

when it worked, strace would slow down monitored programs by 50% or more [39].

Interposition of the Libc library is an alternative way to capture the system call log.

Somayaji [39] tried this method and showed that it could not detect system calls made by

buffer overflow attacks since the “shell code” of such attacks typically makes system

calls without using library routines. Therefore the kernel method was determined to be

best choice with regard to the performance and effectiveness. Two kernel methods are

available. One is kernel patching and the other is LKM. LKM was chosen because it is

more flexible than kernel patching. You can easily load and unload the module at any

time without recompilation of the kernel. Figure 3.1 compares the invocation of a system

call in Linux before and after our pShield system is loaded. Our system adds one more

function call than kernel patching. In Chapter 4, results are presented to demonstrate that

although pShield adds one more function call, its impact on performance is acceptable.

3.2 System architecture

We have implemented pShield on a cluster (known as Microcosm) in the

Computer Science and Engineering Department at Mississippi State University. Figure

3.2 shows the structure of this cluster. A sensor was installed on each node and all

sensors detect intrusions independently. The final results are combined at the head node.

The operating system installed on each node is RedHat 7.1 Linux. The code of pShield

was compiled with the 2.4.2 kernel source tree. The MPI environment used in all

28

experiments was MPI/Pro 1.5. The head node is a 4 CPU SMP computer and the compute

nodes are dual CPU SMP computers.

(a) Invoking a system call in original Linux (from [2])

(b) Invoking a system call in Linux with pShield

Figure 3.1 A comparison of a system call invocation (a) without and (b) with pShield
loaded

Kernel Mode

system_call:
 …
 sys_xyz()
 …
ret_from_sys_call:
 …
 iret

sys_xyz() {
…
}

…
xyz()

…

 xyz() {
…
int 0x80
…
}

User Mode

System call
invocation in
application
program

Wrapper routine
in libc standard

library

System call
handler

System call
service routine

Kernel Mode

system_call:
 …
 sys_xyz()
 …
ret_from_sys_call:
 …
 iret

sys_xyz()
{
…
}

…
xyz()

…

 xyz() {
…
int
0x80
…

User Mode

System call
invocation in
application
program

Wrapper routine
in libc standard

library

System call
handler

System call
service routine

Wrapper_xyz(){
…
orig_xyz()
…
}

Our wrapper
function

29

Figure 3.2 Structure of the Microcosm cluster

Figure 3.3 illustrates the design of each sensor. The system combines three

components. The first component intercepts the original system call interface. Whenever

a user application calls the system call interface, it actually invokes the wrapper function.

The wrapper function forwards the system call information to the analysis module.

Depending on the result from the analysis module, control flow can be transferred to the

original system call or an appropriate response can be generated prior to the return.

Different responses can be generated depending on the results of the analysis module.

30

Currently we just generate an alarm when the analysis module detects an intrusion. More

complicated responses can be easily implemented. From Figure 3.1 (b) we can see that

code can be inserted before and after the execution of the real system call. It is possible to

prevent any possible side effects of system calls that intruders currently exploit for their

attacks by means of checks made by the OS kernel before the system call is completed.

We can delay or abort the system call or even kill the intrusive process.

Figure 3.3 System architecture

The analysis module is composed of a set of neural networks for the programs

being monitored. Each program profile is composed of a trained neural network, a sliding

window size, and a threshold for identifying the anomalies. The analysis module receives

the sequences from the interception module and determines whether each is normal or

control flow data flow

user code

User

Kernel
Our wrapper system call

Log buffer

Analysis
Module

ls lpr

sendmail mpiring
.
.
.
.

.

.

.

.

real system call

Device

Kernel

getlog

31

anomalous. If the user wants to obtain a system call log for training, a user space program

is provided that reads system call information from a device we have created and writes

the system call log to a disk file. We have chosen to use a device rather than directly

writing the log file to disk for two reasons. First, the overhead associated with writing to

disk is quite high. Second, it might be possible for an intruder to conduct a denial of

service attack by generating a long log that consumes all available disk space.

3.2.1 Data collection module

A system call is implemented in the Linux kernel. When a program executes a

system call, arguments are packaged and handed to the kernel, which assumes execution

of the program until the call completes. A listing of system calls for a specific version of

the Linux kernel can be found at /usr/include/asm/unistd.h. The system call number is an

index in an array of a kernel structure called sys_call_table[]. This structure maps the

system call numbers to the needed service function. In Linux 2.4.* and earlier kernels,

sys_call_table is defined as a global variable and can be accessed by any kernel module.

We can intercept the system call by modifying the sys_call_table and add processing

before and after the execution of the original system call.

A ring buffer is maintained by this component. The data collection module feeds

the sequences of system calls into this buffer. If the data in this buffer exceeds the buffer

size, new data will overwrite old data.

32

3.2.2 Analysis module

The analysis module combines a group of neural networks. Each neural network

records the normal behavior of a program. This module receives system call information

used by a program from the data collection module and analyzes it within the execution

context of this program.

3.2.3 Log generating program (getlog)

The user space program getlog is used to read the log from a ring buffer into a log

file. Whenever getlog reads a data item from the ring buffer, this data item is removed

from the buffer so that the data collection module is able to add another log item to the

buffer. The user can also use this program to update the profile in the kernel or to update

the system configuration. A new device has also been created to enable communication

between a user program and the kernel.

3.3 Data structures

In the Linux kernel, processes and kernel-level threads are both implemented in

terms of tasks. A task is a kernel-schedulable thread of control and is represented

internally by a task_struct structure. If a task has its own virtual address space, it is a

complete, single-threaded process. If a task shares its address space with another task, it

is one thread of a multi-threaded process [2]. Like the Linux kernel, our system does not

distinguish between processes and threads and instead treats running programs as tasks.

Our system has three fundamental data structures used for storing for the log, the

tasks and the profile. The structure log_buffer_t is a ring buffer that the system uses to

33

store the log data. The structure PROGRAMProfile_t contains the data for each

executable profile. The structure PROGRAMMonitoring_t maintains the tasks that are

currently being monitored. Together, these hold the data needed for our system to

monitor programs and detect intrusions.

typedef struct m_entry {
 unsigned int pid;
 unsigned int syscallID;
 char
processImageName[FILENAMEMAXLENGTH];
} log_entry_t;

typedef struct m_log_buffer {
 unsigned int count;
 unsigned int numReferences;
 unsigned int head;
 unsigned int tail;
 log_entry_t logQueue[RINGBUFFERSIZE];
 spinlock_t devLock;
} log_buffer_t;

Figure 3.4 Data structure log_buffer_t definition

The ring buffer is shared by all monitored processes. Linux is a nonpreemptive

kernel. This means that Linux cannot arbitrarily interleave execution flows while they are

in privileged (kernel) mode. In a single processor computer, there is only one process

running at a time and the running of a system call cannot be interrupted or interleaved

with other kernel programs. Therefore we can run and modify data structures without fear

of being interrupted or having another thread alter those data structures. But in an SMP

computer, two processes in two different processors may access the buffer at the same

time which will cause concurrency problems. Therefore, we define a spinlock to

constrain the access to the buffer so that only one process can access the buffer at a time.

34

typedef struct NNLayer {
 int numOfNodes;
 double **weightMatrix;
 double *out;
} NNLayer_t;

typedef struct BPNNClassifier {
 int numOfLayers;
 NNLayer_t *allLayers;
} BPNNClassifier_t;

typedef struct PROGRAMProfile {
 char comm[FILENAMEMAXLENGTH];
 int windowSize;
 int threshold;
 BPNNClassifier_t *classifier;
 struct PROGRAMProfile *nextProfile;
} PROGRAMProfile_t;

Figure 3.5 Data structure PROGRAMProfile_t definition

Multiple processes may run the same executable, e.g., there may be several

running instances of bash and vi in the system at the same time. Our system maintains

one PROGRAMProfile_t structure per executable and these are shared among the

processes running that executable. Thus, the PROGRAMMonitoring for two processes

running vi will both point to the same profile. Each of the profiles contains a neural

network as its classifier and defines the sliding window size and the threshold used to

identify abnormal behavior. We use the executable file name to distinguish the profile

structure. The structure BPNNClassifier is the back-propagation neural network. In cases

where some different executables use the same neural network as their classifier, the

PROGRAMProfile will point to the same classifier. For example, pico and vi, two similar

text editors, may have the same neural network for their profile.

35

When monitoring a process, we count the anomalous sequences generated by this

process. In a Unix-like operating system, fork() creates a new process with a different

PID and the same executable image name. When a process calls execve(), a new process

with the same PID but a different executable name is created. Whenever a new process is

encountered whose executable name is in the name list that we are monitoring, we create

a new PROGRAMMonitoring_t record and insert it into the monitoring program list.

When a process’s PID is in the monitoring program list, we keep using the

PROGRAMMonitoring structure to test it. When a process calls execve(), the situation is

much more complicated. The process has a PROGRAMMonitoring record in the list, but

the name has changed. The problem encountered now is to determine if we should

change the profile for this process since the executable name has changed. We manage

this with two solutions. First, if the program we are monitoring is a program that seldom

calls execve() and the neural network has been trained with such execve() traces, we view

this run as part of the run of the calling process. Therefore we keep using the calling

process profile. For programs that often use execve() and for which the traces were not

included in the training data, we change the profile for this process. In this case, if no

profile matches this executable name, pShield generates an alarm to notify the

administrator that a process is trying to execute an insecure program. In a buffer overflow

attack, execve() is usually used to spawn a new sh with a higher privilege. With our two

solutions, this attack can be detected. Using the first solution, the behavior of this new sh

will be much different than that of the program profile. Using the second solution,

pShield will notify the administrator that an insecure program was executed.

36

typedef struct PROGRAMMonitoring {
 unsigned int pid;
 PROGRAMProfile_t *profile;
 int *currentSeq;
 int *tmpSeq;
 int currentPosition;
 unsigned long totalCalls;
 int totalAnomaly;
 int contAnomaly;
 int bucketAnomaly;
 struct PROGRAMMonitoring *nextProgram;
} PROGRAMMonitoring_t;

typedef struct m_program_list {
 unsigned int numOfProgram;
 //contain the programs' name that we want observe
 char **nameList;
 char **profileList;
} program_list_t;

Figure 3.6 Data structure PROGRAMMonitoring_t definition

37

Chapter IV

Experiments and Results

Our prototype system is a host-based intrusion detection system in Linux. In order

to demonstrate the effectiveness of our approach we must show that it can effectively

detect intrusions with an acceptable performance penalty. Several methods to improve the

classifier’s accuracy are introduced and experimental results are presented. In section 4.1,

we will introduce our experimental environment and attacks on MPI programs that have

been monitored. A description of the datasets used in our experiments is presented. Our

implementation of a neural network classifier for intrusion detection is described in

section 4.2. In section 4.3, we describe different ways to conduct online and offline

detection. In order to train a neural network, we need to expose the network to a training

space that contains both normal and anomalous instances. Section 4.4 presents several

methods we have used to enhance the training space by generating artificial anomalous

data. The results of all experiments are presented and discussed in section 4.5. In section

4.6, the performance penalty added to the operating system by pShield is measured and

discussed.

4.1 Introduction to experiments

Our prototype system is built in Linux with kernel version 2.4.2. Experiments

38

were conducted on the cluster illustrated in Figure 3.2. The system design was described

in Chapter 3. We installed a sensor on each node of the cluster. Each of the sensors

detects intrusions independently. In this thesis, the capability to detect intrusions in a

cluster environment is demonstrated by monitoring MPI programs running under normal

conditions and under attack.

4.1.1 Attack Scenarios on MPI Programs

In our experiments, we have implemented attacks on MPI programs and shown

that our system can effectively detect such attacks. Several attack scenarios for the MPI

environment were designed by Miguel Torres (another graduate student at MSU and a

member of the CCSR). The attacks used in our experiments can be divided into two

major types: daemon attacks and library interposition attacks.

1. Daemon attack: Daemon processes are spawned and left running in memory

in the background after an MPI program terminates normally.

A cluster environment provides rich computational resources with very low

cost. The daemon attack we have implemented simulates an attack that allows

unauthorized users to steal computational resources from the cluster. This is a

Trojan horse-like attack. An attack changes the program executable file and

steals computational resources in the cluster. In our experiments, we have run

two instances of this attack on the ring program described in section 4.1.3,

ringFile and ringFork. Ringfile spawns a daemon, consumes system memory,

and writes data to a file. This simulates a computational procedure in which

computation is done in background and saved to a file for later reference by

39

the attacker. RingFork is a denial-of-service attack that keeps spawning new

processes in the system and consumes all the memory in the system. This

attack will cause the machine to crash some time after the MPI program

terminates normally.

2. Library interposition attack: The MPI shared library is intercepted by a new

library that contains malicious code. Attacks used in our experiments are the

following:

• MPI_Init and MPI_Finalize: These functions are in charge of starting and

terminating MPI library usage. The attack we have implemented randomly

generates a daemon process that is left running in the background of the

computer memory after the program finishes its normal execution.

• MPI_Comm_rank: This MPI function returns the rank of a process in the

communicator of which it is a member. A communicator is a collection of

processes that can send messages to each other. The implemented attack

makes a call to the MPI_Comm_size function that returns the size of the

communicator. Then the process generates a random number between 0

and the size of the communicator and returns that value as the rank rather

than the correct one. This has the effect of confusing the identities of the

processes.

• MPI_Recv and MPI_Send: These MPI functions receive and send a

memory block that corresponds to a structure of an MPI data type between

40

processes. These interposer attacks change the actual information

contained in the memory block that is transferred.

• MPI_Reduce: This MPI function is a collective communication operation,

in which all the processes in a communicator contribute data that are

combined using a binary operation. This attack changes the kind of

operator used in the binary operation to another valid binary operator.

4.1.2 Description of Datasets

Three sets of data were used in our experiments. One dataset is the Sendmail data

from the University of New Mexico archive. This dataset has been widely used by other

research groups conducting system call analysis research [15, 23, 28, 38, 43]. Two

additional datasets, MPI ring and LU factorization, were collected in the Microcosm

cluster environment in the Department of Computer Science and Engineering at

Mississippi State University. These two datasets were used to test the capability of our

methods to detect intrusions in a cluster environment.

4.1.2.1 Sendmail dataset

We have used the sendmail data from UNM in our experiments to test the

effectiveness of neural networks as intrusion detection classifiers. Synthetic data for

sendmail was collected at UNM on Sun SPARCstations running unpatched SunOS 4.1.1

and 4.1.4 with the included sendmail [43]. The dataset can be found at

http://www.cs.unm.edu/immsec/systemcalls.htm. There are a total of 640 processes in the

normal data. This dataset contains five kinds of intrusion data that include a total of 16

traces of attack instances. The attacks that appear in the data are the following [43]:

41

• sunsendmailcp intrusion: The sunsendmailcp (sscp) script uses a special

command line option to cause sendmail to append an email message to a

file. By using this script on a file such as /.rhosts, a local user may obtain

root access.

8LGM Advisory: search for "[8lgm]-Advisory-16.UNIX.sendmail-6-Dec-

1994".

3 traces.

• decode intrusion: In older sendmail installations, the alias database contains

an entry called "decode," which resolves to uudecode, a Unix program that

converts a binary file encoded in plain text into its original form and name.

The uudecode program respects absolute filenames, so if a file "bar.uu" says

that the original file is "/home/foo/.rhosts" then when uudecode is given

"bar.uu", it will attempt to create foo's .rhosts file. The sendmail program

will generally run uudecode as the semi-privileged user daemon, so email

sent to decode cannot overwrite any file on the system; however, if the

target file happens to be world-writable, the decode alias entry allows these

files to be modified by a remote user.

2 traces.

• error condition - forwarding loops: A local forwarding loop occurs in

sendmail when a set of $HOME/.forward files form a logical circle.

5 traces.

42

• syslogd intrusion: The syslogd attack uses the syslog interface to overflow a

buffer in sendmail. A message is sent to the sendmail on the victim machine,

causing it to log a very long, specially created error message. The log entry

overflows a buffer in sendmail, replacing part of sendmail's running image

with the attacker's machine code. The new code is then executed, causing

the standard I/O of a root-owned shell to be attached to a port. The attacker

may then attach to this port at his or her leisure. This attack can be run either

locally or remotely; UNM has tested both modes. They also varied the

number of commands issued as root after a successful attack.

4 traces.

• unsuccessful intrusions - sm5x, sm565a: These are attack scripts for which

SunOS 4.1.4 has patches.

2 traces.

4.1.2.2 MPI ring program

The first test program for the cluster environment is the MPI ring program. There

are two major arguments for this program: the data size for each data transfer and the

number of send operations for each loop. The program was executed several times using

different values for the parameters and data was collected in each node. For each

execution of the program, four machines were used. Each program trace collected from a

single machine can be viewed as a normal run of the MPI program. We implemented the

daemon attack on this ring program and collected data for the ringFile attack with various

sizes of data written to disk and different numbers of write operations. We also ran the

43

MPI ring program with the malicious library attack under different conditions.

Sometimes, the attack caused the MPI program to crash and freeze because the changes

in the communication rank and size prevented MPI processes from communicating with

each other correctly. Table 4.1 gives detailed statistics about the MPI ring dataset.

Table 4.1 Statistical summary of the MPI ring dataset

 Normal ring ringFile ringFork Interpostion Lib
Num Of Runs 13 9 2 5
Num of Traces 85 9 2 20
Num of
Processes

255 45 2056 80

Syscall per Pro.
Min-Max

22-20818 12-18701 5-4039 5-8343

In the ringFile and ringFork attacks, only one of the four machines was chosen to

spawn the daemon process. The three other machines represent normal runs. Therefore,

the total number of normal traces is equal to 85 (13*4+(9+2)*3). Each trace of a normal

ring program contains several processes. Some are used for communication and others do

the computational work. This depends on the design of the MPI library. RingFork

generates many processes that do little work. Most of these processes have fewer than 10

system calls in their trace. Since a window size of 10 was used during our experiments, it

is impossible to classify these traces. However, as shown in section 4.5, the attack can

still be detected from the main process which spawns the daemon process.

4.1.2.3 LU factorization

MPI ring is too simple to represent real parallel computational work. Therefore,

we have used another more complicated program provided by Yogi Dandass (Department

44

of Computer Science and Engineering at Mississippi State University) in our

experiments. This program uses the LU factorization method to solve systems of linear

equations such as Ax = b. There are two major parameters for this program. One is the

size of the matrix A (n). The other is the block size for the communication (k). In our

experiments, various values for these two arguments were used to generate the training

and test data. We used all combinations of n = 1024, 512, 256, 128, 64 and k = 32, 16, 8,

4, 2 to execute the LU factorization program and obtained a total of 5*5 = 25 executions

of the program. Since the program randomly initializes some internal parameters at the

beginning, some differences are present in the behaviors of two different runs of the

program with the same parameters. Therefore, we executed the program two times with

each set of parameters. Attacks were also implemented on this program. The two attacks

used to generate the datasets were both daemon attacks: one writes data to a file and the

other spawns many processes. We ran the file attack 8 times and the fork attack 6 times.

4.1.3 ROC curves for analysis of classifier performance

When building an intrusion detection system, the key component is the analysis

module. A good analysis module will lead to good performance of the intrusion detection

system. A neural network is used as the analysis module in our prototype system and the

Receiver Operating Characteristic (ROC) curves have been used to evaluate performance

of the neural network classifier. “The ROC curve is a good way of visualizing a

classifier’s performance in order to select a suitable operating point, or decision

threshold. When comparing a number of different classification schemes it is often

desirable to obtain a single figure as a measure of the classifiers’ performance” [3].

45

The ROC curve is a plot of the true positive rate against the false positive rate for

different possible thresholds for a classifier. An ROC curve demonstrates several things

[3]:

• It shows the tradeoff between sensitivity and specificity.

• The closer the curve follows the left-hand border and then the top border of

the ROC space, the more accurate the classifier is.

• A curve around the 45-degree diagonal of the ROC space indicates the

classifier is poor.

• The area under the curve is a measure of overall performance of a classifier,

with a greater area indicating better overall performance.

4.2 Using a backpropagation neural network for intrusion detection

The goal in using artificial neural networks for intrusion detection is to take

advantage of their generalization capability to classify online data as being normal or

intrusive. An artificial neural network is composed of simple processing units, or nodes,

and connections between them. The connection between any two units has some weight,

which is used to determine how much one unit will affect the other. The backpropagation

network consists of three types of units, input units, hidden units, and output units. By

assigning a value to each input node, and allowing the activations to propagate through

the network, a neural network performs a functional mapping from one set of values

(assigned to the input units) to another set of values (appearing in the output units). The

mapping function is stored in the weights of the network.

46

4.2.1 Training the neural network

In our work, a classical feed-forward multi-layer perceptron network was

implemented - a backpropagation neural network. The use of different types of neural

networks was investigated in our previous work [29]. These included backpropagation

neural networks, radial basis function networks, and self-organizing maps. The number of

hidden nodes in the network determines the computational overhead when using a

network to classify new instances. Our previous results indicate that the backpropogation

neural network achieves accuracy similar to that of radial basis function networks with

many fewer hidden nodes. Therefore we have chosen a backpropagation model for the

analysis module of our system. Four major issues need to be addressed in order to use

backpropagation neural networks: determining how to encode the data for input to the

network, selecting a network topology, assigning meaning to the output values, and

determining how to conduct supervised learning with the neural network.

Because our goal is to create a real-time intrusion detection system, we must reduce

the computational overhead as much as possible. Therefore, we decided to use a simple

binary encoding of each system call and to use a sequence of these binary values as the

input value to the neural network. As mentioned in Chapter 2.2.2, we use a sliding

window to step through the trace and extract the unique sequences from these traces for

training. Each system call has an identifying number (this number might change with

different operating systems). We use the binary representation (with 8 bits) of those

numbers as input for our neural networks. Therefore, if you define a window size of 3,

there are 24 inputs for the neural network. Because we seek to determine whether an

47

input string is anomalous or normal, we use a single output node to indicate if an input

string is normal or anomalous (a value of 0 indicates normal and a value of 1 indicates

anomalous). After defining the input and output nodes, we need to find an appropriate

network topology. With an input layer, a hidden layer, and an output layer, a neural

network can be constructed to compute any arbitrarily complex function [22].

Researchers have shown that a single hidden layer has the same capability as one with

several hidden layers [22]. In order to reduce the time for training and online detection, a

single hidden layer is used in our network.

Since, with different training data, the optimal number of hidden nodes is

unknown, we trained neural networks with 4, 8, 16, 32, and 64 hidden nodes. For

different numbers of hidden nodes, we trained the network for different numbers of

epochs. Before training, network weights were initialized randomly. These random initial

weights can have a large and unpredictable effect on the performance of a trained

network. In order to avoid poor performance due to bad initial weights, for each number

of hidden nodes, we trained 10 networks with different initial weights. We then tested

each network with test data and retained the best network, discarding the others.

4.2.2 Embedding the neural network in the kernel

In order to build a lightweight intrusion detection system, the computational

overhead must be reduced as much as possible without compromising the accuracy of the

IDS. Moreover, in Linux kernel programming, the libc math library cannot be accessed.

Therefore, we need to use a simple activation function that retains accuracy and reduces

computation.

48

In order to reduce computational requirements, a simple sigmoid function

described by Tveter [41] is used instead of the standard sigmoid function

(y = 1 / (1 + e - x)).

The formula of this simple sigmoid function is the following and it can be

computed very quickly:

y = (x / 2) / (1 + |x|) + 0.5

The derivative is: 1/(2*(1+|x|)*(1+|x|)).

0

100

200

300

400

500

600

700

0 100 200 300 400 500
Epoch

N
um

be
r o

f e
rr

or
s

in
 tr

ai
ni

ng
 s

et

New activation
function
Sigmoid Function

Figure 4.1 Comparison of convergence speed using simple sigmoid function and the
standard sigmoid function

Tveter states that “this sigmoid function approaches its extremes more slowly.

This means that if you are trying to output numerical values it will take more iterations to

49

reach your target value. But if you're doing a classification problem you really only care

to get the correct output value greater than the other outputs and here these functions will

save on CPU time without influencing the number of iterations required by very much”

[41]. Since in our case we are using the neural network as a classifier, this simple

activation function fulfills our requirements.

Table 4.2 Comparison of error rates using a simple sigmoid function and the
standard sigmoid function (average of 20 networks)

 Error rate in test set Deviation
Simple sigmoid function 7.28% 0.462%
Standard sigmoid function 8.02% 0.328%

Experiments were conducted to test Tveter’s statement using the LU factorization

dataset described in section 4.2.2. The training data included 10 runs of the normal

program. The remaining 208 normal traces and all 16 intrusion traces were used as test

data. Unlike the experiments in section 4.5 where the error rate is computed based on an

entire trace, the error rate for this experiment was computed based on the extracted

sequences. Since we use the neural network to classify each of the sequences and not the

entire trace, the effect of different trace classification methods introduced in section 4.3 is

removed. From Figure 4.1, we can see that the simple sigmoid function converges more

slowly than the standard sigmoid function, but both can reach approximately the same

extreme. We also trained 20 neural networks with these two different activation

functions. As shown in Table 4.2, the simple sigmoid function produced performance

comparable to that of the standard sigmoid function.

50

4.3 Trace classification methods

Our neural network classifies each window of sequences as normal or anomalous.

However, the goal is to classify an entire program trace as normal or anomalous. In this

section, we will introduce different methods for online and offline detection of intrusion

in program traces. In offline detection, we already have all the system calls that a

program generated for one complete run. The goal is to classify the entire trace as normal

or anomalous. For online detection, we only know the calls that the program used before

the current call; we do not know which calls will follow the current one. Therefore online

and offline detection require different techniques for classification. Four methods we

have used for online and offline detection are described below. All are based on

classification of sliding window sequences.

Offline:

• Vector Count: We extract all unique sequences from the traces and classify

these sequences. We define a threshold for the total number of anomalous

sequences needed to fire the alarm.

Online:

• Total Anomalies: We count the number of anomalous sequences within the

trace. If the number becomes greater than a threshold an alarm is fired;

otherwise it is classified as normal.

• Max Cons Anomalies: We count the number of consecutive anomalous

sequences. When the maximum number of consecutive anomalies becomes

larger than a threshold, an alarm is generated.

51

• Max Burst Counter: We define a variable that remembers the total number

of anomalous sequences seen so far. We call this variable BC (burst counter).

After encountering a normal sequence, we decrease this variable at a slow

rate. This is similar to Ghosh et al.’s leaky bucket method [20]. Since the

output of our neural network is either 0 or 1 and theirs is a continuous number,

we cannot use the leaky bucket method directly. Our method has an effect

similar to the LFC method of Somayaji [39] but with much less computational

overhead. The assumption of Max Burst Counter is that an anomalous

sequence seen long ago should only have a small effect on classification.

Other researchers have observed that anomalous sequences tend to occur in

clusters [20]. The advantage of using MaxBurstCounter is that it allows occasional

anomalous behavior that would be expected during normal system operation, but is quite

sensitive to large numbers of temporally co-located anomalies expected if a program

were really being misused. Though anomalous sequences tend to occur locally, they are

not necessarily continuous. MaxBurstCounter represents the locality characteristic of

anomalies without the requirement that they be consecutive.

4.4 Artificial anomaly generation methods

The major challenge for anomaly detection systems is achieving an effective

detection rate with an acceptable false positive rate [23]. These systems create a profile of

normal behavior based on past behavior. Any deviation from this normal behavior is

viewed as an anomaly. Anomaly detection systems suffer from a basic difficulty in

52

defining “normal.” Methods based on anomaly detection tend to produce many false

alarms because they are not capable of discriminating between abnormal patterns

triggered by an otherwise authorized user and those triggered by an intruder. Misuse

detection is generally more accurate in detection of known intrusive behavior and

generates far fewer false alarms. But misuse detection also has the major disadvantage of

not being able to detect new attacks that it has never seen before. Recently more and

more new attacks are appearing and sophisticated attackers can use different mechanisms

to hide or change their attack trace from the well-known ones. Therefore, the capability to

detect new attacks has become more and more important. In this section, we describe our

effort to find a good tradeoff between anomaly and misuse detection.

In order to train the neural networks, it is necessary to expose them to both normal

and anomalous data. Training will be most effective if the training data is spread

throughout the input space. Ghosh, Schwartzbard, and Schatz [20] randomly generate

anomalous data that covers the entire input space. The randomly generated data is spread

throughout the input space and causes the network to generalize that most data is

anomalous. The normal data tends to be localized in the input space causing the network

to recognize a particular area of the input space as normal. This is a pure anomaly

detection method that does not use any attack information. In Unix-like systems there are

at least 200 different system calls. If we define a window size of 10, there will 20010

possible instances in the training space. We hypothesize that it is impossible to

adequately sample this training space using randomly generated sequences spread

throughout the space.

53

Based on this hypothesis, we designed a new method, the Intrusion Pattern Based

algorithm (IPB), to generate artificial anomalous data. We used both normal and intrusion

data for training. Sequences that appear both in attack traces and in normal traces are

eliminated from the anomalous data and additional anomalous data is generated based on

the intrusion patterns extracted from the attack data using the methods described below.

IPB uses several methods to generate additional anomalous data based on small

intrusion patterns. To find small intrusion patterns we first extract normal sequences from

normal training data. We go through the anomalous training data to find those sequences

that occur only in the attack data. Most sequences in attack data are normal. The

anomalous sequences only occur in a small part of the trace of a program run that

includes an intrusion. After finding these anomalous sequences, we find the common

subsequences in them. For example, consider the following intrusion sequences:

2 3 4 50 12 3
3 4 50 12 3 6
4 50 12 3 6 45

The sequence 4 50 12 3 is a small pattern that is common in these sequences. We can

view this pattern as the signature of this intrusion and generate additional anomaly

patterns based on this pattern. After finding this small intrusion pattern, IPB uses three

methods to create the anomalous training data.

• First, we include all the known intrusion data in the training data to ensure

that we can detect all the intrusions that we have seen.

• Second, we randomly insert some system calls before or after small patterns

within the window size. This will cause the neural network to recognize

54

sequences that are similar with the known intrusion sequence, and which are

more likely to be part of an intrusion.

• Third, we randomly select sequences from normal data and insert the small

intrusion patterns into these sequences. This will simulate intrusions within

different program contexts.

Figure 4.2 Program behavior represented in pattern space

Figure 4.2 illustrates the behavior of different artificial anomaly generation

methods. The rectangle represents all possible instances in the training space. The shaded

eclipse represents the normal instances that could occur in the system. The dark circle

represents the normal instances that we have already observed. If we only use the

observed normal instances plus randomly generated anomalies to train the neural

All possible behavior

Attack behavior

Observed normal behavior

Possible normal behavior

Learned by pure anomaly Learned by introducing attack pattern

55

network, the neural network will just memorize the observed normal instances and any

other unseen instances will be viewed as intrusions. The boundary between normal and

anomaly learned by the neural network in this case is represented by the small dotted line.

This behavior will cause the neural network to generate many false alarms. IPB utilizes

known intrusive patterns to train the neural network. This allows the neural network to

correctly detect previously seen attacks. The dashed line shows the boundary with IPB

artificial anomaly generation. These artificial anomalies based on intrusive patterns allow

the neural network to learn a more reasonable boundary. Because we used intrusion data

when we trained our neural network, it is not pure anomaly detection. But unlike misuse

detection systems which only record the intrusion signature, our experimental results

indicate that our method can still detect novel attacks.

4.5 Experiments and results

In this section, the experiments that evaluate the performance of pShield are

described and results are presented. Different trace classification methods and different

artificial anomaly generation methods are compared and discussed.

4.5.1 Design of experiments

In this section, we describe the experiments that were conducted to evaluate

different aspects of pShield. For each dataset available, the IPB method of generating

additional anomalous data was compared with pure anomaly detection where anomalous

data was generated randomly.

Ring program dataset:

56

• Pure anomaly detection:

For this experiment, we trained the neural network with real normal data and

randomly generated anomalous data. Four runs of the ring program were

selected as the training set. Since the program was executed on 4 machines

and each run contains 4 traces, a total of 16 traces were used for training. The

remaining 69 normal traces were used as test data. All attack traces were used

in testing.

• IPB:

The same set of normal training data was used in this experiment. One attack

from the ringFile attacks was also used by IPB to generate anomalous data.

The normal test data includes all the traces that were not used in training. All

attacks were used in testing.

LU factorization dataset:

• Pure anomaly detection:

The training data includes 10 runs of the normal program. The remaining 208

normal traces and all 16 intrusion traces are used as test data.

• IPB:

In addition to the normal data, two instances of the fork attack were used to

generate additional anomalous data. The test set consists of 208 normal traces

and all 16 instances of attacks.

Sendmail dataset:

• Pure anomaly detection:

57

We randomly chose 330 processes from the normal data for training. The

remaining 310 processes were used as test data. The test data also contains all

attack traces.

• IPB:

Four traces were chosen from the first three kinds of attacks to generate part

of the training set using IPB. We use the remaining 12 attack traces as the test

set. When testing, since we use a window size 10 and some of the processes

have fewer than 10 system calls, only 210 of the 310 normal processes are

used for testing.

4.5.2 Comparison of different trace classification methods

The comparison of different trace classification methods with different datasets is

discussed in this section. In all experiments in this section we used the pure anomaly

detection method to generate anomalous data.

4.5.2.1 Ring program dataset

We conducted the experiment as described in the previous section. Table 4.3

shows the results for a normal trace that was not used in training. The result for

MaxBurstCounter shows the maximum value of the burst counter variable during the

trace. MaxConsAnomalies shows the maximum number of anomalous sequences that

occurred continuously.

Table 4.4 shows the intrusion detection results for data generated by the RingFile

attack. In the RingFile attack, a daemon process is generated after the MPI program

finishes. Therefore in Table 4.4, processes 1306 and 1307 represent the abnormal

58

processes. Process 1303 contains the call to the daemon function to generate the daemon

process and, therefore, it also represents an anomaly. Figure 4.3 shows the distribution of

anomalous sequences in process 1303. The anomalous sequences are clustered at the end

of the run where the daemon process is generated.

Table 4.3 Comparison of online classification methods with an unseen normal run

Pid TotalAnomalies MaxBurstCounter MaxConsAnomalies Total calls
932 1 5 1 9198
933 4 18 3 26
934 1 5 1 6813

Table 4.4 Comparison of online classification methods with the RingFile attack

Pid TotalAnomalies MaxBurstCounter MaxConsAnomalies Total calls
1303 9 30 6 5596
1304 3 15 3 22
1305 4 9 1 3714
1306 3 14 2 15
1307 24 102 3 54

Figure 4.4 shows the intrusion detection results using different trace classification

methods. We varied the threshold in each method to generate the ROC curve. The

VectorCount method has the best performance, since it contains all the information for

the entire trace. The results in Figure 4.4 show that the MaxBurstCounter method has a

lower false positive rate than the other two online methods, but its true positive rate

improves much more slowly than the other two with the increasing false positive rate.

59

0

1

2

3

4

5

6

7

8

9

10

0 1000 2000 3000 4000 5000 6000

Position in the trace

C
um

ul
at

iv
e

nu
m

be
r o

f a
no

m
al

ie
s RingFile attack P1

Figure 4.3 Distribution of anomalies in the first process of the ring program under the
RingFile attack

4.5.2.2 LU factorization dataset

Figure 4.5 shows the intrusion detection results for LU factorization using

anomaly detection. When we use the MaxBurstCounter method to classify the traces we

can detect all attacks with no false positives. Other methods also have good performance.

We extracted 833 sequences from the normal training data and 1048 sequences from the

normal test data. Of the sequences extracted from the normal test data, 259 sequences are

unique and are not found in the training data.

The longest process in the LU factorization data only used 4715 system calls.

Though the running time of the ring program is much less than that of the LU

60

factorization program, the number of system calls for the longest run for normal ring

program is 20818 (shown in Table 4.1). This illustrates that complicated MPI programs

may use fewer system calls and spend more time on computation. The relatively small

number of system calls used by LU factorization does not mean that its behavior is

simple. We tested two runs of the LU factorization program with the same parameters.

The first run contained 511 sequences and the second contained 562. There were 125

sequences in the second run that do not appear in the first trace. We conclude that

complex programs may have much more complex communication patterns that make the

program behavior more variable.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.05 0.1 0.15 0.2
False Positive

Tr
ue

 P
os

iti
ve

MaxBurstCounter
MaxConsAnomalies
TotalAnomalies
VectorCount

Figure 4.4 ROC curve of pure anomaly detection with different online and offline
trace classification methods with the ring program dataset

61

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1
False Positive

Tr
ue

 P
os

iti
ve

MaxBurstCounter
MaxConsAnomalies
TotalAnomalies

Figure 4.5 ROC curve of pure anomaly detection with different online and offline trace
classification methods with the LU factorization dataset

4.5.2.3 Sendmail dataset

A total of 1249 vectors were extracted from the training data and 1130 vectors

from test data. There are 254 vectors that appear in the test data, but not in the training

data. This means there is some previously unseen normal behavior in the test data. This

reflects the fact that, in the real world, program behavior is variable and we cannot

usually obtain a training data set that includes all possible behavior of a program. Figure

4.6 shows the results using different detection methods with pure anomaly detection. We

can see that using MaxBurstCounter and MaxConsAnomalies yield better results than

using TotalAnomalies.

62

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5
False Positive

Tr
ue

 P
os

iti
ve

MaxBurstCounter
MaxConsAnomalies
TotalAnomalies

Figure 4.6 ROC curve for pure anomaly detection with the sendmail dataset

4.5.2.4 Conclusions regarding trace classification methods

We have compared different trace classification methods in this section. The

MaxBurstCounter achieves the highest true positive rate of all methods when the false

positive rate is required to be zero. However, MaxConsAnomalies achieves a detection

rate of 100% true positives with a lower false positive rate than MaxBurstCounter.

TotalAnomalies exhibited the worst performance of the online methods. Since a long

trace contains more small sequences than a short trace, the classifier will generate more

false positives in the long trace and the long trace is more likely to be classified as an

intrusive trace. For the online methods, both MaxBurstCounter and MaxConsAnomalies

63

appear to outperform TotalAnomalies. Since our focus is real-time online intrusion

detection, the offline VectorCount method was tested with only one dataset. From Figure

4.4, we can see that it outperformed all other methods. However, the capability of

VectorCount needs to be tested with additional datasets to evaluate its ability for offline

detection.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.05 0.1 0.15 0.2
False Positive

Tr
ue

 P
os

iti
ve

MaxBurstCounter
MaxConsAnomalies
TotalAnomalies
VectorCount

Figure 4.7 ROC curve of IPB with different online methods with the ring dataset

4.5.3 Comparison of different artificial anomaly generation methods

The comparison of different artificial anomaly generation methods with different

datasets is presented in this section.

4.5.3.1 Ring program dataset

64

Using the IPB generation method, the false-positive rate decreases as expected

without compromising the true positive rate. Although the ring-fork and interposition lib

attacks do not appear in the training dataset, they can still be detected by our system.

When using the VectorCount and MaxConsAnomalies methods, we can detect every

attack with no false positives. With MaxBurstCounter and TotalAnomalies, we can see

from Figure 4.7 that the performance is also improved over that of pure anomaly

detection.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2
False Positive

Tr
ue

 P
os

iti
ve

MaxBurstCounter
MaxConsAnomalies
TotalAnomalies

Figure 4.8 ROC curve of IPB detection with different online and offline trace
classification methods with the LU factorization dataset

4.5.3.2 LU factorization dataset

65

Figure 4.8 illustrates that using IPB to generate data allows MaxBurstCounter and

MaxConsAnomalies to achieve a 100% detection rate with a 0% false positive rate for

this dataset. When the results in Figure 4.7 are compared to those in Figure 4.4, we can

see that IPB improved performance for all datasets including TotalAnamalies.

4.5.3.3 Sendmail dataset:

Figure 4.9 shows the results with IPB and the sendmail dataset. The new attack

can easily be detected with a low false positive rate. Figure 4.10 gives a direct

comparison of the performance of IPB and pure anomaly detection using

MaxBurstCounter. We can see that using IPB improves performance.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2
False Positive

Tr
ue

 P
os

iti
ve

MaxBurstCounter
MaxConsAnomalies
TotalAnomalies

Figure 4.9 ROC curve for IPB with the sendmail dataset

4.5.3.4 Summary regarding artificial anomaly generation methods

66

We compared IPB with pure anomaly detection with different datasets. The IPB

method for generating artificial anomalies has better performance than a pure anomaly

detection method for each of the datasets. It effectively reduces the false positive rate

without losing the capability to detect novel attacks. Fan et al. [13] proposed DB2 to

generate the artificial anomalies. In order to train a neural network, the normal and

anomalous data should be of similar size. DB2 will generate 10 times more anomalous

data than normal data so that it is difficult to use to train the neural network. Therefore,

we did not compare DB2 with IPB.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1
False Positive

Tr
ue

 P
os

iti
ve

Pure Anomaly

IPB

Figure 4.10 ROC curve for comparison of anomaly and IPB data generation methods
using burst counter with the sendmail dataset

67

4.6 Performance evaluation

In order to be a lightweight real-time IDS, pShield must be fast and add little

overhead to the operating system. In the MPI cluster environment, pShield should slow

down the communication between nodes as little as possible. We tested our system with

two different benchmarks to measure the performance of the system. One is the IS

benchmark which simulates a real computational problem in the MPI cluster

environment. The second, MPBench, is used to test the performance of each MPI call.

The tests with the IS benchmark allow us to measure the effect of pShield on the

performance of the entire cluster system. The tests with MPBench show the

communication overhead added by pShield.

The first benchmark we used is the IS benchmark [36]. The NPB 2 implementation

of the IS kernel benchmark is based on a bucket sort. “The number of keys ranked,

number of processors used, and number of buckets employed are all presumed to be

powers of two. This simplifies the coding effort and leads to a compact program. The

number of buckets is a tuning parameter. On the systems tested, the best performance was

obtained when the number of buckets was half that which gives best load balancing.

Communication costs are dominated by an MPI alltoall, wherein each processor sends to

all others those keys which fall in the key range of the recipient” [36].

We ran this benchmark under three conditions: without pShield loaded, with the

module loaded but not monitoring the program, and with the module loaded and

monitoring the benchmark program. In each case, we ran the benchmark 20 times. Table

6 shows the results. We can see that loading our module resulted in only 0.53% overhead,

68

and monitoring the benchmark program resulted in 1.55% overhead. Both are well under

the 5% performance penalty that is usually considered acceptable.

Table 4.5 Results with the IS benchmark

 Average Time of 20
times (seconds)

Standard Deviation

without pShield loaded 5.5475 0.06
with pShield loaded and without
monitoring

5.577 0.037

with pShield loaded and
monitoring

5.634 0.035

Figure 4.11 Latency of MPI send tested with MPBench

We also conducted an experiment to measure the influence of pShield on the MPI

communication APIs that affect the performance of parallel computing. From Figures

4.11, 4.12, and 4.13 we can see that loading our module has no effect on the APIs, but if

69

we monitor the program, it does affect the performance. Figure 4.11 shows the effect on

MPI send. The MPBench test for latency can properly be described as a measure of the

time for an application to issue a send and continue computing. We can see when

monitoring the benchmark program, the latency is notably increased, especially when

sending small packets. When sending a very small packet, the time for the send operation

is very short. Therefore the computation time for the neural network dominates. As the

packet size increases, the proportion of computation time by the neural network

decreases. The performance penalty when sending a 4 byte packet is severe – 1331%.

With a 65536 byte packet, the performance penalty is reduced to 62%. In high

performance computing environments, the data packets communicated are usually large

(from several hundred thousand bytes to millions of bytes) so the overhead added by

pShield is acceptable.

Figure 4.12 Performance of MPI reduce tested with MPBench

70

Figure 4.12 and 4.13 show the effect on performance of two heavily used MPI

functions. When the packet size is small, the overhead added by pShield is obvious. But

as the size increases, the performance penalty is alleviated.

Figure 4.13 Performance of MPI broadcast tested with MPBench

71

Chapter V

Conclusions and Future Work

Loosely coupled clusters of workstations, connected together by high-speed

networks for parallel applications have increased in popularity due to greater cost-

effectiveness and performance and have become widely used computational resources in

sensitive environments. The power of the computational resources afforded by these

clusters combined with the sensitivity of the applications that they run make them

attractive targets for intrusions. As the size of a cluster becomes larger and larger, more

and more software and workstations are involved in the cluster system, and the security

problem becomes more difficult.

IDS is an active research area today and serves as a necessary security mechanism

within an organization. It is a powerful tool when used with other security measures such

as firewalls and virus protection products. A DARPA 1998 intrusion detection evaluation

study found that novel attacks against systems are rarely detected by most IDSs that are

based on misuse detection techniques. However, misuse detection is able to detect well-

known attacks with great accuracy and low false alarm rates. To overcome the problems

in current misuse and anomaly detection approaches, the generalization capability of

IDSs should be improved to detect novel attacks as well as reduce the false positive rate.

72

Currently most cluster security research focuses on access control. In this thesis,

we describe an effort to provide a fine-grained intrusion detection capability for a cluster.

We also describe a method to overcome the problems in misuse and anomaly detection

methods.

A system architecture for a host-based intrusion detection system in a cluster

environment is presented in this thesis and a prototype system, pShield, is described.

Several unique attacks on MPI program have been implemented on different real world

programs ranging from a simple ring program to a complex real-world LU factorization

program. The capability of pSheild to detect these attacks is demonstrated. All attacks

can be effectively detected with very few false alarms.

A neural network is used as the classifier to learn the behavior of a program. In

order to embed the neural network into the kernel, a simple sigmoid function is used

instead of the standard sigmoid function. The generalization and learning capability of

the neural network with the simple sigmoid activation function was investigated and the

results show that using the simple sigmoid activation function yields a classifier with

accuracy comparable to one that uses a standard sigmoid activation function.

In order to find a good tradeoff between misuse and anomaly detection, we

proposed a new method, IPB, to generate artificial anomalous data for training the neural

network. IPB takes advantage of the characteristics of known attacks and utilizes them to

predict new attacks. Although, IPB utilizes attacks patterns during training, experiments

have shown that the neural network classifier still has the ability to detect novel attacks

73

that were not in the training set. However, the false positive rate is improved greatly over

methods that use only randomly generated anomalies for training.

The performance penalty on a cluster system with pShield running was

investigated. Although our system imposes some overhead on the MPI communication

API, the overall performance of a real-world program was only slightly slowed.

The results from [43] compared the performance using RIPPER, Stide, and HMM

in detecting intrusions using sequences of system calls. However, in these experiments,

the test unit for computing error rates is a sequence, and in our experiment it is trace. This

makes it difficult to compare their results to ours. It is also difficult to compare our

results to those of Ghosh, et al. [20], since our focus is on cluster security and we used

different datasets.

In the future, we will integrate our detectors into the IIDS project under

development by the CCSR. A mechanism to collect the information generated by pShield

and transfer it to the decision module will be designed. Other researchers have used

interposition library [39] and MPI library calls [14] to conduct the intrusion detection on

a cluster. We will compare the performance of our method with theirs and determine

which combination of sensors is most effective. Since our prototype system is a

lightweight IDS in cluster environment, scalability issues should be investigated further.

We will investigate the feasibility of learning the behavior of sessions rather than

individual programs. We will also investigate the applicability of our method for fault

detection in a cluster environment.

74

REFERENCES

[1] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “REMUS: A Security-Enhanced

Operating System,” ACM Transactions on Information and System Security, vol.
5, no. 1, February 2002, pp. 36-61.

[2] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, O’Reilly &

Associates, Inc., Sebastopol, California, 2001.

[3] A. P. Bradley, “The Use of the Area under the ROC Curve in the Evaluation of

Machine Learning Algorithms,” Pattern Recognition, vol. 30, no. 7, July 1997,
pp. 1145-1159.

[4] W. W. Cohen, “Fast Effective Rule Induction,” Proceedings: 12th International

Conference on Machine Learning, Lake Tahoe, CA, 1995, pp. 115-123.

[5] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer Overflows:

Attacks and Defenses for the Vulnerability of the Decade,” Proceedings: DARPA
Information Survivability Conference and Exposition, Hilton Head, South
Carolina, 1999.

[6] T. W. Curry, “Profiling and Tracing Dynamic Library Usage via Interposition,”

Proceedings: USENIX Summer 1994 Technical Conference, Boston,
Massachusetts, 1994, pp. 267-278.

[7] T. E. Daniels and E. H. Spafford, “A Network Audit System for Host-based

Intrusion Detection (NASHID) in Linux,” Proceedings: 16th Annual Conference
on Computer Security Applications, New Orleans, Louisiana, 2000, pp. 178-187.

[8] K. J. Das, Attack Development for Intrusion Detection Evaluation, master's thesis,

Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Massachusetts, 2000.

[9] D. Denning, “An Intrusion Detection Model,” Proceedings: 1986 IEEE Computer

Society Symposium on Research in Security and Privacy, Oakland, California,
1986, pp. 118-131.

75

[10] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification and Scene
Analysis: Part I Pattern Classification, John Wiley & Sons, Inc, New York, 1998.

[11] D. Endler, “Intrusion Detection: Applying Machine Learning to Solaris Audit

Data,” Proceedings: 1998 Annual Computer Security Applications Conference,
Los Alamitos, California, 1998, pp. 268-279.

[12] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. “Quickly Detecting

Relevant Program Invariants,” Proceedings: 22nd International Conference on
Software Engineering (ICSE 2000), Limerick, Ireland, 2000, pp. 449-458.

[13] W. Fan, M. Miller, S. J. Stolfo, W. Lee, and P. K. Chan, “Using Artificial

Anomalies to Detect Unknown and Known Network Intrusions,” Proceedings:
IEEE Intl. Conf. Data Mining, San Jose, California, 2001, pp. 123-130.

[14] G. Florez, A Trusted Environment for MPI Programs, master's thesis, Department

of Computer Science and Engineering, Mississippi State University, Mississippi,
2002.

[15] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A Sense of Self for

Unix Processes,” Proceedings: 1996 IEEE Symposium on Computer Security and
Privacy, Los Alamitos, California, 1996, pp. 120-128.

[16] T. Fraser, L. Badger, and M. Feldman, “Hardening COTS Software with Generic

Software Wrappers,” Proceedings: IEEE Symposium on Security and Privacy,
Oakland, California, 1999, pp. 2-16.

[17] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of Online

Learning and an Application to Boosting,” Journal of Computer and System
Sciences, vol. 55, no. 1, August 1997, pp. 119-139.

[18] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson, “SLIC: An

Extensibility System for Commodity Operating Systems,” Proceedings: 1998
USENIX Annual Technical Conference, New Orleans, Louisiana, 1998, pp. 39-52.

[19] A. K. Ghosh and A. Schwartzbard, “A Study in Using Neural Networks for

Anomaly and Misuse Detection,” Proceedings: 8th USENIX Security Symposium,
Washington, D.C., 1999.

[20] A. K. Ghosh, A. Schwartzbard, and M. Schatz, “Learning Program Behavior

Profiles for Intrusion Detection,” Proceedings: 1st USENIX Workshop on
Intrusion Detection and Network Monitoring, Santa Clara, California, 1999, pp.
51-62.

76

[21] I. Goldberg, D. Wagner, R. Thomans, and E. Brewer, “A Secure Environment for
Untrusted Helper Applications: Confining the Wily Hacker,” Proceedings: 6th
USENIX UNIX Security Symposium, San Jose, California, 1996, pp. 1-12.

[22] S. Haykin, Neural Networks A Comprehensive Foundation, 2nd Edition, Prentice-

Hall, Upper Saddle River, New Jersey, 1999.

[23] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection Using

Sequences of System Calls,” Journal of Computer Security, vol. 6, no. 3, 1998,
pp. 151-180.

[24] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical Pattern Recognition: A

Review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
22, no. 1, January 2000, pp. 4-37.

[25] K. Jain and R. Sekar, “User-level Infrastructure for System Call Interposition: A

Platform for Intrusion Detection and Confinement,” Proceedings: ISOC Network
and Distributed Systems Security Symposium, 2000, pp.19-34.

[26] S. Jha, K. M. C. Tan, and R. A. Maxion, “Markov Chains, Classifiers and

Intrusion Detection,” Proceedings: 14th IEEE Computer Security Foundations
Workshop, Cape Breton, Nova Scotia, Canada, 2001, pp. 206-219.

[27] C. Ko, G. Fink, and K. Levitt, “Automated Detection of Vulnerabilities in

Privileged Programs by Execution Monitoring,” Proceedings: 10th Annual
Computer Security Applications Conference, Orlando, Florida, 1994, pp. 134-144.

[28] W. Lee and S. J. Stolfo, “Data Mining Approaches for Intrusion Detection,”

Proceedings: 7th USENIX Security Symposium, San Antonio, Texas, 1998, pp. 79-
94.

[29] Z. Liu, G. Florez and S. M. Bridges. “A Comparison of Input Representations in

Neural Networks: A Case Study in Intrusion Detection,” Proceedings:
International Joint Conference on Neural Networks (IJCNN), Honolulu, Hawaii,
2002.

[30] J. Luo, Integrating Fuzzy Logic with Data Mining Methods for Intrusion

Detection, master's thesis, Department of Computer Science and Engineering,
Mississippi State University, 1999.

[31] T. Mitchem, R. Lu, and R. O’Brien, “Using Kernel Hypervisors to Secure

Applications,” Proceedings: Annual Computer Security Application Conference,
San Diego, California, 1997, pp. 175-181.

77

[32] B. Mukherjee, L. Heberlein, and K. Levitt, “Network Intrusion Detection,” IEEE
Network, vol. 8, no. 3, May/June 1994, pp. 26-41.

[33] D. L. Oppenheimer and M. R. Martonosi, “Performance Signatures: A

Mechanism for Intrusion Detection,”
http://www.cs.berkeley.edu/~davidopp/pubs/perfsig.html (current July 2001)

[34] A. Rubini and J. Corbet. Linux Device Drivers, 2nd Edition, O'Reilly &

Associates, Inc., Sebastopol, California, 2001.

[35] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Prentice-

Hall, Inc, New Jersey, 1995.

[36] W. Saphir, R. V. Wijngaart, A. Woo, and M. Yarrow “New Implementations and

Results for the NAS Parallel Benchmarks 2,”
http://www.nas.nasa.gov/Software/NPB/Specs/npb2.2_new_implementations.ps
(current October 2002)

[37] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A Fast Automaton-based

Method for Detecting Anomalous Program Behaviors,” Proceedings: the 2001
IEEE Symposium on Security and Privacy, Oakland, California, 2001, pp. 144-
155.

[38] A. Somayaji, “Automated Response Using System-Call Delays,” Proceedings:

9th USENIX Security Symposium, Denver, Colorado, 2000, pp. 185-197.

[39] A. Somayaji, Operating System Stability and Security through Process

Homeostasis, doctoral dissertation, Department of Computer Science, University
of New Mexico, 2002.

[40] H. Teng, K. Chen, and S. Lu, “Adaptive Real-time Anomaly Detection Using

Inductively Generated Sequential Patterns,” Proceedings: 1990 IEEE Computer
Society Symposium on Research in Security and Privacy, Oakland, California,
1990, pp. 278-284.

[41] D. R. Tveter, “Backpropagator’s Review,”

http://www.dontveter.com/bpr/bpr.html (current August 2002)

[42] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis,” Proceedings:

IEEE Symposium on Security and Privacy, Oakland, California, 2001, pp. 156-
169.

78

[43] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting Intrusions Using System
Calls: Alternative Data Models,” Proceedings: 1999 IEEE Symposium on Security
and Privacy, Los Alamitos, California, 1999, pp. 133-145.

	A Lightweight Intrusion Detection System for the Cluster Environment
	Recommended Citation

	Microsoft Word - my thesis double space.doc

