
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-10-2003

Parzsweep: A Novel Parallel Algorithm for Volume Rendering of Parzsweep: A Novel Parallel Algorithm for Volume Rendering of

Regular Datasets Regular Datasets

Lakshmy Ramswamy

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Ramswamy, Lakshmy, "Parzsweep: A Novel Parallel Algorithm for Volume Rendering of Regular Datasets"
(2003). Theses and Dissertations. 3456.
https://scholarsjunction.msstate.edu/td/3456

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3456?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3456&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

PARZSWEEP: A NOVEL PARALLEL ALGORITHM FOR

VOLUME RENDERING OF REGULAR DATASETS

By

Lakshmy Ramaswamy

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2003

PARZSWEEP: A NOVEL PARALLEL ALGORITHM FOR

VOLUME RENDERING OF REGULAR DATASETS

By

Lakshmy Ramaswamy

Approved:

Susan M. Bridges
Professor of Computer Science and Engi-
neering
(Major Professor)

Ricardo Farias
Adjunct Assistant Professor of Computer
Science and Engineering
(Thesis Director)

David Dampier
Assistant Professor of Computer Science
and Engineering
(Committee Member)

Thomas Philip
Professor of Computer Science and Engi-
neering
(Committee Member)

Susan M. Bridges
Professor of Computer Science and Engi-
neering
Graduate Coordinator
Department of Computer Science and En-
gineering

A. Wayne Bennett
Dean of the College of Engineering

Name: Lakshmy Ramaswamy

Date of Degree: May 10, 2003

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Susan Bridges

Director of Thesis: Dr. Ricardo Farias

Title of Study: PARZSWEEP: A NOVEL PARALLEL ALGORITHM FOR VOLUME
RENDERING OF REGULAR DATASETS

Pages in Study: 53

Candidate for Degree of Master of Science

The sweep paradigm for volume rendering has previously been successfully applied

with irregular grids. This thesis describes a parallel volume rendering algorithm called

PARZSweep for regular grids that utilizes the sweep paradigm. The sweep paradigm is

a concept where a plane sweeps the data volume parallel to the viewing direction. As

the sweeping proceeds in the increasing order of z, the faces incident on the vertices are

projected onto the viewing volume to constitute to the image. The sweeping ensures that

all faces are projected in the correct order and the image thus obtained is very accurate

in its details. PARZSweep is an extension of a serial algorithm for regular grids called

RZSweep. The hypothesis of this research is that a parallel version of RZSweep can be de-

signed and implemented which will utilize multiple processors to reduce rendering times.

PARZSweep follows an approach called image-based task scheduling or tiling. This ap-

proach divides the image space into tiles and allocates each tile to a processor for individ-

ual rendering. The sub images are composite to form a complete final image. PARZSweep

uses a shared memory architecture in order to take advantage of inherent cache coherency

for faster communication between processor. Experiments were conducted comparing

RZSweep and PARZSweep with respect to prerendering times, rendering times and im-

age quality. RZSweep and PARZSweep have approximately the same prerendering costs,

produce exactly the same images and PARZSweep substantially reduced rendering times.

PARZSweep was evaluated for scalability with respect to the number of tiles and number

of processors. Scalability results were disappointing due to uneven data distribution.

DEDICATION

To my parents and my sister.

ii

ACKNOWLEDGMENTS

I would like take this opportunity to thank a few people who have contributed towards

the success of my masters thesis.

I would first like to extend my gratitude to my co-researcher Gautam Chaudhary, who

has always been a strength in this endeavour. I would also like to thank all my friends who

have been very supportive of me during my thesis.

I would like to extend heart felt gratitude to my thesis director Dr. Ricardo Farias who

has guided me in my research and my life at MSU. I would like to thank my advisor Dr.

Susan Bridges without whose guidance I would not have been able to finish my thesis.

She has been extremely understanding and supportive during my thesis documentation. I

would also like to thank Dr. Joerg Meyer, who has always been there to help me through

questions and provide support.

I thank my committee members for their valuable comments on this thesis, and helping

me to make my thesis a success.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

I. INTRODUCTION . 1

1.1 Volume Rendering . 1
1.2 Classification of Datasets . 2
1.3 Sweep Paradigm . 3
1.4 Parallel Techniques for Volume Rendering 3
1.5 Parallelization of RZSweep . 4

II. LITERATURE SURVEY . 6

III. RZSWEEP . 14

3.1 Significance of Work . 14
3.2 RZSweep Algorithm . 15

IV. PARZSWEEP . 18

4.1 PARZSweep . 18
4.1.1 Parallel Architectures . 18
4.1.2 Parallelization Process . 21
4.1.3 Pseudo Code of Algorithm . 22
4.1.4 Tiling . 23
4.1.5 PARZSweep . 24
4.1.6 Implementation Issues of PARZSweep 28

4.1.6.1 Changes in data structures 29

iv

CHAPTER Page

4.1.6.2 Memory issues . 30
4.1.6.3 Lock usage . 32
4.1.6.4 Image to world conversion 33

4.1.7 PARZSweep in action . 33

V. EXPERIMENTAL RESULTS . 36

5.1 Experimental Conditions . 36
5.1.1 Machine Details . 37
5.1.2 Prerendering Times . 38
5.1.3 PARZSweep vs. RZSweep . 39
5.1.4 Image quality comparison between PARZSweep and RZSweep . 40
5.1.5 Increasing tile numbers . 41
5.1.6 Increasing number of processes 44

VI. CONCLUSIONS AND FUTURE WORK 46

6.1 Conclusions . 46
6.2 Future work . 48

REFERENCES . 50

v

LIST OF TABLES

TABLE Page

5.1 Size of the datasets used . 37

5.2 Time required for preprocessing in PARZSweep 39

5.3 Computational times of PARZSweep vs. RZSweep 40

5.4 Per pixel difference between RZSweep and PARZSweep Images 40

5.5 Computational times as a function of number of tiles with the fuel dataset . . 44

5.6 Number of points projected during rendering as a function of number of tiles
with the fuel dataset . 44

5.7 Computational times as a function of number of processes 45

vi

LIST OF FIGURES

FIGURE Page

3.1 Sweep Process (adapted from [8]) . 15

3.2 RZSweep Algorithm . 16

4.1 Distributed memory architecture . 19

4.2 Shared memory architecture . 20

4.3 Switching circuits to avoid conflicts (adapted from [5]) 21

4.4 PARZSweep algorithm . 22

4.5 Image based task scheduling or tiling . 24

4.6 Extrusion of tiles to find the bound volumes 25

4.7 Mismatch of world and screen grid . 26

4.8 Aligning tile from screen with grid points 26

4.9 Lock implementation forces serial behavior 28

4.10 Tiles do not align with the grid causing the face to split into two 29

4.11 Memory access by each processor . 31

4.12 PARZSweep processing of fuel dataset . 34

4.13 PARZSweep processing of lobster dataset 35

5.1 Fuel dataset with a threshold of 75 . 41

vii

FIGURE Page

5.2 Lobster dataset with a threshold of 27 . 42

5.3 MRI dataset with a threshold of 40 . 42

5.4 CT dataset with a threshold of 180 . 43

viii

CHAPTER I

INTRODUCTION

Most phenomena in the world are inherently three dimensional in nature. It is appar-

ent that visualizing these phenomena in two dimensions will not be intuitive to scientists.

Hence, the concept of involving the volume of the object to be visualized is vital. Volume

rendering is a computationally expensive technique for visualizing data samples that are

three dimensional in nature. This thesis describes previous approaches to volume render-

ing and a new approach called RZSweep. The basis for RZSweep is the ZSweep algorithm

of Farias et al. [13]. The RZSweep algorithm yields good quality images in acceptable

times in its current state. The focus of this thesis is a parallel version of the RZSweep

algorithm called PARZSweep that has been developed in order to improve performance.

1.1 Volume Rendering

Volume rendering is a visualization method used primarily for medical and scientific 3-

dimensional (3D) data where the entire volume of the object is used to create high quality

images. The images thus rendered show information about the interior of the data, giving

a clearer understanding on the nature of the data. Data for volume rendering is usually col-

lected through high-quality CAT Scan(CT) or Magnetic Resonance Imaging(MRI) scan-

1

2

ners. The size of the data sets collected is usually very high, since these scanners acquire

very detailed information. Medical imaging, finite element modeling, large-scale geospa-

tial simulations, molecular microscopy, and non-destructive material testing are some of

the fields in which the volume data are collected [44]. Each data element is a scalar value

representing a volumetric data element (also called a voxel). Data collected typically in-

cludes a volume of
�������

data points. Due to the vast volume of the data collected, volume

rendering is a very expensive visualization method. New techniques are being explored to

improve the rendering speed.

1.2 Classification of Datasets

Volumetric data can be classified based on its organization as regular or irregular grids.

In a regular grid the data points are placed at uniform distances from each other. A regular

grid can be visualized as a lattice where the data points are placed at each vertex (voxel)

of the grid. An irregular grid has no specific order for placement of data points. The

data points are displaced in space at no specific intervals. Volume rendering algorithms

are based on the type of grid structure that they handle and are classified as regular grid

algorithms or irregular grids algorithm. This research focuses on the development of a

parallel algorithm for rendering regular grid data. The method presented here is based on

the sweep paradigm.

3

1.3 Sweep Paradigm

Volume rendering is typically based on one of two techniques: indirect volume ren-

dering (IVR) or direct volume rendering (DVR). In IVR, an intermediate representation

of the volume data is created [31]. Direct volume rendering (DVR) uses no intermediate

representation of the volume and the data is swept as a whole at a single step without

any transitional state [11]. A DVR based algorithm has been developed where the scalar

values are rendered using a sweep paradigm. The idea is based on the ZSweep algorithm

for irregular grids presented by Farias et al. [13]. In the sweep paradigm, an imaginary

plane sweeps the data volume parallel to the viewing direction. As it sweeps the data in

increasing order of z, it projects the implicit faces incident on the vertices that the sweep

plane encounters. To get the correct resultant image, it is important that the vertices are

projected in proper order. Since the data visualized is a regular grid, no auxiliary data

structure is maintained to store the order of the vertices. The simplicity of the algorithm

is that it exploits the implicit nature of the grid and uses only a heap to sort the vertices

encountered during the sweeping process. This has enabled implementation of a version

of the algorithm that uses graphics hardware as well as a hardware independent version.

1.4 Parallel Techniques for Volume Rendering

In general, algorithms that use a distributed memory architecture are more scalable

than the algorithms based on a serial architecture. However, the complexity of distributed

schemes produces problems such as lack of memory coherence, latency, bandwidth, prior-

4

ity scheduling and data distribution. Since the distributed scheme does not use a common

data bank, one processor often needs data from another processor, causing memory ac-

cess problems. A high degree of cache coherence is required to resolve unnecessary data

sharing problems. Many approaches have been taken to solve these problems including

large caches and memory pre-fetching techniques. But still, the algorithm must collaborate

with the hardware to achieve the best performance [14]. Many popular parallel algorithms

have been developed using this scheme and these algorithms have proven to be highly

scalable. Another popular approach is to use a shared memory architecture. In a shared

memory parallel architecture, the tasks can easily be assigned to processors dynamically

by maintaining a common pool of tasks from which available processors claim work to

do. Also, each processor can have a local memory cache for its individual memory re-

quirement. Typical problems of bandwidth are avoided since the access to the memory

bank is done with bus or switching networks. Algorithms that follow this method are not

very complex but the nature of the shared memory architecture limits the scalability of the

algorithms. Load balancing strategies are critical to ensure good performance in shared

memory parallel schemes.

1.5 Parallelization of RZSweep

In this thesis, a parallel version of the RZSweep algorithm is described that uses a

shared memory architecture. The approach is similar to the parallel version of the ZSweep

algorithm. Image space partitioning is used to assign jobs to the various processors. Al-

5

gorithms developed by Nieh and Levoy [34] and the parallel ZSweep algorithm of Farias

et al. have successfully used this method (also called tiling). This method partitions the

screen space into tiles and assigns the tiles to the processors in a dynamic fashion to ren-

der the final image. The scheme described preserves the simplicity of the serial algorithm.

The implicit regularity of the grid facilitates the use of only image space partitioning to

perform the parallelization. A heap is used because the rendering function needs the ver-

tices swept to be in order. However, the need for the octree in the parallel ZSweep [14]

is eliminated due to the regularity of the dataset. Hence no explicit partitioning of object

space is needed and this improves the space complexity of the algorithm.

The hypothesis of this research is that a parallel algorithm of RZSweep, PARZSweep,

can be designed and implemented which will utilize multiple processors to reduce ren-

dering times. Chapter II describes the literature survey conducted in volume rendering

algorithms on regular data sets and parallel volume rendering algorithms. The serial al-

gorithm RZSweep is briefly discussed in Chapter III. Chapter IV describes the design,

implementation and details of the parallel algorithm PARZSweep. Chapter V describes

the experiments conducted to test the efficiency and performance of the parallel algorithm

in a shared memory architecture.

CHAPTER II

LITERATURE SURVEY

Volume rendering algorithms for regular grids can be categorized into 4 groups.

1. ray casting [23, 40]

2. splatting [41]

3. shear warp [22]

4. 3D texture mapping [6].

Each of these methods is reviewed below.

Ray casting is an image order volume rendering method where rays are shot through

the screen space to intersect the volume data. The intersections with the volume are in-

terpolated to calculate the final color of the pixels of the image. It is a time consuming

method since shooting rays through every pixel takes time, but the quality of the resulting

image is very accurate. There are two main approaches used with ray casting algorithms.

� The first changes the color and the opacity and is also called pre-direct volume
rendering integral [23, 24].

� The second generates the density and gradient attributes for each point, and is called
post-direct volume rendering integral [18, 38, 4, 39].

Ray casting involves all the voxels of the data set for generation of the images and hence it

is computationally expensive. This is the major drawback of ray casting. There are several

6

7

optimization techniques which are used for improving the efficiency. One of the optimiza-

tions is encoding coherence in volume data. Many voxels in a dataset are “empty”(which

means that the opacity value of that voxel is zero). It has been observed that such empty

voxels are often found in coherent regions of the dataset. Such regions can be encoded for

optimization purposes using octree hierarchical spatial enumeration[29], polygonal rep-

resentation of bounding surfaces[15] and octree representation of bounding surfaces[16].

Extensive research has been done in applying the technique of traversing and skipping

empty space for faster rendering [11, 47]. This is also called Space Leaping [45].

Another common optimization technique in ray casting involves the concept of early

ray termination or adaptive ray termination. This idea was first proposed by Whitted [43]

in 1980. If a ray strikes an opaque object or if it traverses through a volume for a period

of time, then the further contribution of that ray towards the color of the object becomes

minimal. Since data volumes are very huge in size, early termination of such rays saves

precious time and cost. Most rays are terminated when the opacity reaches a user specified

threshold. Ray casting produces high quality accurate results and can be used to create

images without specifically outlining the surface geometry.

Splatting, designed by Westover [41], increases the speed of volume rendering over

ray casting but sacrifices image quality. It is an approximation algorithm that considers

the entire volume as an array of basis functions centered on each data voxel. Each basis

function defines a footprint of a simple shape that is projected on the screen following

a depth order. The efficiency of the algorithm depends heavily on the complexity of the

8

shape chosen for such footprints. In one approach, all voxels are projected without any

consideration of their associated values. Further speed-ups have been achieved by avoiding

the projection of voxels associated with low scalar values. Following the idea of early ray

termination used in ray casting, early splat elimination has been applied, avoiding further

splatting on opaque regions of the screen. Later, Mueller et al. [33] developed image-

aligned splatting to enable animation.

Shear warp, developed by Lacroute and Levoy [22], greatly increased the speed of

rendering. Even though it is an approximate algorithm, it is known as the fastest volume-

rendering algorithm to date. The algorithm is a hybrid of both image order and object

order algorithms. The main idea is to factorize the view planes in 3D slices which are

parallel to the volume slices, apply a projection to form the temporary image and to apply

a two dimensional shear to obtain the final image. However the quality of the images pro-

duced deteriorates as the size of the viewport increases. Other limitations of this algorithm

include the memory required to keep the intermediate planes it produces. This mem-

ory requirement increases as higher quality images are desired and it is dependent on the

amount of texture memory of the graphics hardware. Regardless, it is still a good choice if

all requirements are satisfied and approximated images are acceptable. A package named

VolPack has been designed at Stanford [1] based on shear warp.

The 3D texture mapping algorithm relies completely on the graphics hardware capabil-

ities. The idea, developed by Cabral [6], is intended solely for non-shaded rendering. Sub-

stantial subsequent work has been done and shading capabilities have been added [10, 30].

9

The textures of the volume are uploaded to the graphics hardware and the hardware does

the rasterization to perform the rendering to get the final image. The rendering normally

does not check for any early termination criteria. Although the method is very fast due to

the availability of the high end graphics hardware, it faces three main bottlenecks:

1. dependence on the graphics hardware which is extremely costly,

2. limitation to the texture memory, and

3. dependence on the swap buffer for swapping textures in and out.

The plane sweep paradigm has been widely discussed in the area of computational

geometry [35]. The sweeping paradigm has been used in some algorithms, primarily ap-

plied to irregular grids datasets. Girsten [17] was the first to use the concept in volume

rendering. Yagel [46] and Silva [37] furthered the work on sweeping algorithms. The

most recent work based on the sweep paradigm was the ZSweep algorithm developed by

Farias [13]. In ZSweep, the sweep plane is a virtual plane that sweeps the data volume in

a direction parallel to the viewing plane. The algorithm projects faces of cells, incident on

the vertices that are encountered by the sweep plane. Certain data structures like a vertex

array and a cell array are used to avoid double projection of internal faces and to assure

correctness in the order of projection. At a given time information of only a few slices

of the data set needs to be stored. This reduces the memory needs of the algorithm and

hence it is memory efficient. The algorithm is hardware independent and has achieved

good speedup compared to its predecessor, the lazy sweep algorithm [37].

The lazy sweep algorithm precedes ZSweep in using the sweep paradigm. Since the

algorithm has been implemented for irregular grids, it is not directly relevant to RZSweep.

10

However, since the algorithm uses the sweep paradigm which is the basis of this work,

it is worth a mention. The main difference in the sweep paradigm used in lazy sweep as

opposed to ZSweep is the direction of sweep. In lazy sweep, the sweep plane is parallel

to the x-z plane whereas in ZSweep and RZSweep, the sweep plane is orthogonal to the

viewing(x-z) direction [37].

The following sections describe the literature on parallel approaches for volume-rend-

ering algorithms. There have been many approaches for parallelizing ray-casting algo-

rithms specifically due to the simplicity of the algorithm. The aspect that has received

the most attention is minimizing the redistribution cost of the volume data. The typical

solution simply distributes the volume data into the processing nodes and lets each of the

processing nodes generate a partial image. Each node will have part of the data, which it

will use to generate images for all the frames and orientations. The final image will be a

composite image of all the partial images generated by the processors. The final composi-

tion can also be made parallel or can be performed by the master processor [19, 26, 27, 32].

Better algorithms have been developed which exploit the nuances of the parallel ap-

proach to speed up ray casting. Tasks are created which are obtained by partitioning the

data space into square tiles or adjacent scan lines [7]. These tasks are then assigned to pro-

cessors which perform their respective rendering routines. Several constraints have been

placed on these job queues to make the rendering faster. One constraint is to keep the

queue in a sorted order so that the allocation of jobs to the processors will be in an orderly

fashion until the queue is exhausted [7]. Neih and Levoy [34] and Whitman [42] proposed

11

another method where there is a sharing of the jobs between processors. If processor A has

finished the task assigned to it, it would then assist processor B by accepting smaller jobs

from processor B. An interesting approach is followed by Corrie and Mackerras [9] where

time is a key factor. For a processor, a time stamp is the time taken for that processor to

finish its task. The method followed is that if the processor fails to finish the assigned task

before the time stamp expires, then the remaining task is taken as a whole job, re-divided

and re-assigned to the various processors.

Shear warp [22] is another algorithm to which various researchers have devoted time

and effort to make it faster and better using parallel approaches. Both distributed and

shared memory architectures have been used. Amin et al. [3] and Sano et al. [36] have

done notable work using a distributed memory architecture with shear warp. Amin et al.

[3] used adaptive load balancing techniques coupled with partitioning in the sheared space

for parallelization. Sano et al. [36], on the other hand, used sheared space partitioning

to create volumes, which were parallel to the intermediate image plane in the shear warp

algorithm.

Algorithms involving shared memory architectures include the parallel shear warp by

Lacroute [21]. Lacroute follows the approach of using optimized codes for improving

frame rates. Since optimized codes use complex preprocessing and have high data depen-

dency, they cannot be mapped onto simple SIMD processors. Hence there is dependency

on high performance MIMD multiprocessors. Three major factors are attributed to the

increase in frame rates in shear warp [21]. First is the use of a fast serial algorithm for

12

shear warp that is a hybrid order algorithm using both the volume and the image space in

the rendering process. The parallelization described uses image-based partitioning of the

data and exploits the optimizations in the algorithm to enhance the performance [22].

Splatting is an object order projection based volume rendering technique. The main

idea involves projecting the volume data over a three dimensional kernel and then accumu-

lating the projections over the image planes with a two dimensional kernel called splats.

The advantage of splatting over other algorithms like shear warp and ray casting is the

flexibility to choose the reconstruction kernels. There are several improvements in splat-

ting since Li and Whitman [25]. Parallel approaches have been developed for speeding up

the rendering process. The job of data distribution along the processors is done using axis

aligned planes (also called slices) [12] or blocks to processing nodes [25]. The images

are then rendered individually in parallel, and then composited together to get the final

image. The work of Machiraju and Yagel [28] assigns the data volume to the processors in

batches or sub-volumes. The processors each get a batch of volume to process and the fi-

nal image is then again composite in parallel in a depth order fashion. Certain hierarchical

data structures like a k-d tree have been used to accelerate the rendering procedure. Oc-

clusion culling has been used by Huang et al. [20] to speed up the rendering process. Also

previous splatting methods have artifacts because of the separation of volume integration

and volume reconstruction. Huang’s method [20] overcomes those aberrations by using an

image-aligned sheet where the voxels are collected in planes parallel to the image plane.

Data distribution to the processors is done by assigning the data closest to the image plane.

13

Then an occlusion map is applied to cull data that is inconspicuous and has minimal effect

to the resultant image.

A lot of additional research has been done on distributed SIMD and MIMD architec-

tures, but those papers are not mentioned here because they have limited relevance to work

with a shared memory architecture. The following chapters first describe the RZSweep al-

gorithm, then the parallel implementation, PARZSweep. The hypothesis is that the parallel

version provides a significant gain in performance versus the serial version for typical vol-

ume datasets with identical image quality.

CHAPTER III

RZSWEEP

The research described in this paper is the development of a parallel version of RZSweep.

The parallel algorithm makes use of a shared memory architecture and is based on an im-

age partitioning technique. An introduction to the serial RZSweep algorithm is provided

as background.

3.1 Significance of Work

The sweep paradigm is a unique concept of traversing an entire dataset in an orderly

fashion. The technique has been explored for volume rendering of irregular grids by sev-

eral algorithms in the past. RZSweep is an attempt to explore the capacity of the sweep

paradigm for sweeping the regular data sets. Hence the algorithm is a novel approach

for volume rendering of regular data sets. Since PARZSweep is a parallel version of

RZSweep, the following chapter briefly describes the serial RZSweep algorithm. More

details of RZSweep can be found in [8].

14

15

3.2 RZSweep Algorithm

Swept Vertex

Sweep Direction

Not Swept Vertex

Currently Sweeping Vertex

Currently Rendered Faces

To be Swept Next Vertex

Plane
Sweep

Figure 3.1 Sweep Process (adapted from [8])

Rectilinear data sets are assumed to be part of a lattice where the data points are the

vertices of the lattice. The initial requirement is to convert this lattice into real world

coordinates. We consider that there are three unit vectors, ��� , ��� and ��� corresponding

to the real world axes x, y and z. The necessary transformations are combined into a

single transformation matrix and then applied to these unit vectors. The unit vectors are

responsible for converting the imaginary grid point (i, j, k) into the real world coordinate

system.

The RZSweep algorithm follows the sweep paradigm used in ZSweep [13]. The

sweeping is performed when an imaginary plane sweeps through the data volume orthogo-

16

project the new faces

send the neighboring vertices to the heap and mark as sent

 incident on the current vertex

 − mark vertex as swept
 − determine neighboring vertices that define the new faces

While (heap not empty)
 − retrieve the next vertex from the heap
 (also called current vertex)

− if the corresponding swept flag is false

− if the corresponing sent flag is false

Figure 3.2 RZSweep Algorithm

nal to the z direction. All vertices are initially unsent and unswept. When the sweep plane

touches a vertex, it is marked as swept. Only the neighboring vertices that have not been

marked as sent are inserted into the heap to avoid multiple insertion. These neighboring

vertices are then marked as sent . The sweeping uses a heap sort (called heap) to order the

projection of the vertices. The vertices that are encountered by the sweep plane are sent to

the heap. The sweeping continues until the heap becomes empty (Figure 3.1). The main

loop of the algorithm is given in Figure 3.2.

A face is comprised of four vertices. A face is projected onto the display only if all four

vertices of that face are marked as unswept. Only data points that fall in a user-specified

scalar range are considered for sweeping. To accomplish this, a flagging routine is carried

out in the preprocessing stage that determines which data points fall in the scalar range.

17

Further details describing the implementation details, optimizations and implementa-

tions of lighting, transfer functions and other opacity functions can be found in [8].

CHAPTER IV

PARZSWEEP

4.1 PARZSweep

A parallelization of the serial algorithm described in chapter III has been developed

and tested. RZSweep was originally designed as a single processor serial algorithm. To

exploit the computational capabilities of a cluster of processors, a parallel version was de-

veloped. The parallelization is for a multiprocessor shared memory architecture like that

found in SGI machines. The hypothesis of this thesis is that a parallel version of RZSweep

can be designed and implemented which will utilize multiple processors to reduce ren-

dering times. In this chapter, the design decisions that were made in the development

of PARZSweep, detailed description of the algorithm, implementation issues and images

generated by PARZSweep are presented. Experiments and results designed to evaluate the

performance of PARZSweep are given in chapter V.

4.1.1 Parallel Architectures

There are basically two types of memory architectures for parallel systems: distributed

memory architecture and shared memory architecture. Eventually, the goal is to implement

PARZSweep for both architectures.

18

19

In a distributed memory architecture, each processor has a local copy of all the data

structures. Each processor has individual processing capabilities and its own memory and

caches. No processor can access another processor’s memory directly. The communica-

tion of results and data between processors is done using a network interface. A schematic

diagram showing this type of architecture is given in Figure 4.1. C denotes the cache and

M denotes the memory of each processor.

CommunicationCommunication
Network

C2

Network

processor 2

processor 3

Network Interface

M2 C3 M3 processor 1C1 M1

Figure 4.1 Distributed memory architecture

A shared memory architecture uses a common pool of memory that is shared by many

processors. There is no need for communication through any interface since every pro-

cessor can access every other processor’s memory (see Figure 4.2). This saves on com-

munication time. But there is a problem if two processors try to access the same memory

location at the same time. Switching circuits are used to solve this problem. The switches

control the routing of the messages and prevent memory conflicts. This is depicted in

Figure 4.3.

20

With a shared memory architecture there is no need to keep multiple copies of the

same data. Hence memory consumption is saved. The disadvantage of the shared memory

architecture is the limitation to scaling of the processors. It has been shown that when the

number of processes is greater than 24, there is a decrease in the efficiency and scaling of

the program. This is due to the fact that the communication overhead becomes large than

the performance gain.

A shared memory architecture was chosen for the first implementation of a parallel

version of RZSweep because it is typically easier to develop parallel algorithm for this

architecture. This architecture has favorable memory usage characteristics, and it is the

typical architecture used for SGI graphics workstations.

P2 P3P1

Access

Global shared memory

Common Common
Access

Figure 4.2 Shared memory architecture

21

M1

M2

 M3

M4

P1

P2

P3

P4

Figure 4.3 Switching circuits to avoid conflicts (adapted from [5])

4.1.2 Parallelization Process

The following steps were followed for the parallelization.

� A parallel extension to the serial algorithm was developed that uses an image par-
titioning technique called tiling. The approach is similar to the parallel ZSweep
algorithm by Farias et al. [14].

� The screen space is divided into tiles, and each tile is dynamically assigned to the
processors until all the tiles are exhausted.

� The rendering is done individually by each processor. Each processor has an image
space of its own where it renders its sub image. The final image is composite of all
these sub images.

� No special data structures are required to store the data, since the shared memory
architecture allows access from a single data bank. All the processors access data
from the single pool of data. This eliminates any data replication and hence reduces
the memory requirement.

� The main loop of the algorithm remains unaltered. Each processor has the main
algorithm running independently.

� Experiments have been conducted on a multi-processor SGI machines to test the
efficiency of PARZSweep in terms of speed and image quality.

22

4.1.3 Pseudo Code of Algorithm

The PARZSweep algorithm has been designed based on the approach of Neih and Levoy

[34]. The algorithm uses an adaptive image based task scheduling approach. It has a

simple logic of assigning tiles to each processor and allowing the processor to render the

tile and generate the final sub image. The algorithm is presented in Figure 4.4

 − set as swept

 that define new faces incident on
 the current vertex

 − retrieve next vertex from heap

send neighboring vertices to heap
and set as sent

project the new faces

 − determine neighboring vertices

Divide screen space into tiles
Determine number of processors

 − assign next available tile to processor dynamically
While (tiles not empty)

 − set tile to rendered

 while (heap not empty)

− if the corresponding swept flag is false

− if the corresponding sent flag is false

Figure 4.4 PARZSweep algorithm

The cost of rendering using PARZSweep on multiple processors is generally less than

the total cost of the RZSweep algorithm. The rendering cost for each tile depends on the

23

area of the tile and the number of data points present on that tile. If the number of tiles is

equal to the number of processors, the total rendering tile for the image is approximately

equal to the longest rendering time for a tile.

4.1.4 Tiling

One of the main issues of parallelization is deciding the work distribution among the pro-

cessors. The work division can be approached either from object space or from image

space. Object space distribution involves dividing the volume into chunks and assigning

each chunk to a different processor. Alternatively, image-based distribution divides the

image of the projected volume and assigns the corresponding sub volume to a processor

as a job.

PARZSweep follows an approach called image based task scheduling or tiling for par-

allelization. The approach is very simple in its nature and yields good results. The idea

is to divide the screen into tiles, and place them into a work queue. The tiles are user

specified and each tile qualifies for a job. The processors are assigned these tiles in a dy-

namic fashion and each processor renders the tile independently to yield an image. This

process continues until there are no more tiles to render. The final image consists of all

these images pooled together (see Figure 4.5).

To perform the rendering it is important to know the bounds of each tile in object

space. Each of the tiles in the screen is extruded into the implicit grid of the regular

data set. This lattice is in the world coordinate system whereas the tiles are in the view

24

Figure 4.5 Image based task scheduling or tiling

coordinate system. Hence there is a conversion from the screen to the world coordinate

system to determine the vertices which form the bounding box for each tile (Figure 4.6).

Each of the bound volumes is swept separately using the RZSweep algorithm described

above.

4.1.5 PARZSweep

This section describes the algorithm PARZSweep in detail. PARZSweep performs RZSweep

on each of the tiles obtained after image partition. As stated above, the tiling process is

performed on the screen to obtain the image partitions. Each tile is defined by 4 vertices

which form its boundary. The vertices that bound each tile are then converted into the

world coordinate system by performing a screen to world conversion. The vertices thus

obtained are imposed on the lattice of the rotated regular grid (described in section 3.2) to

25

Tile in screen space

extrapolated into volume space

Chunk obtained from screen tile

Figure 4.6 Extrusion of tiles to find the bound volumes

obtain the intersections with the data volume. These vertices are called world vertices. It is

important to note that the grid described is rotated since the user can specify any rotation.

The rotation specified by the user is applied to the implicit grid and a rotated grid is ob-

tained. This rotated grid is used to to obtain the world vertices. These world vertices may

not be perfectly aligned with the regular grid due to the randomness in the tile creation.

Also screen space is not divided in the same units as the regular grid giving rise to the

possibility that the world vertices will not fit exactly into the grid as shown in Figure 4.7.

The intersections with the regular grid are obtained by considering the nearest grid

point compared to the world intersection (Figure 4.8). These grid intersections are the

bounds of the ’shafts’ emanating from each tile.

26

Bounding box of world vertices

 Shaft emanating from the world vertices

with the grid and the exact grid intersections need to be found.
The world vertices do not always fit in the regular lattice. Hence the cubical volume does not align

Figure 4.7 Mismatch of world and screen grid

Grid
Tile extrapolated from screen

approximated tile vertex aligned with grid

Figure 4.8 Aligning tile from screen with grid points

27

These shafts divide the data volume into cubes of sub volumes as described in Fig-

ure 4.6 and Figure 4.7. Each of the sub volumes are treated as separate jobs which need to

be rendered to yield the result. Hence every cubic volume is rendered using the RZSweep

algorithm described before. The order of assigning jobs to the processors is a significant

decision. In PARZSweep, there is no priority implemented for assigning the jobs to the

processors since each of the cubic volumes is given the same importance. Therefore the

processors are assigned the jobs in a dynamic fashion. There is a race between the proces-

sors to grab the jobs placed in the job queue. Conflicts can arise during the job assignment

between the processors. To avoid any conflict, multiple rendering locks are implemented

during the distribution. A lock is a command that forces all the parallel work to be done

into a serial queue. Once a lock command is issued at a specific place in the code, the

processors wait until every single processor gets to that specific place in the code. So

synchronization of all the procesors is done at the lock. This breaks the parallel nature of

the algorithm. Usage of the lock prevents all the processors from working in parallel and

places them in a serial queue. This queue is managed in a ’first in first out(FIFO)’ basis.

Since locks break the parallel processing and force serial implementation, minimum usage

of locks is advisable (Figure 4.9). PARZSweep uses just one lock for the work distribution.

As mentioned before, rendering of each cubic volume is done using RZSweep. Each

tile yields a sub image of its own. The final image is a composite of all these sub images.

An important issue is to handle the border of these images properly. As described before

the grid and the tiles do not necessarily align perfectly. In such a case there may be a

28

LOCK

P0 1P 2P nP

2P nP1P0P

Serial nature forced into parallel process

Resumes parallel nature after lock released

Figure 4.9 Lock implementation forces serial behavior

face that is intersected by two tiles (Figure 4.10). Care must be taken to avoid multi

projection of these faces. Such faces can cause unnecessary time consumption and can

result in incorrect images. PARZSweep takes care of this problem and does not perform

multi projection of such faces. This is accomplished by storing the values of the boundary

vertices in a structure in the preprocessing step. During the composition step, if the vertices

are boundary vertices, this structure is accessed and the composition is done until the pixels

reach the boundary values.

4.1.6 Implementation Issues of PARZSweep

A number of implementation issues must be addressed in PARZSweep. These include data

structures, memory issues, lock usage, and image to world conversion.

29

Regular grid

Tile 2

Tile 1

Non aligned tile

Figure 4.10 Tiles do not align with the grid causing the face to split into two

4.1.6.1 Changes in data structures

No changes were made in the data structures previously used in RZSweep. Each tile

creates a copy of its own heap to sort the vertices that belong to it. The size of the heap

is equal to the chunk of the data volume that the tile projects into. Hence PARZSweep is

not very memory intensive. A new data structure is used to store the values of the vertices

defining each tile. The size of the data structure depends on the number of tiles created

which typically does not exceed a few hundred.

One of the components of the data structure is the values of the boundary of the tiles

in the image space. These boundary values are used to avoid multiple projection. During

the composition stage, these values are used for limiting the scan conversion of the faces.

30

Hence, when the faces do not align with the grid (see Figure 4.10 and Figure 4.8) the

faces are rendered until the end of each tile. This limitation is brought about by storing

the boundary values of each tile. This needs to be done in the image space by storing the

interger coordinates of the pixels.

4.1.6.2 Memory issues

Since no special data structures are used, the memory requirement of PARZSweep is sim-

ilar to RZSweep.

The shared memory architecture allows pooling of the memory for availability to the

various processors. Hence many data structures can be shared between processors, and

this makes the algorithm less memory intensive. There exists a single copy of the data

volume shared by all processors. Since all the processors only perform read operations on

the data, a single copy is sufficient for all the processors.

As discussed in [8], an attributes flag array is maintained to mark the vertices as sent

and swept. This array has the size of the entire data set, since each vertex needs to be

flagged. A write operation into this array is performed for each vertex. However, only a

single copy of this attribute flag array is used in PARZSweep in order to increase memory

efficiency. Since each chunk of data has a corresponding chunk in the attribute flag array,

every processor accesses only a part of the flag array and there are no clashes among write

operations as shown in Figure 4.11. However, this is not true for the boundary vertices,

since each boundary vertex would be accessed by more than one processor. This is solved

31

Chunk 4

Chunk 3

Chunk 2

Chunk 1

Attribute Flag Array

Data Array

Tile 2

Tile 2Tile 1 Tile 3 Tile 4

Tile 4Tile 3Tile 1

Data Volume

Figure 4.11 Memory access by each processor

32

by applying a simple yet effective strategy. The vertices in the boundary are modified

by each processor during its individual execution of the algorithm. But as soon as the

processor completes its execution, the attribute flag bits for the boundary vertices are reset

into the original values. Hence for the next processor, these vertices are again ready to be

modified according to the sweeping process of that processor.

4.1.6.3 Lock usage

PARZSweep uses only one lock in order to preserve the parallel nature of the algorithm.

The lock is used in the module that assigns the next tile to an available processor. Process-

ing of all the currently running jobs is frozen by the lock and the tile count is incremented.

The next tile is then assigned to a free processor requesting a job. This functionality en-

sures that there is no conflict in the tile assignment and no repetition in the tile distribution.

In parallel processing, write operations for shared variables need to be monitored to

avoid conflicts between processors. The shared variables in PARZSweep are the data and

the attribute flag array.

The data array is used only to access the scalar value of each voxel. Hence only read

operations are performed on the data and this does not require a locking mechanism. The

attribute flag bits array, on the other hand, has write operations that can cause conflicts.

The PARZSweep algorithm avoids the use of inefficient locks to address this problem.

Instead of using the locks for this purpose, the attribute flag bits are monitored for conflict

areas and reset back to original values as described in section 4.1.6.2.

33

4.1.6.4 Image to world conversion

PARZSweep is based on image-based task distribution. Hence it starts from the view

plane and extends to the data volume to create chunks of volume that are assigned to

each processors to render. The image space and the object space do not align perfectly as

discussed before. Hence a conversion from the image to the world coordinate system is

performed.

4.1.7 PARZSweep in action

Figure 4.12 and Figure 4.13 give a sequence of images that have been captured to illustrate

the working of PARZSweep. All these images have been rendered using a single processor.

The dataset used in Figure 4.12 is a fuel dataset with a scalar threshold of 75. The dataset

used in Figure 4.13 is a CT scan of a lobster with a scalar threshold of 75. Notice that the

complete image is a composite of all the four tiles. Each tile is rendered in the same image

buffer, saving reconstruction cost.

34

Figure 4.12 PARZSweep processing of fuel dataset

35

Figure 4.13 PARZSweep processing of lobster dataset

CHAPTER V

EXPERIMENTAL RESULTS

This section describes a set of experiments that were conducted to evaluate the perfor-

mance of PARZSweep. RZSweep and PARZSweep are compared based on the prerender-

ing times, run-times and the image quality produced. The performance of PARZSweep is

evaluated with increasing number of tiles and processors.

5.1 Experimental Conditions

Most experiments were performed on an SGI machine that is a 4 processor shared

memory architecture machine. Details about the machine is given in the next section5.1.1.

One would typically expect to use a number of tiles equal to the number of proces-

sors. In this case, the timing of the most expensive tile is taken as the time to render that

dataset. Results given in section 5.1.2 indicate that the preprocessing time is insignificant

compared to the rendering time. The times reported in the thesis have been averaged over

5 iterations. Standard deviation has been provided wherever applicable. In most of the

tables, a minimum time and a maximum time is presented. The minimum time is the time

taken for the least expensive tile to be rendered. The maximum time is the time taken for

the most expensive tile to be rendered.

36

37

Table 5.1 describes the datasets used. Datasets have been down-loaded from [2].

Table 5.1 Size of the datasets used

Dataset Size (bytes)
fuel

��� �

lobster �������	� �
� � � �

MRI
��� � � �������

CT
� � � � ��� � � � � �

5.1.1 Machine Details

The following is the architecture of the machine on which all the experiments have been

conducted.

� 4 400 MHZ IP27 Processors

� CPU: MIPS R12000 Processor Chip Revision: 3.5

� FPU: MIPS R12010 Floating Point Chip Revision: 3.5

� Main memory size: 4096 Mbytes

� Instruction cache size: 32 Kbytes

� Data cache size: 32 Kbytes

� Secondary unified instruction/data cache size: 8 Mbytes

� Integral SCSI controller 2: Version QL1040B (rev. 2), single ended

� Integral SCSI controller 3: Version QL1040B (rev. 2), differential

� Integral SCSI controller 4: Version QL1040B (rev. 2), differential

� Integral SCSI controller 5: Version QL1040B (rev. 2), differential

� Integral SCSI controller 1: Version QL1040B (rev. 2), single ended

38

� Integral SCSI controller 0: Version QL1040B (rev. 2), single ended

� Disk drive: unit 1 on SCSI controller 0

� CDROM: unit 6 on SCSI controller 0

� IOC3 serial port: tty1

� IOC3 serial port: tty2

� IOC3 serial port: tty3

� IOC3 serial port: tty4

� IOC3 parallel port: plp1

� Graphics board: InfiniteReality3

� Integral Fast Ethernet: ef0, version 1, module 1, slot io1, pci 2

� ATM PCA-200E OC-3: module 1, xio slot 2, pci slot 0, unit 0

� Iris Audio Processor: version RAD revision 7.0, number 1

� Origin MSCSI board, module 1 slot 7: Revision 4

� Origin BASEIO board, module 1 slot 1: Revision 4

� Origin PCI XIO board, module 1 slot 2: Revision 4

� IOC3 external interrupts: 1

5.1.2 Prerendering Times

This section describes the times taken by PARZSweep prior to its rendering routine for

each dataset. The steps included in prerendering are the division of the screen, reading

of the data file, storing into the data structures and calculating the visible faces to be

drawn. Comparison of the times required by PARZSweep and RZSweep for prerendering

are given in Table 5.2. The times for prerendering required by RZSweep and PARZSweep

are similar. This shows that the parallel implementation has not increased the memory

39

allocation overhead and and the time complexity for prerendering remains the same for

the parallel version.

Table 5.2 Time required for preprocessing in PARZSweep

Dataset Threshold PARZSweep Times (sec) RZSweep Times (sec)
fuel 75 0.1277 0.127

lobster 27 4.023 4.130
MRI 40 5.088 5.053
CT 180 38.55 41.097

5.1.3 PARZSweep vs. RZSweep

The times required for volume rendering by PARZSweep and RZSweep were compared

and timing results are discussed in Table 5.3. The times obtained for PARZSweep cor-

respond to the timings taken for 4 processors and 4 tiles (
� � �

) tiles. The run-times for

RZSweep for lobster and CTbrain datasets are quite variable as shown by the large stan-

dard deviation. For all datasets, PARZSweep running on 4 processors result in times that

are at most one third of the times obtained by RZSweep. This follows the expectation,

since parallelization should result in a decrease in rendering times. In the case of fuel

dataset, super linear speed up is consistently obtained. This super linear speed up can

be attributed to better cache hits. During the process of rendering, the operating system

prefetches data that are in the vicinity of the current vertex. This prefetched data is stored

in the cache of every processor. When multiple processors are used, more than one cache

40

is being exploited at a single time. So more data is prefetched in a single run. PARZSweep

appears to utilize this cache prefetching to reduce the total rendering time.

Table 5.3 Computational times of PARZSweep vs. RZSweep

Dataset PARZSweep (sec)(�) PARZSweep (sec)(�) RZSweep (sec)(�) RZSweep (sec)(�)
fuel ��� ��� � � � � ��� � 0.26

� � � � � ��� �

lobster � ��� � � ��� � �	� 58.14
�
� � � �

MRI
� � � � � ���
��� 75.10

� � �
�

CTbrain �����
� � � � �� � 350.11 ��� � � ���

5.1.4 Image quality comparison between PARZSweep and RZSweep

Figure 5.1 through Figure 5.4 show images of datasets rendered by PARZSweep using 4

tiles and 1 processor. A per pixel comparison was done between each of these images

and the corresponding image rendered by RZSweep. This demonstrates that PARZSweep

maintains the image quality obtained by RZSweep. There was no difference between the

images generated by the parallel version and the serial version as seen in Table 5.4.

Table 5.4 Per pixel difference between RZSweep and PARZSweep Images

Dataset Numerical Diff.
fuel 0

lobster 0
MRI 0
CT 0

41

Figure 5.1 Fuel dataset with a threshold of 75

5.1.5 Increasing tile numbers

The goal of parallelization is to divide the rendering task among multiple processors. We

compared the maximum time taken to render a tile when the images were divided into

different number of tiles. We expected the maximum time taken to render a single tile to

decrease with an increasing number of tiles since the amount of data per tile decreases. As

seen in Table 5.5, we observed an unexpected increase in the maximum time when going

from 4 tiles (
� � �

) to 16 tiles (
� � �). The amount of time taken remain fairly stable

with further increases in the number of tiles. This can be explained by the concentration

of data in certain regions of the dataset. Table 5.6 shows that the maximum number of

points obtained as the number of tiles increases decreases very slowly. This indicates that

42

Figure 5.2 Lobster dataset with a threshold of 27

Figure 5.3 MRI dataset with a threshold of 40

43

Figure 5.4 CT dataset with a threshold of 180

splitting the image into more tiles does not necessarily substantially reduce the number of

points in every table. This indicates that the naive task scheduling algorithm used is not

sufficient and further work is required to exploit the maximum potential of the algorithm.

The increase in time required when going from 4 tiles to 16 tiles cannot currently be

explained and requires further investigation.

There is a clear difference in the minimum and maximum times required to render

tiles, indicating that there needs to be load balancing of the process. It is apparent that the

amount of data contained in the tiles varies greatly. Several load balancing strategies can

be applied to bring down the difference such as [42] and [9].

44

Table 5.5 Computational times as a function of number of tiles with the fuel dataset

Tiles Min time (sec)(�) Min time (sec)(�) Max time (sec)(�) Max time (sec)(�)
� � � ��� � � � ��� � ��� ����� 0.092 ���
� ��� ��� �� � � ��� � � ��� ����� ��� � ��� ���

�
0.26 ��� � ��� ���

�

� � � ��� � � ��� ����� ��� � ��� ���
�

0.26 ��� � ��� ���
�

� � ��� � ��� � � ��� ����� ��� � ��� ���
�

0.27 ��� � ��� ���
�

Table 5.6 Number of points projected during rendering as a function of number of tiles
with the fuel dataset

Tiles Minimum points Maximum points
� � � � � � � ������ � � � � � �

� � � � �	� �

� � ��� � � � � �

5.1.6 Increasing number of processes

Table 5.7 gives a comparison of the times for PARZSweep as the number of processors

increases for the fuel dataset. The limitation of available hardware has restricted the num-

ber of processors to a maximum of four. The unexpected increase in time required for

rendering when going from 4 to 16 tiles was observed again. The times for rendering a tile

with increasing processor number is almost stable.

This is attributed to uneven division of work among processors. The goal behind in-

creasing the number of tiles is to reduce the work load in each tile and hence reduce the

work load for each processor. But the results show that the number of points in each tile

has not been significantly reduced. So, the maximum time for rendering a tile has not been

45

Table 5.7 Computational times as a function of number of processes

No. of procs.
����� ����� ����� �
	����
	

min max min max min max min max
1 0.04 0.08 ��� � � ��� � ��� 0.25 ��� � � � � � ��� 0.26 ��� � � ��� � ��� 0.26
2 0.05 0.11 ��� � � ��� ����� 0.26 ��� � � � � ����� 0.26 ��� ��� ��� ����� 0.26
3 0.05 0.12

� � � � ��� ����� 0.26
� � ��� � � ����� 0.26 ��� ��� ��� ����� 0.26

4 0.07 0.12
� � � � ��� � ��� 0.26

� � � � � � � ��� 0.26 ��� � � ��� � ��� 0.26

reduced. This indicates that the concentration of data in regular datasets is such that there

is more data in regions of the data volume than in the others. Those concentrated regions

tend to stay on in a single tile even when the tiles are subdivided. Hence the maximum

time taken for rendering a tile remains the same.

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The focus of this research was to develop a parallel version for a new volume rendering

algorithm for rectilinear datasets. The hypothesis of this thesis research was that a parallel

version of RZSweep can be designed and implemented which utilizes multiple processors

to reduce rendering times. This hypothesis was confirmed. The novelty of the RZSweep

algorithm is that for the first time the sweep paradigm has been adapted for rendering of

regular grids. The serial version of the algorithm, RZSweep, successfully rendered recti-

linear datasets resulting in images with good quality. The implicit regularity of rectilinear

datasets has been exploited in the algorithm to find out the adjacency information for all

vertices. Hence no additional memory has been used to store the vertices information. The

memory requirement of the algorithm was also less resulting in good space complexity.

Although, emphasis was given on image quality, the rendering speed was also satisfactory.

Further work has been done in the serial version to implement lighting and transfer func-

tions to make the resulting images more realistic. More details on this can be found in

[8].

46

47

The Parallel capacity of the algorithm was explored in this thesis. PARZSweep, a

parallel version of RZSweep, has been developed for rendering rectilinear datasets, for

the shared memory architecture. Data distribution has been done using the image space

partitioning technique, also called tiling. This technique divides the screen space into tiles

and each tile is dynamically assigned to a processor for rendering of sub images. The

volume space is divided by extrapolating the tiles into the object space. Each tile results

in sub volumes. Each sub volume is then assigned dynamically to separate processors.

Each processor separately renders its own data resulting in sub images. The final image

is a composite of these sub images. This partitioning technique is a very simple space

distribution scheme. Since a shared memory architecture is used, only a single copy of

the data volume must be kept. Hence, the memory efficiency of the serial code has been

preserved successfully in the parallel version. No additional data structures have been used

in the parallel version maintaining the same space complexity as the serial version. Simple

mfork commands have been used to spawn new processes. No special forking techniques

such as p-threads have been used.

This was a first attempt to test the capability of the sweep paradigm for rendering regu-

lar datasets in a parallel fashion. PARZSweep has achieved great speedup in the rendering

of regular grids over its serial predecessor RZSweep when using 4 tiles and 4 processors.

The speedup has been more than 50% of the rendering speed as seen in the results section.

This speedup is probably because there are good cache hits in the code and efficiency in

prefetching of data has been increased. Although there is a considerable amount of speed

48

up in the parallel code in the rendering time when compared to the serial version, the scal-

ability of PARZSweep has turned out to be poor. The poor scalability is due to improper

load balancing of the jobs. This results from an uneven distribution of data amongst tiles.

This causes certain processors to do more of the rendering than others. Hence this af-

fects the efficiency as the number of processes increase. Another cause may be weak task

scheduling. Image-based task scheduling is a very simple and basic type of task distri-

bution scheme. No special priority queues has been implemented in this first approach.

Priority queues can increment the performance factor significantly since the tiles that have

more data would be rendered with a higher priority than other tiles. More research needs

to be done in this area. A more complex task scheduling scheme needs to be implemented

to make the code scalable.

6.2 Future work

This research has demonstrated the potential of PARZSweep for parallel rendering of

regular grids. However, further work needs to be done to improve performance. Methods

for achieving a more even division of data among tasks need to be explored as well as

more sophisticated methods of scheduling tasks.

The results show that the code is extremely load imbalanced. So load balancing sched-

ules need to be worked out. Various load balancing schemas need to be tested and the most

efficient one needs to be implemented. The results show that PARZSweep is faster than

49

RZSweep. Hence the expectation is that since there has been a speed up in the timings

from the serial version, load balancing would bring about scaling in the code.

A new approach of object-based task scheduling could be implemented where the ob-

ject space would be partitioned depending on the processes required by the user. Each

volume is given to the corresponding processor to render the sub image.

Priority queues to order the tasks based on the load could also be implemented. The

current implementation assigns the jobs to the processor in a dynamic fashion. This type

can be classified as first come first serve basis. The processes compete with each other

to get the next job based on the time taken to complete the previous task. But that has

proven to be a weak scheme. Priority queues would prioritize the job queue instead of

dynamically assigning the jobs. Priority can be based on the work load or time taken to

complete the existing jobs. Time stamps can also be used to further the efficiency of the

queues.

This version of PARZSweep has been developed primarily for shared memory archi-

tectures. Part of the future work is to advance it to utilize the capacity of distributed

memory architectures. Research needs to be done concerning the methodology to carry

out the task distribution on a distributed architecture.

REFERENCES

[1] “VOLPACK,” http://www-graphics.stanford.edu/software/volpack (current August
10, 2002).

[2] “Volvis,” http://www.volvis.org (current 7 Dec. 2002).

[3] M. Amin, A. Grama, and V. Singh, “Fast volume rendering using an efficient, scal-
able parallel formulation of the shear–warp algorithm,” Proceedings of Parallel Ren-
dering Symposium, Atlanta, GA, 1995, pp. 7–14.

[4] R. Avila, T. He, L. Hong, A. Kaufman, H. Pfister, C. Silva, L. Sobierajski, and
S. Wang, “Volvis: A diversified volume visualization system,” Proceeding of IEEE
Visualization 1994, Washington, DC, Oct 17 – 21 1994, pp. 31–38.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation, Prentice
Hall, Englewood cliffs, New Jersey 07632, 1989.

[6] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware,” Proceedings of 1994 Symposium
on Volume Visualization, Tysons corner, Virginia, United States, Oct 17–18 1994,
pp. 91–98.

[7] J. Challinger, “Scalable parallel volume raycasting for non rectilinear computational
grids,” Proceedings of Parallel Rendering Symposium, San Jose, CA, 1993, pp. 81–
88.

[8] G. Chaudhary, RZSWeep: A new volume-rendering technique for uniform rectilin-
ear datsets, master’s thesis, Mississippi State University, Department of computer
science, Mississippi state university, Mississippi state, 39762, May 2003.

[9] B. Corrie and P. Mackerras, “Parallel volume rendering and data coherence,” Pro-
ceeding of Parallel Rendering Symposium, San Jose, CA, 1993, pp. 27–34.

[10] F. Dachille, K. Kreeer, B. Chen, I. Bilter, and A. Kaufman, “High quality volume
rendering using texture mapping hardware,” Proceedings of the 1998 SIGGRAPH/
EUROGRAPHICS Workshop on Graphics Hardware, Libson, Portugal, Aug 31–Sept
01 1998, pp. 67–76.

50

51

[11] J. Danskin and P. Hanrahan, “Fast algorithm for volume ray tracing,” Proceedings
of 1992 Workshop on Volume Visualization, Boston, Massachusetts, Oct 19–20 1992,
pp. 91–98.

[12] T. Elvins, “Volume rendering on a distributed memory parallel computer,” Proceed-
ings of Parallel Rendering Symposium, San Jose, CA, 1993, pp. 93–98.

[13] R. Farias, J. S. B. Mitchell, and C. Silva, “ZSweep: An efficient and exact pro-
jection algorithm for unstructured volume rendering,” Proceedings of ACM/IEEE
Symposium on Volume Visualization 2000, Salt Lake City, Utah, Oct 9–10 2000, pp.
91–99.

[14] R. Farias and C. Silva, “Parallelizing the ZSweep algorithm for distributed–shared
memory architectures,” Proceedings of ACM/IEEE International Workshop on Vol-
ume Graphics 2001, Stony Brook, New York, Jul 21–22 2001, pp. 59–66.

[15] H. Fuchus, Z. M. Kedem, and S. P. Uselton, “Optimal surface reconstruction from
planar contours,” Communication of the ACM, vol. 20, no. 10, Oct 1982, pp. 693–
702.

[16] I. Gargantini, T. R. S. Walsh, and O. L. Wu, “Displaying a voxel-based object via
linear octtrees,” Proceeding of SPIE 626, Jul 1986, pp. 460–466.

[17] C. Girsten, “Volume visualization of sparse irregular meshes,” IEEE Computer
Graphics and Applications, vol. 12, no. 2, 1992, pp. 40–48.

[18] K. H. Hoehne, B. Pfiesser, A. Pommet, R. S. M. Riemer, T. Schiemann, and T. U, “A
virtual body model for surgical education and rehearsal,” IEEE Computer Graphics
and Applications, vol. 29, no. 1, 1996, pp. 25–31.

[19] W. Hsu, “Segmented ray casting for data parallel volume rendering,” Proceeding
Parallel Rendering Symposium, San Jose, CA, 1993, pp. 93–98.

[20] J. Huang, N. Shareef, R. Crawfis, P. Sadayappan, and K. Mueller, “A parallel splat-
ting algorithm with occlusion culling,” 3rd Eurographics Workshop on Parallel
Graphics and Visualization, Girona, Spain, Sept 2000.

[21] P. Lacroute, “Real time volume rendering on shared memory multiprocessors using
shear warp factorization,” Proceeding of Parallel Rendering Symposium, Phoenix,
AZ, 1995.

[22] P. Lacroute and M. Levoy, “Fast volume rendering using a shear warp factorization
of the viewing transformation,” Proceedings of SIGGRAPH ’94, Orlando, Florida,
Jul 1994, pp. 451–458.

52

[23] M. Levoy, “Display of surfaces from volume data,” IEEE Computer Graphics and
Applications, vol. 8, no. 5, 1988, pp. 29–37.

[24] M. Levoy, “Efficient ray tracing of volume data,” ACM Transaction Computer
Graphics, vol. 9, no. 3, 1990, pp. 245–261.

[25] P. Li, S. Whitman, R. Mendoza, and J. Tsiao, “Prefix– A parallel splatting volume
rendering system for distributed visualization,” Proceeding of Parallel Rendering
Symposium, Phoenix, AZ, 1997.

[26] K. Ma, “Parallel volume ray casting for unstructured grid data on distributed memory
architecture,” Proceeding of Parallel Rendering Symposium, Atlanta, GA, 1995, pp.
23–30.

[27] K. Ma and T. Crockett, “A scalable parallel cell projection volume rendering al-
gorithm for three dimensional unstructured data,” Proceeding Parallel Rendering
Symposium, Phoenix, AZ, 1997, pp. 23–30.

[28] R. Machiraju and R. Yagel, “Efficient feed forward volume rendering techniques for
vector and parallel processors,” Proc. of SUPERCOMPUTING 93, Portland, Oregon,
Nov 1993, pp. 699–708.

[29] D. Meagher, “Geometric modeling using octree encoding,” Computer Graphics and
Image Processing, vol. 20, 1982, pp. 129–147.

[30] M. Meissner, U. Hoffman, and W. Strassner, “Enabling classification and shading
for 3D texture mapping based volume rendering,” Proceeding of IEEE Visualization
’99, San Francisco, CA, Oct 24–29 1999, pp. 207–214.

[31] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfish, “A practical eval-
uation of popular volume rendering algorithms,” Proceedings of the 2000 IEEE
Symposium on Volume Visualization 2000, Salt Lake City, Utah, Oct 9–10 2000, pp.
81–90.

[32] C. Montani, R. Perego, and R. Scopigno, “Parallel volume visualization on a hy-
percube architecture,” Proceeding of Parallel Rendering Symposium, Boston, MA,
1997, pp. 9–16.

[33] K. Mueller and R. Crawfish, “Eliminating popping artifacts in sheet buffer-based
splatting,” Proceeding of the Conference on Visualization ’98, Research Triangle
Park, North Carolina, Oct 18–23 1998, pp. 239–245.

[34] J. Neih and M. Levoy, “Volume rendering on scalable shared-memory mimd archi-
tecture,” 1992 Workshop on Volume Visualization Proceedings, Boston, New York,
Oct 1992, pp. 17–24.

53

[35] F. Preperata and M. Shamos, Computational geometry: an introduction, Springler
verlag, New york, 1985.

[36] K. Sano, H. Kitajima, H. Kobayashi, and T. Nakamura, “Parallel processing of the
shear warp factorization with the binary swap method on a distributed memory mul-
tiprocessor system,” Proceeding of Parallel Rendering Symposium, Phoenix, AZ,
1995.

[37] C. Silva and J. Mitchell, “The lazy sweep raycasting algorithm for rendering irregular
grids,” IEEE Transactions on Visualization and Computer Graphics, vol. 3, no. 5,
1998, pp. 142–157.

[38] U. Tiede, K. H. Hoehne, M. Bomans, A. Pommert, M. Riemer, and G. Weibecke,
“Investigation of medical 3D rendering algorithms,” IEEE Computer Graphics and
Applications, vol. 10, no. 2, 1990, pp. 41–53.

[39] U. Tiede, T. Schiemann, and K. H. Hoehne, “High quality rendering of attributed
volume data.,” Proceeding of IEEE Visualization ’98. 1998, pp. 255–262, Springer-
Verlag, New York.

[40] H. Tuy and L. Tuy, “Direct 2D display of 3D objects,” IEEE Computer Graphics
and Applications, vol. 8, no. 5, 1988, pp. 29–33.

[41] L. Westover, “Footprint evaluation for volume rendering,” Computer Graphics (Proc.
SIGGRAPH), vol. 24, no. 4, Aug 1990, pp. 367–376.

[42] S. Whitman, “A task adaptive parallel graphics renderer,” Proceeding of Parallel
Rendering Symposium, San Jose, CA, 1993, pp. 27–34.

[43] T. Whitted, “An improved illumination model for shaded display,” Communication
of the ACM, vol. 23, no. 6, 1980, pp. 343–349.

[44] C. M. Whittenbrink, Designing optimal parallel volume rendering algorithms, doc-
toral dissertation, University of Washington, 1993.

[45] R. Yagel, “Towards real time volume rendering,” Proceedings of GRAPHICON ’96,
vol. 1, Jul 1996, pp. 230–241.

[46] R. Yagel, D. Reed, A. Law, P. W. Shih, and N. Shareef, “Hardware assisted volume
rendering of unstructured grids by incremental slicing,” Proceedings 1996 Sympo-
sium on Volume Visualization, San Francisco, CA, Sept 1996, pp. 55–62.

[47] R. Yagel and Z. Shi, “Accelerating volume animation by space leaping,” Proceeding
of Visualization ’93, San Jost, California, Oct 1993, pp. 62–69.

	Parzsweep: A Novel Parallel Algorithm for Volume Rendering of Regular Datasets
	Recommended Citation

	thesis.dvi

