
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-10-2003

Incorporating Fault-Tolerant Features into Message-Passing Incorporating Fault-Tolerant Features into Message-Passing

Middleware Middleware

Rajanikanth Reddy Batchu

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Batchu, Rajanikanth Reddy, "Incorporating Fault-Tolerant Features into Message-Passing Middleware"
(2003). Theses and Dissertations. 2679.
https://scholarsjunction.msstate.edu/td/2679

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2679?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2679&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

INCORPORATING FAULT-TOLERANT FEATURES INTO

MESSAGE-PASSING MIDDLEWARE

By

Rajanikanth Reddy Batchu

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2003

Copyright by

Rajanikanth Reddy Batchu

2003

_________________________________ _________________________________

_________________________________ _________________________________

INCORPORATING FAULT-TOLERANT FEATURES INTO

MESSAGE-PASSING MIDDLEWARE

By

Rajanikanth Reddy Batchu

Approved:

Anthony Skjellum Donna S. Reese
Associate Professor of Computer Science Associate Professor of Computer Science
and Engineering and Engineering
(Major Professor) (Committee Member)

Rainey Little Susan M. Bridges
Associate Professor of Computer Science Professor of Computer Science
and Engineering and Engineering
(Committee Member) (Graduate Coordinator)

A. Wayne Bennett
Dean of the College of Engineering

injected overheads. The hypothesis is validated through experimentation and

measurement of sample MPI applications for two AEMs.

DEDICATION

To my loving family.

ii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my major advisor Dr. Anthony

Skjellum. This work would not have been possible without his guidance and suggestions.

I would also like to thank my committee members Dr. Reese and Dr. Little for their

suggestions. I also thank Mr. Yogi Dandass for his insightful suggestions and mentoring.

I would like to thank Dr. Beddhu and Dr. Dimitrov for their valuable suggestions

during my internship at MPI Software Technology Inc, where most of the ideas for this

research were formed. I would also like to thank my colleagues at the HPC lab, who

made it more fun on every step of the way.

iii

TABLE OF CONTENTS

Page

DEDICATION .. ii

ACKNOWLEDGEMENTS

CHAPTER

.. iii

LIST OF TABLES .. vii

LIST OF FIGURES .. viii

I. INTRODUCTION ... 1

1.1 Background ... 1
1.2 Motivation ... 2
1.3 Hypothesis .. 8
1.4 Basis .. 9
1.5 Contributions .. 9
1.6 Organization ... 10

 II. LITERATURE SURVEY ... 11

2.1 Fault-tolerance Basics ... 11
2.2 Limitations of MPI standard ... 12
2.3 Other Research efforts .. 14

2.3.1 CoCheck .. 14
2.3.2 Egida .. 15
2.3.3 FT-MPI .. 16
2.3.4 Starfish ... 16

2.4 Summary ... 17

 III. MODEL-BASED APPROACH ... 18

3.1 Research Basis .. 18
3.2 Model-based Parameters.. 21

iv

CHAPTER Page

3.3 Application Execution models... 23
3.3.1 Model-Ia ... 24
3.3.2 Model-IIa .. 26

 IV. APPROACH ... 29

4.1 Research Methodology ... 29
4.2 Usage .. 30

4.2.1 User level changes ... 30
4.2.2.1 Development and steps .. 31
4.2.2.2 FT API and code modifications ... 34

4.3 Design and Implementation .. 44
4.3.1 Detection .. 45
4.3.2 Notification and Recovery ... 50

4.3.2.1 Model-Ia Recovery .. 50
4.3.2.2 Model-IIa Recovery ... 52

 V. EXPERIMENTS, RESULTS, AND ANALYSIS .. 55

5.1 Message-passing Overheads ... 56
5.1.1 Latency Overhead .. 57

5.1.1.1 Experimental Setup .. 57
5.1.1.2 Results and Analysis .. 58

5.1.2 Bandwidth Overhead ... 61
5.1.2.1 Experimental Setup .. 61
5.1.2.2 Results and Analysis .. 63

5.2 Model-Ia Results ... 64
5.2.1 Runtime Overhead ... 64

5.2.1.1 Experimental Setup .. 65
5.2.1.2 Results and Analysis .. 66

5.2.2 Program changes .. 67
5.2.2.1 Program Change Ratio ... 67
5.2.2.2 Results and Analysis .. 67

5.2.3 Recovery Time ... 68
5.2.3.1 Experimental Setup .. 68
5.2.3.2 Results and Analysis .. 69

5.3 Model-IIa Results ... 72
5.3.1 Runtime Overhead ... 73

5.3.1.1 Experimental Setup .. 73
5.3.1.2 Results and Analysis .. 74

5.3.2 Program Changes ... 76
5.3.2.1 Program Change Ratio ... 76
5.3.2.2 Results and Analysis .. 76

v

CHAPTER Page

5.3.3 Recovery Time ... 77
5.3.3.1 Experimental Setup .. 77
5.3.3.2 Results and Analysis .. 78

5.4 Summary ... 79

 VI. OTHER OBSERVATIONS ... 81

6.1 Components of Fault- free Overhead .. 81
6.2 Placement of Services ... 85

 VII. CONCLUSIONS .. 88

7.1 Summary ... 88
7.2 Future work ... 90

REFERENCES .. 92

APPENDIX

A. OTHER MODEL-IA RESULTS .. 95

B. SCALABILITY TESTS ... 101

vi

LIST OF TABLES

TABLE Page

1.1 Hypothesized Parameter values for Model-Ia and Model-II 9

3.1 Application Execution Models .. 23

5.1 Fault- free Runtime Overhead in Model-Ia, Pmandel Application 67

5.2 Program Change Ratio in Model-Ia, Pmandel Application 67

5.3 Recovery Time in Model-Ia, Pmandel Application ... 70

5.4 Fault- free Runtime Overhead without Checkpointing in Model- IIa,
Game of Life Application ... 75

5.5 Program Change Ratio for Model-IIa,
Game of Life Application ... 77

5.6 Middleware Level Recovery Time for Model-IIa,
Game of Life Application ... 78

5.7 Application Level Recovery Time for Model-IIa,
Game of Life Application ... 78

B.1 Speedup of Game of Life Application with MPI/Pro and MPI/FT 103

vii

LIST OF FIGURES

FIGURE Page

1.1 Probability of Completion in Harsh Environments ... 3

1.2 Typical Terminate-and-Restart Strategy .. 4

1.3 Mean Runtimes under Terminate-Restart and Fall through
 Fault-tolerant Strategy for Successful Completion 6

3.1 Middleware Design Process Inputs ... 21

3.2 Model-Ia: Maser-Worker Application Model-Ia ... 25

3.3 Model-IIa: SPMD all- interacting model .. 27

4.1 Utilization of Spare Ranks in MPI/FT ... 34

4.2 Pseudo-code for Unmodified Model-Ia Application 36

4.3 Pseudo-code for Modified Model- Ia Application .. 37

4.4 Pseudo-code for Unmodified Model-IIa Application 41

4.5 Pseudo-code for Modified Model- IIa Application .. 43

4.6 Primary Steps in Achieving Fault-tolerance .. 45

4.7 Coordinator and SCT: External heartbeat mechanism 47

4.8 SCT and Progress Threads: Internal heartbeat mechanism 49

4.9 Notification and Recovery in Model-Ia ... 51

4.10 Notification and Recovery in Model-IIa .. 54

5.1 Pseudo-code for measuring Latency .. 58

viii

FIGURE Page

5.2 Latency Overheads with only External Heartbeats ... 59

5.3 Latency Overheads with Internal and External Heartbeats 59

5.4 MPI/Pro Latency and Latency Overheads for smaller message sizes 61

5.5 Pseudo-code for measuring Bandwidth ... 62

5.6 Bandwidth Overheads with only External Heartbeats 63

5.7 Bandwidth Overheads with Internal and External Heartbeats 64

5.8 Pseudo-code for Model-Ia Application ... 66

5.9 Runtime of Pmandel Application with faults at 10 % of Progress 71

5.10 Runtime of Pmandel Application with faults at 90 % of Progress 71

5.11 Pseudo-code for Model-IIa Application .. 74

5.12 Fault- free Overhead with Checkpointing in Model-IIa,
Game of Life Application ... 76

6.1 Fault- free Overhead and CC-Ratio for MPI/FT Model- Ia at 40 bytes 83

6.2 Fault- free Overhead and CC-Ratio for Debug-enabled
MPI/FT Model-Ia at 40 bytes ... 84

7.1 Model-Ic with Parallel NMR ... 91

A.1 Pmandel Application Runtime with Fault at 20 % Progress 97

A.2 Pmandel Application Runtime with Fault at 30 % Progress 97

A.3 Pmandel Application Runtime with Fault at 40 % Progress 98

A.4 Pmandel Application Runtime with Fault at 50 % Progress 98

A.5 Pmandel Application Runtime with Fault at 60 % Progress 99

A.6: Pmandel Application Runtime with Fault at 70 % Progress 99

A.7 Pmandel Application Runtime with Fault at 80 % Progress 100

ix

FIGURE Page

B.1 Speedup of Game of Life, 16x16 ... 104

B.2 Speedup of Game of Life, 250x250 ... 104

B.3 Speedup of Game of Life, 1Kx1K ... 105

x

Chapter I

INTRODUCTION

1.1 Background

Clusters of COTS (Commodity Off The Shelf) components are rapidly replacing

traditional supercomputers. Clusters are networks of workstations interconnected by

high-speed networks. Recent advances in individual processors and interconnect

technologies have made clusters more reliable, scalable, and affordable [9]. They have

been the solution of choice for problem solving in several domains that require large

amounts of computation power.

The efficacy of these clusters fo r parallel computing is determined by two factors,

namely the middleware and the parallel programming environment. Middleware typically

glues various components in the systems and provides an abstract view of the system to

its users. Parallel programming environments provide a programming interface for

developing parallel applications. MPI (Message Passing Interface) [24] is a standard for

message-oriented middleware that also provides a parallel programming interface. MPI's

main goals are high performance and portability, and it is currently the de facto standard

for message-passing libraries. Numerous implementations of MPI have been realized

both in industry and academia. MPI has been successfully used in many

1

2

domains such as scientific computing and visualization [3, 7, 19, 27].

Clusters inherently increase the availability at hardware level with redundant and hot-

swappable components, but these features are not automatically transferred to higher

layers. With the increasing popularity of clusters and MPI applications, the issue of

reliability at the middleware and application layers is gaining prominence. The MPI

standard is limited and does not consist of comprehensive reliability measures. While

some other research efforts have realized fault-tolerant MPI, they employ common

mechanisms that may lead to high overheads and contradict the high-performance goals

of MPI. This thesis realizes MPI/FT™ [4], a low-overhead, fault-tolerant message-

passing middleware. MPI/FT has been realized by incorporating select fault-tolerant

features in MPI/Pro™ [26], an existing high-performance realization of MPI 1.1

standard.

1.2 Motivation

Clusters and MPI-based systems have proliferated in both academic and industrial

environments. These systems have been widely deployed in embedded, e-commerce/web,

and production environments and are used for both critical and non-critical operations.

Demand for supercomputing power in space-based missions has also necessitated the use

of clusters [19]. These space-based environments typically induce external faults at a

non-trivial rate. Faults and failures are also unavoidable in many ground systems. In

particular the probability of a node or OS (Operating System) failure increases with the

number of components. Figure 1.1 presents an intuitive diagram representing increasing

difficulty for longer MPI applications to finish in the presence of faults. Failures in many

of these systems are associated with high costs as they typically manifest into loss of

 Figure 1.1: Probability of Completion in Harsh Environments

3

critical data and time. It is essential that these systems be capable of tolerating both

external and internal faults and provide services with minimum disruption.

MPI’s [24] main goals of high-performance and portability have lead to the exclusion

of comprehensive reliability measures. This lack of reliability measures is evident in the

assumptions of a reliable communication layer, limited fault detection, and limited

recovery procedures in the standard. MPI has also been designed to work in relatively

safe environments and is typically not used in harsh environments such as space-based

missions. Chapter 2 discusses these limitations in detail. MPI implementations have

typically used a static process model to realize MPI, requiring successful completion of

all constituent processes for completion of the application.

 Figure 1.2: Typical Terminate-and-Restart Strategy

4

Current MPI implementations handle errors in processes by terminating the

application, and typically users restart the application. This simplistic terminate-and-

restart view is discussed in [4] and is also presented in Figure 1.2.

MPI applications are typically launched using a program launcher such as mpirun. In

the absence of any faults both the application and mpirun return successfully. In the

presence of a fault the application may terminate to return errors through mpirun. In such

a case the application can be restarted through manual intervention, or the restart

capability can be included in mpirun. However, based on the middleware implementation

and the application state at the instance of occurrence of the fault, the application may

λ

λ

λ

7

However, at smaller fault rates the fault-tolerant strategy incurs larger runtimes than a

simple terminate-and-restart strategy. Users may choose to adopt either strategy based on

several factors, some of which are the fault rate, the impact of mean runtime, the cost of

implementing fault-tolerance, or the costs associated with a failure. Most high-

performance applications in critical environments, which are associated with high costs

of failure, would be expected to adopt a fault-tolerant strategy rather than a terminate-

and-restart view. It must be noted that exaggerated values for fault- free overheads and

recovery time have been used for the graphs in Figure 1.3. Experiments in subsequent

chapters show that low overheads in the vicinity of 10% and recovery time as the order of

milliseconds is possible for some practical applications.

Thus, successful completion of an MPI application in the presence of external faults

and in a harsh environment is non-trivial and requires fault-tolerance and reliability in the

MPI implementation. High costs of failure in critical systems, insufficiency in the MPI

standard, and limitations in current implementations of MPI necessitate the need for a

fault-tolerant and reliable message-passing middleware. MPI/FT attempts to satisfy this

need by providing for an effective approach and implementation.

The scope of this research is limited to specific MPI applications. These applications

are assumed to be well written and devoid of internal errors arising during design and

development phases. They are expected to run successfully to completion in the absence

of external faults. MPI/FT aims at enabling such applications to complete successfully

even in the presence of external faults.

8

1.3 Hypothesis

This thesis hypothesizes that a modified MPI application with a given set of

application features developed on a modified MPI middleware will run successfully to

completion, even in the presence of a set of modeled fault conditions and will incur

acceptable fault- free performance overhead and acceptable application changes.

Application features refer to discerning characteristics, such as communication

topology and application structure, that are abstracted in AEMs (Application Execution

Model). This hypothesis is proved using two AEMs, namely Model-Ia and Model-IIa.

Model-Ia abstracts MPI applications that follow a simple master-worker style with a star

communication topology. Slave processes in this model can die and recover without

stalling the entire application’s progress. Model-IIa abstracts applications belonging to a

SPMD (Single Program Multiple Data) style and an all-to-all communication topology.

Death of a single process in this AEM forces the entire application to recovery.

Parameters that differentiate amongst AEMs and assumptions and restrictions on each of

the two models are further described in Chapter 3.

Performance is evaluated in terms of message-passing overheads and the run-time

overhead of an application. Application changes are measured using PCR (Program

Change Ratio), which is defined as a ratio between the number of new API calls

introduced and the number of lines in the original code. Acceptable performance

overhead and program changes were hypothesized on a per AEM basis. The acceptable

values for fault-free parameters and recovery for both Model-Ia (master-worker) and

Model-IIa are presented in Table 1.1.

9

Table 1.1: Hypothesized Parameter values for Model-Ia and Model- IIa

Parameter Model-Ia Model-IIa

Fault-Free Overheads
Message-Passing 5% 5%

Run-time 15% 30%

PCR 10% 10%

Recovery Time

(milliseconds)

Middleware Recovery 25 50

Application Recovery 500 500

1.4 Basis

Several research efforts exist to make MPI more reliable. They are briefly described

in Chapter 2, the literature survey. Most of these efforts treat the applications as a "black

box" and provide the same measures for reliability. Some such measures are user-

transparent checkpointing, and rollback and recovery measures. This thesis and research

are based on the fundamental premise that MPI-based parallel applications can provide

features and characteristics that are amenable to achieving fault-tolerance and reliability.

The basis of this research is that such exploitation of application features will yield fault-

tolerance at lower overheads. These discerning characteristics and relevant fault-tolerant

features are coupled into AEMs. Chapter 3 presents these features and explains relevant

models.

1.5 Contributions

The contributions of this thesis are as follows:

1) This thesis introduces a new model-based approach for exploiting application

features for achieving low overhead fault-tolerance.

10

2) This work has identified several practical AEMs based on the model-based

approach.

3) This work has realized prototype implementations of MPI/FT for two prominent

AEMs, Model-Ia (simple master/slave) and Model-IIa (SPMD).

4) This thesis has identified and measured fault-free and fault- injected parameters to

understand the impact of achieving fault-tolerance in message-passing middleware on

performance. It also shows that that fault-tolerance can be achieved with low fault-

free overheads.

1.6 Organization

The remainder of the document is organized as follows. Chapter 2 presents the

limitations in MPI standard and inadequacies in various MPI implementations based on a

literature review of various research efforts to make MPI reliable. Chapter 3 presents the

model-based approach and presents two AEMs: Model- Ia and Model-IIa. Chapter 4

presents the research approach for this thesis. Chapter 5 presents the parameters to

validate this thesis and experiments to obtain these values. Chapter 6 presents

information about observations and experiments to provide more insight. Chapter 7

concludes the document and suggests future work.

11Chapter II

LITERATURE SURVEY

This chapter presents a literature review of topics essential to this research. A

summary of fault-tolerance basics is presented in section 2.1. Section 2.2 discusses the

shortcomings and limitations in MPI-1.1 standard [24]. Section 2.3 briefly introduces

other research efforts and implementations to make more MPI more reliable and

discusses their drawbacks and limitations.

2.1 Fault-tolerance Basics

Dependability is an essential quality of systems. It can be defined as reliance on a

system to deliver services [17]. A system can be considered dependable when it is

available, reliable, and safe. Availability is defined as the probability that a system can

offer its services at a given instance of time. Reliability is defined as the percentage of

time a system conforms to its specifications and provides services. Safety is defined as a

system’s ability to operate safely and avoid catastrophic results.

Errors, faults, and failures refer to the same fundamental problem of deviations from

specifications at different levels of abstractions. These terms are used interchangeably in

the rest of this document. Faults can be classified by their origin, effects, and duration.

Various ways of achieving reliability [17], and hence dependability, in systems

include:

11

14

registered on a per communicator basis and do not allow for per function based

error handlers. Callback functions provide limited capability and flexibility and

cannot be invoked in case of process crashes and hangs.

MPI forum released the MPI-2 [25] standard in 1998. MPI-2 consists of extensions in

the areas of process creation and management, one-sided communications, extended

collective operations, and parallel I/O. A significant contribution of MPI-2 is the DPM

(Dynamic Process Management), which allows user programs to create and terminate

additional processes on demand. DPM may be used to compensate for the loss of a

process, but the lack of detection and recovery precludes reliability.

2.3 Other Research efforts

Several research efforts have been conducted to make MPI implementations more

reliable. This section introduces some of these efforts and analyzes their drawbacks and

shortcomings in providing for a reliable MPI Middleware. Solutions in providing reliable

MPI have ranged from transparent checkpointing and emphasis on health of the

communicator to utilizing MPI-2’s DPM.

2.3.1 CoCheck

CoCheck [30] is one of the earliest efforts to make MPI more reliable. CoCheck

extends the single process checkpoint mechanism in Condor [22] to a distributed

message-passing application. Unlike most checkpointing middlewares, CoCheck is

visible to the user and is available at a layer above the message-passing middleware.

Problems in checkpointing, such as global inconsistent states and domino effects, are

eliminated by the usage of a flush protocol. This user-aware flush protocol sends “ready

15

messages” to all processes. Receipt of this “ready message” causes purging of message

buffers and clearing of communication channels. CoCheck was primarily targeted for

process migration, load balancing, and stalling long-running applications for resumption

at a later time.

CoCheck incurs a large overhead by checkpointing entire process state. Recovery of a

dead process is achieved by a recovery function run at user level, but this is insufficient.

The status of inconsistent internal data structures in message-passing middleware is not

addressed. Checkpointing is also not a viable option for certain MPI applications, such as

those following the Master-Worker model. Applications of this type have a simple model

where a master process distributes jobs among worker processes, and workers return

results. In such a model, checkpointing the state of workers is unnecessary as it can be

reconstructed from the saved jobs from the master process. Thus, CoCheck provides for

coarse reliability measures for MPI.

2.3.2 Egida

Egida [29] is an object-oriented toolkit for transparent rollback and recovery. Egida is

extensible and allows users to define their own rollback recovery protocols.

Implementations for the described protocol are synthesized by gluing pre-existing

objects. Egida bases itself on log-based rollback recovery protocols and mainly

emphasizes low overhead during recovery and rollback. This checkpointing and rollback

of messages is transparent to the user. Egida has been ported to MPICH [14], an

academic implementation of MPI. The Egida layer has been placed between the higher

MPICH layer and the p4 communication layer. Modifications have been made to include

a watchdog timer and to allow socket reestablishment in case of process failures.

16

Applications need to relink with Egida to achieve transparent fault tolerance. Egida

shares some of its drawbacks with CoCheck. Egida checkpoints both processes and

messages, which may lead to large overheads in some cases.

 2.3.3 FT-MPI

A communicator is an important data structure defined in the MPI standard [24]. A

communicator defines a communication context, usually denoted by an identifier, and a

set of processes in the context. Communicators are essential for maintaining different

communication contexts. FT-MPI [13] acknowledges that the health of a communicator

is essential for proper running of an MPI application. The death of processes places

communicators in an inconsistent state. FT-MPI suggests expanding and shrinking

communicators in lieu of process deaths and inclusions, and it emphasizes methods to

have redundant slots for new processes and various ways of managing the communicator

data structure. FT-MPI does not take care of detection and recovery at the user level.

2.3.4 Starfish

Starfish [1], from Technion University, Israel, is a partial MPI-2 implementation with

DPM. The Starfish environment for execution of static and dynamic MPI programs is

based on the Ensemble group communication system [16]. Starfish provides hooks to

handle dynamic cluster changes and checkpointing. It uses an event model where

processes and components register to listen on events. This event bus provides messages

reflecting changes in cluster configuration and process failures. Starfish introduces a

novel object bus for event dissemination.

17

Starfish provides fault-tolerance as a byproduct, but it does not provide for user level

recovery API, and the consistency of communicator and internal data structures is not

addressed.

2.4 Summary

This chapter has presented the shortcomings of MPI standard and the various

attempts to make it more reliable. These inadequacies motivate the need for a fault-

tolerant middleware. The essential features of such a middleware would be low overhead

and adaptability. These features would be essential for a middleware to successfully cater

to different applications under different fault conditions.

12Chapter III

MODEL-BASED APPROACH

This chapter presents the basis for the research presented in this thesis. The

model-based approach presents a way of exploiting application features to achieve low-

overhead fault-tolerance. This chapter explains this approach and introduces parameters

that separate various AEMs. Based on the model-based approach two AEMs or models,

Model-Ia and Model-IIa are described.

3.1 Research Basis

Middleware is a class of software geared towards managing complexity [2].

Middleware typically provides API for the users and applications at higher levels by

abstracting lower level details. Middleware is also known informally as the “gluing” or

“plumbing” component that connects and passes data. Middlewares are typically

designed and developed to support a range of applications with different characteristics.

 MPI [24] is a message-oriented middleware that also provides a parallel

programming interface. As described in the literature survey, several other efforts have

tried to make MPI-based middlewares more reliable. Many of these middlewares provide

similar fault-tolerant services to all applications. Some such services available that

18

 Figure 3.1: Middleware Design Process Inputs

21

processes in “safe” environments if possible and the amount and type of

redundancy required. Applications that require high reliability and availability

may choose to have additional redundancy and complex management policies.

The model-based approach, by providing abstractions across these features and

requirements, alleviates the complexity issues.

3.2 Model-based Parameters

The model-based approach solves the problems associated with the typical "black

box" approach and aims at reducing overheads for fault-tolerance by providing tailored

23

restarted quickly. In embedded systems, passive redundancy is preferred over

active redundancy to optimize resource usage.

3.3 Application Execution models

Table 3.1: Application Execution Models

Programming

Style

Communication

Topology

Middleware

Redundancy

AEM

Designation

Currently

Implemented

None Model-Ia Yes

Master/Worker Star Master -passive Model-Ib No

Master-active Model-Ic No

None Model-IIa Yes

SPMD All-to-all Rank 0- passive Model-IIb No

Rank 0- active Model-IIc No

Table 3.1 lists several possible AEMs for the master-slave and SPMD styles. Two

AEMs, Model-Ia and Model-IIa, are implemented for MPI/FT and are explained in detail.

These two models are widely used and hence represent a large set of MPI parallel

applications. Assumptions for each model and the features services to support fault -

tolerance are described. Coordinator and SCT (Self Checking Thread) are middleware

level threads that enable fault detection and recovery. These concepts are explained in

detail in section 4.3.1.

24

3.3.1 Model-Ia

Master-worker is a simple process model where the master divides and distributes the

jobs among a set of worker processes. Workers operate on the job and return the results

to the master. In this model, master and workers share a virtual star topology with the

master at the center. Figure 3.2 presents Model-Ia. The assumptions and features for this

model are as follows.

Assumptions:

The model is simple and involves message-passing between master and worker and

not between workers. There is no explicit synchronization among workers or globally,

and collective calls are disallowed because of the star-topology. Faults are expected to

affect the workers, and the master process is assumed to be in a safe process area free

from external faults. A master process can tolerate the death of a worker process, but

death of the master cannot be tolerated. In Model-Ia death of a master implies that the

entire progress of the application is lost, and the application needs to be restarted. AEMs

Model-Ib and Model-Ic are aimed at alleviating this situation and are currently under

investigation .

 Applications are expected to be written in an iterative manner at the master process,

where the master sends and receives jobs to the workers. Each iteration typically consists

of the master process receiving results from a worker and then assigning a new job to the

worker. In the event of the death of a worker, all MPI communication to that worker must

be terminated with errors, but MPI communication with other alive workers is still valid.

 Figure 3.2: Model-Ia: Maser-Worker Application Model- Ia

25

Features:

 This model requires that the middleware Coordinator detect the death of a worker

process through the SCT. Detection and notification of faults in workers utilizing

Coordinator and SCT is explained in Chapter 4. Middleware also provides services for

the user- level recovery of a dead worker process. Checkpointing is not required in this

model, as workers do not hold much state information and master is guaranteed against

failures.

26

Applications:

Example applications of this model include the parallel message-passing version of

Mandelbrot set visualization program [23], the Pmandel program, and the ray tracing

applications for parallel image rendering. Experiments described in subsequent chapters

will be performed using the Pmandel program.

3.3.2 Model-IIa

The all- interacting SPMD model is typically used in scientific applications and

consists of a virtual all- to-all topology. Figure 3.3 presents this model.

Assumptions:

The model is more complex than the previous Master-Worker model. The assumption

regarding the safe process area holds for this model and thus the rank 0 process, which

equates to master process in Model- Ia and the coordinator thread, cannot crash or die.

The processes are connected by a virtual all- to-all topology. Applications belonging to

this model typically operate in an iterative loop. Each loop is marked by an exchange of

messages with other processes followed by a computation phase or vice versa. These

messages among processes are typically used for data exchange and are bounded by

synchronization methods. Similar to Model-Ia, current implementation of Model-IIa

cannot tolerate death of Rank 0. AEMs Model-IIb and Model-IIc are aimed at eliminating

this problem through use of passive or active redundancy for Rank 0 and are currently

under investigation.

Applications belonging to this model are assumed to be tightly coupled with regard to

progress of entire application. Death of a single process in the application leads to stalling

of the entire application. In the event of the death of a process, all MPI communication

 Figure 3.3: Model-IIa: SPMD all- interacting model

27

between with the dead rank and collective communications must fail and return proper

error codes. These error conditions will be used to drive processes into the recovery area.

Features:

This model requires that the Coordinator detect the death of a process through the

SCT heartbeats. The middleware also provides notification through dissemination of dead

rank information to other alive ranks. Services also include user- level collective recovery

of a dead rank and its proper induction into the process group. Since applications in this

28

model use an iterative loop, a choice must be presented through the API for a user-aware

checkpointing. This API should allow users to define a data block to be checkpointed and

complementary functions to retrieve checkpointed data.

Applications:

Example applications of this model typically include parallel discrete event

simulation applications. Experiments will be conducted using the message-passing

version of the Game of Life problem [6].

13Chapter IV

APPROACH

The hypothesis is verified by developing MPI/FT [4]. MPI/FT is derived by

incorporation of select fault-tolerant features into MPI/Pro [26], a high performance and

multi- threaded implementation of MPI 1.1 standard [24]. This chapter describes the

research methodology behind the design and development of MPI/FT. Apart from the

modified middleware, applications also need to be modified to utilize MPI/FT API to

make the applications fault-tolerant. These modifications, necessary in user applications

to achieve fault-tolerance, are also described.

4.1 Research Methodology

The research methodology for this thesis can be broken down into five different

activities. Applications refer to parallel programs developed with MPI. These

applications are expected to complete successfully in the absence of external faults and

are assumed to be devoid of internal design and implementation errors. The five activities

of the research methodology are:

1. Identifying AEMs based on application characteristics features and fault-tolerance

requirements.

2. Identifying select features to be incorporated for a given AEM (Design of

MPI/FT).

29

30

3. Incorporating identified features to obtain MPI/FT. Implementation yields a

middleware with fault-tolerance API (Development of MPI/FT).

4. Modifying existing applications to utilize a fault-tolerant API on the new

middleware.

5. Studying and experimenting with unmodified and modified applications to obtain

fault- free and fault- injected parameters. These parameters will be utilized to

validate the hypothesis.

The first activity has been realized in Chapter 3. Subsequent sections in this chapter

describe the next three activities. Parameters to determine overheads with MPI/FT and

experiments to obtain those parameters are described in Chapter 5.

4.2 Usage

 This section and its subsections describe MPI/FT from an application developer/user

perspective. Achieving fault-tolerance requires fault detection, notification and recovery.

The design of these steps for both Model- Ia and Model-IIa is described.

4.2.1 User level changes

Achieving fault-tolerance with MPI/FT requires the applications to be modified.

These modifications are mainly targeted at utilizing MPI/FT API for fault notification

and subsequent recovery procedures. A qualitative goal of MPI/FT is to provide a simple

and powerful API.

31

4.2.1.1 Development and steps

The following are a list of steps a user would typically perform for an unmodified

application.

1. Understand the problem and identify the parallelism in the program.

2. Decide on a program process model (master/worker, SPMD, hybrid, etc.) with

determined communication patterns.

3. Implement (code) using a middleware.

4. Launch the application with the required number of processes. In the absence of

external faults the application will successfully complete. A typical program

launch could be

$ > mpirun -np 4 -mach_file myMachfile myParallelapp param1 param2

With the introduction of MPI/FT and its API, these user steps would be extended:

1. Understand the problem and identify the parallelism in the program.

2. Decide on a program process model (master/worker, SPMD, hybrid, etc.) with

determined communication patterns.

3. Identify impacts of faults and regions in code for notification and recovery.

4. Decide on an AEM.

5. Implement (code) on a middleware and introduce FT-specific code.

32

6. Launch the application with required number of processes. Additionally, static

spare processes should be launched. A typical program launch with fault-

tolerance could be

$ > mpiftrun -np 4 -sp 2 -mach_file myMachfile -ftparam1 val1 - ftparam2 val2
myFTParallelapp param1 param2

The modified program launcher passes MPI/FT-specific parameters to

applications. Currently these FT parameters can be utilized to specify values for

controlling internal and external heartbeat frequency and their timeouts.

The "sp" option allows users to specify the number of spare ranks in anticipation

of faults and process deaths. These spare ranks are hibernated until required and later

assume a new rank as directed by the coordinator. Figure 4.1 presents these cases.

Dynamic allocation of spare processes may be possible with integration of MPI/FT and a

cluster manager or scheduler.

 a) Spare Ranks in Hibernation, Normal Run

 b) Spare Rank Release and Recovery

33

c) Spare Rank joins Normal Run, After Recovery

Figure 4.1: Utilization of Spare Ranks in MPI/FT

34

4.2.1.2 FT API and code modifications

 This section introduces and describes MPI/FT API. Example pseudo-code utilizing

the FT API is also shown for each model.

4.2.1.2.1 Model-Ia

 The following is the MPI/FT API available for Model-Ia (simple master/worker).

1) Get Dead Rank information

int
MPIFT_GetDeadRanks(

OUT int *deadcount,
OUT int *deadarrayranks,
IN int array_size)

35

This function returns the information about ranks considered as dead by

the detection process. Information (count, actual dead rank number) returned by

this function will be used in initiating recovery. It should only be invoked from

the master/ rank 0 process. Detection of death of a rank and actual notification

procedures are explained in Section 4.3. Currently, this is the only API available

for notification of a dead rank.

2) Recover a dead worker/rank

int
MPIFT_RecoverRank(

 IN int RankToRecover
);

This function initiates recovery of a dead worker/rank. It should only be

invoked from the master/ rank 0 process. Actual working of recovery process is

explained in Section 4.3.

Pseudo-code for Model-Ia applications is presented in Figures 4.2 and 4.3. Figure

4.2 presents code for a sample master/worker application. Figure 4.3 presents one way of

making the program fault-tolerant by use of MPI/FT API. Note that the amount of

MPI/FT API usage may remain constant irrespective of the actual normal code size in

this case.

36

/* Plain version : Master/worker */
main(..){

/* variables defined here*/
 int rank, size, *main_area[][];

/* MPI_Init */
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);

/* Initial parameters */
if (rank ==0){

..
MPI_Send(init_data, ..);

}
else{

..
MPI_Recv(init_data, ..);

}

if(rank ==0){
create_jobs(jobs_array);
for (I=1..n-1)

MPI_Send (intial_jobs);
Job_array --;

};

// actual work loop
while(job_array != NULL){

MPI_Recv(result,.. fromanyworker,..);
..
results_array [] = result;
MPI_Send(job_array,.., tolastworker ..);
jobs_array --;

};

if(rank ==0){
Write(file);

};
MPI_Finalize();

}

Figure 4.2: Pseudo-code for Unmodified Model- Ia Application

37

/* FT version : Master/worker */
main(..){

/* variables defined here*/
 int rank, size, *main_area[][];

/* MPI_Init */
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);

/* Initial parameters */
if (rank ==0){

..
MPI_Send(init_data, ..);

}
else{

..
MPI_Recv(init_data, ..);

}

if(rank ==0){
create_jobs(jobs_array);
for (I=1..n-1)

MPI_Send (initial_jobs);
Job_array --;
 last_job_worker[I] = initial_job;

};

// actual work loop
while(job_array != NULL){

MPIFT_GetDeadRanks (&deadrankarray,deadcount);

if(deadcount >0){
 for(counter = 0 .. deadcount-1)

deadrank = deadrankarray[counter];
 // Retrieve job
jobs_array [] = last_job_worker [deadrank];
 jobs_array++;
// Recover Rank
MPIFT_RecoverRank(deadrank);
// Initialize and assign a new job
MPI_Send(init_data,..,deadrank,..);
MPI_Send (initial_jobs);
Job_array --;

 last_job_worker[deadrank] = initial_job;
 };
MPI_Recv(result,.. fromanyworker,..);
..

Figure 4.3: Pseudo-code for Modified Model-Ia Application

38

results_array [] = result;
MPI_Send(job_array,.., tolastworker ..);
jobs_array --;

// Worker might die, save job
last_job_worker[tolastworker] = job_array[];

};

if(rank ==0){
Write(file);

};
MPI_Finalize();

}

Figure 4.3 (Continued): Pseudo-code for Modified Model-Ia Application

4.2.1.2.2 Model-IIa

The following is the MPI/FT API available for Model-IIa (SPMD). Model-IIa

applications are marked by a similarity in functionality at all processes. Moreover,

Model-IIa applications are expected to run in a tightly coupled manner, and death of a

single process in the application stalls all processes. This tight coupling and similarity

translates to this FT API being called in a symmetrical manner from all ranks/processes.

Model-IIa also provides API for user-aware checkpointing. Users/developers are

expected to marshal data and application state information to be stored by the

checkpointing routines. These routines return this marshaled data during recovery for

application state rollback and recovery.

1) Get Dead Rank information

Syntax and semantics for this function are same as in Model-Ia. Unlike in

Model-Ia, this function is invoked at all ranks/processes.

2) Recover a dead rank

39

Syntax and semantics for this function are same as in Model-Ia. Unlike in

Model-Ia, this function must be invoked at all ranks for successful recovery.

3) Initiate Checkpoint

int
MPIFT_ChkptDo(

 IN void *data_to_store,
 IN int data_size,
 OUT int *chkpt_num,
 IN MPI_COMM communicator
);

This function takes in data/state information provided by the user and

stores them for later retrieval. This function call is a collective call and hence

should be invoked by all the ranks/processes in a communicator. Checkpoints are

stored in files, and all checkpoints stored in a single call share common

identification number for later retrieval. For Model-IIa applications, it is expected

that this function will be invoked with the default global communicator, the

MPI_COMM_WORLD.

 4) Recover Checkpoint data

int
MPIFT_ChkptRecover(

 OUT void *data_retrived,
 IN int in_data_size,
 OUT int *out_data_size,
 OUT int *chkpt_num_retrieved,
 IN MPI_COMM communicator
);

This function should be invoked after a dead rank/process is recovered at

the middleware level. Middleware decides on the latest and complete checkpoint

number valid at each process for a given communicator. After agreement, the data

40

associated with that checkpoint number is available to users. Users should use this

retrieved data to rollback to an agreeable previous application state. This function

must be called by all processes in the communicator and will fail in the presence

of dead processes.

Pseudo-code for Model-IIa applications is presented in Figures 4.4 and 4.5. Figure

4.4 presents pseudo-code for the Game of Life [6] application. Figure 4.5 presents one

way of making the program fault-tolerant by use of MPI/FT API. The data that is

marshaled for checkpointing is the iteration counter value and data region of each

individual process.

/* Plain version : Game of life */
main(..){

/* variables defined here*/
 int rank, size, *main_area[][];

/* MPI_Init */

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);

/* Initialized data and parameters */
proc_rows = atoi (argv[1]);
..

/* Initial data distribution */
if (rank ==0){

filedes = open (input_filename, O_RDONLY);
for(i=1; i<size; i++){

..
MPI_Send(init_data, ..);

};

}
else{

//recv init data
..
MPI_Recv(recv_buf, ..);

}

// actual work loop
while(i <max_iterations){

// communication: exchange data with neighbours
MPI_Isend((main_area0[1] + 1), ..);
..
..
MPI_Irecv((main_area0[1] + 1), ..);

// computation: Evaluate next state
for(j=1; j<my_data_rows+1; j++){

 for(k=1; k<my_data_cols+1; k++){
//For each cell compute next state
// using game of life logic
};

};
MPI_Barrier(MPI_COMM_WORLD);
i++;

};

Figure 4.4: Pseudo-code for Unmodified Model- IIa Application

41

 end = MPI_Wtime();
// Program end , collect data
if(rank ==0){

//collect data from all ranks
MPI_Recv (..);
Write(file);

}else{
MPI_Send(final_result, .., .., .., .., .., ..);

};
//MPI end
MPI_Finalize();

}

Figure 4.4 (Continued): Pseudo-code for Unmodified Model-IIa Application

42

/* FT version : Game of life */
main(..){

/* variables defined here*/
 int rank, size, *main_area[][];

/* MPI_Init */

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);
/* Initialized data and parameters */
proc_rows = atoi (argv[1]);
..
/* Initial data distribution */
if (rank ==0){

filedes = open (input_filename, O_RDONLY);
for(i=1; i<size; i++){

..
MPI_Send(init_data, ..);

};

}
else{

//recv init data
..
MPI_Recv(recv_buf, ..);

}
// actual work loop
while(i <max_iterations){

MPIFT_RecoveryPoint();

MPIFT_GetDeadRanks(&deadcount, deadranks);
if(deadcount >0){

/*
for(counter =0 ; counter <deadcount; counter++){

// recover deadrank
MPIFT_RecoverRank(deadranks[counter]);

}

// new spare init
MPIFT_ChkptRecover(&chkpt_buf, ..);
//unmarshall data
memcpy(to_ptr, chkpt_buf, ..);

};

Figure 4.5: Pseudo-code for Modified Model-IIa Application

43

 // communication: exchange data with neighbours

MPI_Isend((main_area0[1] + 1), ..);
..
..
MPI_Irecv((main_area0[1] + 1), ..);

// computation: Evaluate next state
for(j=1; j<my_data_rows+1; j++){

for(k=1; k<my_data_cols+1; k++){
//For each cell compute next state
// using game of life logic

};
};
MPI_Barrier(MPI_COMM_WORLD);

// Marshall data for checkpoint
memcpy(chkpt_buf, from_buf, ..);
MPIFT_ChkptDo(&chkpt_buf, ..);
i++;

};
end = MPI_Wtime();

// Program end , collect data

if(rank ==0){
//collect data from all ranks
MPI_Recv (..);
Write(file);

else{
MPI_Send(final_result, .., .., .., .., .., ..);

};
//MPI end
MPI_Finalize();

}

Figure 4.5 (Continued): Pseudo-code for Modified Model-IIa Application

44

4.3 Design and Implementation

Fault-tolerance is achieved in MPI/FT by following fundamental steps of fault

detection, notification, and recovery. These steps are presented in Figure 4.6. Each step is

essential and is explained in the following subsections.

45

Figure 4.6: Primary Steps in Achieving Fault-tolerance

4.3.1 Detection

Fault-detection is an important step in achieving fault-tolerance. A good fault-

detection strategy must be accurate (minimize false positives), fast (quick detection

between actual fault and detection) and cheap (impose low overheads). Since fault-

detection strategy is typically the main contributing component towards fault- free

overhead, a fault-detection strategy should be an appropriate compromise among its

various features.

The fault-model assumed for the implementation of MPI/FT consists primarily of

fail-stop process deaths and hanging or misbehaving progress threads. Loss of

communication channels is also associated with the death of processes. Detection of

46

anomalies in a user thread is currently not supported, but this may be supported in the

future with either explicit user-assisted detection or implicit heartbeats. Additionally

transient faults that lead to production of incorrect results but allow MPI application to

continue are not covered. Detection of such transient errors must be provided by the

application through explicit use of ABFT (Application Based Fault Tolerance) [18, 31]

Detection, notification and recovery are all achieved through the additional FT

thread introduced in each process. This FT thread is named Coordinator at master/rank 0

to signify its role in detection and recovery. The FT thread is named SCT at other

processes. SCT is a powerful concept with varying levels of portability and functionality

[4].

1) Trivially non-portable: Uses existing internal data structures of a particular

MPI implementation and performs trivial/obvious checks on them. It is not visible

to the user.

2) Trivially portable:

(a) Uses the PMPI profiling interface provided by the MPI standard to extend the

previous approach across all MPI implementations. The complexity of

operations that can be achieved is still trivial. It is visible to the user.

(b) Adheres to the specifications of TotalView [12] and provides access to MPI

internal structures across all MPI implementations. These structures include

the send and receive queue. It is visible to the user.

3) Non-trivially portable: Extends the functionality in (1) and (2) by incorporating

intelligence into the consistency checks. Can be visible to the user.

 Figure 4.7: Coordinator and SCT: External heartbeat mechanism

47

4) Non-trivially non-portable: This approach provides the most general

functionality by defining new internal structures to aid consistency checks, etc.

Such structures and checks are specific to an MPI implementation.

The current MPI/FT’s SCT implementation operates at level 1, trivially non-

portable, and is primarily used for detection through heartbeats. Heartbeats are used both

externally and internally.

External heartbeats are used by Coordinator to detect process deaths. Coordinator

passively listens to periodic alive messages from SCTs of other ranks. If an alive message

is not received in a certain timeout, Coordinator determines that the unresponsive rank is

dead. Coordinator also determines death of a rank if the connections to that process are

48

abnormally terminated. In either case, the user thread of the application is appropriately

notified. Figure 4.7 presents the interaction of processes for external heartbeat.

SCT, apart from sending periodic alive messages to Coordinator, performs

internal checking of other progress threads. MPI/Pro, the base implementation of

MPI/FT, consists of progress threads. These progress threads are critical for actual

message-passing operations. SCT actively requests these threads for status information.

SCT and progress threads interact through a shared memory area. SCT posts a request for

reply and notifies the progress thread. Upon receiving the notification, progress threads

reply through these shared areas. If a progress thread does not reply to a posted request

within a user-configurable interval, SCT decides that the progress thread is corrupted or

has crashed and informs the Coordinator. Coordinator acknowledges this information and

sends commands instructing the SCT to terminate the rank. Figure 4.8 captures

interactions between SCT and other progress threads. Coordinator proceeds to

notification and appropriate recovery measures.

It is possible that while processing large communication requests, progress

threads will not be able to respond to an SCT request in time, thereby causing false

failure notifications. In order to prevent this situation, progress threads can inform SCT

of the actual start and expected end time of an operation. During this busy time, SCT

does not post new status requests for that progress thread.

(a) SCT and Progress Threads

(b) Typical Interaction

Figure 4.8: SCT and Progress Threads: Internal heartbeat mechanism

49

 Model-Ia and Model-IIa both have similar detection mechanisms. However, in

Model-IIa the flow of heartbeat requests and replies between Coordinator and SCT is

50

reversed. Coordinator, instead of passively hearing alive messages, actively sends out

request messages to which ranks reply. This reversal is essential, as the scope of

notification in Model-IIa is different than in Model-Ia. Both external and internal

heartbeat rates and their timeout values are user configurable and can be passed through

the command line to the application launcher (mpiftrun).

4.3.2 Notification and Recovery

Notification deals with dissemination of information relevant to fault-detection,

while recovery consists of actual steps to mask and recover from the fault.

4.3.2.1 Model-Ia Recovery

Model-Ia consists of simple master/worker applications where death of a worker

will only affect the master process or rank. Hence, only the master process is informed of

the death while other worker processes are unaware of the death. Death of a worker

process or rank can be tolerated by replacing it with a passive spare process. Recovery of

a worker process is meaningful only in the context of the Coordinator. The virtual star-

topology assumed for this model precludes connection of the new spare/worker to the rest

of the workers.

 Figure 4.9: Notification and Recovery in Model-Ia

51

The following are the steps involved during recovery in Model-Ia. Figure 4.9 presents

these events along a timeline. Steps followed in both the user thread and the Coordinator

at the master process are shown.

1. Coordinator detects the death of a worker, updates the notification area,

and invalidates connections to the dead rank. Any MPI calls to this dead

rank are not initiated and return with errors. Internal queues for this rank

are cleared.

52

2. The user thread retrieves dead rank information by calling

MPIFT_GetDeadRanks(). The user thread initiates recovery by calling

MPIFT_RecoveryRank().

3. MPIFT_RecoveryRank() initiates Coordinator recovery steps.

4. Coordinator releases the spare rank with the dead rank number.

5. Both the user thread and Coordinator wait for the new spare to connect.

Reconnection of the spare marks the end of middleware recovery.

6. The user thread proceeds with application level recovery and state

initialization.

4.3.2.2 Model-IIa Recovery

Model-IIa consists of SPMD all- interacting processes. These kinds of applications

cannot proceed even when a single process/rank is dead. Thus, information about a dead

rank must be available to the alive ranks. Coordinator, upon detecting a dead rank,

disburses this information to all alive ranks. SCTs will utilize this information to set the

information about dead ranks.

While most of the recovery steps for rank 0 and other alive ranks are the same,

there are differences during notification and initial recovery steps. This difference is

expected, as the Coordinator needs to drive the rest of the ranks to recovery. Figure 4.10

summarizes these recovery steps.

The following are the recovery steps at the Coordinator/rank 0:

1. Send notification to SCT of other alive ranks.

53

2. The user thread retrieves the dead rank information by calling

MPIFT_GetDeadRanks(). The user thread initiates recovery by calling

MPIFT_RecoveryRank().

3. MPIFT_RecoveryRank() initiates recovery steps at the Coordinator.

4. All message queues are cleared.

5. Release suspended spare process with recovery rank.

6. Accept data and FT connections from the new spare.

7. Start application level recovery through MPIFT_ChkptRecover() and later

unmarshal and restore application state.

The following steps occur for checkpointing recovery (step 7).

1. Agree on a lowest valid checkpointing number amongst all processes. A valid

checkpointing number for a process is one where a process can access all stored

data without errors.

2. Retrieve information from the last checkpoint and return to the user.

3. Users later unmarshal this data and restore process state in an application-specific

manner.

 Figure 4.10: Notification and Recovery in Model-IIa

54

As mentioned earlier, all processes of the communicator must be alive both before

and during the checkpoint recovery function. If a process is dead either before or during

the checkpoint recovery process, application- level recovery will fail. Application- level

recovery may be retried after middleware- level recovery of the dead process is

completed. Thus, by a combination of middleware and application level recovery, Model-

IIa applications can successfully recover from faults and progress to completion.

14Chapter V

EXPERIMENTS, RESULTS, AND ANALYSIS

This chapter presents parameters, experiments, and results to validate the hypothesis.

The hypothesis consists of two parts that focus on successful completion in the presence

of modeled faults and acceptable overheads in the absence of such faults. Parameters are

separated into fault- free and fault- injected categories. Experiments and results from fault-

injected category are focused on proving that applications complete successfully in the

presence of faults. Fault- injected parameters capture the recovery time both at the

middleware and application level.

Experiments and results from fault-free category are focused on proving that fault-

free overheads are acceptable in the absence of faults. Fault- free overheads are defined as

the additional costs incurred by the application in the absence of faults. Fault-detection

mechanisms and additional masking measures during message-passing are the primary

contributors to fault- free overheads. Fault-free overheads are measured for message-

passing, run-time of applications, and changes made to programs.

Experiments were conducted using a combination of standard and custom defined

programs. Message-passing overheads were measured by a ping-pong program. Fault-

free and fault- injected overheads were measured by using sample applications for both

55

56

Model-Ia and Model-IIa. Overheads, in cases applicable, were computed as the

percentage change in parameters obtained from MPI/FT [4] and MPI/Pro [26]. Such a

computation is justified as MPI/FT has been realized by selective incorporation of fault-

tolerant features into MPI/Pro. The following section describes experiments and

measurements for evaluating message-passing overheads. Subsequent sections present

experiments and results for both Model-Ia and Model-IIa.

5.1 Message -passing Overheads

Latency and bandwidth are primary parameters for evaluating the performance of a

message-passing system. Latency refers to the delay in sending the message between two

MPI processes of an application. Factors contributing towards latency are the physical

characteristics of the network and processing of messages at nodes. Bandwidth refers to

the effective throughput between two MPI processes of an application. Bandwidth is

calculated as the ratio between message size and time taken to transfer.

Latency and bandwidth were obtained using a ping-pong program for various

message sizes. As explained in Chapter 4, fault-detection in MPI/FT is primarily

performed by a combination of external and internal heartbeats. Measurements for

latency and bandwidth were obtained at different rates of external and internal heartbeats.

Model-Ia and Model-IIa, as explained in Section 4.3.1, employ similar fault detection

mechanisms, and hence message-passing overheads for both these models are similar.

Therefore only results from Model-Ia are presented for studying message-passing

overheads.

if(rank == 0){
MPI_Send_init(sendBuff, DATASIZE, ..);
MPI_Recv_init(recvBuff, DATASIZE, ..);
starttime = MPI_Wtime();
for(j = 0; j < numTests; j++){

MPI_Start(&sendReq);
MPI_Start(&recvReq);
MPI_Wait(&sendReq, &status);
MPI_Wait(&recvReq, &status);

}
endtime= MPI_Wtime() ;
time = (endtime-starttime)/numTests;
latency = time / 2.0 / numTests;

}else{
MPI_Send_init(recvBuff, dataSize, ..);
MPI_Recv_init(recvBuff, dataSize, ..);
for(j = 0; j < numTests; j++){

MPI_Start(&recvReq);
MPI_Wait(&recvReq, &status);
MPI_Start(&sendReq);
MPI_Wait(&sendReq, &status);

 }
}

Figure 5.1: Pseudo-code for measuring Latency

58

The introduction of fault-detection features and of additional checks in the path of

message-passing was expected to increase latency. It was hypothesized that acceptable

fault- free overhead would be 5%.

5.1.1.2 Results and Analysis

Figures 5.2 and 5.3 present the overhead in latency. Figure 5.2 presents the overhead

with various values of external heartbeats, while internal heartbeats were disabled. Figure

5.3 presents overheads at various internal heartbeat rates while the external heartbeat rate

is set at 0.25 Hz. These results are presented along a logarithmic axis to accommodate the

large range of message sizes.

20
EXT HB @ 2 Hz

La
te

nc
y

O
ve

rh
ea

d
(%

)

18

16

14

12

10

8

6

4

2

0

EXT HB @ 1 Hz
EXT HB @ 0 Hz

1 10 100 1000 10000 100000 1000000 10000000
Message Size (bytes)

Figure 5.2: Latency Overheads with only External Heartbeats

25

La
te

nc
y

O
ve

rh
ea

d
(%

)

20

15

10

5

0

INT HB @ 10000 Hz
INT HB @ 100 Hz
INT HB @ 1 Hz

1 10 100 1000 10000 100000 1000000 10000000

Message Size (bytes)

Figure 5.3: Latency Overheads with Internal and External Heartbeats

59

60

Figure 5.2 consists of latency overheads at zero-frequency of external heartbeats.

These zero-frequency overheads indicate the impact of additional checks in the path of

sending and receiving MPI messages. Overheads at higher frequencies indicate the

combined impact of the additional checks and the impact of FT thread execution on

original user and progress threads. Results indicate these increasing overheads with

increasing rates of external and internal heartbeats. Latency overheads also decrease with

increase in message size. This may be attributed to the decreasing impact of the constant

amount of checks on each message and the busy time concept of SCT. The busy time

concept, as described in Section 4.3.1, allows progress threads to inform SCT about

duration of long tasks, during which SCT stops polling progress threads.

It may be noticed that the latency graphs from Figures 5.2 and 5.3 consist of spikes at

certain message sizes, especially at lower message sizes. These spikes do not appear at

the 32-kilobyte message size, where the message transfer protocol changes for small to

large message sizes [26]. In order to explain these spikes Figure 5.4 presents latency of

MPI/Pro and latency overheads for smaller message sizes. It is evident that many of the

spikes present in the logarithmic graph are less prominent in the graph with the non-

logarithmic axis. The only prominent spike exists at a message size of 8 bytes, and this

spike may be attributed to an accompanying sudden decrease in MPI/Pro latency, while

the amount of additional checks remain the same. In conclusion, latency overheads

remain low at normal rates of heartbeats. In the case of long running programs with a

total runtime on the order of days, a much slower rate of heartbeats can be utilized. Such

low rates of heartbeats can have a negligible impact on latency.

β β
 β

β β

if(rank == 0){
MPI_Send_init(sendBuff, DATASIZE, ..);
MPI_Recv_init(recvBuff, DATASIZE, ..);
starttime = MPI_Wtime();
for(j = 0; j < numTests; j++){

MPI_Start(&sendReq);
MPI_Start(&recvReq);
MPI_Wait(&sendReq, &status);
MPI_Wait(&recvReq, &status);

}
endtime= MPI_Wtime() ;
time = (endtime-starttime)/numTests;
bandwidth = dataSize/(time/2)/1024/1024;//mbps

}else{
MPI_Send_init(recvBuff, dataSize, ..);
MPI_Recv_init(recvBuff, dataSize, ..);
for(j = 0; j < numTests; j++){

MPI_Start(&recvReq);
MPI_Wait(&recvReq, &status);
MPI_Start(&sendReq);
MPI_Wait(&sendReq, &status);

 }
}

Figure 5.5: Pseudo-code for measuring Bandwidth

62

and MPI/FT middleware. Fault- free overhead was then calculated as the percentage

decrease in MPI/FT case when compared to MPI/Pro results. These results were

computed for message sizes ranging from 0 to 1 megabyte. Results were also computed

for various rates of external and internal heartbeats. The ping-pong test was run on a

cluster of Intel Pentium machines (750mhz, 512 MB RAM, Linux 2.4 OS).

The introduction of fault-detection features and of additional checks in the path of

message-passing was expected to decrease bandwidth. It was hypothesized that

acceptable fault- free overhead of bandwidth would be 5%.

0

5

10

15

20

25

Ba
nd

w
id

th
 O

ve
rh

ea
d

(%
)

EXT HB @ 2.0 Hz
EXT HB @ 1.0 Hz
EXT HB @ 0 Hz

1 10 100 1000 10000 100000 1000000 10000000

Message Size (bytes)

Figure 5.6: Bandwidth Overheads with only External Heartbeats

63

5.1.2.2 Results and Analysis

 Bandwidth experiments were performed for various combinations of external and

internal heartbeat rates. Figure 5.6 shows bandwidth overhead results for various rates of

external heartbeats, while internal heartbeats were disabled. Figure 5.7 presents results

for various internal heartbeat rates while the external heartbeat rate is set at 0.25 Hz.

Results are similar to latency results and confirm increasing overheads with

increasing rates of heartbeats. Again, the overheads decrease at longer messages, which

can be attributed to the busy time concept of SCT. This similarity in results is expected as

bandwidth is defined in terms of latency. Fault- free overhead of bandwidth is low at

normal rates of heartbeats, and hence this supports hypothesized low overheads.

0

5

10

15

20

25

30

35

Ba
nd

w
id

th
 O

ve
rh

ea
d

(%
)

INT HB @ 10000 Hz
INT HB @ 100 Hz
INT HB @ 1 Hz

1 10 100 1000 10000 100000 1000000 10000000
Message Size (Bytes)

Figure 5.7: Bandwidth Overheads with Internal and External Heartbeats

64

Message-passing overheads for both latency and bandwidth indicate low-overheads in

the absence of faults under normal rates of heartbeats. These are in line with the

hypothesized values.

5.2 Model-Ia Results

Model-Ia deals with simple master/slave applications with virtual star topology. The

pmandel program, a parallel MPI version of Mandelbrot set visualization program [23],

has been used as an example for this model. Measurements for Model-Ia include both

fault- free and fault- injected overheads.

5.2.1 Runtime Overhead

Fault- free overhead in runtime is defined as the percentage increase in runtime of

a modified MPI parallel application on a modified middleware with respect to an

if(rank == master){
Create job array;
Send_Init();
Send_jobs();
Save_jobs();
While (! Jobs done){
MPIFT_GetDeadRanks(…, …, …)
if (deadcount >1){

for (I = 0.. Deadcount-1){
Recover_job();
MPIFT_RecoverRank(..); BSend_Init();
Send_jobs(); CSave_jobs(); A

}
}else{

// Normal operation of Master
Recv_Results();
Delete_Saved_jobs();
 Send_jobs();
Save_jobs();

 }
}
Send_End();
Master_Cleanup();

}
else { // slave

Recv_Init();
While(! Recv_End()){

Recv_jobs();
Process_jobs();
Send_Results();

}
Slave_Cleanup();

}

Figure 5.8: Pseudo-code for Model-Ia Application

internal heartbeats for fault detection were set at 1 Hz and 3 Hz, respectively.

Applications were run on a cluster of Intel Pentium machines (900mhz, 640 MB RAM,

Linux 2.4) interconnected with 10/100 Fast Ethernet.

66

5.2.1.2 Results and Analysis

Table 5.1 presents the results of running the program with and without MPI/FT at

various process sizes. Runtime overhead for Model-Ia pmandel application was found to

67

be within acceptable limits in all the cases. It supports the fact that applications can have

simple, effective fault-tolerance and yet have small fault- free overhead. These results

support the hypothesis.

Table 5.1: Fault-free Runtime Overhead in Model-Ia, Pmandel Application

Number of
Processes

Unmodified
Runtime
(seconds)

Modified
Runtime
(seconds)

Hypothesized
Overhead

(%)

Actual
Overhead

(%)
2 2.969 3.030 15 2.05
3 1.511 1.578 15 4.43
4 1.041 1.102 15 5.86

5.2.2 Program changes

MPI applications need to be modified to utilize the MPI/FT API and enable fault-

tolerance. The amount of changes required for sample applications is studied in this

section.

5.2.2.1 Program Change Ratio

Program change ratio (PCR) is defined as ratio between number of new FT API

calls introduced and number of lines of code in original code. It is a simple measure to

study the amount of changes required in original programs to utilize MPI/FT.

5.2.2.2 Results and Analysis

The values pertinent for the pmandel program are presented in Table 5.2.

Table 5.2: Program Change Ratio in Model- Ia, Pmandel Application

Original lines of
code

New FT API Hypothesized PCR
(%)

Actual PCR
(%)

735 2 10 0.2

68

PCR was found to be well below the expected values because the number of MPI/FT

API calls for achieving fault-tolerance is dependent on the structure of the program and

not on the original lines of code. New code accounting for application level recovery

support is application dependent and does not affect PCR values.

5.2.3 Recovery Time

The experiments in this section are focused on showing that applications recover from

externally introduced faults, and the recovery times are within acceptable limits.

Recovery time encapsulates the time where the progress of the parallel application is

stalled by fault recovery and repair procedures. Recovery time consists of middleware

and parallel application components. Middleware recovery time refers to the time taken

by the middleware to restart and incorporate a process into the process group. While a

small middleware recovery time is essential for high performance applications,

predictable recovery time will play a vital role for real-time parallel applications.

Application recovery time refers to the time spent by application-specific recovery

procedures. These recovery procedures are primarily focused on initializing the new

spare process into the required state.

5.2.3.1 Experimental Setup

Figure 5.8 presents the pseudo-code for pmandel application. Section B marks the

code for middleware recovery procedures, and section C refers to the application

recovery part. Experiments were performed by running a modified pmandel application

with four processes under the following conditions:

1) Fault- free run with MPI/Pro.

69

2) Fault- free run with MPI/FT.

3) Single slave failure after X% of the pixels are computed and recovery is

performed.

4) Single slave failure after X% of the pixels are computed and recovery is not

performed. Application continues with the remaining 2 slaves.

The value of X was varied from 10 to 90 in increments of 10. Faults were simulated

by programming termination of slaves through messages internal to the pmandel

application. The times for middleware recovery and application recovery were measured

by utilizing MPI_Wtime(). The rates of external and internal heartbeats for fault

detection were set at 1 Hz and 3 Hz, respectively. Applications were run on a cluster of

Intel Pentium machines (900mhz, 640 MB RAM, Linux 2.4) interconnected with 10/100

Fast Ethernet.

5.2.3.2 Results and Analysis

The pmandel application successfully recovered from the single faults introduced.

Middleware and application- level recovery were successfully performed, and the

application progressed to a successful completion. This successful completion proves part

of the hypothesis that applications can successfully recover and complete in presence of

external faults.

The average results for middleware and application- level recovery for single slave

deaths are presented in Table 5.3. The results show that actual middleware recovery time

is small. Small recovery times are essential in reducing overall runtime in faulty

environments. Figures 5.9 and 5.10 show the progress of the application when faults are

70

introduced at 10% and 90% progress of the application. Runtime results with faults

introduced at various other rates of application progress are presented in Appendix A.

Table 5.3: Recovery Time in Model-Ia, Pmandel Application

Hypothesized Actual Hypothesized Actual
Middleware Middleware Application Application

Recovery Time Recovery Time Recovery Time Recovery Time
(milliseconds) (milliseconds) (milliseconds) (milliseconds)

25 24.12 500 16.34

It is evident from the graphs that performing recovery depends on the current

progress of the application. While it is beneficial to recover a dead rank during the initial

part of an application’s progress, there is no benefit to perform recovery towards the end

of an application’s progress. In fact, there is a penalty. For this particular experiment

such a penalty for recovering a dead worker is evident in cases when the death of the

process occurs after 60% of application progress.

Ru
nt

im
e

(s
ec

on
ds

)

1.40

MPI/Pro1.20

1.00

0.80

0.60

0.40

0.20

0.00

MPI/FT (no faults)

MPI/FT (fault @ 90%, No Recovery)
MPI/FT (fault @ 90%, With Recovery)

0 10 20 30 40 50 60 70 80 90 100
Progress (% pixels complete)

Figure 5.10: Runtime of Pmandel Application with faults at 90 % of Progress

1.60
MPI/Pro

1.40 MPI/FT (no faults)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Ru
nt

im
e

(s
ec

on
ds

) MPI/FT (fault @ 10%, With Recovery)
MPI/FT (fault @ 10%,No Recovery)

0 10 20 30 40 50 60 70 80 90 100
Progress (% pixels complete)

Figure 5.9: Runtime of Pmandel Application with faults at 10 % of Progress

71

72

In summary, Model-Ia results aid in proving part of the hypothesis for one of the

two models specified. Runtime and PCR results prove that applications can have low

fault- free overheads. Recovery time experiments show that applications recover from

external faults to successfully complete. Middleware and application recovery were also

performed within acceptable time limits.

5.3 Model-IIa Results

Model-IIa consists of applications with SPMD all- interacting style and virtual all- to-

all topology. The example program used for this model is the Game of Life [6], a discrete

event simulation program that requires communication with each of its neighbor

processes. Additionally, Model-IIa applications are expected to run in an iterative

fashion. Similar to Model-Ia, Model-IIa measurements include both fault-free and fault-

injected overheads.

Model-IIa applications also utilize user-aware checkpointing to save the application-

relevant state at predetermined synchronization points. Checkpointing in these

applications is user- initiated, and state of application is determined by the data contents

of the application. Model-IIa applications typically run in an iterative fashion, and

checkpointing may be performed at the end of an iteration. Checkpointing operations are

costly and incur high overhead as they typically involve disk accesses and

synchronization of all processes in applications. As expected, the overhead incurred for a

single checkpoint is several orders of magnitude of the time taken for a single iteration. In

such a case checkpointing must be judiciously used.

Checkpointing frequency is defined as the ratio between the number of checkpoints

performed and the total number of iterations in the application. Invoking checkpointing

73

routines at a greater frequency than required leads to unnecessary fault- free overhead. In

the presence of faults, a lower-than-required frequency results in the lack of "fall

through," or real progress of the application. Appropriate time between checkpoints

depends on several factors such as distribution of faults, time to checkpoint, and time to

recovery. This issue has been dealt with in literature [21, 28, 32]. Model-IIa results will

thus be presented with varying checkpointing frequencies where appropriate.

5.3.1 Runtime Overhead

The definition of runtime overhead is the same as defined in Model-Ia results and

captures percentage increase in run-time. However with regard to the preceding

discussion on checkpointing frequency, runtime overheads will be measured for a range

of checkpointing frequencies. Percentage increase in runtime is computed with respect to

runtime of an unmodified program running on plain MPI/Pro middleware.

5.3.1.1 Experimental Setup

Figure 5.11 presents pseudo-code for a Model-IIa application. The code in bold

typeface consists of the newly introduced API and supporting code for making the

application fault-tolerant. Sections B and C perform middleware and application level

recovery in the event of a process death. Section D presents code for marshalling

application state and checkpointing the information. Checkpointing frequency of the

application is passed through command line arguments. Section A captures the code with

the actual work and other fault-tolerant relevant code.

Modified and unmodified applications consisted of four processes running on a

logical 2x2 grid topology and 10,000 iterations of the Game of Life. Runtime of an

Distribute Data;
Initialize conditions;
While (! enuf_iterations){
 MPIFT_GetDeadRanks(..);

if (deadcount >1){
for (I = 0.. Deadcount-1){

MPIFT_RecoverRank(..); B
}

 MPIFT_ChkptRecover(&retrieved, ..);
 Restore_AppState(&retrieved); C

A};
 //normal run part
 Communicate_part();

 Compute_part();
 MPI_Barrier();
if(func(chkpt_freq)){

Get_AppState(&tostore); D
MPIFT_ChkptDo(&tostore, .., ..);

 }
 };
 Cleanup();

Figure 5.11: Pseudo-code for Model-IIa Application

74

unmodified application (Section A – code in bold typeface) running on unmodified

middleware was measured. Later, runtimes of modified applications (Sections: A –

(B+C)) were determined. The variants in later applications consisted of checkpointing

frequency and data grid sizes. Checkpointing frequency, as defined in Section 5.3, was

varied from 0 through 0.01, and data grid sizes were varied from 4x4 to 250x250

elements for each application run. Timing measurements were made by utilizing the

MPI_Wtime() function. Applications were run on a cluster of Intel Pentium machines

(750mhz, 512 MB RAM, Linux 2.4 OS) interconnected with 10/100 Fast Ethernet.

5.3.1.2 Results and Analysis

Table 5.4 presents the overhead results without checkpointing. These overheads

measure the absolute performance impact of message-passing overheads and introduction

75

of new MPI/FT API on the application runtime. These results indicate that overheads are

low and decrease for larger grid sizes with more computation. This decrease may be

attributed to the different impacts of FT mechanisms on communication and computation

and are further explored in Chapter 6.

Figure 5.12 presents runtime overheads with various checkpointing frequencies (0 to

0.01). The number of actual checkpoints is equivalent to product of the frequency and the

number of total iterations. It can be realized from the graph that overheads depend on the

size of data to checkpoint and their frequency. Overheads are limited under moderate

checkpoint frequency.

Table 5.4: Fault-free Runtime Overhead without Checkpointing in Model-IIa, Game of
Life Application

Grid
Size

Runtime with
MPI/Pro
(seconds)

Runtime with
MPI/FT

(seconds)

Hypothesized
Overhead

(%)

Actual
Overhead

(%)
2x2 8.84 9.26 30 4.7

16x16 8.97 9.43 30 5.2
100x100 10.63 11.17 30 5.0
250x250 20.75 21.25 30 2.4

0

5

10

15

20

25

30

35

40

Fa
ul

tfr
ee

 O
ve

rh
ea

d
(%

)

4x4
16x16
100x100
250x250

0 0.002 0.004 0.006 0.008 0.01 0.012
Checkpointing Frequency (num/iterations)

Figure 5.12: Fault- free Overhead with Checkpointing in Model-IIa, Game of Life

76

Application

5.3.2 Program Changes

 MPI applications need to be modified to utilize the MPI/FT API and enable fault-

tolerance. The amount of changes required for sample applications is studied in this

section.

5.3.2.1 Program Change Ratio

 The definition of PCR is the same as for Model-Ia.

5.3.2.2 Results and Analysis

The values pertinent for the Game of Life program are presented in Table 5.5. PCR

was found to be well below the expected values because the number of MPI/FT API calls

77

for achieving middleware level recovery was dependent on the structure of the program

and not on the original lines of code. New code that accounts for application level

recovery is application dependent and does not affect PCR.

Table 5.5: Program Change Ratio for Model-IIa, Game of Life Application

Original lines of
code

New FT API Hypothesized PCR
(%)

Actual PCR
(%)

538 4 10 0.75

5.3.3 Recovery Time

As explained in Model-Ia results, recovery time consists of both middleware and

application- level recovery components. Experiments were designed to measure each

of these components individually.

5.3.3.1 Experimental Setup

Figure 5.11 presents the pseudo-code for Model-IIa application. Section B

emphasizes the middleware recovery procedure, and section C refers to the application

recovery part. Experiments were performed by running a modified Game of Life

application with four processes on a 2x2 process grid. External faults were simulated by

manual termination of non-rank 0 processes. The times for middleware and application

recovery were measured by utilizing MPI_Wtime() function. The rates of external and

internal heartbeats for fault detection were set at 1 Hz and 3 Hz, respectively.

Applications were run on a cluster of Intel Pentium machines (750mhz, 512 MB RAM,

Linux 2.4 OS) interconnected with 10/100 Fast Ethernet. Middleware recovery time was

78

expected to be around 50 milliseconds, and the applications recovery time was expected

around 0.5 seconds.

5.3.3.2 Results and Analysis

The Game of Life [6] application successfully recovered from externally

introduced single faults. Middleware and application recovery were successfully

performed and enabled the application to continue to a successful completion. Table 5.6

presents the average values for middleware recovery of a single dead process. Though the

actual value exceeds the hypothesized value, the actual recovery time is still small. This

increase in recovery time can be attributed to the collective recovery of a dead rank in

Model-IIa.

Table 5.6: Middleware Level Recovery Time for Model-IIa, Game of Life Application

Hypothesized Actual
Middleware Middleware

Recovery Time Recovery Time
(milliseconds) (milliseconds)

50 72

Table 5.7: Application Level Recovery Time for Model-IIa, Game of Life Application

Grid Size
Hypothesized

Application Recovery
Time (milliseconds)

Actual Application
 Recovery Time
(milliseconds)

4x4 500 2.3
16x16 500 3.0

100x100 500 4.2
250x250 500 4.8

79

Table 5.7 presents the application level recovery time for the Game of Life

application after a process is recovered at middleware level. This recovery time includes

both retrieval of checkpointed information and restoring application state. It can be seen

that the time required to recover depends on the size of the data to be read. These values

are less than the hypothesized value of 500 milliseconds for application recovery.

5.4 Summary

Experiments from both fault- injected and fault- free categories yielded acceptable

values to prove the hypothesis. Fault- injected experiments proved that applications

recover from externally introduced faults and successfully run to completion. Low

middleware and application recovery times for both Model-Ia and Model-IIa applications

indicate the quick recovery of common applications. These values also indicate the

usability of the middleware in production settings.

Fault- free measurements proved that overheads and modifications in the absence

of faults are low and within acceptable values. The common message-passing overhead

results for both Model-Ia and Model-IIa indicate the low latency and bandwidth

overheads at normal rates of internal and external heartbeats. The message-passing

overheads also indicate the increasing overheads with increasing rates of heartbeats. It

must be noted that these overheads are based on a predetermined fault model, and such

low overheads cannot be guaranteed for all fault-models, especially those dealing with

faults in the communication domain.

Runtime overheads are low for both Model-Ia and Model-IIa sample applications.

Model-IIa experiments stress the importance of the checkpointing frequency. These

results show that runtime overheads are low under moderate rates of checkpointing

80

frequency. Low PCR values for sample applications of Model-Ia and Model-IIa indicate

the minimal changes required in programs to achieve fault-tolerance. PCR values were

determined to be dependent on the structure of the code rather than the original number

of lines of code. Low and acceptable overhead values in message-passing, runtime, and

PCR collectively prove that MPI programs can be made fault-tolerant with low fault- free

overheads.

Thus, both the fault- free and fault- injected parameters and experiments validate

the hypothesis.

15Chapter VI

OTHER OBSERVATIONS

Previous chapters have presented parameters that assess the impact of achieving

fault-tolerance on performance. Experiments were performed, and the results were used

to validate the hypothesis. This chapter aims at describing observations and experiments

that provide insight into performance factors and middleware design issues. Subsequent

sections discuss components of fault- free overhead and some design issues through

placement of services.

6.1 Components of Fault-free Overhead

MPI applications consist of communication and computation components. FT

mechanisms, mainly detection mechanisms, impact communication and computation

components differently. For example, detection and masking measures to remove faults

in the communication channel are expected to impact communication more than

computation, while masking measures to avoid memory bit flips can be expected to affect

the computation component.

The CC-Ratio is a simple measure to highlight different impact of fault-detection

mechanisms on communication and computation components. The CC-Ratio is derived

primarily from the (C/C) Ratio [11]. (C/C) Ratio for a given execution of an application

is defined as the ratio between communication cost and computation cost.

81

82

A small (C/C) Ratio is essential for scalable applications [11] and is a useful concept

to predict runtime, and it aids in design of applications. Although (C/C) Ratio is a useful

concept, it has limitations to separate the communication and computation components

and individually understand their impact. In a typical message-passing middleware,

communication costs (latency and bandwidth) are different for different message sizes,

and the total communication costs may have involved messages of several sizes. The CC-

Ratio presents a modified definition to capture this information and is defined as the ratio

between the number of messages sent and the total number of computations performed.

The message size and measure of a single computation are fixed for a run.

A sample application "Simul" is introduced to measure the CC-ratio. Simul is a

master-worker MPI application, where the worker process simulates workload upon

receipt of a message from the master. While Simul does not utilize MPI/FT API and is

not designed to be fault-tolerant, its main goal is to highlight different impacts of FT

mechanisms on communication and computation components. Both the number of

messages to each slave (communication component) and the workload upon receipt of

each message (computation component) are configurable for each run. This program

defines a single computation workload as consisting of finding the square root and then

square of ten floats and a single communication load as consisting of sending an MPI

message of 40 bytes as payload. Thus, if a Simul program sends 100 messages to a slave,

and upon receipt of each message the slave performs 10 computations, the CC-Ratio for

this run is set at 100/10. It must be noted that the definitions of a single computation and

communication lo ad have been arbitrarily set, and they can be refined to a standard

definition.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Fa
ul

tfr
ee

 O
ve

rh
ea

d
(%

)

0.00

50.00

100.00

150.00

200.00

250.00

O
rig

in
al

 R
un

tim
e

(s
ec

on
ds

)

Overhead
Runtime

0.000001 0.0001 0.01 1 100 10000 1000000
CC-Ratio

Figure 6.1: Fault- free Overhead and CC-Ratio for MPI/FT Model-Ia at 40 bytes

83

Experiments were performed with a Simul program with a master and a single worker

process. Communication and computation components were varied from 1 to 1,000,000,

with their product remaining a constant at 1,000,000. These experiments were run with

three different middlewares. Runtime results were obtained by running the Simul

program on the baseline MPI/Pro middleware. Similar runtimes were obtained by running

the Simul program on an MPI/FT realization for Model-Ia. Later, results were obtained

by running the Simul program on a debug-enabled variant of MPI/FT. This middleware is

expected to introduce overheads in computation because of the debugging routines and

assertions.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Fa
ul

tfr
ee

 O
ve

rh
ea

d
(%

)

0.00

50.00

100.00

150.00

200.00

250.00

O
rig

in
al

 R
un

tim
e

(s
ec

on
ds

)

Overhead
Runtime

0.000001 0.0001 0.01 1 100 10000 1000000
CC-Ratio

Figure 6.2: Fault- free Overhead and CC-Ratio for Debug-enabled MPI/FT Model- Ia

84

Figures 6.1 and 6.2 present the fault- free overhead of the second and third

middlewares as compared with the baseline MPI/Pro middleware. In all the runs, the

external heartbeats were set 1Hz, while internal heartbeats were disabled. Simul was run

on a cluster of Intel Pentium machines (750mhz, 512 MB RAM, Linux 2.4 OS). Results

suggest that MPI/FT Model-Ia middleware impacts communication more than

computation. Programs with a higher CC-Ratio have higher overheads than with lower

values of the CC-Ratio. Conversely, the debug-enabled variant of MPI/FT Model-Ia

middleware impacts computation more than communication.

at 40 bytes

86

As an example, consider a system that has to detect externally introduced memory bit

flips. Such faults are common in space-based missions. These memory bit flips can be

either tolerated or masked at the hardware level by using special hardware (parity/ECC

memory). Usage of such specialized hardware might be prohibitive in cases of COTS

components. In such a case, the OS level can potentially check for such bit flips. The OS

can mask the faults by replicating the process state or by periodically performing

checksum on parts of the process. However, these approaches may incur high overheads.

In the absence of an OS level detection or masking, middleware will need to perform

similar operations. The application level is the appropriate place in several cases for such

memory flip detection. The assumption is that these memory flips have reached the

application layer and have not affected the process. Methods such as ABFT [18, 31] can

be effectively used to check the validity of data. Since applications are aware of

consistency of data, only memory flips that affect the data in a perceptible manner will be

detected.

Similarly, recovery can be achieved across various levels and can be designed across

several layers as in detection. Recovery achieved at lower layers and transparent to the

user typically requires either replication and/or system-level checkpointing. Replication

of message-passing programs is non-trivial. This research effort advocates the usage of

recovery mechanisms that are achieved by an interaction of middleware and application

level. Such a strategy allows applications to determine their own recovery policy. For

message-passing middleware, an application can choose to recover a process

immediately, delay the recovery, or request the middleware to shrink the world size. Such

87

policies may be based on the current fault-rate, application stall time for recovery, and

overall application progress.

A good design for a fault-tolerant system must thus consider placement of services

across various levels. Each of these components and their interaction can have different

costs and effectiveness in achieving the required feature. An appropriate mix and match

of features across these layers will be essential in achieving a low overhead fault-tolerant

system.

16Chapter VII

CONCLUSIONS

7.1 Summary

This thesis hypothesized that modified MPI applications running on a modified

middleware will complete successfully even in the presence of faults. It also

hypothesized that these modified applications will incur acceptable performance in the

absence of faults. The motivation, hypothesis, and contribution expected from this thesis

were presented in the first chapter. MPI and Cluster-based systems have proliferated into

various domains of usage. Their lack of reliability has hampered their usage in critical

environments. High costs of failure in these systems and the lack of existing efforts

motivated the need for a fault-tolerant and reliable MPI implementation. The hypothesis

was supported through the design and implementation of MPI/FT. MPI/FT [4] was

realized by selective incorporation of fault-tolerant features into MPI/Pro [26], an

existing high performance implementation of MPI 1.1 standard.

The literature survey in the second chapter revealed the shortcomings of MPI 1.1

standard in addressing reliability issues. Other research efforts to make MPI more reliable

were briefly described. The third chapter presented the basis for this thesis. The model-

based approach is based on the realization that applications contain features and

characteristics that are amenable to achieving fault-tolerance. This thesis exploited those

88

89

features to provide application model-specific services and achieve low-overhead fault-

tolerance. Relevant AEMs based on parameters of model-based approach were

introduced.

The fourth chapter presented the research methodology and design of MPI/FT. The

design of fault-tolerant features for detection, notification and recovery was elaborated.

This chapter has also presented a brief description of the MPI/FT API available to users

and provided examples of their usage through pseudo code for some example

applications.

The fifth chapter presented the necessary experiments to validate the hypothesis.

Parameters to assess the impact of fault-tolerance on performance were defined. Design

of experiments and results of fault- free overhead on messaging were presented. These

experiments evaluated the impact of fault-tolerance measures on the latency and

bandwidth of the message-passing at various message sizes. Experiments for two AEMs,

Model-Ia and Model-IIa, were presented. These experiments were designed to evaluate

the impact on the runtime of these applications. In Model-IIa applications the concept of

checkpointing frequency has been introduced. Fault- free parameters in message-passing

and runtime were defined and obtained to validate that low-overhead fault-tolerance was

possible. Fault- injected experiments proved that applications finished successfully with

limited overheads in the presence of external faults. Chapter 6 presented other

observations and experiments to provide insight into performance impact of fault-

tolerance mechanisms on communication and computation components.

90

7.2 Future work

This work has implemented two AEMs: Model-Ia and Model-IIa. Both these models

have the concept of a SPA (Safe Protection Area), in which the master process/rank 0 is

not affected by external faults. The initial design of MPI/FT was targeted for space-borne

environments that support hardened environments and can provide such a SPA. However,

the assumption of such a SPA might not be feasible in certain space-based environments

and most ground applications. Future work may implement models that do not require

such a SPA while incurring additional overhead.

The need for a SPA in Model-I applications can be eliminated with parallel NMR (N

modular redundancy). Parallel NMR involves providing N way redundancy for a single

process and can be achieved either through active or passive redundancy. Figure 7.1

shows one way of achieving parallel NMR for Model-Ic. Messages from various slaves

will need to be replicated across various copies of master process.

Model-II applications are marked by a similarity in their code, and the roles of

different processes are interchangeable. In Model-II, the coordinator can be placed at any

rank. A simple strategy is that the coordinator be placed at rank 0, and another rank

named secondary coordinator can check for the health of rank 0. Death of a rank other

than rank 0 can be dealt with as in the current Model-IIa. However, death of rank 0 can

be handled by the secondary coordinator. Such a revolving or secondary coordinator

approach may introduce new API to determine the "recovery head" process. This

recovery head process can execute the code that drives the recovery while rest of the

alive ranks participate as required.

 Figure 7.1: Model-Ic with Parallel NMR

91

Scalable fault-tolerance requires both scalable detection and recovery procedures. The

current star topology at FT level for heartbeats is inherently not scalable. This star

topology can be replaced by hierarchical methods with overlapping zones. Other scalable

fault-detection methods based on gossiping [10] can also be explored.

Newer models that are scalable in recovery are possible. In certain applications,

processes interact infrequently at a global level and more frequently among a cohort of

neighboring processes. In such cases the impact of death of a process only affects

processes in the cohort, and recovery procedures may also be limited to this cohort of

processes.

http://hpcl.cs.msstate.edu/pmlp
http://www.eecs.wsu.edu/~bakken/middleware.pdf

9 3

[1 0] D. E. C olli ns, A. G e or g e, a n d R. Q u a n d er, “ A c hi e vi n g S c a l a bl e Cl ust er S yst e m
A n al ysis a n d M a n a g e m e nt wit h a G ossi p -b as e d N et w or k S er vi c e, ” Pr o c e e di n gs:
2 6 t h A n n u al I E E E C o nf er e n c e o n L o c al C o m p ut er N et w or ks, T a m p a, Fl ori d a, p p.
4 9 -5 8.

[1 1] M. Cr o v ell a et al., " Usi n g c o m m u ni c ati o n -t o-c o m p ut ati o n r ati o i n p ar a ll el
pr o gr a m d esi g n a n d p erf or m a n c e pr e di cti o n, " P r o c e e di n g s: 4 t h I E E E S y m p o si u m
o n P ar all el a n d Distri b ut e d Pr o c essi n g , Arli n gt o n, T e x as, D e c. 1 9 9 2, p p. 2 3 8-2 4 5.

[1 2] E T N U S I n c., " T ot al Vi e w Us er’s M a n u al, ” T ot al Vi e w S p e cifi c ati o n ,
htt p:// w w w. et n us. c o m (curr e nt A u g ust 2 0 0 1)

[1 3] G. F a g g, a n d J. D o n g arr a, “ F T -M PI: F a ult t ol er a nt M PI, s u p p orti n g D y n a mi c
A p pli c ati o ns i n a D y n a mi c W orl d, ” Pr o c e e di n gs: 7t h E ur o p e a n P V M/ M PI Us ers'
Gr o u p M e eti n g, B al at o nf ür e d, H u n g ar y, A u g. 2 0 0 0, p p. 3 4 6 -3 5 3.

[1 4] W. Gr o p p et al., “ M PI C H: A Hi g h P erf or m a n c e, P ort a bl e I m pl e m e nt ati o n of t h e
M PI M ess a g e P assi n g I nt erf a c e St a n d ar d ”, P a r all el C o m p uti n g , v ol. 2 2, n o. 6,
J a n. 1 9 9 6, p p. 7 8 9 -8 2 8.

[1 5] F. A. H ai g ht, H a n d b o o k of t h e P oiss o n Distri b uti o n , J o h n Wil e y a n d S o ns I n c.,
N e w Y o r k, N e w Y or k, 1 9 6 7.

[1 6] M. H a y d e n, T h e E ns e m bl e S yst e m , t e c h ni c al r e p ort T R 9 8-1 6 6 2, C o m p ut er
S ci e n c e D e p art m e nt, C or n ell U ni v ersit y, It h a c a, N e w Y or k, 1 9 9 8.

[1 7] W. L. H ei m er di n g er, a n d C. B. W ei nst o c k, A C o n c e pt u al F r a m e w o r k f o r S y st e m
F a ult T ol er a n c e, te c h ni c al r e p ort C M U/ S EI -9 2 -T R -3 3, S oft w ar e E n gi n e eri n g
I nstit ut e, C ar n e gi e M ell o n U ni v ersit y, Pitts b ur g h, P e n ns yl v a ni a, 1 9 9 6.

[1 8] K. H. H u a n g, J. A. A br a h a m, " Al g orit h m -B as e d F a ult T ol er a n c e f or M atri x
O p er ati o ns, " I E E E Tr a ns a cti o ns o n C o m p ut ers, v ol. 3 3, D e c e m b er 1 9 8 4, p p. 5 1 8-
5 2 8.

[1 9] D. L. K at z et al., “ A p pli c ati o ns D e v el o p m e nt f or a P ar all el C O T S S p a c e b or n e
C o m p ut er, ” Pr o c e e di n gs: 3 r d A n n u al W or ks h o p o n Hi g h -P e rf o r m a n c e E m b e d d e d
C o m p uti n g , S e p. 1 9 9 9, L e xi n gt o n, M ass a c h us etts.

[2 0] J. F. C. Ki n g m a n, P oiss o n Pr o c ess es, O xf or d U ni v ersit y Pr ess, N e w Y or k,
N e w Y or k, 1 9 9 3.

[2 1] Y. Li n g, J. Mi, a n d X. Li n, “ A V ari ati o n al C al c ul us A p pr o a c h t o O pti m al
C h e c k p oi nt Pl a c e m e nt, ” I E E E C o m p ut e r s, v ol. 5 0, n o. 7, J ul y 2 0 0 1, p p. 6 9 9 -7 0 8.

http://www.etnus.com

http://www.mpi-softtech.com/products/vsipro/default.asp
http://www.mpisofttech.com/products/mpi_pro_linux/default.asp
http://www.mpi-forum.ord/docs/mpi-20.ps.Z
http://www.mpi-forum.ord/docs/mpi-11.ps.Z

 17Appendix A

OTHER MODEL-IA RESULTS

95

96

This appendix presents runtime results for Model-Ia pmandel application [23].

Experiments were performed by running a modified pmandel application with four

processes under the following conditions:

1) Fault- free run with MPI/Pro.

2) Fault- free run with MPI/FT.

3) Single slave failure after X% of the pixels are computed and recovery is

performed.

4) Single slave failure after X% of the pixels are computed and recovery is

not performed. Application continues with the remaining two slaves.

Faults were simulated by programming termination of slaves through messages

internal to the pmandel application. The times for middleware recovery and application

recovery were measured by utilizing MPI_Wtime(). The rates of external and internal

heartbeats for fault detection were set at 1 Hz and 3 Hz, respectively. Applications were

run on a cluster of Intel Pentium machines (900mhz, 640 MB RAM, Linux 2.4)

interconnected with 10/100 Fast Ethernet. Figures A.1 through A.7 present results when

X was varied from 20% to 80% in increments of 10%.

1.60
MPI/Pro

Ru
nt

im
e

(s
ec

on
ds

)
1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

MPI/FT (no faults)
MPI/FT (fault @ 20%, No Recovery)
MPI/FT (fault @ 20%, With Recovery)

0 10 20 30 40 50 60 70 80 90 100

Progress (% pixels complete)

Figure A.1: Pmandel Application Runtime with Fault at 20 % Progress

0 10 20 30 40 50 60 70 80 90 100
Progress (% pixels complete)

Figure A.2: Pmandel Application Runtime with Fault at 30 % Progress

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

R
un

tim
e

(s
ec

on
ds

)

MPI/Pro
MPI/FT (no faults)
MPI/FT (fault @ 30%, No Recovery)
MPI/FT (fault @ 30%, With Recovery)

97

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Ru
nt

im
e

(s
ec

on
ds

)

MPI/FT (no faults)
MPI/FT (fault @ 50%, No Recovery)
MPI/FT (fault @ 50%, With Recovery)

1.40

MPI/Pro

0 10 20 30 40 50 60 70 80 90 100
Progress (% pixels complete)

Figure A.4: Pmandel Application Runtime with Fault at 50 % Progress

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

MPI/Pro
MPI/FT (no faults)
MPI/FT (fault @ 40%, No Recovery)
MPI/FT (fault @ 40%, With Recovery)

0 10 20 30 40 50 60 70 80 90 100
Progress (% pixels complete)

Figure A.3: Pmandel Application Runtime with Fault at 40 % Progress

R
un

tim
e

(s
ec

on
ds

)

98

1.40
MPI/Pro

Ru
nt

im
e

(s
ec

on
ds

)

1.20

1.00

0.80

0.60

0.40

0.20

0.00

MPI/FT (no faults)

MPI/FT (fault @ 70%, No Recovery)
MPI/FT (fault @ 70%, With Recovery)

0 10 20 30 40 50 60 70 80 90 100

Progress (% pixels complete)

Figure A.6: Pmandel Application Runtime with Fault at 70 % Progress

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Ru
nt

m
e

(s
ec

on
ds

)
MPI/Pro

MPI/FT (no faults)

MPI/FT (fault @ 60%, No Recovery)

MPI/FT (fault @ 60%, With Recovery)

0 10 20 30 40 50 60 70 80 90 100

Progress (% pixels complete)

Figure A.5: Pmandel Application Runtime with Fault at 60 % Progress

99

1.40
MPI/Pro

Ru
nt

im
e

(s
ec

on
ds

)
1.20

1.00

0.80

0.60

0.40

0.20

0.00

MPI/FT (no fauts)
MPI/FT (fault @ 80 %, No Recovery)

MPI/FT (fault @ 80%, With Recovery)

0 10 20 30 40 50 60 70 80 90 100

Progress (% pixels complete)

Figure A.7: Pmandel Application Runtime with Fault at 80 % Progress

100

 18Appendix B

SCALABILITY TESTS

101

102

MPI/FT uses external and internal heartbeats for fault detection. External

heartbeats are primarily used between the coordinator thread at rank 0 and SCTs at other

processes. This star-based topology between coordinator and SCTs may create a

bottleneck and affect the scalability of MPI applications. Experiments and results in this

section are focused on measuring the impact of this external heartbeat mechanism on

scalability of applications.

Speedup is used as the primary measure to understand scalability of applications.

The definition is given by equation B.1,

T MPI / Pro ,1Speedup = , (B.1)
X ,NP T ,X NP

 is the runtime for a given application running on MPI/Pro middlewarewhere T MPI / Pro ,1

with one process and is runtime of the same application running on certainT X ,NP

middleware X with NP processes.

The Game of Life [6] program was used to measure the impact of FT mechanisms

on scalability. The first runtime results were obtained by running the Game of Life

program with varying data grid sizes (16x16, 250x250, 1000x1000) on plain MPI/Pro

middleware. These experiments were repeated for varying process sizes (1, 2, 4, 8). The

same set of experiments were repeated on MPI/FT middlewares with externa l heartbeat

rates set at 1 Hz and 0.25 Hz, while internal heartbeats were disabled. These tests were

performed on a cluster of Intel Pentium machines (900mhz, 768 MB RAM, Linux 2.4

OS). Table 1 presents the speedup values computed from the previous experiments using

equation B.1. Figures B.1, B.2, and B.3 present the same information.

103

Table B.1: Speedup of Game of Life Application with MPI/Pro and MPI/FT

Data Size Number

of

Processes

MPI/Pro MPI/FT

EXT HB @ 0.25 Hz

MPI/FT

EXT HB @ 1 Hz

16x16

1 1.000 0.909 0.909
2 0.138 0.137 0.136
4 0.093 0.088 0.088
8 0.074 0.070 0.069

250x250

1 1.000 0.970 0.966
2 1.760 1.752 1.730
4 2.990 2.919 2.932
8 3.544 3.465 3.413

1000x1000

1 1.000 0.996 0.996
2 1.926 1.918 1.917
4 3.453 3.437 3.431
8 6.284 6.282 6.280

9
Ideal8
MPI/Pro

7
MPI/FT @ 1Hz Ext Hb

6 MPI/FT @ 0.25 Hz
5

4

3

2

1

0
1 2 4 8

Number of Processors

Figure B.2: Speedup of Game of Life, 250x250

Sp
ee

du
p

9

8

7

6

5

4

3

2

Ideal
MPI/Pro
MPI/FT @ 1Hz Ext Hb
MPI/FT @ 0.25 Hz Ext Hb

1

0
1 2 4 8

Number of Processors

Figure B.1: Speedup of Game of Life, 16x16

Sp
ee

du
p

104

Sp
ee

du
p

9

8

7

6

5

4

3

2

1

0

Ideal

MPI/Pro

MPI/FT @1Hz Ext Hb
MPI/FT @ 0.25 Hz ExtHb

1 2 4 8
Number of Processors

Figure B.3: Speedup of Game of Life, 1Kx1K

105

Results indicate that the speedup of applications running on MPI/FT middleware

is comparable to speedup of applications running on MPI/Pro. The relative difference in

speedups is higher for runs with smaller data sizes. This may be attributed to higher

impact of MPI/FT mechanisms on communication rather than computation, as discussed

in Section 6.1. The scalability of computationally intensive applications is less impacted.

However, runs with a larger number of processes are expected to create bottlenecks at

rank 0 process, and future work may need to adapt hierarchical and scalable detection

mechanisms such as gossiping [10].

	Incorporating Fault-Tolerant Features into Message-Passing Middleware
	Recommended Citation

	master

