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injected overheads. The hypothesis is validated through experimentation and 

measurement of sample MPI applications for two AEMs. 
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Chapter I 

INTRODUCTION 

1.1 Background 

Clusters of COTS (Commodity Off The Shelf) components are rapidly replacing 

traditional supercomputers. Clusters are networks of workstations interconnected by 

high-speed networks. Recent advances in individual processors and interconnect 

technologies have made clusters more reliable, scalable, and affordable [9]. They have 

been the solution of choice for problem solving in several domains that require large 

amounts of computation power. 

The efficacy of these clusters fo r parallel computing is determined by two factors, 

namely the middleware and the parallel programming environment. Middleware typically 

glues various components in the systems and provides an abstract view of the system to 

its users. Parallel programming environments provide a programming interface for 

developing parallel applications. MPI (Message Passing Interface) [24] is a standard for 

message-oriented middleware that also provides a parallel programming interface. MPI's 

main goals are high performance and portability, and it is currently the de facto standard 

for message-passing libraries. Numerous implementations of MPI have been realized 

both in industry and academia. MPI has been successfully used in many 
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domains such as scientific computing and visualization [3, 7, 19, 27]. 

Clusters inherently increase the availability at hardware level with redundant and hot-

swappable components, but these features are not automatically transferred to higher 

layers. With the increasing popularity of clusters and MPI applications, the issue of 

reliability at the middleware and application layers is gaining prominence. The MPI 

standard is limited and does not consist of comprehensive reliability measures. While 

some other research efforts have realized fault-tolerant MPI, they employ common 

mechanisms that may lead to high overheads and contradict the high-performance goals 

of MPI. This thesis realizes MPI/FT™ [4], a low-overhead, fault-tolerant message-

passing middleware. MPI/FT has been realized by incorporating select fault-tolerant 

features in MPI/Pro™ [26], an existing high-performance realization of MPI 1.1 

standard. 

1.2 Motivation 

Clusters and MPI-based systems have proliferated in both academic and industrial 

environments. These systems have been widely deployed in embedded, e-commerce/web, 

and production environments and are used for both critical and non-critical operations. 

Demand for supercomputing power in space-based missions has also necessitated the use 

of clusters [19]. These space-based environments typically induce external faults at a 

non-trivial rate.  Faults and failures are also unavoidable in many ground systems. In 

particular the probability of a node or OS (Operating System) failure increases with the 

number of components. Figure 1.1 presents an intuitive diagram representing increasing 

difficulty for longer MPI applications to finish in the presence of faults. Failures in many 

of these systems are associated with high costs as they typically manifest into loss of 



 

 

 

 

 Figure 1.1: Probability of Completion in Harsh Environments 
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critical data and time. It is essential that these systems be capable of tolerating both 

external and internal faults and provide services with minimum disruption. 

MPI’s [24] main goals of high-performance and portability have lead to the exclusion 

of comprehensive reliability measures. This lack of reliability measures is evident in the 

assumptions of a reliable communication layer, limited fault detection, and limited 

recovery procedures in the standard. MPI has also been designed to work in relatively 

safe environments and is typically not used in harsh environments such as space-based 

missions. Chapter 2 discusses these limitations in detail. MPI implementations have 

typically used a static process model to realize MPI, requiring successful completion of 

all constituent processes for completion of the application. 



 

 

 

 

 

 

 Figure 1.2: Typical Terminate-and-Restart Strategy 
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Current MPI implementations handle errors in processes by terminating the 

application, and typically users restart the application. This simplistic terminate-and-

restart view is discussed in [4] and is also presented in Figure 1.2. 

MPI applications are typically launched using a program launcher such as mpirun. In 

the absence of any faults both the application and mpirun return successfully. In the 

presence of a fault the application may terminate to return errors through mpirun. In such 

a case the application can be restarted through manual intervention, or the restart 

capability can be included in mpirun. However, based on the middleware implementation 

and the application state at the instance of occurrence of the fault, the application may 
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However, at smaller fault rates the fault-tolerant strategy incurs larger runtimes than a 

simple terminate-and-restart strategy. Users may choose to adopt either strategy based on 

several factors, some of which are the fault rate, the impact of mean runtime, the cost of 

implementing fault-tolerance, or the costs associated with a failure. Most high-

performance applications in critical environments, which are associated with high costs 

of failure, would be expected to adopt a fault-tolerant strategy rather than a terminate-

and-restart view. It must be noted that exaggerated values for fault- free overheads and 

recovery time have been used for the graphs in Figure 1.3. Experiments in subsequent 

chapters show that low overheads in the vicinity of 10% and recovery time as the order of 

milliseconds is possible for some practical applications. 

Thus, successful completion of an MPI application in the presence of external faults 

and in a harsh environment is non-trivial and requires fault-tolerance and reliability in the 

MPI implementation. High costs of failure in critical systems, insufficiency in the MPI 

standard, and limitations in current implementations of MPI necessitate the need for a 

fault-tolerant and reliable message-passing middleware. MPI/FT attempts to satisfy this 

need by providing for an effective approach and implementation. 

The scope of this research is limited to specific MPI applications. These applications 

are assumed to be well written and devoid of internal errors arising during design and 

development phases. They are expected to run successfully to completion in the absence 

of external faults. MPI/FT aims at enabling such applications to complete successfully 

even in the presence of external faults. 
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1.3 Hypothesis 

This thesis hypothesizes that a modified MPI application with a given set of 

application features developed on a modified MPI middleware will run successfully to 

completion, even in the presence of a set of modeled fault conditions and will incur 

acceptable fault- free performance overhead and acceptable application changes. 

Application features refer to discerning characteristics, such as communication 

topology and application structure, that are abstracted in AEMs (Application Execution 

Model). This hypothesis is proved using two AEMs, namely Model-Ia and Model-IIa. 

Model-Ia abstracts MPI applications that follow a simple master-worker style with a star 

communication topology. Slave processes in this model can die and recover without 

stalling the entire application’s progress. Model-IIa abstracts applications belonging to a 

SPMD (Single Program Multiple Data) style and an all-to-all communication topology. 

Death of a single process in this AEM forces the entire application to recovery. 

Parameters that differentiate amongst AEMs and assumptions and restrictions on each of 

the two models are further described in Chapter 3. 

Performance is evaluated in terms of message-passing overheads and the run-time 

overhead of an application. Application changes are measured using PCR (Program 

Change Ratio), which is defined as a ratio between the number of new API calls 

introduced and the number of lines in the original code. Acceptable performance 

overhead and program changes were hypothesized on a per AEM basis. The acceptable 

values for fault-free parameters and recovery for both Model-Ia (master-worker) and 

Model-IIa are presented in Table 1.1. 
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Table 1.1:  Hypothesized Parameter values for Model-Ia and Model- IIa 

Parameter Model-Ia Model-IIa 

Fault-Free Overheads 
Message-Passing 5% 5% 

Run-time 15% 30% 

PCR 10% 10% 

Recovery Time 

(milliseconds) 

Middleware Recovery 25 50 

Application Recovery 500 500 

1.4 Basis 

Several research efforts exist to make MPI more reliable. They are briefly described 

in Chapter 2, the literature survey. Most of these efforts treat the applications as a "black 

box" and provide the same measures for reliability. Some such measures are user-

transparent checkpointing, and rollback and recovery measures. This thesis and research 

are based on the fundamental premise that MPI-based parallel applications can provide 

features and characteristics that are amenable to achieving fault-tolerance and reliability. 

The basis of this research is that such exploitation of application features will yield fault-

tolerance at lower overheads. These discerning characteristics and relevant fault-tolerant 

features are coupled into AEMs. Chapter 3 presents these features and explains relevant 

models. 

1.5 Contributions 

The contributions of this thesis are as follows: 

1) This thesis introduces a new model-based approach for exploiting application 

features for achieving low overhead fault-tolerance. 
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2) This work has identified several practical AEMs based on the model-based 

approach. 

3) This work has realized prototype implementations of MPI/FT for two prominent 

AEMs, Model-Ia (simple master/slave) and Model-IIa (SPMD). 

4) This thesis has identified and measured fault-free and fault- injected parameters to 

understand the impact of achieving fault-tolerance in message-passing middleware on 

performance. It also shows that that fault-tolerance can be achieved with low fault-

free overheads. 

1.6 Organization 

The remainder of the document is organized as follows. Chapter 2 presents the 

limitations in MPI standard and inadequacies in various MPI implementations based on a 

literature review of various research efforts to make MPI reliable. Chapter 3 presents the 

model-based approach and presents two AEMs: Model- Ia and Model-IIa. Chapter 4 

presents the research approach for this thesis. Chapter 5 presents the parameters to 

validate this thesis and experiments to obtain these values. Chapter 6 presents 

information about observations and experiments to provide more insight. Chapter 7 

concludes the document and suggests future work. 



 

 

 

 
 
 

 

 

 
 

 

 

 

11Chapter II 

LITERATURE SURVEY 

This chapter presents a literature review of topics essential to this research. A 

summary of fault-tolerance basics is presented in section 2.1.  Section 2.2 discusses the 

shortcomings and limitations in MPI-1.1 standard [24]. Section 2.3 briefly introduces 

other research efforts and implementations to make more MPI more reliable and 

discusses their drawbacks and limitations. 

2.1 Fault-tolerance Basics 

Dependability is an essential quality of systems. It can be defined as reliance on a 

system to deliver services [17]. A system can be considered dependable when it is 

available, reliable, and safe. Availability is defined as the probability that a system can 

offer its services at a given instance of time. Reliability is defined as the percentage of 

time a system conforms to its specifications and provides services. Safety is defined as a 

system’s ability to operate safely and avoid catastrophic results. 

Errors, faults, and failures refer to the same fundamental problem of deviations from 

specifications at different levels of abstractions. These terms are used interchangeably in 

the rest of this document. Faults can be classified by their origin, effects, and duration. 

Various ways of achieving reliability [17], and hence dependability, in systems 

include: 

11 





















 

 

 

 

  
 

 

 

 
 

 

 

14 

registered on a per communicator basis and do not allow for per function based 

error handlers. Callback functions provide limited capability and flexibility and 

cannot be invoked in case of process crashes and hangs. 

MPI forum released the MPI-2 [25] standard in 1998. MPI-2 consists of extensions in 

the areas of process creation and management, one-sided communications, extended 

collective operations, and parallel I/O. A significant contribution of MPI-2 is the DPM 

(Dynamic Process Management), which allows user programs to create and terminate 

additional processes on demand. DPM may be used to compensate for the loss of a 

process, but the lack of detection and recovery precludes reliability. 

2.3 Other Research efforts 

Several research efforts have been conducted to make MPI implementations more 

reliable. This section introduces some of these efforts and analyzes their drawbacks and 

shortcomings in providing for a reliable MPI Middleware. Solutions in providing reliable 

MPI have ranged from transparent checkpointing and emphasis on health of the 

communicator to utilizing MPI-2’s DPM. 

2.3.1 CoCheck 

CoCheck [30] is one of the earliest efforts to make MPI more reliable. CoCheck 

extends the single process checkpoint mechanism in Condor [22] to a distributed 

message-passing application. Unlike most checkpointing middlewares, CoCheck is 

visible to the user and is available at a layer above the message-passing middleware. 

Problems in checkpointing, such as global inconsistent states and domino effects, are 

eliminated by the usage of a flush protocol. This user-aware flush protocol sends “ready 
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messages” to all processes. Receipt of this “ready message” causes purging of message 

buffers and clearing of communication channels. CoCheck was primarily targeted for 

process migration, load balancing, and stalling long-running applications for resumption 

at a later time. 

CoCheck incurs a large overhead by checkpointing entire process state. Recovery of a 

dead process is achieved by a recovery function run at user level, but this is insufficient. 

The status of inconsistent internal data structures in message-passing middleware is not 

addressed. Checkpointing is also not a viable option for certain MPI applications, such as 

those following the Master-Worker model. Applications of this type have a simple model 

where a master process distributes jobs among worker processes, and workers return 

results. In such a model, checkpointing the state of workers is unnecessary as it can be 

reconstructed from the saved jobs from the master process. Thus, CoCheck provides for 

coarse reliability measures for MPI. 

2.3.2 Egida 

Egida [29] is an object-oriented toolkit for transparent rollback and recovery. Egida is 

extensible and allows users to define their own rollback recovery protocols. 

Implementations for the described protocol are synthesized by gluing pre-existing 

objects. Egida bases itself on log-based rollback recovery protocols and mainly 

emphasizes low overhead during recovery and rollback. This checkpointing and rollback 

of messages is transparent to the user. Egida has been ported to MPICH [14], an 

academic implementation of MPI. The Egida layer has been placed between the higher 

MPICH layer and the p4 communication layer. Modifications have been made to include 

a watchdog timer and to allow socket reestablishment in case of process failures. 



 

 

 

 
 

 

 

  
 

 

 

 

16 

Applications need to relink with Egida to achieve transparent fault tolerance. Egida 

shares some of its drawbacks with CoCheck. Egida checkpoints both processes and 

messages, which may lead to large overheads in some cases.

 2.3.3 FT-MPI 

A communicator is an important data structure defined in the MPI standard [24]. A 

communicator defines a communication context, usually denoted by an identifier, and a 

set of processes in the context. Communicators are essential for maintaining different 

communication contexts. FT-MPI [13] acknowledges that the health of a communicator 

is essential for proper running of an MPI application. The death of processes places 

communicators in an inconsistent state. FT-MPI suggests expanding and shrinking 

communicators in lieu of process deaths and inclusions, and it emphasizes methods to 

have redundant slots for new processes and various ways of managing the communicator 

data structure. FT-MPI does not take care of detection and recovery at the user level. 

2.3.4 Starfish 

Starfish [1], from Technion University, Israel, is a partial MPI-2 implementation with 

DPM. The Starfish environment for execution of static and dynamic MPI programs is 

based on the Ensemble group communication system [16]. Starfish provides hooks to 

handle dynamic cluster changes and checkpointing. It uses an event model where 

processes and components register to listen on events. This event bus provides messages 

reflecting changes in cluster configuration and process failures. Starfish introduces a 

novel object bus for event dissemination. 
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Starfish provides fault-tolerance as a byproduct, but it does not provide for user level 

recovery API, and the consistency of communicator and internal data structures is not 

addressed. 

2.4 Summary 

This chapter has presented the shortcomings of MPI standard and the various 

attempts to make it more reliable. These inadequacies motivate the need for a fault-

tolerant middleware. The essential features of such a middleware would be low overhead 

and adaptability. These features would be essential for a middleware to successfully cater 

to different applications under different fault conditions. 



 

 

 
 

 
 
 

 

 

 
 

  

 

 

 

12Chapter III 

MODEL-BASED APPROACH 

This chapter presents the basis for the research presented in this thesis. The 

model-based approach presents a way of exploiting application features to achieve low-

overhead fault-tolerance. This chapter explains this approach and introduces parameters 

that separate various AEMs. Based on the model-based approach two AEMs or models, 

Model-Ia and Model-IIa are described. 

3.1 Research Basis 

Middleware is a class of software geared towards managing complexity [2]. 

Middleware typically provides API for the users and applications at higher levels by 

abstracting lower level details. Middleware is also known informally as the “gluing” or 

“plumbing” component that connects and passes data. Middlewares are typically 

designed and developed to support a range of applications with different characteristics.

 MPI [24] is a message-oriented middleware that also provides a parallel 

programming interface. As described in the literature survey, several other efforts have 

tried to make MPI-based middlewares more reliable. Many of these middlewares provide 

similar fault-tolerant services to all applications. Some such services available that 
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 Figure 3.1: Middleware Design Process Inputs 
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processes in “safe” environments if possible and the amount and type of 

redundancy required. Applications that require high reliability and availability 

may choose to have additional redundancy and complex management policies. 

The model-based approach, by providing abstractions across these features and 

requirements, alleviates the complexity issues. 

3.2 Model-based Parameters 

The model-based approach solves the problems associated with the typical "black 

box" approach and aims at reducing overheads for fault-tolerance by providing tailored 
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restarted quickly. In embedded systems, passive redundancy is preferred over 

active redundancy to optimize resource usage. 

3.3 Application Execution models 

Table 3.1: Application Execution Models 

Programming 

Style 

Communication 

Topology 

Middleware 

Redundancy 

AEM 

Designation 

Currently 

Implemented 

None Model-Ia Yes 

Master/Worker Star Master -passive Model-Ib No 

Master-active Model-Ic No 

None Model-IIa Yes 

SPMD All-to-all Rank 0- passive Model-IIb No 

Rank 0- active Model-IIc No 

Table 3.1 lists several possible AEMs for the master-slave and SPMD styles.  Two 

AEMs, Model-Ia and Model-IIa, are implemented for MPI/FT and are explained in detail. 

These two models are widely used and hence represent a large set of MPI parallel 

applications. Assumptions for each model and the features services to support fault -

tolerance are described. Coordinator and SCT (Self Checking Thread) are middleware 

level threads that enable fault detection and recovery. These concepts are explained in 

detail in section 4.3.1. 
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3.3.1 Model-Ia 

Master-worker is a simple process model where the master divides and distributes the 

jobs among a set of worker processes. Workers operate on the job and return the results 

to the master. In this model, master and workers share a virtual star topology with the 

master at the center. Figure 3.2 presents Model-Ia. The assumptions and features for this 

model are as follows. 

Assumptions: 

The model is simple and involves message-passing between master and worker and 

not between workers. There is no explicit synchronization among workers or globally, 

and collective calls are disallowed because of the star-topology. Faults are expected to 

affect the workers, and the master process is assumed to be in a safe process area free 

from external faults. A master process can tolerate the death of a worker process, but 

death of the master cannot be tolerated. In Model-Ia death of a master implies that the 

entire progress of the application is lost, and the application needs to be restarted. AEMs 

Model-Ib and Model-Ic are aimed at alleviating this situation and are currently under 

investigation .

 Applications are expected to be written in an iterative manner at the master process, 

where the master sends and receives jobs to the workers. Each iteration typically consists 

of the master process receiving results from a worker and then assigning a new job to the 

worker. In the event of the death of a worker, all MPI communication to that worker must 

be terminated with errors, but MPI communication with other alive workers is still valid. 



 

 

 

 Figure 3.2: Model-Ia: Maser-Worker Application Model- Ia 
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Features:

 This model requires that the middleware Coordinator detect the death of a worker 

process through the SCT. Detection and notification of faults in workers utilizing 

Coordinator and SCT is explained in Chapter 4. Middleware also provides services for 

the user- level recovery of a dead worker process. Checkpointing is not required in this 

model, as workers do not hold much state information and master is guaranteed against 

failures. 
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Applications: 

Example applications of this model include the parallel message-passing version of 

Mandelbrot set visualization program [23], the Pmandel program, and the ray tracing 

applications for parallel image rendering. Experiments described in subsequent chapters 

will be performed using the Pmandel program. 

3.3.2 Model-IIa 

The all- interacting SPMD model is typically used in scientific applications and 

consists of a virtual all- to-all topology.  Figure 3.3 presents this model. 

Assumptions: 

The model is more complex than the previous Master-Worker model. The assumption 

regarding the safe process area holds for this model and thus the rank 0 process, which 

equates to master process in Model- Ia and the coordinator thread, cannot crash or die. 

The processes are connected by a virtual all- to-all topology. Applications belonging to 

this model typically operate in an iterative loop. Each loop is marked by an exchange of 

messages with other processes followed by a computation phase or vice versa. These 

messages among processes are typically used for data exchange and are bounded by 

synchronization methods. Similar to Model-Ia, current implementation of Model-IIa 

cannot tolerate death of Rank 0. AEMs Model-IIb and Model-IIc are aimed at eliminating 

this problem through use of passive or active redundancy for Rank 0 and are currently 

under investigation. 

Applications belonging to this model are assumed to be tightly coupled with regard to 

progress of entire application. Death of a single process in the application leads to stalling 

of the entire application. In the event of the death of a process, all MPI communication 



 

 

 

 

 

 Figure 3.3: Model-IIa: SPMD all- interacting model 
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between with the dead rank and collective communications must fail and return proper 

error codes. These error conditions will be used to drive processes into the recovery area. 

Features: 

This model requires that the Coordinator detect the death of a process through the 

SCT heartbeats. The middleware also provides notification through dissemination of dead 

rank information to other alive ranks. Services also include user- level collective recovery 

of a dead rank and its proper induction into the process group. Since applications in this 
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model use an iterative loop, a choice must be presented through the API for a user-aware 

checkpointing. This API should allow users to define a data block to be checkpointed and 

complementary functions to retrieve checkpointed data. 

Applications: 

Example applications of this model typically include parallel discrete event 

simulation applications. Experiments will be conducted using the message-passing 

version of the Game of Life problem [6]. 



 

 

 

 
 

 

 

 
 
   

 

 

 

 

  

 

13Chapter IV 

APPROACH 

The hypothesis is verified by developing MPI/FT [4]. MPI/FT is derived by 

incorporation of select fault-tolerant features into MPI/Pro [26], a high performance and 

multi- threaded implementation of MPI 1.1 standard [24]. This chapter describes the 

research methodology behind the design and development of MPI/FT. Apart from the 

modified middleware, applications also need to be modified to utilize MPI/FT API to 

make the applications fault-tolerant. These modifications, necessary in user applications 

to achieve fault-tolerance, are also described. 

4.1 Research Methodology 

The research methodology for this thesis can be broken down into five different 

activities. Applications refer to parallel programs developed with MPI. These 

applications are expected to complete successfully in the absence of external faults and 

are assumed to be devoid of internal design and implementation errors. The five activities 

of the research methodology are: 

1. Identifying AEMs based on application characteristics features and fault-tolerance 

requirements. 

2. Identifying select features to be incorporated for a given AEM (Design of 

MPI/FT). 

29 



 

 

  

 

  

 

 

 

 

 

 
 

 

 
 
 

 

 

30 

3. Incorporating identified features to obtain MPI/FT. Implementation yields a 

middleware with fault-tolerance API (Development of MPI/FT). 

4. Modifying existing applications to utilize a fault-tolerant API on the new 

middleware. 

5. Studying and experimenting with unmodified and modified applications to obtain 

fault- free and fault- injected parameters. These parameters will be utilized to 

validate the hypothesis. 

The first activity has been realized in Chapter 3. Subsequent sections in this chapter 

describe the next three activities. Parameters to determine overheads with MPI/FT and 

experiments to obtain those parameters are described in Chapter 5. 

4.2 Usage

 This section and its subsections describe MPI/FT from an application developer/user 

perspective. Achieving fault-tolerance requires fault detection, notification and recovery. 

The design of these steps for both Model- Ia and Model-IIa is described. 

4.2.1 User level changes 

Achieving fault-tolerance with MPI/FT requires the applications to be modified. 

These modifications are mainly targeted at utilizing MPI/FT API for fault notification 

and subsequent recovery procedures. A qualitative goal of MPI/FT is to provide a simple 

and powerful API. 
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4.2.1.1 Development and steps 

The following are a list of steps a user would typically perform for an unmodified 

application. 

1. Understand the problem and identify the parallelism in the program. 

2. Decide on a program process model (master/worker, SPMD, hybrid, etc.) with 

determined communication patterns. 

3. Implement (code) using a middleware. 

4. Launch the application with the required number of processes. In the absence of 

external faults the application will successfully complete. A typical program 

launch could be 

$ > mpirun -np 4 -mach_file myMachfile myParallelapp param1 param2 

With the introduction of MPI/FT and its API, these user steps would be extended: 

1. Understand the problem and identify the parallelism in the program. 

2. Decide on a program process model (master/worker, SPMD, hybrid, etc.) with 

determined communication patterns. 

3. Identify impacts of faults and regions in code for notification and recovery. 

4. Decide on an AEM. 

5. Implement (code) on a middleware and introduce FT-specific code. 
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6. Launch the application with required number of processes. Additionally, static 

spare processes should be launched. A typical program launch with fault-

tolerance could be 

$ > mpiftrun -np 4 -sp 2 -mach_file myMachfile   -ftparam1 val1 - ftparam2 val2 
myFTParallelapp param1 param2 

The modified program launcher passes MPI/FT-specific parameters to 

applications. Currently these FT parameters can be utilized to specify values for 

controlling internal and external heartbeat frequency and their timeouts. 

The "sp" option allows users to specify the number of spare ranks in anticipation 

of faults and process deaths. These spare ranks are hibernated until required and later 

assume a new rank as directed by the coordinator. Figure 4.1 presents these cases. 

Dynamic allocation of spare processes may be possible with integration of MPI/FT and a 

cluster manager or scheduler. 



 

 

 

  a) Spare Ranks in Hibernation, Normal Run 

 

 b) Spare Rank Release and Recovery 
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c) Spare Rank joins Normal Run, After Recovery 

Figure 4.1: Utilization of Spare Ranks in MPI/FT 
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4.2.1.2 FT API and code modifications

        This section introduces and describes MPI/FT API. Example pseudo-code utilizing 

the FT API is also shown for each model. 

4.2.1.2.1 Model-Ia

 The following is the MPI/FT API available for Model-Ia (simple master/worker). 

1) Get Dead Rank information 

int 
MPIFT_GetDeadRanks( 

OUT int *deadcount, 
OUT int *deadarrayranks, 
IN int array_size) 
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This function returns the information about ranks considered as dead by 

the detection process. Information (count, actual dead rank number) returned by 

this function will be used in initiating recovery. It should only be invoked from 

the master/ rank 0 process. Detection of death of a rank and actual notification 

procedures are explained in Section 4.3. Currently, this is the only API available 

for notification of a dead rank. 

2) Recover a dead worker/rank 

int 
MPIFT_RecoverRank(

 IN int RankToRecover
 ); 

This function initiates recovery of a dead worker/rank. It should only be 

invoked from the master/ rank 0 process. Actual working of recovery process is 

explained in Section 4.3. 

Pseudo-code for Model-Ia applications is presented in Figures 4.2 and 4.3. Figure 

4.2 presents code for a sample master/worker application. Figure 4.3 presents one way of 

making the program fault-tolerant by use of MPI/FT API. Note that the amount of 

MPI/FT API usage may remain constant irrespective of the actual normal code size in 

this case. 
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/* Plain version : Master/worker */ 
main(..){ 

/* variables defined here*/
 int rank, size, *main_area[][]; 

/* MPI_Init */ 
MPI_Init(&argc,&argv); 
MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
MPI_Comm_size(MPI_COMM_WORLD,&size); 

/* Initial parameters */ 
if (rank ==0 ){ 

.. 
MPI_Send(init_data, ..); 

} 
else{ 

.. 
MPI_Recv(init_data, ..); 

} 

if(rank ==0){ 
create_jobs(jobs_array); 
for ( I=1..n-1) 

MPI_Send (intial_jobs); 
Job_array --; 

}; 

// actual work loop 
while( job_array != NULL){ 

MPI_Recv( result,.. fromanyworker,..); 
.. 
results_array [] = result; 
MPI_Send( job_array,.., tolastworker .. ); 
jobs_array --; 

}; 

if(rank ==0){ 
Write( file); 

}; 
MPI_Finalize(); 

} 

Figure 4.2: Pseudo-code for Unmodified Model- Ia Application 
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/* FT version : Master/worker */ 
main(..){ 

/* variables defined here*/
 int rank, size, *main_area[][]; 

/* MPI_Init */ 
MPI_Init(&argc,&argv); 
MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
MPI_Comm_size(MPI_COMM_WORLD,&size); 

/* Initial parameters */ 
if (rank ==0 ){ 

.. 
MPI_Send(init_data, ..); 

} 
else{ 

.. 
MPI_Recv(init_data, ..); 

} 

if(rank ==0){ 
create_jobs(jobs_array); 
for ( I=1..n-1) 

MPI_Send (initial_jobs); 
Job_array --;
 last_job_worker[I] = initial_job; 

}; 

// actual work loop 
while( job_array != NULL){

MPIFT_GetDeadRanks (&deadrankarray,deadcount); 

if( deadcount >0){
  for( counter = 0 .. deadcount-1) 

deadrank = deadrankarray[counter];
 // Retrieve job 
jobs_array [] = last_job_worker [deadrank];
 jobs_array++; 
// Recover Rank 
MPIFT_RecoverRank(deadrank); 
// Initialize and assign a new job 
MPI_Send(init_data,..,deadrank,..); 
MPI_Send (initial_jobs); 
Job_array --;

 last_job_worker[deadrank] = initial_job;
 }; 
MPI_Recv( result,.. fromanyworker,..); 
.. 

Figure 4.3: Pseudo-code for Modified Model-Ia Application 
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results_array [] = result; 
MPI_Send( job_array,.., tolastworker .. ); 
jobs_array --; 

// Worker might die, save job 
last_job_worker[tolastworker] = job_array[]; 

}; 

if(rank ==0){ 
Write( file); 

}; 
MPI_Finalize(); 

} 

Figure 4.3 (Continued): Pseudo-code for Modified Model-Ia Application 

4.2.1.2.2 Model-IIa 

The following is the MPI/FT API available for Model-IIa (SPMD). Model-IIa 

applications are marked by a similarity in functionality at all processes. Moreover, 

Model-IIa applications are expected to run in a tightly coupled manner, and death of a 

single process in the application stalls all processes. This tight coupling and similarity 

translates to this FT API being called in a symmetrical manner from all ranks/processes. 

Model-IIa also provides API for user-aware checkpointing. Users/developers are 

expected to marshal data and application state information to be stored by the 

checkpointing routines. These routines return this marshaled data during recovery for 

application state rollback and recovery. 

1) Get Dead Rank information 

Syntax and semantics for this function are same as in Model-Ia. Unlike in 

Model-Ia, this function is invoked at all ranks/processes. 

2) Recover a dead rank 
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Syntax and semantics for this function are same as in Model-Ia. Unlike in 

Model-Ia, this function must be invoked at all ranks for successful recovery.  

3) Initiate Checkpoint 

int 
MPIFT_ChkptDo(

 IN void *data_to_store,
 IN int data_size,
 OUT int *chkpt_num,
 IN MPI_COMM communicator
 ); 

This function takes in data/state information provided by the user and 

stores them for later retrieval. This function call is a collective call and hence 

should be invoked by all the ranks/processes in a communicator. Checkpoints are 

stored in files, and all checkpoints stored in a single call share common 

identification number for later retrieval. For Model-IIa applications, it is expected 

that this function will be invoked with the default global communicator, the 

MPI_COMM_WORLD.

 4) Recover Checkpoint data 

int 
MPIFT_ChkptRecover(

 OUT void *data_retrived,
 IN int in_data_size,
 OUT int *out_data_size,
 OUT int *chkpt_num_retrieved,
 IN MPI_COMM communicator
 ); 

This function should be invoked after a dead rank/process is recovered at 

the middleware level. Middleware decides on the latest and complete checkpoint 

number valid at each process for a given communicator. After agreement, the data 
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associated with that checkpoint number is available to users. Users should use this 

retrieved data to rollback to an agreeable previous application state. This function 

must be called by all processes in the communicator and will fail in the presence 

of dead processes. 

Pseudo-code for Model-IIa applications is presented in Figures 4.4 and 4.5. Figure 

4.4 presents pseudo-code for the Game of Life [6] application. Figure 4.5 presents one 

way of making the program fault-tolerant by use of MPI/FT API. The data that is 

marshaled for checkpointing is the iteration counter value and data region of each 

individual process. 



 

 

 
 

  
 

 
  
  
  
  
  
 
  
   
  
 
  
  
   
   
     
    
   
  
  
  
   
   
   
  
  
  
  
   
   
    
   
   
    
 
   
   

 
   

     
  

   
   
   
  
 
  

/* Plain version : Game of life */ 
main(..){ 

/* variables defined here*/
 int rank, size, *main_area[][]; 

/* MPI_Init */ 

MPI_Init(&argc,&argv); 
MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
MPI_Comm_size(MPI_COMM_WORLD,&size); 

/* Initialized data and parameters */ 
proc_rows = atoi (argv[1]); 
.. 

/* Initial data distribution */ 
if (rank ==0 ){ 

filedes = open (input_filename, O_RDONLY); 
for( i=1; i<size; i++){ 

.. 
MPI_Send(init_data, ..); 

}; 

} 
else{ 

//recv init data 
.. 
MPI_Recv(recv_buf, ..); 

} 

// actual work loop 
while(i <max_iterations){ 

// communication: exchange data with neighbours 
MPI_Isend( (main_area0[1] + 1), .. ); 
.. 
.. 
MPI_Irecv( (main_area0[1] + 1), .. ); 

// computation: Evaluate next state 
for(j=1; j<my_data_rows+1; j++){

 for(k=1; k<my_data_cols+1; k++){ 
//For each cell compute next state 
// using game of life logic 
}; 

}; 
MPI_Barrier(MPI_COMM_WORLD); 
i++; 

}; 

Figure 4.4: Pseudo-code for Unmodified Model- IIa Application 
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 end = MPI_Wtime(); 
// Program end , collect data 
if(rank ==0){ 

//collect data from all ranks 
MPI_Recv (..); 
Write( file); 

}else{ 
MPI_Send(final_result, .., .., .., .., .., ..); 

}; 
//MPI end 
MPI_Finalize(); 

} 

Figure 4.4 (Continued): Pseudo-code for Unmodified Model-IIa Application 
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/* FT version : Game of life */ 
main(..){ 

/* variables defined here*/
 int rank, size, *main_area[][]; 

/* MPI_Init */ 

MPI_Init(&argc,&argv); 
MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
MPI_Comm_size(MPI_COMM_WORLD,&size); 
/* Initialized data and parameters */ 
proc_rows = atoi (argv[1]); 
.. 
/* Initial data distribution */ 
if (rank ==0 ){ 

filedes = open (input_filename, O_RDONLY); 
for( i=1; i<size; i++){ 

.. 
MPI_Send(init_data, ..); 

}; 

} 
else{ 

//recv init data 
.. 
MPI_Recv(recv_buf, ..); 

} 
// actual work loop 
while(i <max_iterations){ 

MPIFT_RecoveryPoint(); 

MPIFT_GetDeadRanks(&deadcount, deadranks); 
if( deadcount >0 ){ 

/* 
for(counter =0 ; counter <deadcount; counter++){ 

// recover deadrank
MPIFT_RecoverRank(deadranks[counter]); 

} 

// new spare init 
MPIFT_ChkptRecover(&chkpt_buf, ..); 
//unmarshall data 
memcpy(to_ptr, chkpt_buf, ..); 

}; 

Figure 4.5: Pseudo-code for Modified Model-IIa Application 
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 // communication: exchange data with neighbours 

MPI_Isend( (main_area0[1] + 1), .. ); 
.. 
.. 
MPI_Irecv( (main_area0[1] + 1), .. ); 

// computation: Evaluate next state 
for(j=1; j<my_data_rows+1; j++){ 

for(k=1; k<my_data_cols+1; k++){ 
//For each cell compute next state 
// using game of life logic 

}; 
}; 
MPI_Barrier(MPI_COMM_WORLD); 

// Marshall data for checkpoint 
memcpy(chkpt_buf, from_buf, ..); 
MPIFT_ChkptDo(&chkpt_buf, ..); 
i++; 

}; 
end = MPI_Wtime(); 

// Program end , collect data 

if(rank ==0){ 
//collect data from all ranks 
MPI_Recv (..); 
Write( file); 

else{ 
MPI_Send(final_result, .., .., .., .., .., ..); 

}; 
//MPI end 
MPI_Finalize(); 

} 

Figure 4.5 (Continued): Pseudo-code for Modified Model-IIa Application 
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4.3 Design and Implementation 

Fault-tolerance is achieved in MPI/FT by following fundamental steps of fault 

detection, notification, and recovery. These steps are presented in Figure 4.6. Each step is 

essential and is explained in the following subsections. 
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Figure 4.6: Primary Steps in Achieving Fault-tolerance 

4.3.1 Detection 

Fault-detection is an important step in achieving fault-tolerance. A good fault-

detection strategy must be accurate (minimize false positives), fast (quick detection 

between actual fault and detection) and cheap (impose low overheads). Since fault-

detection strategy is typically the main contributing component towards fault- free 

overhead, a fault-detection strategy should be an appropriate compromise among its 

various features. 

The fault-model assumed for the implementation of MPI/FT consists primarily of 

fail-stop process deaths and hanging or misbehaving progress threads. Loss of 

communication channels is also associated with the death of processes. Detection of 
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anomalies in a user thread is currently not supported, but this may be supported in the 

future with either explicit user-assisted detection or implicit heartbeats. Additionally 

transient faults that lead to production of incorrect results but allow MPI application to 

continue are not covered. Detection of such transient errors must be provided by the 

application through explicit use of ABFT (Application Based Fault Tolerance) [18, 31] 

Detection, notification and recovery are all achieved through the additional FT 

thread introduced in each process. This FT thread is named Coordinator at master/rank 0 

to signify its role in detection and recovery. The FT thread is named SCT at other 

processes. SCT is a powerful concept with varying levels of portability and functionality 

[4]. 

1) Trivially non-portable: Uses existing internal data structures of a particular 

MPI implementation and performs trivial/obvious checks on them. It is not visible 

to the user. 

2) Trivially portable: 

(a) Uses the PMPI profiling interface provided by the MPI standard to extend the 

previous approach across all MPI implementations. The complexity of 

operations that can be achieved is still trivial. It is visible to the user. 

(b) Adheres to the specifications of TotalView [12] and provides access to MPI 

internal structures across all MPI implementations. These structures include 

the send and receive queue. It is visible to the user. 

3) Non-trivially portable: Extends the functionality in (1) and (2) by incorporating 

intelligence into the consistency checks. Can be visible to the user. 



 

 

 

 

 

 

 

 Figure 4.7: Coordinator and SCT: External heartbeat mechanism 
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4) Non-trivially non-portable: This approach provides the most general 

functionality by defining new internal structures to aid consistency checks, etc. 

Such structures and checks are specific to an MPI implementation. 

The current MPI/FT’s SCT implementation operates at level 1, trivially non-

portable, and is primarily used for detection through heartbeats. Heartbeats are used both 

externally and internally. 

External heartbeats are used by Coordinator to detect process deaths. Coordinator 

passively listens to periodic alive messages from SCTs of other ranks. If an alive message 

is not received in a certain timeout, Coordinator determines that the unresponsive rank is 

dead. Coordinator also determines death of a rank if the connections to that process are 
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abnormally terminated. In either case, the user thread of the application is appropriately 

notified. Figure 4.7 presents the interaction of processes for external heartbeat. 

SCT, apart from sending periodic alive messages to Coordinator, performs 

internal checking of other progress threads. MPI/Pro, the base implementation of 

MPI/FT, consists of progress threads. These progress threads are critical for actual 

message-passing operations. SCT actively requests these threads for status information. 

SCT and progress threads interact through a shared memory area. SCT posts a request for 

reply and notifies the progress thread. Upon receiving the notification, progress threads 

reply through these shared areas. If a progress thread does not reply to a posted request 

within a user-configurable interval, SCT decides that the progress thread is corrupted or  

has crashed and informs the Coordinator. Coordinator acknowledges this information and 

sends commands instructing the SCT to terminate the rank. Figure 4.8 captures 

interactions between SCT and other progress threads. Coordinator proceeds to 

notification and appropriate recovery measures. 

It is possible that while processing large communication requests, progress 

threads will not be able to respond to an SCT request in time, thereby causing false 

failure notifications. In order to prevent this situation, progress threads can inform SCT 

of the actual start and expected end time of an operation. During this busy time, SCT 

does not post new status requests for that progress thread. 



 

 

 

  

 
 

 

(a) SCT and Progress Threads 

(b) Typical Interaction 

Figure 4.8: SCT and Progress Threads: Internal heartbeat mechanism
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 Model-Ia and Model-IIa both have similar detection mechanisms. However, in 

Model-IIa the flow of heartbeat requests and replies between Coordinator and SCT is 
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reversed. Coordinator, instead of passively hearing alive messages, actively sends out 

request messages to which ranks reply. This reversal is essential, as the scope of 

notification in Model-IIa is different than in Model-Ia. Both external and internal 

heartbeat rates and their timeout values are user configurable and can be passed through 

the command line to the application launcher (mpiftrun). 

4.3.2 Notification and Recovery 

Notification deals with dissemination of information relevant to fault-detection, 

while recovery consists of actual steps to mask and recover from the fault. 

4.3.2.1 Model-Ia Recovery 

Model-Ia consists of simple master/worker applications where death of a worker 

will only affect the master process or rank. Hence, only the master process is informed of 

the death while other worker processes are unaware of the death. Death of a worker 

process or rank can be tolerated by replacing it with a passive spare process. Recovery of 

a worker process is meaningful only in the context of the Coordinator. The virtual star-

topology assumed for this model precludes connection of the new spare/worker to the rest 

of the workers. 



 

 

 

 Figure 4.9: Notification and Recovery in Model-Ia 
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The following are the steps involved during recovery in Model-Ia. Figure 4.9 presents 

these events along a timeline. Steps followed in both the user thread and the Coordinator 

at the master process are shown.  

1. Coordinator detects the death of a worker, updates the notification area, 

and invalidates connections to the dead rank. Any MPI calls to this dead 

rank are not initiated and return with errors. Internal queues for this rank 

are cleared. 
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2. The user thread retrieves dead rank information by calling 

MPIFT_GetDeadRanks(). The user thread initiates recovery by calling 

MPIFT_RecoveryRank(). 

3. MPIFT_RecoveryRank() initiates Coordinator recovery steps. 

4. Coordinator releases the spare rank with the dead rank number. 

5. Both the user thread and Coordinator wait for the new spare to connect. 

Reconnection of the spare marks the end of middleware recovery. 

6. The user thread proceeds with application level recovery and state 

initialization. 

4.3.2.2 Model-IIa Recovery 

Model-IIa consists of SPMD all- interacting processes. These kinds of applications 

cannot proceed even when a single process/rank is dead. Thus, information about a dead 

rank must be available to the alive ranks. Coordinator, upon detecting a dead rank, 

disburses this information to all alive ranks. SCTs will utilize this information to set the 

information about dead ranks. 

While most of the recovery steps for rank 0 and other alive ranks are the same, 

there are differences during notification and initial recovery steps. This difference is 

expected, as the Coordinator needs to drive the rest of the ranks to recovery. Figure 4.10 

summarizes these recovery steps. 

The following are the recovery steps at the Coordinator/rank 0: 

1. Send notification to SCT of other alive ranks. 
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2. The user thread retrieves the dead rank information by calling 

MPIFT_GetDeadRanks(). The user thread initiates recovery by calling 

MPIFT_RecoveryRank(). 

3. MPIFT_RecoveryRank() initiates recovery steps at the Coordinator. 

4. All message queues are cleared. 

5. Release suspended spare process with recovery rank. 

6. Accept data and FT connections from the new spare. 

7. Start application level recovery through MPIFT_ChkptRecover() and later 

unmarshal and restore application state. 

The following steps occur for checkpointing recovery (step 7). 

1. Agree on a lowest valid checkpointing number amongst all processes. A valid 

checkpointing number for a process is one where a process can access all stored 

data without errors. 

2. Retrieve information from the last checkpoint and return to the user. 

3. Users later unmarshal this data and restore process state in an application-specific 

manner. 



 

 

 
 Figure 4.10: Notification and Recovery in Model-IIa 
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As mentioned earlier, all processes of the communicator must be alive both before 

and during the checkpoint recovery function. If a process is dead either before or during 

the checkpoint recovery process, application- level recovery will fail. Application- level 

recovery may be retried after middleware- level recovery of the dead process is 

completed. Thus, by a combination of middleware and application level recovery, Model-

IIa applications can successfully recover from faults and progress to completion. 



 

 

 

 
 

 

 

 

 

14Chapter V 

EXPERIMENTS, RESULTS, AND ANALYSIS 

This chapter presents parameters, experiments, and results to validate the hypothesis. 

The hypothesis consists of two parts that focus on successful completion in the presence 

of modeled faults and acceptable overheads in the absence of such faults.  Parameters are 

separated into fault- free and fault- injected categories. Experiments and results from fault-

injected category are focused on proving that applications complete successfully in the 

presence of faults. Fault- injected parameters capture the recovery time both at the 

middleware and application level. 

Experiments and results from fault-free category are focused on proving that fault-

free overheads are acceptable in the absence of faults. Fault- free overheads are defined as 

the additional costs incurred by the application in the absence of faults. Fault-detection 

mechanisms and additional masking measures during message-passing are the primary 

contributors to fault- free overheads. Fault-free overheads are measured for message-

passing, run-time of applications, and changes made to programs. 

Experiments were conducted using a combination of standard and custom defined 

programs. Message-passing overheads were measured by a ping-pong program. Fault-

free and fault- injected overheads were measured by using sample applications for both 
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Model-Ia and Model-IIa. Overheads, in cases applicable, were computed as the 

percentage change in parameters obtained from MPI/FT [4] and MPI/Pro [26]. Such a 

computation is justified as MPI/FT has been realized by selective incorporation of fault-

tolerant features into MPI/Pro. The following section describes experiments and 

measurements for evaluating message-passing overheads. Subsequent sections present 

experiments and results for both Model-Ia and Model-IIa. 

5.1 Message -passing Overheads 

Latency and bandwidth are primary parameters for evaluating the performance of a 

message-passing system. Latency refers to the delay in sending the message between two 

MPI processes of an application. Factors contributing towards latency are the physical 

characteristics of the network and processing of messages at nodes. Bandwidth refers to 

the effective throughput between two MPI processes of an application. Bandwidth is 

calculated as the ratio between message size and time taken to transfer. 

Latency and bandwidth were obtained using a ping-pong program for various 

message sizes. As explained in Chapter 4, fault-detection in MPI/FT is primarily 

performed by a combination of external and internal heartbeats. Measurements for 

latency and bandwidth were obtained at different rates of external and internal heartbeats. 

Model-Ia and Model-IIa, as explained in Section 4.3.1, employ similar fault detection 

mechanisms, and hence message-passing overheads for both these models are similar. 

Therefore only results from Model-Ia are presented for studying message-passing 

overheads. 



  
 
 



 

  

 

 
  

 
 

    
  
    

 

 
 

 
 

if(rank == 0){ 
MPI_Send_init(sendBuff, DATASIZE, ..); 
MPI_Recv_init(recvBuff, DATASIZE, ..); 
starttime = MPI_Wtime(); 
for(j = 0; j < numTests; j++){ 

MPI_Start(&sendReq); 
MPI_Start(&recvReq); 
MPI_Wait(&sendReq, &status); 
MPI_Wait(&recvReq, &status); 

} 
endtime= MPI_Wtime() ; 
time = (endtime-starttime)/numTests; 
latency = time / 2.0 / numTests; 

}else{ 
MPI_Send_init(recvBuff, dataSize, ..); 
MPI_Recv_init(recvBuff, dataSize, ..); 
for(j = 0; j < numTests; j++){ 

MPI_Start(&recvReq); 
MPI_Wait(&recvReq, &status); 
MPI_Start(&sendReq); 
MPI_Wait(&sendReq, &status);

 } 
} 

Figure 5.1: Pseudo-code for measuring Latency 
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The introduction of fault-detection features and of additional checks in the path of 

message-passing was expected to increase latency. It was hypothesized that acceptable 

fault- free overhead would be 5%. 

5.1.1.2 Results and Analysis 

Figures 5.2 and 5.3 present the overhead in latency. Figure 5.2 presents the overhead 

with various values of external heartbeats, while internal heartbeats were disabled. Figure 

5.3 presents overheads at various internal heartbeat rates while the external heartbeat rate 

is set at 0.25 Hz. These results are presented along a logarithmic axis to accommodate the 

large range of message sizes. 
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Figure 5.2: Latency Overheads with only External Heartbeats 
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Figure 5.2 consists of latency overheads at zero-frequency of external heartbeats. 

These zero-frequency overheads indicate the impact of additional checks in the path of 

sending and receiving MPI messages. Overheads at higher frequencies indicate the 

combined impact of the additional checks and the impact of FT thread execution on 

original user and progress threads. Results indicate these increasing overheads with 

increasing rates of external and internal heartbeats. Latency overheads also decrease with 

increase in message size. This may be attributed to the decreasing impact of the constant 

amount of checks on each message and the busy time concept of SCT. The busy time 

concept, as described in Section 4.3.1, allows progress threads to inform SCT about 

duration of long tasks, during which SCT stops polling progress threads. 

It may be noticed that the latency graphs from Figures 5.2 and 5.3 consist of spikes at 

certain message sizes, especially at lower message sizes. These spikes do not appear at 

the 32-kilobyte message size, where the message transfer protocol changes for small to 

large message sizes [26]. In order to explain these spikes Figure 5.4 presents latency of 

MPI/Pro and latency overheads for smaller message sizes. It is evident that many of the 

spikes present in the logarithmic graph are less prominent in the graph with the non-

logarithmic axis. The only prominent spike exists at a message size of 8 bytes, and this 

spike may be attributed to an accompanying sudden decrease in MPI/Pro latency, while 

the amount of additional checks remain the same. In conclusion, latency overheads 

remain low at normal rates of heartbeats. In the case of long running programs with a 

total runtime on the order of days, a much slower rate of heartbeats can be utilized. Such 

low rates of heartbeats can have a negligible impact on latency. 
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if(rank == 0){ 
MPI_Send_init(sendBuff, DATASIZE, ..); 
MPI_Recv_init(recvBuff, DATASIZE, ..); 
starttime = MPI_Wtime(); 
for(j = 0; j < numTests; j++){ 

MPI_Start(&sendReq); 
MPI_Start(&recvReq); 
MPI_Wait(&sendReq, &status); 
MPI_Wait(&recvReq, &status); 

} 
endtime= MPI_Wtime() ; 
time = (endtime-starttime)/numTests; 
bandwidth = dataSize/(time/2)/1024/1024;//mbps 

}else{ 
MPI_Send_init(recvBuff, dataSize, ..);                        
MPI_Recv_init(recvBuff, dataSize, ..); 
for(j = 0; j < numTests; j++){ 

MPI_Start(&recvReq); 
MPI_Wait(&recvReq, &status); 
MPI_Start(&sendReq); 
MPI_Wait(&sendReq, &status);

 } 
} 

Figure 5.5: Pseudo-code for measuring Bandwidth 
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and MPI/FT middleware. Fault- free overhead was then calculated as the percentage 

decrease in MPI/FT case when compared to MPI/Pro results. These results were 

computed for message sizes ranging from 0 to 1 megabyte. Results were also computed 

for various rates of external and internal heartbeats. The ping-pong test was run on a 

cluster of Intel Pentium machines (750mhz, 512 MB RAM, Linux 2.4 OS). 

The introduction of fault-detection features and of additional checks in the path of 

message-passing was expected to decrease bandwidth. It was hypothesized that 

acceptable fault- free overhead of bandwidth would be 5%. 
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Figure 5.6: Bandwidth Overheads with only External Heartbeats 
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5.1.2.2 Results and Analysis

 Bandwidth experiments were performed for various combinations of external and 

internal heartbeat rates. Figure 5.6 shows bandwidth overhead results for various rates of 

external heartbeats, while internal heartbeats were disabled. Figure 5.7 presents results 

for various internal heartbeat rates while the external heartbeat rate is set at 0.25 Hz. 

Results are similar to latency results and confirm increasing overheads with 

increasing rates of heartbeats. Again, the overheads decrease at longer messages, which 

can be attributed to the busy time concept of SCT. This similarity in results is expected as 

bandwidth is defined in terms of latency. Fault- free overhead of bandwidth is low at 

normal rates of heartbeats, and hence this supports hypothesized low overheads. 
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Figure 5.7: Bandwidth Overheads with Internal and External Heartbeats 
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Message-passing overheads for both latency and bandwidth indicate low-overheads in 

the absence of faults under normal rates of heartbeats. These are in line with the 

hypothesized values. 

5.2 Model-Ia Results 

Model-Ia deals with simple master/slave applications with virtual star topology. The 

pmandel program, a parallel MPI version of Mandelbrot set visualization program [23], 

has been used as an example for this model. Measurements for Model-Ia include both 

fault- free and fault- injected overheads. 

5.2.1 Runtime Overhead 

Fault- free overhead in runtime is defined as the percentage increase in runtime of 

a modified MPI parallel application on a modified middleware with respect to an 



  
 
 



 
 

 
 
 

 
   

 
         

        
 

 
 

    
 

    
        

 
       
      

    
 

  
  
  
 

 
  
  
   
   

  
 

 
 

 
 

 

 

 

 
 

 

if( rank == master){ 
Create job array; 
Send_Init(); 
Send_jobs(); 
Save_jobs(); 
While (! Jobs done){ 
MPIFT_GetDeadRanks(…, …, …) 
if (deadcount >1){ 

for (I = 0.. Deadcount-1){ 
Recover_job(); 
MPIFT_RecoverRank(..); BSend_Init(); 
Send_jobs(); CSave_jobs(); A 

} 
}else{ 

// Normal operation of Master 
Recv_Results();
Delete_Saved_jobs();
 Send_jobs(); 
Save_jobs();

 } 
} 
Send_End(); 
Master_Cleanup(); 

} 
else { // slave 

Recv_Init(); 
While( ! Recv_End()){ 

Recv_jobs(); 
Process_jobs(); 
Send_Results(); 

} 
Slave_Cleanup(); 

} 

Figure 5.8: Pseudo-code for Model-Ia Application 

internal heartbeats for fault detection were set at 1 Hz and 3 Hz, respectively.  

Applications were run on a cluster of Intel Pentium machines (900mhz, 640 MB RAM,  

Linux 2.4) interconnected with 10/100 Fast Ethernet.  
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5.2.1.2 Results and Analysis 

Table 5.1 presents the results of running the program with and without MPI/FT at 

various process sizes. Runtime overhead for Model-Ia pmandel application was found to 
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be within acceptable limits in all the cases. It supports the fact that applications can have 

simple, effective fault-tolerance and yet have small fault- free overhead. These results 

support the hypothesis. 

Table 5.1: Fault-free Runtime Overhead in Model-Ia, Pmandel Application 

Number of 
Processes 

Unmodified 
Runtime 
(seconds) 

Modified 
Runtime 
(seconds) 

Hypothesized 
Overhead 

(%) 

Actual 
Overhead 

(%) 
2 2.969 3.030 15 2.05 
3 1.511 1.578 15 4.43 
4 1.041 1.102 15 5.86 

5.2.2 Program changes 

MPI applications need to be modified to utilize the MPI/FT API and enable fault-

tolerance. The amount of changes required for sample applications is studied in this 

section. 

5.2.2.1 Program Change Ratio 

Program change ratio (PCR) is defined as ratio between number of new FT API 

calls introduced and number of lines of code in original code. It is a simple measure to 

study the amount of changes required in original programs to utilize MPI/FT. 

5.2.2.2 Results and Analysis 

The values pertinent for the pmandel program are presented in Table 5.2. 

Table 5.2: Program Change Ratio in Model- Ia, Pmandel Application 

Original lines of 
code 

New FT API Hypothesized PCR 
(%) 

Actual PCR 
(%) 

735 2 10 0.2 
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PCR was found to be well below the expected values because the number of MPI/FT 

API calls for achieving fault-tolerance is dependent on the structure of the program and 

not on the original lines of code. New code accounting for application level recovery 

support is application dependent and does not affect PCR values. 

5.2.3 Recovery Time 

The experiments in this section are focused on showing that applications recover from 

externally introduced faults, and the recovery times are within acceptable limits. 

Recovery time encapsulates the time where the progress of the parallel application is 

stalled by fault recovery and repair procedures. Recovery time consists of middleware 

and parallel application components. Middleware recovery time refers to the time taken 

by the middleware to restart and incorporate a process into the process group. While a 

small middleware recovery time is essential for high performance applications, 

predictable recovery time will play a vital role for real-time parallel applications. 

Application recovery time refers to the time spent by application-specific recovery 

procedures. These recovery procedures are primarily focused on initializing the new 

spare process into the required state. 

5.2.3.1 Experimental Setup 

Figure 5.8 presents the pseudo-code for pmandel application. Section B marks the 

code for middleware recovery procedures, and section C refers to the application 

recovery part. Experiments were performed by running a modified pmandel application 

with four processes under the following conditions: 

1) Fault- free run with MPI/Pro. 
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2) Fault- free run with MPI/FT. 

3) Single slave failure after X% of the pixels are computed and recovery is 

performed. 

4) Single slave failure after X% of the pixels are computed and recovery is not 

performed. Application continues with the remaining 2 slaves. 

The value of X was varied from 10 to 90 in increments of 10. Faults were simulated 

by programming termination of slaves through messages internal to the pmandel 

application. The times for middleware recovery and application recovery were measured 

by utilizing MPI_Wtime(). The rates of external and internal heartbeats for fault 

detection were set at 1 Hz and 3 Hz, respectively. Applications were run on a cluster of 

Intel Pentium machines (900mhz, 640 MB RAM, Linux 2.4) interconnected with 10/100 

Fast Ethernet. 

5.2.3.2 Results and Analysis 

The pmandel application successfully recovered from the single faults introduced. 

Middleware and application- level recovery were successfully performed, and the 

application progressed to a successful completion. This successful completion proves part 

of the hypothesis that applications can successfully recover and complete in presence of 

external faults. 

The average results for middleware and application- level recovery for single slave 

deaths are presented in Table 5.3. The results show that actual middleware recovery time 

is small. Small recovery times are essential in reducing overall runtime in faulty 

environments. Figures 5.9 and 5.10 show the progress of the application when faults are 
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introduced at 10% and 90% progress of the application. Runtime results with faults 

introduced at various other rates of application progress are presented in Appendix A. 

Table 5.3: Recovery Time in Model-Ia, Pmandel Application 

Hypothesized Actual Hypothesized Actual 
Middleware  Middleware Application Application 

Recovery Time Recovery Time Recovery Time Recovery Time 
(milliseconds) (milliseconds) (milliseconds) (milliseconds) 

25 24.12 500 16.34 

It is evident from the graphs that performing recovery depends on the current 

progress of the application. While it is beneficial to recover a dead rank during the initial 

part of an application’s progress, there is no benefit to perform recovery towards the end 

of an application’s progress. In fact, there is a penalty. For this particular experiment 

such a penalty for recovering a dead worker is evident in cases when the death of the 

process occurs after 60% of application progress. 
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Figure 5.10: Runtime of Pmandel Application with faults at 90 % of Progress 
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Figure 5.9: Runtime of Pmandel Application with faults at 10 % of Progress 
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In summary, Model-Ia results aid in proving part of the hypothesis for one of the 

two models specified. Runtime and PCR results prove that applications can have low 

fault- free overheads. Recovery time experiments show that applications recover from 

external faults to successfully complete. Middleware and application recovery were also 

performed within acceptable time limits. 

5.3 Model-IIa Results    

Model-IIa consists of applications with SPMD all- interacting style and virtual all- to-

all topology. The example program used for this model is the Game of Life [6], a discrete 

event simulation program that requires communication with each of its neighbor 

processes. Additionally, Model-IIa applications are expected to run in an iterative 

fashion. Similar to Model-Ia, Model-IIa measurements include both fault-free and fault-

injected overheads. 

Model-IIa applications also utilize user-aware checkpointing to save the application-

relevant state at predetermined synchronization points. Checkpointing in these 

applications is user- initiated, and state of application is determined by the data contents 

of the application. Model-IIa applications typically run in an iterative fashion, and 

checkpointing may be performed at the end of an iteration. Checkpointing operations are 

costly and incur high overhead as they typically involve disk accesses and 

synchronization of all processes in applications. As expected, the overhead incurred for a 

single checkpoint is several orders of magnitude of the time taken for a single iteration. In 

such a case checkpointing must be judiciously used. 

Checkpointing frequency is defined as the ratio between the number of checkpoints 

performed and the total number of iterations in the application. Invoking checkpointing 
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routines at a greater frequency than required leads to unnecessary fault- free overhead. In 

the presence of faults, a lower-than-required frequency results in the lack of "fall 

through," or real progress of the application. Appropriate time between checkpoints 

depends on several factors such as distribution of faults, time to checkpoint, and time to 

recovery. This issue has been dealt with in literature [21, 28, 32]. Model-IIa results will 

thus be presented with varying checkpointing frequencies where appropriate. 

5.3.1 Runtime Overhead 

The definition of runtime overhead is the same as defined in Model-Ia results and 

captures percentage increase in run-time. However with regard to the preceding 

discussion on checkpointing frequency, runtime overheads will be measured for a range 

of checkpointing frequencies. Percentage increase in runtime is computed with respect to 

runtime of an unmodified program running on plain MPI/Pro middleware. 

5.3.1.1 Experimental Setup 

Figure 5.11 presents pseudo-code for a Model-IIa application. The code in bold 

typeface consists of the newly introduced API and supporting code for making the 

application fault-tolerant. Sections B and C perform middleware and application level 

recovery in the event of a process death. Section D presents code for marshalling 

application state and checkpointing the information. Checkpointing frequency of the 

application is passed through command line arguments. Section A captures the code with 

the actual work and other fault-tolerant relevant code. 

Modified and unmodified applications consisted of four processes running on a 

logical 2x2 grid topology and 10,000 iterations of the  Game of Life. Runtime of an 



 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

    
 

     
 
 

 
 

 

 

 

 

 

 

 

 

 

Distribute Data; 
Initialize conditions; 
While (! enuf_iterations){
   MPIFT_GetDeadRanks(..);                   

if (deadcount >1){ 
for (I = 0.. Deadcount-1){ 

MPIFT_RecoverRank(..); B 
}

 MPIFT_ChkptRecover(&retrieved, ..);
 Restore_AppState(&retrieved); C 

A};
 //normal run part
 Communicate_part();

   Compute_part();
 MPI_Barrier(); 
if( func(chkpt_freq)){ 

Get_AppState(&tostore); D 
MPIFT_ChkptDo(&tostore, .., ..);

 }
 };
 Cleanup(); 

Figure 5.11: Pseudo-code for Model-IIa Application 
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unmodified application (Section A – code in bold typeface) running on unmodified 

middleware was measured. Later, runtimes of modified applications (Sections: A – 

(B+C)) were determined. The variants in later applications consisted of checkpointing 

frequency and data grid sizes. Checkpointing frequency, as defined in Section 5.3, was 

varied from 0 through 0.01, and data grid sizes were varied from 4x4 to 250x250 

elements for each application run. Timing measurements were made by utilizing the 

MPI_Wtime() function. Applications were run on a cluster of Intel Pentium machines 

(750mhz, 512 MB RAM, Linux 2.4 OS) interconnected with 10/100 Fast Ethernet. 

5.3.1.2 Results and Analysis 

Table 5.4 presents the overhead results without checkpointing. These overheads 

measure the absolute performance impact of message-passing overheads and introduction 
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of new MPI/FT API on the application runtime. These results indicate that overheads are 

low and decrease for larger grid sizes with more computation. This decrease may be 

attributed to the different impacts of FT mechanisms on communication and computation 

and are further explored in Chapter 6. 

Figure 5.12 presents runtime overheads with various checkpointing frequencies (0 to 

0.01). The number of actual checkpoints is equivalent to product of the frequency and the 

number of total iterations. It can be realized from the graph that overheads depend on the 

size of data to checkpoint and their frequency. Overheads are limited under moderate 

checkpoint frequency. 

Table 5.4: Fault-free Runtime Overhead without Checkpointing in Model-IIa, Game of 
Life Application 

Grid 
Size 

Runtime with 
MPI/Pro 
(seconds) 

Runtime with 
MPI/FT 

(seconds) 

Hypothesized 
Overhead 

(%) 

Actual 
Overhead 

(%) 
2x2 8.84 9.26 30 4.7 

16x16 8.97 9.43 30 5.2 
100x100 10.63 11.17 30 5.0 
250x250 20.75 21.25 30 2.4 
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Figure 5.12: Fault- free Overhead with Checkpointing in Model-IIa, Game of Life 
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Application 

5.3.2 Program Changes

    MPI applications need to be modified to utilize the MPI/FT API and enable fault-

tolerance. The amount of changes required for sample applications is studied in this 

section. 

5.3.2.1 Program Change Ratio

 The definition of PCR is the same as for Model-Ia. 

5.3.2.2 Results and Analysis 

The values pertinent for the Game of Life program are presented in Table 5.5. PCR 

was found to be well below the expected values because the number of MPI/FT API calls 



 

  

 

 

 

 

 
  

 
 

 
    

 

 
 

 

 
 

 

 

 

77 

for achieving middleware level recovery was dependent on the structure of the program 

and not on the original lines of code. New code that accounts for application level 

recovery is application dependent and does not affect PCR. 

Table 5.5: Program Change Ratio for Model-IIa, Game of Life Application 

Original lines of 
code 

New FT API Hypothesized PCR 
(%) 

Actual PCR 
(%) 

538 4 10 0.75 

5.3.3 Recovery Time 

As explained in Model-Ia results, recovery time consists of both middleware and 

application- level recovery components. Experiments were designed to measure each 

of these components individually. 

5.3.3.1 Experimental Setup 

Figure 5.11 presents the pseudo-code for Model-IIa application. Section B 

emphasizes the middleware recovery procedure, and section C refers to the application 

recovery part. Experiments were performed by running a modified Game of Life 

application with four processes on a 2x2 process grid. External faults were simulated by 

manual termination of non-rank 0 processes. The times for middleware and application 

recovery were measured by utilizing MPI_Wtime() function. The rates of external and 

internal heartbeats for fault detection were set at 1 Hz and 3 Hz, respectively. 

Applications were run on a cluster of Intel Pentium machines (750mhz, 512 MB RAM, 

Linux 2.4 OS) interconnected with 10/100 Fast Ethernet. Middleware recovery time was 
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expected to be around 50 milliseconds, and the applications recovery time was expected 

around 0.5 seconds. 

5.3.3.2 Results and Analysis 

The Game of Life [6] application successfully recovered from externally 

introduced single faults. Middleware and application recovery were successfully 

performed and enabled the application to continue to a successful completion. Table 5.6 

presents the average values for middleware recovery of a single dead process. Though the 

actual value exceeds the hypothesized value, the actual recovery time is still small. This 

increase in recovery time can be attributed to the collective recovery of a dead rank in 

Model-IIa. 

Table 5.6: Middleware Level Recovery Time for Model-IIa, Game of Life Application 

Hypothesized Actual 
Middleware Middleware 

Recovery Time Recovery Time 
(milliseconds) (milliseconds) 

50 72 

Table 5.7: Application Level Recovery Time for Model-IIa, Game of Life Application 

Grid Size 
Hypothesized 

Application Recovery 
Time (milliseconds) 

Actual Application
 Recovery Time 
(milliseconds) 

4x4 500 2.3 
16x16 500 3.0 

100x100 500 4.2 
250x250 500 4.8 
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Table 5.7 presents the application level recovery time for the Game of Life 

application after a process is recovered at middleware level. This recovery time includes 

both retrieval of checkpointed information and restoring application state. It can be seen 

that the time required to recover depends on the size of the data to be read. These values 

are less than the hypothesized value of 500 milliseconds for application recovery. 

5.4 Summary 

Experiments from both fault- injected and fault- free categories yielded acceptable 

values to prove the hypothesis. Fault- injected experiments proved that applications 

recover from externally introduced faults and successfully run to completion. Low 

middleware and application recovery times for both Model-Ia and Model-IIa applications 

indicate the quick recovery of common applications. These values also indicate the 

usability of the middleware in production settings. 

Fault- free measurements proved that overheads and modifications in the absence 

of faults are low and within acceptable values. The common message-passing overhead 

results for both Model-Ia and Model-IIa indicate the low latency and bandwidth 

overheads at normal rates of internal and external heartbeats. The message-passing 

overheads also indicate the increasing overheads with increasing rates of heartbeats. It 

must be noted that these overheads are based on a predetermined fault model, and such 

low overheads cannot be guaranteed for all fault-models, especially those dealing with 

faults in the communication domain. 

Runtime overheads are low for both Model-Ia and Model-IIa sample applications. 

Model-IIa experiments stress the importance of the checkpointing frequency. These 

results show that runtime overheads are low under moderate rates of checkpointing 
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frequency. Low PCR values for sample applications of Model-Ia and Model-IIa indicate 

the minimal changes required in programs to achieve fault-tolerance. PCR values were 

determined to be dependent on the structure of the code rather than the original number 

of lines of code. Low and acceptable overhead values in message-passing, runtime, and 

PCR collectively prove that MPI programs can be made fault-tolerant with low fault- free 

overheads. 

Thus, both the fault- free and fault- injected parameters and experiments validate 

the hypothesis. 



 

 

 

 
 

 

 

 
 

 

 

 

 

 

15Chapter VI 

OTHER OBSERVATIONS 

Previous chapters have presented parameters that assess the impact of achieving 

fault-tolerance on performance. Experiments were performed, and the results were used 

to validate the hypothesis. This chapter aims at describing observations and experiments 

that provide insight into performance factors and middleware design issues. Subsequent 

sections discuss components of fault- free overhead and some design issues through 

placement of services. 

6.1 Components of Fault-free Overhead 

MPI applications consist of communication and computation components. FT 

mechanisms, mainly detection mechanisms, impact communication and computation 

components differently. For example, detection and masking measures to remove faults 

in the communication channel are expected to impact communication more than 

computation, while masking measures to avoid memory bit flips can be expected to affect 

the computation component. 

The CC-Ratio is a simple measure to highlight different impact of fault-detection 

mechanisms on communication and computation components. The CC-Ratio is derived 

primarily from the (C/C) Ratio [11]. (C/C) Ratio for a given execution of an application 

is defined as the ratio between communication cost and computation cost. 
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A small (C/C) Ratio is essential for scalable applications [11] and is a useful concept 

to predict runtime, and it aids in design of applications. Although (C/C) Ratio is a useful 

concept, it has limitations to separate the communication and computation components 

and individually understand their impact. In a typical message-passing middleware, 

communication costs (latency and bandwidth) are different for different message sizes, 

and the total communication costs may have involved messages of several sizes. The CC-

Ratio presents a modified definition to capture this information and is defined as the ratio 

between the number of messages sent and the total number of computations performed. 

The message size and measure of a single computation are fixed for a run. 

A sample application "Simul" is introduced to measure the CC-ratio. Simul is a 

master-worker MPI application, where the worker process simulates workload upon 

receipt of a message from the master. While Simul does not utilize MPI/FT API and is 

not designed to be fault-tolerant, its main goal is to highlight different impacts of FT 

mechanisms on communication and computation components. Both the number of 

messages to each slave (communication component) and the workload upon receipt of 

each message (computation component) are configurable for each run. This program 

defines a single computation workload as consisting of finding the square root and then 

square of ten floats and a single communication load as consisting of sending an MPI 

message of 40 bytes as payload. Thus, if a Simul program sends 100 messages to a slave, 

and upon receipt of each message the slave performs 10 computations, the CC-Ratio for 

this run is set at 100/10. It must be noted that the definitions of a single computation and 

communication lo ad have been arbitrarily set, and they can be refined to a standard 

definition. 
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Figure 6.1: Fault- free Overhead and CC-Ratio for MPI/FT Model-Ia at 40 bytes 
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Experiments were performed with a Simul program with a master and a single worker 

process. Communication and computation components were varied from 1 to 1,000,000, 

with their product remaining a constant at 1,000,000. These experiments were run with 

three different middlewares. Runtime results were obtained by running the Simul 

program on the baseline MPI/Pro middleware. Similar runtimes were obtained by running 

the Simul program on an MPI/FT realization for Model-Ia. Later, results were obtained 

by running the Simul program on a debug-enabled variant of MPI/FT. This middleware is 

expected to introduce overheads in computation because of the debugging routines and 

assertions. 
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Figure 6.2: Fault- free Overhead and CC-Ratio for Debug-enabled MPI/FT Model- Ia 
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Figures 6.1 and 6.2 present the fault- free overhead of the second and third 

middlewares as compared with the baseline MPI/Pro middleware. In all the runs, the 

external heartbeats were set 1Hz, while internal heartbeats were disabled. Simul was run 

on a cluster of Intel Pentium machines (750mhz, 512 MB RAM, Linux 2.4 OS). Results 

suggest that MPI/FT Model-Ia middleware impacts communication more than 

computation. Programs with a higher CC-Ratio have higher overheads than with  lower 

values of the CC-Ratio. Conversely, the debug-enabled variant of MPI/FT Model-Ia 

middleware impacts computation more than communication. 

at 40 bytes 
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As an example, consider a system that has to detect externally introduced memory bit 

flips. Such faults are common in space-based missions. These memory bit flips can be 

either tolerated or masked at the hardware level by using special hardware (parity/ECC 

memory). Usage of such specialized hardware might be prohibitive in cases of COTS 

components. In such a case, the OS level can potentially check for such bit flips. The OS 

can mask the faults by replicating the process state or by periodically performing 

checksum on parts of the process. However, these approaches may incur high overheads. 

In the absence of an OS level detection or masking, middleware will need to perform 

similar operations. The application level is the appropriate place in several cases for such 

memory flip detection. The assumption is that these memory flips have reached the 

application layer and have not affected the process. Methods such as ABFT [18, 31] can 

be effectively used to check the validity of data. Since applications are aware of 

consistency of data, only memory flips that affect the data in a perceptible manner will be 

detected. 

Similarly, recovery can be achieved across various levels and can be designed across 

several layers as in detection. Recovery achieved at lower layers and transparent to the 

user typically requires either replication and/or system-level checkpointing. Replication 

of message-passing programs is non-trivial. This research effort advocates the usage of 

recovery mechanisms that are achieved by an interaction of middleware and application 

level. Such a strategy allows applications to determine their own recovery policy. For 

message-passing middleware, an application can choose to recover a process 

immediately, delay the recovery, or request the middleware to shrink the world size. Such 
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policies may be based on the current fault-rate, application stall time for recovery, and 

overall application progress. 

A good design for a fault-tolerant system must thus consider placement of services 

across various levels. Each of these components and their interaction can have different 

costs and effectiveness in achieving the required feature. An appropriate mix and match 

of features across these layers will be essential in achieving a low overhead fault-tolerant 

system. 



 

 

 

 
 

 
 

 

 

 

 

16Chapter VII 

CONCLUSIONS 

7.1 Summary 

This thesis hypothesized that modified MPI applications running on a modified 

middleware will complete successfully even in the presence of faults. It also 

hypothesized that these modified applications will incur acceptable performance in the 

absence of faults. The motivation, hypothesis, and contribution expected from this thesis 

were presented in the first chapter. MPI and Cluster-based systems have proliferated into 

various domains of usage. Their lack of reliability has hampered their usage in critical 

environments. High costs of failure in these systems and the lack of existing efforts 

motivated the need for a fault-tolerant and reliable MPI implementation. The hypothesis 

was supported through the design and implementation of MPI/FT. MPI/FT [4] was 

realized by selective incorporation of fault-tolerant features into MPI/Pro [26], an 

existing high performance implementation of MPI 1.1 standard. 

The literature survey in the second chapter revealed the shortcomings of MPI 1.1 

standard in addressing reliability issues. Other research efforts to make MPI more reliable 

were briefly described. The third chapter presented the basis for this thesis. The model-

based approach is based on the realization that applications contain features and 

characteristics that are amenable to achieving fault-tolerance. This thesis exploited those 
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features to provide application model-specific services and achieve low-overhead fault-

tolerance. Relevant AEMs based on parameters of model-based approach were 

introduced. 

The fourth chapter presented the research methodology and design of MPI/FT. The 

design of fault-tolerant features for detection, notification and recovery was elaborated. 

This chapter has also presented a brief description of the MPI/FT API available to users 

and provided examples of their usage through pseudo code for some example 

applications. 

The fifth chapter presented the necessary experiments to validate the hypothesis. 

Parameters to assess the impact of fault-tolerance on performance were defined. Design 

of experiments and results of fault- free overhead on messaging were presented. These 

experiments evaluated the impact of fault-tolerance measures on the latency and 

bandwidth of the message-passing at various message sizes. Experiments for two AEMs, 

Model-Ia and Model-IIa, were presented. These experiments were designed to evaluate 

the impact on the runtime of these applications. In Model-IIa applications the concept of 

checkpointing frequency has been introduced. Fault- free parameters in message-passing 

and runtime were defined and obtained to validate that low-overhead fault-tolerance was 

possible. Fault- injected experiments proved that applications finished successfully with 

limited overheads in the presence of external faults. Chapter 6 presented other 

observations and experiments to provide insight into performance impact of fault-

tolerance mechanisms on communication and computation components. 
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7.2 Future work 

This work has implemented two AEMs: Model-Ia and Model-IIa. Both these models 

have the concept of a SPA (Safe Protection Area), in which the master process/rank 0 is 

not affected by external faults. The initial design of MPI/FT was targeted for space-borne 

environments that support hardened environments and can provide such a SPA. However, 

the assumption of such a SPA might not be feasible in certain space-based environments 

and most ground applications. Future work may implement models that do not require 

such a SPA while incurring additional overhead. 

The need for a SPA in Model-I applications can be eliminated with parallel NMR (N 

modular redundancy). Parallel NMR involves providing N way redundancy for a single 

process and can be achieved either through active or passive redundancy. Figure 7.1 

shows one way of achieving parallel NMR for Model-Ic. Messages from various slaves 

will need to be replicated across various copies of master process. 

Model-II applications are marked by a similarity in their code, and the roles of 

different processes are interchangeable. In Model-II, the coordinator can be placed at any 

rank. A simple strategy is that the coordinator be placed at rank 0, and another rank 

named secondary coordinator can check for the health of rank 0. Death of a rank other 

than rank 0 can be dealt with as in the current Model-IIa. However, death of rank 0 can 

be handled by the secondary coordinator. Such a revolving or secondary coordinator 

approach may introduce new API to determine the "recovery head" process. This 

recovery head process can execute the code that drives the recovery while rest of the 

alive ranks participate as required. 



 

  

 

 Figure 7.1: Model-Ic with Parallel NMR 
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Scalable fault-tolerance requires both scalable detection and recovery procedures. The 

current star topology at FT level for heartbeats is inherently not scalable. This star 

topology can be replaced by hierarchical methods with overlapping zones. Other scalable 

fault-detection methods based on gossiping [10] can also be explored. 

Newer models that are scalable in recovery are possible. In certain applications, 

processes interact infrequently at a global level and more frequently among a cohort of 

neighboring processes. In such cases the impact of death of a process only affects 

processes in the cohort, and recovery procedures may also be limited to this cohort of 

processes. 





http://hpcl.cs.msstate.edu/pmlp
http://www.eecs.wsu.edu/~bakken/middleware.pdf
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OTHER MODEL-IA RESULTS 
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This appendix presents runtime results for Model-Ia pmandel application [23]. 

Experiments were performed by running a modified pmandel application with four 

processes under the following conditions: 

1) Fault- free run with MPI/Pro. 

2) Fault- free run with MPI/FT. 

3) Single slave failure after X% of the pixels are computed and recovery is 

performed. 

4) Single slave failure after X% of the pixels are computed and recovery is 

not performed. Application continues with the remaining two slaves. 

Faults were simulated by programming termination of slaves through messages 

internal to the pmandel application. The times for middleware recovery and application 

recovery were measured by utilizing MPI_Wtime(). The rates of external and internal 

heartbeats for fault detection were set at 1 Hz and 3 Hz, respectively. Applications were 

run on a cluster of Intel Pentium machines (900mhz, 640 MB RAM, Linux 2.4) 

interconnected with 10/100 Fast Ethernet. Figures A.1 through A.7 present results when 

X was varied from 20% to 80% in increments of 10%. 
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Figure A.4: Pmandel Application Runtime with Fault at 50 % Progress 
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Figure A.3: Pmandel Application Runtime with Fault at 40 % Progress 
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Figure A.6: Pmandel Application Runtime with Fault at 70 % Progress 
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Figure A.5: Pmandel Application Runtime with Fault at 60 % Progress 
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Figure A.7: Pmandel Application Runtime with Fault at 80 % Progress 
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SCALABILITY TESTS 
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MPI/FT uses external and internal heartbeats for fault detection. External 

heartbeats are primarily used between the coordinator thread at rank 0 and SCTs at other 

processes. This star-based topology between coordinator and SCTs may create a 

bottleneck and affect the scalability of MPI applications. Experiments and results in this 

section are focused on measuring the impact of this external heartbeat mechanism on 

scalability of applications. 

Speedup is used as the primary measure to understand scalability of applications. 

The definition is given by equation B.1, 

T MPI / Pro ,1Speedup = , (B.1)
X ,NP T ,X NP

 is the runtime for a given application running on MPI/Pro middlewarewhere T MPI / Pro ,1 

with one process and is runtime of the same application running on certainT X ,NP 

middleware X with NP processes. 

The Game of Life [6] program was used to measure the impact of FT mechanisms 

on scalability. The first runtime results were obtained by running the Game of Life 

program with varying data grid sizes (16x16, 250x250, 1000x1000) on plain MPI/Pro 

middleware. These experiments were repeated for varying process sizes (1, 2, 4, 8). The 

same set of experiments were repeated on MPI/FT middlewares with externa l heartbeat 

rates set at 1 Hz and 0.25 Hz, while internal heartbeats were disabled. These tests were 

performed on a cluster of Intel Pentium machines (900mhz, 768 MB RAM, Linux 2.4 

OS). Table 1 presents the speedup values computed from the previous experiments using 

equation B.1. Figures B.1, B.2, and B.3 present the same information. 



 

 

 
 

 
 

 

  

 

 

 

    
    
    

 

 

    
    
    
    

 

 

    
    
    
    

 

 

    

103 

Table B.1: Speedup of Game of Life Application with MPI/Pro and MPI/FT 

Data Size Number 

of 

Processes 

MPI/Pro MPI/FT 

EXT HB @ 0.25 Hz 

MPI/FT 

EXT HB @ 1 Hz 

16x16 

1 1.000 0.909 0.909 
2 0.138 0.137 0.136 
4 0.093 0.088 0.088 
8 0.074 0.070 0.069 

250x250 

1 1.000 0.970 0.966 
2 1.760 1.752 1.730 
4 2.990 2.919 2.932 
8 3.544 3.465 3.413 

1000x1000 

1 1.000 0.996 0.996 
2 1.926 1.918 1.917 
4 3.453 3.437 3.431 
8 6.284 6.282 6.280 
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Figure B.2: Speedup of Game of Life, 250x250 
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Figure B.1: Speedup of Game of Life, 16x16 
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Figure B.3: Speedup of Game of Life, 1Kx1K 
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Results indicate that the speedup of applications running on MPI/FT middleware 

is comparable to speedup of applications running on MPI/Pro. The relative difference in 

speedups is higher for runs with smaller data sizes. This may be attributed to higher 

impact of MPI/FT mechanisms on communication rather than computation, as discussed 

in Section 6.1. The scalability of computationally intensive applications is less impacted. 

However, runs with a larger number of processes are expected to create bottlenecks at 

rank 0 process, and future work may need to adapt hierarchical and scalable detection 

mechanisms such as gossiping [10]. 
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