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Increased power quality problems due to intensive usage of power electronic 

devices resulted in development of software applications to perform quick harmonic 

analysis. However, the present harmonic analysis applications have special software or 

computer locks requirements and occupy huge memory and cost high. An application 

program (using Microsoft Visual C++) that is simple yet accurate in calculations; with no 

special software or high memory requirements is developed in this thesis work. The 

program uses the automatic acceptance criteria (AAC) and the harmonic penetration 

techniques in calculating the system voltages. Several user-friendly features and tools that 

aid in better understanding of system harmonics are included in the program. Comparison 

of case study results with Superharm simulation results proves the program’s accuracy. 

This thesis work resulted in an informative and time saving program with which the user 

can document the study results and analyze them with minimum effort. 
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CHAPTER I 
 

INTRODUCTION 
 
 

 Nonlinear devices such as the switch mode power supply, adjustable speed 

drives, etc. cause harmonic problems in power systems. The efficiency of such devices 

largely depends on the quality of power supplied. Nonlinear loads produce harmonic 

currents, which in turn distort the supply voltage waveform. Excessive harmonic currents 

can lead to serious problems such as overheated wires and transformers, increased energy 

costs, and system degradation and failure which can result in revenue loss to the utility. 

In order to control harmonics, IEEE Standard 519, “Recommended Practices and 

Requirements for Harmonic Control in Electrical Power Systems,” was adopted. IEEE 

519 outlines limitations on voltage and current harmonics in order to ensure that 

harmonic distortion levels throughout the entire electrical distribution system, from utility 

to consumer, will remain low enough for the system to function properly.  

IEEE Standard 519 suggests limitations for voltage and current harmonic 

contaminations. The standard sets the limits as a divided responsibility between utility 

and customers as follows:   

A. The customer: IEEE 519 considers the “point of common coupling (PCC)” as the 

customer-utility interface point. With end-user equipment being mostly the source of 



 

 

2 
harmonics, the standard limits the amount of harmonic currents injected by the end-

user loads. Harmonic current limitations for the end user apply at the PCC. 

B. The utility: The utility system is the entity consisting of the transmission system 

and/or the distribution system that serves the end-user (customer or industry plant). 

The utility has control over the system impedance that is responsible for the voltage 

distortion at the point of common coupling. For most utility systems, the IEEE 519 

Standard requires the total harmonic distortion of the voltage to be less than 5% at the 

PCC. This implies that the utility is responsible to insure that the system conditions 

do not result in unacceptable voltage distortion levels if all customers are within the 

recommended guidelines for harmonic current generation at their PCC. 

IEEE 519 harmonic current limits are specified in terms of the short circuit 

current and the maximum load demand current. IEEE 519 compliance evaluation requires 

values of the short circuit current and the maximum load current. However, IEEE 519 

(harmonic current) standard compliance can also be estimated using a simple automatic 

acceptance criteria (AAC) that can be used to avoid the detailed study for evaluating the 

IEEE 519 compliance.  

IEEE 519 sets current distortion limits such that voltage distortion limits are not 

exceeded assuming a reasonable supply impedance. Conceptually, if the currents injected 

by nonlinear loads satisfy IEEE 519 current limits then the voltage distortion would also 

satisfy the IEEE 519 voltage limit in order that no potential harmonic related problem 

arises. Therefore, as a primary check for any potential harmonic problems, the current 

distortions caused by the nonlinear loads must be checked for IEEE 519 compliance. 
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Depending on whether or not the harmonic currents of the nonlinear loads exceed the 

limits based on a simple evaluation, a detailed study of the harmonic problem can be 

conducted. If the harmonic currents exceed the limits a detailed study of the harmonic 

problem is conducted: otherwise a detailed study is not necessary. This saves the 

computational effort of an unnecessary detailed study and time for making any 

engineering decisions. Therefore, if the simple AAC estimation results in high levels of 

harmonic currents, then voltage distortions may be found to analyze the comprehensive 

effect of harmonics on the power system. Given the estimated system response (system 

harmonic voltages), preventive measures can be taken to avoid any potential equipment 

damage due to harmonics. Such comprehensive harmonic analyses are frequently 

required for proper operation of electrical equipment. To shorten the amount of time in 

estimating the harmonic effects, several software programs have been developed by 

software vendors for both utility and industrial power system analysis. 

Engineers and software developers have been continuously improving software 

for power system applications. The user-friendly features of the Microsoft Windows 

operating system made it possible to build new software applications that are convenient 

to use. The improved applications help the user to get a better idea of the severity of 

harmonics. A software application that estimates the harmonic effect on a power system 

due to nonlinear load harmonic currents has been developed in this thesis work.  

To validate the accuracy of the application program developed, case studies were 

run using the application program developed and the results were compared with the 

Superharm simulated results for the same case. The comparison proves that the 
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application program developed generates accurate results. However, the accuracy of the 

application is relative to Superharm. Therefore the applicability of the program to any 

power system is dependent on the assumptions and any in-built errors of Superharm as 

described in the Superharm’s application benchmarking guide [1]. 

 

Scope of Thesis 

 A software application using the Microsoft Foundation Classes (MFC) and the 

Microsoft Visual C++ language was developed on the Windows platform. The emphasis 

was on the user interface features of the application to make the application as user 

friendly as possible. The application has both numerical and graphical data representation 

using some of the advanced features of Microsoft Visual C++. The visual display of 

distorted harmonic waveforms (current and voltage) available in the application gives the 

user a better understanding of the harmonics in their power system. The application uses 

an AAC method to estimate the severity of current harmonics with respect to the IEEE 

519 standard and the current injection method is used to find the system response. The 

theoretical concepts used and the work done to develop the application is discussed in 

this thesis document.  
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CHAPTER II 
 

THE ANALYTICAL APPROACH 
 
 

Introduction 

A software program that estimates the compliance of a utility’s customers with 

IEEE 519 current limits is developed in this thesis work. The analytical logic behind the 

software program is discussed in this chapter. The analytical logic for the software 

program is developed for a sample power system network consisting of the most 

generally found equipment in a real life power system network. The system has a 

transformer, two shunt capacitors, two cables or lines, a supply source and nonlinear 

loads. Some of the most commonly found nonlinear loads are provided for ease of use.  

Nonlinear loads at customer sites inject harmonic currents onto the distribution 

system. The distorted harmonic currents cause distorted voltage drop. Therefore, the 

harmonic analysis study in this application program consists of two major parts. The first 

part is estimating harmonic current compliance with the IEEE 519 limits. The second is 

finding harmonic voltages throughout the system. The following methods are used to in 

the program. 

1) An automatic acceptance criteria is used for estimating the IEEE 519 harmonic 

current limit compliance. 

2) A current injection method is used for estimating the bus voltages. 
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The Automatic Acceptance Criteria 

The automatic acceptance criteria (AAC) is a conservative approach for 

estimating IEEE 519 compliance for harmonic currents injected by nonlinear loads. 

Weighting factors ( )iW  that are numerical values signifying the severity of the harmonic 

distortion caused by different loads are used in this method. Nonlinear loads with high 

total harmonic distortion THD factors have high weighting factors. For example, consider 

a single-phase power supply load and a 12 pulse converter. The typical current waveform 

for a single-phase power supply load would be as in Figure 2.1. The single-phase power 

supply load has a high THD because the harmonic current injected by it deviates more 

from a pure sinusoidal shape. However, a 12 pulse converter has a typical current 

waveform such as in Figure 2.2. The waveform in Figure 2.2 deviates (from a pure sine 

wave) less as compared to the waveform in Figure 2.1. Therefore, the weighting factor 

for a 12 pulse converter is smaller than that of a single-phase power supply load.  
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Figure 2.1. Typical Current Waveform for a Single-Phase Power Supply Load. 
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Figure 2.2. Typical Current Waveform for a 12 Pulse Converter Load. 

 
 
 

Various common nonlinear loads and their corresponding weighting factors used 

in the AAC are tabulated in Table 2.1. 

 
 
 

Table 2.1. Weighting Factors for Different Loads. 
 

 
Type of load W 
Single-phase Power Supply 2.5 
Semi converter 2.5 
6 pulse converter capacitive smoothing, no 
series inductance 2.0 

6 pulse converter capacitive smoothing, 
series inductance >3% or DC drive 1.0 

6 pulse converter with large inductor for 
current smoothing 0.8 

12 pulse converter 0.5 
AC voltage regulator 0.7 
Fluorescent lighting 0.5 
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The automatic acceptance criteria is applied at the point of common coupling 

(PCC). To apply the AAC to a set of nonlinear loads in a system they must have a 

common point of coupling with the distribution network. The AAC method is applied 

individually to each customer with a common point of coupling.  For the system for 

which the program is designed there is only one common point for all the nonlinear loads. 

The following steps summarize the application of the automatic acceptance criteria.  

1. Determine the short circuit capacity, Ssc, at the PCC.  

2. Determine the value of SDi, the kVA value of the ith nonlinear load connected to the 

PCC. If a customer uses two 12-pulse converters of sizes x kVA and y kVA then SDi 

of the 12-pulse converter type of load is (x+y) kVA. If a new 12-pulse converter 

nonlinear load is to be added then its kVA value is also added. 

3. Evaluate the weighted short circuit power, SDW, at the PCC as in (2.1). The subscript i 

in (2.1) indicates the ith nonlinear load or group of loads. 

∑=
i

iDiDW W*SS                                                (2.1) 

4. The harmonic current produced by the customer load is acceptable if the ratio of 

weighted short circuit power to the short circuit capacity at the PCC satisfies (2.2). 

The conservative 0.1% ratio insures that the loads would be in compliance with IEEE 

519.         

0.1%
S
S

SC

DW <                                                    (2.2) 

The AAC is a crude approach for estimating if the harmonic currents due to a 

certain capacity or quantity of the nonlinear loads of Table 2.1 would satisfy the IEEE 
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519 standard current limits. The IEEE 519 standard sets limits in terms of the ratio of 

available short circuit current at PCC and maximum demand current. The larger a supply 

system is relative to a nonlinear load connected to it, the more likely that the system is 

“ safe”  in terms of harmonic problems. The AAC uses the same concept only in terms of 

different quantities. The weighted distorting load power, SDW, represents the level of 

harmonic currents possibly injected by nonlinear loads under study.  

To use the standard method of evaluating IEEE 519 limit compliance, the 

maximum demand current value is required. For an existing customer, the maximum 

demand current value can be calculated as an average of measured current values over a 

period of time. But for new customers, the maximum load demand current should be 

calculated using anticipated peak operation of the plant [2]. However, the capacity of 

nonlinear load proposed to be installed and the short circuit capacity of the supply system 

is all that is needed to get a conservative estimation using AAC method. 

The AAC part of the software application can be used in estimating limit 

compliance when adding a new customer or when installing a new nonlinear load. If the 

ratio of (2.2) is not satisfied then the system bus voltages could be found. Once the bus 

voltages are found, the resulting current harmonics flowing through different components 

of the system can be determined in order to analyze the total harmonic affect on the 

system. 

 
System Response Estimation 

 Bus voltages (system response) at each harmonic frequency show the true impact 

of harmonic sources on a power system. The bus voltages for a given set of nonlinear 
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loads can be found by the harmonic penetration method. The application program 

discussed here uses the harmonic penetration method to find the system response. The 

analytical approach used in the application to find the system bus voltages can be divided 

into the following systematic steps.  

1. Get the data required for individual components of the network. 

2. Convert these values into per-unit on consistent bases. 

3. Build the admittance matrix [ ]Y  of the network to represent the network 

mathematically. 

4. At each frequency of interest, form the current injection vector I
~

 and find the 

corresponding harmonic voltages V
~

 at different buses. 

The systematic steps outlined previously are logically coordinated in the application 

to do the required manipulations to obtain the desired output (system voltages). The 

logical sequence and the theoretical justification of the same are explained in the 

remaining sections of this chapter.  

 

Retrieving the Data for Individual Components 

Supply source, transformers, capacitors, cables or lines and loads dominate the 

power system impedance. The severity of harmonics on a distribution system largely 

depends on system impedance. The built-in sample system is a simple system topology 

that represents the vast majority of the distribution systems serving customers (from a 

harmonic study prospective). Therefore, the system in Figure 2.3, with most of the 

commonly found electrical distribution system components is considered in this 
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application program. Because manufacturers provide most equipment impedance data in 

sequence components, sequence networks are used to represent the system. The input 

data needed by the application is entered through dialog boxes – the part of the 

application that is a graphical user interface (GUI) is described in Chapter 3. The 

components and the format of individual input data required by the application are 

summarized in Table 2.2.  

 

 

 

Supply Source Cable or Line    Cable or Line 

Load 

Capacitor Transformer Capacitor with nonlinear load 

Bus 1 Bus 2 Bus 3 Bus 4 

 

 

Figure 2.3. Single Line Diagram of the System Used for Study. 
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Table 2.2. Input Data for Different Components. 

 
 

Component name Data Supplied by the User 

Supply Source 

1. Three phase kVA  
2. Phase to phase kV 
3. Positive sequence resistance and reactance in per unit 

based on given kVA and kV values 
4. Zero sequence resistance and reactance in per unit based 

on given kVA and kV values 

Cable or Line 

1. Phase to phase kV  
2. Three phase kVA  
3. Positive sequence resistance and reactance in per unit 

based on given kVA and kV values 
4. Zero sequence resistance and reactance in per unit based 

on the given kVA and kV values 
Shunt Capacitor 1. Three phase kVAr  

2. Phase to phase kV  

Transformer 

1. Three phase kVA  
2. Phase to phase high voltage kV  
3. Phase to phase low voltage kV  
4. Percent impedance (%Z) 
5. X to R ratio  
6. Tap in kV on the HV side. 

7. Type of connection (Y- , -  etc) 
8. Grounding resistance and reactance on HV and LV sides 

in ohms. 

Load 

1. Three phase kVA  
2. Phase to phase voltage kV  
3. Power factor (displacement factor) 
4. Harmonic (h=1 to 50) current magnitudes in percentage of 

the fundamental and angle in degrees  
 
 

 
The last component in Table 2.2 is a nonlinear load. As stated in Table 2.2, the 

application requires the harmonic current information as part of the input data. The 

typical harmonic characteristics of several nonlinear loads are available for default use in 

the application. If measured harmonic data is available and is different from the typical 
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data provided, the user can modify the data and the modified data is used to find the 

system response. In the absence of measured data, the typical values available in the 

application can be used for studying the harmonic impact on the system. Most of the 

harmonic current data for the nonlinear loads that are considered in this thesis were 

obtained from the case studies in the Superharm manual [3, 4]. For some of the loads, 

like the 6-pulse converter and the 12-pulse converter, data was obtained by Pspice 

simulation (Appendix 1). The models were built in Pspice and simulated to determine the 

first fifty harmonics. The simulated harmonic values were used as the default harmonic 

characteristics of corresponding nonlinear loads in the application. Apart from the 

harmonic data of the load, the application requires the per unit impedance data, the per 

unit base values and other information in Table 2.2 for determining the system voltages. 

After the data as described in Table 2.2 was obtained the values must be converted into 

per-unit values on consistent bases. 

 

Per-unitizing the Data on Consistent Bases 

The impedance data of the individual components supplied by the user are in per-

unit format. The per-unit values are based on the corresponding kV and kVA values. The 

per-unit values should be based on consistent bases throughout the system. In order to be 

consistent, the supply voltage value entered by the user and a three-phase power base of 

100 MVA are set internally as bases at the supply bus, Bus 1, of Figure 2.3. The supply 

source power base is used as to per-unitize the data on consistent bases. Initially, the SI 

values for individual components are found in order to convert to per-unit on consistent 



 

 

14 
bases. Equations (2.3) and (2.4) are used to find the SI value of the supply source 

impedance. In (2.3), KVs and KVAs are the supply voltage in kV and the supply power in 

kVA respectively. The impedance base for the given per-unit values is calculated using 

(2.3). In (2.4), pus,Z is the given per-unit impedance value.  

s

2
s

 base KVA
1000*KV

Z = �� ������������������������������������������������������ 

pus,bases Z*ZZ = ��� ��������������������������������������������������������� 

The capacitor and the load impedances are not directly given in per-unit. The 

transformer impedance value is given as per-unit magnitude, but the complex impedance 

is required for calculations. The capacitor, transformer and load impedance values (both 

resistance and reactance) are calculated from given power and voltage values. 

The capacitor impedance is calculated using (2.5), where KVARc and KVc are the 

given kVAr and kV values of the capacitor. The impedance calculated in (2.5) is in SI 

units. The resistance of the capacitor bank is neglected. 







−=−

c

2
c

c KVAR
1000*KV

jjX � ����������������������������������������������������� 

The impedance of the transformer is given as a percent and an X to R ratio. ZSI, 

the transformer impedance value in SI units, is found using (2.6).  In (2.6), KVx is the 

phase-to-phase kV value of the transformer, KVAx is the three-phase kVA value of 

transformer and %Z is the percent impedance of the transformer. 

  
x

2

SI KVA

1000*KV
*

100
%Z

Z x




= � ��������������������������������������������� 
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(2.7) 

The ZSI in (2.6) is the magnitude of the transformer impedance. The ZSI value and 

the X to R ratio are used to find the complex transformer impedance value as in (2.7). 

Equation (2.7) results in a quadratic equation with R as the variable. X is found by 

multiplying the R with the X to R ratio. If the X to R ratio is entered as zero, then the 

resistance of the transformer is assumed to be zero and the reactance is set equal to the 

ZSI value.  

                             22 XRZ +=                 

                                                   
2

2 R*
R
X

R 










+=  

The nonlinear load is represented as an impedance at fundamental frequency. 

Equations (2.8) and (2.9) are used to find the nonlinear load impedance magnitude and 

the complex impedance, respectively, where pf  is the displacement power factor (DPF) 

angle of the load. In (2.10) pf is calculated from the DPF value of the load. If the load 

DPF is lagging then pf  is positive; if the DPF is leading then pf  is negative.  

load

2
load

load KVA
1000*KV

Z = � ������������������������������������������������������� 

( ) ( ))sin(*Zj)cos(*ZZ pfloadpfloadload += � �������������������������� 

( )DPFcos 1
pf

−±=                                                    (2.10) 

Once the SI values are found, base values of voltage, power and impedance are 

calculated at every bus with respect to a reference bus. In this application, Bus 1 of 

Figure 2.3 is set internally as the reference bus. The phase-to-neutral voltage of the 
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supply source, sV , calculated in (2.11) is set internally as the reference bus voltage. In 

(2.11) Vs,old is the given supply source voltage. 

°∠





= 0

3

V
V olds,

s                                           (2.11) 

The magnitude Vs in (2.11) is the voltage base at Bus 1. As mentioned before, in 

this application a three-phase power base of 100 MVA is assumed. Because the voltage 

base calculated in (2.11) is a line-to-neutral value, a single-phase power base should be 

used. The power base Sbase (which is a single-phase quantity) is calculated as in (2.12). 

Once the voltage and the power bases are found, the impedance base is calculated using 

(2.13) where Vs is in kV and Sbase is in MVA. The base values calculated at bus 1 remain 

the same for buses 2 and 3 assuming a lossless per-unit system. When crossing the 

transformer between buses 3 and 4, the voltage base value changes according to the 

transformer turns ratio. The voltage base value at bus 4 is calculated using (2.14) where 

VLV and VHV are the low voltage and the high voltage ratings of the transformer. The 

impedance base at bus 4 is calculated using (2.13) by replacing Vs with phase-to-neutral 

voltage Vbase,4. The Vbase,4 value in (2.14) is in kV. Because the harmonic current injection 

values are to be represented as sources for frequencies other than the fundamental, the 

current base at bus 4 is calculated using (2.15). After finding the base values at every bus 

the corresponding SI quantities of all the elements in the system in Figure 2.3 are per-

unitized using these consistent bases.  

  
3

100
Sbase = (MVA)                                       (2.12) 
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base

2
s

base S
V

Z =                                                     (2.13) 

s
HV

LV
base,4 V*

V
V

V =                                             (2.14) 

base,4

base
base V

1000*S
I =                                          (2.15) 

 The SI values and the base values of voltage, power and impedance calculated 

previously are used in (2.16) to calculate corresponding per-unit values on consistent 

bases. In Equation (2.16) apu is a per-unit value, base is a base value and aSI is an SI 

value. Once consistent per-unit values are calculated, the system admittance matrix and 

current injection vectors of the system in Figure 2.3 are formed. 

 
base
a

a SI
pu =                                                  (2.16) 

 

Building the admittance matrix [Y] of the Network 

An admittance matrix can be used to represent mathematically any power system 

network. The user supplies the component’s positive and zero sequence impedances as 

input. In this work, the positive and the negative sequence impedances are assumed to be 

equal for all the components. For the capacitors and the transformer, however, all three-

sequence impedances are assumed to be equal with the exception of connection type as 

appropriate. The following assumptions are made for modeling the system: 

1. The system is positive phase sequence and is a balanced three-phase system at a 

fundamental frequency of 60 hertz. 
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2. The harmonic sources are represented as current sources at frequencies greater than 

the fundamental frequency (60 hertz).  

3. The transformer core losses are not considered. 

4. The skin effect at higher frequencies is neglected. 

Positive phase sequence for system voltages and currents is generally assumed as 

a rule-of-thumb for power system analysis. In a balanced three-phase system, the triplen 

harmonic currents behave like zero sequence currents [2]. The harmonics of order 4,7,10 

etc and 2, 5, 8 etc behave as positive sequence and negative sequence, respectively.  

When the phases are not balanced, any harmonic may impact all three sequences.  

 The distorted harmonic current can be expressed mathematically as the sum of 

sinusoidal waves at the individual frequencies present. The sum of these sinusoidal waves 

is called a Fourier series. Solving a system for bus voltages is easier when a Fourier 

series is used to represent distorted current waveforms [2]. By representing the harmonic 

sources as Fourier series, sinusoidal steady-state techniques can be used to solve the 

network. Conventional methods like the Kirchhoff’s Current (KCL) and Kirchhoff’s 

Voltage (KVL) Laws can be used. Therefore, the harmonic sources are modeled as 

current sources at individual harmonic frequencies. 

 The resistance of lines or cables does not change significantly for lower order 

harmonics. The skin effect of the conductors becomes significant at higher frequency 

where the resistance varies as the square root of the frequency [2]. For large transformers, 

the apparent resistance may vary proportionately with the frequency [2]. In any case, the 

variation of resistance with frequency cannot be accurately calculated. Besides, 
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neglecting the frequency dependence of the resistance gives conservative results. 

Therefore, the frequency dependence of resistance is neglected.  

Based on the assumptions stated previously, the admittance matrix is built 

internally by the application using the information provided by the user. The admittance 

matrix of an N bus power system network is in (2.17). In (2.17) ji,y  is the negative of the 

sum of all admittances connected between buses i and j and ii,y  is the sum of all 

admittances connected to bus i. 

[ ]



































=

NNNjNiN1

jNjjjij1

iNijiii1

1N1j1i11

y..y.y..y
.........
.........

y..y.y..y
.........

y..y.y..y
.........
.........

y..y.y..y

Y                               (2.17) 

Every element in the admittance matrix is frequency dependent. In effect, every 

element is scaled depending on the harmonic number [2, 5]. Inductive reactances increase 

linearly with frequency and are scaled by multiplying them with h, the harmonic number 

(that is a multiple of 60 hertz). For example, if LX  is defined as the inductive reactance 

at the fundamental frequency of 60 hertz, then at a (h*60) hertz frequency it is equal to 

(h* LX ). Capacitive reactances reduce as the frequency increases. Capacitive reatances 

are divided by the harmonic number. For example, if CX  is defined as the capacitive 

reactance at the fundamental frequency of 60 hertz, then at a (h*60) hertz frequency it is 
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equal to ( hXC ). As previously discussed, resistance is assumed to be constant with 

respect to frequency.  

Depending on the harmonic number and the characteristic behavior of the 

corresponding frequency (such as positive, negative or zero sequence), different 

admittance matrices are formed. The negative and the positive sequence admittance 

matrices will be different because a different harmonic number is used to scale the 

admittances. After scaling the component admittances appropriately, they are added as 

ji,y  and ii,y  in (2.17) to form the system admittance matrix. The transformer admittance, 

however, should be added with caution. 

 Different types of transformer connections have different effects on system 

admittance matrices. Therefore, the modeling of transformers is different for different 

connections. The positive and the negative sequence impedances of the transformer are 

added to ji,y  and ii,y  in (2.17) using the procedure described previously for (2.17). Only 

the zero sequence admittance matrix is affected by the type of transformer connection. 

The pi circuit in Figure 2.4 is used to model the transformer for different types of 

connections. In Figure 2.4 A , B  and C  are admittances defined in (2.18). In (2.18), c is 

the tap on the transformer and Z  is the transformer impedance. The value of tap is 

calculated using (2.19) where HVbase (L-N) is the transformer high voltage side phase-to-

neutral voltage base value in kV and t is the phase-to-phase voltage supplied for tap in 

kV.  
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A  

B  

C  

 

 

 

 

 

 

 

 
 

 
 
 

Figure 2.4. Pi Network 
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Z
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1cB
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2 −=

=

−=

                                                              (2.18) 

( )NLbaseHV*3

t
c

−

=                                               (2.19) 

Figure 2.5 is the zero sequence network model of a transformer. Depending on the 

type of transformer connection, the ground impedances are added between nodes 1’ and 

1" and 2’ and 2" in Figure 2.5 to complete the zero sequence network. 
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Figure 2.5. Zero Sequence Transformer Equivalent Network. 
 
 
 

Consider QRGH���RI�WKH�FLUFXLW�LQ�)LJXUH������,I�WKH�WUDQVIRUPHU�LV�FRQQHFWHG�LQ� �DW�
1, then the path between nodes 1’ to 1" is an open circuit and 1" is shorted to reference. 

7KH�VKRUWLQJ�RI�WKH�QRGH����WR�WKH�UHIHUHQFH�GXH�WR�D� �FRQQHFWLRQ�LV�GLVFXVVHG�LQ�D�ODWer 

paragraph that explains the handling of a unity tap transformer. If the transformer is 

Ygrounded at node 1, then nodes 1’ to 1" are connected by an impedance equal to three times 

the grounding impedance. If the transformer is Y connected (ungrounded) at node 1, then 

path between nodes 1’ to 1" is an open circuit. The procedure for including the connection 

type for node 1 is also used for node 2. A reactance of 10000 p.u is used internally to 

UHSUHVHQW� WKH� LQILQLWH� LPSHGDQFH� RI� WKH� RSHQ� FLUFXLW� IRU� � DQG� <� FRQQHFWLRQV�� 7KH�
following steps summarize the procedure for including the transformer in the system zero 

sequence admittance matrix for a non-unity tap c: 

1. The pi network admittances B,A and C are inverted to get corresponding impedances 

defined as b,a  and c . Note if the tap value is equal to 1 then the inversion of A  and 

A

B  

C

1′  1′′  1 2 2′  2 ′′  
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1z  

2z  

3z  

C  results in infinite values. The transformer connections for unity tap are discussed 

as a special case in a later paragraph. 

2. Using (2.20), (2.21) and (2.22) the pi network is converted to the T network in Figure 

2.6.  

 

 

 

 

 
 

 
 
 
 

 
 

 
 

Figure 2.6. T Network Equivalent Representation of Transformer. 
 
 
 

cba
ba

z1 ++
+=                                                    (2.20) 

cba
ca

z2 ++
+=                                                     (2.21)   

cba
bc

z3 ++
+=                                                     (2.22)                                                                   

3. The 3* groundingZ  or the j10000 p.u is added to the corresponding impedances 

( 1z and/or 3z ). 
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4. The T impedance values ( 321 z,z,z ) are converted back to the pi impedances ( c,b,a ) 

using (2.23), (2.24) and (2.25). 

1

313221

z
z*zz*zz*z

a
++

=                                         (2.23) 

2

313221

z
z*zz*zz*z

b
++

=                                            (2.24) 

3

313221

z
z*zz*zz*z

c
++

=                                             (2.25) 

After converting the impedances back to admittances, the transformer admittance 

model is complete and the admittances B,A and C  are added to ji,y  and ii,y  in (2.17) 

using the procedure described previously for (2.17).  

Consider a special case of a unity tap transformer. Let the transformer be a 

Ygrounded- � FRQQHFWHG�� )LJXUH� ���� UHSUHVHQWV� WKH� ]HUR� VHTXHQFH� QHtwork of a unity tap 

Ygrounded- �WUDQVIRUPHU��7KH�]HUR�VHTXHQFH�FXUUHQWV�IORZ�RQO\�LQ�WKH�<grounded side of the 

network. The shorting of node 2″ makes a closed loop for the zero sequence currents to 

flow in the Ygournded side of the transformer. Admittances A  and C  are zero, i.e. the 

impedances corresponding to A  and C  are infinite. The ground impedance 3* groundingZ  

effects only node 1 in Figure 2.7. Admittance y  in (2.26) is added to Yfrom.from of the 

network zero sequence admittance matrix. For Yfrom,to, Yto,from and Yto,to, there is no 

addition needed because the admittance is zero. 
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Figure 2.7. Zero Sequence Network for a Unity Tap Ygrounded- �7UDQVIRUPHU� 
 
 
 

B
Z*3

1
y

n

+=                                                       (2.26) 

)RU� D� -Ygrounded unity tap transformer, an admittance equal to y  in (2.26) is 

added to Yto,to entry of system admittance matrix and the Yfrom,to, Yto,from and Yto,to are all 

added zero values. For a Ygrounded- Ygrounded transformer, the procedure described for 

(2.17) is used to add the transfomer and the grounding admittances (based on three times 

WKH�JURXQGLQJ� LPSHGDQFH���)RU� - �� -Y, Y- �DQG�<-Y connections the paths between 

nodes 1’ to 1" and 2’ to 2" are open circuit. Therefore, a zero admittance is added to the 

system admittance matrix using the procedure described for (2.17).  

At this point, the mathematical modeling of the system considered for this study is 

complete. The next step is to form the current injection matrix and solve for bus voltages. 
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System Response 

The harmonic currents injected by nonlinear loads are required to find the 

harmonic bus voltages in the system. Eight commonly used nonlinear loads are provided 

for default use. The nonlinear loads considered in this study are: 

1. Single-phase power supply, 

2. Semi-converter, 

3. Six pulse converter with capacitive smoothing, 

4. Six pulse converter with capacitive smoothing 3% series inductance (or 

DC drive), 

5. Six pulse converter with large inductor for current smoothing, 

6. Twelve pulse converter, 

7. AC voltage regulator, and 

8. Fluorescent lighting.  

For most of the loads, the harmonic current data provided was obtained from the 

simulated values of case studies from the Superharm manual [4, 6]. However, a few were 

simulated using Pspice (Appendix 1). In general, harmonics from 1 to 50 are studied in 

most harmonic analyses and typical monitoring equipment measures the same range. 

Therefore, only the first 50 harmonics are considered in this work. If measured harmonic 

data is available and is different from the typical data provided, the user can modify the 

data and the modified data is used to find the system response. In the absence of 

measured data, the typical values available in the application can be used for studying the 

harmonic impact on the system.  
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Once the frequencies present for a particular nonlinear load are known, their 

behavior is then categorized as positive sequence (h = 1, 4, 7…), negative sequence (h = 

2, 5, 8…) and zero sequence (h = 3, 6, 9…). For individual frequencies present, the 

current injection vector I
~

of the network is formed. The size of the current injection 

vector I
~

 is equal to the number of buses in the system. At any frequency the current 

injection vector I
~

 has only one nonzero value. At the fundamental frequency only the 

supply source is the power input to the network (recall that the load is represented as an 

impedance at the fundamental frequency). The user gives the voltage equivalent of the 

supply source as an input to the application. Therefore, the Norton equivalent circuit in 

Figure 2.8 can be used to represent the supply source at the fundamental frequency.  The 

Norton equivalent circuit converts a voltage source to an equivalent current source. At 

frequencies higher than the fundamental, the supply source has only an impedance effect 

on the system. 

 
 

  
 
 
 
 
 
 
 
 
 

Figure 2.8. Norton Equivalent Circuit. 
 
 
 

Z
VI =

Z  
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For frequencies higher than the fundamental, the nonlinear loads act as the input 

to the network. For frequencies other than the fundamental, the nonzero entry in the 

current injection vector I
~

 corresponds to the load bus. For the system in Figure 2.3, the 

(4, 1) entry in the current injection vector I
~

 would be nonzero and the remaining entries 

would be zero.  

The nonzero values used in the current injection vector I
~

 should be in per-unit 

because the impedance values are in per-unit. The harmonic current data is supplied as a 

percent of the fundamental frequency load current magnitude and the angles are in 

degrees with respect to the bus voltage to which the load was connected. These percent 

current magnitudes need to be converted to SI values and then per-unitized on a 

consistent base before using them to solve for bus voltages. The bus 4 fundamental 

frequency voltage value and the load impedance value are used to convert the percent 

values of the harmonic current magnitudes to per-unit values on a consistent base. 

The fundamental frequency bus 4 voltage value is found by solving the network 

for bus voltages at the fundamental frequency. The network model at the fundamental 

frequency consists of the Norton equivalent of the supply source and the impedances of 

all the other components. Because the fundamental frequency behaves as positive 

sequence, the transformer connections do not effect the network connections. Using the 

techniques discussed earlier, the admittance matrix [ ]1Y  and the current injection vector 

1I
~

 are formed where the subscript indicates the harmonic number being studied. The 

network is solved for fundamental frequency bus voltages using (2.27). In (2.27) 1V
~

 and 
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1I
~

 are the per-unit voltage and current vectors at the fundamental frequency. The 

admittance matrix [ ]1Y  used in (2.27) is a positive sequence admittance matrix.  

 [ ] 1
1

11 I
~

*YV
~ −=                                             (2.27) 

Phase-to-neutral voltage and single-phase power values are used as bases, 

therefore, (2.27) gives the per unit values of the phase-to-neutral bus voltages. Once the 

per-unit value of the bus 4 fundamental voltage is found, the fundamental load current is 

then found using (2.28). In (2.28) loadZ  is the per-unit load impedance and 4,1V is the bus 

4 voltage at fundamental frequency in per-unit.  

 
load

4,1
lfundamenta4, Z

V
I =                                                      (2.28) 

 In (2.28) lfundamenta4,I  represents the per-unit value of the fundamental frequency 

load current. Equation (2.29) is used to scale the percent harmonic current magnitudes 

and (2.30) is used to scale the angles with respect to the supply source phase-to-neutral 

voltage. In (2.29) Ih,percent and I1,percent are the (order h) harmonic current and fundamental 

current magnitudes in percent and Ih,new is the scaled per-unit value of (order h) harmonic 

current injection. In (2.30) oldh,  and newh,  are the old and the modified current angles of 

the order h harmonic, lfundamneta4,  is the lfundamenta4,I  angle at the fundamental frequency and 

old1,  is the old fundamental current angle.  

lfundamenta4,
percent1,

percenth,newh, I*
I

1
*II =                                     (2.29) 

( )lfundamenta4,old1,oldh,newh, *h −+= θ                                     (2.30) 
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In (2.30) the subscript “ old”  represents the value given as input data. Using the 

current vector and the system admittance matrix in per-unit formed on a consistent bases, 

the system bus voltages can then be found.  

The bus voltages are found for each harmonic by solving (2.31). In (2.31) hV
~

 is 

the per-unit voltage vector and hI
~

 is the per-unit current injection vector for harmonic h. 

The bus impedance matrix [ ]hZ  is the inverse of the bus admittance matrix[ ]hY . The 

Shipley-Coleman method of matrix inversion is used for the admittance matrix inversion 

because of its simplicity [3]. The values used in (2.31) and the results of solving (2.31) 

are in per-unit. These per-unit values are converted to SI values using the same bases 

used for converting them to per-unit.  

 [ ] hhh I
~

*ZV
~

=                                                (2.31) 

The voltages found from (2.31) are line-neutral voltages. The phase angles of the 

voltages of buses with the transformer connected to them may need to be adjusted with 

the appropriate phase shift of ±30º [7]. If the transformer is delta-wye connected, then the 

load bus voltage angle for any harmonic order h that is a positive sequence is shifted by (-

h*30) degrees. For harmonics that are negative sequence, the shift is (+h*30) degrees. 

The triplen harmonics (those that are an integer multiple of the 3rd harmonic) are not 

affected by the phase shift.  

The procedure described up to this point is used to find the system response for 

multiple nonlinear loads. Therefore, the final results of computing the bus voltages would 

be the single-phase line-to-neutral voltages with appropriate phase shift added to the 
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angles. Figure 2.9 is the flow chart of the entire logic behind calculating the system 

response. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9. Flowchart with the Logic Used in Finding the System Response. 
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Figure 2.10. Figure 2.9. (continued)
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CHAPTER III 
 

THE GUI FEATURES 
 
 

Introduction 

In the previous chapter discussion of the logical part of the application was given. 

In this chapter the description of the graphical user interface (GUI) part of the work is 

given. The software application developed is a Microsoft Windows-based application. 

The Microsoft foundation classes (MFC) of the Visual C++ programming language were 

used to develop the GUI features of this application. A proper design using the MFC 

tools like Cdialog box, Cview and Cdocument classes [8] will result in a user-friendly 

and easy to use application. The user interface can be designed in several ways by using 

the properties and functions associated with the Cdialog, Cview and other classes of the 

MFC.  

MFC applications are mainly of two types - a single document interface or a 

multiple document interface [8]. In a single document interface only one client space or 

main window is used to display results, waveforms etc. Figure 3.1 is a sample single 

document interface application.  
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Figure 3.1. Sample Application of Single Document Interface. 
 
 
 
The “ client space”  area in Figure 3.1 can be used as a workspace. The developer 

(or the programmer) may use the client space to display some data or to draw diagrams. 

In this thesis the client space is used to display the waveforms, bar diagrams and a grid to 

present data.  

A developer could develop a multi-document interface (MDI) application. A 

sample MDI is in Figure 3.2. In a multiple document interface there are many windows 

or “ client spaces”  known as child windows. All child windows are associated with one 

mainframe window. Different child windows can be opened or closed depending on the 

type of application developed, but by closing the mainframe window all the child 
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windows close. Apart from the child windows in Figure 3.2, dialog boxes can also be 

used in an MDI application. The application developed in this thesis work is MDI and 

uses different dialog boxes as child windows.  

 
 
 

 
 
 

Figure 3.2. A Sample MDI Application Frame. 
 

  
 

Dialog boxes belong to the Cdialog class of the MFC. Dialog boxes make 

windows-based programs user interactive. There are two types of dialog boxes: modal 

and modeless. A modal dialog box does not allow the user to work on another window in 

the same application as long as the dialog box is open. The modeless dialog box, 

however, gives the user the flexibility to access another window with the modeless dialog 
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box still open on the screen. This property of a modeless dialog box allows the user to 

swap between child windows. Both modal and modeless dialog boxes are used in this 

thesis work. 

The modal and modeless dialog boxes used in this thesis work are designed using 

various controls associated with them. The user supplies data to the application through 

dialog box controls. Figure 3.3 is a sample dialog box showing some of the dialog box 

controls used in this application. The different controls used in Figure 3.3 are briefly 

described in the following paragraphs. 

 
 
 

 
 
 

Figure 3.3. Sample Dialog Box with Most Common Controls. 
 
 
 

The control labeled “ Edit box”  in Figure 3.3 is a static control. Static controls are 

used to display names for controls. The rectangular box with “ edit box val”  is an edit 
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control. The user types input data into an edit control and then this input data is passed to 

the application. For example, the kVA value of the load is entered in an edit box labeled 

(using a static control) “ kVA value.”  Another edit control used is a read-only edit box. A 

read-only edit box displays alpha-numerical content which cannot be edited or accessed 

by the user.  

Radio buttons and check boxes are two other controls. The “ value”  of these two 

controls can be toggled between true or false by a single mouse click.  For example, the 

displacement factor of the load can be specified as lagging by clicking on a radio button 

labeled as “ lag.”  In Figure 3.3 the small circle and the small rectangular box are a radio 

button and a check box, respectively.  

Another control in Figure 3.3 is the grouping static control labeled “ Grouping 

items.”  This control is used for designing the display of a dialog box. The grouping 

control is used for giving a set of controls that are related to one another as a single name. 

It is also used for seperating different groups of controls that perform different functions 

on a single dialog box. 

 The data entered in a dialog box is processed when the user clicks a control called 

a Cbutton control. These controls are used to send messages to the main application 

program. For example an “ OK”  button is clicked to pass the data entered to the main 

program. In the application described here, bitmaps are placed over the cbuttons to give 

an enhanced look to the dialog box.  
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 The cgridctrl developed by Chris Maunder [9] was used for designing some of the 

dialog boxes in the application. A typical cgridctrl is in Figure 3.4. The cgridctrl 

properties like the size (number of colums and rows), the nomenclature and the scrolling 

bars of the grid were changed to fit the application in this thesis.  

 
 

 
 
 

Figure 3.4. Sample Dialog Box with Grid. 
 

 
 
 The controls described in the previous paragraphs were used to design the dialog 

boxes used in the application described in this thesis. A sample dialog box with most of 

these controls is in Figure 3.5. 
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Figure 3.5. Sample Dialog box with Grid Used in the Application. 
 
 
 

In the bottom-left of the dialog box in Figure 3.5 there are buttons for different 

purposes. If the user changes the values in the grid then the modified display can be 

viewed by pressing the refresh button in Figure 3.6. Apart from refreshing the display the 

user can also save the changes in the harmonic data points in the grid by pressing the 

button in Figure 3.7.  The modified values in the grid data are stored internally in the 

application and are used for any further calculations. 
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Figure 3.6. Button for Refreshing the Display. 
 
 
 
 

 
 
 

Figure 3.7. Button for Saving the Modified Data Values of the Grid. 
 
 

 
The user also has the choice of copy-pasting just the display (waveform/spectrum) 

into a Microsoft Word document for recording or report writing purposes by clicking the 

button in Figure 3.8. When the user clicks this button the plot is copied into clipboard. 

The user can then paste the picture in a Word document. One last button in the dialog box 

is the close button in Figure 3.9 and is used to close the dialog box as. After the design 

aspect of the application is completed, dialog boxes and other child windows are 

systematically integrated in to the mainframe window of the application. 
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Figure 3.8. Button for Copying the Plot. 
 
 
 

 
 
 

Figure 3.9. Button for Closing Dialog Box. 
 
 
 

Different Tasks in the Development of the Final Application 

From displaying the study system considered in this thesis work to displaying the 

resulting distorted waveforms, all the tasks are developed in a step-by-step procedure. 

The tasks assigned for the GUI code can be summarized as the following: 

1. Displaying the system diagram and retrieving the data from the user. 

2. Applying the automatic acceptance criteria (AAC) to the given data. 

3. Generating and displaying the plot (waveform/spectrum) for the data entered. 

4. Verifying the required data and display any error message. 

5. Passing the data to the code for the solution. 

6. Displaying bus harmonic voltages (magnitudes and angles) and the waveforms. 
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Displaying the System Network  

The single line diagram representation of the system is displayed in a child 

window as in Figure 3.10. In Figure 3.10 the supply system is represented as a circle and 

the capacitor banks by short horizontal parallel lines. The vertical parallel “ jaws”  

represent the transformer. The nonlinear load is represented as a square box. The thick 

vertical bars represent the buses in the network. Two cable lines are considered in the 

system, one from the supply bus to the first capacitor bank and the other is the line 

between the first capacitor and the transformer. A single mouse click on an individual 

component of the system displays the dialog box describing that component. 

 
 
 

 
 
 

Figure 3.10. Display of the Network Considered for the Study. 
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Collecting the Data for Different Components 

The dialog box in Figure 3.11 is for entering the data for the supply source. The 

per-unit values of the positive and zero sequence impedance of the supply source are to 

be entered in the edit boxes specified. The kVA and the kV values are three-phase and 

phase-to-phase quantities, respectively. A default value of 100,000 kVA is internally set 

in the application. However, the user can change the kVA value. 

 
 
 

 
 
 

Figure 3.11. Dialog Box for the Supply Source. 
 
 
 

The dialog box for the lines and cables is in Figure 3.12. The per-unit values 

supplied by the user should be based on the kV and the kVA values entered. A default 

value of 100,000 kVA is internally set for the line kVA value. However, the user can 

modify the kVA value. The voltage entered in the dialog box should be a phase-to-phase 

kV value. 
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Figure 3.12. Dialog Box for the Line data. 
 

 
 

The dialog box in Figure 3.13 is used for the capacitors. The three-phase kvar and 

the kV(L-L) values of the capacitor are supplied through this dialog box. 

 
 
 

 
 
 

Figure 3.13. Dialog Box for the Shunt Capacitor Ratings Data. 
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The dialog box in Figure 3.14 is used for entering the transformer details. The 

transformer turns ratio is entered as the high voltage and the low voltage values in phase-

to-phase kV. The kVA rating should be a three-phase quantity. The grounding 

impedances (if any) are to be entered in ohms. The tap of the transformer is set on the 

high voltage side and is to be entered in terms of phase-to-phase volts in kV. Because the 

transformer considered is a three-phase transformer, the user needs to specify the type of 

connection on both the high voltage and the low voltage side of the transformer by 

clicking on the radio buttons. 

 
 
 

 
 
 

Figure 3.14. Dialog Box for Entering the Transformer Data. 
 
 



 

 

46 

Nonlinear Loads 

When the user clicks on the load represented by the rectangular box the dialog 

box in Figure 3.15 pops up. The user can enter the phase-to-phase kV and the three-phase 

kVA values of the loads. The main purpose of the dialog box in Figure 3.15 is to apply 

the AAC and estimate if the entered quantities of nonlinear loads could cause any 

potential harmonic problems. The user can enter the short circuit capacity at the PCC and 

then click on the “ COMPUTE”  button. The application then computes the weighted 

distorting power from the given set of data and displays it in the edit box named 

“ Weighted Distorting Power (in kVA) is found to be.”  The ratio of weighted distorting 

power to the short circuit power and the limit of 0.1% (set in AAC approach for potential 

harmonic problems) are displayed. This part of the application gives the user a quick 

estimate of any potential harmonic problem. Clicking any of the “ PLOT”  buttons in the 

dialog box, in Figure 3.15, pops up a dialog box with the typical waveform/spectrum of 

the corresponding nonlinear load.  
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Figure 3.15. Dialog Box for kVA and kV Load Values. 
 

 
 

Developing the Plot for the Nonlinear Load 

Apart from applying the AAC, the user can view the harmonic current data 

corresponding to individual non-linear loads and the associated waveform/spectrum by 

clicking the “ PLOT”  button. When the user clicks the “ PLOT”  button a dialog box as in 

Figure 3.16 pops up. This gives the user the choice of calling the axes of the waveform 

plot by any name. When the user clicks the “ OK”  button these names are passed to the 

plotting function and the dialog box in Figure 3.17 pops up. 
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Figure 3.16. Dialog Box for the x and the y-axes Labels. 
 
 
 

The dialog box in Figure 3.17 contains the grid control that is used to display the 

typical harmonic current data for the selected nonlinear load. The harmonic number, the 

corresponding magnitude (in percent of the fundamental current) and the angle (in 

degrees) are displayed in this grid. The grid is used to display both the current and the 

voltage harmonic data. In the case where current harmonic data are displayed (for the 

nonlinear load), the user can modify the data (which is typical harmonic data as 

mentioned in Chapter 2) if actual measured data is available. Depending on the interest of 

the user, the user can also edit the voltage harmonic data. 
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Figure 3.17. Dialog Box with the Harmonic Data and Waveform for Single-phase Power 
Supply. 

 
 
 
The plot in the right hand side of the dialog box in Figure 3.17 is generated using 

the values in the grid. Clicking on the “ Spectrum”  radio button displays the spectrum on 

the right hand side of the dialog box. The “ Spectrum”  names also suggest the range of 

harmonic numbers for which the spectrum would be displayed like 1 to 13, etc. Because 

the viewing space is small, the spectrum is divided into three ranges to have a clear view 

of the individual harmonics. Figure 3.18 is a spectrum display for one of the nonlinear 

loads. When the user selects “ DO NOT Include Fundamental”  in the dialog box in Figure 

3.18 and clicks on the refresh button, the bar plot of the first 13 harmonics are redrawn 
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excluding the fundamental. This feature is included in the dialog box because most of the 

higher harmonics are small as compared to the fundamental. For example the 

fundamental would usually be 100% but maybe the 5th harmonic would be just 15%. 

Such a low percent value may appear artificially small on the plot and the user would be 

misled.  

 
 
 

 
 
 

Figure 3.18. Dialog Box with the Harmonic Data and Spectrum for Single-phase Power 
Supply. 
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 After the user finishes entering the harmonic current data and the kV and kVA 

values for the load, the dialog box in Figure 3.19 pops up. The dialog box in Figure 3.19 

is used for entering the nonlinear load data. 

 
 
 

 
 
 

Figure 3.19. Dialog Box for Selecting Load and Corresponding Power Factor of Load. 

  
 
 

The dialog box is used in selecting different kinds of nonlinear loads to be 

considered for the finding the bus voltages. The edit boxes and radio buttons in the dialog 

box of Figure 3.19 furnish the information regarding the load power factors. This 

information is required for doing any further analysis. Therefore, the dialog box in Figure 

3.18 is a modal dialog box. The user can not access the rest of the application unless the 
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dialog box is closed. Once the user enters the data for all the individual components of 

the system and the nonlinear load, the user can then click on any bus of interest to view 

the harmonic voltages.  

 
Verifying the Data and Displaying Error Message 

 When the user clicks on the bus, the dialog box with the harmonic voltage 

magnitude and angle values and the corresponding plot (waveform/spectrum) is 

displayed. However, if the user fails to furnish all the information needed then the 

computed harmonic voltage values could be erroneous. Therefore, when the user clicks 

on any bus to examine the harmonic voltages, the application calls a validating function. 

This function verifies if all the information for every component in the system has been 

provided by the user and displays an error message if any is missing. The dialog box in 

Figure 3.20 with the error message pops up if any data is missing. The error message 

gives the user the a description of the information that is not supplied to the application. 

 
 
 

 
 
 

Figure 3.20. Dialog Box with the Error Message. 
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All the values typed in or selected by the user in the dialog boxes described up to 

this point are passed to the solution algorithm through the member functions and 

properties of MFC classes. Figure 3.21 is the flowchart that represents the sequence in 

which the user could use the application. 

 

 

 

Enter the input data for different system components 

Done with all 
components? 

Start 

Click on any component of the system shown 
in the child window to enter data 

Press “ PLOT”  button to verify the harmonic data 
for different nonlinear loads. 

No 

Yes 

 

 

Figure 3.21. Flowchart with Typical User Interface Sequence. 
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Are the data 
valid for 

application? 

Click on the Spectrum or the 
Waveform button to view 
the waveform or spectrum.  

Press “ OK”  button to 
close the load dialog box 

Select load and enter its 
displacement  factor 

Click on any bus of the system to see the 
harmonic voltages and associated 
waveform at that bus. 

 
Enter the values of individual 
harmonic current magnitudes 

NO 

YES 

Stop 

 

 

Figure 3.22. Figure 3.21 (continued)
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CHAPTER IV 
 

SAMPLE CASES AND RESULTS 
 

 
To analyze the accuracy of the application, sample cases were run using the 

application and a commercial-grade application (Superharm). The sample cases are used 

to assess the accuracy of numerical and graphical data as compared to results obtained 

using Superharm.  

Two sample cases were used to illustrate the accuracy of the application. Case 1 

has two six pulse converters as the nonlinear loads, and the second case is continuation of 

the first case with the changes in the capacity of the nonlinear load.  

 
Case 1: 

The system data for the sample case is in Table 4.1 

 
 

Table 4.1. Data for Sample Case 1. 
 
 

Component name Data Supplied by the User 

Supply Source 

1. Three phase kVA of 200,000 kVA  
2. Phase to phase kV of 13.8 kV 
3. Positive sequence of (0.05+j1.0) in per unit based on the 

given kVA and kV values 
4. Zero sequence of (0.039498+j0.89498) in per unit based 

on given kVA and kV values 
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Table 4.1 (continued) 

 
 

Component name Data Supplied by the User 

Cable or Line 
(Between bus 1 and 
bus 2) 

1. Three phase kVA of 100,000 kVA  
2. Phase to phase kV of 13.8 kV 
3. Positive sequence of (0.78555+j4.205) in per unit based 

on given kVA and kV values 
4. Zero sequence of (0.5562+j4.21655) in per unit based on 

the given kVA and kV values 
 

Shunt Capacitor  
(At bus 2) 

1. Three phase kVAr of 700 kVAr  
2. Phase to phase kV of 13.8 kV 

Cable or Line 
(Between bus 2 and 
bus 3) 

1. Three phase kVA of 100,000 kVA  
2. Phase to phase kV of 13.8 kV 
3. Positive sequence of (0.66525+4.6251) in per unit based 

on given kVA and kV values 
4. Zero sequence of (0.55287+j4.18804) in per unit based 

on the given kVA and kV values 

Transformer 

1. Three phase kVA of 1500 kVA 
2. Phase to phase high voltage kV of 13.8 kV  
3. Phase to phase low voltage kV of 0.48 kV 
4. Percent impedance (%Z) of 4% 
5. X to R ratio of 5 
6. Tap in kV on the HV side of 13.8 kV. 

7. -Y transformer connection. 
8. Grounding resistance and reactance on HV and LV sides 

of zero ohms. 
Shunt Capacitor 
(At bus 4) 

1. Three phase kVAr of 700 kVAr  
2. Phase to phase kV of 0.48 kV 

Load 1 
(6 pulse converter 

with capacitive 
smoothing) 

1. Three phase kVA 150 kVA 
2. Phase to phase voltage kV of 0.48 kV 
3. Power factor (displacement factor) of 0.75 lag 
4. Harmonic (h=1 to 50) current magnitudes in percentage of 

the fundamental and angle in degrees in Table 3 of 
Appendix 

Load 2 
(6 pulse converter 

with capacitive 
smoothing and a 
series inductor of 

>3%) 

1. Three phase kVA 150 kVA 
2. Phase to phase voltage kV of 0.48 kV 
3. Power factor (displacement factor) of 0.75 lag 
4. Harmonic (h=1 to 50) current magnitudes in percentage 

of the fundamental and angle in degrees in Table 4 of 
Appendix. 
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Assume bus 4 is the PCC. The short circuit capacity is calculated to be 551 kVA. 

The weighting factor for 6 pulse converter with capacitive smoothing is 2.0 and for 6 

pulse converter with capacitive smoothing and a series inductor of >3% is 1.0. Therefore, 

the weighted capacity of the two nonlinear loads is calculated in (4.1). 

1.0*150.02.0*150.0SDW +=                    

                                  0.045=  kVA                                        

81%100*
 551

450.0
S
S

SC

DW ==                                 (4.2) 

From (4.2), it can be concluded that the AAC limit of 0.1% is exceeded. The 

voltage wave distortions can be anticipated to be high because of the very high deviation 

from the 0.1%. Because the limit of 0.1% of the ratio of weighted capacity and the short 

circuit capacity is exceeded, a comprehensive harmonic analysis should be performed.  

The results from the application program are tabulated in Table 4.2. To verify the 

accuracy of the harmonic bus voltage magnitude and angles generated by the application, 

they are compared with the Superharm simulation results. Table 4.2 are the results from 

the application and Table 4.3 are the Superharm results. In Tables 4.2 and 4.3 the “ Mag”  

represents the magnitudes in volts, the “ Angles”  represent angles in degrees and “ H#”  is 

harmonic number. There is an error of 10 volts at lower harmonics. This could be 

because of difference in modeling of the transformer between Superharm and the 

application developed. However, with the voltage range in discussion in this case (i.e. 

13.8 kV), the difference of 10 V is negligible. 

  (4.1) 
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Table 4.2. Results of the Sample Case 1 Using the Application. 
 
 
           Bus 1             Bus 2             Bus 3             Bus 4 H 

# Mag Angle Mag Angle Mag Angle Mag Angle 
1 7991.16 -0.12 8174.21 -1.30 8172.56 -2.26 281.38 -32.80 
2 0.57 127.47 5.45 123.30 9.76 125.65 0.43 155.83 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.45 1.83 
4 3.09 146.87 23.88 130.89 35.09 145.78 1.32 117.66 
5 298.62 -124.46 2858.85 -128.12 2906.42 -121.04 126.07 -89.21 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.36 34.95 
7 94.55 141.98 885.46 132.44 881.81 146.60 2.51 160.01 
8 9.05 22.56 17.62 55.08 19.96 55.21 0.39 -103.53 
9 0.00 0.00 0.00 0.00 0.00 0.00 2.78 134.94 

10 0.40 -2.69 12.75 6.64 14.82 7.64 1.09 153.78 
11 19.58 125.47 196.12 132.54 198.03 132.82 24.46 -19.76 
12 0.00 0.00 0.00 0.00 0.00 0.00 3.10 -175.19 
13 8.29 25.97 70.99 31.71 74.21 35.27 14.54 -178.38 
14 0.02 -97.78 0.37 -92.27 1.29 -92.51 0.09 118.48 
15 0.00 0.00 0.00 0.00 0.00 0.00 3.13 52.78 
16 0.02 155.78 0.24 165.81 1.30 169.87 0.09 -46.72 
17 0.79 -162.63 8.73 -141.85 10.15 -142.76 3.59 55.48 
18 0.00 0.00 0.00 0.00 0.00 0.00 0.24 29.36 
19 0.32 139.60 4.12 140.86 5.43 142.06 1.67 -71.10 
20 0.01 75.51 0.20 79.51 1.80 80.01 0.11 -74.59 
21 0.00 0.00 0.00 0.00 0.00 0.00 0.53 159.82 
22 0.01 83.92 0.17 87.39 0.22 88.65 0.09 -125.02 
23 0.03 127.70 0.42 122.91 1.05 122.14 0.31 -30.66 
24 0.00 0.00 0.00 0.00 0.00 0.00 0.08 -167.23 
25 0.02 64.55 0.30 70.22 0.50 70.12 0.30 -142.67 
26 0.01 -110.18 0.08 -110.78 0.12 -110.25 0.08 102.17 
27 0.00 0.00 0.00 0.00 0.00 0.00 0.15 7.36 
28 0.00 -154.20 0.01 -160.65 0.02 -160.02 0.02 -9.73 
29 0.01 -124.82 0.12 -121.24 0.24 -120.87 0.16 90.22 
30 0.00 0.00 0.00 0.00 0.00 0.00 0.01 11.27 
31 0.01 96.22 0.16 97.25 0.28 95.06 0.26 -117.62 
32 0.00 112.96 0.02 117.72 0.01 116.43 0.02 -36.32 
33 0.00 0.00 0.00 0.00 0.00 0.00 0.04 170.86 
34 0.00 62.14 0.02 62.34 0.02 62.34 0.03 -150.04 
35 0.00 -151.91 0.03 -155.06 0.03 -155.27 0.06 56.47 
36 0.00 0.00 0.00 0.00 0.00 0.00 0.01 109.13 
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Table 4.2 (continued) 

 
 

           Bus 1             Bus 2             Bus 3             Bus 4 H 
# Mag Angle Mag Angle Mag Angle Mag Angle 
37 0.00 -22.62 0.06 -25.67 0.10 -25.32 0.13 126.86 
38 0.00 -95.85 0.01 -100.00 0.01 -98.65 0.02 112.18 
39 0.00 0.00 0.00 0.00 0.00 0.00 0.03 -7.62 
41 0.00 -174.44 0.02 -175.04 0.02 -175.41 0.05 36.13 
42 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -31.63 
43 0.00 172.48 0.03 175.08 0.03 175.44 0.07 -37.73 
44 0.00 107.11 0.01 107.01 0.00 109.02 0.01 -44.56 
45 0.00 0.00 0.00 0.00 0.00 0.00 0.03 113.18 
46 0.00 -35.90 0.00 -14.11 0.01 -11.78 0.01 138.53 
47 0.00 57.71 0.01 57.47 0.01 56.05 0.03 -95.32 
49 0.00 84.02 0.01 85.23 0.01 85.37 0.03 -127.91 
50 0.00 -145.91 0.00 -145.06 0.01 -145.05 0.02 65.70 

 
 
 
 

Table 4.3. Results of the Sample Case 1 Using the Superharm. 
 
 

           Bus 1             Bus 2             Bus 3             Bus 4   H 
# Mag Angle Mag Angle Mag Angle Mag Angle 
1 7990.66 -0.12 8170.03 -1.30 8111.74 -2.25 280.94 -32.78 
2 0.55 128.81 5.21 125.31 9.66 126.03 0.42 155.87 
3 0.00 -88.15 0.00 -90.49 0.00 -89.70 0.45 1.89 
4 2.31 148.36 21.72 146.61 31.81 147.62 1.31 117.82 
5 303.25 -119.67 2855.08 -121.07 3351.26 -119.66 126.39 -89.08 
6 0.00 129.51 0.00 128.34 0.00 130.63 0.36 35.06 
7 93.51 143.86 880.16 142.86 350.48 148.14 2.50 160.10 
8 1.66 53.02 15.66 52.14 1.53 -152.43 0.39 -103.38 
9 0.00 -148.27 0.00 -149.05 0.00 26.92 2.77 135.11 

10 1.32 6.58 12.43 5.88 15.60 -176.37 1.09 153.97 
11 20.77 132.56 195.42 131.92 378.19 -49.67 24.44 -19.55 
12 0.00 113.63 0.00 113.04 0.00 -68.20 3.08 -174.92 
13 7.36 33.44 69.26 32.90 241.64 -148.13 14.52 -178.14 
14 0.04 -89.85 0.34 -90.35 1.50 88.77 0.09 118.74 
15 0.00 141.93 0.00 141.46 0.00 -39.31 3.50 52.01 
16 0.03 164.75 0.24 164.31 1.48 -16.38 0.09 -46.42 



 

 

60 
Table 4.3 (continued) 

 
 

           Bus 1             Bus 2             Bus 3             Bus 4   H 
# Mag Angle Mag Angle  Mag Angle Mag Angle 

17 0.87 -140.52 8.15 -140.93 60.12 38.45 3.43 68.40 
18 0.00 120.26 0.00 119.88 0.00 -60.70 0.24 29.70 
19 0.32 140.20 3.05 139.84 29.56 -40.70 1.67 -70.74 
20 0.02 76.67 0.18 76.32 2.02 -104.17 0.11 -74.22 
21 0.00 -109.17 0.00 -109.50 0.00 70.04 0.53 160.21 
22 0.01 86.18 0.12 85.87 1.68 -94.57 0.09 -124.61 
23 0.04 120.53 0.37 120.22 5.61 -60.19 0.31 -30.23 
24 0.00 -76.18 0.00 -76.48 0.00 103.14 0.08 -166.78 
25 0.03 68.49 0.29 68.21 5.37 -112.16 0.30 -142.20 
26 0.01 -106.69 0.07 -106.95 1.38 72.69 0.08 102.65 
27 0.00 99.24 0.00 98.98 0.00 -81.36 0.15 8.69 
28 0.00 -158.59 0.02 -158.84 0.39 20.84 0.02 -9.20 
29 0.01 -118.65 0.12 -118.89 2.94 60.80 0.16 90.76 
30 0.00 102.34 0.00 102.10 0.00 -78.19 0.01 11.83 
31 0.02 93.50 0.16 93.28 4.63 -87.01 0.26 -117.04 
32 0.00 114.80 0.01 114.58 0.35 -65.69 0.02 -35.73 
33 0.00 -98.06 0.00 -98.27 0.00 81.47 0.04 171.48 
34 0.00 61.09 0.01 60.89 0.50 -119.37 0.03 -149.40 
35 0.00 -152.40 0.03 -152.60 1.00 27.16 0.06 57.12 
36 0.00 -159.77 0.00 -159.96 0.00 19.80 0.01 109.80 
37 0.01 -21.99 0.05 -22.18 2.27 157.58 0.13 127.55 
38 0.00 -96.67 0.01 -96.85 0.42 82.92 0.02 112.89 
39 0.00 83.52 0.00 83.34 0.00 -96.88 0.03 -6.89 
41 0.00 -172.70 0.02 -172.87 0.97 6.92 0.05 36.89 
42 0.00 59.54 0.00 59.37 0.00 -120.84 0.01 -30.84 
43 0.00 173.46 0.02 173.30 1.34 -6.90 0.07 -36.93 
44 0.00 106.64 0.00 106.48 0.23 -73.71 0.01 -43.74 
45 0.00 -155.62 0.00 -155.78 0.00 24.03 0.03 114.02 
46 0.00 -10.25 0.00 -10.40 0.12 169.41 0.01 139.39 
47 0.00 55.92 0.01 55.77 0.51 -124.41 0.03 -94.44 
49 0.00 83.34 0.01 83.20 0.60 -96.98 0.03 -127.00 
50 0.00 -143.03 0.00 -143.17 0.32 36.66 0.02 66.64 
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When the user clicks on any bus, the dialog boxes with the harmonic voltage at 

that bus pops up. Figures 4.1, 4.2, 4.3 and 4.4 are the dialog boxes with the harmonic 

voltage data and associated waveforms for buses 1, 2, 3 and 4 respectively. As stated 

earlier, the voltage wave has high distortions. 

 
 
 

 
 
 

Figure 4.1. Dialog Box with Bus 1 Harmonic Voltage Data and Waveform. 
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Figure 4.2. Dialog Box with Bus 2 Harmonic Voltage Data and Waveform 
 
 
 

 
 
 

Figure 4.3. Dialog Box with Bus 3 Harmonic Voltage Data and Waveform 
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Figure 4.4. Dialog Box with Bus 4 Harmonic Voltage Data and Waveform 
 
 
 

Comparing the voltage waveforms of Figures 4.1, 4.2, 4.3 and 4.4, it can be 

deduced that the bus voltages of buses 2, 3 and 4 are severely distorted as compared to 

bus 4. The huge voltage waveform deviation from the pure sinusoid at bus 4 is consistent 

with the numerical data of the voltage harmonics in the Tables 4.2 and 4.3. Because the 

nonlinear load is connected to bus 4 the voltage harmonics produced at bus 4 are greater 

as compared to other bus voltages.  

 The distorted voltage waveform provides a visual estimation of the potential 

effect of harmonic currents produced by the nonlinear loads used. Looking at the 
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distorted voltage waveform, the user can make quick engineering decisions and analyses 

of possible harmonic problems. In Figures 4.1, 4.2, 4.3 and 4.4, the individual harmonic 

magnitudes and angles are displayed in the grid. This gives the user numerical data 

associated with the harmonic voltages. The numerical data can further be used to apply 

the IEEE 519 voltage harmonic limits.  

 The IEEE 519 standard suggests voltage harmonic limits for individual harmonics 

and for total harmonic distortion. Different limits are suggested for different voltage 

levels. Table 4.4 summarizes the IEEE 519 limits on voltage harmonics. 

 
 

Table 4.4. IEEE 519 Harmonic Voltage Limits 
 
 

Voltage at PCC Individual limit Total harmonic distortion 
<69 kV 3.0 5.0 

69 – 161 kV 1.5 2.5 
>161 kV 1.0 1.5 

 
 
 

Total harmonic distortion (THD) in the table indicates the amount of waveform 

distortion compared to a perfect sinusoid. The calculated THD for voltage at bus 4 (from 

Table 4.2) is 46%. According to the limits set by IEEE 519, the voltage THD limit for a 

bus voltage below 69 kV is 5.0%. Therefore, the harmonic voltages at bus 4 are above the 

limit. Preventive measures such as filters or reducing the nonlinear load capacity can then 

be theoretically studied. For studying the affects of reducing the nonlinear load capacity, 

the same procedure can be followed.  At this time, the developed application can not 

evaluate harmonic filter applications. 
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Case 2: 

Continuing on the same case system as in case 1, consider the following nonlinear loads: 

 
 

Table 4.5. Nonlinear Load Data for Case 2. 
 
 

Load 1 
(6 pulse converter 

with capacitive 
smoothing) 

1. Three phase kVA 25 kVA 
2. Phase to phase voltage kV of 0.48 kV 
3. Power factor (displacement factor) of 0.75 lag 
4. Harmonic (h=1 to 50) current magnitudes in 

percentage of the fundamental and angle in degrees are 
in Table 3 of Appendix 

Load 2 
(6 pulse converter 

with capacitive 
smoothing and a 
series inductor of 

>3%) 

1. Three phase kVA 25 kVA 
2. Phase to phase voltage kV of 0.48 kV 
3. Power factor (displacement factor) of 0.75 lag 
4. Harmonic (h=1 to 50) current magnitudes in 

percentage of the fundamental and angle in degrees are 
in Table 4 of Appendix. 

 
 
 

Notice that the capacity of the nonlinear loads is reduced as compared to case 1. 

The dialog box in Figure 4.5 is the AAC criteria applied to the nonlinear loads. When 

AAC is applied to the two nonlinear loads, the ratio of weighted capacity of the two loads 

to the short circuit capacity at the PCC (551kVA) is 13.6%. As compared to case 1, the 

amount by which the ratio exceeds the 0.1% limit of AAC is small (however the ratio 

exceeds the 0.1%). Therefore, it can be anticipated that the amount of voltage distortion 

will be less. Tables 4.6and 4.7 are the results for the bus voltage harmonics from the 

application developed and Superharm, respectively. In Tables 4.6 and 4.7 “ Mag”  is 

magnitude in volts, “ Angle”  is angle in degrees and “ H#”  is harmonic number. 

 
 



 

 

66 
 

 
 
 

Figure 4.5. Dialog Box with the AAC Limit Verification. 
 
 
 
 

Table 4.6. Results of the Sample Case 2 Using the Application. 
 
 

           Bus 1             Bus 2             Bus 3             Bus 4 H 
# Mag Angle Mag Angle Mag Angle Mag Angle 
1 8005.61 -0.03 8324.79 -0.56 8407.39 -0.74 294.04 -30.87 
2 0.06 132.62 0.55 129.13 1.01 129.85 0.04 159.69 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.05 7.62 
4 0.24 155.93 2.29 154.18 3.35 155.18 0.14 125.38 
5 31.61 -110.14 297.65 -111.54 349.37 -110.13 13.17 -79.55 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.04 46.54 
7 9.79 157.25 92.11 156.25 36.68 161.52 0.26 173.53 
8 0.17 68.32 1.64 67.44 0.16 -137.14 0.04 -88.08 
9 0.00 0.00 0.00 0.00 0.00 0.00 0.29 152.32 

10 0.14 25.70 1.30 25.00 1.63 -157.25 0.11 173.09 
11 2.17 153.60 20.44 152.96 39.56 -28.63 2.56 1.49 
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Table 4.6 (continued) 

 
 

           Bus 1             Bus 2             Bus 3             Bus 4 H 
# Mag Angle Mag Angle Mag Angle Mag Angle 

12 0.00 0.00 0.00 0.00 0.00 0.00 0.32 -152.01 
13 0.77 58.30 7.25 57.77 25.28 -123.26 1.52 -153.27 
14 0.00 -63.07 0.04 -63.57 0.16 115.55 0.01 145.52 
15 0.00 0.00 0.00 0.00 0.00 0.00 0.33 81.75 
16 0.00 -164.65 0.02 -165.08 0.15 14.22 0.01 -15.82 
17 0.09 -120.60 0.89 -121.01 6.56 58.36 0.37 88.32 
18 0.00 0.00 0.00 0.00 0.00 0.00 0.02 64.13 
19 0.03 176.55 0.32 176.18 3.09 -4.35 0.17 -34.40 
20 0.00 114.93 0.02 114.58 0.21 -65.92 0.01 -35.96 
21 0.00 0.00 0.00 0.00 0.00 0.00 0.06 -159.62 
22 0.00 128.26 0.01 127.95 0.18 -52.49 0.01 -82.53 
23 0.00 164.52 0.04 164.22 0.59 -16.19 0.03 13.76 
24 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -120.87 
25 0.00 116.31 0.03 116.03 0.56 -64.64 0.03 -94.38 
26 0.00 -56.95 0.01 -57.22 0.14 122.43 0.01 152.39 
27 0.00 0.00 0.00 0.00 0.00 0.00 0.02 59.51 
28 0.00 -105.04 0.00 -105.29 0.04 74.39 0.00 44.35 
29 0.00 -63.18 0.01 -63.42 0.31 116.27 0.02 146.23 
30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 69.21 
31 0.00 152.80 0.02 152.57 0.48 -27.71 0.03 -57.75 
32 0.00 176.01 0.00 175.79 0.04 -4.49 0.00 25.48 
33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -125.40 
34 0.00 126.13 0.00 129.92 0.05 -54.34 0.00 -84.37 
35 0.00 -85.45 0.00 -85.65 0.10 94.10 0.01 124.07 
36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 178.66 
37 0.00 48.78 0.01 48.59 0.24 -131.65 0.01 -161.67 
38 0.00 -23.98 0.00 -24.17 0.04 155.60 0.00 -174.43 
39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 67.71 
41 0.00 -94.28 0.00 -94.45 0.00 85.34 0.01 115.32 
42 0.00 0.00 0.00 0.00 0.14 0.00 0.00 49.49 
43 0.00 -104.29 0.00 -104.46 0.02 75.34 0.01 45.32 
44 0.00 -169.20 0.00 -169.36 0.00 10.45 0.00 40.42 
45 0.00 0.00 0.00 0.00 0.01 0.00 0.00 -159.90 
46 0.00 77.73 0.00 77.58 0.01 -102.60 0.00 -132.63 
47 0.00 145.82 0.00 145.67 0.05 -34.52 0.00 -4.54 
49 0.00 177.07 0.00 176.92 0.06 -3.25 0.00 -33.27 
50 0.00 -47.39 0.00 -45.53 0.03 132.30 0.00 162.27 
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Table 4.7. Results of the Sample Case 1 Using the Superharm. 
 

 
           Bus 1             Bus 2             Bus 3             Bus 4 H 

# Mag Angle Mag Angle Mag Angle Mag Angle 
1 8004.95 -0.03 8318.52 -0.55 8395.16 -0.73 293.56 -30.85 
2 0.05 132.66 0.54 129.17 1.01 129.89 0.04 159.73 
3 0.00 -82.37 0.00 -84.70 0.00 -83.91 0.05 7.67 
4 0.24 156.08 2.27 154.33 3.32 155.33 0.14 125.54 
5 31.68 -110.02 298.33 -111.42 350.18 -110.01 13.21 -79.43 
6 0.00 141.09 0.00 139.92 0.00 142.20 0.04 46.64 
7 9.77 157.37 91.97 156.37 36.62 161.64 0.26 173.61 
8 0.17 68.45 1.64 67.58 0.16 -137.00 0.04 -87.94 
9 0.00 -130.91 0.00 -131.69 0.00 44.29 0.29 152.47 

10 0.13 25.88 1.30 25.18 1.63 -157.08 0.11 173.27 
11 2.16 153.78 20.42 153.15 39.52 -28.45 2.55 1.67 
12 0.00 136.78 0.00 136.19 0.00 -45.05 0.32 -151.76 
13 0.77 58.52 7.24 57.98 25.25 -123.05 1.52 -153.06 
14 0.00 -62.84 0.04 -63.34 0.16 115.78 0.01 145.75 
15 0.00 170.87 0.00 170.40 0.00 -10.37 0.37 80.95 
16 0.00 -164.38 0.02 -164.82 0.15 14.49 0.01 -15.55 
17 0.09 -107.72 0.85 -108.13 6.28 71.24 0.36 101.20 
18 0.00 154.99 0.00 154.60 0.00 -25.97 0.02 64.42 
19 0.03 176.86 0.32 176.49 3.09 -4.04 0.17 -34.09 
20 0.00 115.26 0.02 114.91 0.21 -65.59 0.01 -35.63 
21 0.00 -68.65 0.00 -68.98 0.00 110.55 0.06 -159.27 
22 0.00 128.63 0.01 128.31 0.18 -52.12 0.01 -82.17 
23 0.00 164.90 0.04 164.60 0.59 -15.81 0.03 14.14 
24 0.00 -29.88 0.00 -30.17 0.00 149.44 0.01 -120.48 
25 0.00 116.72 0.03 116.44 0.56 -63.93 0.03 -93.97 
26 0.00 -56.52 0.01 -56.79 0.14 122.86 0.01 152.82 
27 0.00 151.33 0.00 151.07 0.00 -29.27 0.02 60.78 
28 0.00 -104.57 0.00 -104.82 0.04 74.85 0.00 44.82 
29 0.00 -62.70 0.01 -62.94 0.31 116.75 0.02 146.71 
30 0.00 160.22 0.00 159.98 0.00 -20.31 0.00 69.71 
31 0.00 153.31 0.02 153.08 0.48 -27.20 0.03 -57.24 
32 0.00 176.54 0.00 176.32 0.04 -3.96 0.00 26.01 
33 0.00 -34.39 0.00 -34.60 0.00 145.13 0.00 -124.86 
34 0.00 126.69 0.00 126.48 0.05 -53.77 0.00 -83.81 
35 0.00 -84.87 0.00 -85.07 0.10 94.68 0.01 124.65 



 

 

69 
Table 4.7 (continued) 

 
 

           Bus 1             Bus 2             Bus 3             Bus 4 H 
# Mag Angle Mag Angle Mag Angle Mag Angle 

36 0.00 -90.31 0.00 -90.51 0.00 89.25 0.00 179.25 
37 0.00 49.39 0.01 49.20 0.24 -131.03 0.01 -161.06 
38 0.00 -23.36 0.00 -23.54 0.04 156.23 0.00 -173.80 
39 0.00 158.76 0.00 158.58 0.00 -21.64 0.00 68.36 
41 0.00 -93.60 0.00 -93.77 0.10 86.02 0.01 116.00 
42 0.00 140.57 0.00 140.40 0.00 -39.81 0.00 50.19 
43 0.00 -103.58 0.00 -103.75 0.14 76.06 0.01 46.03 
44 0.00 -168.47 0.00 -168.63 0.02 11.18 0.00 41.15 
45 0.00 -68.80 0.00 -68.96 0.00 110.85 0.00 -159.16 
46 0.00 78.50 0.00 78.34 0.01 -101.84 0.00 -131.87 
47 0.00 146.59 0.00 146.44 0.05 -33.74 0.00 -3.76 
49 0.00 177.88 0.00 177.73 0.06 -2.44 0.00 -32.46 
50 0.00 -46.57 0.00 -46.71 0.03 133.12 0.00 163.10 

 
 
 
 

When the user clicks on any bus, the dialog boxes with the harmonic voltages 

(voltage harmonic magnitudes and angles equal to data in Table 4.6) at that bus pops up. 

Figures 4.6, 4.7, 4.8 and 4.9 are the dialog boxes with the harmonic voltage data and the 

associated waveforms for buses 1, 2, 3 and 4, respectively.  



 

 

70 

 

 
Figure 4.6. Dialog Box with Bus 1 Voltage. 

 
 
 

 
 
 

Figure 4.7. Dialog Box with Bus 2 Voltage. 
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Figure 4.8. Dialog Box with Bus 3 Voltage. 
 
 
 

 
 
 

Figure 4.9. Dialog Box with Bus 4 Voltage. 
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Comparing the voltage waveform from case 1 and case 2, the distortions in the 

waveform for case 2 are less as anticipated. Therefore the application program developed 

as a part of the thesis gives theoretically anticipated results. To compare the 

computational accuracy the application program results were compared with Superharm 

simulation results. 

  

Application Results’ Validity 

For the sample cases 1 and 2, the results generated by the program differ from 

Superharm results with a maximum margin of 10 volts in a 13800 volts system. The 10 

volts difference is very negligible in such high voltage system. Therefore, it can be 

concluded that Superharm results confirm the accuracy of the application results. 

However, the in-built program of Superharm could have some inherent assumptions 

and/or there could be specific cases to which Superharm would not compute accurate 

results. Since the accuracy of the application program developed is evaluated based on 

Superharm simulated results, any assumptions in modeling of the network and in the 

implementation of the analytical approaches also apply to the application program 

developed. Superharm and the application program may have similar physics based 

flaws. Therefore the applicability of the program to any power system is limited by the 

assumptions and any in-built errors of Superharm as described in the Superharm’ s 

benchmarking guide [1].  
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CHAPTER V 
 

CONCLUSION 
 
 

An application program that estimates possible harmonic problems due to an 

existing or a proposed set of nonlinear loads was developed in this thesis work. The 

application was built to find the system response for multiple harmonic sources. The 

application included several user-interface features to facilitate the use of the application 

in the Windows environment.  

The main feature of the application program is the presentation of the data. The 

numerical data and the graphical representation of the data help the user in having 

complete information about the harmonics present. The application gives the user means 

to document the results of a harmonic study with ease. The user can use the Windows 

copy-pasting commands for copying the harmonic numerical data from the application 

into a Microsoft Excel spreadsheet. The user can also document the harmonic waveform 

or spectral diagrams in the application in a Microsoft Word document by using the copy 

button available at the bottom left corner of the dialog boxes.  

Apart from the user-interface advantages discussed in the previous paragraph, the 

application also offers several other advantages. The typical harmonic current 

characteristics of several common nonlinear loads are internally available in the 
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application making it possible to perform harmonic analysis even in the absence of 

measured data. The application also gives the user the ability to modify the default data in 

case the actual data (measured or supplied by manufacturers) is different. The ease of 

using the application is another advantage of the application. 

The user operates in the application environment without difficulty. The user is 

likely to find the application easy to use and to navigate through because of the simplicity 

of the user-interface feature of the application. The application can be installed on a 

computer by downloading the executable file of the application. All the controls used in 

the application are made available through the release mode of the application in the 

executable file. Microsoft Visual C++ software is not necessary for the application 

executable file to be used; only the Windows environment is required on the computer. 

This makes the application a memory space, time and cost efficient application as 

compared with many other harmonic analysis applications available. 

Because the built-in system topology is representative of many power distribution 

systems (from a harmonic prospective), power engineers can use the application 

developed to perform harmonic analysis. The application can also be used as an 

educational simulation tool for beginners in power engineering to understand harmonics 

and harmonic impacts on the power system. However, it should be noted the 

application’ s accuracy is limited by the in-built assumptions of Superharm outlined in the 

Superharm benchmarking manual [1]. Other than the power engineering field, the 

application’ s basic Microsoft Visual C++ features like the grid can be used to develop 

other engineering applications. 
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Future Work 
The developed application can be further expanded for harmonic current 

compliance with the IEEE harmonic current limits. The nonlinear load models can be 

further enhanced in detail to give the user the ability to simulate harmonic currents for 

different characteristics of loads (like firing angles for controlled rectifiers). Provisions 

can also be made internally such that the application verifies different harmonic bus 

voltages and harmonic branch currents for IEEE 519 limit compliance and displays such 

messages. Several other user interface features can be added to the application using 

Microsoft Visual C++. For example, a drawing feature could be added such that the user 

can construct a system and single line diagram of arbitrary complexity so that more 

advanced power systems can be studied. 
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Single-phase Power Supply 

The harmonic spectrum data for the single-phase power supply was obtained from 

a measured case given in the Superharm manual. In Figure A1 the simple circuit [10] of a 

single-phase power supply is shown. Table A1 contains the typical harmonic data for the 

single-phase supply load. In Table A1 “ Mag”  is the percentage magnitude and “ Ang”  is 

the angle in degrees. 

 
 
 

 
 

Figure A1. Single-phase Power Supply. 
 
 
 
 

Table A1. Harmonic Spectrum for Single-phase Power Supply Load. 
 
 

Harmonic# Mag(%) Ang(deg) 
1 100.0000 -37.0000 
2 0.0000 90.0000 
3 65.7000 83.0000 
4 0.0000 270.0000 
5 37.7000 194.0000 
6 0.0000 90.0000 
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Table A1 (continued) 

 
 

Harmonic# Mag(%) Ang(deg) 
7 12.7000 293.0000 
8 0.0000 270.0000 
9 4.4000 314.0000 

10 0.0000 90.0000 
11 5.3000 22.0000 
12 0.0000 270.0000 
13 2.5000 92.0000 
14 0.0000 90.0000 
15 1.9000 129.0000 
16 0.0000 270.0000 
17 1.8000 209.0000 
18 0.0000 90.0000 
19 1.1000 264.0000 
20 0.0000 270.0000 
21 0.6000 319.0000 
22 0.0000 90.0000 
23 0.0000 180.0000 
24 0.0000 270.0000 
25 0.0000 0.0000 
26 0.0000 90.0000 
27 0.2000 180.0000 
28 0.0000 270.0000 
29 0.2000 0.0000 
30 0.0000 90.0000 
31 0.2000 180.0000 
32 0.0000 270.0000 
33 0.2000 0.0000 

 
 
 

Semi-converter 

A single-phase semi-converter bridge [10] with two thyristors (X1, X2) and two 

diodes (D1, D2) is in Figure A2. In Figure A2, L1 was 5 mH, C1 was 0.01 mF and R1 

was 15 ohms. The thyristers X1 and X2 were fired at an angle of 30 degrees and the 
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supply source voltage VA was 339 V at 0°. In order to obtain the spectral results via 

simulation, the components in the circuit in Figure A2 require having the values stated 

previously. The harmonic current data for the semi-converter is in Table A2. In Table A2 

“ Mag”  is the percentage magnitude and “ Ang”  is the angle in degrees. 

 
 
 

 
 
 

Figure A2. Semi-converter. 
 
 
 
 

Table A2. Spectrum for Semi-converter. 
 
 

Harmonic# Mag(%) Ang(deg) 
1 100.0000 58.0400 
2 0.0050 -56.8100 
3 8.3920 35.6500 
4 0.0050 -23.7900 
5 7.5600 117.1000 
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Table A2 (continued) 

 
 

Harmonic# Mag(%) Ang(deg) 
6 0.0050 9.0810 
7 6.1310 -164.9000 
8 0.0050 45.0800 
9 4.3300 -89.9400 

10 0.0050 80.9700 
11 2.6650 -18.8200 
13 1.5330 43.7600 
14 0.0040 141.9000 
15 1.0540 95.9800 
16 0.0030 171.7000 
17 0.9660 155.3000 
18 0.0020 -147.6000 
19 0.9100 -131.8000 
20 0.0010 -86.5800 
21 0.7820 -52.2300 
22 0.0010 -7.0190 
23 0.6030 28.5600 
24 0.0010 58.5100 
25 0.4200 105.6000 
26 0.0010 97.0700 

 
 
 
 

6 Pulse Converter 

A 6-pulse converter is often called a three-phase full converter. In Figure A3 one 

of the applications of a 6-pulse converter is shown. The typical configuration in Figure 

A3 is called a 6 pulse converter with capacitive smoothing on the dc side [10]. The 

harmonic current data for a 6 pulse converter with capacitive smoothing (on the dc side) 

is in Table A3. The data in Table A3 were collected from the simulated case study in the 
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Superharm manual.  In Table A3 “ Mag”  is the percentage magnitude and “ Ang”  is the 

angle in degrees. 

 
 
 

Figure A3. 6 Pulse Converter with Capacitive Smoothing. 
 
 
 

Table A3. Harmonic Current Spectrum of 6 Pulse Converter with Capacitive Smoothing. 
 
 

Harmonic# Mag(%) Ang(deg) 
1 100.0000 10.0000 
2 1.1000 78.0000 
3 3.9000 -122.0000 
4 0.5000 167.0000 
5 82.8000 -125.0000 
6 1.7000 -56.0000 
7 77.5000 79.0000 
8 1.2000 131.0000 
9 7.6000 -80.0000 

10 0.7000 112.0000 
11 46.3000 -52.0000 
12 1.0000 -48.0000 
13 41.2000 149.0000 
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Table A3 (continued) 

 
 

Harmonic# Mag(%) Ang(deg) 
14 0.0000 0.0000 
15 5.7000 -26.0000 
16 0.3000 172.0000 
17 14.2000 19.0000 
18 0.4000 78.0000 
19 9.7000 -145.0000 
20 0.4000 -138.0000 
21 2.3000 19.0000 
22 0.5000 -14.0000 
23 1.5000 -148.0000 
24 0.5000 89.0000 
25 2.5000 108.0000 
26 0.7000 -135.0000 
27 0.9000 -29.0000 
28 0.3000 9.0000 
29 2.0000 -29.0000 
30 0.2000 55.0000 
31 2.0000 169.0000 
32 0.3000 149.0000 
33 0.5000 -19.0000 
34 0.4000 -61.0000 
35 0.3000 -147.0000 
36 0.1000 25.0000 
37 0.8000 75.0000 
38 0.3000 148.0000 
39 0.5000 -58.0000 
40 0.0000 0.0000 
41 0.6000 -100.0000 
42 0.0000 0.0000 
43 0.7000 114.0000 
44 0.1000 113.0000 
45 0.4000 -59.0000 
46 0.1000 -32.0000 
47 0.2000 165.0000 
48 0.0000 0.0000 
49 0.4000 44.0000 
50 0.3000 144.0000 
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A typical 6-pulse converter with capacitive smoothing on the dc side [10] is 

shown in Figure A4. The harmonic current data for a 6 pulse converter with capacitive 

smoothing (on the dc side) is in Table A4. The data in Table A4 were collected from the 

simulated case study in Superharm manual. In Table A4 “ Mag”  is the percentage 

magnitude and “ Ang”  is the angle in degrees. 

 

 
 
 

Figure A4. 6 Pulse Converter with Series Capacitor and Inductor. 
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Table A4. Harmonic Spectrum of 6 Pulse Converter with Series Capacitor and Inductor 

 
 

Harmonic# Mag(%) Ang(deg) 
1 100.0000 -128.0000 
2 1.0000 145.0000 
3 3.9000 -149.0000 
4 0.4000 -57.0000 
5 39.7000 -122.0000 
6 0.8000 175.0000 
7 18.9000 122.0000 
8 0.2000 10.0000 
9 0.8000 47.0000 

10 0.2000 159.0000 
11 6.8000 67.0000 
12 0.4000 -27.0000 
13 3.8000 -118.0000 
14 0.3000 111.0000 
15 0.4000 -140.0000 
16 0.4000 6.0000 
17 3.2000 -144.0000 
18 0.4000 109.0000 
19 2.3000 10.0000 
20 0.3000 2.0000 
21 0.3000 29.0000 
22 0.2000 141.0000 
23 1.8000 11.0000 
24 0.2000 -79.0000 
25 1.7000 145.0000 
26 0.2000 124.0000 
27 0.2000 -165.0000 
28 0.1000 -81.0000 
29 1.1000 160.0000 
30 0.1000 68.0000 
31 1.3000 -74.0000 
32 0.1000 -112.0000 
33 0.2000 -32.0000 
34 0.1000 81.0000 
35 0.7000 -49.0000 
36 0.1000 -114.0000 
37 1.0000 67.0000 
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Table A4 (continued) 

 
 

Harmonic# Mag(%) Ang(deg) 
38 0.0000 0.0000 
39 0.2000 153.0000 
40 0.0000 0.0000 
41 0.5000 96.0000 
42 0.1000 -1.0000 
43 0.8000 -147.0000 
44 0.1000 134.0000 
45 0.2000 -59.0000 
46 0.0000 0.0000 
47 0.4000 -112.0000 
48 0.0000 0.0000 
49 0.7000 -5.0000 
50 0.0000 0.0000 

 
 
 

A 6-pulse converter with large inductor on the dc side for current smoothing [10] 

is shown in Figure A5. In Table A5 the harmonic current spectrum data of 6 pulse 

converter with a large inductor on the dc side are summarized. The circuit in Figure A5 

was simulated in Pspice and the first 25 harmonics were obtained. In the circuit of Figure 

A5, L1, L2 and L3 were each 0.4mH, R1 was 2Ω and L4 was 2mH. The thyristors were 

fired at a firing angle of 30 degrees. In order to obtain the spectral results via simulation, 

the components in the circuit in Figure A5 require having the values stated previously. 

The supply source was a balanced three-phase supply of 169.7 L-L volts. In Table A5 

“ Mag”  is the percentage magnitude and “ Ang”  is the angle in degrees. 
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Figure A5. 6 Pulse Converter with Large Inductor. 
 
 
 
 
 

Table A5. Harmonic Spectrum of 6 Pulse Converter with Large Inductor. 
 
 

Harmonic# Mag(%) Ang(deg) 
1 100.0000 24.5200 
2 0.0055 -38.5300 
3 0.0023 -132.6000 
4 0.0046 37.0600 
5 22.4500 -57.6800 
6 0.0005 71.8400 
7 9.9200 -9.8590 
8 0.0124 -68.1800 
9 0.0019 -153.7000 

10 0.0107 -15.4700 
11 7.3090 -92.7800 
12 0.0006 30.0500 
13 5.0090 -43.0800 
14 0.0147 -104.1000 
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Table A5 (continued) 

 
 

Harmonic# Mag(%) Ang(deg) 
15 0.0014 166.7000 
16 0.0153 -50.0200 
17 3.3030 -128.1000 
18 0.0005 10.4100 
19 2.6500 -77.7200 
20 0.0128 -135.0000 
21 0.0008 133.6000 
22 0.0150 -85.7600 
23 1.3940 -165.6000 
24 0.0005 -24.5700 
25 1.2400 -114.1000 

 
 
 
 

12 Pulse Converter 

Figure A6 is the 12 pulse converter Pspice simulation schematic diagram. Two 

three-phase transformers were used in the circuit. Each of the two transfomers was built 

using three two winding transformers. One of the two three phase transfomers was ∆-Y 

connected and the other Y-Y connected. It was observed that the waveform distortions in 

the secondary side ac line current were smoothed on the primary side making the primary 

line current a perfect sinusoid. To have the distortions transferred to the primary line 

current, voltage dependent current sources were used. Two dummy voltage sources of 0 

volts each were placed in line (a-phase) on each of the secondaries of the three phase 

transformers. A voltage dependent current source (curent depending on the voltage across 

the dummy voltage source on a-phase were connected in parallel to load. The subcircuit 

in Figure A6 is for the voltage dependent current source circuit. In Table A6 the 



 

 

89 
harmonic current spectra of the 12 pulse converter is summarized. In Table A6 “ Mag”  is 

the percentage magnitude and “ Ang”  is the angle in degrees. 

 
 
 
 

 
 
 

Figure A6. 12 Pulse Converter with Series Resistor and Inductor. 
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Table A6. Harmonic Current Spectrum of 12 Pulse Converter. 

 
 

Harmonic# Mag(%) Ang(deg) 
1 100.0000 -29.1300 
2 0.3360 95.2700 
3 0.1490 172.7000 
4 0.3330 45.5500 
5 0.6780 87.6400 
6 0.2390 -30.3100 
7 0.7030 -70.6700 
8 1.1390 15.1100 
9 1.5750 -167.6000 

10 0.8000 0.9800 
11 1.6670 121.9000 
12 0.7910 -62.8600 
13 1.7840 -13.2300 
14 0.8870 -76.5300 
15 2.6140 -114.2000 
16 0.4530 -93.4100 
17 0.2840 -103.7000 
18 0.5340 -83.3800 
19 1.5110 -116.9000 
20 0.2050 31.6200 
21 0.7330 135.2000 
22 0.0830 -69.5400 
23 0.4740 4.4410 
24 0.2510 69.2500 
25 0.2390 -98.5400 

 
 

 
AC Voltage Regulator 

An AC voltage regulator is another one of the nonlinear loads provided for use. A 

single phase ac voltage regulator [11] with a resistive load is in Figure A7. Table A7 

contains the typical harmonic current data for the ac voltage regulator. In Table A7 

“ Mag”  is the percentage magnitude and “ Ang”  is the angle in degrees. 
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Figure A7. Single-phase AC Voltage Regulator 
 
 
 
 

Table A7. Harmonic Current Spectrum for AC Voltage Regulator. 
 
 

Harmonic# Mag(%) Ang(deg) 
1 100.0000 58.0400 
2 0.0050 -56.8100 
3 8.3920 35.6500 
4 0.0050 -23.7900 
5 7.5600 117.1000 
6 0.0050 9.0810 
7 6.1310 -164.9000 
8 0.0050 45.0800 
9 4.3300 -89.9400 

10 0.0050 80.9700 
11 2.6650 -18.8200 
12 0.0040 113.5000 
13 1.5330 43.7600 
14 0.0040 141.9000 
15 1.0540 95.9800 
16 0.0030 171.7000 
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Table A7 (continued) 

 
 

Harmonic# Mag(%) Ang(deg) 
17 0.9660 155.3000 
18 0.0020 -147.6000 
19 0.9100 -131.8000 
20 0.0010 -86.5800 
21 0.7820 -52.2300 
22 0.0010 -7.0190 
23 0.6030 28.5600 
24 0.0010 58.5100 
25 0.4200 105.6000 
26 0.0010 97.0700 

 
 
 

Fluorescent Lighting 

Fluorescent lighting is a form of electric lighting that is very commonly used in 

commercial and residential applications. Figure A8 is the three-phase fluorescent lamp 

connection [5]. In Table A8 “ Mag”  is the percentage magnitude and “ Ang”  is the angle in 

degrees. 
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Figure A8. Fluorescent Lamp. 
 
 
 

Table A8. Harmonic Current Spectrum for Fluorescent Lamp. 
 
 

Harmonic# Mag(%) Ang(deg) 
1 100.0000 0.0000 
2 1.0000 92.3200 
3 12.5930 -39.0980 
4 0.3200 0.0260 
5 1.8290 148.3160 
6 0.0730 -166.8840 
7 0.6800 -11.3840 
8 0.0670 -62.6780 
9 0.4680 -165.5700 

10 0.1050 -149.0600 
11 0.1920 -0.8790 
12 0.0900 72.1000 
13 0.1980 170.7930 
14 0.0450 56.6500 
15 0.0930 -52.9640 
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Table A8. (continued) 

 
 

Harmonic# Mag(%) Ang(deg) 
16 0.0860 -74.2070 
17 0.1810 142.9300 
18 0.0790 138.9810 
19 0.0770 -63.3530 
20 0.1500 -85.1520 
21 0.1620 163.2340 
22 0.0860 173.9200 
23 0.0870 -53.8860 
24 0.0410 -82.8850 
25 0.1060 169.4600 
26 0.0240 -115.8250 
27 0.0770 -42.9620 
28 0.0760 41.3620 
29 0.1210 -155.4170 
30 0.0570 -154.8870 
31 0.0390 -102.3620 
32 0.0730 -51.4650 
33 0.0600 63.4480 
34 0.0730 -26.0820 
35 0.1020 -43.7960 
36 0.0990 29.1490 
37 0.0330 101.9540 
38 0.0260 -75.7240 
39 0.1070 -8.6500 
40 0.1090 20.8660 
41 0.1110 140.9510 
42 0.0910 -9.6240 
43 0.1170 174.8180 
44 0.0700 77.2510 
45 0.1070 142.0000 
46 0.0730 13.5940 
47 0.0910 -153.8980 
48 0.0380 -14.6130 
49 0.1180 133.7560 

 
 

 


	Development of Application Program for Harmonic Analysis
	Recommended Citation

	Untitled Document

