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An emerging category of energy systems, consisting of power generation 

equipment coupled with thermally-activated components, has evolved as Cooling, 

Heating, and Power (CHP).  The application of CHP systems to buildings has developed 

into a new paradigm – Cooling, Heating, and Power for Buildings (CHP-B).  This 

instructional module has been developed to introduce undergraduate engineering students 

to CHP-B.  In the typical ME curriculum, a number of courses could contain topics 

related to CHP. Thermodynamics, heat transfer, thermal systems design, heat and power, 

alternate energy systems, and HVAC courses are appropriate for CHP topics.  However, 

the types of material needed for this mix of courses vary.  In thermodynamics, basic 

problems involving a CHP flavor are needed, but in an alternate energy systems course 

much more CHP detail and content would be required. This series of lectures on CHP-B 

contains both a stand-alone CHP treatment and a compilation of problems/exercises. 



 
 

 

 

 
               

 

 

  

 

 
   

 
  

   
    
    
     

  
  

     
     
 

   
   

  
  
  

   
   

  
 

  

   
  

TABLE OF CONTENTS 

Page  

LIST OF FIGURES..........................................................................................  v 

LIST OF TABLES ........................................................................................... viii 

NOMENCLATURE.........................................................................................  ix 

CHAPTER 

I. INTRODUCTION TO COOLING, HEATING,  
AND POWER FOR BUILDINGS........................................  1 

II. THE CHP-B SYSTEM ...............................................................  7 

Distributed Power Generation.....................................................  7 
Combustion Turbines ............................................................  7 
Internal Combustion Engines ................................................  10 
Fuel Cells............................................................................... 12 

  Heat Recovery............................................................................. 15 
  Thermally-Activated Devices ..................................................... 16 

Absorption Chillers ............................................................... 16 
Desiccant Dehumidifiers ....................................................... 17 

III. INTERNAL COMBUSTION ENGINES ...................................  20 
  Technology Overview................................................................. 20 

Application .................................................................................. 30 
  Heat Recovery............................................................................. 31 

Cost.............................................................................................. 32 
IC Engines and CHP-B ...............................................................  34 
IC Engine Problems ....................................................................  35 

  Manufacturers.............................................................................. 38 

IV. COMBUSTION TURBINES......................................................  42 

  Technology Overview................................................................. 42 
  Industrial Turbines ...................................................................... 52 

ii 



 
 

   
 
    
    
    
    
    
    
    
    
    
    
    
    
 

 

  
    
    
    
    

  
  

  
  

  
   
   
   
   
 
  

  
 
 

   
   
   
  
 

 

    
    

CHAPTER Page

 Application ............................................................................ 53 
 Heat Recovery....................................................................... 54 

Cost........................................................................................ 55 
Industrial Turbines and CHP-B.............................................  57 

 Manufacturers........................................................................ 60 
Microturbines .............................................................................. 64 

Application ............................................................................ 68 
 Heat Recovery....................................................................... 69 

Cost........................................................................................ 71 
Microturbines and CHP-B.....................................................  72 

 Manufacturers........................................................................ 74 
Combustion Turbine Problems .............................................  77 

V. FUEL CELLS..............................................................................  79 

Technology Overview.................................................................  79 
PAFC..................................................................................... 82 
MCFC.................................................................................... 83 
SOFC..................................................................................... 85 
PEMFC.................................................................................. 86 

Application .................................................................................. 88 
Heat Recovery.............................................................................  90 
Cost.............................................................................................. 90 
Fuel Cells and CHP-B.................................................................  91 

 Manufacturers.............................................................................. 93 
Phosphoric Acid ....................................................................  93 
Molten Carbonate..................................................................  94 
Proton Exchange Membrane .................................................  94 
Solid Oxide............................................................................  96 

VI. HEAT RECOVERY....................................................................  97 

Technology Overview.................................................................  99 
 Heat Exchanger Analysis ............................................................ 102 

Application .................................................................................. 104 
Gas-to-Gas Heat Exchangers ................................................ 104 
Gas-to-Liquid Heat Exchangers ............................................ 105 
Liquid-to-Liquid Heat Exchangers........................................ 106 

Heat Recovery Steam Generators ............................................... 107 

VII. ABSORPTION CHILLERS........................................................ 110 

Technology Overview................................................................. 110 
Refrigerant-Absorbent Selection........................................... 113 

iii 



 
 

    
 
    
    
   
   
   
   
   
  

   

  
   
   
  
   
   
   
   
  

 
 

 
    
   
 

 
  
   

 
 
 
 
 

   
   
   
   
   
 
 
   

    

CHAPTER Page 

Types of Absorption Chillers ................................................ 115 
System Analysis .................................................................... 117 

Application .................................................................................. 125 
Cost.............................................................................................. 126 
Absorption Chillers and CHP-B.................................................. 127 
Absorption Refrigeration Problems ............................................ 129 
Manufacturers.............................................................................. 132 

VIII. DESICCANT DEHUMIDIFIERS .............................................. 136 

Sub-cooling systems vs. Desiccant Systems ............................... 136 
Summary of Principles of Sub-cooling Systems................... 136 
Summary of Principles of Desiccant Systems....................... 139 

Types of Desiccant Systems........................................................ 140 
General Classifications.......................................................... 140 
Solid Adsorbents ................................................................... 141 
Liquid Adsorbents ................................................................. 142 
Regeneration.......................................................................... 143 

Solid Desiccant Systems ............................................................. 144 
 Cost Considerations..................................................................... 147 
 Manufacturers.............................................................................. 150 

IX. CASE STUDY: MISSISSIPPI BAPTIST MEDICAL 
CENTER ............................................................................... 153 

X. CONCLUSION ........................................................................... 165 

XI. REFERENCES............................................................................ 167 

 Books........................................................................................... 167 
 Journal Articles ........................................................................... 168 
 Internet References...................................................................... 168 
 Manufacturer Websites ............................................................... 170 
 Additional Resources .................................................................. 171 

Energy Conversion Including Cogeneration ......................... 171 
Gas Turbines ......................................................................... 172 
HVAC.................................................................................... 172 
Background Information ....................................................... 172 
Internet Resources ................................................................. 173 

iv 



 
 

 

              

 
 
 
 
 

  
  

  
 

  
  

  
 
 

 
   

 
   

  
 

  
 
 
 

  
 

 
  

 
 
 
 
 

    
 
 
 

LIST OF FIGURES 

FIGURE  Page  

1.1 Efficiency of Central Power Generation ..............................................  2 
1.2 Efficiency of Power Distributed Combined Cycle...............................  3 
1.3 Efficiency of CHP-B Systems..............................................................  6 
2.1 Industrial Turbine by Siemens Westinghouse......................................  9 
2.2 30-kilowatt Microturbine by Capstone ................................................  10 
2.3 Engine-Generator Set by Caterpillar ....................................................  11 
2.4 Fuel Cell by United Technologies........................................................  13 
2.5 Absorption Chiller by Broad Air Conditioning ...................................  17 
2.6 Desiccant Dehumidifier........................................................................  19 
3.1 Four-stroke Reciprocating IC Engine ..................................................  21 
3.2 Pressure-Specific Volume and Temperature-Entropy 

Diagrams for the Ideal Otto Cycle .................................................  22 
3.3 Otto Cycle Thermal Efficiency as a Function of Compression Ratio..  24 
3.4 IC Engine Example Problem................................................................  25 
3.5 Pressure-Specific Volume and Temperature-Entropy 

Diagrams for the Ideal....................................................................  28 
3.6 Otto and Diesel Cycle Thermal Efficiencies as Functions of  

Compression Ratio .........................................................................  30 
3.7 Total Installed Cost of a 550-kW Natural Gas IC Engine.................... 33 
3.8 Engine-Generator Set by Caterpillar ....................................................  38 
3.9 Cummins Diesel Engine-Generator Set ...............................................  39 
3.10 Diesel-Fueled Engine by Deutz Corporation .......................................  39 
3.11 50-kW Natural Gas Fueled Generator by Generac Power System ......  40 
3.12 Honda 11.5-kW Gas Generator ............................................................  40 
3.13 200-kW Natural Gas Generator by Kohler ..........................................  41 
3.14 Gas Reciprocating Engine by Waukesha .............................................  41 
4.1 Pressure-Specific Volume and Temperature-Entropy 

Diagrams for the Ideal Brayton Cycle............................................  42 
4.2 Temperature-Entropy Diagram of a Real Gas Turbine Cycle..............  44 
4.3 Simple-Cycle Gas Turbine Example Problem .....................................  47 
4.4 Gas Turbine Cycle................................................................................  49 
4.5 Gas Turbine Cycle with Regeneration .................................................  50 
4.6 Gas Turbine Cycle with Intercooler and Two-Stage Compression......  51 
4.7 Gas Turbine Cycle with Reheat ...........................................................  52 
4.8 Single-shaft Industrial Combustion Turbine by Siemens 

Westinghouse ................................................................................. 53 
4.9 Total installed cost of a 15-MW Natural Gas Combustion Turbine ....  56 
4.10 28-kW Gas Turbine by GE Power Systems .........................................  60 
4.11 25-kW Natural Gas Turbine by Pratt & Whitney ................................  61 

v 



 
 

    
 

 
 
 
 
 
 
 
 
 

  
 

  
  

 
 
 
  
  
  
  

  

   
 

   

   
 
 
 
 
 
 
 

  
 

  
  

 
  

   
  

FIGURE        Page 

4.12 51.2-MW Aeroderivative Gas Turbine by Rolls-Royce ......................  61 
4.13 157-MW Gas Turbine by Siemens Westinghouse ...............................  62 
4.14 14-MW Gas Turbine Generator Set by Solar.......................................  63 
4.15 3-MW Natural Gas Turbine Generator by Vericor Power Systems.....  63 
4.16 Natural Gas Microturbine Generator by Capstone...............................  64 
4.17 Microturbine generator System by Capstone .......................................  65 
4.18 Microturbine Example Problem...........................................................  67 
4.19 TG80 Microturbine generator System with Heat Recovery.................  70 
4.20 TG80 System Performance Chart ........................................................  71 
4.21 TG80 Microturbine generator System by Bowman Power Systems....  74 
4.22 Microturbine generator Sets by Capstone Turbine ..............................  75 
4.23 80-kW Microturbine by Elliot Energy Systems...................................  75 
4.24 70-kW PowerWorks Microturbine Generator by Ingersoll Rand ........  76 
4.25 100-kW Microturbine Generator System by Turbec AB .....................  76 
5.1 Single Stack of a Fuel Cell...................................................................  80 
5.2 Fuel Cell System Schematic.................................................................  81 
5.3 PAFC.................................................................................................... 83 
5.4 MCFC................................................................................................... 84 
5.5 SOFC.................................................................................................... 86 
5.6 PEMFC................................................................................................. 87 
5.7 200-kW PC25™ PAFC by United Technologies Company................  93 
6.1 (a) Parallel-flow and 

(b) Counterflow Double-Pipe Heat Exchangers............................. 100 
6.2 Shell-and-tube heat exchanger ............................................................. 101 
6.3 Cross-flow heat exchangers (a) unmixed-mixed  

(b) unmixed-unmixed..................................................................... 102 
6.4 Exhaust gas and water/stream temperatures as a function 

of the heat transfer in an HRSG (Caton and Turner, 1997) ........... 108 
7.1 Vapor-Compression Cycle ................................................................... 111 
7.2 Basic Absorption Cycle........................................................................ 113 
7.3 Ammonia/Water Absorption Cycle...................................................... 115 
7.4 Double-Effect Water/Lithium Bromide Absorption Chiller ................ 116 
7.5 Absorber ............................................................................................... 118 
7.6 Heat Exchanger .................................................................................... 120 
7.7 Solution Pump...................................................................................... 121 
7.8 Single-stage ammonia/water chiller for Example 7-1.......................... 123 
7.9 Absorption Cycle Example Problem.................................................... 124 
7.10 16JB absorption chiller by Carrier Corporation................................... 132 
7.11 15-Ton Chiller-Link by Robur Corp .................................................... 133 
7.12 Trane Horizon® Absorption Series Chiller ......................................... 133 
7.13 Gas-fired double-effect chiller-heater by 

Yazaki Energy Systems, Inc........................................................... 134 
7.14 Single-stage Absorption Chiller by York International ....................... 134 

vi 



 
 

  
 

  
 
 
 

   
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

 

FIGURE        Page 

7.15 Spectrum Absorption Chiller by Broad Air Conditioning ................... 135 
8.1 Sub-cooling Dehumidification Process................................................ 137 
8.2 ASHRE Comfort Zones ....................................................................... 138 
8.3 Damp Duct Symptoms ......................................................................... 139 
8.4 (a) Desiccant Wheel  

(b) Corrugated and Hexagonal Channel Shapes ............................ 142 
8.5 Liquid Desiccant System...................................................................... 143 
8.6 Solid Desiccant Dehumidification System........................................... 144 
8.7 Dry Desiccant Dehumidification Process ............................................ 145 
8.8 Ventilated Desiccant Dehumidification System Configuration ........... 146 
8.9 Re-circulated Desiccant Dehumidification System Configuration ...... 146 
8.10 Bry-Air Dry3 ™ Compact desiccant dehumidifiers ............................. 150 
8.11 Kathapac System by Kathabar dehumidifies large air volumes........... 151 
8.12 E-Save Desiccant Dehumidifier by SG America ................................. 151 
8.13 DESICAiR Dehumidification Rotor by Stulz-ATS ............................. 152 
8.14 MH-240 by Cargocaire Operates at Flow Rates up to 160-cfm........... 152 
9.1 Site View of the MBMC ...................................................................... 154 
9.2 MBMC CHP System Schematic .......................................................... 156 
9.3 Centaur H Turbine Installation............................................................. 157 
9.4 Diverter Valve Arrangement................................................................ 158 
9.5 The York and Trane Absorption Chillers............................................. 159 
9.6 Turbine Control Panel and Switchgear Panel ...................................... 160 

vii 



 
 

 
 

               

 
 

  
  

   
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LIST OF TABLES 

TABLE  Page  

2.1 Comparison of DPG Technologies ......................................................  14 
3.1 Overview of Reciprocating Engine Technology..................................  31 
3.2 Advantages and Disadvantages of Reciprocating IC Engines .............  35 
4.1 Overview of Industrial Turbines ..........................................................  54 
4.2 Advantages and Disadvantages of Combustion Turbines 

as a DPG Technology.....................................................................  59 
4.3 Overview of Microturbines ..................................................................  66 
4.4 Advantages and Disadvantages of Microturbines 

as a DPG Technology.....................................................................  73 
5.1 Overview of Fuel Cell Characteristics .................................................  88 
5.2 Advantages and Disadvantages of Fuel Cells ......................................  92 
6.1 Waste Heat Characteristics of DPG Technologies...............................  98 
7.1 State points for the ammonia/water system in Figure 7.8 .................... 125 
7.2 Overview of Absorption Chillers ......................................................... 126 
7.3 Installed costs of electrical and absorption chillers.............................. 127 
7.4 Matching of Power Generation and Absorption Technology .............. 128 
7.5 Advantages of Absorption Chillers over Work-driven Heat Pumps.... 129 
7.6 Table for Problem 1.............................................................................. 129 
7.7 Table for Problem 2.............................................................................. 130 
7.8 Table for Problem 3.............................................................................. 130 
7.9 Table for Problems 8 – 10 .................................................................... 131 
8.1 Process/Product Benefits due to dehumidification............................... 149 
9.1 Actual Cost Avoidance......................................................................... 161 
9.2 MBMC Online and Generation Percentages........................................ 162 
9.3 Calendar-Year 2001 Performance Data ............................................... 163 

10.1 Rankings for Distributed Power Generation Technologies.................. 166 

viii 



  
 

 
 
   
  
  
   

  
  

   
  
 
 
   
  

  

  
  

    
  
 
  

 

  
  

 
 

 
 
  
  
 
 

  
  
 

  
 

 

   
   

 

NOMENCLATURE 

WOtto = net work accomplished by the Otto cycle 
m = mass 
u = specific internal energy 
T = temperature 
cv = constant volume specific heat 
Qin = heat addition during the Otto cycle 
ηOtto = thermal efficiency of the Otto cycle 
V = volume 
r = compression ratio 
P = pressure 
k = ratio of specific heats 
h = specific enthalpy
 QD,in = heat addition during the Diesel cycle 
QD,out  = heat rejection during the Diesel cycle 
WDiesel = net work accomplished by the Diesel cycle 
cp = constant pressure specific heat 
rc = cutoff ratio 
ηDiesel = thermal efficiency of the Diesel cycle 
Wc = compressor work accomplished during the Brayton cycle 
Wt = turbine work accomplished during the Brayton cycle 
Qs = heat addition during the Brayton cycle 
Wnet = net work accomplished during the Brayton cycle 
η = thermal efficiency of the Brayton cycle 
ηc = isentropic compressor efficiency 
ηt = isentropic turbine efficiency 
Wcomp = compressor work accomplished during the gas turbine cycle 
Wturb = turbine work accomplished during the gas turbine cycle 
Qout = heat rejected in the condenser 
Qin = heat added in the evaporator 
Win = compressor work

 W′in = pump work
 Q′in = heat added in the generator 
Q′out = heat rejected in the absorber 
mD = mass flow rate 
i = enthalpy
 x = concentration 
qD = rate of heat exchange 
ε = effectiveness of heat exchange 
DWP = power requirement for pump operation 

p = pressure 
ηp = pump efficiency 
ν = specific volume 
COP = coefficient of performance 
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CHAPTER 1 

INTRODUCTION TO COOLING, HEATING, AND POWER 

FOR BUILDINGS 

The traditional model of electric power generation and delivery is based on the 

construction of large, centrally-located power plants.  "Central" means that a power plant 

is located on a hub surrounded by major electrical load centers. For instance, a power 

plant may be located close to a city to serve the electrical loads in the city and its suburbs 

or a plant may be located in the midpoint of a triangle formed by three cities.  

Power must be transferred from a centrally-located plant to the users.  This 

transfer is accomplished through an electricity grid that consists of high-voltage 

transmission systems and low-voltage distribution systems.  High-voltage transmission 

systems carry electricity from the power plants to substations. At the substations, the 

high-voltage electricity is transformed into low-voltages and distributed to individual 

customers. 

Inefficiencies are associated with the traditional method of electric power 

generation and delivery.  Figures 1.1 and 1.2 illustrate the losses inherent to the 

generation and delivery of electric power in traditional power plants and in combined 

cycle power plants.  Traditional power plants convert about 30 % of the fuel’s available 

energy into electric power, and highly efficient, combined cycle power plants convert 
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2 
over 50 % of the available energy into electric power.  The majority of the energy 

content of the fuel is lost at the power plant through the discharge of waste heat.  Further 

energy losses occur in the transmission and distribution of electric power to the 

individual user. Inefficiencies and pollution issues associated with conventional power 

plants provide the impetus for new developments in “onsite and near-site” power 

generation. 

Figure 1.1: Efficiency of Central Power Generation (www.bchp.org) 

www.bchp.org
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Figure 1.2: Efficiency of Power Distributed Combined Cycle (www.bchp.org) 

The traditional structure of the electrical utility market has resulted in a relatively 

small number of electric utilities. However, today's technology permits development of 

smaller, less expensive power plants, bringing in new, independent producers.  

Competition from these independent producers along with the re-thinking of existing 

regulations have affected the conventional structure of electric utilities. 

The restructuring of the electric utility industry and the development of new 

"onsite and near-site" power generation technologies have opened up new possibilities 

for buildings, building complexes, and communities to generate and sell power. 

Competitive forces have created new challenges as well as opportunities for companies 

that can anticipate technological needs and emerging market trends. 

www.bchp.org


 

 

 

 

 

4 
Historically research, development, and commercialization efforts have been 

focused on individual systems (cooling, thermal storage, ventilation air, and power). A 

new category consisting of power generation equipment coupled with thermally-activated 

components has evolved as Cooling, Heating, and Power (CHP).  A successful CHP 

system requires a need for both generated electric/shaft power and thermal energy.  An 

operation that does not have a need for both electric/shaft power and thermal energy will 

not likely benefit from CHP.  CHP is especially beneficial to buildings, which typically 

use electric power and can have thermally-activated HVAC system components.   

The application of CHP systems to buildings has developed into a new paradigm 

– Cooling, Heating, and Power for Buildings (CHP-B).  CHP-B focuses on onsite fuel 

conversion, combining power generation and HVAC system optimization and integration 

with other innovative building technologies.  CHP-B systems consist of integrated power 

generation equipment (gas turbines, microturbines, internal combustion engines, and fuel 

cells), thermal systems (water chillers, absorption chillers, air conditioners and 

refrigeration – electric or engine driven, boilers, and thermal storage), ventilation/IAQ 

systems (desiccant, enthalpy, and other energy recovery devices), and building control 

and system integration technologies.  

Cooling, Heating, and Power for Buildings has the potential to reduce carbon and 

air pollutant emissions and to increase resource energy efficiency dramatically. CHP-B 

produces both electric or shaft power and useable thermal energy onsite or near site, 

converting as much as 80 % of the fuel into useable energy.  A higher efficiency in 

energy conversion means less fuel is necessary to meet energy demands.  Also, onsite 



 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 
power generation reduces the load on the existing electricity grid and infers better power 

quality and reliability.  Figure 1.3 illustrates the increase in efficiency of CHP-B systems 

over the power plant efficiencies seen in Figures 1.1 and 1.2.  Additionally, CHP-B 

systems include values such as variable fuel requirements, enhanced energy-security, and 

improved indoor air quality.  CHP-B holds answers to the efficiency, pollution, and 

deregulation issues that the utility industry currently faces.  The majority of information 

presented in this introduction and in the following chapter on the CHP-B system 

originated at www.bchp.org. 

www.bchp.org
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Figure 1.3 Efficiency of CHP-B Systems (www.bchp.org) 

www.bchp.org


 
 

 
 

 
 

 

 

 

CHAPTER II 

THE CHP-B SYSTEM 

Cooling, Heating, and Power for Buildings combines distributed power 

generation with thermally-activated components to meet the cooling, heating and power 

needs of buildings.  Technological advances in both power generation and thermally-

activated systems have contributed to the development of diverse CHP-B applications.  

Specific types of distributed power generation and thermally-activated technologies will 

be introduced and briefly discussed. 

Distributed Power Generation 

A number of technologies are commercially available for generating electric 

power or mechanical shaft power onsite or near the site where the power is used. The 

three major categories for distributed generation are combustion turbines, engines, and 

fuel cells. 

Combustion Turbines 

Combustion turbines are based on gas turbines and use a variety of fuels, 

including natural gas, fuel oil, or bio-derived fuels.  Combustion turbines can also use 

recuperators to recover thermal energy in the turbine exhaust streams for preheating the 

air/fuel mixtures for the combustor sections. 
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8 
The efficiency of electric power generation for combustion turbine systems, 

operating in a simple-cycle mode (i.e., without external use of heat recovery in the 

turbine exhaust), ranges from 21 % to 40 %. Combustion turbines produce high quality 

heat that can be used to generate steam or hot water for thermally-activated applications, 

including heating and cooling. 

Utilization of thermal energy in a combustion turbine exhaust stream significantly 

enhances fuel efficiency.  Maintenance costs per unit of power output for combustion 

turbines are among the lowest of all power-generating technologies. Since the output 

capacity of combustion turbines decreases with increases in ambient air temperature, in 

hot weather climates or on hot days, cooling of inlet air has been found to be cost 

effective for many power plants. 

Two types of combustion turbines are commercially available: 

• Industrial turbines  

• Microturbines 

Industrial turbines represent a well-established technology for power generation. These 

turbines also represent the “high” end of power generating capacity equipment. Industrial 

turbines can provide 1 MW to more than 100 MW of electric power. Most CHP systems 

need capacities below 20 MW, enough for large office buildings, hospitals, or small 

campuses of offices and commercial buildings. The thermal efficiency of industrial gas 

turbines for power generation ranges from 25 % to 40 %. A picture of the rotating spool 

of an industrial turbine is shown in Figure 2.1. 



 

 
    

 
 
 

 

9 

Figure 2.1: Industrial Turbine by Siemens Westinghouse 
(www.siemenswestinghouse.com) 

Microturbines are a new generation of smaller turbines. The capacities of 

microturbines range from 25 kW to 500 kW.  Figure 2.2 pictures a 30-kilowatt 

microturbine by Capstone Turbine, Inc. 

www.siemenswestinghouse.com
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Figure 2.2:  30-kilowatt Microturbine by Capstone (www.capstone.com) 

Microturbines can use natural gas, propane, and bio-derived gases produced from 

landfills, sewage treatment facilities, and animal waste processing plants as a primary 

fuel.  The fuel source versatility of microturbines allows their application in rural as well 

as urban areas. Microturbines evolved from automotive and truck turbochargers, 

auxiliary power units for airplanes, and small jet engines used on remotely piloted 

military aircraft.  Because microturbines have fewer moving parts than conventional 

generating equipment of similar capacity, microturbines have the potential to 

significantly reduce maintenance and operating costs as compared to traditional 

distributed-energy prime movers.  By using recuperators, microturbine systems are 

capable of energy efficiencies for power generation in the 25-30 % range.  These turbines 

have a significant potential for onsite power generation for CHP systems. 

Internal Combustion Engines 

A reciprocating engine, either four-cycle internal combustion or diesel, is used for 

producing mechanical shaft power.  Shaft power can be used to drive a generator to 

www.capstone.com


 

 

 

 

 

 

11 
produce electric power or to operate other equipment including air compressors for 

process or vapor compression systems for space conditioning.  These applications of 

reciprocating engines are very well established and widespread.  Engines can use natural 

gas, propane or diesel fuel and are available in capacities ranging from 5 kW to 10 MW.  

A diesel fuel engine generator is pictured in Figure 2.3. 

Figure 2.3: Engine-Generator Set by Caterpillar (www.caterpillar.com) 

Reciprocating engines used for power generation have low capital cost, easy 

startup, proven reliability, good load-following characteristics, and significant heat 

recovery potential. Reciprocating engines are the most widespread distributed-generation 

technology in the world today. Existing engines achieve generation efficiencies in the 

range of 25 % to over 40 %. The incorporation of exhaust catalysts and better combustion 

design and control has significantly reduced pollutant emissions over the past few years. 

Thermal energy in the engine exhaust gases and from the engine cooling system 

can be employed to provide space heating, hot water, or to power thermally-activated 

equipment. Emissions of engines tend to be higher than those of microturbines and fuel 

www.caterpillar.com
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cells. In some locations, depending on local air quality standards, engine emissions 

may limit reciprocating engine applications for CHP systems. 

In a gas engine-driven chiller, the engine produces mechanical shaft power that is 

used for operating a chiller compressor. Such chillers are very similar to conventional 

electric-driven chillers. The only difference is that the electric motor that drives the 

compressor in an electric chiller is replaced with a reciprocating engine. 

Fuel cells 

Fuel cells produce electric power by electrochemical reactions, generally between 

hydrogen and oxygen, without the combustion processes. Unlike turbine- and engine-

generator sets, fuel cells have no moving parts and, thus, no mechanical inefficiencies. 

Phosphoric acid fuel cells (PAFCs) are commercially available. More than two 

hundred PAFC units, most on the order of 200kW, are operating worldwide. PAFCs are 

realizing efficiencies of up to 40 %.  The only byproducts of PAFC operation are water 

and heat. However, enriched hydrogen fuel must be produced by subjecting hydrocarbon 

resources (natural gas or methanol) to a reforming or gasification process. This process 

results in chemical reactions that produce carbon dioxide and other environmental 

emissions. 

Like a battery, a fuel cell produces direct current (DC).  However, fuel cells come 

in a complete package in which the fuel cell stack is integrated with an inverter to convert 

direct current to alternating current (AC) and a reformer to provide the hydrogen-rich 

fuel.  A complete fuel cell system thus includes a fuel reformer, a fuel cell stack, and a 



 

 

 

 

 

 

13 
power conditioner. A 200-kW PAFC unit by United Technologies Company is 

illustrated in Figure 2.4. 

Figure 2.4: PC-25™ Fuel Cell by United Technologies (www.utcfuelcells.com) 

There are other types of fuel cells; proton exchange membranes (PEMFC), molten 

carbonate (MCFC), and solid oxide (SOFC) are the most promising.  These fuel cells are 

at various stages of technology demonstration and are not commercially available.  Each 

type of fuel cell has its own "preferred" range of capacities and waste heat temperatures 

that determine where they can be used to best advantage in CHP systems. 

Distributed power generation (DPG) is a required component of a CHP-B system.  

Internal combustion (IC) engines, combustion turbines, and fuel cells are the current 

prime movers that have the most potential for DPG. Characteristics of these DPG 

technologies are compared in Table 2.1.  The characteristics such as electric efficiency, 

power output, and cost presented in Table 2.1 will be discussed in greater detail for each 

technology. 

www.utcfuelcells.com
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14 
Table 2.1: Comparison of DPG Technologies 

(http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf) 

Comparison of DPG Technologies 
Diesel Engine Natural Gas 

Engine 
Gas Turbine Microturbine Fuel Cells 

Electric 
Efficiency 
(LHV) 

30-50 % 25-45 % 25-40 % 
(simple) 
40-60 % 
(combined) 

20-30 % 40-70 % 

Power Output 
(MW) 

0.05-5 0.05-5 3-200 0.025-0.25 0.2-2 

Footprint 
(ft2/kW) 

0.22 0.22-0.31 0.02-0.61 0.15-1.5 0.6-4 

CHP installed 
cost ($/kW) 

800-1,500 800-1,500 700-900 500-1,300 >3,000 

O&M cost 
($/kW) 

0.005-0.010 0.007-0.015 0.002-0.008 0.002-0.01 0.003-0.015 

Availability 
(uptime) 

90-95 % 92-97 % 90-98 % 90-98 % >95 % 

Hours between 
Overhauls 

25,000-30,000 24,000-60,000 30,000-50,000 5,000-40,000 10,000-
40,000 

Start up time 10 sec 10 sec 10 min-1 hr 60 sec 3 hrs-2 days 
Fuel pressure 
(psi) 

<5 1-45 125-500 
(may require 
compressor) 

40-100 
(may require 
compressor) 

0.5-45 

Fuels Diesel and 
residual oil 

Natural gas, 
biogas, 
propane 

Natural gas, 
biogas, 
propane, 
distillate oil 

Natural gas, 
biogas, 
propane, 
distillate oil 

Hydrogen, 
natural gas, 
propane 

Noise Moderate to 
high (requires 
building 
enclosure) 

Moderate to 
high (requires 
building 
enclosure) 

Moderate 
(enclosure 
supplied with 
unit) 

Moderate 
(enclosure 
supplied with 
unit) 

Low 
(no 
enclosure 
required) 

NOX emissions 
(lb/MW-hr) 

3-33 2.2-28 0.3-4 0.4-2.2 <0.02 

Uses for Heat 
Recovery 

Hot water, LP 
steam, district 
heating 

Hot water, LP 
steam, district 
heating 

Direct heat, 
hot water, LP-
HP steam, 
district heating 

Direct heat, 
hot water, LP 
steam 

Hot water, 
LP-HP 
steam 

CHP output 
(Btu/kWh) 

3,400 1,000-5,000 3,400-12,000 4,000-15,000 500-3,700 

Useable Temp 
for CHP (8F) 

180-900 300-500 500-1,100 400-650 140-700 

http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf
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Heat Recovery 

In most CHP applications, the exhaust gas from a prime mover is ducted to a heat 

exchanger to recover the thermal energy in the gas stream. Generally, these heat 

exchangers are air-to-water heat exchangers, where the exhaust gas flows over some form 

of tube-and-fin heat exchanger surface and the heat from the exhaust gas is used to make 

hot water or steam. The hot water or steam is then used to provide process energy and/or 

to operate thermally-activated equipment, such as absorption chillers or desiccant 

dehumidifiers. Many of the thermal-recovery technologies used in building CHP systems 

require hot water, some at moderate pressures of 15 to 150 psig. In the cases where 

additional steam or pressurized hot water is needed, supplemental heat can be added to 

the exhaust gas with a burner in the exhaust gas duct. 

In some applications, air-to-air heat exchangers can be used.  If the emissions 

from the generation equipment are low enough, the hot exhaust gases can be mixed with 

make-up air and vented directly into the heating system for building space heating. 

In the majority of installations, a flapper damper or "diverter" valve is employed 

to vary the flow across the heat exchanger to maintain a specific design temperature of 

the hot water or a specific steam generation rate.  In some CHP designs, the exhaust gases 

are used to activate a thermal enthalpy wheel or a desiccant dehumidifier.  A thermal 

wheel uses the exhaust gas to heat a rotating wheel with a medium that absorbs the heat 

and then transfers the heat into the incoming airflow into which the wheel is rotated. 
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Thermally-Activated Devices 

Thermally-activated devices are based on technologies that use thermal energy, 

preferably heat from the exhaust gases of power generation equipment, instead of electric 

energy for providing heating, cooling, or humidity control for buildings. The two primary 

components for thermally-activated devices for application in CHP systems are 

absorption chillers and desiccant dehumidifiers. 

Absorption chillers 

Absorption chillers use heat as the primary source of energy for driving an 

absorption refrigeration cycle. These chillers require very little electric power (0.02 

kW/ton) compared to electric chillers that need 0.47 to 0.88 kW/ton, depending on the 

type of electric chiller.  Absorption chillers have fewer and smaller moving parts and are 

quieter during operation than electric chillers. These chillers are also environmentally 

friendly in that they use non-CFC refrigerants. 

Commercially available absorption chillers can utilize the following sources of 

heat: 

• Steam 

• Hot water 

• Exhaust gases  

• Direct combustion 

Absorption chillers, except those that use direct combustion, are excellent candidates for 

providing some or all of the cooling load in a CHP system for a building. Modern 



 

 

 

 

 

 

 

 

 

  

17 
absorption chillers can also provide heat during winter and feature electronic controls 

that provide quick start-up, automatic purge, and better partial-load operation than many 

electric chillers. Maintenance contracts and extended warranties are also available for 

absorption chillers at costs similar to those for electric chillers. Many facilities across the 

U.S. are already benefiting from the use of absorption chillers, such as the one pictured in 

Figure 2.5. 

Figure 2.5:  Absorption Chiller by Broad Air Conditioning (www.broad.org) 

Two types of absorption chillers are commercially available: single effect and 

multiple effect.  Compared to single-effect chillers, multiple-effect absorption chillers 

cost more (higher capital cost) but are more energy efficient and are, thus, less expensive 

to operate (lower energy cost). The overall economic attractiveness of each chiller 

depends on many factors, including the cost of capital and the cost of energy. 

Desiccant dehumidifiers 

There are two separate aspects of space conditioning for comfort cooling, 

• Lowering the temperature of the air (sensible cooling), and  

www.broad.org


 
  

 

 

 

 

 

 

 

 

 

18 
• Reducing humidity in the air (latent cooling) 

The humidity level should remain below 60 % Relative Humidity (RH) to prevent growth 

of mold, bacteria and other harmful microorganisms in buildings and to prevent adverse 

health effects.  

Traditionally, temperature and humidity control have been accomplished using a 

single piece of equipment that reduces the air temperature below its dew point 

temperature. Moisture in the incoming air condenses on the outside of a cooling coil over 

which the air passes and cooler air, containing less moisture, is sent to the space being 

conditioned. Reducing humidity in the air by cooling often requires lowering the air 

temperature below a comfortable level and may necessitate reheating of the dehumidified 

air to achieve comfort.  

Desiccant dehumidifiers reduce humidity in the air by using solid desiccant 

materials or liquid desiccant materials to attract and hold moisture. Desiccant 

dehumidifiers can operate independently of chillers and can be operated in series or 

parallel with chillers. Recoverable heat from the exhaust gases of turbines and engines for 

power generation or engine-driven chillers is used for regenerating saturated desiccant 

material in these dehumidifiers. 

In some CHP systems, the moisture content of the air is reduced using a desiccant 

dehumidifier and the dehumidified air is then cooled using conventional cooling 

equipment. By reducing the moisture content of the air, desiccant dehumidifiers satisfy 

the latent cooling load and, thus, reduce the load of the chillers to only the sensible 

cooling (reducing the temperature). Alternatively, a desiccant dehumidifier can be used to 



 

  

 

 

19 
further dehumidify and partially reheat cool, saturated air leaving a conventional 

cooling coil. By positioning the desiccant dehumidifier after the cooling coil, the 

dehumidification performance of the desiccant is enhanced.  This allows the use of 

moderate or lower temperatures, typical of CHP systems, for regenerating the desiccant. 

A typical, commercially available desiccant system is shown in Figure 2.6. 

Figure 2.6:  Desiccant Dehumidifier (www.bchp.org) 

www.bchp.org


 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

CHAPTER III 

INTERNAL COMBUSTION ENGINES 

Technology Overview 

Internal combustion (IC) engines are widespread in their application.  IC engines 

require fuel, air, compression, and a combustion source to function. The four-stroke 

reciprocating IC engine, illustrated in Figure 3.1, is comprised of an ignition source, 

intake and exhaust valves, a cylinder, a piston, a connecting rod, and a crankshaft.  

Depending on the ignition source, IC engines generally fall into two categories: (1) spark-

ignited engines, typically fueled by gasoline or natural gas, or (2) compression-ignited 

engines, typically fueled by diesel fuel.   

20 
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Figure 3.1:  Four-stroke Reciprocating IC Engine (www.personal.washtenaw.cc.mi.us) 

A spark-ignited reciprocating engine operates on the basis of the Otto cycle.  The 

most fundamental model of an IC engine is the air-standard Otto cycle, which assumes 

that heat is added instantaneously, that the heat is rejected at a constant volume, and that 

the working fluid is air.  The ideal Otto cycle consists of four internally reversible 

processes. First, as the piston moves from bottom-dead-center to top-dead-center, air is 

isentropically compressed.  Second, combustion begins when heat is added at a constant 

volume to the compressed working fluid.  Third, during the process known as the power 

stroke, the working fluid expands isentropically and forces the piston to move to bottom-

dead-center. Finally, heat is rejected at a constant volume.  The pressure-specific volume 

www.personal.washtenaw.cc.mi.us
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22 
(pv) and temperature-entropy (Ts) diagrams for the ideal Otto cycle are presented in 

Figure 3.2. 

s v 

Figure 3.2:  Pressure-Specific Volume and Temperature-Entropy Diagrams for the Ideal 
       Otto Cycle 

Application of the first law to the ideal Otto cycle determines the expressions for 

the net work accomplished by the cycle (WOtto), the heat added (Qin), and the thermal 

efficiency (ηOtto). Applying the air-standard assumptions of constant specific heats and 

ideal gas properties, the following relationships are employed. 

WOtto = m ⋅ (u34 − u12 ) (3-1) 
= m ⋅ (u − u )− m ⋅ (u − u )3 4 2 1 

= c ⋅ m ⋅ (T + T −T −T1 )v 3 2 4 

Qin = m ⋅ (u3 − u2 ) (3-2) 
= cv ⋅ m ⋅ (T3 −T2 )

WOttoηOtto = (3-3)
Qin 

c ⋅ m ⋅ (T + T −T −T )v 3 2 4 1=
c ⋅ m ⋅ (T −T )v 3 2 

T  T T −11 4 1= 1− ⋅ T T T −12  3 2 
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For the isentropic compression and expansion processes, the compression ratio 

(r) is defined as the ratio of the volume of the working fluid when the piston is at bottom-

dead-center to the volume of the working fluid when the piston is at top-dead-center.  

Noting from Figure 3.2 that V2 = V3 and V1 = V4, the expression for compression ratio 

appears in the following form: 

r = =V1 V4 (3-4)V2 V3 

An air-standard analysis provides the following isentropic relationships for pressure, 

temperature, and volume. 

P V 
k 

1 P V 
k 

1 2 3 4 k=   = k and =   = r (3-5a,b)P V r P V2  1  4  3 

k −1 k−1
T1 V2  1 T4 V3  1 =   = k −1 and =   = k −1 (3-6a,b)T V r T V r2  1  3  4 

Where k is the ratio of specific heats (cp/cv). For air-standard analysis, k is 1.4.  From 

Equations 3-6a and 3-6b, T4/T1=T3/T2. The Otto cycle thermal efficiency then becomes 

ηOtto =1− T1 (3-7)T2 

The efficiency can, therefore, be expressed in terms of compression ratio as 

1ηOtto =1− k−1 (3-8)r 



 

  

 

 

 
 

 

 

 

24 
For a working fluid with constant specific heats, the thermal efficiency will 

increase with an increase in the compression ratio. Figure 3.3 shows the ideal Otto cycle 

thermal efficiency as a function of the compression ratio of the engine.  The figure clearly 

illustrates that a change in compression ratio from 1 to 10 has the most dramatic effect on 

the thermal efficiency of an Otto engine. 
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Figure 3.3: Otto Cycle Thermal Efficiency as a Function of Compression Ratio 

The expressions for work, heat addition, and thermal efficiency presented in 

Equations 3-1, 3-2 and 3-8 are useful for analyzing the Otto cycle under ideal, air-

standard conditions. In an actual Otto cycle, the ratio of fuel to air and the ratio of 

combustion gases to air remain small enough to apply the properties of air to the working 

fluid.  However, reversibility and constant volume heat rejection and addition are 

assumptions that affect the accuracy of an actual Otto cycle model.  Detailed modeling of 

the combustion processes, the irreversibilities and the heat transfers associated with an 

actual Otto engine normally involves computer simulation and is beyond the scope of this 
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introduction. An example IC engine problem involving the Otto cycle is presented in 

Figure 3.4. 

Problem 3-1: 
The temperature at the beginning of the compression process of an air-standard Otto cycle 
with compression ratio of 9 is 550 R, the pressure is 1 atm, and the cylinder volume is 0.03 
ft3. The maximum temperature during the cycle is 3400 R. The air in the cycle maintains a 
cv = 0.171 Btu/lb-R and a c p = 0.24 Btu/lb-R. Determine (a) the temperature and pressure 
at the end of each process of the cycle, (b) the thermal efficiency, (c) the net work per 
cycle, (d) the amount of rejected heat per cycle, and (e) the maximum temperature and 
pressure of the rejected heat. 

Solution: 
Schematic: 

42 

3 

1 

p 

s = constant 

T 

4 

3 

2 
1 

v = constant 

s v 

Given Data: 

T1 := 550R Temperature before compression stroke 

T3 := 3400R Maximum temperature 

r := 9 Compression ratio 

P1 := 1atm Pressure before compression stroke 

3V1 := 0.03ft Cylinder volume 

BTU 
cv := 0.171 

lb R⋅
Constant volume specific heat 

BTU 
cp := 0.24 

lb R⋅
Constant pressure specific heat 

Assumptions: 
1. The air in the piston-cylinder assembly is a closed system. 
2. The compression and expansion processes are adiabatic. 
3. All processes are internally reversible. 
4. The air is modeled as an ideal gas with a cold air-standard analysis (k = 1.4). 
5. Kinetic and potential energy effects are negligible. 

Figure 3.4:  IC Engine Example Problem 
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(a) Determine the temperature, pressure, and specific internal energy (u) at each principal 
state in the cycle. 

Using T1, 

u1 := c ⋅T1v 

u1 = 94.05 
BTU Internal energy at 1

lb 
For isentropic compression (Process 1-2), Equation 3-6a gives: 

k 1  3−T2 := T1⋅(r ) T2 = 1.325× 10 R Temperature at 2 

Equation 3-5a gives: 

P2 := P1⋅rk P2 = 21.674atm Pressure at 2 

Using T2, 

:= c ⋅u2 v T2 

u2 = 226.494
BTU Internal energy at 2

lb 
Process 2-3 occurs at constant volume. Using the ideal gas equation: 

T3
P3 := P2⋅ P3 = 55.636atm Pressure at 3 

T2 

Using T3, 

u3 := cv⋅T3 

= 581.4 
BTU Internal energy at 3u3 lb 

For isentropic compression (Process 3-4), Equation 3-5b gives: 
T3 3T4 := T4 = 1.412× 10 R Temperature at 4
k 1−r 

Equation 3-5b gives: 

1
P4 := P3⋅ P4 = 2.567atm Pressure at 4 

k r 
Using T4, 

:= c ⋅u4 v T4 

u4 = 241.423
BTU Internal energy at 4

lb 

Figure 3.4 (continued) 
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(b) The thermal efficiency is determined based on the compression ratio. 

Equation 3-8 gives the thermal efficiency as 

:= 1 −
1 

= 58.476% Thermal efficiencyηOtto k 1  
ηOtto−r 

(c) The net work produced per cycle can be calculated now that the internal energy is
 known at each point in the cycle. 

The mass (m) is calculated using the ideal gas law. 

P1⋅V1 − 3 m1 := m1 = 2.164× 10 lb 
 Rg  ⋅T1 M 

Equation 3-1 expresses the net work per cycle as 

WOtto := m1⋅(u3 − u4) − (u2 − u1) WOtto = 0.449BTU Net work per cycle 

(d) The heat rejected per cycle is 

:= m1⋅(u4 − u1) = 0.319BTU Amount of rejected heatQrej Qrej 

(e)  The pressure and temperature of the rejected heat is maximum at the beginning of the
 heat rejection process. 

P4 = 2.567atm Maximum pressure of Qrej 

T4 = 1.412× 103 R Maximum temperature of Qrej 

Figure 3.4 (continued) 

Compression-ignition reciprocating engines operate on the basis of the Diesel 

cycle.  The ideal, air-standard Diesel cycle is similar to the model of the ideal, air-

standard Otto cycle presented above.  The Ts and pv diagrams for the ideal Diesel cycle 

are illustrated in Figure 3.5.  The major difference in these two cycles occurs in process 

2-3 when heat is added to the compressed working fluid.  In the Diesel cycle, heat is not 

added to the working fluid at constant volume as in the Otto cycle, but heat is added at 
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28 
constant pressure. The pv diagram demonstrates that the heat addition process and 

isentropic expansion process in the ideal Diesel cycle both occur as part of the power 

stroke. 

v s 

Figure 3.5.  Pressure-Specific Volume and Temperature-Entropy Diagrams for the Ideal 
       Diesel Cycle 

Unlike a spark-ignition, which compresses a fuel/air mixture, a compression-

ignition requires the working fluid to be compressed to a high pressure and temperature 

before the fuel is added. The addition of fuel to the high pressure, high temperature 

working fluid initiates combustion.  Diesel engines can achieve compression ratios as 

high as 25:1 and are, therefore, able to perform at better thermal efficiencies than Otto 

engines, which are limited to compression ratios below 12:1.  Application of the first law 

to the ideal Diesel cycle determines the expressions for the net work accomplished by the 

cycle (WDiesel), the heat added (QD,in), the heat rejected (QD,out), and the thermal efficiency 

(ηDiesel). 

QD,in = m ⋅ (h3 − h2 ) (3-9) 
= c p ⋅ m ⋅ (T3 −T2 )
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QD,out = m ⋅ (u4 − u1) (3-10) 
= c ⋅ m ⋅ (T4 −T1 )v 

WDiesel = QD,in − QD,out (3-11) 
= c ⋅ m ⋅ (T −T )− c ⋅ m ⋅ (T −T1 )p 3 2 v 4 

WDieselηDiesel = (3-12)QD,in 

For the Diesel cycle, both a compression ratio (r) and cutoff ratio (rc) are defined. 

r = V1 (3-13)
V2 

V3=rc (3-14)V2 

Note that the compression ratio for the Diesel cycle is based only on the isentropic 

compression and not on the isentropic expansion.  Applying the compression and cutoff 

ratios and air-standard assumptions, the thermal efficiency of the ideal Diesel cycle can 

be expressed in the following form: 

1  rc
k −1 

ηDiesel =1− k−1  )
(3-15) 

r k(rc −1 

The thermal efficiency of the Diesel cycle differs from the thermal efficiency of 

the Otto cycle by the bracketed term in Equation 3-15.  Diesel engines always have a 

cutoff ratio greater than unity (rc > 1). Otto engines have a higher thermal efficiency than 

Diesel engines at the same compression ratio.  However, Diesel engines achieve better 

overall thermal efficiencies since they can operate at higher compression ratios than Otto 
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30 
engines.  A comparison of the thermal efficiencies of the Otto and Diesel cycles is 

presented in Figure 3.6. 

Figure 3.6:  Otto and Diesel Cycle Thermal Efficiencies as Functions of Compression 
Ratio 

Application 

Combustion engines are the most mature prime mover among the distributed 

power generation (DPG) technologies.  Commercially available reciprocating engines for 

power generation range from 0.5-kW to 6.5-MW.  Reciprocating engines can be used in a 

variety of applications due to their small size, low unit costs, and useful thermal output.  

Applications for reciprocating engines in power generation include continuous- or prime-

power generation, peak shaving, back-up power, premium power, remote power, standby 

power, and mechanical drive use.  An overview of reciprocating engine characteristics is 

presented in Table 3.1. 



 

  

               
 
 

 
 

  
 

 

 
 

 

 

 

 

 

31 
Table 3.1: Overview of Reciprocating Engine Technology

 (www.energy.ca.gov/distgen/) 

Reciprocating Engine Overview 
Commercially Available Yes 

Size Range 0.5 kW – 6.5 MW 
Fuel Natural gas, diesel, landfill gas, digester gas 

Efficiency 25-45 % (primarily size dependent) 
Environmental Emission controls required for NOx and CO 

Stationary reciprocating engines represent 7 % of the world’s electric generating 

capacity and 7 % of the United States’ capacity.  Engine-driven generators accounted for 

46 % of cogeneration installations in the United States in 1998 but accounted for only 1.5 

% of the total cogeneration capacity.  In comparison with other DPG systems, engine 

generator systems dominate the market for capacities below 1 MW.  The availability of 

reciprocating engines with capacities below 1 MW has promoted their installation in 

small-scale CHP applications. 

Comparatively low installation costs, suitability for intermittent operation, and 

high temperature exhaust make combustion engines very attractive for CHP applications.  

Combustion engines have an existing sales and support structure, generally inexpensive 

and readily available parts, and service technicians with experience in maintenance and 

repair. In most aspects, combustion engines are more developed than other DPG 

technologies (Borbely and Kreider, 2001). 

Heat Recovery 

Traditional-fuel-based, large-scale electric power generation is typically about 39 

% efficient, while separate boilers are about 50 % efficient. In either case, the reject heat 

www.energy.ca.gov/distgen


 

  

 

  

 

 

 

 
 

32 
is simply lost.  Engine-driven CHP systems recover heat from the engine exhaust, the 

jacket water, and the lubricating oil.  Steam or hot water can be generated from recovered 

heat and is can be used for space heating, reheat, domestic hot water, and absorption 

cooling. 

Heat in the engine jacket coolant accounts for up to 30 % of the energy input and 

is capable of producing 200°F hot water.  Some engines, such as those with high pressure 

or ebullient cooling systems, can operate with water jacket temperatures up to 265°F. 

The engine exhaust heat accounts for 10-30 % of the energy input.  Exhaust temperatures 

of 850°F-1200°F are typical; however, only a portion of the exhaust heat can be 

recovered since exhaust gas temperatures are generally kept above condensation 

thresholds. Most heat recovery units are designed for a 300-350°F exhaust outlet 

temperature to avoid the corrosive effects of condensation in the exhaust.  Exhaust heat is 

typically used to generate hot water to about 230°F or low-pressure steam (15 psig).  By 

recovering heat in the jacket water and exhaust, 70 % to over 80 % of the fuel's energy 

can be effectively utilized.   

In current CHP configurations, engine-driven electric generation efficiencies 

range from 34 % in small CHP units to 41 % in larger installations.  The efficiencies of 

thermally-activated components typically range from 40 % to 50 %; thus, total CHP 

system efficiency approaches 90 % (Borbely and Kreider, 2001). 

Cost 

Reciprocating IC engines are the traditional technology for emergency power all 

over the world. They have the lowest first costs among DPG technologies. The capital 



 

  

 

 

 

 
 

 

33 
cost of a basic gas-fueled generator set ranges from $300-$900/kW, depending on size, 

fuel type, and engine type. Overall engine cost ($/kW) increases with size.  The total 

installed cost can be 50-100 % more than the engine itself. Additional costs include 

balance of plant (BOP) equipment, installation fees, engineering fees, and other owner or 

miscellaneous costs. CHP projects using reciprocating engines are typically installed at a 

cost between $800 - $1,500/kW.  The pie chart in Figure 3.7 shows a breakdown of the 

total installed costs of a 550-kW natural gas IC engine (www.energy.ca.gov/distgen/). 

Figure 3.7:  Total Installed Cost of a 550-kW Natural Gas IC Engine 
(www.energy.ca.gov/distgen/) 

Maintenance costs over the life of IC engines are significant.  Engine maintenance 

is comprised of routine inspections/adjustments and periodic replacement of engine oil, 

coolant, and spark plugs every 500-2,000 hours.  Additionally, periodic overhauls are 

www.energy.ca.gov/distgen
www.energy.ca.gov/distgen
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recommended by the manufacturer.  On average, maintenance costs range from $0.01 

– $0.015/kWhr (http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf). 

IC Engines and CHP-B 

Many of the characteristics of combustion engines make them attractive to many 

CHP applications, specifically CHP-B applications.  High initial costs are one of the 

major obstacles to the installation of CHP-B systems.  Reciprocating engines are 

economically favorable since they are generally less expensive than other competing 

DPG technologies.  Also, building power demands can fluctuate in a relatively short 

period of time. Reciprocating engines can quickly meet fluctuating power demands with 

start-up times as low as ten seconds, compared to some emerging technologies that may 

take several hours to reach steady-state operation.  

Through years of technology advancements, reciprocating engines have climbed 

in efficiency from under 20 % to over 30 %. Today's most advanced natural gas-fueled 

IC engines have electrical efficiencies (based on lower heating value, LHV) close to 45 

%. Such high efficiencies rival other DPG technologies.  Further, the technology’s many 

years of experience has given internal combustion engines a reliability that is unmatched 

by any competing CHP-B distributed-generation technology.  Another strength of 

reciprocating engines is their ability to operate on a wide variety of fuels. 

One disadvantage associated with integrating reciprocating IC engines into CHP-

B systems is the high levels of the emissions.  Many locations enforce air quality 

standards that IC engines cannot meet.  Reciprocating engines produce a high noise level 

due to the combustion process and moving parts.  Thus, noise is another disadvantage, 

http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf
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especially since the application of CHP-B is to buildings where high noise levels may 

not be permitted.  A final disadvantage of IC engine application to CHP-B may be the 

most imposing disadvantage.  The high number of moving parts in a reciprocating IC 

engine imposes more frequent maintenance intervals resulting in higher operating costs 

and more frequent downtimes. Over the life of a reciprocating engine, maintenance 

becomes a major expense of operation.  Many of the advantages and disadvantages 

associated with reciprocating engines are listed in Table 3.2. 

Table 3.2: Advantages and Disadvantages of Reciprocating IC Engines 
(www.energy.ca.gov/distgen/) 

Reciprocating Engines 
Advantages Disadvantages 

Low Capital Cost Atmospheric Emissions 
Good Electrical Efficiencies (up to 45 %) Noisy 

Quick Startup Frequent Maintenance Intervals 
Fuel Flexibility 
High Reliability 

Low Natural Gas Pressure Required 

 

  

 

 

 

  
  

 
 

 

  
  

 
 

 

 

 
 

 

IC Engine Problems 

For air-standard analysis cv = 0.171 Btu/lb-R and cp = 0.24 Btu/lb-R. 

1. A piston-cylinder arrangement has a cylinder diameter (bore) of 98 mm and performs 
a 125 mm stroke. If the clearance volume, the volume above top-dead-center, is 100 
cm3, what is the compression ratio. 

2. A four-cylinder, four-stroke IC engine has a bore of 5.5 in. and a stroke of 4.7 in.  
The clearance volume is 14 % of the cylinder volume when the piston is at bottom-
dead center.  What are (a) the compression ratio, (b) the cylinder displacement 
(volume displaced by cylinder), and (c) the engine displacement? 

www.energy.ca.gov/distgen


 

  

 

 

 

 

 

 

 
 

36 
3. An air-standard analysis is to be performed on a spark-ignited IC engine with a 

compression ratio of 9.0. At the start of compression, the pressure and temperature 
are 100 kPa and 300 K, respectively.  The heat addition per unit mass of air is 1400 
kJ/kg.  Determine (a) the net work, (b) the thermal efficiency, (c) the heat rejected 
during the cycle, and (d) the maximum temperature and pressure of the rejected heat. 

4. An Otto cycle operates on an air-standard basis.  The properties of the air prior to 
compression are p1 = 1 bar, T1 = 310 K, and V1 = 600 cm3. The compression ratio of 
the cycle is 8 and the maximum temperature is 1800 K.  Determine (a) the heat 
addition in kJ, (b) the net work in kJ, (c) the thermal efficiency, and (d) the 
availability transfer from the air accompanying the heat rejection process, in kJ, for 
T0 = 310 K, p0 = 1 bar. 

5. Consider a four-stroke, spark-ignited engine with four cylinders.  Each cylinder 
undergoes a process like the cycle in Problem 2.  If the engine operates at 1800 rpm, 
determine the net power output in kW. 

6. Prior to the compression stroke in an Otto cycle, the pressure and temperature are 
14.7 psi and 540 R, respectively.  The compression ratio is 6, and the heat addition 
per unit mass of air is 550 Btu/lb.  Find (a) the maximum temperature of heat 
rejection, in R, (b) the maximum pressure of heat rejection, in psi, and (c) the thermal 
efficiency if the cycle is modeled on a cold-air standard basis with specific heats 
evaluated at 540 R. 

7. A four-stroke two-cylinder Otto engine has a bore of 24 in, a stroke of 20 in, and a 
compression ratio of 7.2:1. The intake air is at 14.7 psi and 40°F with compression 
and expansion processes that are reversible and adiabatic.  If 1400 Btu/lbm air is 
added and the engine speed is 340 rpm, determine (a) the net work per cycle, (b) the 
work per minute, and (c) the rate of heat rejection in Btu/hr. 

8. A four-cylinder, four-stroke IC engine has a bore of 3.7 in. and a stroke of 3.4 inches.  
The clearance volume is 16 % of the cylinder volume when the piston is at bottom-
dead center and the crankshaft rotates at 2100 rpm. The processes in the cylinders are 
modeled as a cold air-standard Otto cycle with a pressure of 14.7 psi and a 
temperature of 80°F at the beginning of compression.  The maximum temperature in 
the cycle is 5200 R.  Based on this model, calculate (a) the net work per cycle, (b) the 
power developed by the engine, (c) the amount of heat rejected, (d) the maximum 
temperature and pressure of heat rejection, and (e) the thermal efficiency of the cycle. 

9. A diesel cycle is modeled on a cold air-standard basis with specific heats calculated at 
300 K. At the beginning of compression, the pressure and temperature are 125 kPa 
and 270 K, respectively.  After heat addition, the pressure is 8.2 MPa and the 
temperature is 2300 K. Determine (a) the compression ratio, (b) the cutoff ratio, (c) 
the heat rejected by the cycle, and (d) the thermal efficiency of the cycle. 
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10. An air standard diesel cycle has a compression ratio of 16 and a cutoff ratio of 2.  
Before compression, p1 = 14.7 psi, V1 = 0.7 ft3, and T1 = 560 R. Calculate (a) the 
heat added, (b) the heat rejected, (c) the thermal efficiency, (d) the maximum 
temperature and pressure of the rejected heat, and (e) the availability transfer from the 
air accompanying the heat rejection process for T0 = T1 and p0 = p1. 

11. The maximum temperature of a cold air-standard diesel cycle is 1900 K.  The 
pressure and temperature before compression are 84 kPa and 290 K, respectively. 
With an air mass of 9 grams and compression ratios of 14, 19, and 21, calculate (a) 
the net work of the cycle, (b) the heat rejected during the cycle, and (b) the thermal 
efficiency of the cycle. 



 

  

 
 

 

38 
Manufacturers 

There are a large number of companies worldwide that manufacture reciprocating 

engines and/or complete generator sets for large and small distributed energy resource 

(DER) applications. Six of these companies are listed as follows: 

(www.energy.ca.gov/distgen/) 

• Caterpillar, headquartered in Peoria, Illinois, manufactures reciprocating engines 

and generator sets, like the engine-generator set illustrated in Figure 3.8, for a 

variety of fuels and with power outputs ranging from 40-kW to 10-MW. 

Figure 3.8:  Engine-Generator Set by Caterpillar (www.caterpillar.com) 

www.caterpillar.com
www.energy.ca.gov/distgen
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• Cummins, based in Columbus, Indiana, is a manufacturer of engines and power 

generators. Generator sets include a prime mover fueled by diesel, natural gas or 

propane, and an alternator that provides power at 50 Hz or 60Hz.  Figure 3.9 pictures 

a generator from Cummins’ line of 7-kW to 2-MW diesel engine-generator sets. 

Figure 3.9:  Cummins Diesel Engine-Generator Set (www.cummins.com) 

• Deutz Corporation, North American headquarters located in Norcross, Georgia, is 

an international supplier of reciprocating gas- and diesel-fueled engine/generator 

systems.  The Deutz diesel engine shown in Figure 3.10 is capable of producing 

from 1,460 to 2,017 kW of electricity. 

Figure 3.10: Diesel-Fueled Engine by Deutz Corporation (www.deutzusa.com) 

www.deutzusa.com
www.cummins.com
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• Generac Power Systems, located in Waukesha, Wisconsin, manufactures diesel- 

and gaseous-fueled engine generator systems, as pictured in Figure 3.11, with 

power outputs of 3.kW to 2-MW for residential, commercial, industrial, mobile, 

recreational vehicle, and communications applications. 

Figure 3.11:  50-kW Natural Gas Fueled Generator by Generac Power System 
(www.generac.com) 

• Honda Power Equipment of Alpharetta, Georgia is a manufacturer of engines and 

generators that operate on various fuels for DER applications with power output 

up to 20-kW.  Figure 3.12 presents a small electricity generator by Honda. 

Figure 3.12:  Honda 11.5-kW Gas Generator (www.hondapowerequipment.com) 

www.hondapowerequipment.com
www.generac.com
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• Kohler, based in Kohler, Wisconsin, manufactures 6-kW to 20-kW engines and 

8.5-kW to 2-MW onsite power generators.  An onsite power generator by Kohler 

is shown in Figure 3.13. 

Figure 3.13:  200-kW Natural Gas Generator by Kohler (www.kohler.com) 

• Waukesha Engine of Waukesha, Wisconsin is a manufacturer of gaseous-fueled 

reciprocating engines up to multi-megawatt power outputs.  An example of a 

Waukesha engine is pictured in Figure 3.14. 

Figure 3.14:  Gas Reciprocating Engine by Waukesha (www.waukeshaengine.com) 

www.waukeshaengine.com
www.kohler.com
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CHAPTER IV 

COMBUSTION TURBINES 

Technology Overview 

The simplest model for gas turbines is the air-standard Brayton cycle.  The air-

standard model is comprised of isentropic compression and expansion processes, and 

reversible, constant-pressure heat addition and rejection. The working fluid is air and is 

modeled as an ideal gas with constant specific heat throughout the cycle.  Figure 4.1 

presents the temperature-entropy (Ts) and pressure-specific volume (pv) diagrams for the 

air-standard Brayton cycle.  

Figure 4.1:  Pressure-Specific Volume and Temperature-Entropy Diagrams for the Ideal  
       Brayton Cycle 

42 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43 
Application of the first law to the model determines the expressions for turbine 

work (Wt), compressor work (Wc), net work (Wnet), and cycle efficiency (η). 

Wc = h1 − h2 (4-1) 

= c (Tp 1 −T )2 

Wt = h3 − h4 (4-2) 
= c (Tp 3 −T )4 

QS = h3 − h2 
(4-3) 

= c (Tp 3 −T )2 

Wnet = Wc +Wt (4-4) 

η =
Wnet 

QS 
(4-5) 

= (T1 − T ) +2 (T T− )3 4 

T3 − T2 

Since the specific heats are constant, then 

T4 

T1 
= T3 

T2 
(4-6) 

and 
k−1 k

T  P 2 = 
2 

 (4-7)
T P1  1 

Where k is the ratio of specific heats (cp/cv).  A similar relationship can be written for T3 

and T4 with P3 and P4. The cycle efficiency becomes 
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η = 1− 1 
1 (4-8)k− k

 P 


2 
P 1 

The air-standard Brayton cycle includes the assumptions that the compressor and 

turbine operate isentropically and that there is no pressure drop during heat addition and 

rejection.  These assumptions are not realistic in a real gas turbine cycle.  In a real gas 

turbine cycle, irreversibilities in the compression and expansion processes cause the 

working fluid to increase in specific entropy.  Also, the heat addition in the combustor 

and the heat rejection between the turbine exhaust and the compressor inlet do not occur 

at constant pressure.  However, the irreversibilities in the heat exchange process are often 

ignored since they are less significant than those in the compression and expansion 

processes.  The Ts diagram in Figure 4.2 illustrates the effects of the irreversibilies in an 

actual gas turbine cycle. 

T 
3 

4s

2 

p = constant 

2s 4 

1 

s 
Figure 4.2:  Temperature-Entropy Diagram of a Real Gas Turbine Cycle 

The isentropic compressor efficiency is defined as the ratio of the isentropic 

compressive work to the actual compressive work, when both are compressed through the 
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same pressure ratio.  The isentropic turbine efficiency is defined as the ratio of the 

actual work of expansion to the isentropic work of expansion, when both expand from the 

same initial state to the same final pressure.  The expressions for isentropic compressor 

efficiency (ηc) and isentropic turbine efficiency (ηt) are presented below. 

h2S −h1η = (4-9)c h2 − h1 

h3 −h4ηt = (4-10)h − h3 4S 

For constant specific heats, the isentropic compressor and expansion efficiencies become 

k−1 k
 


P
P 

2 
 1 η = (4-11)c T2 −1 

T1 

T41−
T3ηt = (4-12)

k−1 k
 P4 1−  P 3 

Equation 4-8 shows that the thermal efficiency of the Brayton cycle is a function 

of the pressure ratio (P2/P1). A real gas turbine cycle is primarily described by the 

pressure ratio, the turbine inlet temperature, the compressor inlet temperature, the 

isentropic turbine efficiency, and the isentropic compressor efficiency.  Equations 4-13 

and 4-14 express the compressor work (Wcomp) and the turbine work (Wturb) for a gas 

turbine cycle. 
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k−1 k c p 

  P  
Wcomp = ⋅T1 1− 

2 
  (4-13)ηc   P1   

 k−1 k  P 4 (4-14)Wturb =ηt ⋅c p ⋅T3 1−   
  P3   

where the constant pressure specific heat is that of air (cp = 1.004 kJ/kg-K) for the 

compressor and that of the combustion products (cp = 1.148 kJ/kg-K) for the turbine.  

Further, the ratio cp/cv is k = 1.4 for the compressor and k = 1.333 for the combustion 

products in the turbine. The constant pressure specific heat for the combustion process is 

generally taken as the average of the compressor and turbine cp values, and the constant 

pressure specific heat in the heat rejection process is generally assumed to be that of air. 

For a gas turbine power plant with prescribed pressure ratios, the work required of 

the compressor is a function of the inlet temperature (T1). As T1 decreases, the work 

required of the compressor decreases and the net work accomplished by the power plant 

is enhanced.  However, a decrease in T1 will result in a lower inlet temperature to the 

combustor (T2), hence, the fuel/air ratio supplied at the combustor will have to increase to 

meet the prescribed turbine inlet temperature (T3). An increase in T3 will enhance both 

the turbine work and the net work of the power plant.  T3 is limited by the thermal 

properties of the materials used in construction of the turbine.   An example simple-cycle 

gas turbine problem is presented in Figure 4.3. 
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Example 4-1: 
A simple-cycle gas turbine has a turbine inlet temperature of 1,500 F, a compressor ratio of 
14, and compressor and turbine efficiencies of 82% and 89%, respectively. The ambient 
conditions are 90 F and 1 atm. Sketch (a) the T-s diagram for this engine and determine 
(b) the net work for the cycle, (c) the engine thermal efficiency, and (d) the available waste 
heat rejected to the ambient air. 
Solution: 
Given information: 

T1 := (460 + 90)R  Compressor inlet temperature 

T3 := (460 + 1500)R  Turbine inlet temperature 

ηc := 0.82 Compressor efficiency 

η t := 0.89 Turbine efficiency 

PR := 14 Pressure ratio 
Assumptions: 
The following property values are used for the working fluid. 

kJ 
cpc := 1.004 

kg K⋅
kJ 

cpt := 1.148 
kg K⋅

cpc + cpt
cpAve := 2 
kc := 1.4 

kt := 1.333 

(a) Sketch the T-s diagram for this engine. 

T 

2 4 

p = constant 

4s 

3 

2s 

1 

Specific heat of air 

Specific heat of combustion gas 

Average specific heat of combustion gas and 
air 
cp/cv for air 

cp/cv for combustion gas 

s 

Figure 4.3:  Simple-Cycle Gas Turbine Example Problem 
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(b) Determine the net work of the engine. 

Compressor and turbine exit temperature: 

⋅



 (PR) 




kc−1 

− 1 

kt−1 

kt 








kc+
− 1

ηc 
310⋅T2 T1 1 T2 1.305 R:= ×=

⋅






− η t⋅






1 











− 
1 

PR 



310T4 T3 1 T4 1.118 R:= ×=

Compressor work and turbine work 

BTU
⋅(T1 − T2) Wc −181.031Wc := cpc =

lb 
BTU

T4 

The net work of the turbine can be found as follows: 

BTU 

)(⋅ −Wt T3 Wt 230.912:= cpt =
lb 

Net workWnet := Wc + Wt Wnet 49.881=
lb 

(c) Deternine the thermal efficiency of the turbine. 

BTU
⋅(T3 − T2)Qs Qs = 168.354:= cpAve lb 

Wnet 
= 29.629% Thermal efficiencyη η:=

Qs 

(d) What is the amount of waste heat available from the engine. 

:= cpc⋅(T1 − T4)Qwaste 

BTU
−136.172 Available waste heatQwaste =

lb 

Figure 4.3 (continued) 
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The basic combustion or gas turbine includes a compressor, a combustor, and a 

turbine, and operates on a single shaft.  The schematic in Figure 4.4 illustrates the 

components of a simple gas turbine.  A single shaft connects the compressor and the 

turbine, and a power turbine produces the net work of the system.  The working fluid 

flows from the inlet of the compressor to the combustion chamber, where fuel is added 

and burned. The combustion gas then flows to the turbine and power turbine and is then 

exhausted. 

Fuel (Qin) 

Compressed 

 

 

 

 

 

 

 
 

 
 

 

Combustion 
Air Gas 

Combustion 
Inlet Air Exhaust Gas Chamber 

Net Work (Wnet) 

Compressor Turbine Power 
Turbine 

Figure 4.4:  Gas Turbine Cycle 

 

  

 

 

 
 

 

 

There are many variations of the basic combustion turbine cycle.  One variation is 

the addition of a recuperator or regenerator. Turbine exhaust gases normally have 

temperatures well above ambient conditions, and these gases can be utilized for their 

energy content.  A recuperator is a heat exchanger, which uses turbine exhaust gases to 

preheat compressed air before the air enters the combustor.  Raising the temperature of 

air entering the combustor reduces the amount of fuel that must be burned, thus, 
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increasing the overall efficiency of the power plant.  A combustion turbine schematic 

with regeneration is presented in Figure 4.5. 

Regenerator 

Inlet Air 

Wnet 

Turbine Power 
Turbine 

Compressed 
Air 

Qin 

Combustion 
Gas 

Exhaust Gas 

Compressor 

Combustion 
Chamber 

Figure 4.5:  Gas Turbine Cycle with Regeneration 

Another variation of the basic combustion turbine cycle is achieved with the 

addition of an intercooler. Adiabatic compression requires a significant amount of work 

but removing heat from the working fluid before compression can reduce this work.  An 

intercooler reduces the temperature of the air during the compression cycle, thus, 

reducing the amount of work required of the compressor.  However, heat transfer rates 

high enough to significantly reduce the compressor work are hard to achieve.  

Intercooling is sometimes achieved by implementing multiple intercoolers into several 

stages of the compressor.  Figure 4.6 illustrates a combustion turbine with an intercooler 

between the low-pressure and the high-pressure compressor stages. 
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Figure 4.6: Gas Turbine Cycle with Intercooler and Two-Stage Compression  

Another variation of the basic combustion turbine cycle is a two-stage combustion 

turbine with reheat. As previously discussed, the temperature of combustion gases 

entering the turbine is limited due to the turbine blading material properties.  Excess air, 

combined with combusted air to control the temperature during expansion, oxygenates 

the turbine exhaust.  The oxygen-enriched turbine exhaust can be used to attain an 

additional combustion process.  This addition of energy in a staged turbine is called 

reheat.  A reheat combustor raises the temperature of the incoming exhaust gases for the 

downstream turbine section. These combustion gases are then expanded through an 

additional turbine stage.  Gas turbines with reheat have higher exhaust gas temperatures 

exiting the primary turbine than gas turbines without reheat; therefore, a gas turbine with 

reheat has greater potential for regeneration.  Gas turbines with reheat, like the one 

illustrated in Figure 4.7, require additional fuel but produce a greater amount of work at 

higher overall efficiencies than gas turbines without reheat. 
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Qin, primary Qin, reheat 
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Figure 4.7: Gas Turbine Cycle with Reheat 

 

  

 
 

 
 
      

 

  

 

Regeneration and reheat are variations of the basic combustion cycle that utilize 

the energy content of turbine exhaust.  Turbine exhaust gases not only can enhance 

efficiency and power production in combustion turbines, but can also be used for 

thermally-activated systems.    

Industrial Turbines 

Single-shaft combustion turbines, like the one illustrated in Figure 4.8, are 

commonly used in industry for power generation.  An inlet section (1), a compressor 

section (2), a combustion system (3), a turbine section (4), and an exhaust system are 

standard components in industrial turbines. The combustion turbine in Figure 4.8 

operates similar to the combustion turbine cycle presented in Figure 4.4.  An industrial 

combustion turbine does not include a separate power turbine; instead, the excess shaft 

power is harnessed to produce electricity or mechanical power.  
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Figure 4.8:  Single-shaft Industrial Combustion Turbine by Siemens Westinghouse  
(www.siemenswestinghouse.com) 

Application 

Nearly all new power plants are combined cycle (reheat) combustion turbines.  

Industrial turbines are available in capacities from 0.5-MW to 250-MW.  This broad 

range of power generation capacity meets the electrical demand of most institutional, 

commercial, and industrial end-users. End-users often require lower capacity turbines for 

their distributed power generation (DPG) applications.  Small combustion turbines are 

found in a broad array of applications including mechanical drives, base-load grid-

connected power generation, and remote off-grid applications. Table 4.1 presents an 

overview of combustion turbine characteristics. 

www.siemenswestinghouse.com
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Table 4.1: Overview of Industrial Turbines (www.energy.ca.gov/distgen//distgen/) 

Combustion Turbine Overview 
Commercial Status Widely Available 

Size Range 500 kW – 250 MW 
Fuel Natural gas, liquid fuels 

Single-Cycle Efficiency 
(Aeroderivative Turbines) 26-45 % (primarily size dependent) 

Single-Cycle Efficiency 
(Industrial or Frame Turbines) 20-34 % (primarily size dependent) 

Combined Cycle Efficiency Approaches 60 % in larger units 
Environmental Effects Very low when controls are used 

Other Features Cogen (steam) 

Aeroderivative gas turbines are an additional class of turbines used for stationary 

power. These turbines are adapted from their aircraft jet engine counterpart and are light 

weight with higher simple-cycle efficiencies than the more rugged industrial turbines.  

Aeroderivative turbines are limited to capacities below 55-MW and are, therefore, less 

common in industrial, institutional, and commercial applications. However, since the 

power requirements of CHP-B applications are usually below 55-MW, aeroderivative 

turbines remain a viable component in CHP-B applications.   

In an increasingly-competitive electricity market, installation of small industrial 

and aeroderivative gas turbines is a cost-effective alternative to grid power.  Industrial 

turbines generally operate for longer periods between overhauls than do aeroderivative 

turbines and are especially suited for continuous base-load operation.  

Heat Recovery 

Simple-cycle gas turbines are the least efficient configuration since there is no 

recovery of heat from the exhaust gas.  Simple-cycle efficiencies typically range from 20 

www.energy.ca.gov/distgen//distgen
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% to 45 % depending on the capacity and the type of the turbine.  The hot exhaust gas 

can be used directly in a process or used to generate steam or hot water with a heat 

recovery steam generator (HRSG).  As with the other DPG technologies, steam and hot 

water produced from recovered heat can be used for space heating, reheat, domestic hot 

water, absorption cooling, and desiccant regeneration. 

Combined-cycle gas turbines, typically for larger installations, can achieve up to 

60 % electric generation efficiencies using the most advanced utility-class turbines.  

Waste heat from these combined cycle turbines can be recovered in an HRSG, similar to 

that in the simple cycle.  Since a gas turbine exhaust is oxygen rich, the gas can support 

additional combustion through supplemental firing.  A duct burner is usually fitted within 

the HRSG to increase the exhaust gas temperature.  With the additional thermal energy 

captured from exhaust gases, combined cycle turbines can achieve overall thermal 

efficiencies greater than 90 %. (http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf) 

Cost 

Gas turbines are relatively inexpensive compared with other DPG technologies.  

The capital cost of combustion turbines ranges from $300-$1000/kW and, generally, 

increases with decreasing power output.  Combustion turbines tend to cost more than 

internal combustion (IC) engines of smaller capacities and cost less than larger capacity 

IC engines.  These costs have remained fairly stable in recent history, showing less than a 

5 % increase over the past three years. (www.energy.ca.gov/distgen/) 

Installation costs, balance of plant (BOP) equipment costs and other owner or 

miscellaneous costs can be expected to increase initial capital costs by 30-50 %. A 

www.energy.ca.gov/distgen
http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf
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natural gas compressor is an example of the BOP equipment required.  Natural gas 

compressors are needed to meet the high gas pressure requirements of combustion 

turbines, unless high-pressure cross-country pipelines are accessible.  Natural-gas 

compressors increase the first costs of a combustion turbine system by 5-10 %.  Also, 

adding heat recovery capabilities increases the capital cost by $100-$200/kW.  Including 

other BOP components, the typical installed cost of a mid-sized combustion turbine with 

a heat recovery unit will be in the $1,000-$1,200/kW range.  The pie chart in Figure 4.9 

shows an example breakdown of the total installed cost of a 15-MW combustion turbine. 

(www.energy.ca.gov/distgen/) 

Figure 4.9:  Total installed cost of a 15-MW Natural Gas Combustion Turbine  
(www.energy.ca.gov/distgen/) 

www.energy.ca.gov/distgen
www.energy.ca.gov/distgen
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Gas turbines can be cycled; however, maintenance costs can triple for a turbine 

that is cycled every hour versus a turbine that is operated for intervals of 1000 hours.  The 

number of inspections and overhauls substantially increase when turbines are operated 

over their rated design capacity for significant periods of time.  Maintenance costs of a 

turbine operating on fuel oil are approximately three times that of a turbine operating on 

natural gas.  Maintenance costs associated with industrial turbines are much less 

significant than the maintenance costs associated with IC engines.  Typical maintenance 

costs for an industrial turbine fired by natural gas are $0.003 - $0.005/kWhr.  

(http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf) 

Industrial Turbines and CHP-B 

The use of combustion turbines at industrial facilities, institutional campuses, and 

commercial buildings has proven to be a successful method for meeting distributed power 

demands.  Current practice with combustion turbines demonstrates that these turbines can 

supply electrical, mechanical, and thermal energy that end users need to power diverse 

operations. Combustion turbines are implemented to provide power for manufacturing 

processes and to meet facility and process electrical and heating requirements.  To be a 

viable component for CHP-B, combustion turbines must be available to meet smaller 

power demands and to produce a useful thermal energy. 

Compared to IC engines, industrial and aeroderivative combustion turbines have 

lower costs at higher capacities.  Combustion turbines are available over a much wider 

rage of power output than other DPG technologies and have the capability of producing 

high-temperature steam from the exhaust heat.  The advantages of industrial-size 

http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf
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combustion turbines suggest that turbines may be effective in meeting the cooling, 

heating, and power requirements of large buildings. As power requirements exceed a 

megawatt, building owners may experience lower initial costs and lower operating and 

maintenance costs with a combustion turbine than with other DPG prime movers.  Like 

IC engines, industrial combustion turbines are widely available, have a well-established 

marketing and customer-service networks, and have reputations for reliability.        

The cost per unit of output power for acquiring an industrial-size combustion 

turbine increases significantly as the turbine size decreases.  Additionally, the efficiency 

of industrial turbines decreases with decreasing power output.  Since many CHP-B 

applications are intended for buildings requiring power levels at the low end of the 

industrial turbine power range, industrial turbines may not be the preferred DPG 

component for these applications. 

Another disadvantage to using combustion turbines for CHP-B is the reduced 

efficiency of turbines at part loads.  Most buildings will experience fluctuating power 

requirements due to seasonal operation, reduced workloads at nights and weekends, and 

seasonal heating and cooling requirements.  Combustion turbines installed to meet peak 

power requirements will experience reduced efficiencies as these power requirements 

fluctuate. However, installation of multiple turbines and connection to the electricity grid 

can counteract many of these disadvantages.    

Combustion turbines are very sensitive to ambient conditions.  Ambient pressure 

and temperature affect the efficiencies of compression and combustion in a turbine 

system.  If ambient conditions change significantly, a combustion turbine may not be able 
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to meet peak-power requirements. This disadvantage of combustion turbines can be 

negated if the turbine is contained in an area where ambient air conditions are 

controllable.  When acceptable noise levels can be established, CHP-B systems driven by 

combustion turbines can be housed inside a building where air temperature, pressure, and 

humidity can be maintained near ideal conditions.  Table 4.2 lists advantages and 

disadvantages of combustion turbines as a DPG technology. 

Table 4.2: Advantages and Disadvantages of Combustion Turbines as a DPG 
      Technology (www.energy.ca.gov/distgen/) 

Combustion Turbines 
Advantages Disadvantages 

High efficiency and low cost (particularly 
in large systems) Reduced efficiencies at part load 

Readily available over a wide range of 
power output 

Sensitivity to ambient conditions 
(temperature, altitude) 

Capability of producing high-temperature 
steam using exhaust heat 

Small system cost and efficiency not as 
good as larger systems 

Marketing and customer servicing 
channels are well established 
High power-to-weight ratio 

Proven reliability and availability 
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Manufacturers 

There are over a dozen manufacturers of combustion turbine products around the 

world. The following list, originating from (www.energy.ca.gov/distgen/), identifies 

some of these manufacturers. 

• General Electric Power Systems has a distributed power division in Schenectady, 

New York. GE Power Systems manufactures heavy duty and aeroderivative 

turbines used in mechanical and electrical power production, like the gas turbine 

pictured in Figure 4.10.  GE also manufactures steam turbines systems, 

hydropower systems, and combined-cycle systems. 

Figure 4.10:  28-kW Gas Turbine by GE Power Systems  
(www.gepower.com) 

www.gepower.com
www.energy.ca.gov/distgen
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• Pratt & Whitney, a division of United Technologies Corporation, produces 

combustion turbines for power generation in the range of 20-MW to 50-MW.  

Figure 4.11 presents a 25-kW turbine by Pratt & Whitney. 

Figure 4.11:  25-kW Natural Gas Turbine by Pratt & Whitney
 (www.pratt-whitney.com) 

• Rolls-Royce North America, in Chantilly, VA, manufactures gas turbines with 

power output ranging from 2.2-MW to 51.2-MW.  An aeroderivative gas turbine 

by Rolls-Royce is shown in Figure 4.12. 

Figure 4.12:  51.2-MW Aeroderivative Gas Turbine by Rolls-Royce  
(www.rolls-royce.com) 

www.rolls-royce.com
www.pratt-whitney.com
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• Siemens Westinghouse Power Corporation has many locations in North America 

and offers gas turbines in the range of 67-MW to 265-MW.  An industrial gas 

turbine by Siemens Westinghouse is presented in Figure 4.13. 

Figure 4.13:  157-MW Gas Turbine by Siemens Westinghouse 
(www.siemenswestinghouse.com) 

www.siemenswestinghouse.com
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• Solar (owned by Caterpillar), located in San Diego, California, is a leader in the 

design and manufacture of gas turbine power generation systems up to 15-MW.  

Figure 4.14 illustrates the Titan 130, a 14 MW gas turbine-generator set by Solar. 

Figure 4.14:  14-MW Gas Turbine Generator Set by Solar 
(http://esolar.cat.com) 

• Vericor Power Systems, located in Alpharetta, Georgia, offers products, like the 

natural gas turbine generator in Figure 4.15, and support services in the 0.5-MW 

to 50-MW power range. 

Figure 4.15:  3-MW Natural Gas Turbine Generator by Vericor Power Systems 
(www.vericor.com) 

www.vericor.com
http://esolar.cat.com
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Microturbines 

The design of a microturbine is similar to the design of an industrial turbine, 

except that most microturbine designs incorporate a recuperator to recover part of the 

exhaust heat for preheating the combustion air (see Figure 4.5).  Microturbines, like 

industrial turbines, have an inlet, a compressor, a combustor, a turbine, and an exhaust 

outlet. The microturbine generator configuration shown in Figure 4.16 includes these 

standard combustion turbine components as well as a recuperator. 

Figure 4.16:  Natural Gas Microturbine Generator by Capstone (www.capstone.com) 

Unrecuperated microturbines produce electricity from natural gas at efficiencies 

around 15 %. However, most microturbines are equipped with recuperators, which result 

www.capstone.com
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in electrical generation efficiencies that range from 20 % to 30 %.  Recuperated 

microturbines can produce 30 % to 40 % fuel savings by preheating the incoming 

combustion air.  Combined with thermal efficiencies acquired through cogeneration 

applications, overall system efficiencies of microturbine generator systems coupled with 

thermally-activated technologies can reach 85 %.  As compared to industrial turbines, 

microturbines have very low emissions.  Three Capstone microturbines in series are 

pictured in Figure 4.17. 

Figure 4.17:  Microturbine generator System by Capstone (www.capstone.com) 

Microturbines have much smaller physical dimensions than industrial turbines.  

With power outputs ranging from 25-kW to 500-kW, many commercially available 

microturbines are similar in size to a refrigerator.  One benefit of smaller component size 

is lubrication-free air bearings.  The shaft of a microturbine can be supported by air 

instead of lubricating oil.  Using air instead of oil reduces maintenance requirements and, 

thus, maintenance costs. 

www.capstone.com
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Most microturbine manufacturers produce single-shaft microturbines that 

operate at speeds of up to 120,000 rpm. Dual-shaft designs are available to meet 

electrical and mechanical power demands. Dual-shaft microturbines have an additional 

power turbine and gear for mechanical drive applications, operating at speeds of up to 

40,000 rpm. Table 4.3 lists an overview of microturbine technology. An example 

problem involving a microturbine is presented in Figure 4.18. 

Table 4.3: Overview of Microturbines (www.energy.ca.gov/distgen/) 

Microturbine Overview 
Commercial Status Limited Availability 

Size Range 25 kW – 500 kW 
Fuel Natural gas, hydrogen, propane, diesel 

Unrecuperated Efficiency 15 % 
Recuperated Efficiency 20-30 % 
Environmental Effects Very low (<9-50 ppm) NOx 

Other Features Cogen (50-80ûC water) 

www.energy.ca.gov/distgen
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Example 4-2: 
A microturbine operates in an office building with an indoor temperature of 70 F. The 
turbine inlet temperature is 1,850 F and the compressor and turbine have efficiencies of 
0.82 and 0.85 respectively. If the compressor pressure ratio is 9, determine (a) the work o 
the compressor and the turbine, (b) the net work of the turbine, and (c) the thermal 
efficiency of the microturbine. The gas flow rate is 0.05 lb/sec, and the air flow is 0.6 lb/s. 

Solution: 
Given information: 

T1 := (460+ 70)R  Compressor inlet temperature 

T3 := (460+ 1350)R  Turbine inlet temperature 

ηc := 0.82 Compressor efficiency 

ηt := 0.85 Turbine efficiency 

:= 0.05
lb Mass flow rate of gasmgas s 

lb 
:= 0.6 Mass flow rate of airmair s 

PR := 9 Pressure ratio 

Assumptions: 
The microturbine operates as a simple gas turbine cycle with the following properties for 
the working fluid. 

cpc := 1.004 
kJ Specific heat of air

kg K⋅

:= 1.148 
kJ Specific heat of combustion gascpt kg K⋅

cpc + cpt Average specific heat of combustion gas andcpAve := 2 air 

kc := 1.4 cp/cv for air 

Figure 4.18:  Microturbine Example Problem 
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(a)  Determining the work of the compressor and turbine requires the temperatures
 at the compressor exit and turbine exit to be calculated. 

T1⋅



 (PR) 




kc−1 

− 1 

kt−1 

kt 








kc+
− 1

ηc 
310⋅T2 1 T2 1.095 R:=

3×

×

10 

=

T3⋅






− η t⋅






1 











− 
1 

PR 



T4 1 T4 1.16 R:= =

Determine the mass flow rate into the turbine 

lb
0.65mcomb := mair + mgas mcomb =

s 
Compressor work and Turbine Work 

T2)( Compressor workmair⋅cpc⋅ − −85.699kWWc T1 Wc:= =

T4)

(b)  The net work of the microturbine can be found as follows, 

Wnet := Wc + Wt Wnet = 36.504kW Net work 

(c) Deternine the thermal efficiency of the turbine. 

( Turbine workmcomb⋅cpt ⋅ −Wt T3 Wt = 122.203kW :=

(T3 − T2)mcomb⋅cpAve ⋅Qs Qs = 126.096kW :=

Wnet
η = 28.949% Thermal efficiencyη :=

Qs 

Figure 4.18 (continued) 

Application 

Markets for microturbines include commercial and light industrial facilities.  

These customers often pay more for electricity than larger end-users and can potentially 

utilize microturbines as a cost-effective alternative to the electricity grid.  Microturbines 

have a relatively modest heat output that is ideally matched to end-users with low 
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pressure steam or hot water requirements. Electric generation applications suited to 

microturbines are standby power, peak shaving, and base loaded operation with and 

without heat recovery.  Single-shaft microturbines are optimal for these electric 

generation applications.  Two-shaft turbines are used to supply electrical power and can 

drive chillers or air compressors. 

Microturbines are being developed to utilize a variety of fuels and are being used 

for resource recovery and landfill gas applications.  Since microturbines produce between 

25-kW and 500-kW of power, they are well-suited for small commercial building 

establishments such as restaurants, hotels/motels, small offices, and retail stores.   

Heat Recovery 

Most microturbine designs incorporate a recuperator, which limits the amount of 

heat available for CHP applications. Recuperators are utilized as a method of heat 

recovery to significantly increase the operating efficiency of a microturbine generator 

system.  The remaining hot exhaust gas from the turbine section is available for CHP 

applications. Heat can be recovered from microturbine exhaust for hot water heating and 

for low-pressure steam used in process and space heating applications. An 80-kW 

microturbine generator system with heat recovery manufactured by Bowman Power 

Systems is illustrated in Figure 4.19. 
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Figure 4.19:  TG80 Microturbine generator System with Heat Recovery
 (www.bowmanpower.com) 

A system performance chart for the Bowman TG80 is presented in Figure 4.20.  

The chart illustrates the importance of recuperation to system efficiency as well as the 

loss of available thermal energy with the addition of a recuperator.  With recuperation, 

the TG80 microturbine generator system yields an electric generation efficiency of 26 % 

leaving 150-kW of available thermal energy.  Without recuperation, the TG80 system 

yields an electric generation efficiency of 14 % with 420-kW of available thermal energy.  

There is a significant increase in the overall efficiency of both the recuperated and 

unrecuperated systems when the thermal energy is recovered. 

www.bowmanpower.com
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Figure 4.20:  TG80 System Performance Chart (www.bowmanpower.com) 

Cost 

Microturbine capital costs range from $700 - $1,100/kW. These costs include all 

hardware, associated manuals, software, and initial training.  Adding heat recovery 

components increases the capital cost by $75 - $350/kW.  Installing the system typically 

increases the capital cost by 30-50 %. 

Targeted microturbine costs appear to be attainable if the market expands and 

sales volumes increase.  With fewer moving parts than reciprocating engines, 

microturbines provide higher reliability than conventional reciprocating generation 

technologies.  Manufacturers expect microturbines to require a once-a-year maintenance 

schedule when the technology matures and are targeting maintenance intervals of 5,000-

8,000 hours. Forecasted maintenance costs for microturbine units are $0.005-$0.016 per 

kWh, similar to those of small reciprocating engine systems. 

(www.energy.ca.gov/distgen/) 

www.energy.ca.gov/distgen
www.bowmanpower.com
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Microturbines and CHP-B 

Low-level power outputs well suit microturbine generators to CHP-B 

applications, especially in commercial and light industrial facilities.  Restaurants, 

hotels/motels, hospitals, small offices, retail stores, and other establishments that could 

benefit from DPG technologies require power components that have compact sizes, low 

noise levels, and low emissions. IC engines can supply equivalent levels of power output 

as microturbines, but don’t share advantages such as low noise levels and low emissions 

that make microturbines desirable to commercial end-users. Microturbines benefit light 

industrial facilities by providing stand-by power, peak-power shaving, and power for 

base load operation. 

Microturbines have fewer moving parts in comparison with IC engines.  Fewer 

moving parts and low lubrication requirements provide microturbines with long 

maintenance intervals. Both commercial and industrial end-users that have a need for 

microturbine waste heat benefit from system cogeneration efficiencies of over 80 %.  

Another advantage of microturbines is their potential to operate on waste fuels such as 

recovered resources and landfill gas. 

Similar to larger combustion turbines, microturbines suffer a loss of power output 

and efficiency as the ambient temperature and elevation increase.  Higher initial costs are 

a disadvantage of microturbines when compared with the initial costs of IC engines.  

With recuperation, microturbines reach electric generation efficiencies near 30 %.  This 

fuel to electricity efficiency is lower than the efficiencies of competing DPG 

technologies.  There are many advantages that microturbines have over other DPG 
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components; however, low efficiencies and high costs are two disadvantages that 

currently hinder widespread acceptance of the technology.  Table 4.4 lists advantages and 

disadvantages of microturbines in distributed power generation. 

Table 4.4: Advantages and Disadvantages of Microturbines as a DPG Technology
 (www.energy.ca.gov/distgen/) 

Microturbines 
Advantages Disadvantages 

Small number of moving parts Low fuel to electricity efficiencies 

Compact size Loss of power output and efficiency with 
higher ambient temperatures and elevation. 

Light-weight High initial costs 
Good efficiencies in cogeneration 

Low emissions 
Low noise levels 

Can utilize waste fuels 
Long maintenance intervals 
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Manufacturers 

There are more than twenty companies worldwide that are involved in the 

development and commercialization of microturbines for distributed energy resource 

applications. Five of the leading microturbine manufacturers are listed here. 

• Bowman Power Systems is an U.K. company that develops 80-kW microturbine 

power generation systems for distributed energy resource and mobile power 

applications. The Bowman TG80 microturbine is shown in Figure 4.21. 

Figure 4.21:  TG80 Microturbine generator System by Bowman Power Systems 
(www.bowmanpower.com) 

www.bowmanpower.com
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• Capstone Turbine Corporation, based in Chatsworth, California, is a leader in the 

commercialization of low-emission, high-reliability microturbine power 

generators. The company offers 30-kW and 60-kW systems for distributed energy 

resource applications. A series of Capstone Turbine microturbines are pictured in 

Figure 4.22. 

Figure 4.22:  Microturbine generator Sets by Capstone Turbine    
(www.capstone.com) 

• Elliot Energy Systems, located in Stuart, Florida, develops and manufactures 80-

kW microturbines.  Figure 4.23 presents an Elliot microturbine.  

Figure 4.23:  80-kW Microturbine by Elliot Energy Systems  
(www.elliot-turbo.com) 

www.elliot-turbo.com
www.capstone.com
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• Ingersoll Rand Energy Systems of Portsmouth, New Hampshire develops the 

PowerWorks™ line of microturbine generators with an output of 70-kW, like the 

microturbine-generator pictured in Figure 4.24. 

Figure 4.24:  70-kW PowerWorks Microturbine Generator by Ingersoll Rand 
(www.ingersoll-rand.com) 

• Turbec AB is a Swedish company jointly owned by ABB and Volvo Aero. The 

company offers a 100-kW microturbine power generator for commercial 

distributed energy resource applications.  Figure 4.25 shows a Turbec 

microturbine. 

Figure 4.25:  100-kW Microturbine Generator System by Turbec AB
 (www.turbec.com) 

www.turbec.com
www.ingersoll-rand.com
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Combustion Turbine Problems 

1. An ideal Brayton cycle is modeled on an air-standard basis.  The compression ratio of 
the cycle is 11with air entering the compressor at T1 = 70°F, p1 = 14.7 psi, with a 
mass flow rate of 85,000 lb/hr. If the turbine inlet temperature is 1,750°F, determine 
(a) the thermal efficiency, (b) the net power developed, and (c) the amount of waste 
heat available for recovery. 

2. The net power developed by an ideal air-standard Brayton cycle is 3.4 x 107 Btu/hr.  
The pressure ratio for the cycle is 10, and the minimum and maximum temperatures 
are 520°R and 2800°R, respectively.  Calculate (a) the thermal efficiency of the cycle, 
(b) the mass flow rate of the air, and (c) the amount of waste heat available for 
recovery. 

3. The minimum and maximum temperatures of an ideal Brayton cycle are 290 K and 
01650 K respectively.  The pressure ratio is that which maximizes the net work 
developed by the cycle per unit mass of air-flow.  Using a cold air-standard analysis, 
determine (a) the compressor work per unit mass of air-flow, (b) the turbine work per 
unit mass of air-flow, and (c) the thermal efficiency of the cycle. 

4. A simplified analysis is performed on a gas turbine engine cycle with a compression 
ratio of 8 to 1. The compressor and turbine inlet temperatures are 320 K and 1450 K, 
respectively.  The compressor has an efficiency of 0.84 and the turbine has an 
efficiency of 0.88.  Calculate the thermal efficiency of (a) the ideal Brayton cycle, (b) 
the actual gas turbine cycle, and (c) the amount of waste heat available for recovery. 

5. A gas turbine power plant produces 5000 kW of shaft power from inlet air at 97 kPa 
and 30°C. The compressor has a compression ratio of 5.5 and an isentropic 
efficiency of 0.84.  In the combustion chamber, there is a pressure loss equal to 3 
percent of the inlet air pressure and the outlet temperature is 1000°C. If the turbine 
has an isentropic efficiency of 0.88 and an exhaust pressure of 100 kPa, determine the 
air flow rate and power plant thermal efficiency. 

6. A stationary gas turbine has compressor and turbine efficiencies of 0.85 and 0.90, 
respectively, and a pressure ratio of 20.  Determine the work of the compressor and 
the turbine, the net work, the turbine exit temperature, and the thermal efficiency for 
80°F ambient and 1900°F turbine inlet temperatures. 
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7. A 25-kW microturbine meets all of the electricity requirements of an office 

building. The set point for the thermostat remains at 68°F.  The turbine inlet 
temperature is 1,800°F and the compressor and turbine have efficiencies of 0.72 and 
0.80, respectively.  The shaft work produced by the turbine is completely converted 
into electrical power.  If the compressor pressure ratio is 8, determine the compressor 
and turbine work in kJ/kg, the net work in kJ/kg, and the thermal efficiency of the 
microturbine. 

8. Determine the required COP of an absorption chiller that must provide 20 tons of 
cooling for the office building in Problem 7.  The exhaust heat of the microturbine is 
transferred to the absorption chiller by a direct pipe that is 90 % effective and the 
exhaust leaves the chiller at a temperature of 350°F. (1 ton = 12,000 Btu/hr) 

9. The exhaust of a 2.5-MW gas turbine operating at a 900°C turbine inlet temperature 
with a compressor pressure ratio of 9 transfers heat without loss to operate an 
absorption chiller with a COP of 0.85.  The exhaust gas leaves the chiller at a 
temperature of 110°C. The compressor inlet conditions are 105 kPa and 35°C, and 
the compressor and turbine isentropic efficiencies are 82 % and 87 % respectively. 
How many tons of refrigeration can be produced by the chiller? 



 

 

 

 
 

 
 
 

 

CHAPTER V 

FUEL CELLS 

Technology Overview 

A fuel cell is an electrochemical energy conversion device that converts hydrogen 

and oxygen into electricity and heat.  Fuel cells are similar to batteries in that they both 

produce direct current (DC) through an electrochemical process without the direct 

combustion of a fuel source. However, whereas a battery delivers power from a finite 

amount of stored energy, fuel cells can operate indefinitely provided that a fuel source is 

continuously supplied.  The input fuel passes over an anode where a catalytic reaction 

splits the fuel into ions and electrons. The ions pass from the anode, through an 

electrolyte, to an oxygen-rich cathode.  Electrons pass through an external circuit to serve 

an electric load. An individual fuel cell produces between 0.5 – 0.9 volts of DC 

electricity.  Fuel cells are combined into “stacks” like a battery to obtain usable voltage 

and power output. A single fuel cell “stack” is illustrated in Figure 5.1. 
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Figure 5.1:  Single Stack of a Fuel Cell (www.dodfuelcell.com) 

A fuel cell system consists of several major components including a fuel reformer 

(processor), which generates hydrogen-rich gas from fuel, a power section (stack) where 

the electrochemical process occurs and a power conditioner (inverter), which converts the 

direct current (DC) electricity generated in the fuel cell into alternating current (AC) 

electricity at the appropriate grid voltage.  Most fuel cell applications involve 

interconnectivity with the electric grid; thus, the power conditioner must synchronize the 

fuel cell’s electrical output with the grid, meeting specific voltage and frequency 

requirements. A fuel cell system schematic is presented in Figure 5.2. 

www.dodfuelcell.com
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Figure 5.2:  Fuel Cell System Schematic (www.dodfuelcell.com) 

Natural gas (methane) is considered to be the most readily available fuel and the 

cleanest fuel (next to hydrogen) for powering fuel cells; thus, most research and 

development is focused on natural-gas-powered fuel cells. However, since fuel cells 

require hydrogen gas to operate, they can also be powered by propane, diesel, fuel oil, 

bio-derived gas, and other fuels.   

Reforming the fuel “frees” the hydrogen and removes contaminants that would 

otherwise poison the catalytic electrodes.  Storage of the reformed, hydrogen-rich 

mixture is usually unnecessary since the fuel is processed at the point of use.  Fuel 

reforming can occur externally or internally depending on the fuel cell’s operating 

temperature. 

Most fuel cells have a similar design to the system illustrated in Figure 5.1, but 

differ with respect to the type of electrolyte used.  The five main types of fuel cells, as 

classified by their electrolytes, are alkaline, phosphoric acid (PAFC), molten carbonate 

(MCFC), solid oxide (SOFC), and proton exchange membrane (PEMFC) fuel cells.  

Alkaline fuel cells require very pure hydrogen that is expensive to produce and for this 

www.dodfuelcell.com
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reason are not considered as a major contender for distributed power generation 

technology. 

PAFC 

Phosphoric acid fuel cells are generally considered "first generation" technology. 

These fuel cells operate at about 200°C (400°F) and achieve 40 % to 45 % fuel-to-

electricity efficiencies on a lower heating value basis (LHV).  The PAFC is commercially 

available with over 245 units in operation. 

The PAFC uses liquid phosphoric acid as an electrolyte.  Platinum-catalyzed, 

porous-carbon electrodes are used for both the cathode and anode. The PAFC reactions 

are: 

Anode Re action : H 2 → 2H + + 2e−

1 2 −Cathode Re action : O2 + 2H + 2e → H 2O 
2 

For each type of fuel cell, the reformer supplies hydrogen gas (H2) to the anode through a 

process in which hydrocarbons (CH2), water (H2O), and oxygen (O2) react to produce 

hydrogen (H2), carbon dioxide (CO2), and carbon monoxide (CO). 

At the anode, hydrogen is split into two hydrogen ions (H+) and two electrons. As 

illustrated in Figure 5.3, the hydrogen ions pass through the electrolyte to the cathode and 

the electrons pass through the external circuit to the cathode.  At the cathode, the 

hydrogen, electrons and oxygen combine to form water. 
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Figure 5.3:  PAFC (www.dodfuelcell.com) 

MCFC 

Molten carbonate fuel cells have the potential to reach 50 % to 60 % LHV fuel-to-

electricity efficiencies.  Combined-cycle applications could reach system thermal 

efficiencies of 85 % LHV.  MCFCs have operated on hydrogen, carbon monoxide, 

natural gas, propane, landfill gas, marine diesel, and simulated coal gasification products. 

Operating temperatures for MCFCs are around 650°C (1,200°F).  The high operating 

temperature of the MCFC makes direct operation on gaseous hydrocarbon fuels, such as 

natural gas, possible.  Natural gas can be reformed internally in MCFCs to produce 

hydrogen. 

The molten carbonate fuel cell uses a molten carbonate salt mixture as an 

electrolyte.  The composition of the electrolyte varies, but usually consists of lithium 

www.dodfuelcell.com
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carbonate and potassium carbonate. The salt mixture is liquid and a good ionic 

conductor at the MCFC’s high operating temperature.  The MCFC reactions are: 

2− −Anode reaction : H + CO → H O + CO + 2e2 3 2 2 
2− −CO + CO3 → 2CO2 + 2e 

− 2−Cathode reaction : O → 2CO + 4e → 2CO2 2 3 

An electrochemical reaction occurs at the anode between the hydrogen fuel and 

carbonate ions (CO3
2-) from the electrolyte.  This reaction produces water and carbon 

dioxide (CO2) and releases electrons to the anode. At the cathode, oxygen and CO2 from 

the oxidant stream are combined with electrons from the anode to produce carbonate 

ions, which enter the electrolyte.  The reactions that occur in an MCFC are depicted in 

Figure 5.4. 

Figure 5.4:  MCFC (www.dodfuelcell.com) 

www.dodfuelcell.com
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SOFC 

Solid oxide fuel cells operate at temperatures of up to 1,000°C (1,800°F), offering 

enhanced combined-cycle performance.  A solid oxide system typically uses a hard 

ceramic material instead of a liquid electrolyte.  The solid-state ceramic construction is a 

more stable and reliable design, enabling high temperatures and more flexibility in fuel 

choice.  SOFCs are capable of fuel-to-electricity efficiencies of 50 % to 60 % LHV and 

total system thermal efficiencies up to 85 % LHV in combined-cycle applications. 

SOFCs can use CO as well as hydrogen as direct fuel.  The reactions occurring in 

an SOFC include 

2− −Anode reaction : H 2 + O → H 2O + 2e 
2− −CO + O → CO2 + 2e 

2− −CH + 4O → 2H O + CO + 8e4 2 2 
− 2−Cathode reaction : O2 + 4e → 2O 

In the SOFC reactions, hydrogen or carbon monoxide (CO) in the fuel stream react with 

oxide ions (O2-) from the electrolyte.  These respective reactions produce water and CO2, 

and deposit electrons into the anode. The electrons pass outside the fuel cell, through the 

load, and back to the cathode. At the cathode, oxygen molecules from the air receive the 

electrons and the molecules are converted into oxide ions.  The oxide ions are injected 

back into the electrolyte.  SOFC reactions are illustrated in Figure 5.5.  
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Figure 5.5:  SOFC (www.dodfuelcell.com) 

PEMFC 

Proton exchange membrane fuel cells contain a thin plastic polymer membrane 

through which hydrogen ions can pass.  The membrane is coated on both sides with 

highly dispersed metal alloy particles (mostly platinum) that are active catalysts.  Since 

the electrolyte in a PEMFC is a solid polymer; electrolyte loss is not an issue with regard 

to stack life.  The use of a solid electrolyte eliminates the safety concerns and corrosive 

effects associated with liquid electrolytes.  PEMFCs operate at relatively low 

temperatures (about 200°F). The reactions that occur in the PEMFC are as follows: 

Anode Re action : H 2 → 2H + + 2e−

Cathode Re action : O2 → 4H + + 4e− → 2H 2O 

The electrode reactions in the PEMFC are analogous to those in the PAFC, as 

indicated in Figure 5.6.  Hydrogen ions and electrons are produced from the fuel gas at 

www.dodfuelcell.com
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the anode. At the cathode, oxygen combines with electrons from the anode and 

hydrogen ions from the electrolyte to produce water.  The solid electrolyte does not 

absorb the water; thus, the water is rejected from the back of the cathode into the oxidant  

gas stream. 

Figure 5.6:  PEMFC (www.dodfuelcell.com) 

The four types of fuel cells discussed above are similar in function and design.  

However, different physical compositions and operating characteristics affect the 

performance of each type of fuel cell.  Table 5.1 gives an overview of fuel cell 

characteristics for the PAFC, SOFC, MCFC, and PEMFC. 

www.dodfuelcell.com
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Table 5.1: Overview of Fuel Cell Characteristics (www.energy.ca.gov/distgen/) 

Fuel Cell Overview 

 

 
     

 
  

    

 
    

 

 
 

 
 

 
 

 
 
 

PAFC SOFC MCFC PEMFC 
Commercial 

Status 
Limited 

Availability 
Not Available Not Available Not Available 

Size Range 100-200 kW 1 kW - 10 MW 250 kW - 10 MW 3-250 kW 
Average 

Operating 
Temperature 

400°F 
(200°C) 

1800°F 
(1000°C) 

1200°F 
(650°C) 

200°F 
(90°C) 

Fuel Natural gas, 
landfill gas, 
digester gas, 

propane 

Natural gas, 
hydrogen, landfill 

gas, fuel oil 

Natural gas, 
hydrogen 

Natural gas, 
hydrogen, 
propane, 

diesel 
Efficiency 40-45 % 50-60 % 50-60 % 40-50 % 
Reforming External External/Internal External/Internal External 

Environmental Nearly zero 
emissions 

Nearly zero 
emissions 

Nearly zero 
emissions 

Nearly zero 
emissions 

Application 

Fuel cells are being developed for stationary power in small commercial and 

residential markets and as peak shaving units for large commercial and industrial end-

users. 200-kW phosphoric acid fuel cells have been installed at medical, industrial, and 

commercial facilities throughout the country.  The commercially available PC-25™, a 

200-kW PAFC by United Technologies Company, provides highly reliable electric power 

and cogeneration applications.  However, the PC-25™ is the only commercially available 

fuel cell with significant operating experience.  The SOFC, MCFC, and PEMFC are still 

in development stages; but future applications of these fuel cells are of great interest.  

Some of the applications being considered for MCFCs, SOFCs, and PEMFCs are 

discussed below. 

www.energy.ca.gov/distgen
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Molten carbonate fuel cells have high efficiencies and high operating 

temperatures that make them most attractive for base-loaded power generation with or 

without cogeneration.  The wide range of MCFC power output, 250-kW to 10-MW, 

mades this type of fuel cell attractive for base-load power generation for industrial and 

governmental facilities, universities, and hospitals.  

Solid oxide fuel cells are being considered for a wide variety of applications in the 

5-kW to 250-kW range.  SOFCs have potential application for residential cogeneration 

and for power for small commercial buildings and industrial facilities.  Due to the very 

high exhaust temperatures and to an all-solid ceramic construction, many experts believe 

that the SOFC will be the dominant technology for stationary power applications.  SOFC 

designs in the multi-megawatt capacity range are being considered for base-loaded utility 

applications. 

The development of proton exchange membrane fuel cells has been driven in 

large part by the automotive sector.  PEMFCs have a high power density and short startup 

time, which is an advantage over other fuel cell technologies.  PEMFCs are currently 

being developed for a wide range of applications including: 

• Automotive 

• Residential (<10 kW), with/without cogeneration functionality 

• Commercial (10 – 250 kW), with/without cogeneration functionality 

• Light industrial ([250 kW), with/without cogeneration functionality 

• Portable power (several kW and smaller). (www.energy.ca.gov/distgen/) 

www.energy.ca.gov/distgen
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Heat Recovery 

Significant heat is released in a fuel cell during electrical generation.  The PAFC 

and PEMFC operate at low temperatures (see Table 5.1) and can produce low-pressure 

steam and hot water that is suitable for commercial and industrial CHP applications. The 

MCFC and SOFC operate at much higher temperatures and produce heat that is sufficient 

to generate additional electricity with a steam turbine or a microturbine combined cycle. 

In a microturbine combined cycle, the combustion chamber of the microturbine is 

replaced with a SOFC.  The SOFC generates both electricity and high-pressure, high-

temperature exhaust suitable for expansion in a microturbine. 

Cost 

The first cost of fuel cells is very high compared to those of other DER 

technologies.  The 2002 cost of the PC-25™ unit was approximately $4,000/kW.  The 

installed cost of the unit approaches $1.1 million. At a rated output of 200 kW, the total 

cost with installation is about $5,500/kW.  Efforts are underway to reduce the cost of 

phosphoric acid fuel cells. The Department of Energy (DOE) is helping to promote fuel 

cell technologies by offering a $1000/kW federal subsidy to reduce the cost to the 

purchaser. Since fuel cell types are under development, their costs are difficult to 

estimate. 

Fuel cells are expected to have minimum maintenance requirements.  The fuel 

supply systems and reformer system may need periodic (about once a year) inspection 

and maintenance.  The fuel cell stack itself will not require maintenance until the end of 
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the fuel cell’s service life.  The maintenance and reliability of fuel cell systems still 

need to be proven in large-scale, long-term demonstrations.  Maintenance costs of a fuel 

cell are expected to be comparable to that of a microturbine, ranging from $0.005-

$0.010/kWh (based on an annual inspection visit to the unit).  

(http://www.energy.ca.gov/distgen//distgen/equipment/fuel_cells/cost.html) 

Fuel Cells and CHP-B 

Fuel cells are expected to deliver electrical conversion efficiencies in the range of 

40 to 60 %. Fuel cells used in cogeneration applications could realize energy conversion 

efficiencies of 80 to 90 % for the overall system.  CHP-B applications can benefit from 

the high electrical conversion efficiencies of fuel cells and the even higher overall energy 

conversion efficiencies of fuel cells used in combined cycles and fuel cells coupled with 

thermally activated components.  Fuel cells produce electricity without combustion; 

therefore, combustion products will not pollute populated CHP-B installation locations.  

Residential and commercial buildings will also benefit from the quiet and reliable 

operation of fuel cells. 

Despite the many advantages that fuel cells offer for CHP-B practices, there are 

overwhelming obstacles that hinder the widespread availability and installation of fuel 

cells. Fuel cells are much more expensive than the other distributed power generation 

technologies that are being considered for CHP-B applications.  The PC-25™ units are 

only used in high value, "niche" markets where reliability is a premium and in areas 

where electricity prices are very high and natural gas prices are low.  The PC-25™ 

phosphoric acid fuel cell is the only commercially available fuel cell currently compiling 

http://www.energy.ca.gov/distgen//distgen/equipment/fuel_cells/cost.html
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operating experience.  This limited operating experience gives fuel cells a disadvantage 

when compared with the operating experience of competing DPG technologies.  Some of 

the advantages and disadvantages of each type of fuel cell are listed in Table 5.2. 

Table 5.2: Advantages and Disadvantages of Fuel Cells (www.energy.ca.gov/distgen/) 

Fuel Cells 
PAFC

 Advantages Disadvantages 
Quiet High costs 

Low emissions 
High efficiency 

Proven reliability 
MCFC

 Advantages Disadvantages 
Quiet Need to demonstrate long term 

dependability Low emissions 
High efficiency High Cost 

SOFC
 Advantages Disadvantages 

Quiet Still in the R&D stage 
Low emissions High Cost 
High efficiency 

 
 

 

 

 

 
  
  

 

 
 

 

 

  

  

 
 

 

PEMFC 
Advantages Disadvantages 

Quiet Limited field test experience 
Low emissions Low temperature waste heat may limit 

cogeneration potential High efficiency 
Synergy with automotive R&D High Cost 

www.energy.ca.gov/distgen
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Manufacturers 

The following list of manufacturers and developers was obtained at 

http://www.energy.ca.gov/distgen//distgen/equipment/fuel_cells/vendors.html. 

Phosphoric Acid 

• UTC Fuel Cells, formerly ONSI, located in South Windsor, Connecticut, offers 

the 200-kW PC25™ PAFC power plant.  The PC25™ is pictured in Figure 5.7. 

Figure 5.7:  200-kW PC25™ PAFC by United Technologies Company 
(www.utcfuelcells.com) 

Two other companies that are currently developing PAFCs are listed below. 

• The fuel cell business department of Japan's Fuji Electric Company, Ltd. 

manufactures and sells the FP-100, a 100-kW PAFC power plant. 

www.utcfuelcells.com
http://www.energy.ca.gov/distgen//distgen/equipment/fuel_cells/vendors.html
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• Mitsubishi Electric Corporation plans to commercialize 200-kW PAFC systems. 

The company conducts PAFC work at the Advanced Technology R&D Center in 

Japan. 

 Molten Carbonate 

There are few molten carbonate fuel cell developers worldwide. Three well-known 

MCFC companies are as follows: 

• Fuel Cell Energy of Danbury, Connecticut is regarded as the leading developer of 

MCFC technology. The company plans to offer its Direct Fuel Cell™ power 

plants with power outputs ranging from 250 kW to 3 MW. 

• The Power & Industrial Systems R&D Division of Hitachi, Ltd. and the Hitachi 

Works Fuel Cell Development Center, both located in Japan, develop and design 

MCFC structures and stacks.  

• Ansaldo Ricerce Srl of Genova, Italy plans to manufacture and commercialize the 

"Series 500" MCFC power plant, which has an output of 500 kW and is based 

entirely on European technology. 

Proton Exchange Membrane 

Throughout the world, there are more than forty companies involved in the 

development of proton exchange membrane fuel cell systems for stationary and 

automotive applications. The following is a list of eight of the leading North American 

developers of PEMFC systems for stationary distributed energy resource applications: 
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• Avista Labs of Spokane, Washington, has patented a modular "hot-swap" PEMFC 

cartridge and plans to commercialize PEMFC systems for residential and small 

commercial applications. 

• Ballard Generation Systems, based in Burnaby, British Columbia, is a leading 

developer of 1-kW and 250-kW PEMFC systems for stationary power 

applications. 

• Dais-Analytic Corporation, with offices in Odessa, Florida, plans to 

commercialize a 3-kW residential fuel cell system based on PEMFC technology. 

• H Power, located in Belleville, New Jersey, is a developer of 3- to 4.5-kW 

residential cogeneration units based on PEMFC technology. 

• IdaTech of Bend, Oregon intends to offer a 3-kW PEMFC system for residential 

DER applications. 

• UTC Fuel Cells, headquartered in South Windsor, Connecticut, plans to release a 

7.5-kW residential PEMFC system. 

• Nuvera Fuel Cells, based in Cambridge, Massachusetts, develops stationary 

PEMFC systems for applications in the 1-kW to 50-kW range. 

• Plug Power of Latham, New York manufactures a 7-kW residential fuel cell 

system. General Electric is the master distributor of this system throughout the 

world, except for in Michigan, Indiana, Ohio, and Illinois where DTE Energy has 

distribution rights. 

• Proton Energy Systems, with offices in Rocky Hill, Connecticut, develops 

regenerative fuel cells, utilizing PEMFC technology and electrolyzers. 
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 Solid Oxide 

There are more than twenty developers of solid oxide fuel cell technology.  Four of 

the leading North American companies are delineated as follows: 

• Global Thermoelectric, based in Calgary, Alberta, is a developer of planar (flat, 

square or rectangular plates, like Figure5.1) SOFC systems for residential and 

small commercial applications. 

• Siemens-Westinghouse Power Corporation in Pittsburgh, Pennsylvania takes the 

lead in the development of tubular (single cell per tube with cell built up in layers 

from air electrode) SOFC systems. The company presently offers a 250-kW 

power plant for commercial distributed energy resource applications. 

• SOFCo, a division of McDermott Technology, Inc. located in Alliance, Ohio, has 

developed a simple, proprietary manufacturing method for planar SOFCs. The 

company plans to develop SOFC systems for commercial stationary applications. 

• ZTEK Corporation of Waltham, Massachusetts plans to commercialize a 200-kW 

SOFC-Microturbine hybrid system and a 150-kW SOFC system to produce 

electricity, heating, ventilation, and air conditioning. 



 

 

 
 

 

 

CHAPTER VI 

HEAT RECOVERY 

Electrical and shaft power generation efficiencies have attained maximum values 

of 50 % for IC engines, 60 % for combustion turbines (combined cycle), 30 % for 

microturbines, and 70 % for fuel cells. Most power generation components falling into 

these categories do not reach the upper level efficiencies of these technologies.  

Components such as microturbines, that convert 30 % of the input fuel into electrical or 

shaft power, fail to harness 70 % of the available energy source.  Energy that is not 

converted to electrical power or shaft power is typically rejected from the process in the 

form of waste heat. The task of converting waste heat to useful energy is called heat 

recovery and is primarily accomplished through the use of heat exchanger devices such 

as heat recovery steam generators (HRSG). 

Distributed generation components offer sources of waste heat than can be 

harnessed as useful energy.  The characteristics of waste heat generated in combustion 

turbines, internal combustion engines, and fuel cells directly affects the efficacy with 

which useful energy is recovered for additional processes.  Some of the characteristics of 

the waste heat generated by these distributed power generation technologies are presented 

in Table 6.1. Waste heat is typically produced in the form of hot exhaust gases, process 
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98 
steam, and process liquids/solids. In combustion turbines and IC engines, heat is 

rejected in the combustion exhaust and the coolant. Fuel cells reject heat in the form of 

hot water or steam. 

Table 6.1: Waste Heat Characteristics of DPG Technologies 
(http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf) 

Usable temp. for 
CHP (8F) 

CHP output 
(Btu/kW-hr) 

Uses for heat 
recovery 

Diesel Engine 180-900 3,400 Hot water, LP steam, 
District heating 

Natural Gas Engine 300-500 1,000-5,000 Hot water, LP steam, 
District heating 

Gas Turbine 5,00-1,100 3,400-12,000 Direct Heat, Hot 
water, LP-HP steam, 

District heating 
Microturbine 400-650 4,000-15,000 Direct heat, Hot 

water, LP steam 
Fuel Cell 140-700 500-3,700 Hot water, LP steam 

Shah (15) classifies recovered heat as low-temperature (< 2308C), medium-

temperature (2308C - 6508C), or high-temperature (> 6508C). Recovered heat that is 

utilized in the power generation process is internal heat recovery, and recovered heat that 

is used for other processes is external heat recovery. Combustion pre-heaters, 

turbochargers and recuperators are examples of internal heat recovery components. Heat 

recovery steam generators, absorption chillers, and desiccant systems are examples of 

external heat recovery components. 

http://www.eren.doe.gov/der/chp/pdfs/chprev.pdf
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Technology Overview 

Because combustion exhaust cannot be used directly in many applications heat 

exchangers are used to facilitate the transfer of waste heat thermal energy to heat 

recovery applications.  Heat exchangers classification is based on component and fluid 

characteristics.  This study will focus on transmural, recuperative heat exchangers.  The 

continuous transfer of heat between two fluids (recuperative) that are separated by a wall 

(transmural) characterizes this type of heat exchanger.  Three prominent heat exchanger 

geometries that fit this classification are double-pipe heat exchangers, shell-and-tube heat 

exchangers, and cross-flow heat exchangers.   

A detailed analysis of the various geometries of heat exchangers will not be 

performed herein. General heat transfer textbooks and specialized heat exchanger 

references contain information about double-pipe heat exchangers, shell-and-tube heat 

exchangers, and cross-flow heat exchangers.  Each of these types of heat exchangers is 

useful in waste heat recovery.  The selection of the best heat exchanger geometry 

depends on both the prime mover and the thermally-activated component. 

The simplest type of heat exchanger is a double-pipe heat exchanger, which 

consists of one fluid flowing through an inner pipe and a second fluid flowing in an outer 

annulus. The two fluids can flow in a parallel-flow or counterflow arrangement.  

Extended surfaces (fins) are often added to the inside or outside surface of the inner pipe 

in order to increase the rate of heat transfer. Double-pipe heat exchangers are easy to 

manufacture, but have limited heat transfer capability due to small surface areas.  

Parallel-flow and counterflow double-pipe heat exchangers are illustrated in Figure 6.1. 
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Figure 6.1:  (a) Parallel-flow and (b) Counterflow Double-Pipe Heat Exchangers 

Shell-tube-heat exchangers consist of a cylindrical or rectangular shell enclosing a 

bundle of tubes. One fluid flows through the tubes, and a second fluid flows across the 

tubes in the shell. Baffles are often used to control the flow of the shell-side fluid.  If the 

tube-side fluid flows the length of the heat exchanger only one pass, the device is 

considered a one-tube pass shell-and-tube heat exchanger.  Multiple-tube pass shell-and-

tube heat exchangers are very common.  Shell-and-tube heat exchangers have large ratios 

of heat transfer surface area to weight and volume and are manufactured in various sizes.  

A schematic of a shell-and-tube heat exchanger with water flowing through the shell and 

steam flowing through the tubes is presented in Figure 6.2. 
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Figure 6.2: Shell-and-tube heat exchanger 
(http://blt.colorado.edu/images/gif/heat_exa.gif) 

Cross-flow heat exchangers consist of two fluids flowing in mutually 

perpendicular directions. A typical cross-flow heat exchanger consists of one fluid 

flowing through an array of tubes and a second fluid flowing across the tubes. The flow 

of fluid in the tubes is always considered unmixed; however, the flow across the tubes is 

considered mixed if there are no plate-fins attached and unmixed if plate-fins are 

attached. These two types of cross-flow heat exchangers are illustrated in Figure 6.3. 

Hodge and Taylor (9) suggest that the arrangement of cross-flow heat exchangers offers 

some advantages in terms of compactness and effectiveness and some disadvantages in 

terms of fabrication and maintenance. 

http://blt.colorado.edu/images/gif/heat_exa.gif
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  (a) (b) 

Figure 6.3. Cross-flow heat exchangers (a) unmixed-mixed (b) unmixed-unmixed 

Heat Exchanger Analysis 

Specific analysis methods and their formulations will not be covered in this study 

since most general heat transfer textbooks cover the fundamental of heat exchanger 

design and analysis.  To determine the heat transfer rate (duty) in a heat exchanger, both 

an overall heat transfer coefficient (which relates the heat flux between two fluid streams) 

and a temperature difference must be known. The overall heat transfer coefficient can be 

determined based on the heat exchanger geometry and local heat transfer coefficients.  

Conductive, convective, and radiative heat transfer may each contribute to the 

overall heat transfer coefficient of a heat exchanger.  Convection and conduction are 

always present in waste heat recovery and will always be considered in heat exchanger 

design and analysis.  Radiation is a significant mode of heat transfer in metallic radiation 

recuperators.  Determining the convective heat transfer coefficient, (h), is accomplished 

using established and verified correlations that are based on experimental data.  General 



 

  

 

 

 

 

 

 

1 0 3 
h e at tr a nsf er t e xt b o o ks pr o vi d e c o n v e cti v e c orr el ati o ns f or m a n y r e gi m es a n d 

arr a n g e m e nts.   

T w o m et h o ds ar e a v ail a bl e f or h e at e x c h a n g er d esi g n a n d a n al ysis.  T h e l o g m e a n 

t e m p er at ur e diff er e n c e ( L M T D) m et h o d w as t h e first m et h o d d e v el o p e d a n d is still 

wi d el y us e d.  A m or e r e c e nt m et h o d is t h e n u m b er of tr a nsf er u nits ( N T U) a p pr o a c h 

( H o d g e a n d T a yl or, 1 9 9 9).  T h e N T U m et h o d will b e dis c uss e d i n bri ef, si n c e t his 

m et h o d is pr ef err e d f or g e n er al- p ur p os e d esi g n a n d a n al ysis.  

T h e N T U m et h o d us es t h e c o n c e pt of eff e cti v e n ess.  T h e h e at- e x c h a n g er 

eff e cti v e n ess is d efi n e d as t h e r ati o of t h e a ct u al r at e of h e at tr a nsf er i n a h e at e x c h a n g er 

t o t h e m a xi m u m p ossi bl e r at e of h e at tr a nsf er i n t h e e x c h a n g er as li mit e d b y t h e S e c o n d 

L a w of T h er m o d y n a mi cs.   

A ct u al R at e of  H e at Tr a nsf er ( 6- 1)ξ = 
M a xi m u m P ossi bl e R at e of  H e at Tr a nsf er 

T h e h e at tr a nsf er r at e ( d ut y) i n t h e h e at e x c h a n g er m a y b e c o m p ut e d b y c al c ul ati n g eit h er 

t h e e n er g y l ost b y t h e h ot fl ui d or t h e e n er g y g ai n e d b y t h e c ol d fl ui d.  I n a C H P- B 

s yst e m wit h a gi v e n w ast e h e at str e a m, t h e h e at e x c h a n g er’s eff e cti v e n ess d et er mi n es t h e 

a m o u nt of e n er g y a v ail a bl e f or t h e t h er m all y- a cti v at e d c o m p o n e nt. 

Es p e ci all y i n w ast e h e at r e c o v er y, t h e pr ess ur e dr o ps t h at o c c ur i n a h e at 

e x c h a n g er ar e v er y i m p ort a nt s el e cti o n crit eri a.  T h e pr ess ur e dr o p i n a h e at e x c h a n g er 

d et er mi n es t h e p u m pi n g p o w er r e q uir e m e nts.  E x c essi v e pr ess ur e dr o p c a n n e g at e t h e 

e n er g y s a vi n gs fr o m t h er m al e n er g y r e c o v er y.  Als o, m a n y t h er m all y- a cti v at e d 

c o m p o n e nts r e q uir e as i nl et c o n diti o ns a s p e cifi c fl ui d t e m p er at ur e a n d pr ess ur e. 
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Performance data are available for heat exchangers that fit a wide variety of 

scenarios. However, the uniqueness of the CHP-B paradigm presents many new waste 

heat recovery scenarios. 

Application 

Waste heat recovery heat exchangers are classified as gas-to-gas, gas-to-liquid, or 

liquid-to-liquid. These categories of heat exchangers are useful in high-, medium-, and 

low-temperature waste heat applications.   

Gas-to-Gas Heat Exchangers 

Gas-to-gas waste heat recovery exchangers are often used as recuperators for 

preheating combustion air in IC engines and combustion turbines.  The use of 

recuperators on microturbines, industrial turbines, and IC engines depends on the thermal 

and electrical load characteristics of a CHP-B application.  Metallic radiation 

recuperators, convection recuperators, and runaround coils are three types of heat 

exchangers used for gas-to-gas waste heat recovery.  Metallic radiation recuperators 

consist of two metallic tubes in a double-pipe heat exchanger arrangement.  Hot flue gas 

flows through the inner tube and transfers heat to air that flow in the outer tube.  The 

majority of the heat transferred from the flue gas to the inner wall is accomplished by 

radiation, and the heat transfer from the wall to the air in the outer tube is accomplished 

by convection.  Metallic radiation recuperators usually has an effectiveness of 40 % or 

lower. Although metallic radiation recuperators may be desirable for some CHP-B 

applications, the use of this exchanger is limited by the relatively low effectiveness.  
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Convection recuperators are cross-flow heat exchangers with flue gas flowing 

normal to a bundle of tubes containing air.  Convection recuperators can be used in low-

temperature applications such as space heating, return air heating in a desiccant 

dehumidification system, or direct-fired absorption chillers.  Runaround coils are also 

cross-flow heat exchangers.  A runaround coil consists of two connected coils that 

circulate a working fluid.  The working fluid is heated by the waste gas and is used to 

heat a stream of cool air. Runaround coils are commonly used in HVAC applications and 

can be coupled with distributed generation components to produce warm air for district 

heating, to heat return air in a desiccant system, or to directly fire an absorption chiller.  

Some other types of heat exchangers used for gas-to-gas waste heat recovery are plate-fin 

and prime surface heat exchangers, heat pipes, and rotary generators. (Shah, 1997) 

Gas-to-Liquid Heat Exchangers 

Gas-to-liquid waste heat recovery exchangers include medium- to high-

temperature waste heat recovery devices such as heat recovery steam generators, 

fluidized-bed heat exchangers, and heat pipes, as well as low- to medium-temperature 

waste heat recovery devices such as economizers and thermal fluid heaters.  HRSG units, 

also called waste heat boilers, are used to generate steam from turbine exhaust gas.  

These steam generators are very important in CHP-B applications and will be discussed 

in greater detail in the following section.  A fluidized-bed heat exchanger is comprised of 

water, steam, or a heat transfer fluid being heated by waste heat gases that flow over a 

bed of finely-divided solid particles.  When the waste heat fluid reaches a critical 

velocity, the particles in the bed will float, and the resulting mixture acts like a fluid.  The 
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advantage of the fluidized bed is an increase in the heat transfer coefficient of the 

waste heat fluid when small solid particles are suspended in the fluid. Fluidized-bed heat 

exchangers are used for space heating, heating boiler feedwater, heating process fluids, 

and hot water services.  Gas-to-liquid heat pipes are similar to those used in gas-to-gas 

applications. Flue gas flows through one tube and heat is transferred from the gas to a 

working fluid that flows through the other tube. 

Two types of low- to medium-temperature gas-to-liquid waste heat recovery 

exchangers are economizers and thermal fluid heaters.  Economizers are cross-flow heat 

exchangers that consist of water flowing in individually finned tubes with hot gas flowing 

normal to the tubes. Economizers are often used with the boiler flue gases to preheat the 

boiler feedwater.  These waste heat recovery exchangers are also used to heat water, 

process liquids, and to superheat steam. Thermal fluid heaters are double-pipe heat 

exchangers that use waste heat gases to heat a high-temperature organic heat transfer 

fluid. This fluid is circulated throughout a plant and used for heating and cooling. 

Thermal fluid heaters can operate on waste heat or be fired by gas (they often use 

combustion gases). (Shah, 1997) 

Liquid-to-Liquid Heat Exchangers 

Liquid-to-liquid waste heat recovery exchangers are typically used in industrial 

applications. Shell-and-tube heat exchangers are generally used for this type of waste 

heat recovery.  Liquid coolant systems in combustion turbines and IC engines offer 

liquid-to-liquid heat recovery opportunities from hot oil and other liquid coolants.  
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However, liquid-to-liquid waste heat recovery may not be as significant in small-scale 

CHP-B applications as gas-to-gas and gas-to-liquid waste heat recovery. (Shah, 1997) 

Heat Recovery Steam Generators 

In many waste heat recovery applications steam or hot water is required for 

thermally-activated components, process equipment, and district heating systems.  Heat 

recovery steam generators, also known as heat recovery boilers (HRB) and waste heat 

boilers (WHB), are the most common heat exchanger device utilized to convert waste 

heat into hot water or steam. HRSGs are can be unfired, partially-fired, or fully-fired.  

Unfired HRSGs use the hot exhaust gases alone to heat or boil water.  As 

discussed in an earlier section, a duct burner can be installed in the exhaust duct of a 

turbine to burn the oxygen-rich exhaust.  If a HRSG uses a duct burner upstream of the 

boiler to increase the exhaust gas temperature, the HRSG is considered partially-fired.  In 

a fully-fired HRSG, the combustion exhaust is used like preheated air and is completely 

fired upon entering the HRSG. 

In an HRSG, energy from exhaust gas is used to vaporize water and to superheat 

steam. Figure 6.4 demonstrates this process.  According to Caton and Turner (3), the top 

line in the figure represents the temperature of the exhaust gas decreasing from left to 

right as thermal energy is removed from the gas to the water.  The lower line represents 

the water increasing in temperature from right to left as heat is added from the exhaust 

gas.  Figure 6.4 illustrates that an HRSG unit includes an economizer, an evaporator, and 

a superheater. The water is raised to saturation conditions by the low-temperature 

exhaust in the economizer.  In the evaporator, the water is vaporized into saturated steam 
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using the intermediate-temperature exhaust.  Finally, the saturated steam is 

superheated by the high-temperature exhaust in the superheater.  The pinch point is 

located where the water first starts to vaporize.  The temperature difference between the 

exhaust gas and water at this point is called the pinch point temperature difference.  The 

pinch point temperature difference is the smallest temperature difference in the HRSG 

and may limit the device’s overall performance. 

Figure 6.4:  Exhaust gas and water/stream temperatures as a function of the heat transfer 
in an HRSG (Caton and Turner, 1997) 

Selecting the proper HRSG unit depends upon the prime mover, the steam 

conditions required by the thermally-activated components or process, and other 

independent factors. The overall system performance can be improved by selecting an 

HRSG with low “back-pressure.” Units with low back-pressure have higher efficiency as 

well as higher costs.  Another consideration in selecting the appropriate HRSG is the 
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outlet stack gas temperature, which affects acid formation.  Finally, the temperature 

and pressure of the outlet steam in an HRSG is governed by the inlet conditions 

necessary to run a specific thermally-activated component or process.  HRSG units are 

important to CHP-B applications since many thermally-activated components and 

processes require hot water and steam. 



 

 

 
 

 

 

CHAPTER VII 

ABSORPTION CHILLERS 

Technology Overview 

Absorption technology is one of a group of technologies classified as heat pumps.  

Heat pump technologies can be heat-driven or work-driven and transfer heat from a low 

temperature to a high temperature.  Absorption technology is heat-driven, transferring 

heat from a low temperature to a high temperature using only heat as the driving energy.  

Absorption technology operates on the basis of the absorption cycle.  The absorption 

cycle is similar to the more familiar vapor compression cycle, which will be examined in 

order to draw analogies between the two cycles. 

Most commercial and residential air conditioning is accomplished by vapor 

compression systems.  The vapor compression cycle is a work-driven cycle that consists 

of a fluid refrigerant flowing through a system of components as in the cycle illustrated in 

Figure 7.1.  In the vapor compression cycle, shaft work is supplied (to the compressor) to 

compress the refrigerant vapor to a high pressure and a high temperature.  At state 2 in 

Figure 7.1, the high-pressure refrigerant’s condensation temperature is higher than the 

ambient temperature. The high-pressure, high-temperature refrigerant vapor enters the 

condenser where heat is rejected to the ambient air and the vapor condenses to a liquid. 

The high-pressure liquid at state 3 passes through an expansion valve, reducing the 
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pressure and temperature.  The low-pressure refrigerant at state 4 has a boiling 

temperature below the ambient air temperature.  The refrigerant removes heat from the 

ambient air when boiling occurs in the evaporator.  This evaporation results in a low-

pressure refrigerant vapor (state 1) entering the compressor as the vapor compression 

cycle is completed. 

Figure 7.1:  Vapor-Compression Cycle 

The heat-driven absorption cycle has many of the same components as the vapor 

compression cycle.  Figure 7.2 presents a cycle diagram for the basic absorption cycle.  

Much like in the vapor compression cycle, refrigerant in the absorption cycle flows 

through a condenser, expansion valve, and an evaporator (left of line Z-Z in Figure 7.2).  

However, the absorption cycle uses different refrigerants and a different method of 

compression than the vapor compression cycle.   

The absorption cycle operates on the principle that some liquids (absorbents) have 

an affinity for other liquids or vapors and will absorb them under certain conditions.  One 
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example of an absorbent is lithium bromide, which readily absorbs water vapor.  In an 

absorption system that uses water as the refrigerant and lithium bromide as the absorbent, 

water vapor that exits the evaporator is absorbed in liquid lithium bromide.  The 

water/lithium bromide solution is pumped to the condenser pressure where the water is 

separated from the solution. 

An absorption system does not mechanically compress refrigerant vapor from a 

low evaporator pressure to a higher condenser pressure.  Rather, the absorption cycle 

depends on a “thermal compressor” to move low-pressure refrigerant vapor to higher 

pressure. The components to the right of line Z-Z in Figure 7.2, the generator, absorber, 

expansion valve, and pump, comprise the thermal compressor.  Refrigerant vapor exits 

the evaporator at low-pressure and enters the absorber.  In the absorber, the refrigerant 

vapor is dissolved in a liquid absorbent and rejects the heat of condensation and the heat 

of mixing.  The refrigerant/absorbent solution is pumped from the low evaporator 

pressure to the high condenser pressure.  Much less mechanical work is required in 

pumping the refrigerant/absorbent solution to the condenser pressure than the amount of 

mechanical work required to compress a refrigerant to the condenser pressure.  Heat is 

added to the solution in the generator to vaporize the refrigerant, removing the refrigerant 

from solution. The liquid absorbent has a higher boiling temperature than the refrigerant 

and, thus, stays in solution while most of the refrigerant exits the generator and flows to 

the condenser. The liquid absorbent exits the generator with a low concentration of 

refrigerant still in solution.  This low concentration solution flows through an expansion 
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valve where the pressure is decreased to the evaporator pressure before the solution 

returns to the absorber.    
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Figure 7.2:  Basic Absorption Cycle 

Refrigerant-Absorbent Selection 

Though all absorption chillers operate on the basic cycle presented in Figure 7.2, 

each chiller design is dependent on the refrigerant-absorbent selection.  Two common 

refrigerant-absorbent combinations are water-lithium bromide and ammonia-water.  As 

previously mentioned, water-lithium bromide absorption chillers utilize water as the 

refrigerant and lithium bromide as the absorbent.  Since lithium bromide is relatively 

non-volatile, this combination of refrigerant and absorbent is advantageous in areas 

where toxicity is a concern.  Water-lithium bromide chillers are limited to refrigeration 

applications above 0°C due to the freezing point of water.  Chillers using this fluid are 

very common and are available in a wide range of sizes from 10 tons to 2,600 tons 
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(http://www.bchp.org/owner-equip.html) with a coefficient of performance (COP) 

ranging from 0.7 to 1.2 (Herold, Radermacher, and Klein, 1996).   

Ammonia/water absorption chillers are not as widely used as water/lithium 

bromide chillers.  In an ammonia/water chiller, ammonia is the refrigerant and water is 

the absorbent.  An advantage of this type of chiller is the low freezing point of ammonia 

(-77.7°C) as compared to that of water, resulting in lower refrigeration temperatures than 

those of a water/lithium bromide system.  However, the toxicity of ammonia is a 

disadvantage of this absorption technology.  In commercial and residential building 

applications where there is insufficient ventilation, emissions from ammonia/water 

absorption chillers could be harmful to occupants.  These machines have capacities 

ranging from 3 to 25 tons with a COP typically around 0.5 (Herold, Radermacher, and 

Klein, 1996). A schematic of an absorption cycle of ammonia/water is shown in Figure 

7.3. The addition of a heat exchanger is common in all absorption chillers to increase the 

efficiency of the thermal compressor.  Hot solution leaving the generator is used to 

preheat the cooler refrigerant/absorbent solution entering the generator.  In an 

ammonia/water absorption chiller, ammonia vapor that leaves the generator often 

includes a low concentration of water vapor. Water vapor that travels through the 

condenser will freeze in the expansion valve.  A rectifier is included in ammonia/water 

chillers to prevent water from entering the condenser.   

http://www.bchp.org/owner-equip.html
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Figure 7.3:  Ammonia/Water Absorption Cycle 

Types of Absorption Chillers 

Double-effect (two-stage) absorption chillers can be used when a high-

temperature heat source is available. These chillers contain two stages of generation, as 

shown in Figure 7.4.  The first stage generator separates refrigerant vapor from solution 

at a high temperature.  The refrigerant/absorbent solution in the second stage generator is 

at a lower temperature than the solution in the first stage generator.  The refrigerant vapor 

from the first stage generator flows through the second generator where some of the 

refrigerant remains in the vapor phase and some of the refrigerant condenses back into 

liquid. Additional refrigerant is vaporized in the second stage generator by the high-

temperature and the heat of vaporization supplied by the refrigerant from the first stage 

generator.  Refrigerant vapor from both generators flows to the condenser while the 
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absorbent solution returns to the absorber. Double-effect chillers yield higher COPs 

(1.0 to 1.2 for water/lithium bromide chillers) than single-effect chillers (Herold, 

Radermacher, and Klein, 1996). 
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Figure 7.4:  Double-Effect Water/Lithium Bromide Absorption Chiller 

Some additional absorption cycles that may play a role in CHP-B systems are 

currently being researched and developed.  Triple effect water/lithium bromide chillers 

can attain higher coefficients of performance than their single- and double-effect 

predecessors. Triple effect chillers have achieved cooling COPs that exceed 1.6. 

Generator-absorber heat exchanger (GAX) absorption technology is a new entry 

into the residential and light-commercial chiller market.  GAX chillers use an 

ammonia/water working fluid and are of particular interest to CHP-B applications for 
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capacities as low as 3 tons. GAX absorption chillers have attained cooling COPs of 

approximately 0.7. (DeVault, Garland, Berry, and Fiskum, 2002) 

System Analysis 

An absorption refrigeration system consists of a working fluid undergoing a series 

of thermodynamic processes.  Refrigerant and absorbent flow in a closed-loop system 

that includes adiabatic and non-adiabatic mixing, heating and cooling, pumping, and 

throttling.  Each of these processes can be analyzed by energy and mass balances.  The 

thermodynamic properties of the working fluids are essential for applying conservation of 

mass and energy relationships to a system. 

Absorption systems use homogeneous binary mixtures as working fluids.  

McQuiston, Parker and Spitler (12) describe a homogeneous mixture as a uniform 

composition that cannot be separated into its constituents by pure mechanical means.  

The thermodynamic properties of the working fluid will change throughout the cycle as 

the fluid flows through components such as the generator, the separator, the evaporator, 

the expansion valves, and the heat exchangers.   

Unlike pure substances, the thermodynamic state of a mixture cannot be 

determined by two independent properties.  The concentration of a mixture (x) must be 

known along with two independent properties of the mixture to determine the 

thermodynamic state.  The concentration of a mixture is defined as the ratio of the mass 

of one constituent to the mass of the mixture.  For example, an ammonia/water mixture 

with a concentration of 0.3 contains 3 lbm. of ammonia for every 10 lbm. of 

ammonia/water mixture. 
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An enthalpy-concentration (i-x) diagram is a useful representation of the 

properties of binary mixtures.  For working fluids such as ammonia/water and 

water/lithium bromide, the liquid and vapor regions of the (i-x) diagram are of interest.  

In an enthalpy-concentration diagram for a binary mixture, enthalpy and concentration 

are plotted on the vertical and horizontal axes, respectively.  Lines of constant 

temperature as well as condensing and boiling lines for a range of constant pressures are 

graphed to aid in determining the thermodynamic properties at any point.  McQuiston, 

Parker and Spitler (12) present a more detailed study of binary mixtures in absorption 

refrigeration. 

With the enthalpy and concentration of the working fluid available from the (i-x) 

diagram, as well as from numerous software packages, analysis of the thermodynamic 

processes in the absorption cycle is possible.  In the evaporator, condenser, absorber, 

rectifier, and generator one or more fluid streams enter a component, resulting in 

outgoing fluid and heat rejection.  Figure 7.5 presents a schematic of a thermodynamic 

process that occurs in the absorber.   
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Figure 7.5:  Absorber 
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Energy (7-1) and mass balance (7-2, 7-3) equations for this non-adiabatic 

process are 

mD 1i1 + mD 2i2 = mD 3i3 + qD (7-1) 
mD x + mD x = mD x1 1 2 2 3 3 (7-2) 

mD + mD = mD1 2 3 (7-3) 

Substitution and simplification of Equations 7-1, 7-2, and 7-3 yields the following 

equations for the enthalpy and the concentration (i3, x3) of stream three: 

mD x3 = x1 +
2 (x2 − x1 ) (7-4)mD 3 

mD D
i3 = i1 +

2 (i2 − i1 )− q 
(7-5)mD mD3 3 

The last term in Equation 7-5 represents the loss of enthalpy during the process.  

Equations 7-4 and 7-5 can be used to identify the enthalpy and concentration of a fluid 

stream with unknown thermodynamic properties. 

Heat exchange takes place in many locations in an absorption system.  Heat 

exchangers, like the one illustrated in Figure 7.6, are used to increase the overall 

efficiency of the chiller system by transferring heat from hot fluid streams to cold fluid 

streams. 
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2mD 3mD 

HXqD 

Figure 7.6:  Heat Exchanger 

For the heat exchanger, the following energy and mass balance relations apply. 

mD 1 (i2 − i1 )= qDHX = mD 3 (i3 − i4 ) (7-6) 

mD = mD mD = mD1 2 and 3 4 (7-7) 

x = x and x = x (7-8)1 2 3 4 

where 

qD HX = ε ⋅ qD Max (7-9) 

In Equation 7-9, ε is the effectiveness of the heat exchanger and qMax is the maximum 

possible rate of heat exchange. 

Another thermodynamic process encountered in absorption refrigeration is 

throttling.  Throttling is accomplished by an expansion valve.  In a throttling valve, 

stream one enters the expansion valve where evaporation occurs and the temperature and 

pressure of the working fluid are decreased.  For example, when a refrigerant leaves the 

condenser in the absorption cycle and enters the throttling valve, the pressure and 
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temperature of the refrigerant decrease before flowing into the evaporator.  Clearly, a 

mass and energy balance for the throttling device will yield m1 = m2, x1 = x2, and i1 = i2. 

The changes in temperature and pressure that occur during expansion can be determined 

using the (i-x) diagram and graphical methods. 

In the most basic absorption system, at least one pump is required to pump low-

pressure ammonia/water solution to high-pressure ammonia/water solution from the 

absorber to the generator.  The pump schematic in Figure 7.7 demonstrates the energy 

transfer required for moving fluid from low- to high-pressure.   

1mD 

2mD 

PWD 

Figure 7.7:  Solution Pump 

The power requirement of the pump is minimal and is often neglected in an 

overall performance analysis.  Equation 7-10 can be used to calculate the power 

requirement for pump operation. 

ν ⋅ mD 1DW = ( p − p ) (7-10)P 2 1 ηP 

where p1 and p2 are the pressures entering and leaving the pump, respectively, ν is the 

specific volume of the solution, and ηP is the pump efficiency. 
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Application of the first and second laws of thermodynamics to the absorption 

cycle provides a relationship for coefficient of performance.  The theoretical COP (Equ. 

7-11) applies when all processes are reversible, and yields a value much larger than 

(7-11)practical COPs. 

T (T − T )e g o (41)(COP) =max Tg (To − Te )

where Te is the temperature of the refrigerated region associated with the evaporator, Tg 

is the temperature of the heat supplied in the generator, and To is the temperature of the 

ambient air associated with the heat rejections in the absorber and the condenser. 

Equation 7-11 is based on a Carnot cycle which is not realistic.  However, this 

equation shows that raising the evaporator or generator temperatures increase the 

efficiency of an absorption device.  Neglecting the pump work, the actual COP for an 

absorption cycle is defined by Equation 7-12. 

qD evaporator(COP)actual = (7-12) 
qD generator 

While increasing the evaporator temperature may not be practical, increasing the 

generator temperature is very desirable.  Multiple-effect absorption systems offer more 

cooling than single-effect systems, due to the addition of more heat in the generator 

through additional generator stages.  The quality of waste heat available to an absorption 

chiller in a CHP-B system is vital to the success of overall system performance. 
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The following example problem, found in Figure 7.9, is derived from an 

example in Absorption Chillers and Heat Pumps (Herold, Radermacher, and Klein, 1996) 

and provides an overall analysis of an ammonia/water absorption system.  Graphical 

methods, energy balance and mass balance equations, and COP relationships are 

implemented to determine the system performance. 
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Figure 7.8:  Single-stage ammonia/water chiller for Example 7-1 
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Example 7-1:
A single-stage ammonia/water absorption system is given as shown in Figure 7-8. The 
evaporator saturation temperature at the outlet is assumed to be -10 C with saturated 
vapor leaving. The mass flow rate of solution through the solution pump is 1 kg/sec. The 
temperature of the saturated liquid leaving the absorber and the condenser is 40 C. The 
difference in mass fraction of the two solution streams is given to be 0.10. The rectifier 
produces a vapor with a mass fraction of 0.999634 ammonia. The pump efficiency is 
assumed to be 100% and the effectiveness of the solution heat exchanger is 100?. Find 
the COP, the amounts of heat exchanged, and the work performed by the pump. (Note: 
"Q" and "m" are heat rate and mass flow rate, respectively.) 

Solution: 
Using binary mixture analysis methods along with a enthalpy-concentration chart 
for ammonia water (or using suitable software) the state points can be found for all 
conditions as shown in Table 7-1. 

Based on the values in Table 7-1, and the equations specified in this chapter, the 
following detailed results are obtained. 

ν⋅m1The pump power, WP is WP (p2 − p1) 3.05kW 
ηP 

with ν = 0.0012 m3/kg, the specific volume of the rich solution, and a pump efficiency 
of 1.0. Assuming a heat exchanger effectiveness of 1.0, the amount of heat 
exchanged in the solution heat exchanger can be found by writing an energy 
balance on either side. 

Qshx m2(i3 − i2) −m4(i5 − i4) 346kW 

The heat losses and gains of the remaining components can be found by their 
respective energy balance equations. 

+ − 216kW Qabsorber m12⋅i12 m6⋅i6 m1⋅i1 

m7⋅i7 − m9⋅i9 − m8⋅i8 51kW Qrectifier 

Qgenerator m7⋅i7 + m4⋅i4 − m8⋅i8 − m3⋅i3 268kW 

Qcondenser m9⋅(i9 − i10) = 151kW 

147kW Qevaporator m9(i12 − i11)
The actual COP for this absorption system is evaluated as 

Qevaporater 
0.549COPactual Qgenerator 

The system in this example is an ideal case. An actual absorption system that 
follows this example will realize pressure drops in the heat exchangers, less effective 
rectification, a less efficient pump, and a heat exchanger effectiveness less than 1.0. 

Figure 7.9:  Absorption Cycle Example Problem 
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Table 7.1: State points for the ammonia/water system in Figure 7.8 

� 
i (J/g) m (kg/s) p (kPa) 

Vapor 
Quality T (C) 

x 
(kg/kg) 

1      (42.30)  1.00 240.20 - 40.00 0.37 
2      (39.20)  1.00 1,555.00 40.50 0.37 
3 306.80 1.00 1,555.00 0.02 110.70 0.37 
4 401.60 0.86 1,555.00 - 131.00 0.27 
5 0.90 0.86 1,555.00 40.50 0.27 
6 0.90 0.86 240.20 40.70 0.27 
7 1,547.00 0.15 1,555.00 1.00 108.00 0.94 
8 264.70 0.01 1,555.00 - 108.00 0.37 
9 1,294.00 0.14 1,555.00 1.00 44.00 1.00 

10 190.10 0.14 1,555.00 0.00 40.00 1.00 
11 190.10 0.14 240.20 0.20      (14.50)  1.00 
12 1,264.00 0.14 240.20 0.99      (10.00)  1.00 

Application 

Absorption chillers can be directly fired or indirectly fired.  Direct-fired 

absorption chillers contain a natural gas burner and can supply waste heat for a desiccant 

dehumidification system or for hot water.  Direct-fired absorption chillers are used 

instead of vapor compression chillers in locations where electric rates are high and gas 

utilities offer low rates and rebate programs.  Direct-fired chillers also operate in 

locations where chlorofluorocarbons are unfavorable. 

Indirect-fired absorption chillers are of interest in CHP-B applications.  Indirect-

fired chillers utilize waste heat in the form of steam, hot water, hot process liquids and 

gases, and exhaust gases to separate the refrigerant from the absorbent in the generator. 

Combustion turbines, IC engines, or fuel cells can supply this waste heat.  Like direct-
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fired absorption chillers, indirect-fired chillers may not utilize all of the input heat.  

Heat left over from an indirect-fired absorption chiller may be used in a desiccant  

dehumidification system or to produce hot water.  An overview of absorption chiller 

technology is presented in Table 7.2.  

Table 7.2:  Overview of Absorption Chillers 

Absorption Chiller Overview 
Water/Lithium Bromide 

Commercially Available Yes 
 Size Range 10 Tons – 2,600 Tons 

Fuel: Direct-fired 
Indirect Fired 

Natural Gas 
Steam, hot water, hot process liquids and 

gases, and exhaust gases 
COPC 0.7 – 1.2 

Environmental Non-toxic working fluid, low emissions 
Ammonia/Water 

Commercially Available Yes 
 Size Range 3 Tons – 25 Tons 

Fuel: Direct-fired 
Indirect Fired 

Natural Gas 
Steam, hot water, hot process liquids and 

gases, and exhaust gases 
COPC ≅ 0.5 

Environmental Toxic working fluid, low emissions 

Cost 

The capital cost of installing an absorption chiller is generally more than installing 

an equivalent electric or engine-driven chiller.  Table 7.3 compares the cost in dollars per 

ton for installing several different capacities of electric chillers, single-effect steam-

heated absorption chillers, and double-effect direct-fired absorption chillers. These cost 

estimates are subject to change due to the development and deployment of new 

components. Costs will also be affected by the mode of energy input that is available 
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from the waste stream of the prime mover. For example, the cost of the double-effect 

chiller presented in Table 7.3 is based on a direct-fired unit, and may be different for a 

chiller fueled by steam or exhaust gases. 

Table 7.3:  Installed costs of electrical and absorption chillers
 (http://www.bchp.org/owner-assessment.html) 

Chiller Capital Costs 
Chiller capacity, RT 300 tons 500 tons 1000 tons 

 

 

 

 
     

 
 

 

 

           
 

 

 

Installed Chiller Costs ($/ton) 
Electric Centrifugal 340 340 350 
Single-Effect Steam-Heated Absorption 520 430 365 
Double-Effect Direct-Fired Absorption 625 625 625 

Maintenance costs for absorption chillers, like other technologies, is dependent on 

equipment capacity.  Annual maintenance costs for absorption chillers range from $18 to 

$31 per ton of cooling.  This cost varies for single-effect, double-effect, direct-fired, and 

indirect-fired chillers. The average maintenance cost of electric chillers ranges from $19 

to $28 per ton of cooling capacity, depending upon whether the chiller uses a 

reciprocating, screw, or centrifugal compressor. (http://www.bchp.org/prof-

assessment.html) 

Absorption Chillers and CHP-B 

� The temperature of the waste heat available from a power source determines the 

appropriate absorption configuration.  Table 7.4 matches waste heat temperatures typical 

of various power-generation components with appropriate absorption configurations.  

The matching is based solely on the temperature of the waste heat that could be used to 

generate refrigerant vapor in an absorption chiller cycle. 

http://www.bchp.org/prof
http://www.bchp.org/owner-assessment.html
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Table 7.4: Matching of Power Generation and Absorption Technology

 (DeVault, Garland, Berry, and Fiskum, 2002) 

Power Generation and Absorption Technology 
Power Source Temperature (°F) Matching Technology 
Gas Turbine >1,000 Triple-, double-, or single-effect 

SOFC ∼900 Triple-, double-, or single-effect 
Microturbine ∼600 Triple-, double-, or single-effect 

PAFC ∼250 Double-effect (preheat) or single-
effect 

IC Engine ∼180 Single-effect 
PEMFC ∼140 Single-effect 

Absorption chillers used in CHP-B applications offer many advantages over 

electric chillers. Table 7.5 lists many of these advantages, as well as some of the 

disadvantages that absorption chillers have in comparison to electric chillers. Lower 

annual operating costs that result from available waste heat streams produce shorter 

payback periods for absorption systems. Vapor compression systems commonly use 

refrigerants that are harmful to the ozone; however, newer refrigerants are more 

environmentally friendly.  Absorption chillers, such as water/lithium bromide systems, 

use fluids that are not toxic and provide safe operation. Absorption systems do not have 

mechanical compressors and, therefore, have fewer moving parts. This gives absorption 

chillers lower maintenance activity, higher reliability, and quieter operation than 

equivalent electric and engine-driven chillers. Lower operating pressures are also an 

advantage for absorption chillers. 

Currently, absorption chillers have higher initial costs than do electric or engine-

driven chillers. Vapor compression systems are much more widely manufactured than 

absorption systems and, therefore, are much more widely available.  Absorption chillers 
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have seen resurgence in research and development since the early 1990’s (Herold, 

Radermacher, and Klein, 1996). This resurgence has significantly increased the 

availability of absorption chillers that are suited to a broad range of applications and, 

more particularly, suited to CHP-B applications. 

Table 7.5:  Advantages of Absorption Chillers over Work-driven Heat Pumps 

Absorption Chillers 
Advantages Disadvantages 

Lower operating costs, shorter payback 
period 

Higher initial costs 

No ozone-damaging refrigerants Not as widely available 
Safer, quieter operation 
Lower-pressure systems 

High reliability 
Low maintenance 

Absorption Refrigeration Problems 

1. Two solution streams are adiabatically mixed at the same temperature.  Assuming 
the process occurs at a constant pressure, determine the mass flow rate, quality, 
and enthalpy of the outlet state.  Table 7.6 gives the properties of the inlet 
streams. 

Table 7.6: Table for Problem 1 

m (kg/s) x (%LiBr) i (J/kg) 
1 2.3 50 107.32 
2 8.1 60 145.67 

2. Consider a generator in an ammonia/water absorption cycle operating at steady 
state with the operating conditions specified in Table 7.7, where streams 1 and 2 
are the inlet streams and stream 3 is the outlet stream.  Find the required heat 
input that is to be supplied by a waste heat source assuming negligible pressure 
losses and a constant pressure throughout the system. 
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Table 7.7: Table for Problem 2 

m (kg/s) x (%NH3) i (J/kg) 
1 5.4 50 107.32 
2 145.67 
3 8.1 60 210.36 

3. A double-effect water/lithium bromide absorption chiller has the operating 
conditions specified in Table 7.8, determine the enthalpy of the solution leaving 
the absorber and entering the pump.  875 kJ/s of energy is rejected during the 
absorption process. Assume negligible pressure losses and isobaric conditions. 

Table 7.8: Table for Problem 3 

m (kg/s) x (%NH3) i (kJ/kg) 
From Evaporator 3.2 35 90.5 

From Generator/HX 1.6 75.3 
To Pump 40 

4. An absorption system like the one in Example 7-1 (Figure 7.8), has been analyzed 
and the data have been recorded for steady-state conditions.  The generator 
pressure is 220 psi, and the evaporator pressure is 50 psi. Determine the pressure 
for all streams (1-12) in the system. 

5. The absorption system in Problem 4 has a condenser mass flow rate of 45 
lbm/min, a mass flow rate through the generator heat exchanger of 220 lbm/min, 
and a mass flow rate through the pump of 265 lbm/min.  Determine the mass flow 
rate of all the streams in the system. 

6. A microturbine supplies waste heat to a water/LiBr absorption chiller at 600°F. 
The ambient temperature is 75°F, and the chiller produces chilled water at 45°F. 
What is the maximum coefficient of performance this system can attain? 

7. The mass flow rate of refrigerant vapor entering the absorber from the evaporator 
is 3.5 kg/s.  The enthalpies of the streams on the inlet and outlet sides of the 
evaporator are 100 kJ/kg and 150 kJ/kg respectively.  If an internal combustion 
engine provides 275 kJ/s of energy to the generator, determine the actual 
coefficient of performance of the absorption chiller. 
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Table 7.9: Table for Problems 8 – 10 

i (kJ/kg) m (kg/s) p (kPa) T (C) x (kg/kg) 
1 -80.00  1.00 150.00 50.00 
2 -22.30  52.00 
3 256.30 125.00 
4 1,450.00 145.00 
5 5.60 52.00 0.25 
6 5.60 0.80 55.00 
7 1,360.20 115.00 0.92 
8 0.03 115.00 0.40 
9 60.00 
10 1,150.00 50.00 
11 10.00 1.00 
12 1,095.40 0.20 25.00 

8. Table 7.9 refers to an absorption system like the one analyzed in Example 1. 
Determine the mass flow rate, the pressure, and the concentration of all the 
streams in the system. 

9. The absorption system above removes heat from the refrigerant in the condenser 
at a rate of 25 kJ/s.  Determine (a) the rate of heat transfer in the evaporator, the 
absorber, and the generator, (b) the power required of the pump, and (c) the 
coefficient of performance. 

10. Assuming that To = 55°C, Tg = 145°C, and Te = 10°C, determine the maximum 
possible COP.  What is the refrigerating efficiency of this chiller? 
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Manufacturers 

A list of some absorption chiller manufacturers, along with brief product 

descriptions, is provided below. 

• Carrier Corporation is a member of the United Technologies Corporation Family and 

is the world’s largest supplier of air conditioning products.  Carrier produces the 16JB 

absorption chiller, pictured in Figure 7.10, which ranges in capacity from 108 tons to 

680 tons. 

Figure 7.10:  16JB absorption chiller by Carrier Corporation  
(www.global.carrier.com) 

www.global.carrier.com
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• Robur Corporation, located in Evansville, IN, utilizes GAX technology in the 

production of ammonia/water absorption chillers. Robur manufactures 3- and 5-ton 

units that can be packaged together to meet larger capacity requirements up to 25 

tons. Three 5-ton units are shown in Figure 7.11. 

Figure 7.11:  15-Ton Chiller-Link by Robur Corp (www.robur.com) 

• Trane, founded in La Crosse, Wisconsin, manufactures both single-stage and two-

stage absorption chillers that are direct-, steam-, and water-fired.  Figure 7.12 

illustrates a Trane Horizon® Absorption Series single-stage hot water- or steam-fired 

absorption water chiller which is available in 500 - 1350 ton capacities. 

Figure 7.12:  Trane Horizon® Absorption Series Chiller (www.trane.com) 

www.trane.com
www.robur.com
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• Yazaki Energy Systems in Dallas, TX offers both direct-fired and water-fired 

absorption chillers.  Direct-fired systems, like the one in Figure 7.13, are available in 

capacities ranging from 30 tons to 100 tons, and the water-fired systems are available 

in capacities ranging from 10 tons to 50 tons. 

Figure 7.13:  Gas-fired double-effect chiller-heater by Yazaki Energy Systems, Inc. 
(www.yazakienergy.com) 

• York International, based in York, PA, produces 100 ton to 1,500 ton single-stage 

absorption chillers.  York also manufactures two-stage absorption chillers than can be 

driven by natural gas, oil, propane, high-pressure steam, or waste-heat energy 

sources.  Figure 7.14 illustrates a York single-stage absorption chiller. 

Figure 7.14:  Single-stage Absorption Chiller by York International (www.york.com) 

www.york.com
www.yazakienergy.com
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• Broad Air Conditioning is a privately owned Chinese company headquartered in 

Changsha, the capital of Hunan Province.    Broad manufactures chillers ranging in 

capacities from 100 tons to 2,600 tons. Broad's primary product is a direct-fired 

lithium bromide absorption chiller/heater, however, indirect steam and hot water or 

waste heat driven units are also available. 

Figure 7.15:  Spectrum Absorption Chiller by Broad Air Conditioning
 (www.broadusa.com) 

www.broadusa.com


 

 

 
 

 

 

 

  

 

CHAPTER VIII 

DESICCANT DEHUMIDIFIERS 

This chapter presents an overview of desiccant dehumidifiers.  Portions of the 

Desiccant Dehumidification Curriculum Module (17) have been selected. Topics include 

the principles of both sub-cooling and desiccant systems, types of desiccant systems, 

solid desiccant systems, and cost considerations for choosing desiccant systems.  

Desiccant technology is relevant to CHP-B systems, since the regeneration process in 

desiccant systems provides an excellent use for waste heat.   

Sub-cooling Systems vs. Desiccant Systems 

Summary of Principles of Sub-cooling Systems 

In traditional cooling systems, dehumidification is achieved by cooling a moist air 

stream below its dew point so that liquid water condenses out of the air. This process is 

familiar to anyone who has seen moisture condense on a glass of ice water on a humid 

day.  The approximate process is illustrated on a psychometric chart in Figure 8.1.  The 

process shown is for air being cooled and dehumidified from conditions of 95ºF dry bulb 

(db), 75ºF wet bulb (wb) to about 77ºFdb, 58 grains/lbmda. The resulting air state lies at 

the center of the ASHRAE Summer Comfort Zone in Figure 8.2.  Initially, the dry bulb 
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temperature of the moist air decreases, while the moisture content remains constant.  

The dry bulb te mperature continues to decrease as moisture begins to condense out of 

the air onto the cooling coil.  In order to deliver air at 77ºFdb, 58 grains/lbmda, reheat 

must be used. The reheat process path is also illustrated in Figure 69.  In this example, 

the total net cooling load is 10.8 BTU/lbmda, and of this, 6.4 BTU/lbmda, or about 59 % is 

latent load. 

Figure 8.1:  Sub-cooling Dehumidification Process (Chamra, Parsons, James, Hodge, and 
Steele, 2000) 

In the conventional system, the same equipment is used for both sensible cooling 

and dehumidification. If independent humidity and temperature control are required, a 

provision for reheat of the cooled air must be included. In the example above, the net 
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cooling load is 10.8 BTU/lbmda, but the total load on the cooling coil is 16.1 

BTU/lbmda with the difference (5.3 BTU/lbmda) being added back in during the reheat 

process. Thus, energy is used both for the extra cooling and for the reheat. 

Figure 8.2:  ASHRE Comfort Zones (W. R. Grace & Co., 1996)   

Another disadvantage of the conventional approach is that the air leaving the 

evaporator coil is nearly saturated with relative humidity typically above 90 %.  This 
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moist air travels through duct work until the air is either mixed with dryer air or 

reaches the reheat unit.  The damp ducts, along with wet evaporator coils and standing 

water in a condensate collection pan (Figure 8.3), foster problems with microbial growth 

and the associated health and odor problems. 

Figure 8.3:  Damp Duct Symptoms (Chamra, Parsons, James, Hodge, and 
Steele, 2000) 

Summary of Principles of Desiccant Systems 

Desiccant dehumidification systems remove moisture from the air by forcing the 

water vapor directly into a desiccant material.  The moisture from the air is attracted to 

desiccants since an area of low vapor pressure is created at the surface of the desiccant. 

The pressure exerted by the water in the air is higher, so the water molecules move from 

the air to the desiccant and the air is dehumidified. 

The functioning of desiccant material might be compared to the action of a 

sponge in collecting a liquid.  When the sponge is dry, it soaks up the liquid effectively. 

Once it becomes saturated, the sponge is taken to a different spot, the liquid is expelled 
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by squeezing the sponge, and the dry sponge is ready to absorb more liquid.  In a 

desiccant system, if the desiccant material is cool and dry, its surface vapor pressure is 

low, and moisture is attracted and absorbed from the air, which has a higher vapor 

pressure. After the desiccant material becomes wet and hot, it is moved to another air 

stream and the water vapor is expelled by raising the temperature (this step is called 

"regeneration").  After regeneration, the desiccant material is ready to be brought back to 

absorb more water vapor. The entire process involves only water vapor -- no liquid is 

ever condensed. 

Desiccants can be either solids or liquids.  The difference between solid and liquid 

desiccants is their reaction to moisture. Some simply collect moisture like a sponge 

collects water.  These desiccants are called adsorbents and are mostly solid materials.  

Silica gel is an example of a solid adsorbent.  Other desiccants undergo a chemical or 

physiological change as they collect moisture.  These are called absorbents and are 

usually liquids or solids, which become liquid as they absorb moisture.  Lithium chloride 

collects water vapor by absorption.  Sodium chloride, common table salt, is another 

example of an absorbent. 

Types of Desiccant Systems 

General Classifications 

Most commercial desiccant dehumidification systems use as their working 

material either a solid adsorbent or a liquid absorbent.  Briefly, absorption is a process in 

which the nature of the absorbent is changed, either physically, chemically, or both.  The 
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change may include formation of a hydrate or phase change.  An adsorbent, on the 

other hand, does not change either physically or chemically during the sorption process.   

A variety of factors dictate whether an adsorbent will be commercially useful.  

These include cost, long-term stability, moisture removal characteristics (rate, capacity, 

saturation conditions, suitable temperatures), regeneration requirements (rate of moisture 

surrender as a function of temperature and humidity), availability, and manufacturing 

considerations. 

Solid Adsorbents 

Silica gels and zeolites are used in commercial desiccant equipment.  Other solid 

desiccant materials include activated aluminas and activated bauxites.  The desiccant 

material choice for a particular application depends on factors such as the regeneration 

temperature, the level of dehumidification, and the operating temperature. 

Solid desiccant materials are arranged in a variety of ways in desiccant 

dehumidification systems.  A large desiccant surface area in contact with the air stream is 

desirable, and a way to bring regeneration air to the desiccant material is necessary.   

The most common configuration for commercial space conditioning is the 

desiccant wheel shown in Figure 8.4a.  The desiccant wheel rotates continuously between 

the process and regeneration air streams.  The wheel is constructed by placing a thin 

layer of desiccant material on a plastic or metal support structure.  The support structure, 

or core, is formed so that the wheel consists of many small parallel channels coated with 

desiccant. Both "corrugated" and hexagonal (Figure 8.4b) channel shapes are currently in 

use. The channels are small enough to ensure laminar flow through the wheel.  Some 
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kind of sliding seal must be used on the face of the wheel to separate the two streams.  

Typical rotation speeds are between 6 and 20 rotations per hour.  Wheel diameters vary 

from one foot to over twelve feet. Air filters are an important component of solid 

desiccant systems.  Dust or other contaminants can interfere with the adsorption of water 

vapor and quickly degrade the system performance.  All commercial systems include 

filters and maintenance directions for keeping the filters functioning properly. 

Regeneration 
Air from 
Desiccant Heater 

Figure 8.4: (a) Desiccant Wheel (Meckler, et al., 1995) (b) Corrugated and Hexagonal  
      Channel Shapes (Chamra, Parsons, James, Hodge, and Steele, 2000) 

Liquid Absorbents 

Some materials that function as liquid absorbents are ethylene glycols, sulfuric 

acid, and solutions of the halogen group such as lithium chloride, calcium chloride, and 

lithium bromide (ASHRAE Fundamentals Handbook, 1997).  A generic configuration for 

a liquid desiccant system is illustrated in Figure 8.5.  The process air is exposed to a 

concentrated desiccant solution in an absorber, usually by spraying the solution through 

the air stream.  As the solution absorbs water from the air stream, the concentration 
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drops, and the weak solution is taken to a regenerator where heat is used to drive off 

the water (which is carried away by a regeneration air stream) and the concentrated 

solution is returned to the absorber.   

DesiccantRegenerator Cooler 

Absorber Gas Burner or 
Waste Heat 

Interchanger
Weak 

Strong 
Process 

air 

Steam 

Figure 8.5: Liquid Desiccant System  

Liquid desiccant systems provide the added advantage of removing many 

particulates from the air stream. Some liquid desiccants kill bacteria as well. 

Furthermore, liquid desiccant systems can be configured to operate with very low 

regeneration temperatures. 

Regeneration 

For solid or liquid systems, regeneration energy can be drawn from a variety of 

sources. In a CHP-B system, regeneration energy is drawn from the waste heat of a 

power-generation component.  Due to the relatively low temperature requirements of 
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regeneration (< 250ºF), waste heat provided by combustion turbines, IC engines, and 

any of the fuel cell technologies is capable of supplying heat at regeneration 

temperatures.  The thermal energy produced in many CHP-B systems is sufficient to meet 

the input requirements for absorption refrigeration as well as desiccant regeneration.   

Solid Desiccant system 

Figure 8.6 illustrates the components of a generic solid desiccant 

dehumidification system.  At a minimum, the system will include separated process and 

regeneration air-streams for the desiccant device and some kind of heater to raise the 

temperature of the regeneration air.  

Desiccant 
matrix 

Warm, Moist air to 
dry air be dried 

Moist Regeneration 
exhaust air air 

Heater 
Figure 8.6: Solid Desiccant Dehumidification System 

The approximate path of the process air through a desiccant device is shown in 

Figure 8.7 for the same inlet and outlet conditions as were shown for the sub-cooling 

system (Figure 8.1).  Note that, as implied by the path from point 1 to point 2 in Figure 

8.7, the desiccant process increases the dry bulb temperature of the process air.  For solid 

desiccant materials, this increase is a result of the "heat of adsorption" which consists of 
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the latent heat of vaporization of the adsorbed liquid plus an additional "heat of 

wetting."  Heat of wetting is the energy released during dehumidification, in excess of the 

latent heat of vaporization.  The path from point 1 to point 2 is close to a line of constant 

enthalpy.  After the dehumidification process, the process air must undergo a sensible 

cooling process to reach the end point.  

Figure 8.7: Dry Desiccant Dehumidification Process (Chamra, Parsons, James, Hodge, 
and Steele, 2000) 

There are a wide variety of desiccant dehumidification system configurations 

available. The process and regeneration air inlet conditions and outlet requirements call 

for different configurations that are suited to individual situations.  For illustration 

purposes, two simple examples are shown in Figures 8.8 and 8.9.   



146 

Desiccant Heat Cooling 
wheel exchanger coil 

7 

Outside air 

Exhaust air Regeneration air 
(from inside) 

Supply air 
to inside 

Heater 

1 

8 

2 3 4 

6 5 

Figure 8.8: Ventilated Desiccant Dehumidification System Configuration  
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Figure 8.9:  Re-circulated Desiccant Dehumidification System Configuration 

Figure 8.8 illustrates a possible configuration for a desiccant system that is 

designed for operation in a ventilation situation; that is, 100 % outside air used to supply 

the conditioned space. The regeneration air for this illustration is taken completely from 

within the conditioned space and exhausted outside.  The outside air starts at state 1 at 

approximately 95ºF db, 75ºF wb.  From state 1 to state 2, the sensible temperature 

increases and the moisture content decreases as the outside air passes through a desiccant 
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wheel. From state 2 to state 3, the hot air rejects some heat to the regeneration air 

stream via a heat exchanger.  Finally, the air stream is cooled to the design supply 

condition by passing through a conventional cooling coil (state 3 to state 4).   

The regeneration air stream starts at approximately 75ºF db, 40 % rh.  From state 

5 to state 6, this air stream acquires heat from the process air stream through a heat 

exchanger, and from state 6 to state 7; the regeneration stream is further heated to bring it 

to an appropriate temperature for desiccant regeneration.  Finally, the regeneration air is 

cooled and humidified as it extracts moisture from the desiccant wheel (state 7 to state 8).  

At state 8, the regeneration stream is exhausted to the outside.   

Figure 8.9 illustrates a re-circulating configuration; 100 % of the process air is 

drawn from the conditioned space (and all is returned to the conditioned space). The 

regeneration air is 100 % outside air.  The equipment arrangement is identical to that of 

the ventilation illustration in Figure 8.8; only the air stream conditions are different.  

Cost Considerations 

The humidity-control capability of desiccant technology in a CHP-B system 

offers many potential cost savings when compared with conventional sub-cooling 

systems.  The capital cost of a desiccant system is often more expensive than an 

equivalent sub-cooling system due to extra equipment costs.  Installed capital cost for 

active solid desiccant systems (www.bchp.org) range from $4 to $9 per CFM capacity for 

air handling, depending upon the total capacity and equipment enclosure requirement. 

The higher-end of the cost range applies to systems with < 5,000 CFM.  Some desiccant 

systems, depending on the specific installation, may result in lower capital cost; however, 

www.bchp.org
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the reduction of latent heating load will usually result in lower operating costs for 

desiccant systems.  Harriman (1996) discusses the installation of a desiccant 

dehumidification system in a medical research building where both capital costs and 

estimated operating costs were lower for the desiccant system. 

Because the humidity and temperature can be controlled independently with a 

desiccant dehumidification and cooling system, the system performance is often more 

effective than that obtainable with conventional systems.  Analysis of the sensible heat 

ratio (SHR) suggests the energy cost savings potential that a desiccant system may have.  

The SHR is the ratio of sensible cooling load to the total cooling load (sensible load plus 

latent load).  A sensible heat ratio close to unity implies that very little moisture is 

removed from the air, while a sensible heat ratio close to zero indicates that most of the 

load is latent cooling.  Air-conditioned environments often have SHR values well below 

unity, which results in greater energy consumption for a sub-cooling system than that of a 

desiccant dehumidification and cooling system that meets the same zone temperature 

requirements. 

Some potential cost savings vary with installation and are recognized based on the 

individual CHP-B application.  These cost savings are related to dehumidification and are 

implied by the process/product benefits outlined in Table 8.1.  Other potential costs 

associated with poor humidity control should not be overlooked.  Examples include retail 

establishments where customer discomfort or dissatisfaction due to unpleasant odors 

would be detrimental to business. For grocery stores, frost buildup in refrigerated display 

cases is unsightly, and its elimination requires expensive defrost cycles.  Hospitals and 
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nursing homes require careful attention to minimizing conditions favorable to 

microbial growth and propagation.  Additionally, microbial growth can be hazardous to 

the health of children in school buildings as well as to the occupants of office and other 

commercial buildings.  Ice rinks can reduce "fogging," condensation in the building, and 

can improve ice quality with lower humidity levels. 

Table 8.1: Process/Product Benefits due to dehumidification (Chamra, Parsons, James,  
      Hodge, and Steele, 2000) 

Process/Product Benefits 
Process Product Benefits 

Lithium battery production Prevent corrosion and improve production 
Computer and electronic equipment 

production 
Prevent condensation and corrosion on 

metal surfaces 

Plastic molding Improve product finish by preventing 
condensation on metal surfaces 

Archives and museums Increase longevity of books, artwork, and 
artifacts 

Seeds and grain storage Optimize seed moisture level and 
minimize microbial deterioration 

Confectionary and pharmaceutical 
packaging Deep products from deteriorating 

Confectionary Manufacturing Improve product and appearance 
production 
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Manufacturers 

A list of desiccant dehumidifier manufacturers, along with brief product 

descriptions, is provided below. 

• Bry-Air, Inc. is headquartered in Sunbury, Ohio and produces desiccant 

dehumidifiers in packaged units that provide flow rate capacities ranging from 50-

cfm to 30,000-cfm. The Bry-Air Dry3 ™ Compact Series, in Figure 8.10, is available 

in 300-, 150-, and 75-scfm. 

Figure 8.10:  Bry-Air Dry3 ™ Compact desiccant dehumidifiers 
(www.bry-air.thomasregister.com) 

www.bry-air.thomasregister.com
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• Kathabar, Inc. in Somerset, New Jersey manufactures liquid desiccant 

dehumidifier systems that can handle moisture removal at flow rates of 750- to 

84,000-cfm. The Kathapac system by Kathabar is presented in Figure 8.11. 

Figure 8.11:  Kathapac System by Kathabar dehumidifies large air volumes  
(www.kathabar.imtech.nl) 

• SG America in Frederick, Maryland produces desiccant wheels, enthalpy rotors, 

integrated desiccant dehumidifier and vapor compression systems, and desiccant 

dehumidification systems.  Product air flow capacities range from 75- to 25,000-cfm.  

SG America manufactures the E-Save (Figure 8.12), the first desiccant dehumidifier 

product line designed for use with a microturbine power generator.   

Figure 8.12:  E-Save Desiccant Dehumidifier by SG America (www.sgamerica.com) 

www.sgamerica.com
www.kathabar.imtech.nl
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• Stulz-Air Technology Systems in Frederick, Maryland builds desiccant 

dehumidification systems for applications as low as 125-cfm and as high as 25,000-

cfm. Figure 8.13 shows a dehumidification rotor by Stulz-Air. 

Figure 8.13:  DESICAiR Dehumidification Rotor by Stulz-ATS (www.stulz-ats.com) 

• Cargocaire Division of Munters USA is located in Amesbury, Massachusetts.  

Cargocaire traditionally manufactures integrated and packaged desiccant 

dehumidifier systems for industrial and military applications; however, Cargocaire 

now includes systems with smaller capacities in an overall production line for air-

flows of 30-cfm to 80,000-cfm. A 160-cfm unit is pictured in Figure 8.14. 

Figure 8.14:  MH-240 by Cargocaire Operates at Flow Rates up to 160-cfm 
(www.gascooling.com) 

www.gascooling.com
www.stulz-ats.com


 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

CHAPTER IX 

CASE STUDY: MISSISSIPPI BAPTIST MEDICAL CENTER 

The Mississippi Baptist Medical Center (MBMC) in Jackson, Mississippi, 

represents an excellent example of a CHP-B system with a long and economically-

successful record. The MBMC CHP system was brought on line in 1991, so it has a long 

operational history.  This case study examines details of the system as well as details of 

the operating experiences. 

Figure 9.1 is a site photograph of the MBMC.  The full-service hospital has 694 

beds, a 24-hour emergency room, a medical staff of 500 and more than 3000 total 

employees. 
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Figure 9.1: Site View of the MBMC 

The history of CHP at MBMC started in 1990 when hospital officials were 

interested in exploring options to reduce energy costs.  In 1990, the hospital has a large 

electricity requirement, a large steam requirement, a significant price differential per Btu 

between electricity and gas, a centralized physical plant, and small daily variations in 

energy requirements.  Taken together, the 1990 energy profile indicated CHP, or 

cogeneration as it was then called, to be a viable economic option.  A CHP system was 

proposed. A detailed economic analysis projected that the proposed CHP system should 

have savings of $800,000/year with an initial system cost of $4.2 million for a calculated 

simple payback period of 5.25 years.  The system was expected to provide 70 percent of 

the electricity requirement, 95 percent of the steam required, and 75 percent of the 
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cooling load.  Based on the favorable outcome of the economic study, hospital 

officials decided to install the BCH system. 

The system contains the following components: 

1. Gas Turbine Generator Set: Solar Centaur H Model  

2. Diverter Valve 

3. ABCO Waste Heat Recovery Boiler 

4. Economizer 

5. Steam Absorption Chiller 

6. Primary  Switch Gear 

The performance specifications as well as details of each of the system components are 

presented in the next few paragraphs.  System operation can be best understood by 

examining Figure 9.2, which presents a schematic of the system.    
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Figure 9.2:  MBMC CHP System Schematic 

   
 

 

 
 
 
 

The Solar Centaur Turbine is fired by natural gas; shaft power is extracted from 

the turbine and, via a gearbox, used to drive the generator.  The Solar Centaur H Turbine 

is rated at 5600 hp with an electrical output of 4.0 MW on an ISO standard day.  The 

turbine is controlled by an Allen Bradley PLC 5/20 microprocessor with starting and 

synchronizing controls, a fire detection/protection system, and vibration analyzer 

capability.  The nominal generator output is 13, 800 volts.  Figure 9.3 shows the turbine 

installation arrangement. 
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Figure 9.3: Centaur H Turbine Installation 

The diverter valve operation is controlled by the waste heat recovery boiler 

(WHRB) and directs the exhaust gas to the WHRB boiler or out of the bypass stack to 

maintain the required steam pressure. The ABCO WHRB is rated at 30,000 lb/hr and has 

two firing modes.  In the turbine-firing mode, a 5.8 MMBtu duct burner is available to 

supplement the turbine exhaust stream.  In the direct-fire mode, used when the turbine is 

off line, direct fresh-air fire at 41.5 MMBtu is available.  The diverter valve is pictured in 

Figure 9.4. 

The economizer utilizes the remaining waste heat to preheat boiler feed water; 

water treatment chemicals are added to the feed water prior to the economizer.  Two 

absorption chillers are used by the system: a 1250-ton York Paraflow double effect 

chiller utilizes 115 psi steam at 11.8 lb/hr-ton to produce chilled water at 42 F and a 750-
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ton Trane double effect chiller utilizes 115 psi steam at 9.6 lb/hr-ton to produce 

chilled water at 42 F.  The chillers supply approximately 60 percent of the MBMC’s 2002 

total chilled water requirements. Additions to the facility since 1991 have added cooling 

load and resulted in 60 percent rather than 70 percent of the chilled water load being 

supplied by the absorption chillers.  Figure 9.5 shows the two chillers and their 

installation arrangements. 

Figure. 9.4:  Diverter Valve Arrangement 
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(a) York Chiller (b) Trane Chiller 

Figure 9.5: The York and Trane Absorption Chillers 

The primary switchgear is Powell metal-clad 4-bay switchgear that uses vacuum 

breakers for generator output and primary utility feed and contains generator and utility 

protective relays as well as synchronizing controls for generator/utility grid interconnect.  

The turbine-generator does not supply 100 percent of the electrical load, so the MBMC 

remains connected to the grid in normal operation.  If a CHP problem is sensed by the 

switchgear, the full hospital load is instantaneously shifted to the grid.  If the primary 

utility grid connection fails, the switchgear will shift the electrical load to a secondary 

utility feed in two seconds.  The combination of turbine-generator, primary grid, and 

secondary grid provides the MBMC with triple redundancy for emergency situations.  

The turbine control panel and the switchgear panel are pictured in Figure 9.6. 
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 (a) Turbine Control Panel        (b) Primary Switchgear 

Figure 9.6:  Turbine Control Panel and Switchgear Panel 

Important dates in the history of the MBMC CHP operations history are listed 

below. 

• Construction started May 1990 

• System online March 1991 

• Scheduled* overhaul September 1994 

• Scheduled* overhaul January 1998 

• Scheduled* overhaul November 2001 

*Nominal 30,000 hours 

The nominal 30,000 hours (3.42 years) between major overhauls is indicative of the 

reliability of ground-based turbines, and the actual overhaul dates confirm that reliability!  

Preventive maintenance requirements for the turbine-generator, as established by Solar, 

are presented as the following: 

• Turbine gearbox overhaul � 3.5 years (See dates above.) 

• Oil change* � As needed 

*Last oil change in 1993! 
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• Filter replacement � 3 months 

• Routine inspections every 8 weeks 

• Intermediate inspection every 6 months 

• Annual inspection every year 

• 200 off-line hours/year for inspections 

The oil change requirement is based on a spectrographic analysis of the oil for metallic 

particles.  The nearly ten years since the last oil change are a graphic indication of the 

robustness of the Solar turbine. The maintenance contract with Solar cost $14,000 per 

month, but includes all parts and labor. Attention to detail and a rigorous preventive 

maintenance policy are some of the reasons for the successful long-term operation of this 

CHP system. 

Schmidt and Hodge (1998) examined in detail the economics of the MBMC CHP 

system and concluded that the actual yearly cost avoidance was close to the original 

estimate of $800,000/year.  Their economic study results are presented in Table 9.1. 

Table 9.1: Actual Cost Avoidance 

Year 
Electricity 
Savings ($) Natural Gas ($) Maintenance ($) Savings ($) 

1994 1,250,000 402,000 159,000 686,000 
1995 1,240,000 432,000 159,000 648,000 
1996 1,400,000 468,000 163,000 770,000 

Average cost avoidance 701,000 
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The actual average yearly cost avoidance for 1994-1996 was $701,000 which 

compares favorably with the original estimate.  The actual payback period was about six 

years, which again compares favorably with the estimated payback period of the original 

economic study of 1990. 

One indication of the overall system performance is the percent of time the CHP 

system was online.  Table 9.2 presents the online percentage for the years for which data 

were available as well as the total electrical generation as a percentage of the electrical 

requirement for the entire hospital. 

Table 9.2: MBMC Online and Generation Percentages 

Year Percent Generation Online Percentage 
1994 74 94 
1995 74 98 
1996 78 98 
1998 64 84 
1999 73 98 
2001 61 82 
2002 70 93 

As illustrated in Table 5-2, except for 1998 and 2001, the system provided in 

excess of 79 percent of the electricity for the hospital and online percentages mirrored the 

percent generation.  In 1998, generator problems caused a multi-day outage, and in 2001 

the high spike in natural gas costs caused the MBMC to rely solely on grid electricity 

during the peak-cost period.  Taken over the 11 years of operation, the system was online 

and producing electricity for all but two out of 132 months! 
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Performance data for the last complete calendar year of operation are provided 

in Table 9.3. These data illustrate the effectiveness of the system in the MBMC. 

Table 9.3: Calendar-Year 2001 Performance Data 

Total Electricity Used 34,870,334 kWh 
Electricity Generated 21,181,009 kWh 
Electricity Purchased 13,689,325 kWh 
Turbine Gas 334,221 MMBtu 
Duct Burner Gas 18,286 MMBtu 
Average Steam Prod. 19,130 lb/h 

The average steam requirements for the absorption chillers and the ancillary 

hospital usage was virtually satisfied by the turbine exhaust as the duct burner used only 

5 percent of the total gas usage for the system (turbine plus duct burner).  Moreover, 2001 

was the year in which gas costs caused a curtailment in the turbine usage; none-the-less, 

the turbine-generator accounted for more than 60 percent of the required electricity.   

Many factors have contributed to the successful long-term operation of the 

MBMC CHP system.  The most important of these factors are delineated as follows: 

1. A high reliability for all system components. 

2. A comprehensive maintenance program. 

3. An enthusiastic and competent power-house staff. 

4. An accurate and consistent monitoring procedure. 

5. A no-penalty switchover-to-grid electrical rate structure. 

6. A continuous assessment and improvement process. 
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Among the new operational policies are real-time monitoring with current utility 

prices for optimum economic operation and a 36-months firm gas price for economic 

stability ($3.80/MMBtu). 

By virtually any metric, the CHP system at the Mississippi Baptist Medical 

Center must be rated a success. In the United States, situations where CHP make sense 

exist by the thousands.  This case study illustrates how effective CHP can be as a solution 

to energy costs. 



 

 

 
 

 

  

  

 

CHAPTER X 

CONCLUSION 

CHP-B is an emerging paradigm in energy systems.  The driving potential behind 

CHP-B systems is the thermal efficiency that these systems can achieve.  Projected CHP-

B system efficiencies of 80% are well above the overall thermal efficiencies experienced 

by standard energy systems.  Reliability, enhanced power quality, energy security, fuel 

versatility, improved indoor air quality, and lower emissions are additional benefits that 

make CHP-B systems attractive. 

A variety of distributed power generation (DPG) technologies may be selected for 

a CHP-B system.  Table 10.1 illustrates how these technologies compare in efficiency, 

cost/technology status, emissions, noise, and small-scale capacity.  The technologies are 

ranked from those having the most positive characteristics to those having the most 

negative characteristics.  For example, Fuel Cells have the lowest emissions and therefore 

the best characteristics in this category, and IC Engines have the highest emissions and 

therefore the most negative characteristics in this category.  The rankings in Table 10.1 

are based on the technologies as a whole and may vary in some cases. 

The thermally-activated technologies discussed in this module are non-competing. 

A specific system-configuration may require that only an Absorption Chiller or a 

Desiccant Dehumidifier be utilized.  However, if both cooling and dehumidification are 
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Manufacturer Websites 

Internal Combustion Engines 
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www.cummins.com 
www.deutzusa.com 
www.generac.com 
www.hondapowerequipment.com 
www.kohler.com 
www.waukeshaengine.com 

Industrial Turbines 

http://esolar.cat.com 
www.gepower.com 
www.pratt-whitney.com 
www.rolls-royce.com 
www.siemenswestinghouse.com 

Microturbines 

www.bowmanpower.com 
www.capstone.com 
www.elliot-turbo.com 
www.ingersoll-rand.com 
www.turbec.com 
www.vericor.com 

Fuel Cells 

www.utcfuelcells.com 

Absorption Chillers 

www.broad.org 
www.global.carrier.com 
www.robur.com 
www.yazakienergy.com 
www.york.com 

Desiccant Dehumidifiers 

www.bry-air.thomasregister.com 
www.gascooling.com 
www.kathabar.imtech.nl 
www.sgamerica.com 
www.stulz-ats.com 

www.stulz-ats.com
www.sgamerica.com
www.kathabar.imtech.nl
www.gascooling.com
www.bry-air.thomasregister.com
www.york.com
www.yazakienergy.com
www.robur.com
www.global.carrier.com
www.broad.org
www.utcfuelcells.com
www.vericor.com
www.turbec.com
www.ingersoll-rand.com
www.elliot-turbo.com
www.capstone.com
www.bowmanpower.com
www.siemenswestinghouse.com
www.rolls-royce.com
www.pratt-whitney.com
www.gepower.com
http://esolar.cat.com
www.waukeshaengine.com
www.kohler.com
www.hondapowerequipment.com
www.generac.com
www.deutzusa.com
www.cummins.com
www.caterpillar.com
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Heat and Power Partnership. 

11. http://www.epa.gov/cpd.html, EPA Climate Protection Division (CPD). 

12. http://www.epa.gov/oar, EPA Office of Air & Radiation. 

13. http://www.epa.gov/oar/oaqps, EPA Office of Air Quality Planning and 
Standards. 

14. http://www.epri.com, Electric Power Research Institute (EPRI). 

15. http://www.epsa.org, Electric Power Supply Association (EPSA). 

16. http://www.erc.uic.edu/, Energy Resources Center, University of Illinois at 
Chicago. 
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http://www.epri.com
http://www.epa.gov/oar/oaqps
http://www.epa.gov/oar
http://www.epa.gov/cpd.html
http://www.epa.gov/chp
http://www.epa.gov
http://www.energystar.gov
http://www.naruc.org
http://www.districtenergy.org
http://www.distributed-generation.com/dpca
http://www.cee1.org
http://www.bnl.gov
http://www.ase.org
http://aceee.org
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17. http://www.eren.doe.gov/distributedpower, DOE Distributed Power (DP) 

Program. 

18. http://www.eren.doe.gov/ee.html, DOE Office of Energy Efficiency and 
Renewable Energy (EERE). 

19. http://www.eren.doe.gov/femp/resources/chpguide.html, “Combined Heat and 
Power: A Federal Manager’s Resource Guide,” FEMP. 

20. http://www.eren.doe.gov/power, DOE Office of Power Technologies (OPT). 

21. http://www.federallabs.org, Federal Laboratory Consortium for Technology 
Transfer. 

22. http://www.gastechnology.org/, Gas Technology Institute. 

23. http://www.mep.nist.gov, Manufacturing Extension Partnership (MEP). 

24. http://www.hud.gov, US Department of Housing & Urban Development (HUD). 

25. http://www.microturbine.com, Capstone Turbine Corporation. 

26. http://www.naseo.org, National Association of State Energy Officials (NASEO). 

27. http://www.netl.doe.gov, National Energy Technology Laboratory. 

28. http://www.nrdc.org, Natural Resources Defense Council (NRDC). 

29. http://www.nrel.gov, National Renewable Energy Laboratory. 

30. http://www.oit.doe.gov, DOE Office of Industrial Technologies. 

31. http://www.oit.doe.gov/industries.shtml, DOE Industries of the Future (IOF). 

32. http://www.oit.doe.gov/inventions, DOE Inventions & Innovation Program (I&I). 

33. http://www.ornl.gov/chpb/pdfs/010618PressRelease.pdf, “Energy Department 
Awards $18.5 Million for Packaged Cooling, Heating and Power Systems for 
Buildings,” DOE Press Release, June 2001. 

34. http://www.planning.org, American Planning Organization (APA). 

35. http://www.rapmaine.org, Regulatory Assistance Project. 
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