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Hidden Markov models (HMM) with Gaussian mixture observation densities are 

the dominant approach in speech recognition. These systems typically use a 

representational model for acoustic modeling which can often be prone to overfitting and 

does not translate to improved discrimination. We propose a new paradigm centered on 

principles of structural risk minimization using a discriminative framework for speech 

recognition based on support vector machines (SVMs). SVMs have the ability to 

simultaneously optimize the representational and discriminative ability of the acoustic 

classifiers. We have developed the first SVM-based large vocabulary speech recognition 

system that improves performance over traditional HMM-based systems. This hybrid 

system achieves a state-of-the-art word error rate of 10.6% on a continuous alphadigit task 

— a 10% improvement relative to an HMM system. On SWITCHBOARD, a large 

vocabulary task, the system improves performance over a traditional HMM system from 

41.6% word error rate to 40.6%. This dissertation discusses several practical issues that 

arise when SVMs are incorporated into the hybrid system. 
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CHAPTER 1 

INTRODUCTION 

Several experiments in understanding the human cognitive process over the years 

have confirmed that equal-sized physical differences in the signals arriving at our sensory 

organs are perceived as being smaller within categories and larger between categories [1]. 

For example, differences in wavelength within the range of the color yellow are perceived 

as smaller than equal-sized differences in the range between yellow and green [1]. Is a 

similar phenomenon inherent in the sounds produced and perceived by the human speech 

system? 

Speech is a uniquely human characteristic used as a tool to communicate and 

express ideas. Automatic speech recognition (ASR) technology has made significant 

progress over the past few decades. ASR systems have progressed from being able to 

handle small vocabularies such as digits, to large vocabularies such as broadcast news 

which can easily reach tens of thousands of words. In recent technology evaluations 

conducted by the National Institute for Standards and Technology (NIST) [2], the best 

systems perform at accuracies above 80% on tasks approaching unrestricted transcription. 

Humans are very adept at recognizing speech and their performance is stable even 

under adverse conditions [3,4,5]. ASR systems, however, still fall far short of human 

performance on conversational speech tasks [4]. In listening tests conducted on a large 

1 
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vocabulary task, recognition accuracy by humans was found to be an order of magnitude 

higher than machines (measured in terms of the number of words incorrectly transcribed). 

Though these tests included data with varied signal qualities, human recognition 

performance was found to be consistent over a diverse set of conditions. 

To a large extent, it appears that humans do speaker and channel adaptation 

effortlessly. This can be clearly seen in the case of recognizing television broadcasts 

where the background environment changes significantly — news broadcasts, live 

interviews, advertisements etc. In all the above cases humans easily adapt to the rapid 

changes while ASR systems suffer at handling these environment changes [6]. 

1.1. Complexity of the Speech Recognition Problem 

The demand for applications with voice interfaces has recently enjoyed 

tremendous growth [7] as part of the Internet revolution and extends far beyond dictation 

or other primitive forms of man-machine communication. Archiving and indexing [8,9] 

audio data, though not originally envisioned in the early days of speech recognition 

research, is now one of the fastest growing voice applications. ASR also finds application 

in electronic devices that are too small to allow data entry via the commonly used input 

devices such as keyboards. Personal Digital Assistants (PDA) and cellular phones are such 

examples in which ASR technology is beginning to play an important role. 

Though humans seem to effortlessly recognize speech even in adverse 

environmental conditions, ASR systems significantly lag human performance on 

challenging tasks such as conversational speech [4]. What makes conversational speech 
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diffi c ult ? List e d b el o w ar e s o m e of t h e m ost si g nifi c a nt f a ct or s t h at m a k e t h e t as k diffi c ult: 

� St yl e of S p e e c h : A n i m p ort a nt iss u e w h e n c o m p ari n g v ari o us r e c o g niti o n 

t a s ks, a n d a pr o bl e m a d dr e s s e d i n t his dis s ert ati o n, i s t h e st yl e of s p e e c h — 

r e a d, c o nti n u o us, s p o nt a n e o u s, disfl u e nt, et c. E arl y s p e e c h r es e ar c h c e nt er e d 

ar o u n d r e c o g ni zi n g is ol at e d w or ds w hi c h w er e d eli mit e d b y p a u s es b et w e e n 

utt e r a n c e s. C o nti n u o u s s p e e c h r e q ui r e s t h e d e v el o p m e nt o f r o b u st 

s e g m e nt ati o n st r at e gi e s a s w ell a s s p e e c h/ n o n - s p e e c h cl a s si fi c ati o n. 

C o n v er s ati o n al s p e e c h s y st e ms m ust all o w n o n- s p e e c h s o u n d s, i nt erj e cti o ns, 

r e st art s a n d a sl e w of ot h er di sfl u e n ci e s [ 1 0- 1 4]. S u c h artif a ct s i n cr e a s e 

a c o usti c c o nf usi bilit y a n d n e c es sit at e i m pr o v e m e nts i n a c o usti c m o d eli n g. 

� S p e a k e r D e p e n d e n c e : A m aj or a p pli c ati o n f or v oi c e i nt erf a c es is d at a b as e 

q u er y — u s er s a c c e s si n g d at a b y i s s ui n g v oi c e c o m m a n d s. T hi s i s a t a s k 

h u m a ns c a n d o m u c h m or e e asil y b y v oi c e t h a n b y t h e k e y b o ar d, si n c e s p e e c h 

is a n at ur al m o d e f or c o m m u ni c ati o n i n h u m a ns. M o d es s u c h a s k e y b o ar ds ar e 

n ot o nl y u n c o mf ort a bl e b ut als o n o ni nt uiti v e f or n ai v e us ers. T h e s e t as ks f a v or 

v oi c e i nt erf a c es t h at ar e s p e a k er-i n d e p e n d e nt, es p e ci all y w h e n i nt erf a ci n g o v er 

k e y b o ar d-l e s s d e vi c e s s u c h a s t h e t el e p h o n e. O n t h e ot h er h a n d, s p e e c h 

di ct ati o n s y st e m s a v ail a bl e o n p er s o n al c o m p ut er s ar e d e si g n e d t o a d a pt t o 

s p e a k er c h ar a ct eristi c s, a n d off er s o p histi c at e d c ust o mi z ati o n f e at ur e s. T h er e is 

a n o ntri vi al i n cr e as e i n c o m pl e xit y w h e n w e tr a nsiti o n fr o m s p e a k er- d e p e n d e nt 

t o s p e a k er-i n d e p e n d e nt s y st e m s. T hi s di s s ert ati o n d e al s e ntir el y wit h t h e 

d e si g n o f s p e a k er-i n d e p e n d e nt s y st e m s. Si mil ar t o t h e p r o bl e m s wit h 
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conversational speech, speaker independence increases acoustic confusibility 

by increasing the variability inherent in each acoustic unit, though not to the 

same degree. 

• Recording Conditions: It is well known that the performance of a speech 

recognition system is proportional to the signal-to-noise ratio of the input 

signal [2,4]. Noise can be introduced into the signal in many ways. It could 

have been added during the recording process or by the ambient conditions. 

For example, speech recorded over the telephone is degraded by the bandwidth 

constraints and non-linearities imposed by the telephone handset. The analog 

properties of the local loop extending to a customer’s premises, and echo also 

add to the degradation. Further, ambient noise such as other speakers carrying 

on conversations in the background (referred to as babble noise in the 

literature) poses a very severe problem for current systems. Cellular telephones 

and wireless communications networks constitute one of the most challenging 

environments for speech recognition due to noisy ambient conditions 

(automobiles and crowded public places), unpredictable networking problems 

(fading and packet loss), and degradations in the signal introduced by speech 

compression algorithms. Such problems serve to increase acoustic 

confusibility, thereby warranting powerful acoustic models. 

In summary, improving discrimination in recognition systems is one of the fundamentally 

important research areas for speech recognition. This is the general area addressed in this 

dissertation. A demonstration of the importance of discrimination is shown in Fig. 1. A 
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scatter plot of the first two elements of our standard feature vector for all vowels in the 

SWITCHBOARD Corpus [15] is shown. The features for each vowel are plotted in a 

different color. The data includes both male and female adult speakers. We can see that the 

overlap between the distributions of these features is severe. To succeed in speech 

recognition, we need to explore acoustic units spanning more than a frame of the input 

signal and classifiers that can handle potentially high-dimensional data with better 

acoustic discrimination. 

Figure 1. Overlap of the distribution of features for conversational speech is one of the funda-
mental problems in speech recognition. The first two cepstral coefficients are shown 
for all vowels in the SWITCHBOARD corpus. (Each color denotes a different vowel.) 
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Approaches to improving discriminability can be categorized in two ways. In the 

first category, discrimination is improved by operating the recognizer in a feature space in 

which the acoustic units of interest are inherently better separated. This acoustic feature 

space is typically multi-dimensional and data can be transformed to this space via linear or 

non-linear transformations [16]. Schemes like linear discriminant analysis (LDA), 

heteroscedastic LDA (HLDA) and independent component analysis (ICA) fall under this 

category [18]. These methods have had significant success on speech recorded in 

controlled settings but have had only marginal success (less than 5% relative improvement 

in word error rate) on conversational speech. 

In a second category, the problem of discrimination is addressed at the model level 

by building better classifiers. Discriminatively-trained hidden Markov models (HMM) 

and neural networks fall under this category [19-23]. Support Vector Machines (SVMs), a 

discriminative machine learning technique which is the basis of this dissertation, also falls 

into this second category [24-30]. A common theme amongst these techniques is the 

explicit incorporation of a quantity that measures discrimination into the parameter 

estimation process. Parameter estimation algorithms attempt to maximize a cost function 

related to this discrimination quantity. This second category has resulted in better 

performance on a wide range of tasks [19,20,24,31]. For example, HMMs estimated using 

a Maximum Mutual Information (MMI) criterion achieved significant improvements 

(about 10% relative) on a standard conversational speech evaluation task [32,33]. 
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1.2. Statistical Speech Recognition 

Our approach to deal with the problem previously cited is largely statistical in 

nature. The goal in a statistically-based speech recognition system is to find the most 

likely word sequence given the acoustic data. If A is the acoustic evidence that is 

provided to the system and W = w2, ,  is a sequence of words, then the w1, … wN 

recognition system must choose a word string Ŵ that maximizes the probability that the 

word string W was spoken given that the acoustic data A was observed: 

Ŵ = argmax ( A) (1)  p W  ⁄ . 
W 

p W  ⁄ ) is known as the a posteriori probability since it represents the probability of ( A 

occurrence of a sequence of words after observing the acoustic signal A . The above 

approach to speech recognition, where the word hypothesis is chosen within a 

probabilistic framework, is what makes most present recognizers statistical pattern 

recognition systems. 

It is difficult, if not computationally intractable, to directly compute the above 

maximization since there are effectively an infinite number of word sequences for a given 

language from which the most likely word sequence needs to be chosen. This problem can 

be significantly simplified by applying a Bayesian approach to finding Ŵ : 

Ŵ = argmax p A( ⁄ W)p W( ) .  (2)  
W 
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The probability, P A( ⁄ W) , that the data A was observed if a word sequence W 

was spoken is typically provided by an acoustic model. The likelihood p W( ) that gives 

the a priori chances of the word sequence W being spoken is determined using a language 

model [34,35]. Probabilities for word sequences are generated as a product of the acoustic 

and language model probabilities. The process of combining these two probability scores 

and sorting through all plausible hypotheses to select the one with the maximum 

probability, or likelihood score, is called decoding or search. Fig. 2 depicts the above 

framework under which most ASR systems operate. 

Input 
Speech 

Language Model 
p(W) 

Recognized Utterance 

Acoustic 
Front-End 

Statistical Acoustic Models 
p(A/W) 

Search 

Figure 2. Schematic overview of a statistical speech recognition system. 
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1. 3. C u r r e nt A c o u sti c M o d eli n g Te c h n ol o g y 

I n m ost c urr e nt s p e e c h r e c o g niti o n s yst e ms, t h e a c o usti c m o d eli n g c o m p o n e nts of 

t h e r e c o g ni z er ar e al m ost e x cl usi v el y b as e d o n hi d d e n M ar k o v m o d els ( H M M s) [ 3 4- 3 9]. 

T h e a bilit y t o st atisti c all y m o d el t h e v ari a bilit y i n s p e e c h h as b e e n t h e m ai n r e as o n f or t h e 

s u c c e s s t h at H M M s h a v e e nj o y e d o v er t h e y e ar s. H M M s pr o vi d e a n el e g a nt st ati sti c al 

fr a m e w or k f or m o d eli n g s p e e c h p att er ns usi n g a M ar k o v pr o c es s t h at c a n b e r e pr es e nt e d 

as a st at e m a c hi n e. T h e t e m p or al e v ol uti o n of s p e e c h is m o d el e d b y a n u n d erl yi n g M ar k o v 

pr o c e ss [ 3 7]. T h e pr o b a bilit y distri b uti o n a s s o ci at e d wit h e a c h st at e i n a n H M M m o d el s 

t h e v ari a bilit y w hi c h o c c ur s i n s p e e c h a cr oss s p e a k er s or e v e n diff er e nt s p e e c h c o nt e xts. 

T h e c o m pl et e d e s cri pti o n of t h e m o d el c a n b e pr o vi d e d u si n g t h e f oll o wi n g 

q u a ntiti e s: 

� N — t h e n u m b er of st at es 

� T h e st at e-tr a nsiti o n pr o b a bilit y distri b uti o n A = { }a ij 

� T h e o ut p ut pr o b a bilit y distri b uti o n B = { b j(o ) } , w h er e o is  t h e i n p ut 

o bs er v ati o n v e ct or. 

T h e o ut p ut pr o b a bilit y distri b uti o n r e pr es e nts t h e pr o b a bilit y of o bs er vi n g a n i n p ut 

f e at ur e v e ct or i n a gi v e n st at e. At t h e c or e of t h e H M M i s a B a y e s cl a s sifi er w h er e 

cl a s si fi c ati o n i s d o n e u si n g a si m pl e li k eli h o o d r ati o t e st. T h e o ut p ut p r o b a bilit y 

distri b uti o n c o ul d b e p ar a m etri z e d i n s e v er al w a ys. T h e distri b uti o ns c o ul d b e dis cr et e or 

c o nti n u o us. T h e c h oi c e b et w e e n dis cr et e a n d c o nti n u o us distri b uti o ns d e p e n ds o n s e v er al 

f a ct ors i n cl u di n g: 
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� c o nti n u o us distri b uti o ns pr o vi d e m or e a c c ur at e m o d eli n g 

� tr a d e- off b et w e e n a c c ur a c y of m o d eli n g a n d a m o u nt of a v ail a bl e tr ai ni n g d at a 
is a n is s u e f or c o nti n u o us d e nsiti es 

� dis cr et e distri b uti o ns ar e t y pi c all y esti m at e d usi n g s o m e f or m of v e ct or 
q u a nti z ati o n — v e ct or q u a nti z er b e c o m es a criti c al c o m p o n e nt 

� pr o b a bilit y c o m p ut ati o n i n t h e c as e of dis cr et e distri b uti o ns c a n b e a si m pl e 
l o o k u p t a bl e w h er e a s f or c o nti n u o u s di stri b uti o n s it r e q uir e s a si g nifi c a nt 
a m o u nt of c o m p ut ati o n 

T h e m ost c o m m o n f or m of t h e pr o b a bilit y d e nsit y us e d i n s p e e c h r e c o g niti o n is a 

G a u s si a n. O nl y c o nti n u o u s d e n siti e s will b e c o n si d er e d i n t hi s di s s ert ati o n. T h e m o st 

c o m m o nl y us e d f or m of t h e o ut p ut distri b uti o n is a m ulti v ari at e G a ussi a n distri b uti o n 1 . A 

m ulti v ari at e G a ussi a n c a n b e writt e n as: 

1 1 – 1 
o ) = -------------------------- e x p – -- ( o – µ ) 'Σ ( o – µ ) , ( 3)b j( t 

�
� 2 t j j t j

� 
n

( 2 π ) Σ jJ I I 

1. Ot h er distri b uti o n s, s u c h as L a pl a ci a n s, h a v e b e e n u s e d, b ut h a v e h a d li mit e d s u c c e ss [ 4 0]. 

 
Fi g ur e 3. A si m pl e H M M f e at uri n g a fi v e st at e t o p ol o g y wit h s ki p tr a n siti o n s. 
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where n is the dimension of the observation vector ot at time t and the subscript j 

indicates that the Gaussian under consideration belongs to the jth state of the HMM. The 

covariance may be either a full n n  matrix modeling the correlation between the × 

elements, or can be a diagonal matrix where the dimensions of the feature vector are 

assumed to be independent. Most modern speech recognition systems use a diagonal 

covariance matrix. Fig. 3 shows an example of a five state HMM with skip transitions. 

Equation (3) when transformed to the logarithm domain is equivalent to a distance 

metric between the test vector and the mean of the Gaussian modeling the HMM state, 

commonly known as the Mahalanobis distance [41]. The Mahalanobis distance plays a 

vital role in the algorithms used for finding the most likely word hypothesis given the 

acoustic data. Classification into various acoustic units of recognition is done via a direct 

comparison of Mahalanobis distances of the test vector from the competing acoustic 

models [41]. 

1.4. Acoustic Model Estimation 

The estimation of the parameters of the acoustic models (like HMMs) plays a vital 

role in the accuracy of the ASR system. A key to the widespread use of HMMs to model 

speech can be attributed to the availability of efficient parameter estimation 

procedures [39]. Maximum likelihood (ML) is one such optimization criterion. The 

motivation to use ML comes from the probabilistic definition of the speech recognition 

process which attempts to find a word sequence which maximizes a cost (likelihood) 

function as described in a previous section. 
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At the acoustic level, the goal of the recognizer is to classify speech into words (or 

sub-word units as the case may be). When the acoustic units are modeled using HMMs as 

defined previously, the probability distributions used to model the observation vectors are 

used for classification. Since the direct maximization in (1) is not practical, the Bayesian 

approach is used where the problem is modified to the optimization shown in (2). The 

parameters of the HMMs need to be estimated using a suitable optimization criterion. The 

Expectation-Maximization (EM) algorithm provides an iterative framework for ML 

0 

Figure 4. 
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An example of a two-class problem when maximum likelihood decision surface is not 
optimal (adapted from [31]). In the exploded view, the shaded region indicates the error 
induced by modeling the separable data by Gaussians estimated using maximum like-
lihood. This case is common for data, such as speech, where there is overlap in the fea-
ture space or where class boundaries are adjacent. 
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e sti m ati o n wit h g o o d c o n v er g e n c e pr o p erti e s, t h o u g h it d o e s n ot g u ar a nt e e fi n di n g t h e 

gl o b al m a xi m u m [ 4 2- 4 4]. 

T h er e ar e h o w e v er pr o bl e ms wit h M L as f or m ul at e d a b o v e. T h es e i n cl u d e: 

� m a xi mi zi n g li k eli h o o d d o es n ot n e c es s aril y tr a nsl at e t o b ett er cl assifi er s 

� m a xi m u m li k eli h o o d i m pr o v e s t h e cl as sifi er’s a bilit y t o r e pr es e nt a s p e cifi c 
cl a ss b ut w h at i s r e all y n e e d e d is a cl a s sifi er t h at b ett er di s cri mi n at e s a cl as s 
fr o m t h e ot h er s or m at h e m ati c all y, w e n e e d t o b ett er m o d el P ( W ⁄ A ) 

� M L esti m ati o n is n ot dis cri mi n ati v e i n t h at m o d el p ar a m et ers ar e esti m at e d 
b as e d o n i n- cl as s d at a al o n e wit h o ut c o nsi d eri n g t h e o ut- of- cl a ss d at a 

� M L as s u m es t h e f or m of u n d erl yi n g pr o b a bilisti c m o d el (t y pi c all y a G a ussi a n 
is us e d) 

Fi g. 4 s h o ws a si m ul at e d cl assifi c ati o n pr o bl e m w h er e u si n g a M L a p pr o a c h d o es 

n ot yi el d a n o pti m al cl a s sifi er. T h e t w o cl a s s e s ar e d eri v e d fr o m c o m pl et el y s e p ar a bl e 

u nif or m distri b uti o n s. M L i s u s e d t o fit G a u s si a n s t o t h e s e cl a s s e s a n d a si m pl e B a y e s 

cl a ssifi er is b uilt. H o w e v er, w e s e e t h at t h e d e cisi o n t hr e s h ol d o c c urs i n si d e t h e r a n g e of 

cl a s s 2. T hi s m e a n s t h at t h e pr o b a bilit y of err or i s si g nifi c a nt. H o w e v er if w e w er e t o 

si m pl y r e c o g ni z e t h at t h e r a n g e of d at a p oi nts i n cl a s s 1 is l e ss t h a n 3. 3 a n d t h at n o d at a 

p oi nt i n cl a s s 2 o c c ur s wit hi n t hi s r a n g e, w e c a n a c hi e v e p erf e ct cl a s sifi c ati o n. I n t his 

e x a m pl e a n y a m o u nt of eff ort e x p e n d e d i n l e ar ni n g a b ett er G a ussi a n will n ot h el p a c hi e v e 

p erf e ct cl a ssifi c ati o n. M or e dr a m ati c e x a m pl e s c a n b e c o n str u ct e d t o s h o w t h at l e ar ni n g 

d e cisi o n r e gi o n s di s cri mi n ati v el y will h el p i m pr o v e cl a s sifi c ati o n. T h e c o n cl u si o n fr o m 

t h e a b o v e e x a m pl e i s n ot n e c e s s aril y t h at u si n g a G a u s si a n i s a n i n c orr e ct c h oi c e. 

H o w e v er, i g n ori n g i nf or m ati o n a b o ut t h e o ut- of- cl as s d at a is d efi nit el y a pr o bl e m. 
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There has been significant work in the area of discriminative techniques for the 

estimation of HMM parameters. The primary difference between HMM parameter 

estimation via ML and discriminative techniques is that the optimization process is 

provided with negative examples or out-of-class data [31]. The foundation for a particular 

discriminative technique is either based on some information theoretic concept as in MMI 

estimation or based on directly minimizing the classification error as in Minimum 

Classification Error (MCE) estimation [31]. Though the above approaches have had 

significant success in terms of improvements in recognition performance their use has 

been limited because they require immense resources [32]. 

Neural networks have also been applied to speech recognition owing to several 

advantages they offer over the typical HMM systems [45-50]. Neural networks can learn 

very complex non-linear decision surfaces effectively and in a discriminative fashion. 

However, their estimation process is significantly more computationally expensive than 

HMMs and they are typically formulated as classifiers of static data. This has led to the 

development of several connectionist approaches where the neural networks are 

embedded in a HMM framework [51,52,53]. The performance of these hybrid systems 

have been competitive with many HMM-based systems and typically require a 

significantly reduced parameter count [51]. The hybrid connectionist systems also provide 

a way to mitigate some of the assumptions made in HMM systems that we know are 

incorrect for the human speech process [54]. One such significant assumption is that of 

independence of observations across frames [55-59]. Hybrid systems mitigate this 

problem by allowing the neural network classifiers to classify based on several frames of 
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a c o usti c d at a at a ti m e [ 5 3]. A si mil ar a p pr o a c h will b e p ur s u e d i n t hi s di s s ert ati o n b y 

pr o c essi n g m ulti-fr a m e d at a. 

Alt h o u g h t h e fi n al s y st e m c o nfi g ur ati o ns f or c o n n e cti o ni st s yst e m s ar e si m pl er 

t h a n H M M b as e d s yst e ms, t h eir us e h as b e e n li mit e d b e c a us e of v ari o us li mit ati o ns list e d 

b el o w: 

� G e n er ali z ati o n: N e ur al n et w or ks h a v e b e e n k n o w n t o o v erfit d at a u nl ess 
s p e cifi c m e a s ur e s ar e t a k e n t o a v oi d t h at. T h e s e m e a s ur e s t y pi c all y i n cl u d e 
s o m e f or m of cr o s s- v ali d ati o n w hi c h c a n b e r e stri cti v e w h e n t h e a m o u nt of 
tr ai ni n g d at a is li mit e d t o st art wit h. 

� O pti mi z ati o n Pr o c ess: N e ur al n et w or k l e ar ni n g is b as e d o n t h e pri n ci pl e of 
e m piri c al ris k mi ni mi z ati o n vi a t h e b a c k- pr o p a g ati o n al g orit h m [ 6 0 ,6 1 ,6 2]. 
T h o u g h t hi s g u ar a nt e e s g o o d p erf or m a n c e o n t h e tr ai ni n g d at a, o bt ai ni n g a 
b o u n d o n t h e p erf or m a n c e o n t h e t est d at a is n ot e a s y. 

� M o d el T o p ol o g y: I n m ost c o n n e cti o nist h y bri d s yst e ms t h e t o p ol o g y of t h e 
n e ur al n et w or k cl a s sifi er s n e e ds t o b e fi x e d pri or t o t h e e sti m ati o n pr o c e s s. 
T his is n ot al w a ys e a s y wit h o ut e x p ert k n o wl e d g e of t h e d at a. T e c h ni q u e s d o 
h o w e v er e xist t o l e ar n c o n n e cti o ns a ut o m ati c all y b ut ar e e x p e nsi v e [ 6 3, 6 4]. 

� C o n v er g e n c e: C o n v er g e n c e of t h e o pti mi z ati o n pr o c e ss h as b e e n t h e bi g g e st 
dr a w b a c k of n e ur al n et w or ks. C o n v er g e n c e is t y pi c all y a n or d er of m a g nit u d e 
sl o w er t h a n M L esti m ati o n of H M M p ar a m et ers. B ot h M L esti m ati o n usi n g t h e 
E M al g orit h m a n d e sti m ati o n of p ar a m et er s of t h e n e ur al n et w or k s d o n ot 
g u ar a nt e e r e a c hi n g a gl o b al m a xi m u m u nl es s m e as ur es ar e t a k e n t o p ert ur b t h e 
s yst e m fr o m ti m e t o ti m e w hi c h i n cr e a s es t h e p os si bilit y of r e a c hi n g t h e gl o b al 
m a xi m u m [ 6 6, 6 7]. 

T h e n e e d f o r di s cri mi n ati o n a n d cl a s sifi e r s wit h g o o d g e n er ali z ati o n a n d 

c o n v er g e n c e pr o p erti es t h at c a n b e us e d f or s p e e c h r e c o g niti o n h as l e d us t o l o o k at a n e w 

m a c hi n e l e ar ni n g p ar a di g m c all e d t h e s u p p ort v e ct or m a c hi n e s ( S V M) w hi c h f or ms t h e 

b asis of t his diss ert ati o n [ 6 8]. 
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1.5. Support Vector Machines 

Some of the generalization properties of neural networks have been mentioned in 

the previous section. Why is generalization important? HMM-based speech recognition 

systems perform very well on closed-loop tests but performance degrades significantly on 

open-loop tests [65]. The performance of systems on speaker-dependent tasks is 

significantly better than on speaker-independent tasks. This can be attributed to the fact 

that most systems do not generalize well. There is a definite need for systems with good 

generalization properties where the worst-case performance on a given test set can be 

bounded as part of the training process without having to actually test the system [68]. 

With many real-world applications where open-loop testing is required, the significance of 

generalization is further amplified. 

As mentioned in a previous section, empirical risk minimization is one of the most 

commonly used optimization criteria to estimate classifiers. However, there can be several 

Figure 5. Sample classification by the Royal Holloway SVM applet using a polynomial 
kernel. This data cannot be classified by a linear separating margin. This is an interest-
ing example in the sense that SVMs can handle such multi-modal data effectively. 
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configurations of the classifier that can achieve minimum risk on the training set. This is 

one of the reasons why neural networks can get stuck in local saddle points. The problem 

then is to decide on the configuration that has the least upper bound on the expected test 

set error. This is the principle of structural risk minimization (SRM). Support vector 

machines are founded on this principle and the result of SRM is a classifier with the least 

expected risk on the test set and hence good generalization [68]. 

SVMs in their simplest form are hyperplane classifiers. The power of SVMs lies in 

their ability to implicitly transform data to a high dimensional space and to construct a 

linear binary classifier in this high dimensional space. Since this is done implicitly, 

without having to perform any computations in the high dimensional space, neither the 

dimensionality of the data nor the sparsity of data in the high-dimensional space is a 

problem with SVMs. The hyperplanes in the high-dimensional transform space result in 

complex decision surfaces in the input data space as depicted in Fig. 5. 

SVMs have been applied successfully on several kinds of classification problems 

and have consistently performed better than other non-linear classifiers like neural 

networks and mixtures of Gaussians [50,70]. The dataset that propelled SVMs to 

prominence in the early 90’s was the US Postal Service digit data on which the SVMs 

achieved the best numbers reported [69]. The development of efficient optimization 

sche me s  l ed  to  t he  us e  o f  SVMs fo r  c l ass i f i ca t ion  o f  l a rge r  t a s ks  l i ke  

text-categorization [70,71]. 

There were some initial efforts to apply SVMs to speaker recognition in the early 

90’s [72,73]. This effort had limited success because of the lack of efficient 
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implementations of the SVM estimation process at that time. SVMs have also been 

applied to simple phone classification tasks and the results have been very 

encouraging [73-75]. Notice however that all the above classification tasks have one 

common feature — these are all static classification tasks. SVMs are not designed to 

handle temporal structure of data. Speech however evolves with time and we need to 

address this problem in order to harness the advantages of SVMs for speech recognition. 

This is the primary contribution of this dissertation wherein we have developed a hybrid 

SVM/HMM framework with the HMM structure being used to handle the temporal 

evolution of speech and SVMs being used to discriminatively classify frames of speech. 

The end result is a first successful application of SVMs to continuous speech 

recognition [73,76,77]. 

1.6. Dissertation Contributions 

The primary objective of this dissertation is to explore the use of SVMs for speech 

recognition. SVMs have had significant success in the past few years on a wide range of 

classification problems but have not been applied to the speech recognition problem. 

Speech recognition, especially continuous speech, suffers from significant acoustic 

confusibility and discriminative techniques have been successful at dealing with this 

problem. This dissertation describes the first successful application of SVMs to speech 

data at various levels of granularity — starting with simple frame level phone 

classification all the way up to a complete ASR system for continuous speech. 

A significant contribution of this dissertation is the hybrid SVM/HMM framework 

that has been developed to apply SVMs to speech recognition. Though the hybrid 
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fr a m e w or k h as b e e n us e d i n ot h er r el at e d ar e as, s e v er al is s u es s p e cifi c t o S V Ms h a v e b e e n 

a d dr e s s e d i n t hi s di s s ert ati o n. S o m e of t h e ot h er s p e cifi c c o ntri b uti o n s of t hi s w or k 

i n cl u d e: 

� S V M dist a n c e t o li k eli h o o d m a p pi n g: S e v er al s c h e m es h a v e b e e n st u di e d t o 
c o n v ert S V M dist a n c e s t o li k eli h o o ds i n or d er t o fit t h e S V M cl a ssifi er s i nt o 
t h e H M M- b as e d A S R s y st e m. T h e si g m oi d- b as e d w ar pi n g f u n cti o n h as b e e n 
f o u n d t o b e s uffi ci e ntl y a c c ur at e. 

� S e g m e nt-l e v el d at a: S e g m e nt l e v el d at a h as b e e n us e d wit h t h e h y bri d s yst e m 
d e v el o p e d i n t his diss ert ati o n. Is s u es r el at e d t o t h e g e n er ati o n of t his s e g m e nt al 
d at a h a v e b e e n a d dr es s e d i n t his diss ert ati o n. 

� N- b e st list g e n er ati o n: T h e h y bri d s yst e m o p er at e s o n N- b est lists g e n er at e d 
fr o m t h e b a s eli n e H M M s y st e m. A s p art of t hi s di s s ert ati o n, t h e N- b e st li st 
g e n er ati o n c a p a bilit y h as b e e n a d d e d t o t h e I SI P A S R t o ol kit. 

� Fis h er S c or e- b a s e d f e at ur es: T h e t h e or y f or t h e a p pli c ati o n of Fis h er S c or e s as 
i n p ut f e at ur es f or t h e h y bri d s yst e m wit h t h e ai m of i m pr o vi n g dis cri mi n ati o n 
h as b e e n d e v el o p e d. 

1. 7. St r u ct u r e of t h e diss e rt ati o n 

C h a pt er 2 o f t hi s di s s ert ati o n pr o vi d e s b a c k gr o u n d i n f o r m ati o n o n H M M 

t e c h n ol o g y a s a p pli e d t o s p e e c h r e c o g niti o n. S p e cifi c all y t h e d et ails of a c o usti c m o d eli n g 

i n t h e b a s eli n e A S R s y st e m ar e di s c u s s e d. C h a pt er 3 d e s cri b e s di s cri mi n ati v e tr ai ni n g 

t e c h ni q u e s f or H M M s t h at h a v e b e e n s u c c e s sf ull y a p pli e d t o c o nti n u o us s p e e c h i n t h e 

r e c e nt p a st. T h e s e t e c h ni q u e s i n cl u d e M MI a n d M C E. C h a pt er 3 al s o i n cl u d e s a bri ef 

d es cri pti o n of n e ur al n et w or k b as e d a p pr o a c h es a n d d et ails h y bri d c o n n e cti o nist s yst e ms 

d u e t o t h eir r el e v a n c e t o t h e h y bri d s yst e m d e v el o p e d i n t his diss ert ati o n. 

C h a pt er 4 d e s cri b e s t h e c or e t e c h n ol o g y i n v e sti g at e d i n t his dis s ert ati o n, S u p p ort 

Ve ct or M a c hi n e s. T h e c h a pt er i n cl u d e s d et ail e d m at h e m ati c al f or m ul ati o n of S V M s a n d 
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their estimation. Chapter 4 also describes the mathematics behind the use of Fisher scores 

for speech recognition which help closely integrate HMMs with SVMs. Chapter 5 

describes several aspects of the hybrid SVM/HMM speech recognition system that was 

developed as part of this dissertation. Implementation details of the hybrid ASR system 

are provided. 

Chapter 6 describes the corpora that are used for evaluating the hybrid system. 

Chapter 7 discusses the core set experiments used to validate the usefulness of the 

technology described and developed in this dissertation. Chapter 8 concludes the 

dissertation with discussion of promising avenues of work to continue development of the 

technology that uses SVMs more effectively for speech recognition. 



CHAPTER 2 

MAXIMUM LIKELIHOOD-BASED ACOUSTIC MODELING 

The most common model of speech production is based on the assumption of 

separate and independent source and vocal tract models. The speech signal can then be 

modeled as the convolution of an excitation signal and the vocal tract. Most recognition 

systems model the vocal tract characteristics only via homomorphic transforms [16]. The 

vocal tract shape can be modeled using tube models or using statistical methods [34]. 

Most current automatic speech recognition (ASR) systems employ statistical 

models to model speech (in reality only the vocal tract characteristics). In the past, 

systems incorporated a template-matching mechanism based on dynamic programming 

principles to match the incoming speech to representative patterns, or templates, of the 

speech units being modeled [34]. However, in recent years, systems have greatly benefited 

from the ability of statistical approaches to model variability, including speaker and 

channel variability. Model parameters in these systems are estimated using a data-driven 

framework involving large amounts of data. A popular data-driven parameter estimation 

technique is based on the Maximum Likelihood (ML) principle. 

This chapter introduces the motivation for ML-based parameter estimation in 

typical ASR systems. The acoustic modeling component of the system is described more 

rigorously so as to clearly establish the dependence of contemporary approaches on ML 

21 
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t e c h ni q u e s. T h er e ar e s e v er al is s u e s t h at aris e i n t h e pr a cti c al i m pl e m e nt ati o n of t h e M L 

esti m ati o n pr o c e d ur e t h at m a k e t h e pr o c es s e xtr e m el y c o m p ut ati o n all y e x p e nsi v e. I n t his 

c h a pt er w e will dis c us s t h es e iss u es i n t h e c o nt e xt of a t y pi c al A S R s y st e m [ 7 8 , 7 9]. T h e 

esti m ati o n pr o c e d ur e f or H M M s is a k e y st arti n g p oi nt f or t his dis s ert ati o n si n c e t h e o n e 

g o al of t hi s w or k i s t o d e v el o p a n A S R s y st e m w hi c h i s a h y bri d b et w e e n t h e H M M 

t e c h n ol o g y a n d S V M s. Si n c e c o m pl e xit y i s a m aj or i s s u e i n i m pl e m e nt ati o n of s u c h 

s yst e ms, a d et ail e d a n al ysis of t h e c o m pl e xit y of t h e M L a p pr o a c h is pr es e nt e d. 

2. 1. A c o usti c F r o nt- e n d 

T h e s u c c ess of a r e c o g niti o n s yst e m w h e n p os e d a s a st atisti c al p att er n r e c o g niti o n 

s yst e m d e p e n ds o n b ot h t h e effi c a c y of t h e cl a s sifi er s a s w ell a s t h e s p a c e i n w hi c h t h e 

cl as sifi ers o p er at e. T h e a c o usti c fr o nt- e n d i n a s p e e c h r e c o g niti o n s yst e m tr a nsf or ms r a w 

s p e e c h d at a i nt o a f e at ur e s p a c e w h er e t h e a c o usti c u nits of r e c o g niti o ns ar e cl assifi e d. T h e 

f e at ur e s p a c e i nt o w hi c h t h e s p e e c h d at a is tr a nsf or m e d n e e ds t o e x hi bit s o m e i m p ort a nt 

pr o p erti es. 

� Cl as s S e p ar a bilit y: Si n c e t h e g o al of s p e e c h r e c o g niti o n is t h e a c c ur at e 
cl a s sifi c ati o n of t h e s p e e c h s o u n d s, t h e b a si c u nit s of r e c o g niti o n n e e d t o b e 
w ell s e p ar at e d i n t hi s f e at ur e s p a c e. T h e fr e q u e n c y d o m ai n i s t y pi c all y t h e 
pr ef err e d s p a c e [ 1 6] i n w hi c h t h e cl as sifi er s o p er at e. 

� C o m p a ct R e pr es e nt ati o n: T h e f e at ur e s p a c e n e e ds t o h a v e a m or e c o m p a ct 
r e pr e s e nt ati o n t h a n t h e ori gi n al i n p ut s p a c e. T hi s all o w s f or t h e d e si g n of 
cl a s sifi er s of m o d er at e c o m pl e xit y a n d m a k e s a c c ur at e p ar a m et er e sti m ati o n 
p ossi bl e. M ost A S R s yst e ms [ 3 8] o p er at e i n a 3 0- 5 0 di m e nsi o n al f e at ur e s p a c e. 

� K n o wl e d g e- B as e d R e pr es e nt ati o ns: T h e f e at ur e s p a c e i n w hi c h t h e cl as sifi ers 
o p er at e n e e d s t o s u p p ort a p pli c ati o n of a p ri ori k n o wl e d g e a b o ut t h e h u m a n 
s p e e c h pr o c e s si n g s y st e m. F or e x a m pl e, n o nli n e ar fr e q u e n c y s c al e w ar pi n g, 
w hi c h i s u s e d i n m o st r e c o g niti o n s y st e m s t o d a y [ 1 6], i s m oti v at e d b y t h e 
l o g arit h mi c r e s p o ns e of t h e h u m a n a u dit or y s yst e m. 
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Cepstral analysis is by far the most commonly used feature extraction 

model [16,17]. The motivation for performing analysis in the cepstral domain is two-fold. 

First, the speech signal contains two key pieces of information: the excitation and the 

vocal tract shape. Recognition systems typically operate on the latter while speaker 

identification systems model the former. Cepstral analysis, a form of homomorphic signal 

processing, provides a mechanism for separating out these two components of the signal. 

Second, cepstral processing is attractive because it gives the ability to improve noise 

robustness via very simple and inexpensive mechanisms (such as cepstral mean 

normalization [5]). 

The idea of  a  cepstrum is based on a goal of separating two signals by 

deconvolution. Speech can be modeled [16] as the convolution of the excitation signal, 

e n( ) , and a vocal tract impulse response, v n( ) : 

s n( ) = e n( ) ⊗ v n( ) .  (4)  

Convolution in the time domain is equivalent to multiplication in the frequency domain: 

S f( ) = E f( )V f( )  .  (5)  

Taking the log of both sides, 

log (S f( )) = log(E f( )) + log(V f( )) ,  (6)  

The log frequency domain representation of the input signal, log (S f( )) , is referred to as 

the log spectrum. It is (theoretically) possible to remove the contribution of the excitation 

signal using simple techniques such as spectral subtraction [80]. In practice, a simple 

Fourier transform can be used to compute the log spectrum. 
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The time-domain representation of the log spectrum, which is defined as the 

cepstrum, is obtained using an inverse Fourier transform: 

Ns 2πj------kn
1 Nsc n( ) = ------ log Savg( )k e 0 ≤ ≤  s – 1n N  (7) 

Ns 

Typically only the lower order terms of the cepstrum are used for speech 

processing since they represent the short-term correlations that exist because of the 

influence of the vocal tract shape on the signal. The cepstrum can be computed without 

having to transform the data into the frequency domain using Linear Prediction (LPC) 

coefficients [16]. Incorporating the warped frequency scale is simple when the spectrum is 

available. With LPC-based cepstral computation warping the frequency scale is 

computationally more expensive and is achieved using a bilinear transform[16]. Finally, 

the cepstral domain does indeed satisfy several requirements of a “good” feature 

space [16] for speech processing. Several other feature spaces motivated by our 

knowledge of the speech signal and our desire to be tolerant of ambient noise [5] have 

recently shown some promise. 

2.2. Parametric vs. Non-Parametric Modeling 

Mathematical models of the underlying units that we assume to compose a speech 

signal are called acoustic models. Typical units used to model speech signals are phones, 

syllables, and words [81-85]. An acoustic model, which is a classifier, can either be a 

parametric representation of the acoustic unit or a non-parametric representation. HMMs, 

for example, are parametric classifiers while classifiers based on k-means clustering [41] 
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ar e n o n- p ar a m etri c. Te m pl at e m at c hi n g, a s d es cri b e d i n t h e i ntr o d u cti o n, is a n e x a m pl e of 

a p ar a m etri c m o d el of s p e e c h si n c e it m o d els s p e e c h u si n g a v er a g e s of e x e m pl ar s of t h e 

u nits. M o d eli n g b as e d dir e ctl y o n e x e m pl ar s s uff ers fr o m s e v er al dr a w b a c ks i n cl u di n g: 

� Fi n di n g t h e b est e x e m pl ar s is v er y ti m e- c o ns u mi n g a n d r e q uir es e x p ert 
k n o wl e d g e i n a c o usti c p h o n eti cs. 

� C o nt e xt- d e p e n d e nt m o d eli n g of s p e e c h u nits, w hi c h is a criti c al c o m p o n e nt of 
m o d er n t e c h n ol o g y, is e xtr e m el y s u bj e cti v e. 

� H e uristi cs h a v e t o b e a p pli e d t o a c hi e v e a c c ur at e t e m p or al m o d eli n g ( s u c h as 
d ur ati o n p e n alti es). 

� M o d eli n g s p e a k er v ari a bilit y a n d b a c k gr o u n d e n vir o n m e nt is e x p e nsi v e si n c e 
it is t y pi c all y d o n e e x pli citl y usi n g m ulti pl e m o d els. 

I n p att er n r e c o g niti o n it is v er y r ar e t h at w e h a v e c o m pl et e k n o wl e d g e of t h e d at a 

t h at w e pr o c e s s. We d o h o w e v er h a v e k n o wl e d g e of s o m e tr e n ds. P ar a m etri c m o d el s ar e 

t y pi c all y a r es ult of i n c or p or ati n g t his p arti al k n o wl e d g e i nt o a cl os e d-f or m r e pr es e nt ati o n. 

O ur g o al is t o us e a s uffi ci e ntl y g e n er al m o d el t h at c a n l e ar n t h e u n d erl yi n g str u ct ur e. A 

G a u s si a n mi xt ur e m o d el [ 3 4] i s a g o o d e x a m pl e of a s uffi ci e ntl y g e n er al p ar a m etri c 

m o d el. O n t h e ot h er h a n d, n o n- p ar a m etri c m o d el s ar e attr a cti v e b e c a u s e t h e y c a n 

a ut o m ati c all y u n d er st a n d a n d a c c o m m o d at e u nf or e s e e n m o d aliti e s i n t h e d at a wit h o ut 

h a vi n g t o ass u m e t h e pr o p erti es of a n u n d erl yi n g distri b uti o n. 

T h er e ar e s e v er al as p e cts of t h e cl as sifi c ati o n pr o bl e m t h at n e e d t o b e c o nsi d er e d 

b ef or e w e m a k e a d e cisi o n o n t h e f or m of t h e s ol uti o n: 

� G e n er ali z ati o n: I n m ost pr o bl e ms w e o nl y h a v e a c c es s t o a li mit e d a m o u nt of 
d at a. We n e e d t h e m o d el t o c a pt ur e all v ari a bilit y i n t h e d at a i n a w a y t h at is 
c o nsist e nt wit h u ns e e n d at a t h at s h ar e s s o m e c o m m o n st ati sti c al pr o p erti e s. 
P ar a m etri c m o d els c a n b e esti m at e d wit h c o ntr oll e d g e n er ali z ati o n c a p a biliti es. 
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M ost n o n- p ar a m etri c s ol uti o ns h a v e tr o u bl e wit h g e n er ali z ati o n, a n d m ust b e 
c o nstr ai n e d usi n g si g nifi c a nt a pri ori k n o wl e d g e a b o ut t h e pr o bl e m. 

� Cl as sifi c ati o n: A cl as sifi c ati o n s c h e m e m ust als o b e a d d e d t o a p ar a m etri c 
m o d el t o f or m a p att er n r e c o g niti o n s y st e m. H o w e v er, wit h n o n- p ar a m etri c 
t e c h ni q u e s, w e c a n s ki p t h e e sti m ati o n of t h e d at a di stri b uti o n a n d dir e ctl y 
esti m at e t h e cl assifi er ( or t h e d e cisi o n r e gi o n). H M Ms us e a p ar a m etri c f or m of 
cl assifi c ati o n w hil e S V M s ar e n o n- p ar a m etri c. 

� C o m p a ct n es s: M ost r e al w orl d s yst e ms h a v e a c c es s t o li mit e d c o m p uti n g 
r e s o ur c es a n d li mit e d a m o u nts of tr ai ni n g d at a. T his m a k es t h e c o m p a ct n ess of 
r e pr e s e nt ati o n of t h e cl a s sifi er a n i m p ort a nt a s p e ct t o c o n si d er. F or e x a m pl e, 
m o d eli n g a pr o b a bilit y d e nsit y a s a G a us si a n r e q uir es esti m ati o n of a mi ni m al 
n u m b e r o f p a r a m et e r s — t h e m e a n a n d t h e v a ri a n c e. C o m p a r a bl e 
n o n- p ar a m etri c r e pr e s e nt ati o n s, t y pi c all y b a s e d o n v e ct or q u a nti z ati o n [ 8 5] 
t e c h ni q u es, w o ul d r e q uir e a si g nifi c a ntl y gr e at er n u m b er of p ar a m et ers. 

t h 
Fi g. 6 s h o w s t h e distri b uti o n of t h e 5 c e pstr al c o effi ci e nt f or t h e m al e s p e a k er s 

of t h e TI DI GI T S [ 8 7] s p e e c h c or p us. A G a u s si a n fit t o t hi s d at a r e v e al s a f airl y cl o s e 

r d
m at c h. O n t h e ot h er h a n d, i n Fi g. 7, w e pr e s e nt a di stri b uti o n f or t h e 3 filt er b a n k 

Fi g ur e 6. Di stri b uti o n of t h e 5t h c e p str al c o- Fi g ur e 7. Bi m o d al di stri b uti o n e x hi bit e d b y a 
effi ci e nt f or m al e s p e a k er s i n t h e s p e cifi c s p e ctr al bi n. N ot e t h e 
TI DI GI T S d at a. a m o u nt of mi s m at c h i n m o d eli n g t hi s 

d at a wit h a si n gl e G a u s si a n pr o b a bil-
it y d e n sit y f u n cti o n. 
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amplitude [16] for a subset of male speakers from the TIDIGITS speech corpus. Clearly, 

this feature is multimodal. Speech signal features often demonstrate modalities due to the 

gender of the speaker, variations in microphones, acoustic channels, and dialect. Such data 

cannot be modeled by a single Gaussian distribution. A mixture of Gaussians is used to 

handle the multimodal nature exhibited by most feature spaces. The output probability 

distribution can be expressed as a mixture of Gaussians by, 

K 

( ) = ( ) ,  (8)  bj ot ∑ cjkbjk ot 

where K is the number of component densities in the mixture, is the mixture weight cjk 

K 

(with the constraints 0 ≤ cjk ≤ 1 and � cjk = 1 ) and bjk is a multivariate Gaussian 
k = 1 

density function as defined in (3). 

2.3. Estimation-Maximization and Maximum Likelihood 

If we assume that parameters of an HMM are fixed but unknown, we can pose the 

problem of parameter estimation as one that maximizes the probability that the model 

generates the observed data (a posteriori probability). The approach for a typical HMM 

parameter estimation process then becomes maximization of the likelihood of the data 

given the model, traditionally known as Maximum Likelihood (ML) estimation [39]. One 

of the most compelling reasons for the success of ML and HMMs has been the existence 

of iterative methods to estimate the parameters while guaranteeing convergence. 
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Expectation-Maximization (EM) is one algorithm that is used extensively to perform ML 

estimation [42-44]. 

Suppose we have a feature space Y of “complete data” — the data is complete in 

that there is no missing information. Suppose we are given a measurable map y → x of Y 

to a measurable space X of “incomplete data” — the data is incomplete because there is 

missing information due to the lack of knowledge of the underlying processes or actual 

loss of information. The “incomplete data” space is typically what we have access to in 

real world problems. Let f(y Φ) be a member of the set of probability density functions 

defined on Y and let g(x Φ) be the density function on X induced by f(y Φ) . The 

symbol Φ represents the parametrization of the density function (e.g., the mean and the 

variance for a Gaussian model). 

For a given x ∈ X the goal of EM is to find the maximum of the log likelihood 

function L Φ = log ( x( )  g( Φ)) by using the relationship between f and g . In other 

words, instead of optimizing directly in the observation space, X , we attempt to optimize 

in the “complete” space, Y , and use the relationship between the two spaces to guarantee 

an optimal solution. EM is very effective for problems where maximizing based on f is 

significantly easier than maximizing based on g . In reality, we need not necessarily 

perform the optimization in the logarithm domain. Given that the most common 

parameterizations of the density functions are exponential in nature, the logarithm domain 

simplifies the mathematical analysis significantly. 
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The distributions, f and g are related through the conditional distribution k on 

Y( )x : 

f(y Φ) = k(y x, Φ)g(x Φ) .  (9)  

We can then write the relationship between the log likelihoods as, 

E(log f(y Φ) x, Φ') = E(log (k(y x, Φ)) x, Φ') + E(log (g(x Φ)) x, Φ') , (10) 

or, 

E(log (g(x Φ)) x, Φ' ) = E(log f(y Φ) x, Φ') – E( log(k(y x, Φ)) x, Φ') , (11)  

or, 

L( )Φ = Q(Φ Φ') – H(Φ Φ') , (12) 

where Q(Φ Φ')=E(log f(y Φ) x, Φ') and H(Φ Φ')=E( logk(y x, Φ) x, Φ') are the 

auxiliary functions. 

The EM formulation then can be implemented as a two-step process. Step 1 or the 

c c
E-step includes the determination of Q(Φ Φ ) where Φ is the parameter set for the 

current iteration. Since this computation involves f , it may have a simple closed-form 

definition. On the other hand, for problems that do not have closed-form solutions, there 

are a number of iterative numerical solutions [88] that work quite well. Step 2, or the 

c
M-step, involves maximizing the auxiliary function Q(Φ Φ ) and choosing the 

* 
parameter set Φ that maximizes this function. This parameter set is then used as the 
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value for the E-step of the next iteration. This iterative process is guaranteed to make L , 

the log-likelihood function, monotonically increasing [89]. The M-step guarantees that 

Q(Φ * ΦcΦc) ≥ Q(Φc ) . (13) 

From Jensen’s inequality [42] it can be shown that 

H(Φ * Φc H Φc Φc) . (14) ) ≤ ( 

Equations (13) and (14) imply that, if we can guarantee the auxiliary function Q to satisfy 

(13), then 

L(Φ * ) ≥ L(Φc) , (15) 

and the iterative process will ultimately lead to the local maximum likelihood solution. 

The EM formulation does not guarantee a global optimal solution will be identified. 

The EM algorithm has become an extremely important technique for parameter 

estimation for two reasons. First, EM can be used successfully when the optimization of 

the auxiliary function is simpler than optimization of the primary function. Second, if 

there is missing data involved in the optimization process, EM can elegantly arrive at the 

optimal solution without having to explicitly estimate the missing data. Since real world 

problems typically involve insufficient data, this feature of EM becomes extremely 

important in practice. 
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2.4. HMM Parameter Estimation 

As described in the previous section, the power of EM-based ML estimation lies in 

the definition of the auxiliary function. The easier it is to evaluate and optimize the 

auxiliary function the faster we can compute the ML estimates of the parameters of 

interest. The goal of HMM parameter estimation is to maximize the likelihood of the data 

under the given parameter setting. In an iterative framework this can be written as, 

P ( )y > P ( )y , (16) Φ Φ' 

where Φ' is the parameter setting for the previous iteration and Φ is the current 

parameter setting. However, in reality, evaluating and optimizing the density function can 

be a lost cause both in terms of computational resources and accuracy because we have to 

make a serious assumption about the data at hand — that is, that we have access to an 

infinite amount of data generated according to the distribution P y( ) . 

We can alternatively define an auxiliary function such that we can guarantee an 

optimal solution with the help of the EM theorem. If, 

P (s y)log P (s y) > P (s y)logP (s y) (17) Φ∑ Φ' ∑ Φ' Φ' 
t t 

then (16) is guaranteed and EM estimation will converge. 

The gist of the above formulation is that by starting with a model Φ' and finding a 

model Φ such that (17) is satisfied, then the observed data y is more probable under the 

model Φ than under Φ' [39]. In the above formulation s is the intermediate random 
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variable that depends on the model parameter settings. For example, s could be the state 

sequence in an HMM, which is not something we directly observed. The terms on the 

LHS and RHS of (17) can be represented as the auxiliary functions Q(Φ', Φ) and 

Q(Φ', Φ') respectively. Since we are maximizing the auxiliary function in the EM 

framework, the optimal parameter setting can be obtained using simple gradient descent 

techniques. The parameter update equations can be obtained by differentiating Q(Φ', Φ) 

with respect to each of the parameters and setting the derivative to zero. When s is chosen 

as the state sequence, the EM formulation is called the Baum-Welch algorithm [89]. 

2.5. Reestimation Formulae 

Before we derive the HMM parameter reestimation equations for use with the EM 

algorithm, a few probabilities need to be defined. 

Forward Probability 

The forward probability gives us the probability of generating the observations 

from time 1 to t and that the state j is visited at time t . 

αj( )t = Pr(o1, o2, …, o , θ j) (18) t t = 

The above computation can be efficiently done using the following recursive formulation: 

1 for j=1
αj( )0 = (19) 

0 for 1<j<N 
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N – 1 

αj( )t = αi(t – 1) bj( )o , for 1 ≤ ≤ j N  ,t t T  and 1 < < (20) ∑ aij 
i = 2 

N – 1 

α ( )N T = α ( )  , (21) ∑ i T aiN 
i = 2 

where N is the index of the final HMM state and T is the duration of the speech data 

measured in frames. 

Backward Probability 

The backward probability is the probability of generating the observations from 

time t + 1 to T if the model was in state j at time t . 

β ( ) = Pr(o , o , …,j t θt = j) (22) t + 1 t + 2 oT 

Similar to the forward probability computation, a recursive formulation exists for the 

backward probability computation. 

1 for  i=N  
β ( ) = (23) i T ,aiN for 1<i<N 

and, 

N – 1 

β ( ) = ( ) j t , for 1 ≤ < i N ,i t β ( + 1) t T  and 1 < < (24) ∑ aijbj ot + 1 
i = 2 
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Utterance Likelihood 

The total probability P of a sequence of observations O given the model M can 

be written in terms of α and β as: 

T N 

P(O M) = αj( )t βj( )t . (25) ∑ ∑ 
t = 1 j = 1 

This computation can also be efficiently executed using the backward probability: 

P(O M) = β1( )0 , (26) 

where, 

N – 1 

β ( ) = ( )β ( ) . (27) 1 0 ∑ a1jbj o1 j 1 

i = 2 

Auxiliary Function 

Another fundamental quantity for the estimation process is the probability of 

th th
observing the sequence O and taking a transition from the i state to the j state at 

time t , 

P(O, θ = i, θ = j) = α t – 1) ( )βj( )t . (28) t – 1 t i( aijbj ot 

Let θ be a fixed state sequence through the HMM. Then the auxiliary function can be 

defined as, 
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Q Φ Φ') = P
Φ'

(O, θ)logPΦ(O, θ) , (29) ( , ∑ 
θ Θ∈ 

where Θ is the set of all possible state sequences through the HMM and, Φ' and Φ 

represent old and new parametrization of the HMM respectively. 

From the EM formulation in (17), we know that Q Φ Φ ) > Q( ,Φ' Φ') implies ( , ' 

that ( ) > P ( ) — the criterion for maximum likelihood estimation. We also PΦ O O
Φ' 

defined 

T + 1 T 

PΦ(O, θ) = aθ ⋅ ∑ bθ ( )o (30) ∏ t – 1θt t t 
t = 1 t = 1 

where θt is the state occupied at time t in the sequence θ . Using (30) in (29) and 

maximizing with respect to each of the HMM parameters, the required parameter 

reestimation formulae can be derived [19]. A complete derivation of the reestimation 

procedure can be found in [19] and [39]. 

2.6. Practical Parameter Estimation 

Acoustic modeling, in simple terms, involves developing models that represent the 

acoustic units which form the fundamental building blocks of spoken language. These 

acoustic units could be words themselves or sub-word units like phones and syllables. In 

either case, in an HMM-based ASR system, each acoustic unit is modeled using an HMM. 

The training process involves the estimation of the parameters of the HMMs given the 
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speech data. In a simple phone-based system the aim of the training process is to estimate 

the parameters of the HMMs representing the phones. However the complexity of 

recognition tasks warrant several improvements to this rather simplistic framework. 

2.6.1. Context Dependent Acoustic Models 

In tasks where the words are spoken in isolation, the boundary phones of words are 

not affected by the preceding or the following words. However, in continuous speech, 

coarticulation is an important phenomenon that occurs within words as well as across 

word boundaries. To account for coarticulation, context-dependency across words has 

been successfully modeled using lexical tree-based approaches [90]. When the context of 

a context-dependent phone spans a word boundary, it is called a cross-word model. 

Otherwise it is referred to as a word-internal model. This difference is illustrated in Fig. 8 

via an example. 

hh  aw  d ih d  y  uw  

word-internal hh+aw hh-aw d+ih d-ih+d ih-d y+uw y-uw 

cross-word hh+aw hh-aw+d aw-d+ih d-ih+d ih-d+y d-y+uw y-uw 

how did you 

monophone 

words 

Figure 8. Example of context-dependent phone realization — “+” denotes right context and “-” 
denotes left-context 
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2.6.2. Parameter Sharing 

Though cross-word context modeling is very effective for continuous speech (in 

terms of improved accuracy), cross-word modeling is very expensive. First, the number of 

trainable parameters increases dramatically. Assuming a phone set of size 40 , we will 

typically use a context size of one phone to the left and right of the current phone. Hence, 

the number of possible context-dependent models in the system could be 403 . If we use 

12 mixture components per state and a 39 -dimensional feature vector, the number of 

trainable parameters approaches (39 + 39) × 12 × 403 = 60x106 assuming a diagonal 

covariance matrix for each Gaussian mixture component. In addition to the computational 

impact of this, there is also a significant increase in the resources required to manage the 

acoustic models (disk space and memory). 

Second, to obtain a statistically viable estimate for each parameter, we need at least 

100 training examples per parameter (a good rule of thumb). The amount of training data 

necessary to estimate this large a number of parameters is prohibitively large. This is 

compounded by the fact that not all phonetic contexts occur equally frequently, which 

means we would need to collect orders of magnitude more data to guarantee enough 

examples of infrequently occurring data (or choose our data very carefully). The databases 

used to train systems are barely enough to provide coverage for the variability in speaker, 

channel, and microphone, let alone cover all possible words any speaker could speak. 

This problem of insufficient training data for estimating parameters has been 

reduced significantly with the concept of parameter sharing across models [91,92]. The 



38 

most common method used to achieve this is the phonetic decision tree-based 

state-tying [91]. In this approach, a decision tree is used in an ML framework to cluster 

similar phonetic states. The tree is built via a set of phonetically motivated questions. 

2.6.3. Parameter Initialization 

A common problem with iterative algorithms such as EM is that the solution can 

depend on the initial values for the parameters. A simple solution has been to initialize all 

the models with the same set of parameters — a global mean and variance for all 

Gaussians and equiprobable transition probabilities. This process is often referred to as, 

“flat-start” [93]. A second approach is where the initial values for the models are 

computed by gathering initial means and covariance through the careful choice of 

exemplars for each acoustic unit being modeled [37]. The former technique has the 

advantage of being simple to use and it does not perform much worse than its more 

sophisticated counterpart. The latter technique can be very tedious and requires expert 

phonetic knowledge. 

2.7. Summary 

This chapter has reviewed a commonly used form of parameter estimation for 

acoustic modeling in ASR systems — Maximum Likelihood estimation of HMM 

parameters. The motivation for Gaussian probability distributions as models of speech 

variability and the use of HMMs was discussed. ML-based parameter estimation of HMM 

parameters in the context of Expectation-Maximization (EM) algorithm, also known as 
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the Baum-Welch algorithm has been described in detail. The mathematical formulation of 

this estimation process forms the basis for the estimation of parameters of the hybrid 

acoustic model formed by combining SVMs and HMMs which will be discussed in a later 

chapter. The following chapter will discuss alternatives to ML, which are not explicitly 

geared towards improving recognition performance. These discriminative acoustic 

modeling schemes bear resemblance to the optimizing criterion for SVMs. 



CHAPTER 3 

DISCRIMINATIVE TECHNIQUES FOR SPEECH 

RECOGNITION 

The previous chapter reviewed the theoretical framework for ML-based HMM 

parameter estimation and some practical issues that need to addressed to make the process 

efficient. ML-based estimation is however tangential to the goal of classifiers in general 

and speech recognizers in particular. The estimation process tries to optimize the modeling 

ability of the acoustic models without access to a measure of their classification ability. In 

reality, better classification is the ultimate goal of the speech recognizer. In this chapter we 

look at powerful HMM parameter estimation techniques and classifiers that use some 

form of discriminative information while achieving better classification. This brief 

summary of contemporary discriminative techniques will form a backdrop for the 

motivation behind using Support Vector Machines to improve speech recognition. 

The primary difference between maximum likelihood-based HMM parameter 

estimation and other discriminative techniques is that the objective criterion in the latter 

includes the probability of the data given that the wrong model was used [31]. Under 

discriminative-based estimation, the optimization process can effectively trade-off 

rejection of out-of-class examples while simultaneously learning to optimally represent 

40 
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in-class examples. The motivation for a discriminative technique could be either based on 

an information theoretic concept or reduced classification error [31]. This chapter reviews 

techniques widely used for discriminative training of HMMs. Neural networks also fall 

under the class of discriminative classifiers since they learn the decision surfaces using 

both negative and positive examples for any particular class akin to the SVM classifiers. 

Neural network architectures which are widely used for speech recognition are also briefly 

discussed here, and compared to conventional HMM approaches. 

3.1. Maximum Mutual Information (MMI) 

The mutual information, I , between variables X and Y is defined as the average 

amount of uncertainty about the knowledge of X given knowledge of Y [94,95]. 

Mathematically this can be defined as: 

( ; ) = ( )  H X  Y  ( ) . (31) I X Y  H X  – ⁄ 

The conditional entropy of X given Y is given by 

( ⁄ ) = ∑ ( , ) ( ⁄ ) = –E[log P x  y⁄ )] . (32) H X  Y  P x y logP x  y  ( 
x y, 

Having defined mutual information, we now pose the speech recognition problem in the 

same framework. Let W and O denote the random variables corresponding to the words 

and observation vectors. The uncertainty in the word sequence given the acoustic 

observations is the conditional entropy of W given O , 

( ⁄ ) = ( )  I W O  ( ; . (33) H W  O  H W  – ) 
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Note that we do not know P W O( , ) in general and need to estimate a parametric fit. The 

conditional entropy of the words given the acoustic observations can be shown to obey the 

following inequality: 

(W O⁄ ) ≥ ( ⁄ ) , (34) H H W  O  λ 

where λ denotes a particular parametric fit to the actual distribution [19]. The equality 

holds only if P (W O) = P W  O⁄ ) . Thus by minimizing (33), we can get an ⁄ (λ 

estimate of the conditional distribution that minimizes the uncertainty of the data given the 

model . This minimization is equivalent to the maximization of the mutual 

information (MMI), I W O) , under the assumption that H W  is fixed. ( ; ( )  

Similar to the ML-based estimation of HMM parameters, we define an objective 

function, LMMI , for the MMI estimation of the parameters as 

L ( )λ = I (X Y; ) = H ( )W –E[logP (w o⁄ )] . (35) MMI λ λ λ 

This objective function is the mutual information of the words given the acoustic 

observations under the parametric distribution λ . In this formulation we assume that we 

have acoustic data for several utterances from a training set and that we can represent each 

word in an utterance as a composite HMM composed of a concatenation of the HMMs 

representing the underlying acoustic units (phonemes, for example). 

Replacing the expectations by the sample averages and assuming the training data 

consists of R utterances, 
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R 

( ) = –--1- log Pλ( )wLMMI λ R ∑ r 
r = 1 

R 

R ∑ 
Pλ(o 

Pλ o 

M )Pλ( )wr r+ --1- log ---------------r ---------------------------- . (36)
( )r 

r = 1 
R 

= --1- {log Pλ(o M ) – log Pλ o( )}r r rR ∑ 

th
In the above w is the word sequence in the r utterance with a correspondingr 

composite model M . o are the set of observation vectors corresponding to the rth 
r r 

utterance. The first term in the above equation is the likelihood of the data given the 

model. Maximizing can be achieved by maximizing this likelihood, which isLMMI 

equivalent to ML estimation. 

However can also be maximized by simultaneously maximizing the firstLMMI 

term in the RHS of (36) and minimizing the second term. The second term, the probability 

of the acoustic data under a particular parametrization of the model, is what differentiates 

MMI from ML-based estimation. The probability of the acoustic data can be defined in 

terms of the probability of generating all possible word sequences. 

P o( ) = P o( M ) ⋅ ( ) ,P M  (37)r ∑ r rs rs 
s 

where s represents any possible word sequence and M represents the compositers 
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acoustic model for a given word sequence. Since the probability of the observation 

sequence includes information comprised of both the correct and the incorrect hypothesis, 

this optimization process is more discriminative than the traditional ML-based estimation. 

3.2. Practical Issues in MMI Estimation 

The steepest descent method is the simplest and most commonly used iterative 

technique to minimize a multivariate function [96]. At the end of each iteration, the values 

of the parameters are updated in the direction in which the objective function decreases 

the most. The change in the parameter value is a constant proportion of the gradient of the 

objective function with respect to the parameter. The constant proportion is commonly 

referred to as the learning rate. 

This procedure can be concisely written as 

= xk – ∇ ( ) , (38) xk + 1 η LMMI xk 

where, xk is the value of x , a parameter of the HMMs being estimated, in the kth 

iteration, ∆ ( ) is the gradient of the objective function with respect to the model LMMI xk 

parameter and η is the learning rate. The value of the learning rate is typically computed 

as a line search over ( – ∇ ( )) . This can be an expensive process if LMMI xk η LMMI xk 

the number of parameters being estimated is large. 

Steepest descent can converge slowly depending on the slope of the optimizing 

surface. The direction of descent and the magnitude of the gradient play a role in defining 
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original 
HMMs 

denominator 
statistics 

numerator 
statistics 

MMI 
Estimation 

ML 
Estimation 

training 
data 

recognition 
grammar 

correct 
transcription 

MMI Estimated 
Models 

ML Estimated 
Models 

Figure 9. Practical implementation scheme for MMI estimation of HMM parameters. 

the convergence properties of the optimization process. At places where the function 

surface is fairly flat, the gradient vector has a small magnitude, and reaching the optimum 

value will be slow. Similarly when the function is steep, the gradient may be large and the 

parameter can be updated to a value that may overshoot the optimal solution and thereby 

result in oscillations. 

Adding momentum terms [20] is a common approach to remedy these problems. 

We can introduce a new term, ζ , into (36): 

∆ = (1 – ζ) ∇ ( ) + ζ∆ . (39) xk η LMMI xk xk – 1 
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This formulation uses the amount of change in the parameter value during the previous 

iteration in addition to the steepest descent update. In the case where consecutive 

iterations have the same sign for the gradient, the amount of update is large, which 

improves the convergence rate in flat regions of the optimization curve. When consecutive 

iterations have opposite signs for the gradient, the update amount is smaller, which limits 

the amount of oscillation about a peak in the optimization curve. 

Fig. 9 demonstrates the procedure involved in estimating models using an MMI 

framework. Notice that the ML models are also obtained as a by-product at the end of this 

procedure. The box labeled “numerator statistics” includes the optimization of the first 

term in the RHS of (36) and “denominator statistics” contains the optimization of the 

second term in the RHS of (36). A recognition grammar which defines all possible word 

sequences (and hence all competing words for any given word) is used to guide the 

optimization process. In large vocabulary applications the number of competing words for 

a given word may be excessively large and may not be the result of acoustic confusibility. 

To save computat ions,  ins tead of  a  recogni t ion grammar,  N-bes t  l is ts  or  

word-graphs [97,98] are used because the number of alternate word sequences is limited. 

Those word sequences retained are the result of acoustic confusions, and hence important 

to our goal of building classifiers with improved discrimination ability. In a later chapter 

we will look at a very similar procedure used to generate data to train SVM classifiers. 

3.3. Minimum Classification Error (MCE) 

Thus far we have reviewed parameter estimation using traditional ML and 
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discriminative MMI techniques. However, neither of the two explicitly attempt to 

optimize the primary goal of a speech recognizer — minimum classification rate. In this 

section, we examine a parameter estimation technique that directly minimizes errors. A 

minimum classification error (MCE) criterion is not limited to HMM parameter 

estimation and has been used to optimize several types of classifiers including learning 

vector quantizers and recurrent neural networks [31]. The gist of MCE optimization is that 

we define a loss function in terms of the trainable parameters of the classifier that is 

proportional to the classification error. This loss function is then minimized using a 

suitable gradient-based technique [99]. MCE training does not necessarily involve the 

estimation of probability distributions and hence no underlying probability distribution 

needs to be assumed [20]. This circumvents a major drawback of ML estimation. 

3.3.1. Generalized Probabilistic Descent 

MCE is a powerful technique because it allows us to build classifiers that perform 

close to the Bayes error rate [41]. However, the technique would not have been successful 

if not for the existence of an efficient method for this optimization. Generalized 

Probabilistic Descent (GPD), which is based on Amari’s Probabilistic Descent theorem, 

forms the basis of the optimization procedure used in MCE [100,101]. This theorem states 

that for an infinite sequence of random samples ot and step size sequence ct that satisfies 

the conditions, 
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∞ 

1. c → ∞ , and (40) ∑ t 
t = 1 

∞ 

2. ∑ c 2 
t < ∞ (41) 

t = 1 

adapting the system parameters according to 

Λ = Λ – c U∇lk(o , Λ ) , (42) t + 1 t t t t 

converges with a probability of one to a local minimum of the overall loss, L Λ .( ) U in 

the above equation is a positive definite matrix that specifies separate update rates for each 

estimated parameter. 

The key to this approach is that the overall loss is never computed. Instead, we 

optimize based on the local loss functions, lk(o, Λ) . For the purpose of MCE, we specify 

the local loss to be a function of the classification error. However, the GPD framework can 

be used for any other form of local loss functions. Though in theory, an infinite number of 

samples are required for convergence, in practice it has been found the algorithm will 

converge using a finite amount of data. 

3.3.2. MCE Theory 

The misclassification error measure in a classification problem can be defined in 

terms of discriminant functions of the k classes, Ck . In typical speech recognition 
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applications these classes are either words in the application vocabulary or phonemes used 

as models internal to the system. We can choose a misclassification error such that it takes 

a value of zero for all correct classifications and non-zero values for misclassifications. 

This measure is not extremely useful because it does not provide a degree of separation 

between the correct and incorrect classes. In practice a measure with a gradual slope is 

preferred. One such popular misclassification error measure [31] is 

1 – 
ψ 

----------- gj(x, Λ) –ψdk(x, Λ) = – gk(x, Λ) + , (43)L 
1 
– 1 ∑ 

j k≠ 

where gk is the discriminant function corresponding to the kth 
class, ψ controls the 

contribution of each misclassification towards the error metric and L is the number of 

classes in the classification problem [31]. When ψ is large, the most confusable class 

contributes the most to the summation. 

This behavior is consistent with an N-best list processing paradigm or Viterbi 

approximation commonly used in many speech recognition systems  [102,103].  In  a  

Viterbi approximation, the summation over the discriminant functions is replaced by the 

maximum discriminant. Similarly, for an N-best list processing, summation over the 

discriminants is replaced with the summation over the highest N conditionals. 

3.3.3. Practical Issues in MCE 

Thus far we have introduced the general concept of MCE and its implementation 
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using GPD. We now focus on using the MCE framework in HMM parameter estimation. 

We start with the definition of the discriminant function in terms of the parameters of an 

HMM. We have several choices for the form of the discriminant function. The primary 

requirement is that the discriminant function can be used as a distance metric to compare 

classes. For this reason, the likelihood of the class, Cj , in terms of the transition and 

observation probabilities is often used. 

p
The likelihood is computed as the probability of all possible state sequences, Θ , 

for the given data. A closed form expression for one particular state sequence can be 

written as 

T 
T pf( , θx1 Λ) = ⋅ x( )a p p b p∏ tθ θt – 1θt t 

, (44) 

t = 1 

where a and b are the HMM transition and observation probabilities, respectively. Using 

the above definition of the likelihood, the discriminant function for the jth 
class can be 

defined as 

1-
ξ ξT T pgj(x1, Λ) = log [f( , θ Λ)] . (45)∑ x1 

p 

Note that when ξ is large, the most probable state sequence dominates the summation and 

we approach a Viterbi solution. 
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A loss function, d , can now be defined as the misclassification error measure. 

Equation (43) defines a commonly used loss function. This loss function is then 

minimized using gradient descent approaches similar to MMI estimation. 

From Amari’s theorem, convergence to the local MCE optimum involves 

optimizing local loss functions [101]. In general there are certain desirable properties for 

loss functions since GPD involves gradient computations. Near-binary functions are a 

desirable form for loss functions. Loss functions need to be first-order differentiable to 

apply GPD. A commonly used loss function that satisfies the above requirements is the 

sigmoid function: 

l d( ) = ----------1---
–
---
α 
----

d 
- , (46) 

1 + e 

where d is the misclassification error measure. 

3.3.4. Relationship of MCE to Bayes Decision Theory 

The primary difference between MCE and other HMM parameter optimization 

techniques like ML or MMI can be better illustrated by noting the link between MCE and 

the Bayes decision theory. In an M class problem, the probability of error given by Bayes 

rule is, 

M 

P = P(x, Ck)I(x ∈ )dx , (47) error ∑ ∫ Ck 
k = 1 Xk 

Xk represents the set of misclassified data samples and can be defined as, 



	 

� �

	 

� �

     
  

 
 

 
  

52 

= x ∈ X P C� k|x� ≠ max P Ci|x� . (48) �Xk i � 

P is the lower bound for the error in this classification task since it requires an exact error 

knowledge of the underlying probability distribution. This error measure is an inherent 

property of the classification problem and does not include errors accrued due to modeling 

assumptions. In reality, P needs to be estimated from data which is at best an 

approximation to the actual distribution. Using a similar formulation, we can compute the 

error conditioned on the discriminant functions gk(x, Λ) as, 

M 

= ( ,x I x dx , (49) ) ( ∈ )PΛ, error ∑ ∫ PΛ Ck Ck 
Λk = 1 Xk( )  

and 

Xk( )Λ = x ∈ X gk(x, Λ) ≠ maxgi(x, Λ) . (50) 
i � 

PΛ is defined over the region in the observation space that is determined by the choice of 

the classifier, its parameters and the decision rule. This is different from P which is 

defined over the region in the observation space determined by applying the Bayes rule 

assuming knowledge of the true posterior probabilities. 

By defining appropriate loss functions, PΛ can be made to approach the Bayes 

error. In fact, when 
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� � � �∀k, gk(x, Λ) ≠ max gi(x, Λ) � � , (51) ≡ I P Ck|x� ≠ maxP Ci|x� � � � �i i 

= P . (52) PΛ, error error 

where I is an indicator function. Achieving the Bayes minimum error does not necessarily 

imply that the discriminant functions represent the posteriors. It only implies that the class 

with the greatest discriminant function corresponds to the class with the greatest 

a posteriori probability. What this means is that, in order to obtain minimum classification 

error through the application of the Bayes rule, we need not explicitly model the posterior 

probabilities. This is by the far the biggest difference between the principle of MCE and 

ML or MMI. When MCE is used, a wrong choice for the form of the probability density 

functions in an HMM does not hurt performance as much as it does when ML-based 

optimization is used. As described in the next chapter, SVMs are also optimized via the 

estimation of discriminant functions. 

3.4. Neural Network-Based Approaches 

Though neural networks have been studied for several decades now, it was only 

since 1986, with the introduction of the back-propagation training algorithm, that they 

have found widespread use in several complex classification problems [45-47]. The 

back-propagation algorithm is a simple scheme wherein the gradient of the error between 

the network output and the expected output is propagated back from the output layer to the 

input layer while modifying the weights along the connections [104-108]. The weights are 
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modified so as to satisfy some optimization criterion — minimum mean squared error is 

commonly used. 

It has been shown that networks with sufficient number of layers and nodes can 

model complex non-linear decision regions and functions [104]. The estimation of the 

parameters of the neural networks can be considered discriminative, in that the weights of 

the connections are updated based on training examples belonging to all the classes in the 

task, unlike ML-based techniques. Also, unlike ML-based techniques, training for all the 

classes is done simultaneously using all the data instead of training classifiers using 

in-class data alone. Though the MLP has been successful on several classification tasks, 

modifications to the network are required to handle certain characteristics of speech 

data — most notably the dynamic nature of the evolution of speech 

In an HMM, the likelihood of generating an observation is dependent only upon 

the state and is independent of all other observations. This is not a valid assumption since 

the speech signal continuously evolves during the observation period (albeit slowly 

compared to the interval), and this evolution makes consecutive observations dependent 

on one another. The fact that the human speech production system is a complex dynamical 

system incapable of sudden transitions makes this assumption significant. The following 

modifications to the basic MLP neural network aim at harnessing the modeling power of 

neural networks while reducing the effect of the observation independence assumption. 
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3.4.1. Time-delay Neural Networks 

The time delay neural network (TDNN) architecture was developed initially for 

phoneme recognition [104,105]. In this constrained form of an MLP, connections are 

time-delayed (i.e. there is no instantaneous propagation of excitation from the input layer 

phoneme output 
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100 msec speech data 

Figure 10. An example of a time delay neural network used for phone recognition. 
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t o t h e o ut p ut l a y er) t o c o p e wit h v ar yi n g s e g m e nt ati o ns of t h e i n c o mi n g s p e e c h d at a. T h e 

i d e a is t o e m p o w er t h e n e ur al n et w or k wit h t h e a bilit y t o m at c h s e g m e nts irr e s p e cti v e of 

t h eir o c c urr e n c e i n t h e i n p ut d at a str e a m. Fi g. 1 0 s h o ws a si m pl e T D N N i m pl e m e nt ati o n. 

I n t his e x a m pl e, t h e i n p ut l a y er of t h e n et w or k is e x p os e d t o 1 0 fr a m es, or 1 0 0 ms e c., of 

s p e e c h d at a. T h e fir st hi d d e n l a y er gr o u p s t w o fr a m e s e v er y 1 0 m s e c. a n d p a s s e s t h e s e 

a b str a ct f e at ur e s t o t h e n e xt hi d d e n l a y er w hi c h gr o u ps fi v e o ut p ut s of t h e fir st hi d d e n 

l a y er e v er y 1 0 m s e c. T hi s s e c o n d hi d d e n l a y er i s c o n n e ct e d t o t h e o ut p ut n o d e s t h at 

pr e di ct t h e p h o n e m e cl as s. A t ot al of 1 0 fr a m es of i n p ut l a b el e d s p e e c h d at a ar e us e d t o 

pr e di ct t his p h o n e l a b el, as s h o w n i n Fi g. 1 0. 

S o m e of t h e s p e ci al c h ar a ct eristi cs of t h e T D N N i n cl u d e: 

� t h e ti m e d el a ys ar e hi er ar c hi c all y str u ct ur e d s o t h at t h e u nits  cl os er t o t h e 
o ut p ut l a y er c a n i nt e gr at e i nf or m ati o n fr o m a wi d er t e m p or al c o nt e xt; 

� t h e c o n n e cti o ns ar e s h ar e d al o n g t h e ti m e a xis  t o r e d u c e t h e n u m b er of 
tr ai n a bl e p ar a m et er s i n a n att e m pt t o i m pr o v e g e n er ali z ati o n. 

T h e m a n n er i n w hi c h t h e n et w or k c o n n e cti o n s ar e m a d e f or c e s t h e n et w or k t o l e ar n 

s p e e c h e v e nts i n d e p e n d e nt of t h e e x a ct l o c ati o n of t h e e v e nts i n t h e i n p ut. T his m a k es t h e 

n et w or k s hift-t ol er a nt or s hift-i n v ari a nt. 

3. 4. 2. R e c u r r e nt N e ur al N et w or ks 

T h o u g h T D N N s h a v e b e e n s u c c e s sf ul i n m a n y a p pli c ati o n s, t h eir u s e i n s p e e c h 

r e c o g niti o n h as b e e n li mit e d t o s m all t as ks. O n e of t h e m ai n dr a w b a c ks of T D N Ns is t h at 

t h e t e m p or al c o nt e xt t h at is us ef ul f or t h e cl a ssifi ers is pr e d et er mi n e d. T h e n et w or k its elf 

c a n n ot fi n d a n o pti m al ti m e wi n d o w t o l e ar n c o nt e xt u al i nf or m ati o n. A n ot h er dr a w b a c k 
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time 

delay 

input output 

input 
state next state 

Figure 11. A simple recurrent neural network. 

with TDNNs is the need to present the network with multiple frames of segmented data at 

a time, unlike HMM based systems where data is provided to the classifiers one frame at a 

time and the segmentation is learned from the data. 

This problem can be circumvented by adding feedback to an MLP. Feedback 

provides an efficient method to add context to the neural network without having to feed 

multiple frames of data to the classifiers. Feedback also saves resources in terms of the 

size of the networks. Recurrent neural networks (RNN) are an example of neural networks 

with feedback [106,107]. RNNs have an advantage of learning contextual effects in a 
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data-driven fashion. RNNs also have the ability to learn long-term contextual effects. 

Traditionally, contextual effects have been dealt with in HMM-based systems by using 

explicit context-dependent models or by increasing the dimensionality of the feature 

vectors to include gradients of the features [16,55,57]. 

Fig. 11 shows a simple RNN structure. The current input and current state form the 

inputs to the network. The two inputs are fed forward through the network to generate an 

output vector and the next state vector. The next state vector is fed back as input to the 

RNN via time delay unit. The parameters of an RNN are estimated using an efficient 

estimation procedure called back-propagation through time (BPTT) [106]. The basic idea 

behind BPTT is that an RNN can be unfolded in time to represent an MLP where the 

number of hidden layers is equal to the number of frames in the input sequence. Training 

an RNN can now be executed in a similar way as the standard MLP using back 

propagation with the restriction that the weights at each layer be tied [104]. Since RNNs 

process one frame at a time, they have been more popular in hybrid connectionist systems 

where the neural networks are used as posterior probability estimators and are embedded 

in an HMM framework [109,111]. This form of a hybrid architecture is similar to the 

hybrid system developed as part of this dissertation [73,75,76,77]. A detailed analysis of 

the hybrid architectures used in connectionist systems will be discussed in a later chapter. 

3.4.3. Minimum Mean Square Error and Bayes Decision Theory 

We have thus far seen two common neural network architectures used in speech 

recognition systems. Minimizing the mean-squared error is commonly used as the 
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optimizing criterion for estimating the weights of these networks. The following 

derivation shows why mean squared error is a good choice for optimizing the weights of a 

network in a typical classification scenario. 

Consider a two class classification problem where y is equal to 1 for samples in 

class C1 and zero otherwise. We then have, 

E y[ x] = P y( = 1 x) = P C  x) . (53) ( 1 

The above equation indicates that the expected value of the output of the MLP is nothing 

but the class posterior probability. If the goal of the optimization criterion is to minimize 

the mean-squared error between the target output (binary in this case) and the MLPs 

response, the optimization criterion in terms of the MLPs output f can be written as, 

E y[( – f x( ))2 x] = E[((y – E y x]) + E y x] – f x( )))2[ ( [ x] (54) 

= E y  [[( – E y x])2 x] [( [ + E E y x] – f x( ))2 x] (55) 

+ 2E y[( – E y x])[ x] [(E y x] – f x( )) 

= E y  [[( – E y x])2 + ( [x] E y x] – f x( ))2 
(56) 

≥ E y[ E y x])2( – [ x] (57) 

Thus, when mean squared error is minimized, the output of the MLP, f x( ) , is equal to the 

posterior probability, P C  x) based on (53). In an ideal situation if an MLP has enough ( 1 

parameters to model the posterior probability, it can implement a Bayes decision rule 
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accurately using the minimum mean-squared error as the optimizing criterion. However, 

modeling the posterior probability density is not always easy even with a significant 

number of parameters [31]. In spite of the above limitation of MLPs, they are theoretically 

better classifiers than Gaussian classifiers because of the discriminative framework in 

which the parameters are estimated. When large amounts of data are available, complex 

MLPs can model posterior probabilities very well. The classifiers that result typically 

model complex non-linear decision regions similar to non-linear kernel-based SVMs. 

3.5. Summary 

This chapter has introduced common discriminative approaches to acoustic 

modeling in speech recognition. In HMM-based systems, the discrimination ability of the 

Gaussians is improved by using optimizing criteria like MMI and MCE which include 

both in-class and out-of-class data in the estimation process. MCE is especially elegant in 

that it uses the fact that in order to achieve good classification, the estimation of the 

posterior probabilities is not as important as it appears. ML and MMI suffer from the fact 

that both the estimation procedures expend effort in modeling posteriors while not 

guaranteeing improved classification performance. MMI is more discriminative that ML 

in that out-of-class data is also involved in the optimization process. This allows for 

simultaneously learning a good representation for in-class data while discriminating 

out-of-class data. 

An alternative to HMM-based discriminative techniques are neural network-based 

systems. It has been shown that estimating the parameters of the network via the minimum 
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mean-squared error criterion implies that the output of the network is in fact a good 

estimate of the posterior probability. This posterior probability is the key to implementing 

a Bayes decision rule. Two commonly used neural network architectures for speech 

recognition, time delay neural network (TDNN) and recurrent neural network (RNN), 

were discussed. Though TDNN has found limited use in continuous speech recognition, 

the RNN architecture has been used in several successful connectionist hybrid speech 

recognition systems. 



     

CHAPTER 4 

SUPPORT VECTOR MACHINES 

We have seen in the previous chapter the motivation for the use of discriminative 

parameter estimation algorithms for speech recognition. However, with HMMs, we still 

aim to model speech by estimating a representation of the speech sounds. At a high level, 

speech recognition can be viewed as a classification problem. In that respect one would 

expect better performance with classifiers that estimate decision surfaces directly rather 

than those that estimate a probability distribution across the training data. 

A Support Vector Machine (SVM) is one such machine learning technique that 

learns the decision surface through a process of discrimination and has good 

generalization characteristics [68]. SVMs have been proven to be successful classifiers on 

several classical pattern recognition problems [25]. In this chapter we take an in-depth 

look at the mathematical foundation of SVMs and implementation issues that come about 

when we apply these to complex classification tasks like speech recognition. 

4.1. Risk Minimization 

Suppose that the training data consists of pairs, 

(x1, y1), (x2, y2), … 
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where the x ‘s are the input observations and y ‘s are the output observations. The goal of a 

learning machine is to learn the mapping y = f x( ) . We assume that the training data has 

been drawn randomly and independently based on the joint distribution P x y) . To learn ( , 

the unknown mapping, we can either estimate a function that is “close” to the joint 

distribution under an appropriate metric or learn an optimal predictor of the system’s 

output. In the former case, it is not sufficient for us to estimate a good predictor of the 

output. The goal is to estimate P , the joint distribution. However, for the purposes of data 

classification, we pursue the latter approach where the goal is to learn an optimal 

predictor. 

The learning process is therefore a process of choosing a function from a set of 

functions defined by the construction of the learning machine. For example, in a neural 

network classifier [48], the problem reduces to that of finding the weights of the 

connections in a predefined network. Since the network structure has been defined a 

priori, the set of networks from which the optimal network needs to be chosen is a finite 

set. The optimal network is chosen based on some optimality criterion that measures the 

quality of the learning machine. 

Let us define a term, risk, which measures the quality of the chosen function. The 

noperating space is a subset Z of an n-dimensional vector space R , which is the union of 

the input vector space and the output space. Let us also assume the existence of a set of 

functions {g z( )}, z ∈ Z and a functional R , that measures the risk as, 

R g z  ( ( )) = L z g z( , ( ))dP z( ) , (58) � 
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where L is an appropriately defined loss function and P is the previously defined joint 

probability distribution. The problem of risk minimization can then be defined as one that 

minimizes the functional given by (58) for a specific training data set. In reality the 

minimization process involves finding the optimal parametrization for the function g z( )  

which can be parametrically represented as g z( , α) α ∈ Λ, . The minimization involves 

finding the best parametrization α∗ such that g z( , α∗) is the optimal function from the 

set of functions {g z( , α)} . The above parametrization does not necessarily imply that the 

problem is restricted to parametric forms since α can be a scalar, a vector or any other 

abstract functional element. 

With the above modifications to the definition of the minimization problem, the 

risk can be rewritten as, 

( ) = ( , ) ( )  α ∈ Λ (59) R α Q z  α dP z  , , 

where, 

Q z( , α) = L z( , g(z, α)) . (60) 

The function Q is now called the loss function. Choosing an appropriate value for α to 

minimize the functional defined in (59) is called risk minimization. Minimizing the risk 

functional is not a trivial problem because the form or the parametrization of the joint 

distribution P z( ) is not known a priori. 

The problem can be simplified significantly if we minimize a variation of the risk defined 

previously. For example, instead of minimizing the risk defined in (59), we can minimize 
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the measured mean risk defined as, 

R ( )α = 1-∑Q z( i, α), α ∈ Λ , (61)emp l 

which is called the empirical risk. In the above formulation we assume that we have 

access to l training observations , , … . R is therefore the mean error computedz1 z2 zl emp 

from the fixed number of training samples assuming that the training samples are 

uniformly distributed. Minimization of the above functional is called Empirical Risk 

Minimization (ERM) and is one of the most commonly used optimization procedures in 

machine learning. ERM is computationally simpler than attempting to minimize the actual 

risk as defined in (59). ERM circumvents the need for the estimation of the joint 

probability density function P . In many cases ERM provides a good quality learning 

machine. A variety of loss functions can be used for the optimization process. One such 

example is, 

Q x( , y) = y f– (x, α) , (62) 

where y is the output of the classifier and x is the input vector. This form of a loss 

function is common in learning binary classifiers. For example, to estimate the parameters 

of a multi-layered perceptron [53] using the back-propagation algorithm, a loss function 

representing the squared error is used. 

The issue of the quality of the learning machine is not addressed in its entirety 

when we talk about ERM. There could be several configurations of the learning machine 
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which give us the same empirical risk (which is a zero in the case of binary classifiers). 

How does one choose the best configuration? To better answer this question we need to 

analyze the relationship between the actual risk and the empirical risk. 

Suppose that the minimum empirical risk is obtained using the function Q z( , αl) , 

where the subscript l is equal to the size of the training sample. Let the minimum actual 

risk be obtained using the function Q z( , α0) . There are two issues that need to be 

addressed. First, we need to know the risk achieved using Q z( , αl) . Second, we need to 

know how close this risk is to the risk obtained using Q z( , α0) . 

Vapnik [28] proved that bounds exist for the actual risk such that, 

R( )α ≤ Remp α + ( ) . (63) ( )  f h  

The quantity h is the Vapnik-Chervonenkis (VC) dimension [28,68] and is a 

measure of the capacity of a learning machine. More formally, it is defined as the largest 

dimension of vectors that can be shattered by the functions Q z( , αl) . We say that a sample 

X of dimension m is shattered by F , or that F shatters X , if F gives all possible 

classifications of X . Inequality (63) addresses the generalization ability of the learning 

machine. For example, if f h( ) is small, the machine generalizes well because the actual 

risk is guaranteed to be close to the empirical risk which has been already minimized via 

the principle of ERM. 

To better qualify the above statement, suppose that the empirical risk obtained 

using the old data set is zero. This fixes Remp and the actual risk is now bounded by f h( ) . 



 J 4R α( )ε( )l emp l 
2 

� --------- 1 + 1 + -------------------------� �ε( )l 
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Suppose we now receive a new set of data that does not include any of the l examples 

used previously. For a machine that generalizes well, we should be able to predict with a 

high degree of confidence that the empirical risk obtained using this new data, R ∗ , will emp 

also be close to zero. However, from (63), we note that the actual risk over the data can be 

as high as f h( ) . Therefore when f h( ) is large, R ∗ can be as high as f h( ) and Remp emp 

cannot be used to effectively predict the performance of the machine on an unseen dataset. 

In other words, the machine fails to generalize well when f h( ) is large and can be an 

ineffective classifier for unseen datasets. 

For loss functions in the form of indicator functions — which is true in the case of 

binary classifiers, the second term in the r.h.s. of (63) is, 

(64) 

where α is the parameter set that defines the learning machine and ε( )l is the measure l 

of the difference between the expected and empirical risk [68]. The error term, ε( )l , can 

be written in terms of the VC dimension and the size of the training set as, 

h( log(2l h⁄ + 1)) – logη ⁄ 4ε( )l = 4------------------------------------------------------------------- , (65) l 

where h is the VC dimension [68]. 

Equation (65) provides us with a good method for comparing system 

configurations optimized using empirical risk minimization. When l h⁄ is large, ε and 
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Figure 12. The optimal classifier needs to achieve the lowest bound on the risk. 

f h( ) are both small. This implies that the expected risk tends towards the empirical risk. 

With this, we can guarantee both a small empirical risk (training error) and good 

generalization — an ideal situation for a learning machine. On the other hand, when l h⁄ 

is small, both ε and f h( ) are large. Under this condition, a small empirical risk does not 

guarantee a small expected risk. Thus, the system is not guaranteed to generalize well. In 

this case, both terms on the r.h.s. of (63) need to be minimized simultaneously. From (65), 

we see that the error term, ε , monotonically increases with the VC dimension. This 

implies that the confidence in the empirical risk decreases monotonically with the VC 

dimension as does the generalization ability. These observations are depicted in Fig. 12. 

The principle of structural risk minimization (SRM) is an attempt to identify the 
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o pti m al p oi nt o n t h e c ur v e d es cri bi n g t h e b o u n d o n t h e e x p e ct e d ris k. “ T h e S R M pri n ci pl e 

d efi n e s a tr a d e- off b et w e e n t h e q u alit y of t h e a p pr o xi m ati o n of t h e gi v e n d at a a n d t h e 

c o m pl e xit y of t h e a p pr o xi m ati n g f u n cti o n. ” [ 2 8]. Fr o m t h e a b o v e dis c us si o n, m a ki n g t h e 

V C di m e nsi o n a c o ntr olli n g v ari a bl e f or t h e g e n er ali z ati o n a bilit y of t h e l e ar ni n g m a c hi n e 

s e e ms li k e a n at ur al c h oi c e. I n pr a cti c e t h e pri n ci pl e of S R M c a n b e i m pl e m e nt e d i n t w o 

disti n ct fl a v or s: 

� f or a fi x e d c o nfi d e n c e i nt er v al o pti mi z e t h e e m piri c al ris k 

� f or a fi x e d e m piri c al ris k o pti mi z e ( or mi ni mi z e) t h e c o nfi d e n c e i nt er v al 

T h e d e cisi o n t o us e a n y o n e of t h e a b o v e s c h e m es is pr o bl e m/ cl assifi er d e p e n d e nt. 

N e ur al n et w or k l e ar ni n g u s e s t h e f or m er pr o c e d ur e b y fir st fi xi n g t h e n et w or k 

str u ct ur e a n d t h e n mi ni mi zi n g t h e e m piri c al ris k usi n g gr a di e nt d es c e nt. S V Ms i m pl e m e nt 

S R M usi n g t h e l att er a p pr o a c h w h er e t h e e m piri c al ris k is fi x e d at a mi ni m u m (t y pi c all y 

z er o f or s e p ar a bl e d at a s et s) a n d t h e S V M l e ar ni n g pr o c e s s o pti mi z e s f or a mi ni m u m 

c o nfi d e n c e i nt er v al. I n ot h er w or d s, S R M i s a n e xt e n si o n of E R M wit h t h e a d diti o n al 

c o n str ai nt t h at a st r u ct u r e b e a d d e d t o t h e s p a c e c o nt ai ni n g t h e o pti m al f u n cti o n. F or 

e x a m pl e, str u ct ur e c a n b e i m p os e d o n t h e pr o bl e m of f u n cti o n e sti m ati o n u si n g n e ur al 

n et w or ks b y as s o ci ati n g t h e n u m b er of hi d d e n u nits or t h eir c o n n e cti o ns t o e a c h s u bs et. I n 

t h e c a s e of o pti m al h y p er pl a n e cl a s sifi er s, w hi c h will b e dis c us s e d i n t h e n e xt s e cti o n, 

str u ct ur e is i m p os e d b y t h e wi dt h of t h e m ar gi n of t h e s e p ar ati n g h y p er pl a n e. 
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-b/|w| 

w H2 

H1 

origin 

Figure 13. Definition of a linear hyperplane classifier. SVMs are constructed by maximizing the 
margin. 

4.2. Optimal Linear Hyperplane Classifiers 

The following formulation is based on the fact that among all hyperplanes 

separating the data, there exists a unique hyperplane that maximizes the margin of 

separation between the classes [28]. Fig. 13, shows a typical 2-class classification example 

where the examples are perfectly separable using a linear decision region. H1 and H2 

define two hyperplanes the distance between which is called the margin. The closest 

in-class and out-of-class examples lie on these two hyperplanes. As noted earlier, the SRM 

principle imposes structure to the optimization process by ordering the hyperplanes based 

on this margin. The optimal hyperplane is the one that maximizes the margin while 
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origin 

class 1 

class 2 

w 

H1 

H2 
C1 

CO C2 

optimal
classifier 

Figure 14. This is an illustration of the difference between the classifiers that result from optimiza-
tion based on empirical risk minimization and structural risk minimization. Hyperplanes 
C0, C1 and C2 achieve perfect classification and, hence, zero empirical risk. However, 
C0 is the optimal hyperplane because it maximizes the margin, the distance between 
the hyperplanes H1 and H2. A maximal margin indirectly results in better generaliza-
tion. 

minimizing the empirical risk. Fig. 14 illustrates the difference between using ERM and 

SRM to estimate a simple hyperplane classifier. Using SRM results in the optimal 

hyperplane classifier. 

Let w be the normal to the decision region. Let the l training examples be 

represented as the tuples {x , }, i = 1, …, l where y = ±1 . The points that lie oni yi 

the hyperplane separating the data satisfy 

w x⋅ + b = 0 (66) 
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where b is the distance of the hyperplane from the origin. Let the “margin” of the SVM be 

defined as the distance from the separating hyperplane to the closest positive and negative 

examples. The SVM training paradigm finds the separating hyperplane which gives the 

maximum margin. Once the hyperplane is obtained, all the training examples satisfy the 

following inequalities. 

xi ⋅ w + b ≥ +1  for yi = +1 (67) 

xi ⋅ w + b ≤ –1 for yi = –1 . (68) 

The above equations can be compactly represented as a single inequality, 

yi(xi ⋅ w + b) – 1 ≥ 0 ∀i . (69) 

Looking at the above equations with respect to Fig. 13, we see that all points satisfying the 

equality condition of (67) lie along the hyperplane H1 . Similarly, all points satisfying the 

equality condition of (68) lie along the hyperplane H2 . The distance between H1 and 

H2 , also called the margin, is therefore two units. Since the normal to the hyperplane is 

not constrained to be of unit-norm, we need to normalize this margin by the norm of the 

normal vector to the hyperplane, w . Therefore the margin as defined by the hyperplane is 

2 ⁄ w . For a completely separable data set, no points fall between H1 and H2 . To 

maximize the margin we need to therefore maximize 1 ⁄ w . Elegant techniques exist to 

2
optimize convex functions with constraints [88]. We therefore minimize w , a convex 

function, instead. The training points for which the equality in (69) holds are called 
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support vectors. In Fig. 13, they are shown as data points with concentric circles that lie on 

either of the hyperplanes H1 or H2 . 

The theory of Lagrange multipliers [112] can be used to solve optimization problems 

involving convex functionals with constraints. The functional for the optimization 

problem in this discussion, called the Lagrangian, can be written as, 

N N 
2 

-= w – αiy (xi ⋅ w + b) + (70)LP 2
1 

i αi . 

i = 1 i = 1 

In the above equation, LP is called the functional. The first term on the RHS, 

defined as half the square of the norm, is called the objective function and the other two 

terms are the optimization constraints. Optimization of LP is clearly a convex quadratic 

programming problem since the objective function itself is convex. The above is called the 

primal formulation of the optimization problem. Since we are minimizing LP , its 

gradient with respect to w and b should be equal to zero. This gives the system of 

equations, 

w = αiyixi , and (71) 

i 

αiyi = 0 . (72) 

i 

We can define a dual problem of the same type as the primal such that the 
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Lagrange multipliers of the primal can be obtained as part of the solution for the dual and 

vice versa. In several cases optimizing the dual is easier because of the structure of the 

problem [88,113,114]. For the problem at hand, to arrive at the dual formulation we need 

to substitute (71) and (72) back into (70). Substituting for w into (70) gives, 

1 
2
-∑α y x ⋅∑αjy xi i i j j 

i j
L = (73)D � � 

–∑αiyi xi ⋅∑αjy xj j + b� + ∑αi � �
i j i 

Using (72) in the above equation results in the final dual formulation, 

L α – 1-∑α α y y xi ⋅ . (74)D = ∑ i i j i j xj2 
i i j, 

SVM learning can thus be treated as the problem of maximizing L with respect to αD i 

subject to their positivity and the constraints in (72). The positivity constraint is a direct 

result of the Kuhn-Tucker theorem [113] that applies to the optimization of a convex 

function constrained by concave functions. The theorem guarantees the existence of 

Lagrange multipliers that are non-negative. The next section states the theorem uses a 

simple example to show the use of conditions as proposed by the theorem. 

Equations (66) and (71) imply that the decision function can be defined as, 

N 

f( )x = ∑ α y xi ⋅ x + b (75)i i 
i = 1 
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where the sign of f can be used to classify examples as either in-class or out-of-class. In 

other words the above equation defines the SVM classifier. This definition of the classifier 

is worth a closer look. Note that the classifier is defined in terms of the training examples. 

However all training examples do not contribute to the definition of the classifier. The 

training examples with non-zero multipliers, the Support Vectors, alone define the 

classifier. In other words for the purpose of classification the dataset defines how complex 

the classifier needs to be. For simple classification problems the number of support 

vectors is small and vice versa. It is also interesting to see how the complexity of the 

classifier scales with the number of support vectors. Since there are M dot products 

involved in the definition of the classifier, where M is the number of support vectors, the 

classification task scales linearly with the number of support vectors. 

We have thus far posed the problem of hyperplane classifiers as one of 

optimization. However, we have not addressed the issue of the existence of such an 

optimum. Even if an optimal point exists, how do we guarantee that there is a single 

optimal point? In order to answer these questions we look at the Karush-Kuhn-Tucker 

(KKT) theorem that guarantees the existence of a solution and also prescribes a set of 

necessary and sufficient conditions. The KKT theorem has found widespread use in 

optimization problems specifically dealing with convex objective functions. In solving the 

problem of finding the optimal hyperplane we use the KKT conditions in formulating the 

constraints. The positivity constraint on the Lagrange multipliers as mentioned earlier is 

one such example. The KKT theorem is defined in Fig. 15. In the definition of the KKT 

theorem, ∇ , 
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Let be three functions. Let be a data point and a local minimizer for the 

problem of minimizing subject to , . Then there exist 

and such that: 

(76) 

, and (77) 

. (78) 

f h g, ,  x * 

f h x( )  0= g x( ) 0≤ λ * : ℜm∈ 

µ * : ℜp∈ 

µ * 0≥

∇f x*( )  λ  *T∇h x*( ) µ *T∇g x*( )+ + 0T = 

µ *T g x*( ) 0= 

Figure 15. Definition of the Karush-Kuhn-Tucker theorem. 

represents the derivative operator with respect to the independent variable x . λ and µ are 

the Lagrange multipliers associated with the constraints. Also note that multiple equality 

and inequality constraints ( m and p in the above definition) can be present. This is 

accounted for by the vector notation for the Lagrange multipliers and the constraints. 

Applying the KKT conditions to a simple optimization problem is helpful in 

understanding the optimization process. Suppose we wish to minimize the function, 

f( )x = (x1 – 1)2 + x2 + 2 , (79) 

subject to the conditions, 

h( )x = x2 – x1 – 1 = 0 , and (80) 

g( )x = x2 + x1 – 2 ≤ 0 . (81) 
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In other words, h x( ) defines the equality constraint and g x( ) defines the inequality 

constraint. 

2
For all x ∈ ℜ , we have, 

· ∇h( )x = [ , , ∇ ( ) = [ , f x = [2x1 – 2,–1 1] g x 1 1] and ∇ ( )  1 ] . 

Applying the KKT conditions from (76), (77) and (78), we get, 

µ ≥ 0 , 

0T[2x – 2 – λ µ, 1 + +  ] and+ λ µ  = 1 

µ(x2 + x1 – 2) = 0 . 

If we let µ > 0 , then, 

x + x – 2 = 0 ,2 1 

1 λ µ  0 ,+ +  = 

2x1 – 2 – λ µ  0 , and+ = 

x – x – 1 = 0 .2 1 

Solving the above set of equations, we get, 

1 3 x = -, = -, λ = –1, µ = 0.1 x22 2 

This solution contradicts the assumption that µ is strictly positive. Therefore, the correct 

solution has to be obtained by letting µ = 0 . Then, the set of simultaneous equations 
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that need to be solved to obtain the optimal parameters are, 

2x – 2 – λ = 0 , 

1 + λ = 0 , and  

x2 – x1 – 1 = 0 . 

The solution to the above set of equations is, 

1 3 = -, = -, λ = –1, µ = 0.x1 x22 2 

This solution satisfies the assumption that µ = 0 as well as the constraints defined by g 

and h . Hence this is a valid solution to the problem. 

In the SVM optimization process, using the third of the KKT conditions with (69) 

of the hyperplane optimization problem, we get 

αi(yi(xi ⋅ w + b) – 1) = 0 . (82) 

The above equation is useful in that it states that αi is non-zero only for examples that 

satisfy, 

yi(xi ⋅ w + b) = 1 . (83) 

As described earlier these examples are called the support vectors. This requirement also 

helps the optimization process in identifying examples that violate the KKT conditions. 

Identifying such vectors helps in speeding up optimization process as well as enables 

handling large datasets efficiently. Note that (71) and (82) are also the solutions for w and 

b respectively which completely define the optimal hyperplane. 
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Thus far we have seen the case where the training data is completely separable 

using a linear margin. However, we know that this is not the case with most real-world 

data. Classification problems typically involve non-separable data. Given such a training 

set, we still need to estimate the classifier that maximizes the margin and minimizes the 

errors on the training set. Optimization in such situations is typically accomplished by the 

use of soft decision classifiers where the classification of an example is tagged with a 

probability. However in the case of optimal margin classifiers, we use the concept of slack 

variables to find the optimal solution. Fig. 16 shows a simple hyperplane classifier with 

two training errors. The optimal-margin classifier can be extended to this non-separable 

case by using a set of slack variables that account for training errors. In this situation, the 

-b/|w| 

w H2 

H1 

origin 

+ 

* 

* training error for class 2 

class 2 

class 1 

+ training error for class 1 

Figure 16. Examples of a soft-margin classifier which is robust to training errors. 
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inequality constraints to be satisfied by the hyperplane become, 

w + b ≥ +1 – ξ for yi = +1 , (84)xi ⋅ i 

xi ⋅ w + b ≤ – 1 + ξ for yi = –1 , and (85)i 

ξi ≥ 0 ∀i , (86) 

where ξ ‘s are the slack variables. Now, the problem of finding the hyperplane which has 

a minimum number of training errors can be solved by minimizing the objective function 

defined as, 

2 
C∑θ ξ( ) + 1- w ,i 2 

i 

subject to the above described inequalities. In the above functional, θ is any function that 

measures the cost of a training error and C is the penalty for a training error. As a simple 

example, θ could be defined such that, 

θ ξ( ) = 0 if  ξ = 0, θ ξ( ) = 1 if  ξ > 0 . (87) 

Therefore, ∑θ ξ( ) is an upper bound on the number of allowable training errors. Thei 
i 

above problem is NP-complete [110]. Therefore, instead of using this formulation, we use 

an approximation and define the objective function as, 

2 
C∑ ξ

σ + 1-( )  w .i 2 
i 
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Typical values of σ = 1 or σ = 2 are used in practice. The solution of the new 

optimization now includes the constraint, 

0 ≤ αi ≤ C . (88) 

This constraint is added to limit the effect of outliers on the definition of the classifier. In 

fact, there is a good chance that all examples with multipliers at the upper bound C are 

outliers. This property is used to speed up the optimization process and will be discussed 

in a later section. The higher the value of C , the harder the optimization process will try to 

minimize training errors. However this could mean increased time for convergence and in 

some cases, a larger support vector set. 

4.3. Non-linear Hyperplane Classifiers 

In the previous section we have seen the problem of estimating linear classifiers 

for cases where data is both separable or non-separable. This, however, does not help us 

solve many real-world situations where the data warrants the need for non-linear decision 

surfaces. This section deals with extending the SVM paradigm to handle such cases. 

The power of SVMs lies in transforming data to a high dimensional space and 

constructing a linear binary classifier in this high dimensional space. Fig. 17 illustrates 

this idea using a simple example. This is a 2-class problem in a 2-dimensional input space. 

The two classes can be separated by a decision region in the form of circle which cannot 

be modeled by classifiers based on PCA or LDA [41]. The data in this 2-dimensional 

space is transformed to a 3-dimensional space via a simple transformation, 
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class 1 data points: 

(-1,0) (0,1) (0,-1) (1,0) 

class 2data points: 

(-3,0) (0,3) (0,-3) (3,0) 

3-dimensional transformed space 

class 1data points: 

(1,0,0) (0,1,0) (0,1,0) (1,0,0) 

class 2data points: 

(9,0,0) (0,9,0) (0,9,0) (9,0,0) 

Figure 17. An illustration of the fact that the construction of a simple hyperplane in a higher dimen-
sional space is equivalent to a non-linear decision surface in a lower dimensional 
space. In this example a decision surface in the form of a circle in a 2-dimensional 
space is modeled as a hyperplane in a 3-dimensional space. 
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(x y, ) � (x 2 , ,  2 y 2xy) . (89) 

From the figure it is clear that the two classes can be separated in the transformed 

space by defining a hyperplane passing through the points corresponding to the circular 

decision region. The following discussion formalizes this principle. 

In all the formulations of the optimization in the previous sections notice that the 

only place the data points occur in the definition of the functional is the dot product. 

Suppose the data points are transformed to a higher dimension using 

Φ : ℜn → ℜN 
, (90) 

where N is the dimensionality of the new feature space. In this new space we can still 

construct optimal margin classifiers with the only difference being that the simple dot 

product in (75) will now have to be replaced by Φ( ) Φ⋅ ( ) .  It would be xi' xj 

advantageous if we could define a “kernel” function K , 

( ,i xj) = Φ xi ⋅ ( )  (91) K x  ( ) Φ x ,j 

that could compute this dot product directly without knowing the explicit form of Φ . In 

this new formulation, the decision function will take the form, 

N 

f( )x = α y K(x, x ) + b . (92) ∑ i i i 
i = 1 

A function needs to satisfy certain conditions for it to be a valid kernel. The most 

important property the function must exhibit is that it needs to be a dot product in some 
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feature space. In order to affirm that a function does indeed represent a dot product in a 

higher dimensional space, Mercer’s theorem can be used. This theorem ascertains that the 

pair {H, Φ} exists for a given kernel, where H defines the new feature space [28]. 

Mercer’s Theorem 

There exists a mapping Φ and an expansion 

K( ,x y) = i x ⋅ ( ) ,Φ ( )  Φ  y∑ i 

if and only if, for any g x( ) such that 

g( )x 2dx is finite, ∫ 
then 

K(x y, )g( ) ( )x g y d yxd > 0∫ 
If a kernel is a dot product in some feature space, Mercer’s conditions must hold. 

Mercer’s conditions do not however directly tell us how we define Φ or even the feature 

space H [27]. In reality, we do not have to explicitly have this information for 

constructing a classifier. However, knowing the transformation Φ can be useful in 

visualizing the new space. 

Let us demonstrate this with a sample example. Suppose our data lies in a two 

dimensional space ℜ2 and we want to transform to a new space ℜ3 . We can choose a 

Kernel, K = (x ⋅ y)2 . For this problem it is easy to find a mapping, Φ , from the input 
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space to the new transformed space such that, 

( ⋅ )2 = ( ) Φ y .x y  Φ x ⋅ ( )  (93) 

If we define x as { ,x1 x2} and y as{ ,y1 y2} , then, 

2 2 2 2 2(x y⋅ ) = x1y1 + x2y2 + 2x1x2y1y2 . (94) 

If we define the function Φ as, 

2 � �x1 � 
� 

Φ( )x = 2x1x2� , (95) 
� 

2 � 
� x2 � 

we can see that equation is indeed true. This example demonstrates that it is possible to 

use kernels to transform data implicitly to a higher dimensional space. 

Some of the other commonly used kernel functions are: 

K(x y, ) = (x y⋅ + 1)d 
— polynomial with degree d (96) 

K(x y, ) = Sigmoid[s(x y⋅ ) + c] — sigmoid (97) 

K(x y, ) = exp{–ϒ x y– 2} — radial basis function (98) 

RBF kernels have been found to be the most powerful amongst the above mentioned 

kernels. However, convergence for RBF kernels takes longer than for the other kernels. 

RBF kernels can model closed decision surfaces unlike polynomial kernels. This property 

is extremely useful in classifying datasets where one class is completely encapsulated by 

data from another class. 
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4.4. SVM Training Process 

Though a solution for the quadratic optimization of the functional in (74) is 

guaranteed based on the KKT conditions, the number of computations required can be 

very high depending on the separability of the data and the number of training data points. 

The reason that optimizing for all the data points simultaneously is nearly impossible 

computationally is the need to store all the possible dot products, xi ⋅ xj , in order to 

perform the optimization. Instead of storing the matrix of these dot products we can 

compute them on an as-needed basis. However this can be computationally very 

expensive. For example, consider a 13 -dimensional input space. Let the number of 

training examples be 20, 000 . This means that in every iteration of the optimization 

process, 20000 × 13 × 20000 multiplications need to be performed. Using the symmetry 

of the matrix, we can cut that number in half. However, this is still is a significant number 

of operations to be performed. 

Several heuristics need to be considered to make SVM training feasible for large 

scale problems such as speech recognition. In this section, we discuss some significant 

modifications to the optimization problem formulation that make handling tasks with 

thousands of training points and support vectors possible. Most algorithms involving 

efficient and compact optimization are based on the premise that the global solution can be 

obtained (or approximated) by solving smaller problems at any given point in time. These 

algorithms mainly differ in the mechanisms used to define the smaller sub-problems. In 

the following section one such algorithm, Chunking, will be described. 



 --
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Chunking 

Chunking is based on the idea of dividing the optimization problem into 

sub-problems whose solution can be found efficiently. This method divides the training 

data into chunks and optimizes the functional for each chunk. Osuna proves that the 

chunking algorithm does in fact give the same solution as a global optimization process 

but takes much less operating memory and time [115]. 

The following discussion will use a vector notation of the optimization process for 

compactness of representation. Let us define a matrix Q , whose elements are, 

= ( , xj) . (99)Qij yiyjK xi 

Let the set of Lagrange multipliers be represented by the vector Λ = [α0, α1, α2…] . 

Let C be the penalty for misclassifying a training example and let y be the vector 

representing the class membership of the training examples. The functional to optimize, 

defined in (74), and the constraints on the Lagrange multipliers can then be written in a 

vector form as: 

1( ) = –Λ ⋅ 1 + -Λ ⋅ QΛ , subject to, (100)W Λ 2 

ΛT ⋅ y = 0 (101) 

Λ – C1 ≤ 0 and (102) 

–Λ ≤ 0 . (103) 

This optimization needs to satisfy the KKT conditions to guarantee optimality. For 
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constraints represented by (101), (102) and (103), let the KKT multipliers be µ ϒ and , 

Π . The multipliers for the two inequalities above have been separated for clarity though 

they were represented by the same variable in the definition of the KKT theorem. These 

multipliers are represented in a vector form for compactness. Each element of the vector is 

a multiplier corresponding to an inequality associated with an input sample. Note that the 

KKT conditions for this problem, based on (76), (77) and (78), are 

∇W( )  – + µy = 0Λ + ϒ Π  
Tϒ (Λ – C1) = 0 
TΠ Λ = 0 (104) 

ϒ ≥ 0 
Π ≥ 0 

We can simplify the above conditions to a simple form based on the range into which a 

Lagrange multiplier λi falls. 

1. 0 < λ < C : Since λ is non zero, π should be zero in order to satisfy the KKT i i i 

conditions. Since λ is not equal to C , ν is equal to zero too. This results in the i i 

following equation. 

(QΛ) – 1 + µ = 0 . (105) i yi 

The product (QΛ) is the derivative of Λ ⋅ QΛ with respect to λ and can be defined as, i i 

N 

(QΛ) = λ y K(xi, xj) (106) i ∑ jyi j 
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From earlier discussions, we know that the estimated label for xi is given by, 

N 

g( )xi = αjy K(xi, ) + b = . (107) ∑ j xj yi 

Comparing (106) and (107), (QΛ)i = yi(yi – b) = 1 – byi . Comparing with (105), we 

get b = µ under optimal conditions. 

2. λ = C : From the third condition in (103), since λ is non-zero, π is zero, i i i 

leading to 

(QΛ) – 1 + ν + µ = 0 . (108) i i yi 

From (106), (QΛ) = ( ( ) – b) . Therefore, i yi g xi 

yig x( ) – yib– 1 + ν + µ = 0i i yi 

Since b = µ under optimal conditions, 

( ) = 1 – ν .yig xi i 

However, since νi is required to be positive in order to satisfy the KKT conditions, 

( ) ≤ 1 . (109) yig xi 

As defined earlier, the support vectors that have their multipliers at C are called bounded 

support vectors (BSVs) and are important in learning the inherent overlap in the data. 

3. λ = 0 : From the second equation in (104), this case implies that νi is zero and i 

hence, (QΛ) – 1 + π + µ = 0 Following a procedure similar to the previous i i yi 
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c as e it c a n b e s h o w n t h at f or a n e x a m pl e w h os e L a gr a n g e m ulti pli er e q u als z er o, 

y ig ( x i) ≥ 1 . ( 1 1 0) 

T h e c o n diti o ns d efi n e d i n i n e q u aliti es ( 1 0 9) a n d ( 1 1 0) ar e ess e nti al i n d e ci di n g w h et h er a 

m ulti pli er is vi ol ati n g t h e K K T c o n diti o ns. T his is u s ef ul i n c h o o si n g t h e b e st s u bs et or 

“ c h u n k ” t o o pti mi z e t o s p e e d u p t h e o v er all o pti mi z ati o n pr o c es s. S u p p o s e w e d efi n e t h e 

w or ki n g s et a s W a n d t h e n o n- w or ki n g s et ( w h o s e m ulti pli er s d o n ot c h a n g e w hil e 

s ol vi n g t h e s u b- pr o bl e ms) as F . T h e C h u n ki n g al g orit h m c a n b e s p e cifi e d i n t hr e e si m pl e 

st e ps [ 1 1 5 ]: 

1. C h o os e IW I tr ai ni n g p oi nts fr o m t h e d at a s et at r a n d o m. 

2. S ol v e t h e o pti mi z ati o n pr o bl e m d efi n e d b y t h e s et W . 

3. F or s o m e j ∈ F , s u c h t h at: 

� λ = 0 a n d y jg ( ) < 1j x j 

� λ = C a n d y jg ( x j) > 1j 

� 0 < λ < C a n d y jg ( x j) ≠ 1 ,j 

r e pl a c e λ , i ∈ W , wit h λ a n d t h e n s ol v e t h e n e w mi ni mi z ati o n s u b- pr o bl e m gi v e n b yi j 

T 1 T T T
W ( Λ = – Λ 1 + -- Λ ⋅ + Λ , s u bj e ct t o, ( 1 1 1)W ) W W Q W W Λ W W q W F2 
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(ΛW
T T⋅ yW + ΛF ⋅ yF = 0) 

(112) ΛW – C1 ≤ 0 

–ΛW ≤ 0 

where, 

(qWF)j = yj ∑ λiy K(xi, xj) (113) i 
i ∈ F 

The above algorithm is guaranteed to strictly improve the objective function [26]. The 

convex quadratic form of the objective function also guarantees that the algorithm will 

reach the global optimum solution within a finite number of iterations. The simplistic 

approach to implement this algorithm would be to add all examples from the non-working 

set that violate the KKT conditions to the working set. However, this can quickly become 

intractable especially when dealing with several thousand training examples. The 

challenge then is to find the best working set at each iteration and to devise heuristics to 

avoid redundant computations. The size of the working set can be kept under control by 

adding only examples that significantly violate the KKT conditions to the optimization 

process during each iteration. The work by Joachims addresses this issue of the SVM 

training algorithm [70,71]. The next few sections describe the algorithms implemented for 

the SVM toolkit developed by Joachims and used in this research. 

The key to the success of the chunking algorithm is the choice of the working sets, 

B , that drive the optimization process towards convergence in fewer iterations. Though 

we can replace one vector in the working set during each iteration, when optimizing with a 
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large training set, choosing large chunks is preferable. SVMLight toolkit chooses the 

working set  based on the  algorithm proposed by Zoutendijk in his  work on methods  for  

feasible directions [116]. The goal of any method for feasible directions is to find the 

direction that provides the largest rate of increase of the objective function. 

Let d be the vector representing the steepest feasible direction of descent. The idea 

is to choose d such that only a small fixed number of the elements of d are non-zero. The 

training examples corresponding to the non-zero elements form the working set. 

Zoutendijk’s method helps identify the examples that contribute most to the change in the 

objective function. Mathematically the problem can be written as, 

maximize f a( )  . (114) 
subject to Aa b≤ 

The solution to the above problem is given by solving a set of linear equations subject to 

some constraints as, 

Tmaximize ∇f d 
. (115) subject to Ad ≤ 0 

d ≤ 1 

Several forms of normalization can be used for the direction vector. However the toolkit 

uses the normalization given by, 

{– 0  } , (116) 1, , 1 di ∈ 

which makes the search for the optimal feasible direction approximate but tractable. 
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For the particular problem of choosing the optimal working set, we need to 

maximize the quantity, 

V( )d = ∇ ( )t d ,W Λ ⋅ (117) 

subject to the constraints, 

y Td = 0 , (118) 

≥ 0 for i: λ = 0 , and (119) di i 

0 for i: λ = C . (120) di ≤ i 

Constraints 119 and 120 arise from the observation that for examples with the Lagrange 

multiplier equal to zero, the classification is correct and the direction of the solution 

should not be changed. However for examples with the multiplier at its upper bound, the 

classification is incorrect and the direction of optimization needs to be reversed. Solving 

the optimization in (117) at each iteration of the chunking algorithm can be very 

expensive. However, a simple modification to the problem definition can make the 

optimization simpler and less expensive. 

To better understand the process of finding the examples that become part of the 

tbest working set, note that W Λ is related to the estimated label for an example as: ∇ ( )  

∇ ( )t = g – (1 + b) , (121) W Λ 

where g is the estimated label as defined in (107). Therefore, the optimization to find the 

optimal working set can be defined in terms of the estimated labels instead of the 
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differential. In the absence of any constraints we could simply choose the required number 

of examples with highest values of the differential. Let the norm of the non-zero elements 

of the vector d be equal to unity. From (118) we know that the working set will then be 

composed of examples such that the number of examples with sign matches between di 

and yi will be equal to the number of examples with sign mismatches. For all examples 

that violate the KKT conditions and di = –yi , the maximum contribution to the objective 

function in (117) is provided by the examples with a minimum value for the quantity yigi . 

To qualify the above statement, consider all positive examples where, yi = 1 and 

= –1 . Since this example violates the KKT conditions, gi < 0 . So the maximal di 

contribution to the objective function in (117) is determined by: 

pk = max (–gi) = min (yigi) (122) 
i:yi = 1 i:yi = 1 

Similarly for all negative examples with sign mismatches, the maximal contribution can 

be determined by: 

= max ( ) = min ( (123) pk gi yigi)i:yi = –1 i:yi = –1 

Equations (122) and (123) suggest that the product yg can be used to sort examples based 

on their contribution to the objective function used to determine the steepest feasible 

direction. Therefore, when the product yg is sorted in ascending order, all examples with 

sign mismatches between di and yi will be in the top half of the list. 
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U si n g a si mil ar ar g u m e nt, f or all e x a m pl e s t h at vi ol at e t h e K K T c o n diti o n s a n d 

d i = y i , t h e m a xi m al c o ntri b uti o n t o t h e o bj e cti v e f u n cti o n is pr o vi d e d b y t h e e x a m pl e 

i d e ntifi e d as: 

p k = m a x ( y ig i) ( 1 2 4) 
i 

T hi s e x a m pl e will t h er ef or e f all at t h e b ott o m of t h e af or e m e nti o n e d s ort e d li st. I n 

s u m m ar y, t h e pr o d u ct y g c a n b e us e d t o c h o os e a g o o d w or ki n g s et. T h e pr o c e d ur e w o ul d 

i n v ol v e t h at t h e tr ai ni n g e x a m pl es b e s ort e d a c c or di n g t o w i = y ig i a n d t h e n e w w or ki n g 

s et b e c h os e n s u c h t h at: 

� h alf t h e el e m e nts fr o m t h e t o p of t h e s ort e d list w h er e 0 < λ i < C or d i = – y i 
a n d ( 1 1 9) a n d ( 1 2 0) ar e s atisfi e d 

� t h e ot h er h alf fr o m t h e b ott o m of t h e s ort e d list w h er e 0 < λ i < C or d i = y i 
a n d ( 1 1 9) a n d ( 1 2 0) ar e s atisfi e d. 

T hi s pr o c es s is v er y i n e x p e nsi v e as c o m p ar e d t o t h e m ai n o pti mi z ati o n pr o c e s s. 

S e v er al ot h er h e uri sti c s i n cl u di n g c a c hi n g of k er n el e v al u ati o n s a n d i d e ntifi c ati o n of 

b o u n d e d s u p p ort v e ct or s m a k e t his p arti c ul ar i m pl e m e nt ati o n of t h e S V Ms v er y effi ci e nt. 

T h er e ar e ot h er i m pl e m e nt ati o ns of S V M s t h at ar e effi ci e nt. T h e s e i m pl e m e nt ati o ns all o w 

tr ai ni n g cl a s sifi er s u si n g a l ar g e d at a s a m pl e. O n e s u c h al g orit h m i s t h e S e q u e nti al 

Mi ni m al O pti mi z ati o n ( S M O) d e v el o p e d b y Pl att [ 1 1 7]. T h e i d e a h er e is t o eli mi n at e t h e 

c o m pl e x q u a dr ati c o pti mi z er s fr o m t h e i m pl e m e nt ati o n b y br e a ki n g d o w n t h e pr o bl e m t o 

s ol vi n g a t w o- p oi nt o pti mi z ati o n w hi c h c a n b e d o n e e a sil y wit h o ut t h e us e of a q u a dr ati c 

o pti mi z ati o n p a c k a g e. 
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4.5. Relationship to Other Machine Learning Techniques 

The past few sections have described the theory and implementation of SVMs. 

SVMs offer significant advantages over some of the other widely used classification 

schemes. However the choice of the classifier is application dependent. The ease of 

classifier estimation and the numerical complexity of classifier have to be addressed 

before a choice for a classifier is made. This section describes two important alternate 

approaches to machine learning — decision trees and neural networks and attempts to 

compare and contrast these techniques with SVMs. 

A decision tree is a simple inductive learning structure [118,119]. Given an 

instance of an object or situation, which is specified by a set of properties, the tree returns 

a “yes” or “no” decision about that instance. Each internal node in the tree represents a test 

on one of those properties, and the branches from the node are labeled with the possible 

outcomes of the test. Each leaf node is a Boolean classifier for the input instance. Decision 

trees can learn non-linear decision surfaces by approximating the non-linearities with a 

piece-wise linear solution. Decision trees can be optimized using principles of ERM. 

Decision trees have several advantages over more complex machine learning 

techniques like SVMs. Simplicity of design is by far their biggest strength. With decision 

trees, incorporating knowledge about the datasets is easier. They can also handle 

non-numeric features effectively. However, decision trees typically suffer from 

overfitting [118]. Better generalization is achieved by computationally expensive 

processes. Tree pruning using cross-validation is the most common scheme [120-122]. 

SVMs on the other hand offer better generalization in a more concrete framework. 
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Neural networks, like SVMs, can learn complex non-linear decision regions. The 

most common parameter estimation algorithms used to estimate the parameters of a neural 

network are based on ERM. This makes them susceptible to many training problems 

previously discussed including overtraining and convergence. The convergence of the 

gradient estimation techniques is typically slow (SVMs have a similar problem). The 

structure of a neural network (number of layers, number of nodes in each layer, 

connections between nodes) is generally decided before the training process begins. The 

quality of the network also depends on the initial estimates of the network weights. 

Approaches to initializing these networks tend to be heuristic [96] in nature. In 

comparison, with SVMs, apart from the kernel function itself, all other parameters are 

learned via the SRM principle. Recently, techniques have been developed to automate the 

choice of the kernel parameters in a data-driven fashion [123]. 

Neural network classifiers applied to speech recognition tend to be very compact 

in terms of parameter usage when compared to HMM classifiers or SVMs. Since neural 

networks are comprised of interconnected nodes performing similar tasks, they lend 

themselves well for concurrent implementations. This is not the case with SVMs. Neural 

networks can also be trained easily as 1-vs-N classifiers which is not the case with SVMs. 

SVM estimation as 1-vs-1 classifiers is significantly simpler than 1-vs-N classifiers. This 

results is the need to estimate several classifiers to solve an N-class classification problem. 

In computationally restricted environments this can be a serious impediment. 

In conclusion, though SVMs are well-founded mathematically to achieve good 

generalization while maintaining a high classification accuracy, we need to consider issues 



98 

such as computation complexity and ease of implementation in order to choose the best 

classifier for a given application. In situations where accuracy and generalization are the 

only criterion for selection SVMs should be explored. However for computation and 

memory constrained problems, other techniques like decision trees and neural networks 

also need to be explored. 

4.6. Summary 

In this chapter we have reviewed the theory of support vector machines. The 

principle of structural risk minimization and its relationship to empirical risk minimization 

has been discussed. The control over the generalization offered by SRM is what makes an 

SVM a very powerful machine learning technique. The design and construction of 

maximum margin hyperplanes which form the core of SVM estimation was discussed. 

Several issues related to making SVM estimation practical were discussed, specifically 

those addressed by the SVMLight toolkit that has been used for all SVM experiments 

reported in this dissertation. The next chapter deals with an alternative framework under 

which HMMs and SVMs are integrated in a hybrid speech recognition system. 



CHAPTER 5 

HYBRID RECOGNITION SYSTEM ARCHITECTURE 

The last three chapters provided a mathematical framework for HMMs and SVMs. 

We have seen some examples of the power of SVMs as a classification tool and elegant 

iterative training algorithms for the estimation of HMMs. HMMs provide a way to handle 

the dynamic nature of speech due to their state machine formulation. SVMs suffer from 

the fact that they are inherently static classifiers. The main contribution of this dissertation 

involves the development of a hybrid system that effectively integrates these two powerful 

technologies in a framework capable of handling extremely large recognition tasks. This 

chapter describes the hybrid speech recognition framework developed as part of this 

dissertation. 

5.1. Hybrid Connectionist Systems 

Hybrid connectionist speech recognition systems have been used for continuous 

speech recognition for over a decade [34,48,51,52,53]. The motivation for looking at 

alternate techniques to the more prevalent HMM-based systems has been described in 

detail previously. The standard ML estimation criterion for HMM parameter estimation 

does not guarantee better classification and involves an assumption about the form of the 

underlying probability distribution. The assumption about the independence of features 

99 
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across frames leads to a poor model for continuous speech. The first-order Markov 

assumption makes it hard to model duration. In addition to these problems, the power of 

neural networks to model complex decision regions discriminatively has been the 

motivation to explore connectionist speech recognition systems such as neural networks. 

Though neural network technology has progressed significantly, their application to 

dynamic patterns like speech has only been marginally successful [48,50] (though the gap 

has narrowed in recent times [52,53]). Most connectionist hybrid systems rely on an 

underlying HMM architecture to model the temporal evolution of speech. 

One of the first successful implementations of a connectionist speech recognition 

system was the Connectionist Viterbi Training (CVT) system [124]. In this system, an 

initial frame-to-phoneme alignment was produced using an HMM-based system. The 

CVT procedure was then used to reestimate the output distributions associated with the 

HMMs. This is significantly different from other approaches where the neural networks 

were used as classifiers and the network outputs modeled the posteriors. The outputs of 

the trained networks in the CVT paradigm were used directly as HMM output 

probabilities. 

After the first pass of network estimation, the process is repeated except that the 

alignments were now obtained using HMMs whose probability densities were modeled 

with neural networks. A cross-validation procedure was used to test for convergence. The 

neural network architecture used in this system was a recurrent network where history of 

the internal hidden states of the network was fed as input to the networks along with the 

current frame of speech data (similar to the architecture in Fig. 11). This system used a 
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fixed length time window as input to the networks. This is counter-intuitive based on our 

knowledge of sub-word units which have variable durations based on a number of 

linguistic effects. Another problem associated with this approach is the need for 

segment-level labeled data in order to train the networks. Each fixed length segment in the 

training data needs to be labeled by a baseline HMM system prior to training the networks. 

This is a very expensive process and needs a good baseline HMM system for accurate 

labeling. 

Improvements to the above system were made by integrating time-alignment into 

the neural network estimation procedure. For this purpose, multi-state TDNNs were used 

as the core computational element in the network instead of a recurrent structure [125]. A 

simple TDNN is shown in Fig. 10. A multi-state TDNN differs from a conventional 

TDNN in that an additional layer that implements a simple DTW procedure is 

incorporated. Because of the DTW layer, precise segmentations are not required and 

scores can be accumulated every frame instead of every segment. The DTW layer has the 

effect of reducing the sensitivity of the system to frame-level classification errors. The 

networks themselves are trained using individually-labeled word segments. Recognition, 

however, does not require operation on segments of data. 

The basic TDNN system has to be enhanced with several features including 

specialized networks that focus on word boundary detection and duration constraints to 

achieve good performance. Due to this complexity, most contemporary connectionist 

systems have reverted to using neural networks to estimate posterior probabilities and use 

the HMM structure to model temporal evolution [49,52,53]. The hybrid system 
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architecture developed in this dissertation is motivated by the success of such hybrid 

systems. 

5.2. Posterior Estimation 

Equation (125) defines the essential operation that the decoder portion of a 

conventional statistically-based speech recognition system performs. Our goal is to find 

the most likely word sequence. Depending on the acoustic models that constitute the 

word, this can be interpreted as finding the most likely model sequence, 

M̂ = argmax p A  M⁄ ( )( )p M  , (125) 
M 

where M is the acoustic model and A is the acoustic data. With HMMs, the class 

conditional probability p A  M⁄ ) is obtained by evaluating Gaussian statistical models( 

trained on groups of similarly labeled feature vectors. In connectionist systems, a neural 

network estimates the posterior, p M  A⁄ ) , and these posteriors are converted to( 

likelihoods using Bayes’ rule, 

P M  A( ⁄ ) ( )P AP A  M( ⁄ ) = --------------------------------- . (126)P M( )  

In the above equation, since the classifier estimates the posteriors directly, if we 

assume the effect of P A  to be insignificant for recognition, simply dividing the( )  

posterior with the a priori probability of the model M gives the required conditional 

probability (scaled likelihood) P A  M⁄ ) that can be used for recognition [53]. A simple( 

estimate of the prior probability is the relative frequency of the class as determined by the 
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class labels generated during Viterbi alignment of the training data. The assumption that 

the relative class frequencies in the training set are a good approximation for the statistics 

of the test set is a significant issue. 

The priors can also be estimated based only on the phone frequencies in the 

lexicon defining the vocabulary of the dataset. These priors will encode some information 

regarding the pronunciation of the words in the vocabulary. In general, there is a mismatch 

between priors estimated as suggested above and the priors based on simple relative 

frequency of occurrence. This problem is however ignored in this work and equiprobable 

class priors are used throughout. 

SVMs, by definition, provide a distance or discriminant which can be used to 

compare classifier outputs and arrive at a classification as described by (75). This is unlike 

neural networks whose output activations are in fact estimates of the posterior class 

probabilities [46]. This makes classification a process of choosing the class with the 

largest posterior probability. Posteriors are more directly related to classification than the 

class conditional probabilities (which are motivated by representational approaches). 

Also, the posterior can be converted to the class conditional probability as discussed above 

and can be used directly as part of the regular HMM framework. 

On the other hand, one of the main concerns in using SVMs for speech recognition 

is that there is no clear relationship between the distance of the test pattern from the 

margin and the posterior class probability. If we can develop such a relationship, applying 

SVMs to speech recognition, within the HMM framework, is possible. 
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A crude estimate of the posterior probability can be obtained by modeling the 

posterior class probability distribution with a Gaussian. Another possibility is to use a 

simple histogram approach. The above methods however are not Bayesian in nature in that 

they do not account for the variability in the estimates of the SVM parameters. Ignoring 

this variability in the estimates often results in overly confident predictions by the 

classifiers on the test set [126]. Recent work on using moderated SVM outputs as 

estimates of the posterior probability has had success at the expense of increased 

computations [127]. We briefly discuss some of the methods that can be used to convert 

SVM distances to posterior probabilities. 

The first option at hand is to use the SVM output directly: 

N 

f( )x = αiy K(xi, x) + b . (127) ∑ i 
i = 1 

When f > 0 , the test sample is classified as being in-class and when f < 0 the sample is 

classified as being out-of-class. In general f does not give any meaningful information 

and using f to break ties in a voting scheme is often counter-productive. 

Another ad-hoc method is to use a clipped SVM output (e.g., clip scores greater 

than ±1 ). This is a better approximation of the posterior. However, this output will show 

high confidence even in regions with low data density or regions that are far from the 

decision boundary. 
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SVM Distances 
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Figure 18. Histogram of SVM distances for positive and negative examples from the crossvalida-
tion set. 

A more interesting method is known as an unmoderated probability estimate based 

on maximum likelihood fitting. In this method, we estimate a sigmoid defined as, 

1 p y( = 1 ⁄ f) = --------------------------------------- . (128) 1 + exp (Af + B) 

Kwok’s definitive work on moderated SVM outputs addresses the above issues in greater 

detail [127]. In the work reported in this dissertation, we have used the above formulation 

throughout. 

Fig. 19 shows the distribution of the distances for positive and negative examples 

using a typical classifier. One possibility is to model these distance distributions using 
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Gaussians and then to compute the probability of the class given the SVM distance. 

Mathematically, this can be expressed as, 

P f  y( ⁄ = 1)P 
P y( = 1 ⁄ f ) = ---------------------------------------------------------1---------------------- , (129)

( ⁄ ( ⁄ = –1)PP f  y = 1)P + P f  y1 –1 

where f is the SVM distance and y is the class label which takes the value ±1 . P1 and 

P are the in-class and out-of-class prior probabilities derived from the training data.–1 

Each of the class conditionals, P f y) can be modeled as a Gaussian. Some simplifying( 

assumptions can be made at this point without loss of generality. 

Suppose we model each of the class-conditional probabilities with a Gaussian. 

Then, 

P f  y( ⁄ = 1) = 
– µ1)2 –(f1--- --- --------- --- exp --- --- ----- ---- ---- ----

222πσ1 2σ1 

, (130) 

and, (131) 

P f  y( ⁄ = –1) = 
–(f – µ–1)2 

1----------------------- exp --------------------------- .
22 2σ–12πσ–1 

(132) 

Without loss of generality, if we assume the Gaussians have equal variance we can 

write the posterior probability in (129) as, 

P1P f  y⁄( = 1) 
p y( = 1 ⁄ f) = ------------------------------------------------------------------------------- (133)P1P f  y⁄ –1P f  y⁄( = 1) + P ( = –1) 



 
 

     

  

a 

a 

-

-

107 
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Figure 19. A sigmoid fit to the SVM distance-based posterior probability estimate. 

1 = -------------------------------------------------------------------------------------------------------- ( 134)P– 1 1 )2 )2 � �1 + -------- exp – ---------((f – – (f – µ ) � µ1 – 1 �P1 2 σ2 

-2 0 2 4 

1 = -------------------------------------------------------------------------------------------------------------------- ( 135)1 2 2 � �1 + Kexp – ---------(( – µ ) + 2 (µ – )f) � µ1 – 1 – 1 µ1 �2 σ2 

1≡ -------------------------------------- ( 136)1 + exp (Af + B) , 

wh er e A a nd B ar e p a r a m et er s t hat n e e d t o b e e s t i m at ed ( u s i n g a n y s u i t a bl e n on-l i ne ar 

function estimator). An issue that arises from this formulation of estimating posteriors is 

that the distance estimates are heavily biased towards the training data. In order to avoid 
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biased estimates, a cross-validation set is used to estimate the parameters of the 

sigmoid [117]. The size of this data set can be determined based on the amount of training 

data that is available for the classifier. Fig. 19 shows the posteriors and the estimated 

sigmoid for a typical classifier. 

5.3. Segmental Modeling 

A logical step in building a hybrid system would be to replace a Bayesian classifier 

in a traditional HMM system with an SVM classifier that operates on acoustic feature 

vectors. However, the amount of training data and the confusion inherent in frame-level 

acoustic feature vectors is an issue worth addressing. Consider training a classifier to 

discriminate the phone ‘s’ from all other phones in a training set consisting of 40 hours of 

speech. At a frame rate of 100 frames per second, 14.4x106 frames of data are available 

as training data for each classifier. Though efficient optimizers are available for SVM 

training, such a large amount of data could easily make the training process consume an 

inordinate amount of computational resources (on the order of months even on extremely 

fast processors). Another aspect of using frame-level data to train SVMs is the implicit 

assumption that the frame-level alignments that the HMM system generates are reliable. 

Experiments clearly indicate this to be a flawed assumption for conversational speech 

corpora such as SWITCHBOARD [15]. An iterative training procedure where the 

alignments are gradually improved is an option but is not addressed in this 

work [124,125]. 
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In addition to the above implementation issues, there is clear evidence that it is 

extremely difficult to model human speech at the frame level where suprasegmental 

evidence such as duration cannot be used [54,55,56]. These issues serve as motivation to 

examine data at a coarser level. Segment-based approaches to modeling speech have been 

pursued in the past [57,58,59]. These approaches differ from traditional approaches in that 

they process one segment at a time instead of one frame at a time. The segments typically 

span several frames and can represent sub-word units motivated by phonology or abstract 

units derived by using data-driven techniques [128]. The motivation for most 

segment-based approaches is that the acoustic model needs to capture both temporal and 

spectral structure of speech which is clearly missing in frame-level classification schemes. 

Segmental approaches also overcome the assumption of conditional independence 

between frames of data in traditional HMM systems. Segmental data takes better 

advantage of the correlation in adjacent frames of data that is inherent in speech. 

Despite their potential advantages, segment-based approaches have met with 

limited success. The inability to automatically generate reliable segmentations is a 

primary problem with this approach. This is often circumvented through the use of a 

hybrid architecture for acoustic modeling. The HMM paradigm provides an elegant 

framework to generate the most likely segmentations via a dynamic programming 

approach. The new classifier can then post process these segmentations to hypothesize the 

best word sequence. 

Once the segmentation problem has been overcome, the next problem we face is 

the variable length or duration problem. Since segment duration is an important 
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speech-related feature, our classifier cannot simply discard this information. Resampling 

the variable length unit to form a uniform length feature vector has been pursued [58,59]. 

Resampling can be done both in the time domain or the feature domain. The problems 

associated with this approach include the need to interpolate data and the need to 

empirically determine the number of sample points. For example in a 15-frame phonetic 

segment, we could use frames 1, 5, 10, and 15 to comprise the segment-level feature 

vector. Using the same rule, a 12-frame segment could be composed of the frames 1, 4, 8 

and 12. Elaborate quasi-linear sampling rules can be defined. It has been shown that 

sampling at naturally occurring boundaries is more effective than interpolation [58]. 

However these methods lack a clear experimental or mathematical motivation. 

A simple but effective approach motivated by the 3-state HMMs used in most 

state-of-the-art speech recognition systems is to assume that the segments (phones in most 

cases) are composed of a fixed number of sections [129-131]. The first and third sections 

model the transition into and out of the segment, while the second section models the 

stable portion of the segment. We use segments composed of three sections in all 

recognition experiments reported in this work. This three part assumption fits well with 

our knowledge of phone articulation where the contextual effects cause a clear onset and 

offset for most phones, leaving a stable mid-section. This assumption may not be valid for 

certain consonants (e.g., plosives), where the stable section is very short or is non-existent. 

This flaw in modeling can be handled by incorporating a durational feature into each 

segment. We chose not to pursue this approach because of the problems with unreliable 

state-level alignments provided by the baseline HMM system. 
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hh aw aa r y uw 

region 1 region 2 region 3 

k frames  

mean region 1 mean region 2 mean region 3 

0.3*k frames 0.4*k frames 0.3*k frames 

... 

Figure 20. Composition of the segment level feature vector assuming a 3-4-3 proportion for the 
three sections. 

Fig. 20 demonstrates the construction of a composite vector for a phone segment. 

SVM classifiers in our hybrid system operate on such composite vectors. The composite 

segment feature vectors are generated based on the alignments from a baseline 3-state 

Gaussian-mixture HMM system. The length of the composite vector is dependent on the 

number of sections in each segment and the dimensionality of the frame-level feature 

vectors. For example, with a 39-dimensional feature vector at the frame level and 3 

sections per segment, the composite vector has a dimensionality of 117. SVM classifiers 

are trained on these composite vectors and recognition using the hybrid system is also 

performed using these segment-level composite vectors. 

5.4. Modifications to an ASR System 

The previous section described the mechanism used to generate likelihoods with 

an SVM classifier. The decoder in the ISIP ASR toolkit [78] was modified to replace 

Gaussian computations with SVM classifiers. This is the only significant change needed 
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Propagate States 

Evaluate State 

Evaluate SVM 

Kernel Computation Sigmoid 

State likelihood 

Figure 21. A schematic describing the process involved in computing likelihoods using SVMs in the 
hybrid system. 

in the decoder to handle SVMs. Fig. 21 shows the process involved in generating state 

likelihoods in the hybrid decoder. 

Several issues arise from using SVM-derived likelihoods in the decoding process. 

For an N-dimensional input feature vector, evaluating a Gaussian with a diagonal 

covariance matrix is equivalent to multiplying N Gaussians. The result is a product that 

has a very small value. However with SVM-derived likelihoods, the input feature vector is 

mapped to an SVM distance first and then the likelihood is estimated using the sigmoid. 

The range of the likelihood in this case are typically a couple of orders of magnitude larger 
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than those derived using HMMs. This requires changes to user-defined parameters such as 

the language model scaling factor and the word insertion penalty in the hybrid system. 

5.5. N-best List Rescoring Paradigm 

As a first step towards building a complex hybrid SVM/HMM system, we have 

explored a simple rescoring paradigm instead of an integrated approach often used in 

hybrid connectionist systems [132]. Assuming that we have already trained SVM 

classifiers for each phone in the model inventory, we generate N-best lists [97] using a 

conventional HMM system. These N-best lists can be processed in two ways. The first 

possibility is to use the segmentation from the best hypothesis generated by the HMM 

system and rescore all the other hypothesis using this segmentation. The lists can then be 

reordered and the new hypothesis can be chosen. 

HMM 

convert to 
segmental data 

segment 
information 

mel-cepstral data 

hybrid decoder 

hypothesis 

recognition 

N-best 
information 

segmental 
features 

Figure 22. An N-best list rescoring paradigm which is the crux of the hybrid framework developed in 
this dissertation. 
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Another possibility is to generate a model-level alignment for each of the 

hypotheses in the N-best list using the HMM system. Based on these alignments, a 

segmentation for each hypothesis is generated. The likelihood of the corresponding 

hypothesis is computed by using SVMs to classify each segment. Posterior probabilities 

are computed using the sigmoid approximation discussed in the previous section. These 

probabilities are used to compute the utterance likelihood of each hypothesis in the N-best 

list. The N hypotheses can then be re-ranked using the new likelihoods and the best 

hypothesis can be chosen [76,77]. This scheme is shown in Fig. 22. 

The two approaches described above differ significantly in several ways. Using a 

single segmentation to reorder the N-best list makes the hybrid recognition process 

simpler. A single pass of rescoring a word-graph comprised of the N-best hypothesis is 

sufficient to complete the rescoring process. However this approach does not conform to 

the methodology used for training the SVM classifiers where segmentation generated 

based on HMM alignments are used to train the classifiers. The second approach of using 

a separate segmentation to compute the likelihood of each hypothesis in the N-best list is 

well-matched to the training paradigm. This approach also fits well with approaches 

where segment graphs are used for decoding [129,133,134]. However, it is very 

cumbersome and computationally expensive. In this dissertation we analyze experimental 

results based on both approaches. 

As a point of reference, we also produced results using a reference segmentation. 

These are  a set  of  oracle experiments where the segmentations are produced by 

forced-alignments of the reference transcription. The results of these experiments provide 
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initialize stack at t=1 
with the start node 
of the word graph 

while stack not empty
pop best partial path 
grow partial paths 

beam prune stack 
limit number of partial 
paths to K 

back trace N partial 
paths at t=T 

t =  t+1  N-best hypothesis 

word graph 

Figure 23. Flow-graph for the N-best rescoring paradigm. 

a nice analysis tool as they give us a presumptive lower bound on the achievable error (the 

actual lower bound is the N-best list error rate, but it is a good assumption that we won’t 

do better than a system with perfect knowledge of the reference segmentation). We 

hypothesize that this form of oracle experiment isolates the segmentation issue from the 

recognition process and hence calibrates the absolute improvements provided by the SVM 

classifiers. 

5.6. N-best List Generation 

N-best list generation is critical for the performance of the hybrid architecture 

explored in this research. Since the paradigm involves generating N-best lists using the 
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HMM system and then post processing these lists using the new classifiers, we assume 

that the N-best lists are rich enough to allow for any improvements over the baseline 

system. The ISIP ASR toolkit was enhanced to generate these N-best lists as part of the 

development of the hybrid system. 

There are several ways in which N-best lists can be generated [135,136]. 

A* search is by far the most commonly used technique. However, since the ISIP ASR 

toolkit is capable of generating word graphs efficiently, we chose to implement a 

stack-based word graph to N-best list converter. Fig. 23 shows the flow graph for the word 

graph to N-best list conversion process. There are several issues that need to be addressed 

to make the N-best list generation efficient in terms of memory usage and execution time. 

A single stack can be used for the complete process which contains partial paths 

possibly ending at various times. However care must be taken to normalize scores when 

partial paths are compared. In our implementation, a stack of partial paths per time frame 

is used. This makes the implementation straightforward with very little increase in 

bookkeeping overhead. This implementation also has an advantage in terms of applying 

pruning as the stack is built. A partial path is added to the stack only if it falls within the 

beam defined by the best scoring partial path at that time. This approach makes beam 

pruning very effective and speeds up the process by an order of magnitude. Our 

implementation also supports a fixed size for each of the stacks. The number of partial 

paths that are active at each point in time is limited by a user-specified parameter 

(denoted K ). 
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A n ot h er iss u e t h at n e e ds t o b e a d dr es s e d is t h e f a ct t h at s e v er al p at hs i n t h e w or d 

gr a p h diff er o nl y i n t h eir ti m e s e g m e nt ati o ns. F or e x a m pl e, wit h N = 1 0 , it c o ul d v er y 

w ell b e t h at t h e list c o nsists of o nl y 2 or 3 u ni q u e w or d h y p ot h e sis. Si n c e w e pr o p os e t o 

us e t h e N- b est lists i n a r es c ori n g p ar a di g m, t his r e d u n d a n c y is n ot us ef ul. T o a c c o u nt f or 

t his is s u e, t h e N- b est list g e n er ati o n utilit y o ut p uts o nl y t h os e h y p ot h es es t h at h a v e u ni q u e 

w or d s e q u e n c es. 

5. 7. S u m m a r y 

I n t his c h a pt er w e h a v e d e s cri b e d t h e h y bri d S V M/ H M M ar c hit e ct ur e d e v el o p e d 

as p art of t his diss ert ati o n. S e v er al is s u es h a v e b e e n a d dr e ss e d t h at ar e s p e cifi c t o t h e us e 

of S V Ms i n a h y bri d s yst e m. S o m e of t h e k e y c o ntri b uti o ns i n cl u d e: 

� Esti m ati o n of p ost eri or pr o b a biliti e s b a s e d o n S V M dist a n c es; 

� M o difi c ati o ns t o t h e I SI P A S R t o ol kit t o a c c o m m o d at e S V M cl as sifi ers; 

� D e v el o p m e nt of a n N- b est r es c ori n g p ar a di g m f or t h e h y bri d s yst e m; 

� I m pl e m e nt ati o n of a n N- b est list g e n er ati o n usi n g a st a c k- b as e d a p pr o a c h. 

T his h y bri d ar c hit e ct ur e is a n off-li n e pr o c es si n g m e c h a nis m a n d is b o ot- str a p p e d 

u si n g a b a s eli n e H M M s y st e m. Fr a m e-l e v el ali g n m e nt s ar e pr o vi d e d b y a tr a diti o n al 

H M M- b a s e d s yst e m. 



CHAPTER 6 

EXPERIMENTAL DATA AND BASELINE SYSTEMS 

The primary goal of this dissertation is to evaluate the feasibility of using SVMs in 

conjunction with HMMs for continuous speech recognition. However, since systems that 

handle continuous speech are typically very complex and need to be tuned to the 

application, we begin by evaluating SVMs on simpler tasks. We gradually progressed to 

evaluation on continuous speech as we developed better insights on how to tune the 

classifiers. This chapter describes the datasets that have been used to evaluate SVM 

classifiers for this dissertation. Details such as vocabulary, pronunciations and dataset 

composition (both training and test data) are provided. 

vowel word vowel word 

i: heed O hod 

I hid C: hoard 

E head U hood 

A had u: who’d 

a: hard 3: heard 

Y  hud  

Table 1. The vowels forming the Deterding vowel dataset and the corresponding acoustic contexts 
in which they were collected. The vowel in context approach results in a more realistic 
articulation of each vowel. 
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6.1. Deterding Vowel Dataset 

In our first pilot experiment, we applied SVMs to a publicly available vowel 

classification task: Deterding Vowels [137]. This was a good dataset to evaluate the basic 

SVM classifier since it has been used as a standard benchmark for several non-linear 

classifiers for several years. In this evaluation, speech data was collected at a 10 kHz 

sampling rate and low pass filtered at 4.7 kHz. The signal was then transformed to 

10 log-area parameters, giving a 10 dimensional input space. A window duration of 

50 msec. was used for generating the features. The training set consisted of 528 frames 

from eight speakers. The test set consisted of 462 frames from a different set of seven 

speakers. The speech data consisted of 11 vowels uttered by each speaker in a “h*d” 

context. Table 1 shows the vowel set and the corresponding words. 

6.2. OGI Alphadigits 

The performance of SVMs on the static classification of vowel data gave us good 

reason to expect the performance on continuous speech would be appreciably better than 

typical methods. Our initial tests of this hypothesis have been on a telephone alphadigit 

task [138]. Recent work on both alphabet and alphadigit systems has focused on resolving 

high error rates for easily confused words. In particular, the E-set (B, C, D, E, G, P, T, V, Z, 

THREE) and A-set (A, J, K, H, EIGHT) are most often used since these sounds have 

minimal acoustic differences between them. For instance, the letters B and D differ 

primarily in the first 10-20 ms during the consonant portion of the letter [139]. 
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word pronunciation word pronunciation 

a  ey  s  eh  s  

b b iy t t iy 

c  s  iy  u  y  uw  

d  d  iy  v  v  iy  

e  iy  w  d ah b  ax  l  y  uw  

f  eh f  x  eh k  s  

g  jh  iy  y  w  ay  

h  eh  ch  z  z  iy  

i ay one w ah n 

j  jh  ey  two  t  uw  

k  k  ey  three  th  r  iy  

l  eh  l  four  f  ow  r  

m  eh  m  five  f  ay  v  

n  eh  n  six  s  ih  k  s  

o, oh ow seven s eh v ih n 

p p iy eight ey t 

q  k  y  uw  nine  n  ay  n  

r  aa  r  zero  z iy r  ow  

Table 2. Lexicon used for recognition for the OGI Alphadigits dataset. 

The OGI Alphadigit Corpus [140] is a telephone database collected from 

approximately 3000 subjects. Each subject was a volunteer responding to a posting on the 

Usenet. The subjects were given a list of either 19 or 29 alphanumeric strings to speak. 

The strings in the lists were each six words long, and each list was “set up to balance 

phonetic context between all letter and digit pairs” [140]. There were 1102 separate 

prompting strings which gave a balanced coverage of vocabulary items and contexts. The 
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training, cross-validation and test sets consisted of 51544, 13926 and 3329 utterances 

respectively, each balanced for gender. The data sets have been chosen to support speaker 

independent evaluations [141]. The alphadigits database has a vocabulary of 36 words — 

26 alphabets and 11 digits including “oh”. Table 2 shows the vocabulary and the 

pronunciations used to model this dataset. 

As described in the previous chapters, we have developed a hybrid architecture for 

speech recognition using a combination of a traditional HMM system and SVM 

classifiers. To this end, we have developed a baseline HMM system which was used to 

generate the segmental data used to train and test SVM classifiers. The baseline system 

was also used to generate the N-best lists which were re-ordered using SVM classifiers to 

obtain the final hypothesis. 

The HMM baseline used FFT-derived mel-cepstral features with cepstral mean 

normalization. All phone models are standard 3-state left-to-right models without skip 

states. These models are seeded with a single Gaussian observation distribution. A 

context-independent phone system is estimated using multiple passes of Baum-Welch 

estimation. A context-dependent phone system is then bootstrapped from the 

context-independent system. Four passes of Baum-Welch reestimation are used to 

generate single-component mixture distributions for the triphone models. At this stage of 

the estimation process, states are tied via a phonetic decision tree that is built using an ML 

formulation. The state-tied triphone models are then estimated using four more passes of 

Baum-Welch estimation. The number of Gaussians per state are then increased to 12 using 
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ph. word ph. word ph. word ph. word ph. word 

aa bOdy ch CHurch f Four m Mine sh maSH 

ae Angry d Do g God n Novel t Two 

ah bUt dh THere hh Hello ng kiNG th THree 

ao fOssil eh gEt ih hIt ow hOme uh bOOk 

aw hOWl el cattLE iy hEAt oy bOY uw tOOl 

ax blossOms en buttON jh June p Pair v Very 

ay fIle er bURgER k Kill r Result w War 

b Be ey sAY l Low s Sing y Yellow 

z Zero zh uSual 

Table 3. Phone set used for the SWITCHBOARD recognition experiments. A total of 42 phones 
are used to model all pronunciations in the lexicon. 

a standard divide-by-two clustering algorithm. This baseline system performs at 11.9% 

word error rate on the 3329 utterance evaluation test set for this corpus. 

6.3. SWITCHBOARD 

SWITCHBOARD is a large multispeaker corpus of telephone conversations 

collected in the early 90’s with speakers representing a wide geographic distribution of the 

U.S.A. [15]. The database consists of 2,430 conversations and spans 500 speakers. A total 

of 240 hours of speech was collected. SWITCHBOARD is the most commonly used 

corpus to evaluate conversational speech recognition systems. The conversations pose 

several problems for recognition systems including the immense variability in speaking 

styles and the casual (poorly articulated) nature of the conversations. After nearly a decade 

of research the best systems achieve about 20% word error rate on this corpus [32,33]. 
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We have used a subset of this corpus for training and testing systems for this 

dissertation. The training set consists of 60 hours of speech where the conversations were 

linguistically segmented after generating initial energy-based segments. The training set 

consists of 114,441 utterances while the development test set consists of 2427 

utterances [93]. These utterances have an average length of six words and an average 

duration of two seconds. As with the other datasets used in this dissertation, this is a 

speaker independent evaluation. The test set vocabulary is approximately 22,000 words 

while the training set vocabulary has over 80,000 words. For all the phone-based systems 

reported in this dissertation, a 42-phone set has been used. The phones and their 

definitions are shown in Table 3. 

The baseline HMM system was trained on 60 hours of SWITCHBOARD data 

from 2,998 conversation sides. The input features were mel-cepstral coefficients which 

had been normalized to have a zero-mean (side-based cepstral mean normalization was 

used [142]) and unit variance [143]. Using this data, context-independent phone models 

were trained iteratively starting from one mixture component to a final configuration of 

32 mixture components per HMM state. These models were then used to generate 

phone-level alignments. The phone alignments were used throughout the remainder of our 

training process. Cross-word context-dependent phone models were seeded with 

single-mixture monophones, reestimated using a four pass procedure, and then clustered 

using phonetic decision trees [91]. Mixture splitting (terminating at 12 mixtures per state) 

was performed using an iterative splitting and training scheme [144]. This baseline system 

has a word error rate of 41.6% on the development test set. 
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6.4. Summary 

In this chapter we have described the datasets used to evaluate the SVM classifiers 

developed as part of this research. These datasets include a standard non-linear 

classification task — Deterding Vowel Data and two continuous speech recognition tasks. 

The OGI Alphadigits Corpus is a small vocabulary task which is good dataset to assess the 

improvements SVMs provide on acoustic modeling, since it contains many sounds that are 

acoustically very similar (minimal pairs). This dataset is used to analyses several aspects 

of the hybrid system including the effect of parameter tuning. The baseline for this task 

using a traditional cross-word context-dependent HMM system is 11.9% on the evaluation 

set. The SWITCHBOARD database is used to evaluate the hybrid system on a challenging 

large vocabulary task. The baseline HMM system performs at 41.6% word error rate on 

this task. The baseline systems for both the continuous speech recognition tasks have been 

briefly described. 



CHAPTER 7 

EXPERIMENTS 

The previous chapters described the theory and implementation of a hybrid SVM/ 

HMM system. In this chapter, we analyze results obtained on the databases described in 

chapter (6). We also present a detailed discussion of the classifier design in terms of data 

distribution and parameter selection. The performance of the SVM classifiers and the 

hybrid system are compared to the baselines used in this dissertation. 

7.1. Deterding Vowel Data 

The Deterding vowel dataset is one of the most widely used for benchmarking 

non-linear classifiers. The small training set and significant confusion in the vowel data 

make it a very challenging task. The best neural network classifiers (Gaussian Node 

Network) produce a misclassification rate of 44% [50]. In all experiments, for each class, 

a one-vs-all classifier was estimated and the final hypothesis was generated using a simple 

voting scheme where we choose the class which has the largest raw SVM output. 

7.1.1. Effect of RBF Kernel Parameters on Classification 

A traditional method for estimating an RBF classifier involves finding the RBF 

centers for each class separately using a clustering mechanism such as K-MEANS [41]. 
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gamma 
(C=10) 

classification error 
% 

C 
(gamma=0.5) 

classification error 
% 

0.2 45 1 58 

0.3 40 2 43 

0.4 35 3 43 

0.5 36 4 43 

0.6 35 5 39 

0.7 35 8 37 

0.8  36  10  37  

0.9  36  20  36  

1.0  37  50  36  

100 36 

Table 4. Effect of the kernel parameters on the classification performance of RBF kernel-based 
SVMs. 

Next, we estimate weights corresponding to each cluster center to complete the definition 

of the classifier. However, the goal of the optimization process used to compute the 

weights is typically not improved discrimination, but better representation. The training 

process also requires using heuristics to determine the number of cluster centers. On the 

other hand, the SVM approach for estimating RBF classifiers is more elegant where the 

number of centers (support vectors in this case) and their weights are learned 

automatically in a discriminative framework. 

The parameters of interest in tuning an RBF kernel are ϒ , the variance of the 

kernel as defined in (98) and C , the parameter used to penalize training errors during 

SVM estimation. Table 4 shows the performance of SVMs using RBF kernels for a wide 

range of parameter values. The results clearly indicate that the performance of the 
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classifiers is very closely tied to the parameter setting, though there exists a pretty wide 

“sweet-spot.” Another interesting observation is the effect of C on the performance. Note 

that for values of C greater than 20 the performance does not change. This suggests that a 

penalty of 20 has already accounted for all overlapped data and a larger value of C will 

have no additional benefit. 

7.1.2. Effect of Polynomial Parameters on Classification 

The polynomial kernel has only one free control parameter, the order of the 

polynomial. Typically, with increasing polynomial order, more complex decision regions 

can be modelled, though this requires more support vectors. Table 5 demonstrates the 

variation of performance as a function of the polynomial order. It is interesting to see how 

the number of support vectors increases as the classifiers increase in complexity. Though 

we would expect that the performance of the system improves with polynomial order, we 

conjecture that a small amount of training data is insufficient to estimate the higher order 

polynomial kernel parameters effectively. 

order classification error 
% 

average number of 
SVs per classifier 

2  49  35  

3  52  45  

4  52  52  

5  56  55  

Table 5. Performance of a polynomial kernel as a function of the polynomial order. 
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Performance using the RBF and polynomial kernels (35% and 49% respectively) 

is better than most nonlinear classification schemes [46]. Other SVM implementations 

have reported results similar to the numbers reported in this dissertation [75]. The best 

performance reported on this data set is, however, 29% error using a speaker adaptation 

scheme called Separable Mixture Models [145]. The performance obtained on this task 

demonstrates the power of SVMs in challenging classification tasks, provided that 

sufficient training data exists. The above experiments also a give us a sense of the 

importance of parameter tuning. 

7.2. OGI Alphadigits 

Building classifiers for a continuous speech recognition task is very different and a 

far more complex process than building classifiers for static classification tasks such as 

the Deterding vowel dataset. The number of tokens available for each classifier is 

typically in the tens of thousands. The number of classifiers is not uniquely determined by 

the task, but has to be decided based on the system complexity and data availability. The 

following sections provide the background for the design decisions made in developing 

our hybrid system. 

7.2.1. Classifier Design 

Thus far we have not addressed a fundamental issue in classifier design — should 

the classifiers be one-vs-one or one-vs-all? As the name suggests, one-vs-one classifiers 

learn to discriminate one class from an another class and one-vs-all classifiers learn to 

discriminate one class from all other classes. One-vs-one classifiers are typically smaller 
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and can be estimated using fewer resources than one-vs-all classifiers. When the number 

of classes is N we need to estimate N(N – 1) ⁄ 2 one-vs-one classifiers as compared to N 

one-vs-many classifiers. On several standard classification tasks it has been proven that 

one-vs-one classifiers are marginally more accurate than one-vs-many classifiers [146]. In 

the case of phone classifiers for the tasks at hand the number of one-vs-one classifiers that 

need to be estimated is significantly greater that one-vs-many classifiers — 406 for the 

OGI alphadigits database and 820 for SWITCHBOARD. Estimating these classifiers can 

be very time consuming. Therefore, we chose to use one-vs-many classifiers in all 

experiments reported here. The next issue we need to address is amount of data required to 

train each one-vs-many classifier. 

7.2.2. Classifier Estimation 

The baseline HMM system described in section 6.2 was used to generate 

segmented training data by Viterbi-aligning the training reference transcription to the 

acoustic data. The time marks derived from this Viterbi alignment were used to extract the 

segments. Before extraction, each feature dimension was normalized to the range [-1,1] to 

Segmentation 
Proportions 

WER (%) 
RBF kernel 

WER (%) 
polynomial 

kernel 

2-4-2 11.0 11.3 

3-4-3 11.0 11.5 

4-4-4 11.1 11.4 

Table 6. Comparison of performance as a function of the segment proportions. 1-best hypothesis 
segmentations are used to generate the SVM segmentations and 10-best lists are 
rescored. 
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improve the convergence properties of the quadratic optimizers used as part of the SVM 

estimation utilities [70]. For each phone in the training transcription, a segment was 

extracted. This segment was divided into three parts as detailed previously in Fig. 20. An 

additional parameter describing the log of the segment duration was added to yield a 

composite vector of size 3 * 39 features + 1 log duration = 118 features. Once the training 

sets were generated for all the classifiers, the SVMLight [70] utilities were used to train 

each of the 29 phone SVM models. 

In Table 6, performance as a function of three different segment ratios is presented. 

These experiments suggest that SVM classifiers are insensitive to the specific proportion 

that is chosen. This trend is observed consistently on both the regular experiments where 

N-best lists are rescored using HMM hypothesis-based segments and the oracle 

experiments where N-best lists are rescored using reference transcription-based segments. 

7.2.3. Data Distribution 

For each phone shown in Table 2, an SVM model was trained to discriminate 

between this phone and all other phones (one-vs-all models), generating a total of 

29 models. In order to limit the number of samples (especially the out-of-class data) that is 

required by each classifier, a heuristic data selection process was used. Some of the 

important heuristics used included the requirement that the training set consists of equal 

amounts of within-class and out-of-class data. All within-class data available for a phone 

is by default part of the training set. The out-of-class data was randomly chosen such that 

one half of the out-of-class data came from phones that were phonetically similar to the 
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phone of interest and one half came from all other phones. The phonetic similarity sets 

that were used in this experiment are shown in Table 7. Balancing the data by similarity 

allowed for more data to be used during training. This scheme was used to train all 

classifiers for the continuous speech recognition tasks reported in this work. 

An alternate mechanism for choosing data is to use a phone confusion matrix in a 

iterative framework. At the end of each training iteration, a confusion matrix can be 

generated for every classifier. The next iteration would include more data from a 

confusable phone as compared to a less confusable phone. This approach is similar in 

flavor to the concept of Boosting used in several machine learning techniques [147]. 

Another approach would be to use an agglomerative clustering scheme where classifiers 

are organized in the form of a tree [65]. The classifiers closer to the root node perform 

coarse classification (vowels vs. nasals for example) while the classifiers at the leaves 

perform fine-grain classification (‘m’ vs. ‘n’ for example). 

set phonemes 

vowels aa, ah, ax, ay, eh, ey, ih, iy, ow, uw 

fricatives  ch, f, s, th,  v,  z  

nasals m, n 

approximants w, r, l, y 

stops  b, d, jh,  k,  p,  t  

Table 7. Phonetic similarity sets used to build SVM training sets for the OGI alphadigits task. 
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RBF 
gamma 

WER (%) 
hypothesis 

Segmentation 

WER (%) 
Reference 

Segmentation 

polynomial 
order 

WER (%) 
hypothesis 

Segmentation 

WER (%) 
Reference 

Segmentation 

0.1 13.2 9.2 3 11.6 7.7 

0.4 11.1 7.2 4  11.4  7.6  

0.5 11.1 7.1 5 11.5 7.5 

0.6 11.1 7.0 6 11.5 7.5 

0.7 11.0 7.0 7  11.9  7.8  

1.0 11.0 7.0 

5.0 12.7 8.1 

Table 8. Comparison of word error rates as a function of the RBF kernel width (gamma) and the 
polynomial kernel order. Results are shown for a 3-4-3 segment proportion with the error 
penalty, C, set to 50. The WER for the baseline HMM system is 11.9%. 

7.2.4. Effect of Kernel Parameters on Performance 

Table 8 shows the performance of the hybrid SVM system as a function of the 

kernel parameters. These results were generated with 10-best lists whose total list error 

(the error inherent in the lists themselves) was 4.0%. The list error rate is the best 

performance any system can achieve by postprocessing these N-best lists. Though we 

would ideally like this number to as close to zero as possible, the constraints placed by the 

limitations of the knowledge sources used in the system (acoustic models, language 

models etc.) force this number to be non-zero. In addition, the size of the N-best list has to 

be kept small for most post-processing operations to make the systems computationally 

attractive. 

As with the vowel classification data, the RBF kernel performance was superior to 

the polynomial kernel. In addition, as we observed in the vowel classification task, the 

generalization performance is fairly flat for a wide range of kernel parameters. The 1-best 
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hypothesis segmentation was used to produce an 11.0% WER using an RBF kernel. To 

provide an equivalent and fair comparison with the HMM system we have rescored the 

10-best lists with the baseline HMM system. Using a single segmentation to rescore the 

10-best lists does force a few hypothesis in the lists to become inactive because of the 

duration constraints. The effective average list size after eliminating hypothesis that do not 

satisfy the durational constraints imposed by the segmentation is 6.9. The result for the 

baseline HMM system using these new N-best lists remains the same indicating that the 

improvements provided by the hybrid-system are indeed because of better classifiers and 

not the smaller search space. 

As a point of reference, we also produced results (Table 8) using the reference 

transcription to generate the segments. Using this oracle segmentation, the best 

performance we get on this task is 7.0% WER. This is a 36% relative improvement in 

performance over the best configuration of the hybrid system using hypothesis-based 

segmentations. The effective average list size after eliminating hypotheses that do not 

satisfy the durational constraints imposed by the oracle segmentation is 6.7. This 

experiment shows that SVMs efficiently lock on to good segmentations. However, when 

we try to let the SVMs choose the best segmentation and hypothesis combination by using 

the N-best segmentations the performance gets worse (11.8% WER as shown in Table 9). 

This apparent anomaly suggests the need to incorporate variations in segmentation into 

the classifier estimation process. Relaxing this strong interdependence between the 

segmentation and the SVM performance is a point for further research. 
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Data 
Class 

HMM 
(%WER) 

SVM 
(%WER) 

HMM+SVM 
(%WER) 

a-set 13.5 11.5 11.1 

e-set 23.1 22.4 20.6 

digits 5.1 6.4 4.7 

alphabets 15.1 14.3 13.3 

nasals 12.1 12.9 12.0 

plosives 22.6 21.0 18.9 

Overall 11.9 11.8 10.6 

Table 9. Comparison of performance of the HMM and SVM systems in isolation and in 
combination as a function of prominent word classes in the alphadigits vocabulary. 
Unlike the system used to generate Table 8, these numbers are generated by reordering 
N-best lists using N segmentations. 

The goal in SRM is to build a classifier which balances generalization with 

discrimination on the training set. Table 8 shows how the RBF kernel parameter is used as 

a tuning parameter to achieve this balance. As gamma increases, the variance of the RBF 

kernel decreases. This in turn produces a narrower support region in a high-dimensional 

space. This support region requires a larger number of support vectors and leads to 

overfitting as shown when gamma is set to 5.0. As gamma decreases, the number of 

support vectors decreases, which leads to a smoother decision surface. Eventually, we 

reduce the number of support vectors to a point where the decision region is overly 

smooth (gamma = 0.1), and performance degrades. In agreement with the concept 

described in Fig. 12, these numbers show that the optimal operating point is a clear 

trade-off between the two extremes of overfitting (poor generalization) and 

oversmoothing (poor performance). 



--

135 

7.2.5. Likelihood Combination-Based Recognition 

Error analysis often helps understand systems better. For the alphadigits task, we 

compared and contrasted the error modalities of the hybrid system and the HMM baseline 

system. The typical confusions at the word-level have been used to define the error modes. 

We use the same word class groups used in [139] which have been identified as the 

primary error modalities for this task. 

Table 9 shows the performance of the hybrid system and the baseline HMM 

system on the error modalities being analyzed. The two systems seem to have 

complementary strengths to a large extent. For example, the SVM hybrid system is better 

at handling the “a-set” word-pairs better than the HMM system. However, the HMM 

system does better on nasals. This analysis led us to explore the benefits of combining the 

outputs of the two systems to produce the final hypothesis. 

We explored a system combination scheme where the word-likelihood score from 

the SVM system was combined with the word-likelihood score from the HMM baseline 

according to 

HMM Scorelikelihood = SVM score + ---------------------------- . (137)norm factor 

This method does require the estimation of another free parameter to normalize the 

respective scores. As the normalization factor increases, the likelihood is dominated by 

the SVM hypothesis. Likewise, as the normalization factor decreases, the HMM score 

dominates. Table 10 shows the results of this method for a sweep of normalization factors. 

A normalization factor of 200 delivers our best overall error rate of 10.6% WER. The last 
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Normalization HMM+SVM 
Factor (%WER) 

100000 11.8 

10000 11.4 

1000 10.9 

500 10.8 

200 10.6 

100 10.7 

50 10.8 

0.0001 11.9 

Table 10. Error rate as a function of the normalization factor. The optimal value is 200, and provides 
an error rate of 10.6%. When the normalization factor is 0.0001, in effect the system uses 
only the HMM-derived likelihoods. 

column in Table 9 is generated using this normalization factor. Interestingly, this score 

combination scheme shows gains for every error modality explored in this recognition 

task. This fact is particularly encouraging and warrants further research. 

7.3. SWITCHBOARD 

The SWITCHBOARD (SWB) task is very different from the OGI alphadigits task 

in terms of acoustic confusibility and classifier complexity. The alphadigits task is simpler 

in the sense that most of the confusions occur as minimal pairs that can be categorized into 

a few error classes. However, in SWB, because of the conversational speaking style, 

recognition systems make more egregious errors. As will be discussed in a later section, 

this is an important factor that contributes to a wide variety in the segmentations for 

phones. This becomes even more important in the light of the findings reported in 

section 7.2.4 where the use of good segmentations seem to help the SVM classifiers 
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significantly improve performance. The baseline HMM system for this task performs at 

41.6% WER. 

7.3.1. Classifier Estimation and Data Distribution 

We follow a similar classifier estimation process used for the OGI alphadigits task 

to train classifiers for the SWB task. We estimate 43 classifiers for this task. Since a 

standard cross-validation set does not exist for this task, we used 90,000 utterances from 

the 60 hours of training data to train the classifiers. The cross-validation set consisted of 

24,000 utterances. In order to make the computational complexity feasible, we limited the 

number of positive examples for any classifier to 30,000. These examples were, however, 

chosen at random. Note that we take this approach with the sole purpose of reducing 

training time and not reduced variability of the inputs to the SVM classifiers. We do not 

explore other data selection schemes in this work, though using a clustering scheme could 

achieve better results than the random selection used here. 

set phonemes 

vowels eh ih ao ae ah aa uw uh er ay oy ey iy aw ow ax 

fricatives s sh z zh f v ch jh th dh 

nasals m n en ng 

approximants l el r w y hh 

stops  b d k  p t  g  

Table 11. Phonetic similarity sets used to build SVM training sets for the SWB task 
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The out-of-class data for each classifier was randomly chosen such that one half of 

the out-of-class data came from phones that were phonetically similar to the phone of 

interest and one half came from all other phones. The phonetic similarity sets used for this 

purpose are shown in Table 11. For all experiments conducted for this task, we used 

segments generated using a 3-4-3 proportion. This was based on the results for the 

alphadigits task that show that performance of the hybrid system is relatively insensitive 

to the proportion. Since the performance of RBF kernels has proven better than the 

polynomial kernels on all tasks reported in this work thus far, we chose to use only the 

RBF kernel for experiments on SWB. 

7.3.2. Effect of Segmentation Source on Performance 

We have seen the effect of using reference-based segmentat ions and 

hypothesis-based segmentations on the performance of the hybrid system for the 

alphadigits task. In this section we discuss the effect of segmentations on the performance 

of the hybrid system on the SWB task. We use 10-best lists with a list error rate of 29.5% 

for all experiments. Three distinct experiments were performed on this task in an effort to 

explore the effect of segmentation on system performance. This was motivated by the 

performance numbers we saw in Tables 8 and 9 which clearly show that segmentation is a 

major issue in the performance of the hybrid system. 

In the first experiment we used a segmentation derived from the HMM’s 

hypothesis to rescore the N-best list. This hybrid setup does improve performance over the 

baseline, albeit only marginally — 40.6% compared to a baseline of 41.6%. The second 
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experiment was performed by using N segmentations to rescore each of the utterances in 

the N-best lists. From the experimental results on the alphadigits task we expect the 

performance with this setup to be worse than 40.6%. The performance of the system did 

indeed get worse — 42.1% WER. When HMM models were used instead of SVMs under 

the same setup, the HMM system achieved a WER of 42.3% compared to the baseline of 

41.6%. From this result we deduce that the lack of any language modeling information 

when we reorder the N-best lists is the reason for this degradation in performance. 

The third experiment was the oracle experiment described in section 5.5. Using 

the reference segmentation to rescore the N-best list gave a WER of 36.1%. Once again, 

this improvement we see using the oracle segmentations shows that the segmentation 

issue needs further exploration. 

7.4. Oracle Experiments 

In this section we compare and contrast the effect of using oracle segmentations 

and transcriptions in the hybrid system. This is important exercise in order to gain further 

insights into the effect of these features on system performance. From the previous 

sections we see that using the oracle segmentations improves the performance of the 

hybrid system significantly over the baseline HMM system. On the alphadigits task, using 

the reference segmentations improves the performance of the hybrid system from 11.0% 

to 7.0% WER (compared to a baseline of 11.9% WER). On the SWITCHBOARD task, 

the reference segmentation improves the performance of the system from 40.6% to 36.1% 
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WER (compared to a baseline of 41.6% WER). These numbers do show that the SVMs 

are capable of locking on to the correct segmentation. 

A question that might arise from this experimental setup is — does using reference 

segmentations eliminate several utterances from the N-best list making the classification 

task easier for the SVM classifiers? We looked at the average N-best list size after pruning 

hypotheses that do not satisfy the constraints placed by the reference segmentation in 

terms of the number of segments. On the SWITCHBOARD task the average list size after 

pruning was 5.3 as compared the original N-best lists which had an average list size of 8.7. 

For the alphadigits task this process reduces the average list size from 8.3 to 6.7. It is 

interesting to note that the performance of the baseline HMM system does not change by 

using the reduced N-best lists. The reason that the 10-best lists have an average list size of 

8.3 is that there are many utterances for which the number of unique word hypotheses in 

the N-best list is less than 10. Though the list size was reduced using a single 

segmentation, the SVM classifiers still have to deal with a significant number of 

confusions and appear to do a better classification job than HMMs. 

We ran another set of oracle experiments to see the effect of the richness of N-best 

lists on the performance of the hybrid system. The N-best list error rate was artificially 

reduced to 0% by adding the reference to the original 10-best lists. Rescoring these new 

N-best lists using the corresponding segmentations resulting in error rates of 38.1% and 

9.1% WER on SWITCHBOARD and alphadigits respectively. This improvement is even 

more significant in the case of alphadigits where adding the reference transcription to the 

N-best list improves performance by 30% relative to the baseline. The HMM system 



141 

S. Information Source HMM Hybrid 

No. Transcription Segmentation AD SWB AD SWB 

1 N-best Hypothesis 11.9 41.6 11.0 40.6 

2 N-best N-best 12.0 42.3 11.8 42.1 

3 N-best + Ref. Reference — — 3.3 5.8 

4 N-best + Ref. N-best + Ref. 11.9 38.6 9.1 38.1 

Table 12. Summary of recognition experiments using the baseline HMM system and the hybrid 
system on the SWITCHBOARD (SWB) and Alphadigits (AD) tasks. The two information 
sources that define the experimental setup are the transcriptions that need to be 
reordered and the segmentations that are fed to the hybrid system. N-best segmentation 
implies that each of the N segmentations were used to process the corresponding 
hypothesis in the N-best list. 

under a similar condition improves performance to 38.6%. On the alphadigits task the 

HMM system does not improve performance over the baseline even when the reference 

(or correct) transcription is added to the N-best list. This result indicates that SVMs do a 

better job than HMMs when they are exposed to accurate segmentations. This issue is 

addressed in greater detail in a later section. 

Another set of experiments were run to quantify the absolute ceiling in 

performance improvements the SVM hybrid system can provide. This ceiling can be 

achieved when we use the hybrid system to rescore the N-best lists that include the 

reference transcription using the reference-based segmentation. Using this setup the 

system gives a WER of 5.8% on the SWITCHBOARD task and 3.3% on the alphadigits 

task. This huge improvement should not be mistaken to be a real improvement in 

performance for two reasons. First, we cannot guarantee that the reference segmentation is 
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available at all times. Second, generating N-best lists with 0% WER is extremely difficult, 

if not impossible for conversational speech. This improvement should rather be viewed 

indicator of the fact that by using good segmentations to rescore good N-best lists, the 

SVM/HMM hybrid system has a potential to improve performance. 

Table 12 summarizes the important results in terms of the various segmentations 

and N-best lists that were processed to arrive at the final hypothesis. The key point to be 

noted here is that experiments 2 and 4 are designed such that both the hybrid system and 

the HMM system are operating under the same conditions and offer a fair comparison of 

the two systems. For these experiments, since we reorder N-best lists by using 

segmentations corresponding to each of the hypothesis in the list, both systems have the 

opportunity to evaluate the same segments. On the other hand if we were to run the 

experiments using a single segmentation (experiment 1 for example), the HMM system 

cannot use the segmentation information while the hybrid system can. Experiments 2 and 

4 are key in order to compare both systems from a common point of reference. Experiment 

4 suggests that when the HMM and hybrid system process good segmentations and rich 

N-best lists, the hybrid system outperforms the HMM system — significantly in the case 

of alphadigits and marginally on SWITCHBOARD. This is a very promising result which 

shows that the hybrid system developed in this dissertation improves performance over 

the baseline HMM technology. 
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w  aa  t  k  ae  n  t  

S  A  B  C  D  E  F  G  H  T  

w  aa  k  ih  

REF: 

HYP: 

seg1 

seg2 

seg3 

seg4 

n t 

Figure 24. An example of segmentation differences between using the reference transcription and 
the hypothesis transcription. 

7.5. Segmentation Issues in the Hybrid Framework 

The effect of reference segmentations on the performance of the hybrid system 

warrants a closer look at the role segmentation plays in the recognition process. Another 

aspect that needs to be clarified is the disparity in data that the SVM classifiers are fed 

during training and testing. It is clear from the numbers presented in sections (7.2.4) and 

(7.3.2) that reference segmentation (also called the oracle) outperforms the 

hypothesis-based segmentations in all cases. We use a graphic example shown in Fig. 24 

to show why we think this is reasonable, if not expected. 

The example shows the reference transcription and the hypothesis obtained by the 

HMM system. SVMs classifiers are used to rescore N-best lists using composite feature 

vectors generated via the hypothesis-based segmentation. There two types of errors that 
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we expect the SVM classifiers to handle. Type 1 errors are the errors that occur because of 

incorrect segmentation (possibly due to insertions or deletions) and are shown as seg1 vs. 

seg2. Type 2 errors are substitution errors (ae substituted by ih) shown  as  seg3 vs seg4. 

Since the SVM classifiers are trained using alignments of reference transcriptions, they 

learn to handle type 2 errors effectively. However, during the training process, they are not 

exposed to type 1 errors. 

In the hybrid recognition framework, the classifiers do encounter both types of 

errors, especially when rescoring N-best lists. For tasks such as alphadigits where minimal 

pairs are the primary error modalities, type 2 errors are dominant and SVMs do a good job 

of correcting these errors, thereby improving performance compared to the baseline HMM 

system. However, for SWB, where the baseline error rates are high, type 1 errors are a 

significant part of the error distribution. Since SVMs trained as described in section 7.2.2 

are not intended to learn these type 1 errors, gains are minimal on SWB. 

This observation prompts us to hypothesize that subjecting the SVM classifiers to 

a variety of segmentations during classifier estimation will help provide significant 

performance improvements on challenging tasks such as SWB. Segmentation variety can 

be obtained in several ways. One direct method includes generating alternate 

segmentation graphs for the training data. This would involve generating N-best lists or 

word-graphs for the training data. Segments that are a few frames different from the 

reference segmentation should be fed as out-of-class data for the classifier being trained 

on the phone described by the reference segment. Obviously, segments that represent 
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substituted phones would also be part of the out-of-class data. This is similar in principle 

to the MMI estimation of HMM parameters described in section 3.1. 

7.6. Identification of Mislabeled Data 

Issues related to practical SVM optimization were discussed in section 4.4. 

Choosing a good working set was identified as the key to an efficient training process. 

Apart from choosing a good working set, the optimization process can be made efficient 

by identifying support vectors, whose multipliers are at the upper bound, C , early in the 

training process. In general, if the training errors are not thrown out of the training 

process, they end up as part of the definition of the hyperplane. In datasets with a high 

degree of class overlap or large number of mislabelled data points, the training errors can 

become significant and result in a very complex classifier. The complexity of the classifier 

effects runtime performance directly, since the number of kernel computations increases 

linearly with the number of support vectors. 

This problem can be handled in several ways [148]. A simplistic approach would 

be to remove mislabelled data or training errors from the data set before the classifiers are 

estimated. This is not entirely feasible in most cases because of the cost involved in 

identifying the mislabeled data. Another approach would entail removing the support 

vectors whose multipliers are at the upper bound from the definition of the hyperplane. 

This would reduce the computational complexity significantly, but would result in a 

hyperplane which is different from the one obtained by the SRM optimization process. 
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Another serious problem with this approach is that it is blind to the fact that training errors 

could provide valuable information regarding class overlap. 

A third approach to this problem of handling the training errors that become part of 

the classifier definition is called the Reduced Set method [149]. This attempts to replace 

the hyperplane definition by a new definition using a function estimation technique. The 

new definition would be formulated in terms of a much smaller support vector set which is 

composed of vectors that may not be a part of the training data. This technique is elegant 

in that it guarantees that the new hyperplane is very close to the original hyperplane under 

a pre-defined error metric. However, the estimation process for the new hyperplane is very 

2ndexpensive and a closed form solution exists only for order polynomial kernels. 

A fourth technique used as part of the estimation process of the classifiers used in 

this dissertation involves an iterative procedure where training errors are removed from 

the support vector set. This is followed by retraining the hyperplane with the new reduced 

set as the base support vector set. This approach is a compromise in terms of 

computational cost and reduced classifier complexity. A by-product of this approach is the 

ability to efficiently identify mislabeled data as part of the training process. The key to the 

success of this approach in identifying mislabeled data is the use of large value for C 

during classifier estimation. Using a small value for C could result in vectors being 

incorrectly identified as training errors or mislabeled data. This can have detrimental 

effect on the classifier’s performance. 
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Figure 25. A two-class dataset in which one sample belonging to class 1 is intentionally labeled as 
belonging to class 2. The figure on the right compares the support vectors when the mis-
labeled sample is identified to the case when it is not correctly identified. 

Analysis of several experiments on noisy data (for example, classes with 

significant overlap possibly due to mislabeling) revealed that there are often several 

support vectors with their multipliers at the upper bound C . When an example has its 

multiplier consistently at the upper bound across iterations of the chunking algorithm used 

to train classifiers, it is a good indication that the example is either an outlier, an area of 

overlap between features, or is mislabeled data. Removing these bounded support vectors 

from the optimization problem speed-up later iterations by reducing the size of the 

sub-problem that needs to be solved (ref. section 4.4). Note that when the bounded support 

vectors are not removed from the optimization process, especially when C is large, they 
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C 

mislabeled data not 
identified 

mislabeled data 
identified 

# of SVs % error # of SVs %error 

1 3644 1.9 1747 3.6 

5 3833 1.8 3329 1.8 

10 3854 1.7 3715 1.7 

20 3854 1.7 3745 1.8 

50 3854 1.8 3854 1.8 

Table 13. Effect of the parameter C on the performance improvements obtained by eliminating 
mislabeled data from the classifier estimation process. 

end up as support vectors for the final solution. In the case of noisy data this could lead to 

inaccurate decision surfaces and bad generalization. 

Fig. 25 shows a synthetic data example where identifying the bounded support 

vector greatly simplifies the classifier. The effect of C on this process can be seen in 

Table 13. This table shows the performance of a classifier for the phone b of the OGI 

alphadigits dataset using an RBF kernel with gamma = 0.6 . For C = 5 , we see that the 

number of support vectors can be reduced by 16% without a significant effect on the 

classifier accuracy. However, using a small value for C ,such as C = 1 , can significantly 

degrade the classifier’s performance. This trend is common to all classifiers and more 

significant for classes with large data overlap. The cross-validation set was used to 

perform this analysis. 
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We attempted to calibrate the effect of this property on the performance of the 

hybrid system. We trained classifiers using the same dataset partitioning as described in 

the previous section. We trained two sets of classifiers. The first set included classifiers 

which allow mislabeled data to be a part of the hyperplane definition. The other set 

included classifiers where mislabeled data points are identified and not allowed to become 

part of the support vector set. Our goal was to compare the effect of identifying mislabeled 

data on the classifier accuracy and classifier size. The RBF kernel was used with 

gamma = 0.6 and C = 5 . Identifying mislabeled data resulted in classifiers that had 

22% fewer support vectors on an average. These classifiers when used as part of the 

hybrid system resulted in a 12.1% WER. This can be compared to a 13.5% WER for a 

system in which the mislabeled data was not identified. The performance of these systems 

is in general worse than our best reported WER (11% — see Table 8) for the hybrid 

system. This is due to the fact that a smaller value for C = 10 was used for the estimation 

of the classifiers to better illustrate the effect of data cleanup as well as to keep the 

classifiers small. At C = 50 , very few examples are identified as outliers which makes 

the classifiers very complex. 

7.7. Summary 

This chapter presents the performance of SVM classifiers and the hybrid SVM/ 

HMM system in classifying static and dynamic speech patterns. The preliminary 

experiments on the Deterding vowel task demonstrated that SVMs were competitive with 

other classification schemes. This provided motivation to explore the use of SVMs as the 
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core of a speech recognition system. We used a hybrid framework for this purpose. In 

order to gauge the performance of the hybrid system, the OGI alphadigits and 

SWITCHBOARD tasks were used. On the alphadigits task, the hybrid system obtains a 

WER of 10.6% compared to 11.9% obtained using the baseline HMM system The hybrid 

system clearly improves performance on all word classes including minimal pairs. On the 

SWITCHBOARD task, the improvements were less dramatic, 40.6% WER compared to a 

baseline of 41.6%. In this system the SVM classifiers were used to rescore 10-best lists 

which had a list error rate of 29.5%. 

We conjecture that the variety in segmentation constrains the improvements 

achieved by the hybrid system. In the oracle experiments we added the reference 

transcription to the N-best lists to see if the richness of N-best lists has an effect on the 

system performance. In these experiments we see that the SVM classifiers seem to lock on 

to the correct hypothesis better than HMM models when good segmentations are used. 

These encouraging results show that SVMs are indeed doing a better job at classification 

but the segmentation issue needs to be addressed. 

We have also explored the use of SVMs to identify mislabeled data. This is a very 

useful by-product of the classifier estimation process which can have a serious impact on 

training classifiers using imperfect transcriptions. This property of identifying mislabeled 

data or outliers can be extremely useful in processing large datasets which have significant 

transcription errors [150]. The process can also be extended to provide confidence 

measures [151]. 



CHAPTER 8 

CONCLUSIONS AND FUTURE DIRECTIONS 

This dissertation addresses the application of Support Vector Machines (SVM) to 

the continuous speech recognition problem. The technology has been applied to a small 

vocabulary task — OGI Alphadigits, and a large vocabulary conversational speech task — 

SWITCHBOARD. The results obtained clearly validate the classification power of SVMs 

and support the use of SVMs for acoustic modeling. A significant contribution of this 

dissertation is a hybrid SVM/HMM system which uses SVMs to post process data 

generated by a conventional HMM system. This framework has been proven to provide 

significant improvements in recognition accuracy on OGI Alphadigits and marginal 

improvements on SWITCHBOARD. The application of SVMs to various other aspects of 

speech recognition, including phone classification and the identification of mislabeled 

data have been introduced. 

8.1. Support Vector Machine Classifiers 

Most speech recognition systems today are based on hidden Markov 

models (HMM) and a few are based on hybrid HMM-Neural Network architectures. 

HMMs have had significant success since they offer an elegant mechanism to model both 

the acoustic variability and the temporal evolution of speech. The existence of efficient 

151 
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iterative parameter estimation procedures like the Expectation-Maximization (EM) 

algorithm has a significant role in the universal usage of HMMs in speech recognition 

systems. However, HMMs suffer from a number of drawbacks — the assumption of 

independence of successive frames and the standard maximum likelihood (ML) approach 

to HMM parameter estimation being the foremost. 

The assumption of independence has been countered to a certain extent by 

augmenting the feature vectors with the delta and acceleration components. Neural 

networks are better at addressing this issue with the use of feedback as in a recurrent 

neural network or the use of multi-frame data. SVM classifiers can also handle 

multi-frame data efficiently because of their ability to handle high-dimensional inputs. 

Using multi-frame data allows the classifier to learn the correlations directly from the data 

instead of making independence assumptions. In this dissertation, though multi-frame data 

has not been used explicitly, a variation of the same idea which uses segment averages has 

been applied successfully. 

SVMs overcome some of the limitations of neural networks because of the 

underlying criterion for parameter estimation, Structural Risk Minimization (SRM). SRM 

allows for parameter estimation where the generalization ability of the system can be 

controlled as part of the learning process. SVMs have been applied successfully to several 

classification tasks where they have out performed neural networks. The results reported 

in this dissertation also confi rm this fact. SVMs have the abil ity to handle 

high-dimensional data effectively where the important dimensions are learned 

automatically. Their learning process is inherently discriminative. The problems inherent 
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in HMM systems and the limitations of neural networks have motivated us to explore the 

use of SVMs for speech recognition. 

8.2. Dissertation Contributions 

SVMs have been applied to speech recognition via a set of experiments ranging 

from simple vowel classification to complex conversational speech tasks. Several 

important issues have been addressed in the process — some common to hybrid systems 

and some specific to the use of SVMs with speech data. These issues are summarized in 

the following sections. 

8.2.1. Hybrid Recognition Architecture 

As a first step towards using SVMs as an alternate approach to speech recognition 

we explored a hybrid framework where SVMs are used as part of a post-processing stage. 

This hybrid approach uses SVMs to process information supplied by a baseline HMM 

system to arrive at the final hypothesis. The baseline HMM system is used to provide 

segmentations in order to construct the input feature vectors for the SVMs. The HMM 

system also provides N-best lists that are rescored by the SVM classifiers. 

This approach to using SVMs for speech recognition is different from other 

attempts to incorporate SVMs into a speech recognition system. Our system has a distinct 

two stage process unlike systems described in [152, 153] where HMMs and SVMs are tied 

together more closely via Fisher Kernels. This concept is described in detail in a later 

section of this dissertation. 
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8.2.2. SVM Distance to Likelihood Mapping 

SVMs are commonly used as binary classifiers where the classifier learns the 

decision region that separates the in-class and the out-of-class data. Neural networks are 

also capable of learning such a decision region, but have one additional advantage. It has 

been shown tha t  neura l  network output s  mode l  the  poste r ior  probab i l i ty  

P(class ⁄ data) . Such a model is crucial to integration of this technology into an HMM 

framework. As shown in (127), SVMs classify data based on distances. In order to 

integrate SVMs into an HMM framework, we need to convert these distances to posterior 

probabilities. Several schemes have been studied to convert SVM distances to likelihoods 

in order to fit the SVM classifiers into the HMM-based ASR system. The sigmoid-based 

warping function has been found to be sufficiently accurate and has been used in all 

experiments presented in this dissertation. 

8.2.3. Segment Level Data 

One of the primary motivations for the use of SVMs in speech recognition is the 

discriminative learning paradigm under which the classifiers are estimated. However, just 

like other discriminative techniques, SVM classifier estimation can be very slow when 

several hundred thousand training samples are involved in the estimation process. This is 

definitely the case with speech when classification is done at the frame level. For example, 

a training set of 10 hours of speech data is composed of 36x105 training samples. In a 

situation where we train binary classifiers, each classifier learns from all the 36x105 
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samples. This could take a prohibitive amount of CPU time for estimation considering the 

fact that we estimate about 40 classifiers in a typical speech application. 

In order to make SVM training feasible for a speech application, a simple solution 

is to learn to classify at a coarser level of granularity than the frame-level. This approach, 

while reducing the computational complexity, has other advantages from a hybrid 

recognition system’s perspective. Since the hybrid system involves bootstrapping SVM 

classifiers using a traditional HMM system, classification at a coarser level takes a small 

fraction of the total recognition time. The additional overhead for the SVM portion of the 

recognition process is minimal. 

Segment level data was used for all recognition experiments, i.e. SVM classifiers 

were trained to classify segments of speech instead of frames of speech. The unit of 

recognition typically used in experiments reported here was a phone. Each phone is 

assumed to be composed of three segments, one each for the onset, nucleus, and coda. A 

composite vector comprised of the averages for each of the segments is created by simple 

concatenation. Thus, every phone is represented by a composite feature vector which is 

used for classification. Several combinations of segment ratios have been experimented 

with and the differences in performance are insignificant. 

8.2.4. N-Best List Generation 

The SVM classifiers are trained using both in-class and out-of-class data. In 

theory, if the feature space in which the classifiers operate is chosen judiciously, classes 

that are phonetically similar are closer to each other as compared to the classes that are 
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well separated in the phonetic space. With this assumption, which has been corroborated 

by the phone confusion matrices generated from classification data, it is hypothesized that 

the power of the SVM classifiers can be better used by operating on N-best lists which 

provide a compact representation of the acoustic confusion space as seen by the traditional 

HMMs. 

The SVM classifiers in the hybrid recognition system operate on N-best lists 

generated using the baseline HMM system. As part of this dissertation, N-best list 

generation has been added to the ISIP ASR Toolkit, using an A*-search based 

implementation. 

8.2.5. Identification of Mislabeled Data 

One of the key aspects of classifier design is the ability to add information to the 

data that allows the classifier to focus its modeling power on the decision surface that 

separates the class from most samples of the out-of-class data. Any typical hand-labeled or 

automatically-labeled database has an inherent labeling error. In some cases this can be 

significant. For example, the original version of SWITCHBOARD Corpus had a label 

WER of ~8% [150]. These labeling errors can force the classifiers to expend significant 

resources in modeling the incorrect labels at the cost of diminished generalization. 

We have developed a scheme in the SVM estimation process where the mislabeled 

data can be identified accurately during classifier estimation. The concept behind this 

approach is that outliers and mislabeled data typically violate the constraints in the SVM 

optimization functional and do so consistently over several iterations of the optimization 
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process. Such training samples end up as bounded support vectors. In noisy data with 

significant amounts of mislabeling, we eliminate the bounded support vectors from the 

optimization process. This approach has been tested on both synthetic and real data and its 

effectiveness has been proven in terms of estimating compact classifiers with improved 

generalization. 

8.3. Summary of Experiments 

8.3.1. Static Classification Tasks 

SVMs have been evaluated on a standard non-linear classification task, Deterding 

Vowel data. This task is challenging because of the inherent data overlap and a sparse 

training set. SVM classifiers achieved a classification error rate of 35% which is better the 

performance reported using several other non-linear classification techniques including 

neural networks. This dataset has also been used to study the effect of kernel parameters 

on classifier accuracy. RBF kernels consistently outperformed polynomial kernels. 

8.3.2. Speech Recognition 

We evaluated the hybrid SVM/HMM speech recognition architecture on two 

continuous speech recognition tasks. The OGI Alphadigits dataset was used as a small 

vocabulary task and the SWITCHBOARD task was used as the large vocabulary task to 

calibrate the improvements achievable using the hybrid system. 

The baseline HMM system for the alphadigits task used context-dependent phone 

models with 12 Gaussian mixture components per state. This configuration achieved a 
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WER of 11.9% on the speaker independent evaluation set. In comparison, rescoring 

10-best lists with SVM classifiers using RBF kernels, we achieved a WER of 11.0%. 

Alignments based on the output of the baseline HMM system were used for this purpose. 

The system that used a score combination mechanism, where the likelihoods from the 

HMMs were combined with the likelihoods of the SVM classifiers, achieved a WER of 

10.6%, which is a 9% relative improvement over the baseline. 

For the SWITCHBOARD task we evaluated the hybrid system using SVM 

classifiers with RBF kernels only. The baseline HMM system for this task was a 

context-dependent phone system with 12 Gaussian mixtures per state. This system 

achieved a WER of 41.6% on a development test set consisting of 2,427 utterances. The 

hybrid system achieved a WER of 40.6% when RBF kernels with gamma = 0.1 were 

used. 10-best lists with a list WER of 29.5% were used as input to the hybrid system. The 

segmentations for the hybrid system were based on the baseline HMM systems’ best 

hypothesis. 

8.3.3. Analysis and Oracle Experiments 

In order to study the effect of segmentation on the performance of the hybrid 

system, we ran several experiments on the both speech recognition tasks using various 

segmentation schemes. In the first experiment, we compared the performance of a system 

that used N segmentations to reorder an N-best list to a system that reordered an N-best 

list using a single segmentation. The former setup gave worse performance suggesting that 
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SVMs were having problems when a variety of segmentations are used — 11.0% vs. 

11.8% WER on the alphadigits task and 40.6% vs. 41.6% WER on SWITCHBOARD. 

In another set of experiments, we augmented the N-best lists with the reference 

transcription thereby reducing the list error rate to 0%. Under this scheme, the hybrid 

system improved performance significantly indicating that the SVMs seem to lock on to 

the correct segmentation — 9.1% vs. 11.8% baseline for alphadigits and 38.1% vs. 41.6% 

baseline for SWITCHBOARD. As a point of comparison the HMM system was evaluated 

using the same augmented N-best list. This system did not improve performance as much 

as the hybrid system — 11.9% vs. 11.9% baseline for alphadigits and 38.6% vs. 41.6% 

baseline for SWITCHBOARD. 

The above experiments clearly suggest that the SVM classifiers do a good job 

when good segmentations are available. We hypothesize that providing the SVM 

classifiers with a variety of segmentations when estimating parameters will decrease the 

extent of this dependence on good segmentations. This issue has been discussed in 

section 7.3.2. 

8.4. Future Work 

Though we have seen that SVMs provide consistent improvement over HMM 

systems, there are several aspects of the hybrid system that need to be researched further. 

Some of the topics that need to be addressed further relate to building better SVM 

classifiers, while the others relate to the hybrid system architecture. 
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8.4.1. Posterior Estimation 

In this work, we have used a sigmoid function to approximate the posterior 

probability distribution of the classes that the SVMs are used to model. However this is 

not the best approximation of the posterior. Also, this approach requires the need to have a 

cross-validation set, which can be expensive in some cases. We need to explore 

approaches where the posteriors can be estimated without the need for cross-validation 

sets. Also, the sigmoid approximation does not account for the inherent overlap in the 

data. New approaches such as Relevance Vector Machines which are grounded in 

probability theory have a clear advantage over SVMs [126] in this regard. 

Apart from the issue of posterior estimation, we need to explore ways of 

simultaneously optimizing the sigmoids such that the sum of the posteriors across all 

classifiers is a true probability distribution (i.e. sums to unity). This will improve the 

discrimination capability of the classifiers. One approach to achieve this is to train a neural 

network to estimate the posterior constraining the output nodes to sum to one. 

8.4.2. Data Cleanup and Confidence Measures 

In section 7.6 we have seen the effect of identifying mislabeled data on classifier 

estimation. This ability of the SVM estimation process to identify mislabeled data can be 

used for other applications such as data cleanup. Another interesting avenue for future 

work is to develop a mechanism to assign a confidence measure to this process where data 

points that are identified as mislabeled data are done so with a confidence rating. The 

mislabeled data can then be appropriately post processed based on the confidence scores. 
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8.4.3. SVM Parameter Update 

In section 4.4 we discussed the SVM parameter estimation process. However, this 

process is based on a fixed training set. In a hybrid architecture, we can estimate better 

classifiers if we had a mechanism to iteratively recognize the training data and 

appropriately feed the errors back into the next iteration of parameter estimation. This 

form of iterative estimation has proven to be very valuable for neural network based 

hybrid systems [51]. 

8.4.4. Effect of Segmentation 

In section 7.5, we have demonstrated why segmentation is an important issue for 

the hybrid system developed in this dissertation. The performance of the hybrid system in 

the oracle experiments show that segmentations dramatically affect performance. This 

problem can be addressed in two phases. Similar to MMI estimation of HMM parameters, 

during training we can use a word graph (which provides alternate hypothesis and 

segmentations) to estimate the SVM classifiers. In other words, for every positive 

example in a classifier, the training data should include the competing segments centered 

around the segment corresponding to the example. During testing, instead of using a 

single segmentation to generate the acoustic data for the SVM classifiers, a segment graph 

can be rescored. 
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8.4.5. Alternate Hybrid Approaches 

In this dissertation we used a hybrid approach where the SVMs post-processed 

information provided by an HMM-based system. However the information was only used 

primarily to compute the input feature vectors for the SVM classifiers. A different hybrid 

approach could attempt to more closely integrate the HMMs and SVMs by using SVM 

classifiers to discriminatively learn the state sequence characteristics of the HMM system. 

The SVMs can also be used as function estimators to learn the emission probabilities of 

the states in an HMM. This approach has been addressed in preliminary experiments using 

transition-based HMMs [154]. The next section describes a similar approach which ties in 

HMM parameters to SVMs more closely. 

8.4.6. Kernels and Sufficient Statistics 

SVM distances provide a measure that can be used to compare any two input 

vectors directly for classification purposes. Traditional HMMs on the other hand use 

log-likelihood as a metric to compare vectors. Log-likelihood only provides a measure of 

closeness of the vector to the model itself and cannot be effectively used to measure 

distances between vectors or to compare vectors directly for classification purposes. In 

other words in order to compare two vectors using Gaussians as classifiers in an HMM 

framework, we need to indirectly compare the two via their closeness to the model. It may 

also happen in many cases that two different Gaussians may result in the same likelihood 

for two completely different input vectors. This can happen because each of the Gaussian 

classifiers was estimated in isolation of the other. 
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In this section we introduce the theory for building an SVM within an HMM 

framework in order to allow for direct comparison of input vectors while allowing for 

effective modeling of dynamic patterns. This mechanism will allow us to use the 

representative power of Gaussian-based HMMs (as well as their ability to handle temporal 

variations) in conjunction with the discriminative power of SVMs [153]. 

The vector of sufficient statistics describes the process of generating the 

underlying state sequence from the HMM. For example, the quantities in this vector 

would include the posterior probabilities of taking a particular state transition or emitting a 

particular observation vector for a state. In traditional HMM parameter estimation, the log 

likelihood of the data given the model is the objective function. Thus, any observation 

sequence can be converted to a fixed length feature vector comprised of the sufficient 

statistics. Instead of dealing with the sufficient statistics directly, we can work with the 

gradients described in the appendix to this dissertation. These gradients are also called the 

Fisher Scores [155]. Fisher scores are part of the commonly used definition for the Fisher 

Information Matrix [124,156]. The Fisher matrix is often viewed as the information 

contained in the data set about each parameter. 

We have seen that maximum likelihood based HMM parameter estimation 

involves the maximization of P O  M⁄ ) where M is the parameter set that defines the ( 

model and O is the input acoustic evidence. In order to describe the training data, all 

algorithms based on stochastic optimization will need the gradient of an objective function 

with respect to the parameters of the HMM. It is the solution to these gradients that gives 
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us the optimal estimated value. The Fisher information matrix I , for this case is defined 

as, 

� �
I = EO U UT 

� , where (138) � O O 
� � 

UO = logP O  M⁄ ) (139) ∇M ( 

and the expectation is over P O  M( ⁄ ) . UO is called the Fisher score. We can define a 

distance metric for two observation sequences O and O mapped to this model M as, i j 

K O( i, O ) = U I–1UO (140) j Oi j 

in terms of the Fisher scores. The right-hand side of the above equation is positive 

definite and hence can be a valid kernel as per Mercer’s conditions [28]. Note how the 

above definition of a kernel ties in our notion of HMM parameter estimation with kernels 

that form an integral part of SVM theory. The Fisher kernel defined above can be used 

instead of other kernels defined in the previous chapter to determine a separating 

hyperplane in the Fisher score space or a higher dimensional space. This method will 

theoretically perform at least as well as the underlying HMM model [155]. For practical 

reasons, the Fisher information matrix is often chosen as an identity matrix [155]. This 

assumption, though strong, can be justified if the Fisher scores are pre-whitened. We now 

have a simple procedure where the advantages of the HMM model are available to the 

discriminative classifier, SVM, via the Fisher kernel. With logistic regression models, I–1 
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can be viewed as the covariance matrix of a Gaussian prior and is often discarded 

from (140). We do not however know if that is true in the case of traditional HMMs. In the 

appendix the mathematical derivation to compute the Fisher scores is provided. 

8.5. Summary 

In this chapter, we summarized the advantages of using SVMs as acoustic models 

in a speech recognition system. The experiments conducted as part of this work clearly 

indicate that SVMs are a promising option for acoustic modeling especially in a hybrid 

framework. The work reported in this dissertation is the first successful attempt at 

integrating SVMs into a complex speech recognition system. SVMs provide unique 

advantages along several dimensions in solving the speech recognition problem. The 

effect of SVMs being a discriminative classification scheme transforms to significant 

performance improvements in classification at the phone-level and overall recognition 

accuracy at the word-level. The oracle experiments show great promise for this new 

technology if we address the segmentation issue appropriately. Several avenues of further 

research have been suggested that include approaches to improve the SVM classifier 

estimation and the hybrid framework. 
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This appendix describes the computation of Fisher scores which can be used as 

inputs to Fisher kernels which were introduced in chapter (8). We will see how these 

Fisher scores can be easily obtained with minor modifications to the Baum-Welch 

computations [19]. For simplicity we will derive the required quantities assuming single 

mixture Gaussian models with diagonal covariances. 

Let us first define some of the terms we will use for estimates of the constituents of 

the Fisher score vectors. Let O be the observation sequence and let M be the models 

under consideration with a parameter set λ . The likelihood of the observation sequence 

given the model is defined as, 

Lλ(O M⁄ ) = logP ⁄ )λ(O M  (141) 

such that, 

∂Lλ 1 = ---------------- --- ⁄ (142) ----
M)∂λ 

∂ Pλ(O M)
∂λ Pλ(O 

The posterior probability can be written in terms of the α and β as, 

T N 

Pλ(O M) = ∑ ∑ αj t j t .( )β ( )  

t = 1 j = 1 

In order to introduce the other parameters in the model into the above equation, we can 

rewrite it as, 
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T N N � � 

Pλ(O M) = α (i t – 1) ( )β ( )t . (143) � �∑ ∑ ∑ aij bj ot j 
t = 1 j = 1 i = 1� � 

The HMM is definition is composed of the means, variances and transition probabilities. 

Each of these components of the model definition contribute to the definition of the Fisher 

score. In the following sections we derive the contribution of these components towards 

the Fisher score vector for an HMM instance. 

A.1. Transition Probability 

The transition probabilities need to be handled carefully in order to guarantee that 

the transitions out of any state sum to unity. For this reason, a regularization function is 

used to redefine the transitions as, 

f ( )a hij x = ------------------------- and f ( )x = e (144) aij a 
f (hi k)∑ a ' 

k 

which is also known as softmax [(19)]. Then, 

∂aij = ( – ) . (145) 
∂ aij δkj aikhik 

where δ is the Kroneker delta. 

Since P depends on ‘s, applying the chain rule gives, aij 
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∂aij∂ Pλ( ⁄ = ∂ Pλ, (O M⁄ ) . (146) ∑∂ ∂ ∂hik 
O M) 

j 
aij hik 

Differentiating (143) with respect to and using it along with (145) in (146) yields, aij 

∂ Pλ( ⁄ = ∑∑αi(t – 1)aij(δkj – aik) ( )t βj( )  (147) O M) bj o t
∂hik 

The above equations used in conjunction with (142) provide means to get the components 

in the Fisher score vector corresponding to the transition probabilities. 

A.2. Mean 

In order to get the contribution of the means towards the Fisher scores, we need to 

start with the definition of a Gaussian as in (3). Differentiating this equation with respect 

th th
to the d component of the mean of the distribution corresponding to the j state, we 

get, 

– µ� � otd jd( ) = ( ) --------------------- . (148) � � 
∂ bj o bj ot t 2∂µjd � σ jd � 

From (143), we know that, 

T N 

( ⁄ ) = αi(t – 1) � β ( ) . (149) ∂ Pλ O M  ∑ 
� 

∑ aij 

� 

j t �∂ ( )bj ot 
t = 1 i = 1� � 

Using the chain rule for partial derivatives, we get, 
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T 
o – µ 

∑ t 
� 

2 
�td jd∂ Pλ(O M) = C t, j bj o -------------------- �∂µ 

⁄ ( ) ( )� , (150) 
� �jd σ jdt = 1 

where, 

N � � 

C t, j = αi(t – 1) β ( ) . (151)( ) j t � �∑ aij 
i = 1� � 

Using (150) and (151) in (142), we compute the contribution of the mean vectors toward 

the Fisher scores. 

A.3. Variance 

As mentioned earlier, for simplicity we assume diagonal covariances in these 

derivations. In the case of diagonal covariances, we need to constrain the values to be 

positive. In order to convert the constrained set to an unconstrained set (as we did with the 

transitions), we use the following regularization: 

σ 2 = ( ) (152)jd f zjd 

and 

xf x( ) = e . (153) 

The gradient of the output distribution with respect to the variance can then be written as, 

( – µ )2 
∂ bj o ( )1-

� otd--- ---- ----jd---- 1---
� 

(154)( ) = bj o ------ --- --- – ------ - . 
∂σ jd 

� 
(σ jd) σ jd 

�t t 2 2 22 2 
� � 
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Using (152) and (153), we can convert (154) in terms of the regularization variable z as, 

( – µ )2 
1 
� otd jd 

� 

( ) = ( ) - ---------------------------- – 1 . (155)
zjd 

� 
σ jd 

� 
∂ bj ot bj o

∂ t 2 2 
� � 

Using (149) and the chain rule for partial derivatives, we get 

T 
( – µ )2 otd jd∂ Pλ ( ) 

� 

-- ---- ---- ---
� 

zjd 
(O M⁄ ) = C t, j ( )� --- --- --- ----- – 1 � . (156)

∂ ∑ bj ot 2 2 
(σ jd)t = 1 � � 

By substituting (156) into (142), we can compute the contribution of the variances towards 

the Fisher score. 
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