
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-10-2003

Empirical Validation of the Usefulness of Information Theory-Empirical Validation of the Usefulness of Information Theory-

Based Software Metrics Based Software Metrics

Sampath Gottipati

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Gottipati, Sampath, "Empirical Validation of the Usefulness of Information Theory-Based Software
Metrics" (2003). Theses and Dissertations. 1868.
https://scholarsjunction.msstate.edu/td/1868

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1868?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1868&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

EMPIRICAL VALIDATION OF THE USEFULNESS OF INFORMATION

THEORY-BASED SOFTWARE METRICS

By

Sampath Gottipati

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2003

Copyright by

Sampath Gottipati

2003

EMPIRICAL VALIDATION OF THE USEFULNESS OF INFORMATION

THEORY-BASED SOFTWARE METRICS

By

Sampath Gottipati

Approved:

Edward B. Allen Rayford B. Vaughn
Assistant Professor of Computer Science Associate Professor of Computer Science
and Engineering and Engineering
(Major Professor) (Committee Member)

David A. Dampier Susan M. Bridges
Assistant Professor of Computer Science Professor of Computer Science and Engi-
and Engineering neering
(Committee Member) Graduate Coordinator

Department of Computer Science and En-
gineering

A. Wayne Bennett
Dean of the College of Engineering

Name: Sampath Gottipati

Date of Degree: May 10, 2003

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Edward B. Allen

Title of Study: EMPIRICAL VALIDATION OF THE USEFULNESS OF INFORMA-
TION THEORY-BASED SOFTWARE METRICS

Pages in Study: 96

Candidate for Degree of Master of Science

Software designs consist of software components and their relationships. Graphs are

abstraction of software designs. Graphs composed of nodes and hyperedges are attractive

for depicting software designs. Measurement of abstractions quantify relationships that

exist among components. Most conventional metrics are based on counting. In contrast,

this work adopts information theory because design decisions are information.

The goal of this research is to show that information theory-based metrics proposed by

Allen, namely size, complexity, coupling, and cohesion, can be useful in real-world soft-

ware development projects, compared to the counting-based metrics. The thesis includes

three case studies with the use of global variables as the abstraction. It is observed that

one can use the counting metrics for the size and coupling measures and the information

metrics for the complexity and cohesion measures.

DEDICATION

I dedicate this thesis to my parents and sisters.

ii

TABLE OF CONTENTS

Page

DEDICATION . ii

LIST OF TABLES . v

LIST OF FIGURES . ix

CHAPTER

I. INTRODUCTION . 1

II. RELATED WORK . 5

III. DEFINITION OF METRICS . 11

3.1 Properties of Measures of Hypergraphs 12
3.2 Information Theory-Based Metrics Definitions 18

3.2.1 Size of a System . 19
3.2.2 Size of a Module . 20
3.2.3 Complexity of a System . 20
3.2.4 Complexity of a Module . 20
3.2.5 Coupling of a Modular System 21
3.2.6 Coupling of a Module . 21
3.2.7 Cohesion of a Modular System 21
3.2.8 Cohesion of a Module . 22

3.3 Counting-Based Metrics Definitions 22
3.3.1 Counting Size of a System . 22
3.3.2 Counting Size of a Module . 22
3.3.3 Counting Complexity of a System 23
3.3.4 Counting Complexity of a Module 23
3.3.5 Counting Coupling of a Modular System 23
3.3.6 Counting Coupling of a Module 24
3.3.7 Counting Cohesion of a Modular System 24
3.3.8 Counting Cohesion of a Module 24

3.4 Complexity of a Complete Graph . 25

iii

CHAPTER Page

3.5 Module Complexity of an Intramodule Complete Graph 26
3.6 Metric Calculations . 27

3.6.1 Example: Ordinary Edges . 27
3.6.2 Example: Hyperedges . 34

IV. METHODOLOGY . 44

V. TOOLS . 45

5.1 Architecture . 45
5.2 Design of Measurement Package . 46

5.2.1 Class Diagram of Measurement Program 46
5.2.2 Call Graph of Measurement Program 49

5.3 Off-the-Shelf Components . 53

VI. CASE STUDIES . 55

6.1 Nodes�Hyperedges Generator Examples 55
6.1.1 Data Collection . 55
6.1.2 Measurement . 55
6.1.3 Analysis . 57

6.2 Physics Programs . 62
6.2.1 Data Collection . 62
6.2.2 Measurement . 63
6.2.3 Analysis . 64

6.3 PMLP Examples . 67
6.3.1 Data Collection . 68
6.3.2 Measurement . 68
6.3.3 Analysis . 71

6.4 Analysis of Research Questions . 87

VII. CONCLUSIONS . 91

7.1 Evaluation of Hypothesis . 91
7.2 Future Work . 93

REFERENCES . 94

iv

LIST OF TABLES

TABLE Page

1.1 Alternative Software Metrics . 4

3.1 Symbols . 12

3.2 Notation . 13

3.3 Properties of the Size of a System . 13

3.4 Properties of the Size of a Module . 14

3.5 Properties of the Complexity of a System 15

3.6 Properties of the Complexity of a Module 15

3.7 Properties of Coupling of a Modular System 16

3.8 Properties of Module Coupling . 17

3.9 Properties of Cohesion of a Modular System 17

3.10 Properties of Module Cohesion . 18

3.11 Example Nodes � Edges Table . 28

3.12 Example Edges-Only Table . 29

3.13 Node 1 Subgraph . 31

3.14 Node 2 Subgraph . 31

3.15 Example Intermodule-Edges Graph . 32

3.16 Example Intramodule-Edges Graph . 33

v

TABLE Page

3.17 Example Ordinary Edges System-level Metric Values 35

3.18 Example Ordinary Edges Module-level Metric Values 35

3.19 Example Nodes � Hyperedges Table . 36

3.20 Example Hyperedges-Only Table . 37

3.21 Node 1 Subgraph . 38

3.22 Node 2 Subgraph . 39

3.23 Example Intermodule-Hyperedges Graph 40

3.24 Example Intramodule-Hyperedges Graph 41

3.25 Example Hyperedges System-level Metric Values 42

3.26 Example Hyperdges Module-level Metric Values 43

5.1 Nodes � Hyperedges . 46

5.2 Off-the-Shelf Components . 54

6.1 System-level Measurements of NxeGenerator Examples 57

6.2 System-level Measurement of Trees with Ordinary Edges vs. Hyperedges . . 60

6.3 Nodes � Hyperedges Table Example 1 . 61

6.4 Nodes � Hyperedges Table Example 2 . 61

6.5 Nodes � Hyperedges Table Example 3 . 61

6.6 Nodes � Hyperedges Table Example 4 . 62

6.7 Nodes � Hyperedges for the Physics Program 63

vi

TABLE Page

6.8 System-level Measurements of the Physics Program 64

6.9 Module-level Measurements of the Physics Program 65

6.10 System Size of Selected PMLP Files . 69

6.11 System Complexity of Selected PMLP Files 70

6.12 System Coupling of Selected PMLP Files 70

6.13 System Cohesion of Selected PMLP Files 71

6.14 Nodes � Hyperedges for dg data gen.cpp 72

6.15 System-level Measurements of dg data gen.cpp 72

6.16 Module-level Measurements of dg data gen.cpp 73

6.17 Nodes�Hyperedges Graph for dgMatrix.cpp 77

6.18 Information Complexity Increases When Adding a Hyperedge to Table 6.17 . 77

6.19 Information Complexity Remains the Same When Adding a Hyperedge . . . 77

6.20 Nodes�Hyperedges Graph for grid.cpp . 78

6.21 Nodes�Hyperedges Graph for dg scal gen.cpp 79

6.22 Statistical Analysis of testdlg.cpp with Two Modules 80

6.23 Statistical Analysis of grid.cpp with Two Modules 81

6.24 Statistical Analysis of dg data gen.cpp with Seven Modules 82

6.25 Statistical Analysis of dg vec gen.cpp with Four Modules 83

6.26 Statistical Analysis of dg scal gen.cpp with Seven Modules 84

6.27 Statistical Analysis of dg vector.cpp with Three Modules 85

vii

TABLE Page

6.28 Statistic Variables . 86

viii

LIST OF FIGURES

FIGURE Page

3.1 Example Nodes � Edges . 29

3.2 Example Edges-Only Graph . 30

3.3 Example Intermodule-Edges Graph . 33

3.4 Example Intramodule-Edges Graph . 34

3.5 Example Node� Hyperedges Graph . 36

3.6 Example Hyperedges-Only Graph . 38

3.7 Example Intermodule-Hyperedges Graph 40

3.8 Example Intramodule-Hyperedges Graph 41

5.1 Tool Kit Architecture . 47

5.2 Class Diagram . 48

5.3 Main Call Graph . 50

5.4 setInfoMetrics Call Graph . 50

5.5 setCountMetrics Call Graph . 50

5.6 getMetrics Call Graph . 51

5.7 setInfoSize Call Graph . 52

5.8 setInfoComplexity Call Graph . 52

5.9 setInfoCoupling Call Graph . 52

ix

FIGURE Page

5.10 setInfoCohesion Call Graph . 53

6.1 Adding a Node and a Hyperedge to a Small Graph 56

6.2 Identical Hyperedges Do Not Add Information 56

6.3 Binary Trees with Ordinary Edges vs. Hyperedges 58

6.4 Trees with Ordinary Edges vs. Hyperedges 59

6.5 Module Size Comparison of Physics Program 65

6.6 Module Complexity Comparison of Physics Program 66

6.7 Module Coupling Comparison of Physics Program 66

6.8 Module Cohesion Comparison of Physics Program 67

6.9 Nodes � Hyperedges Graph of dg data gen.cpp 69

6.10 System-level Size Comparison of PMLP Files 74

6.11 System-level Complexity Comparison of PMLP Files 75

6.12 System-level Coupling Comparison of PMLP Files 75

6.13 System-level Cohesion Comparison of PMLP Files 76

x

CHAPTER I

INTRODUCTION

Criteria such as construct validity, internal validity and external validity can be con-

sidered to evaluate the quality of any empirical study [26]. “Threats to internal validity

are unaccounted influences that may affect case study results” [2]. In practice, faults are

caused by a wide variety of conditions. The number of faults in each module may be due

a number of things that were not measured. Using a variety of independent variables in

each model is a strategy to avoid threats to internal validity. “Threats to external validity

are conditions that limit generalization of results” [2]. As experiments to demonstrate the

usefulness of software metrics are not feasible, we use a case study approach.

The hypothesis of this research is:

Information theory-based software metrics proposed by Allen [3], namely,
size, complexity, coupling, and cohesion, can be useful in real-world software
development projects, compared to counting-based metrics.

This research is motivated by the hope that information metrics are more useful than

counting metrics. The following research questions, whose answers provide evidence for

the hypothesis, are answered in Chapter VI using three case studies:

1. What are the similarities and differences between the distribution of information
theory-based metrics and counting-based metrics?

2. Do the distributions of measurement values yield insight into the software develop-
ment process and resulting product attributes?

1

2

3. Does each information theory-based measure preserve our intuition about its at-
tribute?

4. Does the measurement instrument (tool) precisely specify how to capture measure-
ment data?

5. Does the measurement protocol (procedure) assure consistent, repeatable measure-
ments that are independent of the measurer and the measurement environment?

Very often the software community discusses designs in terms of size, length, com-

plexity, coupling, cohesion, etc. The designs are attractively depicted by graphs that are

widely used in the software industry. Briand, Morasca, Basili [11] proposed definitions for

the attributes (size, length, complexity, coupling, and cohesion) based on graphs and later

extended their framework from graphs to relations in general [20]. Most of their metrics

are based on counting. In contrast, this work adopts information theory as a foundation

because design decisions embodied by a graph abstraction of software are information [3].

The field of software metrics embraces collection, analysis and modeling of measure-

ments of software [13]. It refers to a broad range of measures for software engineering.

Fenton and Pfleeger [13] say that a software metric is a quantitative measure of the degree

to which a system possesses a given attribute. If we are able to regularly collect software

metrics, then we have a way of tracking project process, measuring complexity, knowing

if we have reached a desired state of quality, etc.

Software metrics are recognized in broad categories: processes, products, resources,

and quality. “Process” refers to any software-related activities that normally have a time

factor [14]. A process can be any part of the software development cycle, from require-

ments to retirement. Products can be defined as any artifacts, deliverables, or documents

3

that arise out of the processes [14]. Products include specification and design documents

at various levels of detail. Resources are the items that are input to processes [14]. At-

tributes can be classified as internal attributes and external attributes. Internal attributes

are those that can be measured in terms of the entity itself. For example, size, modularity,

reuse, and functionality are internal attributes. External attributes are those that can be

measured with respect to how the entities relate to their environment, e.g., usability and

maintainability. Without a measurable definition of software product quality, no quantita-

tive approach to software quality can be complete. Moreover, we need quality measures

if we are to improve our product. Software metrics tell us about the quality of a software

product. Quality metrics are a subset of metrics measuring external attributes.

We can classify the main classes of metrics into subclasses. Process metrics can be

subdivided into maturity metrics, management metrics, and life cycle metrics. For product

metrics the division is size metrics, architecture metrics, structure metrics, and complexity

metrics. Resource metrics can be divided into personnel metrics, software metrics, and

hardware metrics. Measurements require us to identify attributes possessed by clearly

defined entities [14]. Direct measurement of an attribute must be preceded by intuitive

understanding of that attribute, which leads to the identification of relationships between

entities.

Allen and Khoshgoftaar [6] proposed information theory-based measures of coupling

and cohesion of graphs at the system level. Allen, Khoshgoftaar, and Chen [7] later pro-

posed information theory-based measures of coupling and cohesion of graphs at the mod-

4

ule level. The paper by Allen [3] proposes related additional measures of size, length,

complexity, as well as revised measures of coupling and coupling at the system and module

levels. The research shows that the information theory-based metrics proposed by Allen

[3] can be useful in real-world software development projects, compared to counting-based

metrics. Table 1.1 summarizes the metrics to be compared in each family [2].

Table 1.1 Alternative Software Metrics

Family Information theory-based metric Counting-based metric
Size Information in graph Number of nodes
Length Information in path Number of nodes in path
Complexity Information in relationships Number of edges
Coupling Information in intermodule Number of intermodule edges

relationships
Cohesion Information in intramodule Number of intramodule edges

relationships divided by max- divided by maximum possible
imum possible

The development process details determine the set of abstractions that are likely to

be related to faults. The thesis outlines the tasks to be accomplished and analyzes the

steps to evaluate module-level metrics and system-level metrics. Information theory-based

metrics are compared with counting-based metrics of size, length, complexity, coupling

and cohesion. The remainder of the thesis summarizes the related work, definition of

metrics, methodology, tools, and results.

CHAPTER II

RELATED WORK

Briand, Morasca and Basili [11] proposed a mathematical framework to define several

important measurement concepts (size, length, complexity, coupling, and cohesion). In

their paper they refer to a paper by Parnas, who recommends decreasing coupling between

modules and increasing cohesion within modules. Coupling and cohesion can be used

as guides for choosing among alternative techniques or artifacts. The goal of Briand,

Morasca and Basili’s paper is to provide properties for a partial set of concepts that are

relevant in measurement of internal software attributes, which are most commonly found

in software engineering literature. The investigation of measures may also address artifacts

other than code that are produced in the software process. Early phases of the software

development process produce artifacts, upon which the rest of the development depends.

Concepts that are relevant with respect to code are also relevant to other artifacts. In their

paper, Briand, Morasca and Basili [11] investigate size, length, and complexity related

to systems in general, and coupling and cohesion related to modular systems. One can

speak about coupling and cohesion of a whole system only if it is structured into modules.

The properties of each attribute except the length are paraphrased in Chapter III, and the

5

6

concept of modularity was also employed. In the case studies we considered a class to be

a module.

Morasca and Briand [20] provide an axiomatic approach for the definition of measures

of software attributes in two ways: (i) they generalize the framework by considering �-ary

relationships between system and module elements, and (ii) they propose a hierarchical ax-

iomatic framework where hierarchical levels map to levels of measurement. The axiomatic

approaches can be combined with the theory of measurement scales so that, depending on

the level of empirical understanding of the attribute, one can select an appropriate level

of measurement and a suitable axiomatic framework [20]. They also discuss a variety of

abstractions, but we have used the use of global variables as the abstraction. They have

used ordinary edges as relations to show the relationship between elements, while we have

used hyperedges to show the relationship.

Poels and Dedene [23] contribute to a formal and rigorous approach to property-based

software-engineering measurement because a number of inconsistencies related to addi-

tivity properties might hinder its acceptance and further elaboration. Poels and Dedene

[23] show how to remove ambiguity by introducing the concept of connection strength

between systems and modules. In the case study of artificial examples in Section 6.1, the

additivity property did not show any ambiguity.

It is difficult to determine how measures relate to one another and for which applica-

tion [9]. Briand, Daly, and Wüst [9] discuss a unified framework based on object-oriented

cohesion measures for (i) comparing measures and their potential use, (ii) integrating ex-

7

isting measures that examine the same concepts in different ways, and (iii) facilitating

more rigorous decision making regarding the definition of new measures and the selection

of existing measures for a specific goal of measurement. They also explain that some pro-

posed metrics do not satisfy the properties of coupling and cohesion defined by Briand,

Morasca and Basili [11]. Our metrics satisfy the properties and are paraphrased in Chapter

III.

Coupling measurement in object-oriented systems requires a comprehensive frame-

work that can be used to facilitate comparison of existing measures, evaluation and em-

pirical validation of existing measures, and to support definitions of new measures [10].

Briand, Daly, and Wüst [10] provide a standard terminology and formalism for express-

ing measures, a structural synthesis, a review of the existing framework and measures for

coupling in object-oriented systems. The properties of coupling are shown in Chapter III.

Briand, Daly, Porter, and Wüst [8] discuss the fact that many of the coupling, cohesion,

and inheritance measures studied in the literature appear to capture structural dimensions

in the data. They empirically explore the relationships between existing object-oriented

coupling, cohesion, and inheritance measures and the probability of fault detection in sys-

tem classes during testing [8]. They found that frequency of method invocation and depth

of inheritance hierarchically seem to be the driving factors of fault-proneness. Since data

was not available for us to do a similar case study, the factor of fault-proneness will be

investigated by future work.

8

“A graph composed of nodes and edges may be an abstraction of a software system

and a subgraph may represent a module” [3]. In contrast to software measures based on

counting, Allen has focused his research by adopting information theory because the de-

sign decisions embodied by a graph abstraction of software are elements of information.

Allen and Khoshgoftaar [5] proposed an information theory-based measure of cohesion on

graphs for application to software design. Cohesion summarizes the degree of interdepen-

dence or connectivity within subsystems [5]. Allen and Khoshgoftaar [6] later proposed

information theory-based measures of coupling and cohesion of a modular system. These

measures have the properties of system-level coupling and cohesion defined by Briand,

Morasca and Basili [6]. Allen and Khoshgoftaar [6] also proposed coupling based on an

intramodule abstraction, calculated in the same way as intermodule coupling, and then de-

fined cohesion in terms of intramodule coupling, normalized to between zero and one [6].

Allen, Khoshgoftaar, and Chen [7] further proposed information theory-based measures

of coupling and cohesion of a module, which have the properties of module-level coupling

and cohesion defined by Briand, Morasca, and Basili.

Allen [3] extended this line of research and discusses information theory-based mea-

sures on graphs at the system level and module level for each family of metrics defined by

Briand, Morasca, and Basili. The primary objective of his research is to provide empirical

evidence that innovative software metrics based on information theory are indeed useful

as predictors of software quality. The definition of each metric is shown in Chapter III.

This study incrementally builds on the work done by Allen [3].

9

Kitchenham, Pfleeger, and Fenton [18] propose a framework for theoretically vali-

dating software measurement by defining a measurement structure model, measurement

process, and five other models involved in measurement. The framework can help to un-

derstand how to validate a measure, how to assess the validation work of others, and when

to apply a measure. They point out that measurement validation is required for pragmatic

as well as theoretical reasons based on discussion of function points [18]. This paper

provides criteria for answering the research question addressed in Chapter VI.

Schneidewind [24] illustrates a comprehensive empirical metrics-validation methodol-

ogy having six validity criteria, which support the quality functions of assessment, control,

and prediction. Such empirically validated metrics can be a basis for making decisions and

taking actions to improve quality of software. He also shows that nonparametric statistical

methods play an important role in evaluating whether metrics satisfy the validity criteria

[24]. This paper is related to measuring the factor of fault-proneness, which will be a study

of future work.

As an example of an empirical validation study, Briand, Morasca, and Basili [12] intro-

duce and compare various high-level design measures for object-based software systems

based on experimental goals, identifying fault-prone measures and several experimental

hypotheses. They state that these measures allow for early detection of problems, bet-

ter software quality monitoring, and more accurate planning of resource utilization [12].

Briand, Morasca, and Basili also show that models of good statistical significance can be

10

built based on high-level design information for systems designed on abstract data types

[12]. The fault-prone measure will be investigated by future work.

The research reported by this thesis builds on the above by empirically validating in-

formation theory-based metrics for size, complexity, coupling, and cohesion, defined by

Briand, Morasca and Basili [11] both at system level and module level. Measures of length

are deferred to future research.

CHAPTER III

DEFINITION OF METRICS

Table 3.1 and Table 3.2 taken from [3] provide the definition of symbols and notation

used in the later part of this chapter. A system is an abstraction of a software development

artifact, defined by a set of elements and a relation on them [20]. We restrict this abstrac-

tion to a hypergraph consisting of nodes and hyperedges. Each node corresponds to an

element, and each hyperedge corresponds to a relationship among a subset of nodes. The

word “label” in Table 3.2 refers to the set of incident edges for a node. An environment

node is a disconnected node that represents the enviroment. We form a system graph �

for calculation of the metrics by adding the environment node to the system model S. The

probability mass function � for each node is estimated by the number of occurances of the

row pattern divided by the number of nodes plus the environment node (���). The binary

row pattern is generated by identifying whether a node is associated to each hyperedge,

and encoding a “1” or a “0” accordingly.

11

12

Table 3.1 Symbols

Symbol Name Definition
S System Abstraction of software (nodes and

hyperedges)
�� Hyperedges-only graph Hyperedges in S and end points
��

Node subgraph Nodes in �� and hyperedges incident
to node �

MS Modular system S partitioned into modules
��

module � Nodes in a module and their incident
hyperedges

MS� Intermodule hyperedges graph Nodes in MS and intermodule hyper-
edges

MSÆ Intramodule hyperedges graph Nodes in MS and intramodule hyper-
edges

� System graph S plus environment node, represented
by nodes � hyperedges table

MS��� Complete graph Complete graph with � nodes in one
module

3.1 Properties of Measures of Hypergraphs

Table 3.3 and Table 3.4 summarize the properties of any measure of the size of a

system and the size of a module that Briand, Morasca,and Basili [11] proposed. These

properties define the concepts of the size of a system and the size of a module.

Table 3.5 and Table 3.6 summarize the properties of the measure of complexity of a

system and complexity of a module that Briand, Morasca, and Basili [11] proposed. These

properties define the concepts of the complexity of a system and complexity of a module.

There is a change in the system property 4, module monotonicity, in Table 3.5. It is related

	
	

�

�

�

	

13

Table 3.2 Notation

Symbol Definition
� The number of nodes in system, S.

��

The number of modules in MS.
��

Number of nodes in the module, ��.
� � Indexes for row in �, � � � 		 � and similarly �.

� Index for a module in S, � � � 			 ��

.
Index for a pattern of values on a row.

��� A function that determines the label of a row.
���� A function that determines the label of a row � in ��

� Probability mass function.
 �	 Logarithm, base 2.

Entropy of a probability distribution.
��

Number of hyperedges in system, S.
�� �

Number of hyperedges incident to nodes in module ��

��� � �

Number of intramodule hyperedges in system, S.
��� �� �

Number of intermodule hyperedges in system, S.
��� �� � �

Number of intermodule hyperedges incident to module, ��.
��

Number of hyperedges in a complete graph of a system, S.
��
�

Number of hyperedges in a complete graph of module, ��.

Table 3.3 Properties of the Size of a System

1. Nonnegativity. The size of the system is nonnegative.

2. Null value. The size of the system is null if its set of nodes is empty.

3. Module additivity. Given a system, S, having modules, ��

and ��, such
that every node in S is in ��

or ��, but not both, the size of this system
is equal to the sum of the sizes of the modules ��

and ��.

Size�S� � Size����S� � Size����S�

14

Table 3.4 Properties of the Size of a Module

1. Nonnegativity. The size of a module is nonnegative.

2. Null value. The size of the module is null if its set of nodes is empty.

3. Monotonicity. Adding a node to a module does not decrease its size.

to nodes rather than edges as defined by Briand, Morasca, and Basili [11]. This change

makes Property 4 unnecessary because Property 5 is a stronger version.

Table 3.7 and Table 3.8 summarize the properties of the measure of coupling of a

modular system and coupling of a module, respectively, that Briand, Morasca, and Basili

[11] proposed. These properties define the concepts of coupling of a system and coupling

of a module.

Table 3.9 and Table 3.10 summarize the properties of the measure of cohesion of a

modular system and cohesion of a module, respectively, that Briand, Morasca, and Basili

[11] proposed. These properties define the concepts of cohesion of a system and cohesion

of a module.

15

Table 3.5 Properties of the Complexity of a System

1. Nonnegativity. The complexity of a system is nonnegative.

2. Null value. The complexity of the system is null if its set of hyperedges is
empty.

3. Symmetry. The complexity of a system does not depend on the convention
chosen to represent the direction of hyperedges.

4. Module monotonicity. Given a System, S, with any two modules, ��

and
��, that have no nodes in common, the complexity of the system is no
less than the sum of the complexities of the two modules.

Complexity(S)� Complexity����S� � Complexity����S�

5. Disjoint module additivity. Given a system, S, composed of two disjoint
modules, ��

and ��, the complexity of the system is equal to the sum of
the complexities of the two modules.

Complexity(S) = Complexity(m��S� � Complexity����S�

Table 3.6 Properties of the Complexity of a Module

1. Nonnegativity. The complexity of a module is nonnegative.

2. Null value. The complexity of the module is null if its set of intermodule
and intramodule hyperedges is empty.

3. Monotonicity. Adding a hyperedge to a module does not decrease its complexity.

�

�

�

�

16

Table 3.7 Properties of Coupling of a Modular System

1. Nonnegativity. Coupling of a modular system is nonnegative.

2. Null value. Coupling of a modular system is null if its set of intermodule hyper-
edges is empty.

3. Monotonicity. Adding an intermodule hyperedge to a modular system does not
decrease its coupling.

4. Merging of modules. If two modules, ��

and ��, are merged to form a new
module, �� �, that replaces ��

and ��, then the coupling of the modular system
with �� �

is not greater than the coupling of the modular system with ��

and
��.

5. Disjoint module additivity. If two modules, ��

and ��, which have no inter-
module hyperedges between nodes in ��

and nodes in ��, are merged to form a
new module, �� �, that replaces ��

and ��, then the coupling of the modular
system with �� �

is equal to the coupling of the modular system with ��

and ��.

� �

� �

�

�

�

17

Table 3.8 Properties of Module Coupling

1. Nonnegativity. Coupling of a module is nonnegative.

2. Null value. Coupling of a module is null if its set of intermodule hyperedges is
empty.

3. Monotonicity. Adding an intermodule hyperedge to a module does not decrease
its module coupling.

4. Merging of modules. If two modules, ��

and ��, are merged to form a new
module, �� �, that replaces ��

and ��, then the module coupling of �� �

is not
greater than the sum of the module coupling of ��

and ��.

5. Disjoint module additivity. If two modules, ��

and ��, which have no inter-
module hyperedges between nodes in ��

and nodes in ��, are merged to form a
new module, �� �, that replaces ��

and ��, then the module coupling of �� �

is
equal to the sum of the module coupling of ��

and ��.

Table 3.9 Properties of Cohesion of a Modular System

1. Nonnegativity and Normalization. Cohesion of a modular system belongs
to a specified interval, Cohesion� � � � � Max .

2. Null value. Cohesion of a modular system is null if its set of intramodule
hyperedges is empty.

3. Monotonicity. Adding an intramodule hyperedge to a modular system does
not decrease its cohesion.

4. Merging of modules. If two unrelated modules, ��

and ��, are merged
to form a new module, �� �, that replaces ��

and ��, then the cohesion
of the modular system with �� �

is not greater than the cohesion of the
modular system with ��

and ��.

�

� �

�
�

� �

�

18

Table 3.10 Properties of Module Cohesion

1. Nonnegativity and Normalization. Cohesion of a module belongs to a specified
interval, Cohesion���� � � � � Max .

2. Null value. Cohesion of a module is null if its set of intramodule hyperedges is
empty.

3. Monotonicity. Adding an intramodule hyperedge to a module does not decrease
its cohesion.

4. Merging of modules. If two unrelated modules, ��

and ��, are merged to form
a new module, �� �, that replaces ��

and ��, then the module cohesion of �� �

is not greater than the maximum of the module cohesion of ��

and ��.

3.2 Information Theory-Based Metrics Definitions

Shannon’s paper [25] lays the foundation of information theory. For a discrete random

variable, �, distributed according to a probability mass function, �, entropy is defined as

�� �

��� � � �� �	 � � (3.1)
��

where is an index over the domain of �, and � is the cardinality of the domain of �.

��� is interpreted as the average information per sample from the distribution of � [2].

The logarithms are to the base two, thus the unit of measure is a bit. In this application,

entropy of the distribution of the row patterns is the average information per node.

According to van Emden [27]

Excess-entropy is the difference between the sum of the entropies taken sep-
arately and the entropy of the predicates together. Excess-entropy would be

		 �

		 �

�

� � �

� 		 � 		 � 		 �

19

zero in the case where there is no interaction at all between predicates and
the system of all predicates is trivially simple. When excess-entropy is greater
than zero, there is interaction between the components, which can be regarded
as evidence of complexity.

For � random variables, �� 	 � , excess-entropy is defined as

�

���� 	 � � � ���� � ��� 			 � � (3.2)
���

�
where ��� 	 � � = � ���� 	 � � �	 ���� 	 � � summed over all combinations

of values of ��

[1].

The following are the definitions of information theory-based metrics taken from [3].

3.2.1 Size of a System

The size of the system S is given by the amount of information in its system graph �,

less the contribution of the environment node.

� �

Size�S� � �� �	 ������ (3.3)
���

Note that by convention the environment node corresponds to � � � . Allen [3] derives this

formula from Equation (3.1) and therefore this is an information theory-based metric.

��

��

20

3.2.2 Size of a Module

Size of module ��, in a System S, is its contribution to the system’s size, given as

�

Size����S� � �� �	 ������ (3.4)
� �

3.2.3 Complexity of a System

Complexity of a system is the amount of information in relationships in its edges-only

graph, less the contribution of the environment. Complexity is based on the concept of

excess entropy [4].

� �

Complexity�S� � Size���

�� � Size���� (3.5)
���

3.2.4 Complexity of a Module

Complexity of a module ��, in a system S, is its contribution to the complexity of the

system, given by

�

Complexity����S� � Size���� � Size�����
�� (3.6)�

� �

�

�

21

3.2.5 Coupling of a Modular System

Coupling of a modular system MS is the amount of information in intermodule rela-

tionships in its system graph, less the contribution of the environment.

Coupling�MS� � Complexity�MS � (3.7)

3.2.6 Coupling of a Module

Coupling of a module ��, in a modular system MS, is its contribution to the coupling

of the system, given by

Coupling����MS� � Complexity����MS � (3.8)

3.2.7 Cohesion of a Modular System

Cohesion of a modular system MS, with � nodes, is the proportion of information in a

complete system graph due to intramodule relationships.

Complexity�MSÆ�
Cohesion�MS� � (3.9)

Complexity�MS����

22

3.2.8 Cohesion of a Module

Cohesion of a module ��, with ��

nodes, in a modular system MS is the propor-

���

�tion of information in intramodule relationships of a complete module � , due to the�

intramodule module relationships of ��.

Complexity����MSÆ �

Cohesion����MS� � (3.10)
���

�Complexity�� �MSÆ��

3.3 Counting-Based Metrics Definitions

The following are the definitions of counting metrics taken from [2]

3.3.1 Counting Size of a System

The counting size of the system S, CountingSystemSize, is given as the number of

nodes in S.

CountingSystemSize�S� � � (3.11)

3.3.2 Counting Size of a Module

The counting size of a module in a system S, CountingModuleSize, is the number of

nodes in the module.

CountingModuleSize����S� � ��

(3.12)

23

3.3.3 Counting Complexity of a System

The counting complexity of a system S, CountingSystemComplexity, is given as the

number of hyperedges in the system.

CountingSystemComplexity�S� � ��

(3.13)

3.3.4 Counting Complexity of a Module

The counting complexity of a module in a system S, CountingModuleComplexity, is

given as the number of hyperedges incident to nodes in the module.

CountingModuleComplexity����S� � �� �

(3.14)

3.3.5 Counting Coupling of a Modular System

The counting coupling of a modular system MS, CountingSystemCoupling, is given

as the number of intermodule hyperedges in the system.

CountingSystemCoupling�S� � ��� �� �

(3.15)

	

	

24

3.3.6 Counting Coupling of a Module

The counting coupling of a module in a modular system MS, CountingModuleCoupling,

is the number of intermodule hyperedges incident to the module.

CountingModuleCoupling����S� � ��� �� � �

(3.16)

3.3.7 Counting Cohesion of a Modular System

The counting cohesion of a system S, CountingSystemCohesion, is given as the ratio

of the number of intramodule hyperedges to the total number of hyperedges in a complete

graph of the system.

��� � �CountingSystemCohesion�S� � (3.17)
��

3.3.8 Counting Cohesion of a Module

The module counting cohesion of a modular system MS, CountingModuleCohesion,

is the ratio of the number of intramodule hyperedges in the module to the total number of

hyperedges in a complete graph of that module.

��� � � �CountingModuleCohesion����S� � (3.18)
��
�

�

�

25

3.4 Complexity of a Complete Graph

The information theory-based system complexity of a complete graph with ordinary

edges has a closed form.

Lemma 1 (Complexity of a complete graph)

� �

Complexity�MS���� � � �� � �� � �	

�

� � �

Proof:

For a complete graph, MS��� � MS���� . Since the Size���� of each node subgraph, ��,

is the same for the entire complete graph, Size�MS�����, the summation of Equation (3.5)

becomes � times the size of the complete graph. The final term of Equation (3.5) is also

the size of the complete graph. Therefore, the complexity of a complete graph is given as

Complexity�MS���� � � Size�MS���� � Size�MS���� (3.19)

By algebra,

Complexity�MS���� � �� � �� Size�MS���� (3.20)

Since each node has a unique row pattern, the probability mass function � of each node is

the same. Therefore, substituting Equation (3.3) into Equation (3.20) gives

Complexity�MS���� � � �� � �� �� �	 � � (3.21)

�

��

�� ��

26

Note that � is one divided by the number of nodes plus one (environment node), because

every row pattern is unique. Thus,

�

�

�

Complexity�MS���� � � �� � �� � �	 (3.22)
� � �

3.5 Module Complexity of an Intramodule Complete Graph

Cohesion of module ��, with ��

nodes, in a modular system, MS, is the proportion

���

�of information in intramodule relationships of the complete module � , due to the in-�

tramodule module relationships of ��.

Lemma 2 (Module complexity of an Intramodule Complete Graph)

���

�The information in intramodule relationships of a complete module, � , is given as�

�

�

�

���

�Complexity�� �MS�� � ��

�� � �� � �	� � � �

Proof:

From Equation (3.6),

���

�Complexity�� �MS���

�

� ���

�Size�MS��

� � Size�� �MS��

�� �

(3.23)
� �

From Equation (3.3),

� �

Size�MS��

��

�

� �

�� �	 ������ (3.24)
� �

� �

���

��

��

27

By algebra,

� � �

Size�MS��

� � � � �

� �	

�

(3.25)� � � �
� �

From Equation (3.4),

����

�Size�� �MS��

� � �� �	 ������ (3.26)�

� �

Since the pattern of each row is unique for each �, the probability mass function �����

is one

divided by the number of nodes plus the environment node. Therefore, size of the module

is minus the logarithm of the probability mass function times the number of nodes, ��, in

the module ��.

�

�

�

���

�Size���

�MS��

� � ��

� �	 (3.27)
� � �

Substituting Equation (3.25) and Equation (3.27) into Equation (3.23)

� �

���

�Complexity�� �MS�� � �� � �� ��

� �	

�

(3.28)� � � �

3.6 Metric Calculations

The following two examples illustrate the method of calculating the complexity, cou-

pling and cohesion metrics.

3.6.1 Example: Ordinary Edges

Figure 3.1 and Table 3.11 represent a nodes � edges graph. In order to find the com-

plexity, the nodes � edges graph is first translated to an edges-only graph. As from Ta-

�

�

28

ble 3.11 node 14 is the only node not connected to any other nodes, so it is removed when

constructing �� . Once the edges-only graph is obtained, the probability of occurrence of

each pattern is found and is tabulated as shown. Notice that the estimated probability of

node 0 is one divided by the number of nodes.

Table 3.11 Example Nodes � Edges Table

Module Node Edges �����

M0 0 0000000000000000 ��

M1 1 1110000000000000 ���

M2 2 1001100000000000 ���

M2 3 0000110000000000 ���

M2 4 0000011000000000 ���

M3 5 0100001110000000 ���

M3 6 0010000001000000 ���

M3 7 0000000100100000 ���

M3 8 0000000011010000 ���

M3 9 0000000000010000 ���

M4 10 0000000000101100 ���

M4 11 0001000000001010 ���

M4 12 0000000000000101 ���

M4 13 0000000000000011 ���

M4 14 0000000000000000 ��

Figure 3.2 and Table 3.12 represent an edges-only graph. From Table 3.12 for each

node except for node 0 identify which other nodes the corresponding node is linked to.

For example for node 1 identify the columns in the edges pattern that consists of 1 and list

those columns as the new pattern. Once the pattern is identified, find the probability of

each pattern and tabulate the probability columns to construct ��.

6

10

0
1

2

4

5

7 8

 93

10

11 12

13

m1

m2 m3

m4

1 2 3

4 5
6

7
8 9

11
12

13 14

16
15

14

Environment

Figure 3.1 Example Nodes � Edges

29

Table 3.12 Example Edges-Only Table

Module Node Edges �����

M0 0 0000000000000000 ����

M1 1 1110000000000000 ����

M2 2 1001000000000000 ����

M2 3 0000100000000000 ����

M2 4 0000011000000000 ����

M3 5 0100001110000000 ����

M3 6 0010000001000000 ����

M3 7 0000000100100000 ����

M3 8 0000000011010000 ����

M3 9 0000000000010000 ����

M4 10 0000000000101100 ����

M4 11 0001000000001010 ����

M4 12 0000000000000101 ����

M4 13 0000000000000011 ����

30

1

2

4

5 6

7 8

 93

10

11 12

13

m1

m2 m3

m4

1 2 3

4 5
6

7
8 9

10

11
12

13 14

16
15

0

Environment

Figure 3.2 Example Edges-Only Graph

Table 3.13 represents the graph for node 1, and Table 3.14 represents the graph of node

2. Likewise, tables are generated for every other node. Calculating the size for each graph

obtained and summing the results yields the sum in Equation (3.5).

In order to find coupling and cohesion we generate an intermodule edges-only graph

and an intramodule edges-only graph from the graph represented by Table 3.11. Both the

graphs can be obtained simultaneously as follows. Starting from the first column of the

edges pattern, identify the first “1” along the column and note its module. Then traverse

down the column to find if there exists another “1” in a different module. If a “1” exits then

list the column in the intermodule-edges table. Otherwise list it in the intramodule-edges

table. Likewise, traverse each and every column of the pattern and concatenate the result

31

Table 3.13 Node 1 Subgraph

Module Node Edges ���

���

M0 0 000 �����

M1 1 111 ����

M2 2 100 ����

M2 3 000 �����

M2 4 000 �����

M3 5 010 ����

M3 6 001 ����

M3 7 000 �����

M3 8 000 �����

M3 9 000 �����

M4 10 000 �����

M4 11 000 �����

M4 12 000 �����

M4 13 000 �����

Table 3.14 Node 2 Subgraph

Module Node Edges ���

���

M0 0 00 �����

M1 1 10 ����

M2 2 11 ����

M2 3 00 �����

M2 4 00 �����

M3 5 00 �����

M3 6 00 �����

M3 7 00 �����

M3 8 00 �����

M3 9 00 �����

M4 10 00 �����

M4 11 01 ����

M4 12 00 �����

M4 13 00 �����

�
�

32

with the previous list to identify the final table. Figure 3.3 and Table 3.15 represent an

intermodule edges-only graph, and Figure 3.4 and Table 3.16 represent an intramodule-

edges graph.

Table 3.15 Example Intermodule-Edges Graph

Module Node Edges �����

M0 0 000000 ���

M1 1 111000 ���

M2 2 100100 ���

M2 4 000010 ���

M3 5 010010 ���

M3 6 001000 ���

M3 7 000001 ��

M4 10 000001 ��

M4 11 000100 ���

Calculating the complexity of an intermodule-edges graph yields coupling, and the

complexity of an intramodule-edges graph divided by the complexity of a complete graph

(every node is connected to every other node) yields cohesion.

Table 3.17 represents the information theory-based system-level metrics and the counting-

based system-level metrics, and Table 3.18 represents the information theory-based module-

level metrics and counting-based module-level metrics. From Table 3.18, for ordinary

edges it can be said that the information of size, complexity, coupling and cohesion of

each module have the same variation as that of the counting size, complexity, coupling

and cohesion, respectively. Therefore, in this example, using either information measure-

33

1

2

4

5 6

7

10

11

m1

m2 m3

m4

1 2 3

4

7

11

0

Environment

Figure 3.3 Example Intermodule-Edges Graph

Table 3.16 Example Intramodule-Edges Graph

Module Node Edges �����

M0 0 0000000000 ����

M2 3 1000000000 ����

M2 4 0100000000 ����

M3 5 0011000000 ����

M3 6 0000100000 ����

M3 7 0010000000 ����

M3 8 0001110000 ����

M3 9 0000010000 ����

M4 10 0000001100 ����

M4 11 0000001010 ����

M4 12 0000000101 ����

M4 13 0000000011 ����

34

2

4

5 6

8

 93

10

11 12

13

m1

m2 m3

m4

5
6

8 9
10

12

13 14

16

7

15

0

Environment

Figure 3.4 Example Intramodule-Edges Graph

ment or counting measurement for calculation of size, complexity, coupling and cohesion

does not make a difference.

3.6.2 Example: Hyperedges

Figure 3.5 and Table 3.19 represent a nodes � hyperedges graph. In order to find the

complexity, the nodes � hyperedges graph is first translated to a hyperedges-only graph.

As from Table 3.19, node 14 is the only node not connected to any other nodes, so it is

removed. Once the hyperedges-only graph is obtained the probability of occurance of each

pattern is found and is tabulated as shown. It can be noticed that the probability of node 0

is one divided by the number of nodes.

35

Table 3.17 Example Ordinary Edges System-level Metric Values

Information Counting
Size 53.7 bits 14 nodes
Complexity 170.1 bits 16 edges
Coupling 50.2 bits 6 edges
Cohesion 0.14 0.11

Table 3.18 Example Ordinary Edges Module-level Metric Values

Information Theory-based Metrics
Module size complexity coupling cohesion

(bits) (bits) (bits)
M1 3.9 15.8 12.9 0.00
M2 11.7 38.0 12.6 0.16
M3 19.5 62.6 17.0 0.19
M4 18.5 53.8 7.7 0.21

Counting-based Metrics
Module size complexity coupling cohesion

(nodes) (edges) (edges)
M1 1 3 3 0.00
M2 3 5 3 0.67
M3 5 8 4 0.40
M4 5 6 2 0.67

�

�

36

Table 3.19 Example Nodes � Hyperedges Table

Module Node Edges �����

M0 0 0000000000 ��

M1 1 1000000000 ���

M2 2 1100000000 ���

M2 3 0100100000 ���

M2 4 0010100000 ���

M3 5 1010000000 ���

M3 6 1001000000 ���

M3 7 0010010000 ���

M3 8 0011001000 ���

M3 9 0000001000 ���

M4 10 0000010100 ���

M4 11 0100000110 ���

M4 12 0000000101 ���

M4 13 0000000011 ���

M4 14 0000000000 ��

1

2

4

5 6

7 8

 93

10

11 12

1413

m1

m2 m3

m4

1

2

5

3 4

 6
 7

8

10
9

0

Environment

Figure 3.5 Example Node� Hyperedges Graph

37

Figure 3.6 and Table 3.20 represent a hyperedges-only graph. From Table 3.20 for

each node except for node 0, identify which other nodes are linked to it. For example, for

node 1, identify the columns in the hyperedges pattern that consists of “1” and list those

columns as the new pattern. Once the pattern is identified find the probability of each

pattern and tabulate the probability column.

Table 3.20 Example Hyperedges-Only Table

Module Node Edges �����

M0 0 0000000000 ����

M1 1 1000000000 ����

M2 2 1100000000 ����

M2 3 0100100000 ����

M2 4 0010100000 ����

M3 5 1010000000 ����

M3 6 1001000000 ����

M3 7 0010010000 ����

M3 8 0011001000 ����

M3 9 0000001000 ����

M4 10 0000010100 ����

M4 11 0100000110 ����

M4 12 0000000101 ����

M4 13 0000000011 ����

Table 3.21 represents the graph for node 1, and Table 3.22 represents the graph of node

2. Likewise, the tables are generated for every other node. Calculating the size for each

graph obtained and summing the results yields the complexity of the graph.

In order to find coupling and cohesion, we generate an intermodule hyperedges-only

graph and an intramodule hyperedges-only graph from the graph represented by Table 3.19.

38

1

2

4

5 6

7 8

 93

10

11 12

13

m1

m2 m3

m4

1

2

5

3 4

 6
 7

8

10
9

0

Environment

Figure 3.6 Example Hyperedges-Only Graph

Table 3.21 Node 1 Subgraph

Module Node Edges ���

���

M0 0 0 �����

M1 1 1 ����

M2 2 1 ����

M2 3 0 �����

M2 4 0 �����

M3 5 1 ����

M3 6 1 ����

M3 7 0 �����

M3 8 0 �����

M3 9 0 �����

M4 10 0 �����

M4 11 0 �����

M4 12 0 �����

M4 13 0 �����

39

Table 3.22 Node 2 Subgraph

Module Node Edges ���

���

M0 0 00 �����

M1 1 10 ����

M2 2 11 ����

M2 3 01 �����

M2 4 00 �����

M3 5 10 ����

M3 6 10 ����

M3 7 00 �����

M3 8 00 �����

M3 9 00 �����

M4 10 00 �����

M4 11 01 �����

M4 12 00 �����

M4 13 00 �����

Both graphs can be obtained simultaneously as follows. Starting from the first column of

the hyperedges pattern, identify the first “1” along the column and note its module. Then,

traverse down the column to find if there exists another “1” in a different module. If a

“1” exits then list the column in the intermodule-edges table. Otherwise, list it in the

intramodule-edges table. Likewise, traverse each and every column of the pattern and

concatenate the result with the previous list to identify the final table. Figure 3.7 and Ta-

ble 3.23 represent an intermodule hyperedges-only graph, and Figure 3.8 and Table 3.24

represent an intramodule-hyperedges graph.

Calculating the complexity of an intermodule-edges graph yields coupling, and com-

plexity of an intramodule-edges graph divided by the complexity of a complete graph

(every node is connected to every other node) yields cohesion.

�

�
�

�

�

�

40

Table 3.23 Example Intermodule-Hyperedges Graph

Module Node Edges �����

M0 0 0000 ����

M1 1 1000 ���

M2 2 1100 ����

M2 3 0100 ���

M2 4 0010 ���

M3 5 1010 ����

M3 6 1000 ���

M3 7 0011 ����

M3 8 0010 ���

M4 10 0001 ����

M4 11 0100 ���

1

2

4

5 6

7 8

3

10

11

m1

m2 m3

m4

1

2
3

 6

0

Environment

Figure 3.7 Example Intermodule-Hyperedges Graph

�
�
�

�

41

Table 3.24 Example Intramodule-Hyperedges Graph

Module Node Edges �����

M0 0 0000000 ����

M2 3 1000000 ���

M2 4 1000000 ���

M3 5 0100000 ���

M3 6 0010000 ����

M3 7 0100000 ���

M3 8 0111000 ����

M3 9 0001000 ����

M4 10 0000100 ����

M4 11 0000110 ����

M4 12 0000101 ����

M4 13 0000011 ����

4

6

8

 93

10

11 12

13

m1

m2 m3

m4

5

 4

 7

8

10
9

0

Environment

Figure 3.8 Example Intramodule-Hyperedges Graph

42

Table 3.25 represents the information theory-based system-level metrics and the counting-

based system-level metrics, and Table 3.26 represents the information theory-based module-

level metrics and counting-based module-level metrics. From Table 3.26, for hyperedges

it can be said that the information of size, complexity, coupling and cohesion of each

module has the same variation as the counting size, complexity, coupling and cohesion re-

spectively. Therefore, in this example using either information measurement or counting

measurement for calculation of size, complexity, coupling, and cohesion does not make a

difference.

Table 3.25 Example Hyperedges System-level Metric Values

Information Counting
Size 53.7 bits 14 nodes
Complexity 189.1 bits 10 edges
Coupling 89.9 bits 4 edges
Cohesion 0.10 0.07

43

Table 3.26 Example Hyperdges Module-level Metric Values

Information Theory-based Metrics
Module size complexity coupling cohesion

(bits) (bits) (bits)
M1 3.9 7.8 7.3 0.00
M2 11.7 47.3 28.8 0.11
M3 19.5 74.7 43.7 0.13
M4 18.5 59.4 10.2 0.29

Counting-based Metrics
Module size complexity coupling cohesion

(nodes) (hyperedges) (hyperedges)
M1 1 1 1 0.00
M2 3 4 4 1.00
M3 5 5 6 0.67
M4 5 5 2 0.5

CHAPTER IV

METHODOLOGY

A case study approach is taken to illustrate the usefulness of the metrics in a real-world

setting. Case studies provide weight of evidence, rather than scientific proof of proposi-

tions. A graph can represent an abstraction of a software system [11]. The objective is to

measure graphs directly used by designers that are likely to be related to software quality,

such as artifacts produced by design tools, or graphs derived from relationships in code.

The research project is a case study consisting of three tasks: (1) developing research tools,

(2) collecting data from various sources, and (3) analyzing data for useful relationships.

The case study examined software systems of limited size to give an indication of metric

usefulness and to resolve practical issues. The objective of the case study was to evaluate

module-level metrics and system-level metrics.

The analysis included the following steps:

1. Obtain sets of source code files to be analyzed.

2. Generate an abstract semantic graph for each file using the Datrix tool.

3. For each abstraction, generate a nodes � hyperedges table using the Abstractor tool.
This tool currently analyzes use of public variables by methods.

4. For each node � hyperedges table, calculate the information theory-based attributes
and corresponding counting-based attributes of the system and of each module using
the Measurement tool.

5. Analyze the distributions and correlations among measured attributes using SAS and
Excel by generating graphs.

44

CHAPTER V

TOOLS

5.1 Architecture

Figure 5.1 represents a pipes-and-filters architecture. A raw source code file is given

to a compiler preprocessor to obtain preprocessed source code (*.ii). The preprocessed

source code is parsed with the Datrix parser to generate an abstract semantic graph (ASG),

which is an output to a file (*.asg). Using the ASG, an abstraction extraction is performed,

such as use of global variables, call graph, or control flow graph. At this time we focus

on the use of global variables as the abstraction extracted. In this approach, we identify

the classes or methods and their associated global variables. With the matchings a node �

hyperedge table is generated. The measurement is then applied to the node � hyperedge

table to obtain various software measurements for both system level and module level.

The measurements are stored in a tabular file and are analyzed statistically using SAS and

Excel.

Table 5.1 represents a node � hyperedge table. The node � hyperedge table file con-

sists of four fields. The first field specifies the software-identifier, the second field specifies

the module-identifier, the third field specifies the node-identifier, and the fourth field spec-

ifies the hyperedges (row pattern), which are represented by a binary pattern. The binary

45

46

pattern for each node shows to which other nodes the current node is connected. The num-

ber of hyperedges in each row are equal, and only those hyperedges that are connected to

a particular node are represented by “1”, the rest are represented by “0”.

Table 5.1 Nodes � Hyperedges

Software-Id Module-Id Node-Id RowPattern
sw1 m1 n1 1001
sw1 m1 n2 1000
sw1 m2 n3 1011
sw1 m3 n4 0110
sw1 m3 n5 0101

5.2 Design of Measurement Package

The box shown as “Measurement” in Figure 5.1 represents the measurement package.

The measurement package is a tool that calculates the information metrics and counting

metrics defined in Chapter III.

5.2.1 Class Diagram of Measurement Program

Figure 5.2 represents a class diagram for the implementation of the calculation of the

defined information theory-based metrics and the counting-based metrics. The interfaces

Collection and Map and classes Abstract Set, Hash Set, Array List, Abstract Map, and

Hash Map are off-the-shelf components. Class ModularSystem implements the calcula-

47

gcc Compiler

*.cpp

*.ii

Datrix Parser

*.asg

Abstractor

*.nxe

Measurement

*.met

EXCEL SAS

nxe Generator

*.xls *.lis

 Analyst

Figure 5.1 Tool Kit Architecture

48

Collection
Interface

Set
Interface

 1.. *

Abstract
Collection

Abstract
Map

HashMap

SetOfNodes

public void add()
public void iterator()
public void size()

Nodes
SetOfModules

public void add()
public void iterator()
public void size()

Pattern
Frequency

HypergraphSystem
public double size = 0
public double length = 0
public double complexity = 0

public double get()
public double set()

Module
public double size = 0
public double length = 0
public double complexity = 0
public coupling = 0
public cohesion = 0

ModularSystem
public double coupling = 0
public double cohesion =0

setSystem(filename.nxe)
setInfoCoupling()
setInfoCohesion()

SHash SSubi

SCirc SStar

ArrayList

add()
size()
iterator()

MetricList

constructor

 1..*

Map
Interface

Abstract
Set

HashSet

Figure 5.2 Class Diagram

49

tion of Coupling and Cohesion of information theory-based metrics and counting-based

metrics. It also sets the SetOfNodes and SetOfModules for the given node � hyperedges

file. Class HypergraphSystem implements the calculation of size and complexity of in-

formation theory-based metrics and the counting-based metrics. The class SetOfNodes

creates the node objects, and the class SetOfModules creates the module objects. Class

PatternFrequency finds the number of times each pattern occurs in a given node � hyper-

edges graph. The class SHash implements the hyperedges-only graph, SSubi implements

the node subgraph, SCirc implements the intramodule hyperedges graph, and the class

SStar implements the intermodule hyperedges graph.

5.2.2 Call Graph of Measurement Program

Figures 5.3 through 5.10 show the call graphs of the methods. The Main call graph

creates an instance of the SetOfModules class, identifies the list of metrics to be calculated,

calculates all the infomation theory-based metrics and counting-based metrics, and finally

generates the output metric file. The setInfoMetrics call graph and setCountMetrics call

graph call the methods for calculating the size, complexity, coupling, and cohesion of in-

formation theory-based metrics and counting-based metrics, respectively. The getMetrics

call graph gets all the calculated metrics required by the user, provided in the list of met-

rics input file. The setInfoSize, setInfoComplexity, setInfoCoupling, and setInfoCohesion

call graphs show the implementation for calculation of size, complexity, coupling, and

cohesion of information theory-based metrics, respectively.

50

Main
— HypergraphSystem

— SetOfModules()
— setSetOfModules()

— MetricsList(fileName)
— toUppercase()
— add(String)
— ArrayList()

— S.setSystem(.nxe filename)
— Node
— getSetOfModules()
— findModule(String, Module)
— Module
— SOM.add(Module)
— M.add(Node)
— S.add(Node)

— S.setInfoMetrics(HypergraphSystem)
— S.setCountMetrics(HypergraphSystem)
— S.getMetrics(HypergraphSystem)

Figure 5.3 Main Call Graph

setInfoMetrics(HypergraphSystem)
— S.setInfoSize()
— S.setInfoComplexity()
— S.setInfoCoupling()
— S.setInfoCohesion()

Figure 5.4 setInfoMetrics Call Graph

setCountMetrics(HypergraphSystem)
— S.setCountSize()
— S.setCountComplexity()
— S.setCountCoupling()
— S.setCountCohesion()

Figure 5.5 setCountMetrics Call Graph

51

getMetrics(HypergraphSystem)
— ML.iterator()
— S.getSetOfModules()
— SOM.iterator()
— S.getSystemInfoSize()
— S.getSystemInfoComplexity()
— S.getSystemInfoCoupling()
— S.getSystemInfoCohesion()
— M.getModuleInfoSize()
— M.getModuleInfoComplexity()
— M.getModuleInfoCoupling()
— M.getModuleInfoCohesion()
— S.getSystemCountSize()
— S.getSystemCountComplexity()
— S.getSystemCountCoupling()
— S.getSystemCountCohesion()
— M.getModuleCountSize()
— M.getModuleCountComplexity()
— M.getModuleCountCoupling()
— M.getModuleCountCohesion()

Figure 5.6 getMetrics Call Graph

52

SetInfoSize
— S.PatternFrequency()

— S.iterator()
— N.getRowPattern()

— S.getSetOfModules()
— SOM.iterator()
— M.setModuleInfoSize(PatternFrequency)

— S.size()
— M.iterator()
— N.getRowPattern()
— S.findPatternFrequency(String)

— M.getModuleInfoSize()
— S.setSystemInfoSize()

Figure 5.7 setInfoSize Call Graph

setInfoComplexity
— S.getSetOfModules()
— SOM.iterator()
— S.SHash()

— S.setInfoSize()
— S.getInfoSize()

— S.SSubi()
— S.setInfoSize()
— S.getInfoSize()

— S.setSystemInfoComplexity()

Figure 5.8 setInfoComplexity Call Graph

setInfoCoupling
— S.getSetOfModules()
— SOM.iterator()
— S.SStar()

— S.setInfoComplexity()
— S.getInfoComplexity()

— S.setSystemInfoCoupling()

Figure 5.9 setInfoCoupling Call Graph

53

setInfoCohesion
— S.getSetOfModules()
— SOM.iterator()
— S.SCirc()

— S.setInfoComplexity()
— S.getInfoComplexity()

— S.Sn()
— S.setSystemInfoCoupling()

Figure 5.10 setInfoCohesion Call Graph

5.3 Off-the-Shelf Components

Table 5.2 gives an overview of the off-the-shelf components used in this research.

54

Table 5.2 Off-the-Shelf Components

Off-the-shelf component Description
gcc The GNU Compiler Collection is used to compile a given

C++ program.
The output is the preprocessed file in the format of *.ii
Command: gcc -E �filename.cpp� � outputfile�(*.ii)
The command -E is used to eliminate syntax errors and
general warnings.

Datrix A software code assessment tool provided by Bell Canada
Command: dxparscpp -asg �output.asg� *.ii
dxparscpp is a datrix parser for C++ files that builds an
Abstract Symantic Graph (asg) and outputs it in a TA-like
format.

Abstractor This is a tool that reads the asg file and generates a
node � edges table (*.nxe).

SAS A statistics package for data manipulation, statistical
analysis, report writing, and generating plots.

nxeGenerator The nxeGenerator generates a set of nodes � hyperedges
tables depending on the user inputs.

CHAPTER VI

CASE STUDIES

This chapter provides exploratory case studies of (1) a set of artificially generated

graphs, (2) a data manipulation program for a physics research project, and (3) selected

source files from a mathematical library.

6.1 Nodes�Hyperedges Generator Examples

6.1.1 Data Collection

The tool is a nodes � hyperedges generator (NxeGenerator). Based on the user input,

various nodes � hyperedges (*.nxe) files are generated. These files are then measured

using the measurement tool and analyzed. Figure 6.1 depicts a series of small graphs

where a node is added and then a hyperedge is added. Figure 6.2 depicts three series of

graphs where hyperedges are added that have the same connections as existing hyperedges.

In these small graphs, every node is considered a module.

6.1.2 Measurement

Table 6.1 presents the system-level metrics for Figure 6.1 and Figure 6.2. Coupling

measurements are the same as complexity because every hyperedge is an intermodule

55

56

n1

n2 n3

n1

n2

n1

n2 n3

test10.nxe test15 .nxe test17 .nxe

Figure 6.1 Adding a Node and a Hyperedge to a Small Graph

n1

n2

n1

n2

n1

n2

n1

n2

n1

n2

test10.nxe test11.nxe test12.nxe text13 .nxe test 14.nxe

n1

n2 n3

n1

n2 n3

n1

n2 n3

test16 .nxe test18 .nxe test20 .nxe

n1

n2 n3

n1

n2 n3

test17 .nxe test19 .nxe

Figure 6.2 Identical Hyperedges Do Not Add Information

57

hyperedge. Cohesion measurement is zero because there is no intramodule hyperedge, as

every node is a module.

Table 6.1 System-level Measurements of NxeGenerator Examples

Size Complexity
Information Count Information Count

System (bits) (nodes) (bits) (hyperedges)
test10 1.2 2 1.2 1
test15 3.0 3 1.2 1
test17 4.0 3 5.3 2
test10 1.2 2 1.2 1
test11 1.2 2 1.2 2
test12 1.2 2 1.2 3
test13 1.2 2 1.2 4
test14 1.2 2 1.2 5
test16 1.3 3 2.5 1
test18 1.3 3 2.5 2
test20 1.3 3 2.5 3
test17 4.0 3 5.3 2
test19 4.0 3 5.3 3

6.1.3 Analysis

The graphs in Figure 6.1 illustrate how adding a node increases information size

but not information complexity, and how adding a hyperedge increases both information

size and information complexity. The graphs in Figure 6.2 illustrate that the information

theory-based measurements are not sensitive to multiple hyperedges connected to exactly

the same nodes because redundant hyperedges do not affect the estimated probabilities of

row pattern.

58

Figure 6.3 depicts two pairs of binary trees. Trees 1a and 2a have ordinary edges (two

connections per edge). Trees 1b and 2b have hyperedges with three connections per edge.

Figure 6.4 depicts two pairs of (nonbinary) trees. Trees 3a and 4a have ordinary edges (two

connections per edge). Trees 3b and 4b have more than two connections per hyperedge.

Table 6.2 presents the system-level metrics for these two figures. Abstractions of software

using ordinary edges make a distinction for each edge relationship. Abstractions using

hyperedges are appropriate when such distinctions are not relevant and thus information

size is smaller. However, we see that information complexities are about the same.

1a 1b

2a 2b

Figure 6.3 Binary Trees with Ordinary Edges vs. Hyperedges

From Table 6.3 through Table 6.6 it is observed empirically that the information com-

plexity of module M1 is negative. For a graph to result in a negative module complexity,

we conjecture that the following conditions must be satisfied.

59

3a

3b

4a 4b

Figure 6.4 Trees with Ordinary Edges vs. Hyperedges

60

Table 6.2 System-level Measurement of Trees with Ordinary Edges vs. Hyperedges

Ordinary Edges Hyperedges
Information Count Information Count

System 1a 1b
Size 6.0 bits 3 nodes 1.2 bits 3 nodes
Complexity 6.0 bits 2 edges 2.5 bits 1 hyperedge
System 2a 2b
Size 21.0 bits 7 nodes 17.0 bits 7 nodes
Complexity 45.0 bits 6 edges 45.5 bits 3 hyperedges
System 3a 3b
Size 49.5 bits 13 nodes 35.2 bits 13 nodes
Complexity 115.1 bits 12 edges 150.2 bits 4 hyperedges
System 4a 4b
Size 30.0 bits 9 nodes 23.9 bits 9 nodes
Complexity 84.6 bits 10 edges 88.6 bits 3 hyperedges

� The row pattern of all the nodes in a module must be identical.

� A hyperedge associated to a node in that module must also be associated to all other
nodes in the system.

� There should be at least one hyperedge associated to that module.

� There should be at least one hyperedge not associated to that module.

Future work will mathematically prove the above conjecture.

For a complete graph it is empirically observed that:

� Information complexity is equal to information coupling.

� Counting system complexity is equal to counting module complexity.

� Counting module coupling is equal to the product of counting module size and
counting system complexity or the product of counting module size and counting
system coupling.

61

Table 6.3 Nodes � Hyperedges Table Example 1

Module Node Hyperedges
env. 0 00000
M1 N1 10000
M2 N2 11000
M2 N3 10110
M3 N4 10001

Table 6.4 Nodes � Hyperedges Table Example 2

Module Node Hyperedges
env. 0 00000
M1 N1 11110
M1 N2 11110
M2 N3 11111
M3 N4 11111
M4 N5 11111

Table 6.5 Nodes � Hyperedges Table Example 3

Module Node Hyperedges
env. 0 00000
M1 N1 11100
M1 N2 11100
M2 N3 11111
M3 N4 11111
M4 N5 11111

62

Table 6.6 Nodes � Hyperedges Table Example 4

Module Node Hyperedges
env. 0 00000
M1 N1 10000
M1 N2 10000
M2 N3 11111
M3 N4 11111
M4 N5 11111

For a given system with no hyperedges it is empirically observed that the information

measurement of all the attributes is zero, whereas the counting size is the number of nodes

in the system given by Equation (3.11).

6.2 Physics Programs

The program under study is part of a physics experiment. The number of files included

in the project were two C++ (*.cpp) files and three header (*.hpp) files. The program reads

different data sets, manipulates the data, and writes the results to an output file.

6.2.1 Data Collection

A hypergraph is derived from the relationships between public variables and the meth-

ods that use them. The methods were represented by nodes, and each public variable is

represented by a hyperedge. Each class was defined as a module. C++ system classes,

methods and public variables are excluded from the analysis. The primary C++ file is pre-

processed using the gcc complier to generate a preprocessed (*.ii) file. This step includes

63

all the header files (*.hpp) and subsidiary C++ files (*.cpp) into the resulting file (*.ii).

The preprocessed file (*.ii) is parsed using the Datrix metric analyzer, generating an ab-

stract semantic graph(ASG, *.asg). The ASG file (*.asg) is then an input to the Abstractor

that generates a nodes � hyperedges table (*.nxe). The *.nxe file is then an input to the

Measurement tool for the metric calculations.

6.2.2 Measurement

Table 6.7 Nodes � Hyperedges for the Physics Program

Module
env.
1.Atom

2.Element

Node
0
getpos
setid
setname
get mass
get name
get weight
report
setname

Hyperedges
00000000000000000000000000000000
01100100000000010100000101010000
00000100001010000000000000010000
00000000000000000000000000000001
01100000000000000000000000000000
01000000000000000000000000010000
00100000000000000100000000010000
00100000000000000000010000000000
00000000000000001000000100101001

3.Lattice get periodic
get scale
get refvector
get parameter
set latticetype
set parameter

10010011000011110110010000000111
01001100000000011100000111111001
00110111110100010100111100010011
00000100001010100000000000010000
00000000000000000100000000000000
00000000000000000001000000000000

Table 6.7 represents a nodes � hyperedges graph for the given program. Table 6.8 rep-

resents the information theory-based system-level metrics and the counting-based system-

64

level metrics, and Table 6.9 represents the information theory-based module-level metrics

and counting-based module-level metrics.

Table 6.8 System-level Measurements of the Physics Program

Information Counting
Size 54.7 (bits) 14 (nodes)
Complexity 366.3 (bits) 32 (edges)
Coupling 341.2 (bits) 15 (edges)
Cohesion 0.02 0.18

6.2.3 Analysis

Figure 6.5 through Figure 6.8 present a comparision of size, complexity, coupling,

and cohesion attributes of information theory-based metrics and counting-based metrics at

the module-level, respectively.

Table 6.9 shows that the module “Element” has medium information complexity and

module “Atom” has low information complexity. However, the counting complexity is

about the same. The module “Lattice” contributes more than the other modules to all

the system-level metrics. In this case study, if one uses a metric to order modules, the

corresponding information metrics and the counting metrics generally result in the same

order.

65

Table 6.9 Module-level Measurements of the Physics Program

Information Theory-based Metrics
Module size complexity coupling cohesion

(bits) (bits) (bits)
1.Atom 11.7 80.1 76.4 0.00
2.Element 19.5 113.6 107.7 0.00
3.Lattice 23.4 172.6 157.1 0.26

Counting-based Metrics
Module size complexity coupling cohesion

(nodes) (hyperedges) (hyperedges)
1.Atom 3 11 13 0.0
2.Element 5 10 14 0.0
3.Lattice 6 32 29 1.7

35 7

Bi
ts

Information Metrics
Counting Metrics

1 2 3

30

25

20

15

10

5

0

6

5

4

3

2

1

0

N
um

be
r o

f N
od

es

Module Id

Information Metrics 11.7 19.5 23.4
Counting Metrics 3 5 6

Figure 6.5 Module Size Comparison of Physics Program

66

200 50

180

Bi
ts

160

140

120

100

80

60

40

20

0
Module Id

Information Metrics
Counting Metrics

1 2 3

45

40

35

30

25

20

15

10

5

0

N
um

be
r o

f H
yp

er
ed

ge
s

Information Metrics 80.1 113.6 172.6
Counting Metrics 11 10 32

Figure 6.6 Module Complexity Comparison of Physics Program

0

20

40

60

80

100

120

140

160

180

Bi
ts

0

5

10

15

20

25

30

35

N
um

be
r o

f I
nt

er
m

od
ul

e
H

yp
er

ed
ge

s

Information Metrics
Counting Metrics

Module Id 1 2 3

Information Metrics 76.4 107.7 157.1

Counting Metrics 13 14 29

Figure 6.7 Module Coupling Comparison of Physics Program

67

0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
um

be
r o

f I
nt

ra
m

od
ul

e
H

yp
er

ed
ge

s

Information Metrics
Counting Metrics

1 2 3

Bi
ts

0.3

0.2

0.1

0
Module Id

Information Metrics 0 0 0.26
Counting Metrics 0 0 1.7

Figure 6.8 Module Cohesion Comparison of Physics Program

6.3 PMLP Examples

The Parallel Mathematical Libraries Project (PMLP) was developed cooperatively

by Intel, Lawrence Livermore National Laboratory, the Russian Federal Nuclear Labo-

ratory (VNIIEF), and the High Performance Computing Laboratory at Mississippi State

University. It is a parallel, mathematical library suite for sparse matrices. PMLP in-

cludes sequential sparse basic linear algebra, parallel sparse matrix vector products, and

sequential and parallel iterative solvers with Jacobi and incomplete LU (ILU) precondi-

tioners. Both Windows NT and Linux versions are available; we measured Linux version

3.0. PMLP was implemented in C++ using object-oriented techniques, such as template

classes, generic programming, parameterized types, run-time polymorphism, compiler-

time polymorphism, and iterators.

68

6.3.1 Data Collection

Hypergraphs were derived from the relationships between public variables and the

methods that use them. The methods were represented by nodes, and each public variable

was represented by a hyperedge. Each class was defined as a module. C++ system classes,

methods, and public variables were excluded from the analysis. Similarly, some C++ files

from the PMLP that had some missing header files, some with no classes, and some that

had an error during compiling were also excluded.

Similar to the physics programs, selected C++ files are preprocessed using the gcc

complier to generate a preprocessed (*.ii) file. The preprocessed file is parsed using the

Datrix parser, which generates an abstract semantic graph (ASG). The ASG is provided to

the Abstractor tool to generate a nodes � hyperedges table (*.nxe). The *.nxe file is given

to the Measurement tool for the metric calculations. The results are further analyzed using

the SAS tool. Figure 6.9 represents a nodes � hyperedges graph for dg data gen.cpp file.

This file was selected as an example since it had multiple classes, one or more methods in

each class, and few public variables.

6.3.2 Measurement

Table 6.10 represents the measures of size, Table 6.11 represents the measure of com-

plexity, Table 6.12 represents the measure of coupling, and Table 6.13 represents the mea-

sure of cohesion of information theory-based metrics and counting-based metrics of dif-

ferent C++ files of the PMLP software.

69

cVectorGenerator

cVector
Genera-

tor

Gen-
Value

cComplexVector

Impart Report

cBaseVector

GetNNZ Row

cMatrix

DG_ER
R_Mem

cMatrixGenerator

Gen-
Value

cRealVector

Val

tINIProcesor

cVector
Genera-

tor
1

8

5
3 4

2

96

7

Figure 6.9 Nodes � Hyperedges Graph of dg data gen.cpp

Table 6.10 System Size of Selected PMLP Files

*.cpp Information Metrics Counting Metrics
(bits) (nodes)

Test Dlg 6.0 3
linear 8.9 5
linear block 10.9 5
Scatter block 10.1 6
grid 17.0 7
dg matrix 21.0 7
dg data gen 27.8 10
HB Util 34.6 10
general 29.4 11
dg vec gen 49.5 13
dg mat gen 54.7 14
dg scal gen 59.85 19
dg vector 77.4 21

70

Table 6.11 System Complexity of Selected PMLP Files

*.cpp Information Metrics Counting Metrics
(bits) (hyperedges)

Test Dlg 2.5 33
linear 18.4 4
linear block 9.8 7
Scatter block 23.2 4
grid 68.0 5
dg matrix 81.9 32
dg data gen 84.5 9
HB Util 205.4 60
general 153.5 5
dg vec gen 266.5 62
dg mat gen 225.6 77
dg scal gen 402.2 14
dg vector 1107.6 25

Table 6.12 System Coupling of Selected PMLP Files

*.cpp Information Metrics Counting Metrics
(bits) (hyperedges)

Test Dlg 0.0 0
linear 0.0 0
linear block 0.0 0
Scatter block 0.0 0
grid 68.0 5
dg matrix 0.0 0
dg data gen 57.3 3
HB Util 0.0 0
general 0.0 0
dg vec gen 93.0 5
dg mat gen 0.0 0
dg scal gen 361.7 8
dg vector 1107.6 25

71

Table 6.13 System Cohesion of Selected PMLP Files

*.cpp Information Metrics Counting Metrics
Test Dlg 0.21 11.00
linear 0.36 0.40
linear block 0.19 0.70
Scatter block 0.28 0.20
grid 0.00 0.00
dg matrix 0.64 1.52
dg data gen 0.02 0.13
HB Util 0.66 1.33
general 0.39 0.09
dg vec gen 0.16 0.70
dg mat gen 0.32 0.85
dg scal gen 0.01 0.04
dg vector 0.00 0.00

Table 6.14 represents a nodes � hyperedges graph for the dg data gen.cpp file. Ta-

ble 6.15 represents the information theory-based system-level metrics and the counting-

based system-level metrics, and Table 6.16 presents the information theory-based module-

level metrics and counting-based module-level metrics for the nodes � hyperedges table

represented by Table 6.14.

6.3.3 Analysis

Figure 6.10 through Figure 6.13 represent the system-level comparison of information

theory-based metrics and counting-based metrics of size, complexity, coupling, and cohe-

sion, respectively. The information size and counting size are highly correlated, as were

information coupling and counting coupling. Consequently, the order of modules is the

72

Table 6.14 Nodes � Hyperedges for dg data gen.cpp

Module Node Hyperedges
env 0 000000000
cVectorGenerator GenValue 100000000

CVectorGenerator 000000110
cMatrixGenerator GenValue 100000000
cComplexVector Report 001010010

Impart 000001010
cBaseVector GetNNZ 000100000

Row 000000110
cMatrix DG Err Mem 000000001
tINIProcessor cVectorGenerator 000000110
cRealVector Val 010000010

Table 6.15 System-level Measurements of dg data gen.cpp

Information Counting
Size 27.8 bits 10 nodes
Complexity 84.5 bits 9 edges
Coupling 57.3 bits 3 edges
Cohesion 0.02 0.13

73

Table 6.16 Module-level Measurements of dg data gen.cpp

Information Theory-based Metrics
Module size complexity coupling cohesion

(bits) (bits) (bits)
cVectorGenerator 4.3 18.7 15.4 0.00
cMatrixGenerator 2.5 4.8 4.3 0.00
cComplexVector 6.9 20.5 10.2 0.10
cBaseVector 5.3 15.2 11.1 0.05
cMatrix 3.5 1.2 0.0 0.10
tINIProcessor 1.9 13.9 11.1 0.00
cRealVector 3.5 10.2 5.1 0.10

Counting-based Metrics
Module size complexity coupling cohesion

(nodes) (hyperedges) (hyperedges)
cVectorGenerator 2 3 3 0.0
cMatrixGenerator 1 1 1 0.0
cComplexVector 2 4 2 3.0
cBasevector 2 3 2

cMatrix 1 1 0

tINIProcessor 1 2 2 0.0
cRealVector 1 2 1

74

same according to the size or coupling attribute. In other words, they measure similar at-

tributes in this example. However, the complexity measurements are not highly correlated.

This means information complexity and counting complexity may be measuring different

attributes. Coupling measurements of most of the files are zero, which means methods in

those classes did not access public variables in other classes. Software engineers could use

the nonzero coupling measurement to identify where public variables are used.

90

80

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

N
um

be
r o

f N
od

es

Information Metrics
Counting Metrics

1 2 3 4 5 6 7 8 9 10 11 12 13

70

60

50

40

30

20

10

0

Bi
ts

Software Id
Information Metrics 6 9 11 10 17 21 28 35 29 50 55 60 77
Counting Metrics 3 5 5 6 7 7 10 10 11 13 14 19 21

Figure 6.10 System-level Size Comparison of PMLP Files

Table 6.17 represents a graph for dgMatrix.cpp file. The Information complexity of

this file is 81.0, and the counting complexity is 32. Table 6.18 and Table 6.19 provide

evidence that when adding a hyperedge, the information complexity either increases or is

the same, whereas in the case of the counting metrics the complexity will always increase

75

1200 100

1080

960

840

720

600

480

360

240

120

0Software Id

Information Metrics
Counting Metrics

1 2 3 4 5 6 7 8 9 10 11 12 13

90

80

70

60

50

40

30

20

10

0

N
um

be
r o

f H
yp

er
ed

ge
s

Bi
ts

Information Metrics 2.5 18.4 9.8 23.2 68 81.9 84.5 205.4 153.5 266.5 225.6 402.2 1108

Counting Metrics 33 4 7 4 5 32 9 60 5 62 77 14 25

Figure 6.11 System-level Complexity Comparison of PMLP Files

0

200

400

600

800

1000

1200

Software Id

Bi
ts

0

5

10

15

20

25

30

N
um

be
r o

f I
nt

er
m

od
ul

e
H

yp
er

ed
ge

s

Information Metrics
Counting Metrics

1 2 3 4 5 6 7 8 9 10 11 12 13

Information Metrics 0 0 0 0 68 0 57.3 0 0 93 0 362 1108
Counting Metrics 0 0 0 0 5 0 3 0 0 5 0 8 25

Figure 6.12 System-level Coupling Comparison of PMLP Files

76

Bi
ts

Information Metrics
Counting Metrics

1 2 3 4 5 6 7 8 9 10 11 12 13

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

14

12

10

8

6

4

2

0

N
um

be
r o

f I
nt

ra
m

od
ul

e
H

yp
er

ed
ge

s

Software Id

Information Metrics 0.21 0.36 0.19 0.28 0 0.64 0.02 0.66 0.39 0.16 0.32 0.01 0
Counting Metrics 11 0.4 0.7 0.2 0 1.52 0.13 1.33 0.09 0.7 0.85 0.04 0

Figure 6.13 System-level Cohesion Comparison of PMLP Files

since we calculate the complexity by the number of hyperedges. For Table 6.18 the infor-

mation theory complexity is 87.0, and the counting complexity is 33, and for Table 6.19

the information theory complexity is 81.0, the same as that represented by Table 6.17, and

counting complexity is 33. It can therefore be noticed that information theory complex-

ity measure provides an insight if there is a change in the measure in spite of adding a

hyperedge, whereas counting metrics ignore this aspect.

Table 6.20 represents a graph for the grid.cpp file. The information coupling mea-

sure of this file is 68.0, and the counting coupling measure is 5. Table 6.21 represents

a graph for the dg scal gen.cpp file. The information coupling measure for this file is

321.5, whereas the counting coupling measure is 5. Looking at the two graphs it can be

noted that each system is coupled differently. The measure obtained from counting met-

rics ignores this fact, whereas information theory measure shows the differences between

the two systems. If we remove an intermodule hyperedge from the given system, then

the information coupling and information complexity decrease, information size either de-

77

Table 6.17 Nodes�Hyperedges Graph for dgMatrix.cpp

Module
env.

Node
0

Hyperedges
00000000000000000000000000000000

Matrix sort 11111111110111101101111110101101
Reorganizefull
Reorganize
�cMatrix

00000100001101110011000001100011
00000100001101110111000001100011
00000100001101010011000001100011

cMatrix 00000100001101010011000001110011
fstream 00000000000100000000000000100001
DG ERR Mem 00000000000000010000000000010001

Table 6.18 Information Complexity Increases When Adding a Hyperedge to Table 6.17

Module
env.

Node
0

Hyperedges
000000000000000000000000000000000

Matrix sort 111111111101111011011111101011010
Reorganizefull
Reorganize
�cMatrix

000001000011011100110000011000111
000001000011011101110000011000111
000001000011010100110000011000110

cMatrix 000001000011010100110000011100111
fstream 000000000001000000000000001000010
DG ERR Mem 000000000000000100000000000100010

Table 6.19 Information Complexity Remains the Same When Adding a Hyperedge

Module
env.

Node
0

Hyperedges
000000000000000000000000000000000

Matrix sort 111111111101111011011111101011011
Reorganizefull
Reorganize
�cMatrix

000001000011011100110000011000111
000001000011011101110000011000111
000001000011010100110000011000111

cMatrix 000001000011010100110000011100111
fstream 000000000001000000000000001000010
DG ERR Mem 000000000000000100000000000100010

78

creases, increases or remains the same, and the information cohesion remains the same

or increases. In the case of the counting metrics the coupling and complexity decrease,

cohesion either increases or remains the same, and the size always remains the same. It

can be inferred that if an intermodule hyperedge is removed, then the size of the system

either changes or remains the same, as shown by the information measures, whereas the

counting measure shows that the size is always the same, which is a contradiction.

Table 6.20 Nodes�Hyperedges Graph for grid.cpp

Module
env.

Node
0

Hyperedges
00000

Grid

psp grid

psp grid
operator=
psp grid
Get coor

11001
00110
11001
10110

Inc 01000
Dec 01000
Get all 01011

79

Table 6.21 Nodes�Hyperedges Graph for dg scal gen.cpp

Module
env.

Node
0

Hyperedges
00000000000000

cRealVector val 10000001000000
CVectorGenerator GenValue 10110001000011

SetNRows 00010000000000
�cVectorGenerator 00010000000000
cVectorGenerator 00000001000001

cMatrixGenerator Genvalue 10110001100010
SetSF 00010000000000
SetNRows 00010000000000
�cMatrixGenerator 00010000000000
FillFullBand 00000000000010

tINIProcesor ProcessDG BANDR DIR 01000000010100
cVectorGenerator 00000001000000
ProcessDG COL DIR 00000000000110

cBaseVector GetNNZ 00100000000000
Row 00000001000000

cComplexVector

cMatrix

Repart
Impart
DG ERR MEM

00000101001000
00001001000000
00010010000000

�cMatrix 00010000000000

80

Ta
bl

e
6.

22
 S

ta
tis

tic
al

 A
na

ly
si

s o
f t

es
td

lg
.c

pp
 w

ith
 T

w
o

M
od

ul
es

M
ea

n
St

d.
 D

ev

M
in

M

ax

Sk
ew

ne
ss

Va

ria
nc

e
K

ur
to

si
s

M
ed

ia
n

R
an

ge

IQ
R

fil

e1
.c

pp
Sy

st
em

In
fo

Si
ze

6.

00

0.
00

6.

00

6.
00

—

0.

00

—

6.
00

0.

00

0.
00

Sy

st
em

In
fo

C
om

pl
ex

ity

2.
49

0.

00

2.
49

2.

49

—

0.
00

—

2.

49

0.
00

0.

00

Sy
st

em
In

fo
C

ou
pl

in
g

0.
00

0.

00

0.
00

0.

00

—

0.
00

—

0.

00

0.
00

0.

00

Sy
st

em
In

fo
C

oh
es

io
n

0.
21

0.

00

0.
21

0.

21

—

0.
00

—

0.

21

0.
00

0.

00

M
od

ul
eI

nf
oS

iz
e

3.
00

1.

41

2.
00

4.

00

—

2.
00

—

3.

00

2.
00

2.

00

M
od

ul
eI

nf
oC

om
pl

ex
ity

1.

25

0.
58

0.

83

1.
66

—

0.

35

—

1.
25

0.

83

0.
83

M

od
ul

eI
nf

oC
ou

pl
in

g
0.

00

0.
00

0.

00

0.
00

—

0.

00

—

0.
00

0.

00

0.
00

M

od
ul

eI
nf

oC
oh

es
io

n
0.

21

0.
00

0.

21

0.
21

—

0.

00

—

0.
21

0.

00

0.
00

Sy

st
em

C
ou

nt
in

gS
iz

e
3.

00

0.
00

3.

00

3.
00

—

0.

00

—

3.
00

0.

00

0.
00

Sy

st
em

C
ou

nt
in

gC
om

pl
ex

ity

33
.0

0
0.

00

33
.0

0
33

.0
0

—

0.
00

—

33

.0
0

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

ou
pl

in
g

0.
00

0.

00

0.
00

0.

00

—

0.
00

—

0.

00

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

oh
es

io
n

11
.0

0
0.

00

11
.0

0
11

.0
0

—

0.
00

—

11

.0
0

0.
00

0.

00

M
od

ul
eC

ou
nt

in
gS

iz
e

1.
50

0.

71

1.
00

2.

00

—

0.
50

—

1.

50

1.
00

1.

00

M
od

ul
eC

ou
nt

in
gC

om
pl

ex
ity

16

.5
0

21
.9

2
1.

00

32
.0

0
—

48

0.
50

—

16

.5
0

31
.0

0
31

.0
0

M
od

ul
eC

ou
nt

in
gC

ou
pl

in
g

0.
00

0.

00

0.
00

0.

00

—

0.
00

—

0.

00

0.
00

0.

00

M
od

ul
eC

ou
nt

in
gC

oh
es

io
n

32
.0

0
32

.0
0

32
.0

0
32

.0
0

—

—

—

32
.0

0
0.

00

0.
00

St
d.

 D
ev

 m
ea

ns
 S

ta
nd

ar
d

D
ev

ia
tio

n.

IQ
R

 m
ea

ns
 In

te
rq

ua
rti

le
 R

an
ge

.

81

Ta
bl

e
6.

23
 S

ta
tis

tic
al

 A
na

ly
si

s o
f g

rid
.c

pp
 w

ith
 T

w
o

M
od

ul
es

M
ea

n
St

d.
 D

ev

M
in

M

ax

Sk
ew

ne
ss

Va

ria
nc

e
K

ur
to

si
s

M
ed

ia
n

R
an

ge

IQ
R

fil

e1
.c

pp
Sy

st
em

In
fo

Si
ze

17

.0
0

0.
00

17

.0
0

17
.0

0
—

0.

00

—

17
.0

0
0.

00

0.
00

Sy

st
em

In
fo

C
om

pl
ex

ity

67
.9

8
0.

00

67
.9

8
67

.9
8

—

0.
00

—

67

.9
8

0.
00

0.

00

Sy
st

em
In

fo
C

ou
pl

in
g

67
.9

8
0.

00

67
.9

8
67

.9
8

—

0.
00

—

67

.9
8

0.
00

0.

00

Sy
st

em
In

fo
C

oh
es

io
n

0.
00

0.

00

0.
00

0.

00

—

0.
00

—

0.

00

0.
00

0.

00

M
od

ul
eI

nf
oS

iz
e

8.
50

4.

94

5.
00

12

.0
0

—

24
.5

0
—

8.

50

7.
00

7.

00

M
od

ul
eI

nf
oC

om
pl

ex
ity

33

.9
9

18
.7

8
20

.7
1

47
.2

7
—

35

2.
68

—

33

.9
9

26
.5

6
26

.5
6

M
od

ul
eI

nf
oC

ou
pl

in
g

33
.9

9
18

.7
8

20
.7

1
47

.2
7

—

35
2.

68

—

33
.9

9
26

.5
6

26
.5

6
M

od
ul

eI
nf

oC
oh

es
io

n
0.

00

0.
00

0.

00

0.
00

—

0.

00

—

0.
00

0.

00

0.
00

Sy

st
em

C
ou

nt
in

gS
iz

e
7.

00

0.
00

7.

00

7.
00

—

0.

00

—

7.
00

0.

00

0.
00

Sy

st
em

C
ou

nt
in

gC
om

pl
ex

ity

5.
00

0.

00

5.
00

5.

00

—

0.
00

—

5.

00

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

ou
pl

in
g

5.
00

0.

00

5.
00

5.

00

—

0.
00

—

5.

00

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

oh
es

io
n

0.
00

0.

00

0.
00

0.

00

—

0.
00

—

0.

00

0.
00

0.

00

M
od

ul
eC

ou
nt

in
gS

iz
e

3.
50

2.

12

2.
00

5.

00

—

4.
50

—

3.

50

3.
00

3.

00

M
od

ul
eC

ou
nt

in
gC

om
pl

ex
ity

5.

00

0.
00

5.

00

5.
00

—

0.

00

—

5.
00

0.

00

0.
00

M

od
ul

eC
ou

nt
in

gC
ou

pl
in

g
8.

00

4.
24

5.

00

11
.0

0
—

18

.0
0

—

8.
00

6.

00

6.
00

M

od
ul

eC
ou

nt
in

gC
oh

es
io

n
0.

00

0.
00

0.

00

0.
00

—

0.

00

—

0.
00

0.

00

0.
00

St
d.

 D
ev

 m
ea

ns
 S

ta
nd

ar
d

D
ev

ia
tio

n.

IQ
R

 m
ea

ns
 In

te
rq

ua
rti

le
 R

an
ge

.

82

Ta
bl

e
6.

24
 S

ta
tis

tic
al

 A
na

ly
si

s o
f d

g
da

ta
 g

en
.c

pp
 w

ith
 S

ev
en

 M
od

ul
es

M
ea

n
St

d.
 D

ev

M
in

M

ax

Sk
ew

ne
ss

Va

ria
nc

e
K

ur
to

si
s

M
ed

ia
n

R
an

ge

IQ
R

fil

e1
.c

pp
Sy

st
em

In
fo

Si
ze

27

.8
4

0.
00

27

.8
4

27
.8

4
—

0.

00

—

27
.8

4
0.

00

0.
00

Sy

st
em

In
fo

C
om

pl
ex

ity

84
.5

1
0.

00

84
.5

1
84

.5
1

—

0.
00

—

84

.5
1

0.
00

0.

00

Sy
st

em
In

fo
C

ou
pl

in
g

57
.2

6
0.

00

57
.2

6
57

.2
6

—

0.
00

—

57

.2
6

0.
00

0.

00

Sy
st

em
In

fo
C

oh
es

io
n

0.
02

0.

00

0.
02

0.

02

—

0.
00

—

0.

02

0.
00

0.

00

M
od

ul
eI

nf
oS

iz
e

3.
98

1.

73

1.
87

6.

92

0.
68

2.

98

0.
03

3.

46

5.
04

2.

87

M
od

ul
eI

nf
oC

om
pl

ex
ity

12

.0
7

7.
08

1.

24

20
.4

7
-0

.4
9

50
.2

4
-1

.0
3

13
.9

2
19

.2
3

13
.9

2
M

od
ul

eI
nf

oC
ou

pl
in

g
8.

18

5.
24

0.

00

15
.4

4
-0

.3
1

27
.4

7
-0

.6
3

10
.1

9
15

.4
4

6.
75

M

od
ul

eI
nf

oC
oh

es
io

n
0.

05

0.
05

0.

00

0.
10

0.

00

0.
00

2
-2

.6
0

0.
05

0.

10

0.
10

Sy

st
em

C
ou

nt
in

gS
iz

e
10

.0
0

0.
00

10

.0
0

10
.0

0
—

0.

00

—

10
.0

0
0.

00

0.
00

Sy

st
em

C
ou

nt
in

gC
om

pl
ex

ity

9.
00

0.

00

9.
00

9.

00

—

0.
00

—

9.

00

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

ou
pl

in
g

3.
00

0.

00

3.
00

3.

00

—

0.
00

—

3.

00

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

oh
es

io
n

0.
13

0.

00

0.
13

0.

13

—

0.
00

—

0.

13

0.
00

0.

00

M
od

ul
eC

ou
nt

in
gS

iz
e

1.
43

0.

53

1.
00

2.

00

0.
37

0.

29

-2
.8

0
1.

00

1.
00

1.

00

M
od

ul
eC

ou
nt

in
gC

om
pl

ex
ity

2.

29

1.
11

1.

00

4.
00

0.

25

1.
24

-0

.9
4

2.
00

3.

00

2.
00

M

od
ul

eC
ou

nt
in

gC
ou

pl
in

g
1.

57

0.
98

0.

00

3.
00

-0

.2
7

0.
95

0.

04

2.
00

3.

00

1.
00

M

od
ul

eC
ou

nt
in

gC
oh

es
io

n
0.

75

1.
50

0.

00

3.
00

2.

00

2.
25

4.

00

0.
00

3.

00

1.
50

St
d.

 D
ev

 m
ea

ns
 S

ta
nd

ar
d

D
ev

ia
tio

n.

IQ
R

 m
ea

ns
 In

te
rq

ua
rti

le
 R

an
ge

.

83

Ta
bl

e
6.

25
 S

ta
tis

tic
al

 A
na

ly
si

s o
f d

g
ve

c
ge

n.
cp

p
w

ith
 F

ou
r M

od
ul

es

M
ea

n
St

d.
 D

ev

M
in

M

ax

Sk
ew

ne
ss

Va

ria
nc

e
K

ur
to

si
s

M
ed

ia
n

R
an

ge

IQ
R

fil

e1
.c

pp
Sy

st
em

In
fo

Si
ze

49

.4
9

0.
00

49

.4
9

49
.4

9
—

0.

00

—

49
.4

9
0.

00

0.
00

Sy

st
em

In
fo

C
om

pl
ex

ity

26
6.

54

0.
00

26

6.
54

26

6.
54

—

0.

00

—

26
6.

54

0.
00

0.

00

Sy
st

em
In

fo
C

ou
pl

in
g

92
.9

8
0.

00

92
.9

8
92

.9
8

—

0.
00

—

92

.9
8

0.
00

0.

00

Sy
st

em
In

fo
C

oh
es

io
n

0.
16

0.

00

0.
16

0.

16

—

0.
00

—

0.

15

0.
00

0.

00

M
od

ul
eI

nf
oS

iz
e

12
.3

7
12

.1
9

3.
81

30

.4
6

1.
87

14

8.
68

3.

62

7.
62

26

.6
5

13
.3

3
M

od
ul

eI
nf

oC
om

pl
ex

ity

66
.6

4
74

.7
7

21
.6

9
17

7.
73

1.

89

55
91
.0
2

3.
59

33

.5
6

15
6.

04

88
.6

1
M

od
ul

eI
nf

oC
ou

pl
in

g
23

.2
4

12
.9

3
14

.1
4

41
.5

6
1.

43

16
7.
12

1.

57

18
.6

4
27

.4
2

18
.2

2
M

od
ul

eI
nf

oC
oh

es
io

n
0.

09

0.
15

0.

00

0.
31

1.

94

0.
02

3.

81

0.
03

0.

31

0.
16

Sy

st
em

C
ou

nt
in

gS
iz

e
13

.0
0

0.
00

13

.0
0

13
.0

0
—

0.

00

—

13
.0

0
0.

00

0.
00

Sy

st
em

C
ou

nt
in

gC
om

pl
ex

ity

62
.0

0
0.

00

62
.0

0
62

.0
0

—

0.
00

—

62

.0
0

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

ou
pl

in
g

5.
00

0.

00

5.
00

5.

00

—

0.
00

—

5.

00

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

oh
es

io
n

0.
73

0.

00

0.
73

0.

73

—

0.
00

—

0.

73

0.
00

0.

00

M
od

ul
eC

ou
nt

in
gS

iz
e

3.
25

3.

20

1.
00

8.

00

1.
87

10

.2
5

3.
62

2.

00

7.
00

3.

50

M
od

ul
eC

ou
nt

in
gC

om
pl

ex
ity

17

.7
5

27
.5

1
3.

00

59
.0

0
1.

99

75
6.
92

3.

98

4.
50

56

.0
0

28
.5

0
M

od
ul

eC
ou

nt
in

gC
ou

pl
in

g
5.

75

4.
27

3.

00

12
.0

0
1.

73

18
.3
0

2.
92

4.

00

9.
00

5.

50

M
od

ul
eC

ou
nt

in
gC

oh
es

io
n

1.
31

1.

14

0.
00

2.

00

-1
.7

2
1.

29

—

1.
93

2.

00

2.
00

St
d.

 D
ev

 m
ea

ns
 S

ta
nd

ar
d

D
ev

ia
tio

n.

IQ
R

 m
ea

ns
 In

te
rq

ua
rti

le
 R

an
ge

.

84

Ta
bl

e
6.

26
 S

ta
tis

tic
al

 A
na

ly
si

s o
f d

g
sc

al
 g

en
.c

pp
 w

ith
 S

ev
en

 M
od

ul
es

M
ea

n
St

d.
 D

ev

M
in

M

ax

Sk
ew

ne
ss

Va

ria
nc

e
K

ur
to

si
s

M
ed

ia
n

R
an

ge

IQ
R

fil

e5
.c

pp
Sy

st
em

In
fo

Si
ze

59

.8
5

0.
00

59

.8
5

59
.8

5
—

0.

00

—

59
.8

5
0.

00

0.
00

Sy

st
em

In
fo

C
om

pl
ex

ity

40
2.

37

0.
00

40

2.
37

40

2.
37

—

0.

00

—

40
2.

37

0.
00

0.

00

Sy
st

em
In

fo
C

ou
pl

in
g

36
1.

70

0.
00

36

1.
70

36

1.
70

—

0.

00

—

36
1.

70

0.
00

0.

00

Sy
st

em
In

fo
C

oh
es

io
n

0.
01

0.

00

0.
01

0.

01

—

0.
00

—

0.

01

0.
00

0.

00

M
od

ul
eI

nf
oS

iz
e

8.
55

2.

99

4.
32

12

.9
0

0.
08

8.

97

-0
.9

3
8.

64

8.
53

5.

32

M
od

ul
eI

nf
oC

om
pl

ex
ity

57

.4
8

37
.7

2
21

.9
9

11
3.

09

1.
03

14
22
.7
6

-0
.9

6
40

.1
9

91
.0

9
78

.4
0

M
od

ul
eI

nf
oC

ou
pl

in
g

51
.6

7
36

.5
1

26
.3

0
10

6.
59

1.

15

13
33
.1
4

-0
.8

7
33

.3
6

85
.3

3
73

.3
0

M
od

ul
eI

nf
oC

oh
es

io
n

0.
06

0.

11

0.
00

0.

27

1.
72

0.

01

2.
13

0.

00

0.
26

0.

14

Sy
st

em
C

ou
nt

in
gS

iz
e

19
.0

0
0.

00

19
.0

0
19

.0
0

—

0.
00

—

19

.0
0

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

om
pl

ex
ity

14

.0
0

0.
00

14

.0
0

14
.0

0
—

0.

00

—

14
.0

0
0.

00

0.
00

Sy

st
em

C
ou

nt
in

gC
ou

pl
in

g
8.

00

0.
00

8.

00

8.
00

—

0.

00

—

8.
00

0.

00

0.
00

Sy

st
em

C
ou

nt
in

gC
oh

es
io

n
0.

04

0.
00

0.

04

0.
04

—

0.

00

—

0.
10

0.

00

0.
00

M

od
ul

eC
ou

nt
in

gS
iz

e
2.

71

1.
38

1.

00

5.
00

0.

71

1.
90

-0

.3
2

2.
00

4.

00

2.
00

M

od
ul

eC
ou

nt
in

gC
om

pl
ex

ity

4.
71

2.

63

2.
00

8.

00

0.
36

6.
90

-1

.9
4

4.
00

6.

00

6.
00

M

od
ul

eC
ou

nt
in

gC
ou

pl
in

g
5.

28

4.
61

2.

00

12
.0

0
1.

89

21
.2
4

-0
.8

7
3.

00

10
.0

0
10

.0
0

M
od

ul
eC

ou
nt

in
gC

oh
es

io
n

0.
86

1.

46

0.
00

3.

00

1.
23

2.

14

-0
.8

4
0.

00

3.
00

3.

00

St
d.

 D
ev

 m
ea

ns
 S

ta
nd

ar
d

D
ev

ia
tio

n.

IQ
R

 m
ea

ns
 In

te
rq

ua
rti

le
 R

an
ge

.

85

Ta
bl

e
6.

27
 S

ta
tis

tic
al

 A
na

ly
si

s o
f d

g
ve

ct
or

.c
pp

 w
ith

 T
hr

ee
 M

od
ul

es

M
ea

n
St

d.
 D

ev

M
in

M

ax

Sk
ew

ne
ss

Va

ria
nc

e
K

ur
to

si
s

M
ed

ia
n

R
an

ge

IQ
R

fil

e1
.c

pp
Sy

st
em

In
fo

Si
ze

77

.3
8

0.
00

77

.3
8

77
.3

8
—

0.

00

—

77
.3

8
0.

00

0.
00

Sy

st
em

In
fo

C
om

pl
ex

ity

11
07

.6
2

0.
00

11

07
.6

2
11

07
.6

2
—

0.

00

—

11
07

.6
2

0.
00

0.

00

Sy
st

em
In

fo
C

ou
pl

in
g

11
07

.6
2

0.
00

11

07
.6

2
11

07
.6

2
—

0.

00

—

11
07

.6
2

0.
00

0.

00

Sy
st

em
In

fo
C

oh
es

io
n

0.
00

0.

00

0.
00

0.

00

—

0.
00

—

0.

00

0.
00

0.

00

M
od

ul
eI

nf
oS

iz
e

25
.7

9
8.

42

17
.5

4
34

.3
8

0.
18

70

.9
6

25
.4

6
16

.8
4

16
.8

4
M

od
ul

eI
nf

oC
om

pl
ex

ity

36
9.

21

10
8.

56

26
6.

36

48
2.

70

0.
44

11
78
5.
39

—

35

8.
56

21

6.
34

21

6.
34

M

od
ul

eI
nf

oC
ou

pl
in

g
36

9.
21

10

8.
56

26

6.
36

48

2.
70

0.

44

11
78
5.
39

—

35

8.
56

21

6.
34

21

6.
34

M

od
ul

eI
nf

oC
oh

es
io

n
0.

00

0.
00

0.

00

0.
00

—

0.

00

—

0.
00

0.

00

0.
00

Sy

st
em

C
ou

nt
in

gS
iz

e
21

.0
0

0.
00

21

.0
0

21
.0

0
—

0.

00

—

21
.0

0
0.

00

0.
00

Sy

st
em

C
ou

nt
in

gC
om

pl
ex

ity

25
.0

0
0.

00

25
.0

0
25

.0
0

—

0.
00

—

25

.0
0

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

ou
pl

in
g

25
.0

0
0.

00

25
.0

0
25

.0
0

—

0.
00

—

25

.0
0

0.
00

0.

00

Sy
st

em
C

ou
nt

in
gC

oh
es

io
n

0.
00

0.

00

0.
00

0.

00

—

0.
00

—

0.

00

0.
00

0.

00

M
od

ul
eC

ou
nt

in
gS

iz
e

7.
00

2.

00

5.
00

9.

00

0.
00

4.

00

—

7.
00

4.

00

4.
00

M

od
ul

eC
ou

nt
in

gC
om

pl
ex

ity

24
.3

3
1.

15

23
.0

0
25

.0
0

-1
.7

3
1.
33

—

25

.0
0

2.
00

2.

00

M
od

ul
eC

ou
nt

in
gC

ou
pl

in
g

57
.6

7
12

.5
8

46
.0

0
71

.0
0

0.
58

15
8.
33

—

56

.0
0

25
.0

0
25

.0
0

M
od

ul
eC

ou
nt

in
gC

oh
es

io
n

0.
00

0.

00

0.
00

0.

00

—

0.
00

—

0.

00

0.
00

0.

00

St
d.

 D
ev

 m
ea

ns
 S

ta
nd

ar
d

D
ev

ia
tio

n.

IQ
R

 m
ea

ns
 In

te
rq

ua
rti

le
 R

an
ge

.

86

Table 6.28 summarizes the statistic variables used for the analysis.

Table 6.28 Statistic Variables

Variable Definition
Mean Commonly called the average (sum of all distribution divided

by the number of distribution)
Standard Deviation A measure of how spread out a distribution is (the square

root of the variance)
Variance A measure of how spread out a distribution is (the average

squared deviation of each number from its mean)
Skewness A measure of symmetry
Kurtosis A measure of whether the distribution is peaked or flat relative

to a normal distribution
Median The central value, lying above and below half of the values.
Range The difference between the largest and smallest values in the

sample
Interquartile range The difference between the upper and lower quartile

The SAS measurements were interesting only for the module-level metrics rather than

the system-level, because the system-level metrics had only one observation. For the

ModuleSize the mean, standard deviation and variance of the information metric were

high compared to the counting metrics but were proportional. This shows that the count-

ing metric is adequate. The skewness of all files and for both metrics were positive. This

shows that all the values are bunched to the right of the mean. The kurtosis of informa-

tion metric and counting metric for some files was opposite (either positive or negative),

showing a contradiction between the two metrics. For the ModuleComplexity, the mean

of the information metric was high and proportional to the counting metric, except for

87

testdlg.cpp. From this it can be said that file1 may be having a same row pattern for some

nodes, which may have reduced the complexity in case of information metrics but is ig-

nored by the counting metrics. In such a case the information theory metrics are adequate.

The standard deviation and variance were also high but not proportional. The skewness

and kurtosis of the counting metric was opposite (either positive or negative) to the infor-

mation metric in some of the files. For the ModuleCoupling, the mean of the information

metric and the counting metric were proportional, while the standard deviation and vari-

ance were not proportional. The skewness was almost the same for both the information

and the counting metric, but the kurtosis was opposite (either positive or negative) for

some files. For the ModuleCohesion the mean, standard deviation and variance of the in-

formation metric were almost proportional to the counting metric except for testdlg.cpp

which had a very high cohesion value of 32. The cohesion measure lies between zero and

one. A couple of files showed that the counting cohesion was greater than 1. In such a case

the information metric is adequate. The skewness and kurtosis of the counting metrics was

opposite (either positive or negative) to the information metric in some of the files.

6.4 Analysis of Research Questions

The following are the research questions and answers that provide evidence for the

hypothesis.

Question 1. What are the similarities and differences between the distribution
of information theory-based metrics and counting-based metrics?

88

Due to similarities one may use either the information metrics or the counting met-

rics. The differences make the analyst think about which metric is suitable for the analy-

sis. From the case study of artificially generated examples, the similarity observed is that

when adding a node the information size and the counting size increase. When adding

an ordinary edge, the information complexity and counting complexity remain the same,

and in the case of adding a hyperedge, the complexity of the two metrics increases. The

difference observed between the two metrics is that the counting measurements are sen-

sitive to multiple hyperedges connected to exactly the same nodes, while the information

measurements are not.

From the case study of the physics program, the similarity observed is that when one

uses a metric to order a module, the corresponding information metric and the counting

metric generally result in the same order. From the case study of the PMLP software, the

similarity observed is that the information size and counting size are highly correlated, as

were information coupling and counting coupling. Consequently, the order of modules

is the same according to the size or coupling attributes. In other words, they measure

similar attributes. The difference observed is that the information complexity and the

counting complexity are not highly correlated. This means that the two measurements are

measuring different attributes.

Question 2. Do the distributions of measurement values yield insight into the
software development process and resulting product attributes?

The results from the case studies of the physics program and PMLP provide an insight

into the software development process and resulting product attributes. In the case study

89

of the physics programs, it is observed that one module had more complexity than the

other modules in the system, while another module contributed more to all the system-

level metrics. In the PMLP case study, it is observed that the complexity measurements

of some files were high in spite of the files having a low size measure. It is also observed

that most of the files had zero coupling, meaning that variables were declared public but

were not used as public. Software engineers could use the nonzero coupling measurement

to identify where public variables are used.

Question 3. Does each information theory-based measure preserve our intu-
ition about its attribute?

Almost all of the information theory-based measures satisfy the properties defined

by Briand, Morasca and Basili [11]. There were few exceptions, such as the module

complexity resulted in a negative measure, and the counting cohesion measured greater

than one in some cases.

Question 4. Does the measurement instrument (tool) precisely specify how to
capture measurement data?

The measurement tool calculates the system-level and module-level measurements of

size, complexity, coupling, and cohesion of both information theory-based metrics and

counting-based metrics. The tool also specifies how to capture the data.

Question 5. Does the measurement protocol (procedure) assure consistent,
repeatable measurements that are independent of the measurer and the mea-
surement environment?

90

The results of three case studies provide evidence that the measurement protocol as-

sures consistent, repeatable measurements that are independent of the measurer and the

measurement environment.

CHAPTER VII

CONCLUSIONS

7.1 Evaluation of Hypothesis

The hypothesis of this research is

Information theory-based software metrics proposed by Allen [3], namely,
size, complexity, coupling, and cohesion, can be useful in real-world software
development projects, compared to the counting-based metrics.

The study included an analysis of three case studies. The research questions answered

in Chapter VI provide some evidence for the hypothesis.

Question 1. What are the similarities and differences between the distribution
of information theory-based metrics and counting-based metrics?

Similarities were seen in the size measure and the coupling measure. One can either

use information metrics or counting metrics for the calculation of the size and the cou-

pling attributes because of the similarities. In case of the complexity measure, information

metrics are more sensitive than counting metrics because counting metrics just count the

number of hyperedges, whereas information metrics are sensitive to the configuration of

the hypergraphs. However, there is a drawback in the module-level complexity measure

based on information theory. For certain conditions the modular complexity measure is

negative, which is not desirable according to Briand, Morasca, and Basili [11]. In the case

91

92

of cohesion, the information metric is useful compared to the counting metric because the

cohesion measure is a factor that lies between zero and one. Counting cohesion measure-

ment may have values greater than one, which is not a desirable property according to

Briand, Morasca, and Basili [11].

Question 2. Do the distributions of measurement values yield insight into the
software development process and resulting product attributes?

The case study found that the distribution of measurement values does provide insight

into the development process and the resulting product attributes such as the nonzero cou-

pling measure in the PMLP software.

Question 3. Does each information theory-based measure preserve our intu-
ition about its attribute?

Each information theory-based measure preserves our intuition about its attribute ex-

cept for module complexity, which could have negative values in certain circumstances.

Question 4. Does the measurement instrument (tool) precisely specify how to
capture measurement data?

The measurement instrument is software, therefore how to capture measurement data

is not ambiguous.

Question 5. Does the measurement protocol (procedure) assure consistent,
repeatable measurements that are independent of the measurer and the mea-
surement environment?

The measurement protocol formally assures consistent, repeatable measurements that

are independent of the measurer and the measurement environment because our measure-

ment procedures do not require subjective decisions and they make extensive use of soft-

ware tools.

93

One may prefer the information complexity and cohesion measures over the counting

metrics because the complexity measure is sensitive to configuration of the hypergraphs

and the cohesion measure lies in the range zero to one. Since the size and coupling mea-

sures of the information metrics and counting metrics are similar, one may prefer to use the

counting metrics because counting the number of nodes or the number of intermodule hy-

peredges is easier. The information theory-based measures made finer-grain distinctions.

Discovery of rare module attributes might require exploiting the finer-grain distinctions

offered by the information theory-based metrics in conjunction with the coarser counting-

based metrics.

7.2 Future Work

The complexity metrics based on information theory are better than the correspond-

ing counting metrics except for the drawback of the negative module complexity. Future

work may mathematically prove our conjecture of conditions that make the metric nega-

tive. Further the formula for the counting cohesion measure should be revised so that the

measurements lie between zero and one. Additional case studies should be done to further

evaluate the hypothesis and the factor of fault-proneness in relation to the metrics may be

investigated.

REFERENCES

[1] E. B. Allen, Information Theory and Software Measurements, doctoral dissertation,
Florida Atlantic University, Boca Raton, Florida, Aug 1995.

[2] E. B. Allen, “Empirical Validation of Information Theory-Based Software Metrics,”
Proposal for National Science Foundation, Sept. 2001.

[3] E. B. Allen, “Measuring Graph Abstraction of Software: An Information-Theory
Approach,” Proceedings: Eighth IEEE Symposium on Software Metrics, Ottawa,
Canada, June 2002, IEEE Computer Society, pp. 182–193.

[4] E. B. Allen and S. Gottipati, Measuring Size, Complexity, and Coupling of Hy-
pergraphs Abstraction of Software: An Information-Theory Approach, Tech. Rep.
MSU-021219, Mississippi State University, Mississippi, Dec 2002.

[5] E. B. Allen and T. M. Khoshgoftaar, “Measurement of Software Design Cohesion,”
Proceedings of 5th ISSAT International Conference on Reliability and Quality in
Design, Las Vegas, Nevada, Aug. 1999, International Society of Science and Applied
Technologies, pp. 158–163.

[6] E. B. Allen and T. M. Khoshgoftaar, “Measuring Coupling and Cohesion: An
Information-Theory Approach,” Proceeding: Sixth International Software Metrics
Symposium, Boca Raton, Florida, Nov. 1999, IEEE Computer Society, pp. 119–127.

[7] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen, “Measuring Coupling and Cohesion of
Software Modules: An Information-Theory Approach,” Proceedings: Seventh Inter-
national Software Metrics Symposium, London, Apr. 2001, IEEE Computer Society,
pp. 124–134.

[8] L. C. Briand, J. Daly, V. Porter, and J. Wüst, “A Comprehensive Empirical Validation
of Design Mesaures for Object-Oriented Systems,” Proceedings: Fifth International
Software Metrics Symposium, Bethesda, Maryland, Nov. 1998, IEEE Computer So-
ciety, pp. 246–257.

[9] L. C. Briand, J. W. Daly, and J. K. Wüst, “A Unified Framework for Cohesion
Measurement in Object-Oriented Systems,” Empirical Software Engineering: An
International Journal, vol. 3, no. 1, Dec. 1998, pp. 65–117.

94

95

[10] L. C. Briand, J. W. Daly, and J. K. Wüst, “A Unified Framework for Coupling Mea-
surement in Object-Oriented Systems,” IEEE Transaction on Software Engineering,
vol. 25, no. 1, Jan. 1999, pp. 91–121.

[11] L. C. Briand, S. Morasca, and V. R. Basili, “Property-Based Software Engineering
Measurement,” IEEE Transaction on Software Engineering, vol. 22, no. 1, Jan. 1996,
pp. 68–85.

[12] L. C. Briand, S. Morasca, and V. R. Basili, “Defining and Validating Measures for
Object-Based High-Level Design,” IEEE Transaction on Software Engineering, vol.
25, no. 5, Sept. 1999, pp. 722–743.

[13] N. E. Fenton and S. L. Pfleeger, A Rigorous and Practical Approach, 2nd edition,
PWS Publishing Company, Boston, Massachusetts, Jan. 1997.

[14] R. Hochman, Software Reliability Engineering: An Evolutionary Neural Network
Approach, master’s thesis, Florida Atlantic University, Boca Raton, Florida, Dec.
1997.

[15] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 2nd
edition, Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1988.

[16] S. Jordan, Software Metrics Collection: Two New Reasearch Tools, master’s thesis,
Florida Atlantic University, Boca Raton, Florida, Dec. 1997.

[17] T. M. Khoshgoftaar and E. B. Allen, “A Practical Classification Rule for Software
Quality Models,” IEEE Transaction on Reliability, vol. 49, no. 2, June 2000, pp.
209–216.

[18] B. A. Kitchenham, S. L. Pfleeger, and N. E. Fenton, “Towards a Framework for
Software Measurement Validation,” IEEE Transaction on Software Engineering,
vol. 21, no. 12, Dec. 1995, pp. 929–944, See comments in [19] and [21].

[19] B. A. Kitchenham, S. L. Pfleeger, and N. E. Fenton, “Reply to: Comments on ‘To-
wards a Framework for Software Measurement Validation’,” IEEE Transaction on
Software Engineering, vol. 23, no. 3, Mar. 1997, p. 189.

[20] S. Morasca and L. C. Briand, “Towards a Theoretical Framework for Measuring
Software Attributes,” Proceedings: Fourth International Symposium on Software
Metrics, Albuquerque, New Mexico, Nov. 1997, IEEE Computer Society, pp. 119–
126.

[21] S. Morasca, L. C. Briand, V. R. Basili, E. J. Weyuker, and M. V. Zelkowitz, “Com-
ments on ‘Towards a Framework for Software Measurement Validation’,” IEEE
Transaction on Software Engineering, vol. 23, no. 3, Mar. 1997, pp. 187–188, See
[18].

96

[22] S. L. Pfleeger, R. Jeffery, B. Curtis, and B. A. Kitchenham, “Status Report on Soft-
ware Measurement,” IEEE Software, vol. 14, no. 2, Mar. 1997, pp. 33–43.

[23] G. Poels and G. Dedene, “Comments on ‘Property-Based Software Engineering
Measurement’: Refining the Additivity Properties,” IEEE Transaction on Software
Engineering, vol. 23, no. 3, Mar. 1997, pp. 190–195, See [11].

[24] N. F. Schneidewind, “Methodology for Validating Software Metrics,” IEEE Trans-
action on Software Engineering, vol. 18, no. 5, May 1992, pp. 410–422.

[25] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, Uni-
versity of Illinois Press, Urbana, Illinois, 1949.

[26] F. Shull, F. Lanubile, and V. R. Basili, “Investigating Reading Techniques for Object-
Oriented Framework Learning,” IEEE Transaction on Software Engineering, vol. 26,
no. 11, Nov. 2000, pp. 1101–1118.

[27] M. H. van Emden, “Hierarchical Decomposition of Complexity,” Machine Intelli-
gence, 1970, pp. 5:361–380.

[28] H. Zuse, “Reply to ‘Property-Based Software Engineering Measurement’,” IEEE
Transaction on Software Engineering, vol. 23, no. 8, Aug. 1997, p. 533, See [11].

	Empirical Validation of the Usefulness of Information Theory-Based Software Metrics
	Recommended Citation

	examplethesis.dvi

