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Software designs consist of software components and their relationships. Graphs are 

abstraction of software designs. Graphs composed of nodes and hyperedges are attractive 

for depicting software designs. Measurement of abstractions quantify relationships that 

exist among components. Most conventional metrics are based on counting. In contrast, 

this work adopts information theory because design decisions are information. 

The goal of this research is to show that information theory-based metrics proposed by 

Allen, namely size, complexity, coupling, and cohesion, can be useful in real-world soft-

ware development projects, compared to the counting-based metrics. The thesis includes 

three case studies with the use of global variables as the abstraction. It is observed that 

one can use the counting metrics for the size and coupling measures and the information 

metrics for the complexity and cohesion measures. 
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CHAPTER I 

INTRODUCTION 

Criteria such as construct validity, internal validity and external validity can be con-

sidered to evaluate the quality of any empirical study [26]. “Threats to internal validity 

are unaccounted influences that may affect case study results” [2]. In practice, faults are 

caused by a wide variety of conditions. The number of faults in each module may be due 

a number of things that were not measured. Using a variety of independent variables in 

each model is a strategy to avoid threats to internal validity. “Threats to external validity 

are conditions that limit generalization of results” [2]. As experiments to demonstrate the 

usefulness of software metrics are not feasible, we use a case study approach. 

The hypothesis of this research is: 

Information theory-based software metrics proposed by Allen [3], namely, 
size, complexity, coupling, and cohesion, can be useful in real-world software 
development projects, compared to counting-based metrics. 

This research is motivated by the hope that information metrics are more useful than 

counting metrics. The following research questions, whose answers provide evidence for 

the hypothesis, are answered in Chapter VI using three case studies: 

1. What are the similarities and differences between the distribution of information 
theory-based metrics and counting-based metrics? 

2. Do the distributions of measurement values yield insight into the software develop-
ment process and resulting product attributes? 

1 



2 

3. Does each information theory-based measure preserve our intuition about its at-
tribute? 

4. Does the measurement instrument (tool) precisely specify how to capture measure-
ment data? 

5. Does the measurement protocol (procedure) assure consistent, repeatable measure-
ments that are independent of the measurer and the measurement environment? 

Very often the software community discusses designs in terms of size, length, com-

plexity, coupling, cohesion, etc. The designs are attractively depicted by graphs that are 

widely used in the software industry. Briand, Morasca, Basili [11] proposed definitions for 

the attributes (size, length, complexity, coupling, and cohesion) based on graphs and later 

extended their framework from graphs to relations in general [20]. Most of their metrics 

are based on counting. In contrast, this work adopts information theory as a foundation 

because design decisions embodied by a graph abstraction of software are information [3]. 

The field of software metrics embraces collection, analysis and modeling of measure-

ments of software [13]. It refers to a broad range of measures for software engineering. 

Fenton and Pfleeger [13] say that a software metric is a quantitative measure of the degree 

to which a system possesses a given attribute. If we are able to regularly collect software 

metrics, then we have a way of tracking project process, measuring complexity, knowing 

if we have reached a desired state of quality, etc. 

Software metrics are recognized in broad categories: processes, products, resources, 

and quality. “Process” refers to any software-related activities that normally have a time 

factor [14]. A process can be any part of the software development cycle, from require-

ments to retirement. Products can be defined as any artifacts, deliverables, or documents 
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that arise out of the processes [14]. Products include specification and design documents 

at various levels of detail. Resources are the items that are input to processes [14]. At-

tributes can be classified as internal attributes and external attributes. Internal attributes 

are those that can be measured in terms of the entity itself. For example, size, modularity, 

reuse, and functionality are internal attributes. External attributes are those that can be 

measured with respect to how the entities relate to their environment, e.g., usability and 

maintainability. Without a measurable definition of software product quality, no quantita-

tive approach to software quality can be complete. Moreover, we need quality measures 

if we are to improve our product. Software metrics tell us about the quality of a software 

product. Quality metrics are a subset of metrics measuring external attributes. 

We can classify the main classes of metrics into subclasses. Process metrics can be 

subdivided into maturity metrics, management metrics, and life cycle metrics. For product 

metrics the division is size metrics, architecture metrics, structure metrics, and complexity 

metrics. Resource metrics can be divided into personnel metrics, software metrics, and 

hardware metrics. Measurements require us to identify attributes possessed by clearly 

defined entities [14]. Direct measurement of an attribute must be preceded by intuitive 

understanding of that attribute, which leads to the identification of relationships between 

entities. 

Allen and Khoshgoftaar [6] proposed information theory-based measures of coupling 

and cohesion of graphs at the system level. Allen, Khoshgoftaar, and Chen [7] later pro-

posed information theory-based measures of coupling and cohesion of graphs at the mod-
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ule level. The paper by Allen [3] proposes related additional measures of size, length, 

complexity, as well as revised measures of coupling and coupling at the system and module 

levels. The research shows that the information theory-based metrics proposed by Allen 

[3] can be useful in real-world software development projects, compared to counting-based 

metrics. Table 1.1 summarizes the metrics to be compared in each family [2]. 

Table 1.1 Alternative Software Metrics 

Family Information theory-based metric Counting-based metric 
Size Information in graph Number of nodes 
Length Information in path Number of nodes in path 
Complexity Information in relationships Number of edges 
Coupling Information in intermodule Number of intermodule edges 

relationships 
Cohesion Information in intramodule Number of intramodule edges 

relationships divided by max- divided by maximum possible 
imum possible 

The development process details determine the set of abstractions that are likely to 

be related to faults. The thesis outlines the tasks to be accomplished and analyzes the 

steps to evaluate module-level metrics and system-level metrics. Information theory-based 

metrics are compared with counting-based metrics of size, length, complexity, coupling 

and cohesion. The remainder of the thesis summarizes the related work, definition of 

metrics, methodology, tools, and results. 



CHAPTER II 

RELATED WORK 

Briand, Morasca and Basili [11] proposed a mathematical framework to define several 

important measurement concepts (size, length, complexity, coupling, and cohesion). In 

their paper they refer to a paper by Parnas, who recommends decreasing coupling between 

modules and increasing cohesion within modules. Coupling and cohesion can be used 

as guides for choosing among alternative techniques or artifacts. The goal of Briand, 

Morasca and Basili’s paper is to provide properties for a partial set of concepts that are 

relevant in measurement of internal software attributes, which are most commonly found 

in software engineering literature. The investigation of measures may also address artifacts 

other than code that are produced in the software process. Early phases of the software 

development process produce artifacts, upon which the rest of the development depends. 

Concepts that are relevant with respect to code are also relevant to other artifacts. In their 

paper, Briand, Morasca and Basili [11] investigate size, length, and complexity related 

to systems in general, and coupling and cohesion related to modular systems. One can 

speak about coupling and cohesion of a whole system only if it is structured into modules. 

The properties of each attribute except the length are paraphrased in Chapter III, and the 

5 



6 

concept of modularity was also employed. In the case studies we considered a class to be 

a module. 

Morasca and Briand [20] provide an axiomatic approach for the definition of measures 

of software attributes in two ways: (i) they generalize the framework by considering �-ary 

relationships between system and module elements, and (ii) they propose a hierarchical ax-

iomatic framework where hierarchical levels map to levels of measurement. The axiomatic 

approaches can be combined with the theory of measurement scales so that, depending on 

the level of empirical understanding of the attribute, one can select an appropriate level 

of measurement and a suitable axiomatic framework [20]. They also discuss a variety of 

abstractions, but we have used the use of global variables as the abstraction. They have 

used ordinary edges as relations to show the relationship between elements, while we have 

used hyperedges to show the relationship. 

Poels and Dedene [23] contribute to a formal and rigorous approach to property-based 

software-engineering measurement because a number of inconsistencies related to addi-

tivity properties might hinder its acceptance and further elaboration. Poels and Dedene 

[23] show how to remove ambiguity by introducing the concept of connection strength 

between systems and modules. In the case study of artificial examples in Section 6.1, the 

additivity property did not show any ambiguity. 

It is difficult to determine how measures relate to one another and for which applica-

tion [9]. Briand, Daly, and Wüst [9] discuss a unified framework based on object-oriented 

cohesion measures for (i) comparing measures and their potential use, (ii) integrating ex-
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isting measures that examine the same concepts in different ways, and (iii) facilitating 

more rigorous decision making regarding the definition of new measures and the selection 

of existing measures for a specific goal of measurement. They also explain that some pro-

posed metrics do not satisfy the properties of coupling and cohesion defined by Briand, 

Morasca and Basili [11]. Our metrics satisfy the properties and are paraphrased in Chapter 

III. 

Coupling measurement in object-oriented systems requires a comprehensive frame-

work that can be used to facilitate comparison of existing measures, evaluation and em-

pirical validation of existing measures, and to support definitions of new measures [10]. 

Briand, Daly, and Wüst [10] provide a standard terminology and formalism for express-

ing measures, a structural synthesis, a review of the existing framework and measures for 

coupling in object-oriented systems. The properties of coupling are shown in Chapter III. 

Briand, Daly, Porter, and Wüst [8] discuss the fact that many of the coupling, cohesion, 

and inheritance measures studied in the literature appear to capture structural dimensions 

in the data. They empirically explore the relationships between existing object-oriented 

coupling, cohesion, and inheritance measures and the probability of fault detection in sys-

tem classes during testing [8]. They found that frequency of method invocation and depth 

of inheritance hierarchically seem to be the driving factors of fault-proneness. Since data 

was not available for us to do a similar case study, the factor of fault-proneness will be 

investigated by future work. 
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“A graph composed of nodes and edges may be an abstraction of a software system 

and a subgraph may represent a module” [3]. In contrast to software measures based on 

counting, Allen has focused his research by adopting information theory because the de-

sign decisions embodied by a graph abstraction of software are elements of information. 

Allen and Khoshgoftaar [5] proposed an information theory-based measure of cohesion on 

graphs for application to software design. Cohesion summarizes the degree of interdepen-

dence or connectivity within subsystems [5]. Allen and Khoshgoftaar [6] later proposed 

information theory-based measures of coupling and cohesion of a modular system. These 

measures have the properties of system-level coupling and cohesion defined by Briand, 

Morasca and Basili [6]. Allen and Khoshgoftaar [6] also proposed coupling based on an 

intramodule abstraction, calculated in the same way as intermodule coupling, and then de-

fined cohesion in terms of intramodule coupling, normalized to between zero and one [6]. 

Allen, Khoshgoftaar, and Chen [7] further proposed information theory-based measures 

of coupling and cohesion of a module, which have the properties of module-level coupling 

and cohesion defined by Briand, Morasca, and Basili. 

Allen [3] extended this line of research and discusses information theory-based mea-

sures on graphs at the system level and module level for each family of metrics defined by 

Briand, Morasca, and Basili. The primary objective of his research is to provide empirical 

evidence that innovative software metrics based on information theory are indeed useful 

as predictors of software quality. The definition of each metric is shown in Chapter III. 

This study incrementally builds on the work done by Allen [3]. 
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Kitchenham, Pfleeger, and Fenton [18] propose a framework for theoretically vali-

dating software measurement by defining a measurement structure model, measurement 

process, and five other models involved in measurement. The framework can help to un-

derstand how to validate a measure, how to assess the validation work of others, and when 

to apply a measure. They point out that measurement validation is required for pragmatic 

as well as theoretical reasons based on discussion of function points [18]. This paper 

provides criteria for answering the research question addressed in Chapter VI. 

Schneidewind [24] illustrates a comprehensive empirical metrics-validation methodol-

ogy having six validity criteria, which support the quality functions of assessment, control, 

and prediction. Such empirically validated metrics can be a basis for making decisions and 

taking actions to improve quality of software. He also shows that nonparametric statistical 

methods play an important role in evaluating whether metrics satisfy the validity criteria 

[24]. This paper is related to measuring the factor of fault-proneness, which will be a study 

of future work. 

As an example of an empirical validation study, Briand, Morasca, and Basili [12] intro-

duce and compare various high-level design measures for object-based software systems 

based on experimental goals, identifying fault-prone measures and several experimental 

hypotheses. They state that these measures allow for early detection of problems, bet-

ter software quality monitoring, and more accurate planning of resource utilization [12]. 

Briand, Morasca, and Basili also show that models of good statistical significance can be 
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built based on high-level design information for systems designed on abstract data types 

[12]. The fault-prone measure will be investigated by future work. 

The research reported by this thesis builds on the above by empirically validating in-

formation theory-based metrics for size, complexity, coupling, and cohesion, defined by 

Briand, Morasca and Basili [11] both at system level and module level. Measures of length 

are deferred to future research. 



CHAPTER III 

DEFINITION OF METRICS 

Table 3.1 and Table 3.2 taken from [3] provide the definition of symbols and notation 

used in the later part of this chapter. A system is an abstraction of a software development 

artifact, defined by a set of elements and a relation on them [20]. We restrict this abstrac-

tion to a hypergraph consisting of nodes and hyperedges. Each node corresponds to an 

element, and each hyperedge corresponds to a relationship among a subset of nodes. The 

word “label” in Table 3.2 refers to the set of incident edges for a node. An environment 

node is a disconnected node that represents the enviroment. We form a system graph � 

for calculation of the metrics by adding the environment node to the system model S. The 

probability mass function � for each node is estimated by the number of occurances of the 

row pattern divided by the number of nodes plus the environment node (��� ). The binary 

row pattern is generated by identifying whether a node is associated to each hyperedge, 

and encoding a “1” or a “0” accordingly. 

11 
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Table 3.1 Symbols 

Symbol Name Definition 
S System Abstraction of software (nodes and 

hyperedges) 
�� Hyperedges-only graph Hyperedges in S and end points 
�� 

Node subgraph Nodes in �� and hyperedges incident 
to node � 

MS Modular system S partitioned into modules 
�� 

module � Nodes in a module and their incident 
hyperedges 

MS� Intermodule hyperedges graph Nodes in MS and intermodule hyper-
edges 

MSÆ Intramodule hyperedges graph Nodes in MS and intramodule hyper-
edges 

� System graph S plus environment node, represented 
by nodes � hyperedges table 

MS��� Complete graph Complete graph with � nodes in one 
module 

3.1 Properties of Measures of Hypergraphs 

Table 3.3 and Table 3.4 summarize the properties of any measure of the size of a 

system and the size of a module that Briand, Morasca,and Basili [11] proposed. These 

properties define the concepts of the size of a system and the size of a module. 

Table 3.5 and Table 3.6 summarize the properties of the measure of complexity of a 

system and complexity of a module that Briand, Morasca, and Basili [11] proposed. These 

properties define the concepts of the complexity of a system and complexity of a module. 

There is a change in the system property 4, module monotonicity, in Table 3.5. It is related 
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Table 3.2 Notation 

Symbol Definition 
� The number of nodes in system, S. 

�� 

The number of modules in MS. 
�� 

Number of nodes in the module, ��. 
�  � Indexes for row in �, � � �   		  � and similarly �. 

� Index for a module in S, � � �   			  �� 

. 
Index for a pattern of values on a row. 

��� A function that determines the label of a row. 
���� A function that determines the label of a row � in �� 

� Probability mass function. 
 �	 Logarithm, base 2. 

Entropy of a probability distribution. 
�� 

Number of hyperedges in system, S. 
�� � 

Number of hyperedges incident to nodes in module �� 

��� � � 

Number of intramodule hyperedges in system, S. 
��� �� � 

Number of intermodule hyperedges in system, S. 
��� �� � � 

Number of intermodule hyperedges incident to module, ��. 
��
 

Number of hyperedges in a complete graph of a system, S. 
��
� 

Number of hyperedges in a complete graph of module, ��. 

Table 3.3 Properties of the Size of a System 

1. Nonnegativity. The size of the system is nonnegative. 

2. Null value. The size of the system is null if its set of nodes is empty. 

3. Module additivity. Given a system, S, having modules, �� 

and ��, such 
that every node in S is in �� 

or ��, but not both, the size of this system 
is equal to the sum of the sizes of the modules �� 

and ��. 

Size�S� � Size����S� � Size����S� 
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Table 3.4 Properties of the Size of a Module 

1. Nonnegativity. The size of a module is nonnegative. 

2. Null value. The size of the module is null if its set of nodes is empty. 

3. Monotonicity. Adding a node to a module does not decrease its size. 

to nodes rather than edges as defined by Briand, Morasca, and Basili [11]. This change 

makes Property 4 unnecessary because Property 5 is a stronger version. 

Table 3.7 and Table 3.8 summarize the properties of the measure of coupling of a 

modular system and coupling of a module, respectively, that Briand, Morasca, and Basili 

[11] proposed. These properties define the concepts of coupling of a system and coupling 

of a module. 

Table 3.9 and Table 3.10 summarize the properties of the measure of cohesion of a 

modular system and cohesion of a module, respectively, that Briand, Morasca, and Basili 

[11] proposed. These properties define the concepts of cohesion of a system and cohesion 

of a module. 
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Table 3.5 Properties of the Complexity of a System 

1. Nonnegativity. The complexity of a system is nonnegative. 

2. Null value. The complexity of the system is null if its set of hyperedges is 
empty. 

3. Symmetry. The complexity of a system does not depend on the convention 
chosen to represent the direction of hyperedges. 

4. Module monotonicity. Given a System, S, with any two modules, �� 

and 
��, that have no nodes in common, the complexity of the system is no 
less than the sum of the complexities of the two modules. 

Complexity(S)� Complexity����S� � Complexity����S� 

5. Disjoint module additivity. Given a system, S, composed of two disjoint 
modules, �� 

and ��, the complexity of the system is equal to the sum of 
the complexities of the two modules. 

Complexity(S) =  Complexity(m��S� � Complexity����S� 

Table 3.6 Properties of the Complexity of a Module 

1. Nonnegativity. The complexity of a module is nonnegative. 

2. Null value. The complexity of the module is null if its set of intermodule 
and intramodule hyperedges is empty. 

3. Monotonicity. Adding a hyperedge to a module does not decrease its complexity. 
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Table 3.7 Properties of Coupling of a Modular System 

1. Nonnegativity. Coupling of a modular system is nonnegative. 

2. Null value. Coupling of a modular system is null if its set of intermodule hyper-
edges is empty. 

3. Monotonicity. Adding an intermodule hyperedge to a modular system does not 
decrease its coupling. 

4. Merging of modules. If two modules, �� 

and ��, are merged to form a new 
module, �� �, that replaces �� 

and ��, then the coupling of the modular system 
with �� � 

is not greater than the coupling of the modular system with �� 

and 
��. 

5. Disjoint module additivity. If two modules, �� 

and ��, which have no inter-
module hyperedges between nodes in �� 

and nodes in ��, are merged to form a 
new module, �� �, that replaces �� 

and ��, then the coupling of the modular 
system with �� � 

is equal to the coupling of the modular system with �� 

and ��. 
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Table 3.8 Properties of Module Coupling 

1. Nonnegativity. Coupling of a module is nonnegative. 

2. Null value. Coupling of a module is null if its set of intermodule hyperedges is 
empty. 

3. Monotonicity. Adding an intermodule hyperedge to a module does not decrease 
its module coupling. 

4. Merging of modules. If two modules, �� 

and ��, are merged to form a new 
module, �� �, that replaces �� 

and ��, then the module coupling of �� � 

is not 
greater than the sum of the module coupling of �� 

and ��. 

5. Disjoint module additivity. If two modules, �� 

and ��, which have no inter-
module hyperedges between nodes in �� 

and nodes in ��, are merged to form a 
new module, �� �, that replaces �� 

and ��, then the module coupling of �� � 

is 
equal to the sum of the module coupling of �� 

and ��. 

Table 3.9 Properties of Cohesion of a Modular System 

1. Nonnegativity and Normalization. Cohesion of a modular system belongs 
to a specified interval, Cohesion� � � � �   Max . 

2. Null value. Cohesion of a modular system is null if its set of intramodule 
hyperedges is empty. 

3. Monotonicity. Adding an intramodule hyperedge to a modular system does 
not decrease its cohesion. 

4. Merging of modules. If two unrelated modules, �� 

and ��, are merged 
to form a new module, �� �, that replaces �� 

and ��, then the cohesion 
of the modular system with �� � 

is not greater than the cohesion of the 
modular system with �� 

and ��. 
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Table 3.10 Properties of Module Cohesion 

1. Nonnegativity and Normalization. Cohesion of a module belongs to a specified 
interval, Cohesion���� � � � �   Max . 

2. Null value. Cohesion of a module is null if its set of intramodule hyperedges is 
empty. 

3. Monotonicity. Adding an intramodule hyperedge to a module does not decrease 
its cohesion. 

4. Merging of modules. If two unrelated modules, �� 

and ��, are merged to form 
a new module, �� �, that replaces �� 

and ��, then the module cohesion of �� � 

is not greater than the maximum of the module cohesion of �� 

and ��. 

3.2 Information Theory-Based Metrics Definitions 

Shannon’s paper [25] lays the foundation of information theory. For a discrete random 

variable, �, distributed according to a probability mass function, �, entropy is defined as 

�� � 

��� � � ��  �	 � � (3.1) 
�� 

where is an index over the domain of �, and � is the cardinality of the domain of �. 

��� is interpreted as the average information per sample from the distribution of � [2]. 

The logarithms are to the base two, thus the unit of measure is a bit. In this application, 

entropy of the distribution of the row patterns is the average information per node. 

According to van Emden [27] 

Excess-entropy is the difference between the sum of the entropies taken sep-
arately and the entropy of the predicates together. Excess-entropy would be 
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zero in the case where there is no interaction at all between predicates and 
the system of all predicates is trivially simple. When excess-entropy is greater 
than zero, there is interaction between the components, which can be regarded 
as evidence of complexity. 

For � random variables, �� 	  � , excess-entropy is defined as 

� 

���� 	  � � � ���� � ���  			 � � (3.2) 
��� 

�
where ��� 	  � � = � ���� 	  � �  �	 ���� 	  � � summed over all combinations 

of values of �� 

[1]. 

The following are the definitions of information theory-based metrics taken from [3]. 

3.2.1 Size of a System 

The size of the system S is given by the amount of information in its system graph �, 

less the contribution of the environment node. 

� � 

Size�S� � ��  �	 ������ (3.3) 
��� 

Note that by convention the environment node corresponds to � � � . Allen [3] derives this 

formula from Equation (3.1) and therefore this is an information theory-based metric. 
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3.2.2 Size of a Module 

Size of module ��, in a System S, is its contribution to the system’s size, given as 

� 

Size����S� � ��  �	 ������ (3.4) 
� � 

3.2.3 Complexity of a System 

Complexity of a system is the amount of information in relationships in its edges-only 

graph, less the contribution of the environment. Complexity is based on the concept of 

excess entropy [4]. 

� � 

Complexity�S� � Size��� 

�� � Size���� (3.5) 
��� 

3.2.4 Complexity of a Module 

Complexity of a module ��, in a system S, is its contribution to the complexity of the 

system, given by 

� 

Complexity����S� � Size���� � Size�����
�� (3.6)� 

� � 



�
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3.2.5 Coupling of a Modular System 

Coupling of a modular system MS is the amount of information in intermodule rela-

tionships in its system graph, less the contribution of the environment. 

Coupling�MS� � Complexity�MS � (3.7) 

3.2.6 Coupling of a Module 

Coupling of a module ��, in a modular system MS, is its contribution to the coupling 

of the system, given by 

Coupling����MS� � Complexity����MS � (3.8) 

3.2.7 Cohesion of a Modular System 

Cohesion of a modular system MS, with � nodes, is the proportion of information in a 

complete system graph due to intramodule relationships. 

Complexity�MSÆ�
Cohesion�MS� � (3.9)

Complexity�MS���� 
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3.2.8 Cohesion of a Module 

Cohesion of a module ��, with �� 

nodes, in a modular system MS is the propor-

��� 

�tion of information in intramodule relationships of a complete module � , due to the� 

intramodule module relationships of ��. 

Complexity����MSÆ � 

Cohesion����MS� � (3.10)
��� 

�Complexity�� �MSÆ�� 

3.3 Counting-Based Metrics Definitions 

The following are the definitions of counting metrics taken from [2] 

3.3.1 Counting Size of a System 

The counting size of the system S, CountingSystemSize, is given as the number of 

nodes in S. 

CountingSystemSize�S� � � (3.11) 

3.3.2 Counting Size of a Module 

The counting size of a module in a system S, CountingModuleSize, is the number of 

nodes in the module. 

CountingModuleSize����S� � �� 

(3.12) 
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3.3.3 Counting Complexity of a System 

The counting complexity of a system S, CountingSystemComplexity, is given as the 

number of hyperedges in the system. 

CountingSystemComplexity�S� � �� 

(3.13) 

3.3.4 Counting Complexity of a Module 

The counting complexity of a module in a system S, CountingModuleComplexity, is  

given as the number of hyperedges incident to nodes in the module. 

CountingModuleComplexity����S� � �� � 

(3.14) 

3.3.5 Counting Coupling of a Modular System 

The counting coupling of a modular system MS, CountingSystemCoupling, is  given  

as the number of intermodule hyperedges in the system. 

CountingSystemCoupling�S� � ��� �� � 

(3.15) 
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3.3.6 Counting Coupling of a Module 

The counting coupling of a module in a modular system MS, CountingModuleCoupling, 

is the number of intermodule hyperedges incident to the module. 

CountingModuleCoupling����S� � ��� �� � � 

(3.16) 

3.3.7 Counting Cohesion of a Modular System 

The counting cohesion of a system S, CountingSystemCohesion, is given as the ratio 

of the number of intramodule hyperedges to the total number of hyperedges in a complete 

graph of the system. 

��� � �CountingSystemCohesion�S� � (3.17)
��
 

3.3.8 Counting Cohesion of a Module 

The module counting cohesion of a modular system MS, CountingModuleCohesion, 

is the ratio of the number of intramodule hyperedges in the module to the total number of 

hyperedges in a complete graph of that module. 

��� � � �CountingModuleCohesion����S� � (3.18)
��
� 
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3.4 Complexity of a Complete Graph 

The information theory-based system complexity of a complete graph with ordinary 

edges has a closed form. 

Lemma 1 (Complexity of a complete graph) 

� � 

Complexity�MS���� � � �� � �� �  �	 

� 

� � � 

Proof: 

For a complete graph, MS��� � MS���� . Since the Size���� of each node subgraph, ��, 

is the same for the entire complete graph, Size�MS�����, the summation of Equation (3.5) 

becomes � times the size of the complete graph. The final term of Equation (3.5) is also 

the size of the complete graph. Therefore, the complexity of a complete graph is given as 

Complexity�MS���� � � Size�MS���� � Size�MS���� (3.19) 

By algebra, 

Complexity�MS���� � �� � �� Size�MS���� (3.20) 

Since each node has a unique row pattern, the probability mass function � of each node is 

the same. Therefore, substituting Equation (3.3) into Equation (3.20) gives 

Complexity�MS���� � � �� � �� ��  �	 � � (3.21) 



�
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Note that � is one divided by the number of nodes plus one (environment node), because 

every row pattern is unique. Thus, 

� 

� 

� 

Complexity�MS���� � � �� � �� �  �	 (3.22)
� � � 

3.5 Module Complexity of an Intramodule Complete Graph 

Cohesion of module ��, with �� 

nodes, in a modular system, MS, is the proportion 

��� 

�of information in intramodule relationships of the complete module � , due to the in-� 

tramodule module relationships of ��. 

Lemma 2 (Module complexity of an Intramodule Complete Graph) 

��� 

�The information in intramodule relationships of a complete module, � , is given as� 

� 

� 

� 

��� 

�Complexity�� �MS�� � �� 

�� � �� �  �	� � � � 

Proof: 

From Equation (3.6), 

��� 

�Complexity�� �MS��� 

� 

� ��� 

�Size�MS�� 

� � Size�� �MS�� 

�� � 

(3.23) 
� � 

From Equation (3.3), 

� � 

Size�MS�� 

�� 

� 

� � 

��  �	 ������ (3.24) 
� � 

� � 

��� 
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By algebra, 

� � � 

Size�MS�� 

� � � � � 

�  �	 

� 

(3.25)� � � �
� � 

From Equation (3.4), 

���� 

�Size�� �MS�� 

� � ��  �	 ������ (3.26)� 

� � 

Since the pattern of each row is unique for each �, the probability mass function ����� 

is one 

divided by the number of nodes plus the environment node. Therefore, size of the module 

is minus the logarithm of the probability mass function times the number of nodes, ��, in  

the module ��. 

� 

� 

� 

��� 

�Size��� 

�MS�� 

� � �� 

�  �	 (3.27)
� � � 

Substituting Equation (3.25) and Equation (3.27) into Equation (3.23) 

� � 

��� 

�Complexity�� �MS�� � �� � �� �� 

�  �	 

� 

(3.28)� � � � 

3.6 Metric Calculations 

The following two examples illustrate the method of calculating the complexity, cou-

pling and cohesion metrics. 

3.6.1 Example: Ordinary Edges 

Figure 3.1 and Table 3.11 represent a nodes � edges graph. In order to find the com-

plexity, the nodes � edges graph is first translated to an edges-only graph. As from Ta-
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ble 3.11 node 14 is the only node not connected to any other nodes, so it is removed when 

constructing �� . Once the edges-only graph is obtained, the probability of occurrence of 

each pattern is found and is tabulated as shown. Notice that the estimated probability of 

node 0 is one divided by the number of nodes. 

Table 3.11 Example Nodes � Edges Table 

Module Node Edges ����� 

M0 0 0000000000000000 �� 

M1 1 1110000000000000 ��� 

M2 2 1001100000000000 ��� 

M2 3 0000110000000000 ��� 

M2 4 0000011000000000 ��� 

M3 5 0100001110000000 ��� 

M3 6 0010000001000000 ��� 

M3 7 0000000100100000 ��� 

M3 8 0000000011010000 ��� 

M3 9 0000000000010000 ��� 

M4 10 0000000000101100 ��� 

M4 11 0001000000001010 ��� 

M4 12 0000000000000101 ��� 

M4 13 0000000000000011 ��� 

M4 14 0000000000000000 �� 

Figure 3.2 and Table 3.12 represent an edges-only graph. From Table 3.12 for each 

node except for node 0 identify which other nodes the corresponding node is linked to. 

For example for node 1 identify the columns in the edges pattern that consists of 1 and list 

those columns as the new pattern. Once the pattern is identified, find the probability of 

each pattern and tabulate the probability columns to construct ��. 
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Table 3.12 Example Edges-Only Table 

Module Node Edges ����� 

M0 0 0000000000000000 ���� 

M1 1 1110000000000000 ���� 

M2 2 1001000000000000 ���� 

M2 3 0000100000000000 ���� 

M2 4 0000011000000000 ���� 

M3 5 0100001110000000 ���� 

M3 6 0010000001000000 ���� 

M3 7 0000000100100000 ���� 

M3 8 0000000011010000 ���� 

M3 9 0000000000010000 ���� 

M4 10 0000000000101100 ���� 

M4 11 0001000000001010 ���� 

M4 12 0000000000000101 ���� 

M4 13 0000000000000011 ���� 
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Figure 3.2 Example Edges-Only Graph 

Table 3.13 represents the graph for node 1, and Table 3.14 represents the graph of node 

2. Likewise, tables are generated for every other node. Calculating the size for each graph 

obtained and summing the results yields the sum in Equation (3.5). 

In order to find coupling and cohesion we generate an intermodule edges-only graph 

and an intramodule edges-only graph from the graph represented by Table 3.11. Both the 

graphs can be obtained simultaneously as follows. Starting from the first column of the 

edges pattern, identify the first “1” along the column and note its module. Then traverse 

down the column to find if there exists another “1” in a different module. If a “1” exits then 

list the column in the intermodule-edges table. Otherwise list it in the intramodule-edges 

table. Likewise, traverse each and every column of the pattern and concatenate the result 
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Table 3.13 Node 1 Subgraph 

Module Node Edges ��� 

��� 

M0 0 000 ����� 

M1 1 111 ���� 

M2 2 100 ���� 

M2 3 000 ����� 

M2 4 000 ����� 

M3 5 010 ���� 

M3 6 001 ���� 

M3 7 000 ����� 

M3 8 000 ����� 

M3 9 000 ����� 

M4 10 000 ����� 

M4 11 000 ����� 

M4 12 000 ����� 

M4 13 000 ����� 

Table 3.14 Node 2 Subgraph 

Module Node Edges ��� 

��� 

M0 0 00 ����� 

M1 1 10 ���� 

M2 2 11 ���� 

M2 3 00 ����� 

M2 4 00 ����� 

M3 5 00 ����� 

M3 6 00 ����� 

M3 7 00 ����� 

M3 8 00 ����� 

M3 9 00 ����� 

M4 10 00 ����� 

M4 11 01 ���� 

M4 12 00 ����� 

M4 13 00 ����� 
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with the previous list to identify the final table. Figure 3.3 and Table 3.15 represent an 

intermodule edges-only graph, and Figure 3.4 and Table 3.16 represent an intramodule-

edges graph. 

Table 3.15 Example Intermodule-Edges Graph 

Module Node Edges ����� 

M0 0 000000 ��� 

M1 1 111000 ��� 

M2 2 100100 ��� 

M2 4 000010 ��� 

M3 5 010010 ��� 

M3 6 001000 ��� 

M3 7 000001 �� 

M4 10 000001 �� 

M4 11 000100 ��� 

Calculating the complexity of an intermodule-edges graph yields coupling, and the 

complexity of an intramodule-edges graph divided by the complexity of a complete graph 

(every node is connected to every other node) yields cohesion. 

Table 3.17 represents the information theory-based system-level metrics and the counting-

based system-level metrics, and Table 3.18 represents the information theory-based module-

level metrics and counting-based module-level metrics. From Table 3.18, for ordinary 

edges it can be said that the information of size, complexity, coupling and cohesion of 

each module have the same variation as that of the counting size, complexity, coupling 

and cohesion, respectively. Therefore, in this example, using either information measure-
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Figure 3.3 Example Intermodule-Edges Graph 

Table 3.16 Example Intramodule-Edges Graph 

Module Node Edges ����� 

M0 0 0000000000 ���� 

M2 3 1000000000 ���� 

M2 4 0100000000 ���� 

M3 5 0011000000 ���� 

M3 6 0000100000 ���� 

M3 7 0010000000 ���� 

M3 8 0001110000 ���� 

M3 9 0000010000 ���� 

M4 10 0000001100 ���� 

M4 11 0000001010 ���� 

M4 12 0000000101 ���� 

M4 13 0000000011 ���� 
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Figure 3.4 Example Intramodule-Edges Graph 

ment or counting measurement for calculation of size, complexity, coupling and cohesion 

does not make a difference. 

3.6.2 Example: Hyperedges 

Figure 3.5 and Table 3.19 represent a nodes � hyperedges graph. In order to find the 

complexity, the nodes � hyperedges graph is first translated to a hyperedges-only graph. 

As from Table 3.19, node 14 is the only node not connected to any other nodes, so it is 

removed. Once the hyperedges-only graph is obtained the probability of occurance of each 

pattern is found and is tabulated as shown. It can be noticed that the probability of node 0 

is one divided by the number of nodes. 



35 

Table 3.17 Example Ordinary Edges System-level Metric Values 

Information Counting 
Size 53.7 bits 14 nodes 
Complexity 170.1 bits 16 edges 
Coupling 50.2 bits 6 edges 
Cohesion 0.14 0.11 

Table 3.18 Example Ordinary Edges Module-level Metric Values 

Information Theory-based Metrics 
Module size complexity coupling cohesion 

(bits) (bits) (bits) 
M1 3.9 15.8 12.9 0.00 
M2 11.7 38.0 12.6 0.16 
M3 19.5 62.6 17.0 0.19 
M4 18.5 53.8 7.7 0.21 

Counting-based Metrics 
Module size complexity coupling cohesion 

(nodes) (edges) (edges) 
M1 1 3 3 0.00 
M2 3 5 3 0.67 
M3 5 8 4 0.40 
M4 5 6 2 0.67 
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Table 3.19 Example Nodes � Hyperedges Table 

Module Node Edges ����� 

M0 0 0000000000 �� 

M1 1 1000000000 ��� 

M2 2 1100000000 ��� 

M2 3 0100100000 ��� 

M2 4 0010100000 ��� 

M3 5 1010000000 ��� 

M3 6 1001000000 ��� 

M3 7 0010010000 ��� 

M3 8 0011001000 ��� 

M3 9 0000001000 ��� 

M4 10 0000010100 ��� 

M4 11 0100000110 ��� 

M4 12 0000000101 ��� 

M4 13 0000000011 ��� 

M4 14 0000000000 �� 
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Figure 3.5 Example Node� Hyperedges Graph 
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Figure 3.6 and Table 3.20 represent a hyperedges-only graph. From Table 3.20 for 

each node except for node 0, identify which other nodes are linked to it. For example, for 

node 1, identify the columns in the hyperedges pattern that consists of “1” and list those 

columns as the new pattern. Once the pattern is identified find the probability of each 

pattern and tabulate the probability column. 

Table 3.20 Example Hyperedges-Only Table 

Module Node Edges ����� 

M0 0 0000000000 ���� 

M1 1 1000000000 ���� 

M2 2 1100000000 ���� 

M2 3 0100100000 ���� 

M2 4 0010100000 ���� 

M3 5 1010000000 ���� 

M3 6 1001000000 ���� 

M3 7 0010010000 ���� 

M3 8 0011001000 ���� 

M3 9 0000001000 ���� 

M4 10 0000010100 ���� 

M4 11 0100000110 ���� 

M4 12 0000000101 ���� 

M4 13 0000000011 ���� 

Table 3.21 represents the graph for node 1, and Table 3.22 represents the graph of node 

2. Likewise, the tables are generated for every other node. Calculating the size for each 

graph obtained and summing the results yields the complexity of the graph. 

In order to find coupling and cohesion, we generate an intermodule hyperedges-only 

graph and an intramodule hyperedges-only graph from the graph represented by Table 3.19. 
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Figure 3.6 Example Hyperedges-Only Graph 

Table 3.21 Node 1 Subgraph 

Module Node Edges ��� 

��� 

M0 0 0 ����� 

M1 1 1 ���� 

M2 2 1 ���� 

M2 3 0 ����� 

M2 4 0 ����� 

M3 5 1 ���� 

M3 6 1 ���� 

M3 7 0 ����� 

M3 8 0 ����� 

M3 9 0 ����� 

M4 10 0 ����� 

M4 11 0 ����� 

M4 12 0 ����� 

M4 13 0 ����� 
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Table 3.22 Node 2 Subgraph 

Module Node Edges ��� 

��� 

M0 0 00 ����� 

M1 1 10 ���� 

M2 2 11 ���� 

M2 3 01 ����� 

M2 4 00 ����� 

M3 5 10 ���� 

M3 6 10 ���� 

M3 7 00 ����� 

M3 8 00 ����� 

M3 9 00 ����� 

M4 10 00 ����� 

M4 11 01 ����� 

M4 12 00 ����� 

M4 13 00 ����� 

Both graphs can be obtained simultaneously as follows. Starting from the first column of 

the hyperedges pattern, identify the first “1” along the column and note its module. Then, 

traverse down the column to find if there exists another “1” in a different module. If a 

“1” exits then list the column in the intermodule-edges table. Otherwise, list it in the 

intramodule-edges table. Likewise, traverse each and every column of the pattern and 

concatenate the result with the previous list to identify the final table. Figure 3.7 and Ta-

ble 3.23 represent an intermodule hyperedges-only graph, and Figure 3.8 and Table 3.24 

represent an intramodule-hyperedges graph. 

Calculating the complexity of an intermodule-edges graph yields coupling, and com-

plexity of an intramodule-edges graph divided by the complexity of a complete graph 

(every node is connected to every other node) yields cohesion. 
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Table 3.23 Example Intermodule-Hyperedges Graph 

Module Node Edges ����� 

M0 0 0000 ���� 

M1 1 1000 ��� 

M2 2 1100 ���� 

M2 3 0100 ��� 

M2 4 0010 ��� 

M3 5 1010 ���� 

M3 6 1000 ��� 

M3 7 0011 ���� 

M3 8 0010 ��� 

M4 10 0001 ���� 

M4 11 0100 ��� 
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Figure 3.7 Example Intermodule-Hyperedges Graph 
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Table 3.24 Example Intramodule-Hyperedges Graph 

Module Node Edges ����� 

M0 0 0000000 ���� 

M2 3 1000000 ��� 

M2 4 1000000 ��� 

M3 5 0100000 ��� 

M3 6 0010000 ���� 

M3 7 0100000 ��� 

M3 8 0111000 ���� 

M3 9 0001000 ���� 

M4 10 0000100 ���� 

M4 11 0000110 ���� 

M4 12 0000101 ���� 

M4 13 0000011 ���� 
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Figure 3.8 Example Intramodule-Hyperedges Graph 



42 

Table 3.25 represents the information theory-based system-level metrics and the counting-

based system-level metrics, and Table 3.26 represents the information theory-based module-

level metrics and counting-based module-level metrics. From Table 3.26, for hyperedges 

it can be said that the information of size, complexity, coupling and cohesion of each 

module has the same variation as the counting size, complexity, coupling and cohesion re-

spectively. Therefore, in this example using either information measurement or counting 

measurement for calculation of size, complexity, coupling, and cohesion does not make a 

difference. 

Table 3.25 Example Hyperedges System-level Metric Values 

Information Counting 
Size 53.7 bits 14 nodes 
Complexity 189.1 bits 10 edges 
Coupling 89.9 bits 4 edges 
Cohesion 0.10 0.07 
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Table 3.26 Example Hyperdges Module-level Metric Values 

Information Theory-based Metrics 
Module size complexity coupling cohesion 

(bits) (bits) (bits) 
M1 3.9 7.8 7.3 0.00 
M2 11.7 47.3 28.8 0.11 
M3 19.5 74.7 43.7 0.13 
M4 18.5 59.4 10.2 0.29 

Counting-based Metrics 
Module size complexity coupling cohesion 

(nodes) (hyperedges) (hyperedges) 
M1 1 1 1 0.00 
M2 3 4 4 1.00 
M3 5 5 6 0.67 
M4 5 5 2 0.5 



CHAPTER IV 

METHODOLOGY 

A case study approach is taken to illustrate the usefulness of the metrics in a real-world 

setting. Case studies provide weight of evidence, rather than scientific proof of proposi-

tions. A graph can represent an abstraction of a software system [11]. The objective is to 

measure graphs directly used by designers that are likely to be related to software quality, 

such as artifacts produced by design tools, or graphs derived from relationships in code. 

The research project is a case study consisting of three tasks: (1) developing research tools, 

(2) collecting data from various sources, and (3) analyzing data for useful relationships. 

The case study examined software systems of limited size to give an indication of metric 

usefulness and to resolve practical issues. The objective of the case study was to evaluate 

module-level metrics and system-level metrics. 

The analysis included the following steps: 

1. Obtain sets of source code files to be analyzed. 

2. Generate an abstract semantic graph for each file using the Datrix tool. 

3. For each abstraction, generate a nodes � hyperedges table using the Abstractor tool. 
This tool currently analyzes use of public variables by methods. 

4. For each node � hyperedges table, calculate the information theory-based attributes 
and corresponding counting-based attributes of the system and of each module using 
the Measurement tool. 

5. Analyze the distributions and correlations among measured attributes using SAS and 
Excel by generating graphs. 
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CHAPTER V 

TOOLS 

5.1 Architecture 

Figure 5.1 represents a pipes-and-filters architecture. A raw source code file is given 

to a compiler preprocessor to obtain preprocessed source code (*.ii). The preprocessed 

source code is parsed with the Datrix parser to generate an abstract semantic graph (ASG), 

which is an output to a file (*.asg). Using the ASG, an abstraction extraction is performed, 

such as use of global variables, call graph, or control flow graph. At this time we focus 

on the use of global variables as the abstraction extracted. In this approach, we identify 

the classes or methods and their associated global variables. With the matchings a node � 

hyperedge table is generated. The measurement is then applied to the node � hyperedge 

table to obtain various software measurements for both system level and module level. 

The measurements are stored in a tabular file and are analyzed statistically using SAS and 

Excel. 

Table 5.1 represents a node � hyperedge table. The node � hyperedge table file con-

sists of four fields. The first field specifies the software-identifier, the second field specifies 

the module-identifier, the third field specifies the node-identifier, and the fourth field spec-

ifies the hyperedges (row pattern), which are represented by a binary pattern. The binary 
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pattern for each node shows to which other nodes the current node is connected. The num-

ber of hyperedges in each row are equal, and only those hyperedges that are connected to 

a particular node are represented by “1”, the rest are represented by “0”. 

Table 5.1 Nodes � Hyperedges 

Software-Id Module-Id Node-Id RowPattern 
sw1 m1 n1 1001 
sw1 m1 n2 1000 
sw1 m2 n3 1011 
sw1 m3 n4 0110 
sw1 m3 n5 0101 

5.2 Design of Measurement Package 

The box shown as “Measurement” in Figure 5.1 represents the measurement package. 

The measurement package is a tool that calculates the information metrics and counting 

metrics defined in Chapter III. 

5.2.1 Class Diagram of Measurement Program 

Figure 5.2 represents a class diagram for the implementation of the calculation of the 

defined information theory-based metrics and the counting-based metrics. The interfaces 

Collection and Map and classes Abstract Set, Hash Set, Array List, Abstract Map, and 

Hash Map are off-the-shelf components. Class ModularSystem implements the calcula-
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gcc Compiler 

*.cpp 

*.ii 

Datrix Parser 

*.asg 

Abstractor 

*.nxe 

Measurement 
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EXCEL SAS 

nxe Generator 

*.xls *.lis 

          Analyst 

Figure 5.1 Tool Kit Architecture 
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tion of Coupling and Cohesion of information theory-based metrics and counting-based 

metrics. It also sets the SetOfNodes and SetOfModules for the given node � hyperedges 

file. Class HypergraphSystem implements the calculation of size and complexity of in-

formation theory-based metrics and the counting-based metrics. The class SetOfNodes 

creates the node objects, and the class SetOfModules creates the module objects. Class 

PatternFrequency finds the number of times each pattern occurs in a given node � hyper-

edges graph. The class SHash implements the hyperedges-only graph, SSubi implements 

the node subgraph, SCirc implements the intramodule hyperedges graph, and the class 

SStar implements the intermodule hyperedges graph. 

5.2.2 Call Graph of Measurement Program 

Figures 5.3 through 5.10 show the call graphs of the methods. The Main call graph 

creates an instance of the SetOfModules class, identifies the list of metrics to be calculated, 

calculates all the infomation theory-based metrics and counting-based metrics, and finally 

generates the output metric file. The setInfoMetrics call graph and setCountMetrics call 

graph call the methods for calculating the size, complexity, coupling, and cohesion of in-

formation theory-based metrics and counting-based metrics, respectively. The getMetrics 

call graph gets all the calculated metrics required by the user, provided in the list of met-

rics input file. The setInfoSize, setInfoComplexity, setInfoCoupling, and setInfoCohesion 

call graphs show the implementation for calculation of size, complexity, coupling, and 

cohesion of information theory-based metrics, respectively. 
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Main 
— HypergraphSystem 

— SetOfModules() 
— setSetOfModules() 

— MetricsList(fileName) 
— toUppercase() 
— add(String) 
— ArrayList() 

— S.setSystem(.nxe filename) 
— Node 
— getSetOfModules() 
— findModule(String, Module) 
— Module 
— SOM.add(Module) 
— M.add(Node) 
— S.add(Node) 

— S.setInfoMetrics(HypergraphSystem) 
— S.setCountMetrics(HypergraphSystem) 
— S.getMetrics(HypergraphSystem) 

Figure 5.3 Main Call Graph 

setInfoMetrics(HypergraphSystem) 
— S.setInfoSize() 
— S.setInfoComplexity() 
— S.setInfoCoupling() 
— S.setInfoCohesion() 

Figure 5.4 setInfoMetrics Call Graph 

setCountMetrics(HypergraphSystem) 
— S.setCountSize() 
— S.setCountComplexity() 
— S.setCountCoupling() 
— S.setCountCohesion() 

Figure 5.5 setCountMetrics Call Graph 
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getMetrics(HypergraphSystem) 
— ML.iterator() 
— S.getSetOfModules() 
— SOM.iterator() 
— S.getSystemInfoSize() 
— S.getSystemInfoComplexity() 
— S.getSystemInfoCoupling() 
— S.getSystemInfoCohesion() 
— M.getModuleInfoSize() 
— M.getModuleInfoComplexity() 
— M.getModuleInfoCoupling() 
— M.getModuleInfoCohesion() 
— S.getSystemCountSize() 
— S.getSystemCountComplexity() 
— S.getSystemCountCoupling() 
— S.getSystemCountCohesion() 
— M.getModuleCountSize() 
— M.getModuleCountComplexity() 
— M.getModuleCountCoupling() 
— M.getModuleCountCohesion() 

Figure 5.6 getMetrics Call Graph 
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SetInfoSize 
— S.PatternFrequency() 

— S.iterator() 
— N.getRowPattern() 

— S.getSetOfModules() 
— SOM.iterator() 
— M.setModuleInfoSize(PatternFrequency) 

— S.size() 
— M.iterator() 
— N.getRowPattern() 
— S.findPatternFrequency(String) 

— M.getModuleInfoSize() 
— S.setSystemInfoSize() 

Figure 5.7 setInfoSize Call Graph 

setInfoComplexity 
— S.getSetOfModules() 
— SOM.iterator() 
— S.SHash() 

— S.setInfoSize() 
— S.getInfoSize() 

— S.SSubi() 
— S.setInfoSize() 
— S.getInfoSize() 

— S.setSystemInfoComplexity() 

Figure 5.8 setInfoComplexity Call Graph 

setInfoCoupling 
— S.getSetOfModules() 
— SOM.iterator() 
— S.SStar() 

— S.setInfoComplexity() 
— S.getInfoComplexity() 

— S.setSystemInfoCoupling() 

Figure 5.9 setInfoCoupling Call Graph 
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setInfoCohesion 
— S.getSetOfModules() 
— SOM.iterator() 
— S.SCirc() 

— S.setInfoComplexity() 
— S.getInfoComplexity() 

— S.Sn() 
— S.setSystemInfoCoupling() 

Figure 5.10 setInfoCohesion Call Graph 

5.3 Off-the-Shelf Components 

Table 5.2 gives an overview of the off-the-shelf components used in this research. 
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Table 5.2 Off-the-Shelf Components 

Off-the-shelf component Description 
gcc The GNU Compiler Collection is used to compile a given 

C++ program. 
The output is the preprocessed file in the format of *.ii 
Command: gcc -E �filename.cpp� � outputfile�(*.ii) 
The command -E is used to eliminate syntax errors and 
general warnings. 

Datrix A software code assessment tool provided by Bell Canada 
Command: dxparscpp -asg �output.asg� *.ii 
dxparscpp is a datrix parser for C++ files that builds an 
Abstract Symantic Graph (asg) and outputs it in a TA-like 
format. 

Abstractor This is a tool that reads the asg file and generates a 
node � edges table (*.nxe). 

SAS A statistics package for data manipulation, statistical 
analysis, report writing, and generating plots. 

nxeGenerator The nxeGenerator generates a set of nodes � hyperedges 
tables depending on the user inputs. 



CHAPTER VI 

CASE STUDIES 

This chapter provides exploratory case studies of (1) a set of artificially generated 

graphs, (2) a data manipulation program for a physics research project, and (3) selected 

source files from a mathematical library. 

6.1 Nodes�Hyperedges Generator Examples 

6.1.1 Data Collection 

The tool is a nodes � hyperedges generator (NxeGenerator). Based on the user input, 

various nodes � hyperedges (*.nxe) files are generated. These files are then measured 

using the measurement tool and analyzed. Figure 6.1 depicts a series of small graphs 

where a node is added and then a hyperedge is added. Figure 6.2 depicts three series of 

graphs where hyperedges are added that have the same connections as existing hyperedges. 

In these small graphs, every node is considered a module. 

6.1.2 Measurement 

Table 6.1 presents the system-level metrics for Figure 6.1 and Figure 6.2. Coupling 

measurements are the same as complexity because every hyperedge is an intermodule 
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n2 n3 

test10.nxe test15 .nxe test17 .nxe 

Figure 6.1 Adding a Node and a Hyperedge to a Small Graph 
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Figure 6.2 Identical Hyperedges Do Not Add Information 
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hyperedge. Cohesion measurement is zero because there is no intramodule hyperedge, as 

every node is a module. 

Table 6.1 System-level Measurements of NxeGenerator Examples 

Size Complexity 
Information Count Information Count 

System (bits) (nodes) (bits) (hyperedges) 
test10 1.2 2 1.2 1 
test15 3.0 3 1.2 1 
test17 4.0 3 5.3 2 
test10 1.2 2 1.2 1 
test11 1.2 2 1.2 2 
test12 1.2 2 1.2 3 
test13 1.2 2 1.2 4 
test14 1.2 2 1.2 5 
test16 1.3 3 2.5 1 
test18 1.3 3 2.5 2 
test20 1.3 3 2.5 3 
test17 4.0 3 5.3 2 
test19 4.0 3 5.3 3 

6.1.3 Analysis 

The graphs in Figure 6.1 illustrate how adding a node increases information size 

but not information complexity, and how adding a hyperedge increases both information 

size and information complexity. The graphs in Figure 6.2 illustrate that the information 

theory-based measurements are not sensitive to multiple hyperedges connected to exactly 

the same nodes because redundant hyperedges do not affect the estimated probabilities of 

row pattern. 
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Figure 6.3 depicts two pairs of binary trees. Trees 1a and 2a have ordinary edges (two 

connections per edge). Trees 1b and 2b have hyperedges with three connections per edge. 

Figure 6.4 depicts two pairs of (nonbinary) trees. Trees 3a and 4a have ordinary edges (two 

connections per edge). Trees 3b and 4b have more than two connections per hyperedge. 

Table 6.2 presents the system-level metrics for these two figures. Abstractions of software 

using ordinary edges make a distinction for each edge relationship. Abstractions using 

hyperedges are appropriate when such distinctions are not relevant and thus information 

size is smaller. However, we see that information complexities are about the same. 

1a 1b 

2a 2b 

Figure 6.3 Binary Trees with Ordinary Edges vs. Hyperedges 

From Table 6.3 through Table 6.6 it is observed empirically that the information com-

plexity of module M1 is negative. For a graph to result in a negative module complexity, 

we conjecture that the following conditions must be satisfied. 
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3a 

3b 

4a 4b 

Figure 6.4 Trees with Ordinary Edges vs. Hyperedges 



60 

Table 6.2 System-level Measurement of Trees with Ordinary Edges vs. Hyperedges 

Ordinary Edges Hyperedges 
Information Count Information Count 

System 1a 1b 
Size 6.0 bits 3 nodes 1.2 bits 3 nodes 
Complexity 6.0 bits 2 edges 2.5 bits 1 hyperedge 
System 2a 2b 
Size 21.0 bits 7 nodes 17.0 bits 7 nodes 
Complexity 45.0 bits 6 edges 45.5 bits 3 hyperedges 
System 3a 3b 
Size 49.5 bits 13 nodes 35.2 bits 13 nodes 
Complexity 115.1 bits 12 edges 150.2 bits 4 hyperedges 
System 4a 4b 
Size 30.0 bits 9 nodes 23.9 bits 9 nodes 
Complexity 84.6 bits 10 edges 88.6 bits 3 hyperedges 

� The row pattern of all the nodes in a module must be identical. 

� A hyperedge associated to a node in that module must also be associated to all other 
nodes in the system. 

� There should be at least one hyperedge associated to that module. 

� There should be at least one hyperedge not associated to that module. 

Future work will mathematically prove the above conjecture. 

For a complete graph it is empirically observed that: 

� Information complexity is equal to information coupling. 

� Counting system complexity is equal to counting module complexity. 

� Counting module coupling is equal to the product of counting module size and 
counting system complexity or the product of counting module size and counting 
system coupling. 
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Table 6.3 Nodes � Hyperedges Table Example 1 

Module Node Hyperedges 
env. 0 00000 
M1 N1 10000 
M2 N2 11000 
M2 N3 10110 
M3 N4 10001 

Table 6.4 Nodes � Hyperedges Table Example 2 

Module Node Hyperedges 
env. 0 00000 
M1 N1 11110 
M1 N2 11110 
M2 N3 11111 
M3 N4 11111 
M4 N5 11111 

Table 6.5 Nodes � Hyperedges Table Example 3 

Module Node Hyperedges 
env. 0 00000 
M1 N1 11100 
M1 N2 11100 
M2 N3 11111 
M3 N4 11111 
M4 N5 11111 
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Table 6.6 Nodes � Hyperedges Table Example 4 

Module Node Hyperedges 
env. 0 00000 
M1 N1 10000 
M1 N2 10000 
M2 N3 11111 
M3 N4 11111 
M4 N5 11111 

For a given system with no hyperedges it is empirically observed that the information 

measurement of all the attributes is zero, whereas the counting size is the number of nodes 

in the system given by Equation (3.11). 

6.2 Physics Programs 

The program under study is part of a physics experiment. The number of files included 

in the project were two C++ (*.cpp) files and three header (*.hpp) files. The program reads 

different data sets, manipulates the data, and writes the results to an output file. 

6.2.1 Data Collection 

A hypergraph is derived from the relationships between public variables and the meth-

ods that use them. The methods were represented by nodes, and each public variable is 

represented by a hyperedge. Each class was defined as a module. C++ system classes, 

methods and public variables are excluded from the analysis. The primary C++ file is pre-

processed using the gcc complier to generate a preprocessed (*.ii) file. This step includes 
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all the header files (*.hpp) and subsidiary C++ files (*.cpp) into the resulting file (*.ii). 

The preprocessed file (*.ii) is parsed using the Datrix metric analyzer, generating an ab-

stract semantic graph(ASG, *.asg). The ASG file (*.asg) is then an input to the Abstractor 

that generates a nodes � hyperedges table (*.nxe). The *.nxe file is then an input to the 

Measurement tool for the metric calculations. 

6.2.2 Measurement 

Table 6.7 Nodes � Hyperedges for the Physics Program 

Module 
env. 
1.Atom 

2.Element 

Node 
0 
getpos 
setid 
setname 
get mass 
get name 
get weight 
report 
setname 

Hyperedges 
00000000000000000000000000000000 
01100100000000010100000101010000 
00000100001010000000000000010000 
00000000000000000000000000000001 
01100000000000000000000000000000 
01000000000000000000000000010000 
00100000000000000100000000010000 
00100000000000000000010000000000 
00000000000000001000000100101001 

3.Lattice get periodic 
get scale 
get refvector 
get parameter 
set latticetype 
set parameter 

10010011000011110110010000000111 
01001100000000011100000111111001 
00110111110100010100111100010011 
00000100001010100000000000010000 
00000000000000000100000000000000 
00000000000000000001000000000000 

Table 6.7 represents a nodes � hyperedges graph for the given program. Table 6.8 rep-

resents the information theory-based system-level metrics and the counting-based system-
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level metrics, and Table 6.9 represents the information theory-based module-level metrics 

and counting-based module-level metrics. 

Table 6.8 System-level Measurements of the Physics Program 

Information Counting 
Size 54.7 (bits) 14 (nodes) 
Complexity 366.3 (bits) 32 (edges) 
Coupling 341.2 (bits) 15 (edges) 
Cohesion 0.02 0.18 

6.2.3 Analysis 

Figure 6.5 through Figure 6.8 present a comparision of size, complexity, coupling, 

and cohesion attributes of information theory-based metrics and counting-based metrics at 

the module-level, respectively. 

Table 6.9 shows that the module “Element” has medium information complexity and 

module “Atom” has low information complexity. However, the counting complexity is 

about the same. The module “Lattice” contributes more than the other modules to all 

the system-level metrics. In this case study, if one uses a metric to order modules, the 

corresponding information metrics and the counting metrics generally result in the same 

order. 
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Table 6.9 Module-level Measurements of the Physics Program 

Information Theory-based Metrics 
Module size complexity coupling cohesion 

(bits) (bits) (bits) 
1.Atom 11.7 80.1 76.4 0.00 
2.Element 19.5 113.6 107.7 0.00 
3.Lattice 23.4 172.6 157.1 0.26 

Counting-based Metrics 
Module size complexity coupling cohesion 

(nodes) (hyperedges) (hyperedges) 
1.Atom 3 11 13 0.0 
2.Element 5 10 14 0.0 
3.Lattice 6 32 29 1.7 
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Figure 6.5 Module Size Comparison of Physics Program 
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Figure 6.6 Module Complexity Comparison of Physics Program 
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Figure 6.8 Module Cohesion Comparison of Physics Program 

6.3 PMLP Examples 

The Parallel Mathematical Libraries Project (PMLP) was developed cooperatively 

by Intel, Lawrence Livermore National Laboratory, the Russian Federal Nuclear Labo-

ratory (VNIIEF), and the High Performance Computing Laboratory at Mississippi State 

University. It is a parallel, mathematical library suite for sparse matrices. PMLP in-

cludes sequential sparse basic linear algebra, parallel sparse matrix vector products, and 

sequential and parallel iterative solvers with Jacobi and incomplete LU (ILU) precondi-

tioners. Both Windows NT and Linux versions are available; we measured Linux version 

3.0. PMLP was implemented in C++ using object-oriented techniques, such as template 

classes, generic programming, parameterized types, run-time polymorphism, compiler-

time polymorphism, and iterators. 
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6.3.1 Data Collection 

Hypergraphs were derived from the relationships between public variables and the 

methods that use them. The methods were represented by nodes, and each public variable 

was represented by a hyperedge. Each class was defined as a module. C++ system classes, 

methods, and public variables were excluded from the analysis. Similarly, some C++ files 

from the PMLP that had some missing header files, some with no classes, and some that 

had an error during compiling were also excluded. 

Similar to the physics programs, selected C++ files are preprocessed using the gcc 

complier to generate a preprocessed (*.ii) file. The preprocessed file is parsed using the 

Datrix parser, which generates an abstract semantic graph (ASG). The ASG is provided to 

the Abstractor tool to generate a nodes � hyperedges table (*.nxe). The *.nxe file is given 

to the Measurement tool for the metric calculations. The results are further analyzed using 

the SAS tool. Figure 6.9 represents a nodes � hyperedges graph for dg data gen.cpp file. 

This file was selected as an example since it had multiple classes, one or more methods in 

each class, and few public variables. 

6.3.2 Measurement 

Table 6.10 represents the measures of size, Table 6.11 represents the measure of com-

plexity, Table 6.12 represents the measure of coupling, and Table 6.13 represents the mea-

sure of cohesion of information theory-based metrics and counting-based metrics of dif-

ferent C++ files of the PMLP software. 
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Figure 6.9 Nodes � Hyperedges Graph of dg data gen.cpp 

Table 6.10 System Size of Selected PMLP Files 

*.cpp Information Metrics Counting Metrics 
(bits) (nodes) 

Test Dlg 6.0 3 
linear 8.9 5 
linear block 10.9 5 
Scatter block 10.1 6 
grid 17.0 7 
dg matrix 21.0 7 
dg data gen 27.8 10 
HB Util 34.6 10 
general 29.4 11 
dg vec gen 49.5 13 
dg mat gen 54.7 14 
dg scal gen 59.85 19 
dg vector 77.4 21 
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Table 6.11 System Complexity of Selected PMLP Files 

*.cpp Information Metrics Counting Metrics 
(bits) (hyperedges) 

Test Dlg 2.5 33 
linear 18.4 4 
linear block 9.8 7 
Scatter block 23.2 4 
grid 68.0 5 
dg matrix 81.9 32 
dg data gen 84.5 9 
HB Util 205.4 60 
general 153.5 5 
dg vec gen 266.5 62 
dg mat gen 225.6 77 
dg scal gen 402.2 14 
dg vector 1107.6 25 

Table 6.12 System Coupling of Selected PMLP Files 

*.cpp Information Metrics Counting Metrics 
(bits) (hyperedges) 

Test Dlg 0.0 0 
linear 0.0 0 
linear block 0.0 0 
Scatter block 0.0 0 
grid 68.0 5 
dg matrix 0.0 0 
dg data gen 57.3 3 
HB Util 0.0 0 
general 0.0 0 
dg vec gen 93.0 5 
dg mat gen 0.0 0 
dg scal gen 361.7 8 
dg vector 1107.6 25 
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Table 6.13 System Cohesion of Selected PMLP Files 

*.cpp Information Metrics Counting Metrics 
Test Dlg 0.21 11.00 
linear 0.36 0.40 
linear block 0.19 0.70 
Scatter block 0.28 0.20 
grid 0.00 0.00 
dg matrix 0.64 1.52 
dg data gen 0.02 0.13 
HB Util 0.66 1.33 
general 0.39 0.09 
dg vec gen 0.16 0.70 
dg mat gen 0.32 0.85 
dg scal gen 0.01 0.04 
dg vector 0.00 0.00 

Table 6.14 represents a nodes � hyperedges graph for the dg data gen.cpp file. Ta-

ble 6.15 represents the information theory-based system-level metrics and the counting-

based system-level metrics, and Table 6.16 presents the information theory-based module-

level metrics and counting-based module-level metrics for the nodes � hyperedges table 

represented by Table 6.14. 

6.3.3 Analysis 

Figure 6.10 through Figure 6.13 represent the system-level comparison of information 

theory-based metrics and counting-based metrics of size, complexity, coupling, and cohe-

sion, respectively. The information size and counting size are highly correlated, as were 

information coupling and counting coupling. Consequently, the order of modules is the 
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Table 6.14 Nodes � Hyperedges for dg data gen.cpp 

Module Node Hyperedges 
env 0 000000000 
cVectorGenerator GenValue 100000000 

CVectorGenerator 000000110 
cMatrixGenerator GenValue 100000000 
cComplexVector Report 001010010 

Impart 000001010 
cBaseVector GetNNZ 000100000 

Row 000000110 
cMatrix DG Err Mem 000000001 
tINIProcessor cVectorGenerator 000000110 
cRealVector Val 010000010 

Table 6.15 System-level Measurements of dg data gen.cpp 

Information Counting 
Size 27.8 bits 10 nodes 
Complexity 84.5 bits 9 edges 
Coupling 57.3 bits 3 edges 
Cohesion 0.02 0.13 
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Table 6.16 Module-level Measurements of dg data gen.cpp 

Information Theory-based Metrics 
Module size complexity coupling cohesion 

(bits) (bits) (bits) 
cVectorGenerator 4.3 18.7 15.4 0.00 
cMatrixGenerator 2.5 4.8 4.3 0.00 
cComplexVector 6.9 20.5 10.2 0.10 
cBaseVector 5.3 15.2 11.1 0.05 
cMatrix 3.5 1.2 0.0 0.10 
tINIProcessor 1.9 13.9 11.1 0.00 
cRealVector 3.5 10.2 5.1 0.10 

Counting-based Metrics 
Module size complexity coupling cohesion 

(nodes) (hyperedges) (hyperedges) 
cVectorGenerator 2 3 3 0.0 
cMatrixGenerator 1 1 1 0.0 
cComplexVector 2 4 2 3.0 
cBasevector 2 3 2   

cMatrix 1 1 0   

tINIProcessor 1 2 2 0.0 
cRealVector 1 2 1   
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same according to the size or coupling attribute. In other words, they measure similar at-

tributes in this example. However, the complexity measurements are not highly correlated. 

This means information complexity and counting complexity may be measuring different 

attributes. Coupling measurements of most of the files are zero, which means methods in 

those classes did not access public variables in other classes. Software engineers could use 

the nonzero coupling measurement to identify where public variables are used. 

90 

80 

0 

2.5 

5 

7.5 

10 

12.5 

15 

17.5 

20 

22.5 

N
um

be
r o

f N
od

es
 

Information Metrics 
Counting Metrics 

1 2  3 4  5 6 7  8 9  10  11  12  13  

70 

60 

50 

40 

30 

20 

10 

0 

Bi
ts

 

Software Id 
Information Metrics 6 9 11 10 17 21 28 35 29 50 55 60 77 
Counting Metrics 3 5 5 6 7 7 10 10 11 13 14 19 21 

Figure 6.10 System-level Size Comparison of PMLP Files 

Table 6.17 represents a graph for dgMatrix.cpp file. The Information complexity of 

this file is 81.0, and the counting complexity is 32. Table 6.18 and Table 6.19 provide 

evidence that when adding a hyperedge, the information complexity either increases or is 

the same, whereas in the case of the counting metrics the complexity will always increase 
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Figure 6.13 System-level Cohesion Comparison of PMLP Files 

since we calculate the complexity by the number of hyperedges. For Table 6.18 the infor-

mation theory complexity is 87.0, and the counting complexity is 33, and for Table 6.19 

the information theory complexity is 81.0, the same as that represented by Table 6.17, and 

counting complexity is 33. It can therefore be noticed that information theory complex-

ity measure provides an insight if there is a change in the measure in spite of adding a 

hyperedge, whereas counting metrics ignore this aspect. 

Table 6.20 represents a graph for the grid.cpp file. The information coupling mea-

sure of this file is 68.0, and the counting coupling measure is 5. Table 6.21 represents 

a graph for the dg scal gen.cpp file. The information coupling measure for this file is 

321.5, whereas the counting coupling measure is 5. Looking at the two graphs it can be 

noted that each system is coupled differently. The measure obtained from counting met-

rics ignores this fact, whereas information theory measure shows the differences between 

the two systems. If we remove an intermodule hyperedge from the given system, then 

the information coupling and information complexity decrease, information size either de-
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Table 6.17 Nodes�Hyperedges Graph for dgMatrix.cpp 

Module 
env. 

Node 
0 

Hyperedges 
00000000000000000000000000000000 

Matrix sort 11111111110111101101111110101101 
Reorganizefull 
Reorganize 
�cMatrix 

00000100001101110011000001100011 
00000100001101110111000001100011 
00000100001101010011000001100011 

cMatrix 00000100001101010011000001110011 
fstream 00000000000100000000000000100001 
DG ERR Mem 00000000000000010000000000010001 

Table 6.18 Information Complexity Increases When Adding a Hyperedge to Table 6.17 

Module 
env. 

Node 
0 

Hyperedges 
000000000000000000000000000000000 

Matrix sort 111111111101111011011111101011010 
Reorganizefull 
Reorganize 
�cMatrix 

000001000011011100110000011000111 
000001000011011101110000011000111 
000001000011010100110000011000110 

cMatrix 000001000011010100110000011100111 
fstream 000000000001000000000000001000010 
DG ERR Mem 000000000000000100000000000100010 

Table 6.19 Information Complexity Remains the Same When Adding a Hyperedge 

Module 
env. 

Node 
0 

Hyperedges 
000000000000000000000000000000000 

Matrix sort 111111111101111011011111101011011 
Reorganizefull 
Reorganize 
�cMatrix 

000001000011011100110000011000111 
000001000011011101110000011000111 
000001000011010100110000011000111 

cMatrix 000001000011010100110000011100111 
fstream 000000000001000000000000001000010 
DG ERR Mem 000000000000000100000000000100010 
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creases, increases or remains the same, and the information cohesion remains the same 

or increases. In the case of the counting metrics the coupling and complexity decrease, 

cohesion either increases or remains the same, and the size always remains the same. It 

can be inferred that if an intermodule hyperedge is removed, then the size of the system 

either changes or remains the same, as shown by the information measures, whereas the 

counting measure shows that the size is always the same, which is a contradiction. 

Table 6.20 Nodes�Hyperedges Graph for grid.cpp 

Module 
env. 

Node 
0 

Hyperedges 
00000 

Grid 

psp grid 

psp grid 
operator= 
psp grid 
Get coor 

11001 
00110 
11001 
10110 

Inc 01000 
Dec 01000 
Get all 01011 
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Table 6.21 Nodes�Hyperedges Graph for dg scal gen.cpp 

Module 
env. 

Node 
0 

Hyperedges 
00000000000000 

cRealVector val 10000001000000 
CVectorGenerator GenValue 10110001000011 

SetNRows 00010000000000 
�cVectorGenerator 00010000000000 
cVectorGenerator 00000001000001 

cMatrixGenerator Genvalue 10110001100010 
SetSF 00010000000000 
SetNRows 00010000000000 
�cMatrixGenerator 00010000000000 
FillFullBand 00000000000010 

tINIProcesor ProcessDG BANDR DIR 01000000010100 
cVectorGenerator 00000001000000 
ProcessDG COL DIR 00000000000110 

cBaseVector GetNNZ 00100000000000 
Row 00000001000000 

cComplexVector 

cMatrix 

Repart 
Impart 
DG ERR MEM 

00000101001000 
00001001000000 
00010010000000 

�cMatrix 00010000000000 
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Table 6.28 summarizes the statistic variables used for the analysis. 

Table 6.28 Statistic Variables 

Variable Definition 
Mean Commonly called the average (sum of all distribution divided 

by the number of distribution) 
Standard Deviation A measure of how spread out a distribution is (the square 

root of the variance) 
Variance A measure of how spread out a distribution is (the average 

squared deviation of each number from its mean) 
Skewness A measure of symmetry 
Kurtosis A measure of whether the distribution is peaked or flat relative 

to a normal distribution 
Median The central value, lying above and below half of the values. 
Range The difference between the largest and smallest values in the 

sample 
Interquartile range The difference between the upper and lower quartile 

The SAS measurements were interesting only for the module-level metrics rather than 

the system-level, because the system-level metrics had only one observation. For the 

ModuleSize the mean, standard deviation and variance of the information metric were 

high compared to the counting metrics but were proportional. This shows that the count-

ing metric is adequate. The skewness of all files and for both metrics were positive. This 

shows that all the values are bunched to the right of the mean. The kurtosis of informa-

tion metric and counting metric for some files was opposite (either positive or negative), 

showing a contradiction between the two metrics. For the ModuleComplexity, the mean 

of the information metric was high and proportional to the counting metric, except for 
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testdlg.cpp. From this it can be said that file1 may be having a same row pattern for some 

nodes, which may have reduced the complexity in case of information metrics but is ig-

nored by the counting metrics. In such a case the information theory metrics are adequate. 

The standard deviation and variance were also high but not proportional. The skewness 

and kurtosis of the counting metric was opposite (either positive or negative) to the infor-

mation metric in some of the files. For the ModuleCoupling, the mean of the information 

metric and the counting metric were proportional, while the standard deviation and vari-

ance were not proportional. The skewness was almost the same for both the information 

and the counting metric, but the kurtosis was opposite (either positive or negative) for 

some files. For the ModuleCohesion the mean, standard deviation and variance of the in-

formation metric were almost proportional to the counting metric except for testdlg.cpp 

which had a very high cohesion value of 32. The cohesion measure lies between zero and 

one. A couple of files showed that the counting cohesion was greater than 1. In such a case 

the information metric is adequate. The skewness and kurtosis of the counting metrics was 

opposite (either positive or negative) to the information metric in some of the files. 

6.4 Analysis of Research Questions 

The following are the research questions and answers that provide evidence for the 

hypothesis. 

Question 1. What are the similarities and differences between the distribution 
of information theory-based metrics and counting-based metrics? 
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Due to similarities one may use either the information metrics or the counting met-

rics. The differences make the analyst think about which metric is suitable for the analy-

sis. From the case study of artificially generated examples, the similarity observed is that 

when adding a node the information size and the counting size increase. When adding 

an ordinary edge, the information complexity and counting complexity remain the same, 

and in the case of adding a hyperedge, the complexity of the two metrics increases. The 

difference observed between the two metrics is that the counting measurements are sen-

sitive to multiple hyperedges connected to exactly the same nodes, while the information 

measurements are not. 

From the case study of the physics program, the similarity observed is that when one 

uses a metric to order a module, the corresponding information metric and the counting 

metric generally result in the same order. From the case study of the PMLP software, the 

similarity observed is that the information size and counting size are highly correlated, as 

were information coupling and counting coupling. Consequently, the order of modules 

is the same according to the size or coupling attributes. In other words, they measure 

similar attributes. The difference observed is that the information complexity and the 

counting complexity are not highly correlated. This means that the two measurements are 

measuring different attributes. 

Question 2. Do the distributions of measurement values yield insight into the 
software development process and resulting product attributes? 

The results from the case studies of the physics program and PMLP provide an insight 

into the software development process and resulting product attributes. In the case study 
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of the physics programs, it is observed that one module had more complexity than the 

other modules in the system, while another module contributed more to all the system-

level metrics. In the PMLP case study, it is observed that the complexity measurements 

of some files were high in spite of the files having a low size measure. It is also observed 

that most of the files had zero coupling, meaning that variables were declared public but 

were not used as public. Software engineers could use the nonzero coupling measurement 

to identify where public variables are used. 

Question 3. Does each information theory-based measure preserve our intu-
ition about its attribute? 

Almost all of the information theory-based measures satisfy the properties defined 

by Briand, Morasca and Basili [11]. There were few exceptions, such as the module 

complexity resulted in a negative measure, and the counting cohesion measured greater 

than one in some cases. 

Question 4. Does the measurement instrument (tool) precisely specify how to 
capture measurement data? 

The measurement tool calculates the system-level and module-level measurements of 

size, complexity, coupling, and cohesion of both information theory-based metrics and 

counting-based metrics. The tool also specifies how to capture the data. 

Question 5. Does the measurement protocol (procedure) assure consistent, 
repeatable measurements that are independent of the measurer and the mea-
surement environment? 
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The results of three case studies provide evidence that the measurement protocol as-

sures consistent, repeatable measurements that are independent of the measurer and the 

measurement environment. 



CHAPTER VII 

CONCLUSIONS 

7.1 Evaluation of Hypothesis 

The hypothesis of this research is 

Information theory-based software metrics proposed by Allen [3], namely, 
size, complexity, coupling, and cohesion, can be useful in real-world software 
development projects, compared to the counting-based metrics. 

The study included an analysis of three case studies. The research questions answered 

in Chapter VI provide some evidence for the hypothesis. 

Question 1. What are the similarities and differences between the distribution 
of information theory-based metrics and counting-based metrics? 

Similarities were seen in the size measure and the coupling measure. One can either 

use information metrics or counting metrics for the calculation of the size and the cou-

pling attributes because of the similarities. In case of the complexity measure, information 

metrics are more sensitive than counting metrics because counting metrics just count the 

number of hyperedges, whereas information metrics are sensitive to the configuration of 

the hypergraphs. However, there is a drawback in the module-level complexity measure 

based on information theory. For certain conditions the modular complexity measure is 

negative, which is not desirable according to Briand, Morasca, and Basili [11]. In the case 

91 
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of cohesion, the information metric is useful compared to the counting metric because the 

cohesion measure is a factor that lies between zero and one. Counting cohesion measure-

ment may have values greater than one, which is not a desirable property according to 

Briand, Morasca, and Basili [11]. 

Question 2. Do the distributions of measurement values yield insight into the 
software development process and resulting product attributes? 

The case study found that the distribution of measurement values does provide insight 

into the development process and the resulting product attributes such as the nonzero cou-

pling measure in the PMLP software. 

Question 3. Does each information theory-based measure preserve our intu-
ition about its attribute? 

Each information theory-based measure preserves our intuition about its attribute ex-

cept for module complexity, which could have negative values in certain circumstances. 

Question 4. Does the measurement instrument (tool) precisely specify how to 
capture measurement data? 

The measurement instrument is software, therefore how to capture measurement data 

is not ambiguous. 

Question 5. Does the measurement protocol (procedure) assure consistent, 
repeatable measurements that are independent of the measurer and the mea-
surement environment? 

The measurement protocol formally assures consistent, repeatable measurements that 

are independent of the measurer and the measurement environment because our measure-

ment procedures do not require subjective decisions and they make extensive use of soft-

ware tools. 
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One may prefer the information complexity and cohesion measures over the counting 

metrics because the complexity measure is sensitive to configuration of the hypergraphs 

and the cohesion measure lies in the range zero to one. Since the size and coupling mea-

sures of the information metrics and counting metrics are similar, one may prefer to use the 

counting metrics because counting the number of nodes or the number of intermodule hy-

peredges is easier. The information theory-based measures made finer-grain distinctions. 

Discovery of rare module attributes might require exploiting the finer-grain distinctions 

offered by the information theory-based metrics in conjunction with the coarser counting-

based metrics. 

7.2 Future Work 

The complexity metrics based on information theory are better than the correspond-

ing counting metrics except for the drawback of the negative module complexity. Future 

work may mathematically prove our conjecture of conditions that make the metric nega-

tive. Further the formula for the counting cohesion measure should be revised so that the 

measurements lie between zero and one. Additional case studies should be done to further 

evaluate the hypothesis and the factor of fault-proneness in relation to the metrics may be 

investigated. 



REFERENCES 

[1] E. B. Allen, Information Theory and Software Measurements, doctoral dissertation, 
Florida Atlantic University, Boca Raton, Florida, Aug 1995. 

[2] E. B. Allen, “Empirical Validation of Information Theory-Based Software Metrics,” 
Proposal for National Science Foundation, Sept. 2001. 

[3] E. B. Allen, “Measuring Graph Abstraction of Software: An Information-Theory 
Approach,” Proceedings: Eighth IEEE Symposium on Software Metrics, Ottawa, 
Canada, June 2002, IEEE Computer Society, pp. 182–193. 

[4] E. B. Allen and S. Gottipati, Measuring Size, Complexity, and Coupling of Hy-
pergraphs Abstraction of Software: An Information-Theory Approach, Tech. Rep. 
MSU-021219, Mississippi State University, Mississippi, Dec 2002. 

[5] E. B. Allen and T. M. Khoshgoftaar, “Measurement of Software Design Cohesion,” 
Proceedings of 5th ISSAT International Conference on Reliability and Quality in 
Design, Las Vegas, Nevada, Aug. 1999, International Society of Science and Applied 
Technologies, pp. 158–163. 

[6] E. B. Allen and T. M. Khoshgoftaar, “Measuring Coupling and Cohesion: An 
Information-Theory Approach,” Proceeding: Sixth International Software Metrics 
Symposium, Boca Raton, Florida, Nov. 1999, IEEE Computer Society, pp. 119–127. 

[7] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen, “Measuring Coupling and Cohesion of 
Software Modules: An Information-Theory Approach,” Proceedings: Seventh Inter-
national Software Metrics Symposium, London, Apr. 2001, IEEE Computer Society, 
pp. 124–134. 

[8] L. C. Briand, J. Daly, V. Porter, and J. Wüst, “A Comprehensive Empirical Validation 
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