
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-11-2002

Definition and Representation of Requirement Engineering/Definition and Representation of Requirement Engineering/

Management : A Process-Oriented Approach Management : A Process-Oriented Approach

Judy-Audrey-Chui-Yik Liaw

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Liaw, Judy-Audrey-Chui-Yik, "Definition and Representation of Requirement Engineering/Management : A
Process-Oriented Approach" (2002). Theses and Dissertations. 1268.
https://scholarsjunction.msstate.edu/td/1268

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1268?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

DEFINITION AND REPRESENTATION OF REQUIREMENT ENGINEERING /

MANAGEMENT: A PROCESS-ORIENTED APPROACH

By

Judy-Audrey-Chui-Yik Liaw

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
For the Degree of Master of Science

in Industrial Engineering
in the Department of Industrial Engineering

Mississippi State, Mississippi

May 11, 2002

_________________________ _________________________

DEFINITION AND REPRESENTATION OF REQUIREMENT ENGINEERING /

MANAGEMENT: A PROCESS-ORIENTED APPROACH

By

Judy-Audrey-Chui-Yik Liaw

Approved:

Allen G. Greenwood A. Wayne Bennett
Associate Professor of Industrial Engineering Dean of College of Engineering
(Director of Thesis)

Stanley F. Bullington
Professor of Industrial Engineering
(Graduate Coordinator)

William N. Smyer
Associate Professor of Industrial Engineering
(Committee Member)

Name: Judy-Audrey-Chui-Yik Liaw

Date of Degree: May 11, 2002

Institution: Mississippi State University

Major Field: Industrial Engineering

Major Professor: Dr. Allen G. Greenwood

Title of Study: DEFINITION AND REPRESENTATION OF REQUIREMENT
ENGINEERING/MANAGEMENT: A PROCESS-ORIENTED
APPROACH

Pages in Study: 101

Candidate for Degree of Master of Science

Requirements are important in software development, product development, projects,

processes, and systems. However, a review of the requirements literature indicates

several problems. First, there is confusion between the terms ‘requirements

engineering’ and ‘requirements management.’ Similarities and/or differences between

the two terms are resolved through a literature review; resulting in comprehensive

definitions of each term. Second, current literature recognizes the importance of

requirements but offers few methodologies or solutions for defining and managing

requirements. Hence, a flexible methodology or framework is provided for defining

and managing requirements. Third, requirements methodologies are represented in

various ways, each with their respective strengths and weaknesses. A tabular view

and hybrid graphical view for representing the requirements process are provided.

(115 words)

DEDICATION

I would like to dedicate this research to my parents, John and Alice Liaw, my

sister Jessie, my best friend Yu Loong, and my American family – Auntie Dianne

Enis, Rose Wells, Jennifer and Thomas Kihlken, and Rebecca Mayo.

ii

ACKNOWLEDGEMENTS

I express my sincere gratitude to the many people without whose selfless

assistance this thesis could not have materialized. First of all, sincere thanks are due

to Dr. Allen G. Greenwood, my thesis director and major professor, for spending so

much time and effort to guide and assist me throughout the thesis process. Expressed

appreciation is also due to Dr. Stanley F. Bullington and Dr. William N. Smyer for

serving on my committee. Finally, I would like to thank Dr. Larry G. Brown for

providing the opportunity to pursue a Master’s degree at Mississippi State University.

iii

TABLE OF CONTENTS

Page
DEDICATION.. ii

ACKNOWLEDGEMENTS... iii

TABLE OF CONTENTS... iv

LIST OF TABLES... vi

LIST OF FIGURES .. vii

CHAPTER

I. INTRODUCTION ... 1

Definition of Requirements.. 1
Importance of Requirements.. 3

Ten Reasons .. 4
Areas of Application for Requirements ... 5

Systems Engineering... 6
Software Development.. 8
Concurrent Engineering .. 14

Motivation.. 16
Problem Statement ... 17
Research Objectives... 18

II. DEVELOPMENT OF A GENERIC REQUIREMENTS ENGINEERING /

MANAGEMENT PROCESS .. 19

Define requirements engineering and requirements management..................... 19
Requirements engineering (RE) defined... 19
Requirements management (RM) defined .. 26
Requirements Engineering versus Requirements Management 28

Review of Requirements Engineering/Management Activities......................... 31
Rational Unified Process’s approach .. 31
Leffingwell and Widrig’s approach .. 33
Gause and Weinberg’s approach .. 35
Hooks and Farry’s approach ... 36
Robertson and Robertson’s approach ... 39

iv

CHAPTER Page

IEEE standards on requirements... 41
Comparison of requirements engineering/management activities............ 44

Assimilation of a Master Activity List... 46
Development a Process Representation Scheme ... 49

Review of Representation Methods by Cited Sources.............................. 49
Integration Definition for Function Modeling (IDEF).............................. 52
Tabular View .. 54
Hybrid Graphical View... 57
Tabular View versus Hybrid Graphical View .. 61

III. Conclusion ... 62

Future Research ... 62
Conclusion ... 64

REFERENCES CITED... 66

APPENDIX

A Master Activity List .. 70

B Tabular view.. 83

v

LIST OF TABLES

TABLE Page

1 Definitions of requirements .. 2

2 Ten reasons why requirements are important ... 4

3 Comparison of the term ‘requirements engineering’ and ‘requirements

management’... 29

4 Comparison between RUP [24] and Leffingwell and Widrig’s [18] book..... 34

5 Composition of RUP’s process workflows and their corresponding use cases

... 35

6 Comparison of primary use cases from the literature 45

7 A portion of the high level Master Activity List and sources......................... 47

8 Grouping and Categorization of the Main Use Cases..................................... 48

9 Representation methods used by the cited sources ... 49

10 General process representation methods in general.. 51

11 Tabular view of process .. 56

12 Extension links from the tabular and hybrid graphical view 63

vi

1

2

3

4

5

6

7

8

9

10

LIST OF FIGURES

FIGURE Page

Systems engineering [3]...7

The waterfall model documented in Leffingwell and Widrig’s [18] book........9

The waterfall model documented in Blanchard and Fabrycky’s [3] book.........9

Systems Development Life Cycle (SDLC) [11] ..10

Spiral process model [3] ..12

“Vee” process model [3]..13

Basic structure of IDEF0 ...52

Example of a process-centered view of IDEF3 ...53

Example of object-centered view of IDEF3 ..54

Example of the proposed hybrid graphical view ...58

vii

CHAPTER I

INTRODUCTION

The word ‘requirement’ is used commonly in everyday life. When I chose

a university to apply to, one of the requirements was that the tuition must be less

than $15,000 annually. Another requirement that I had was that the university

must have a good engineering school, at least ABET accredited. On the other

hand, Mississippi State University has a list of requirements that the applicants

must meet before being accepted into MSU. For instance, international students

must achieve at least a specific TOEFL score. However, requirements are much

more than just a checklist to be checked off. (Prior to this research, I was

unaware of the vast application and importance of requirements.)

Definition of Requirements

A review of the literature indicates that there are many definitions for the

term ‘requirement.’ All of the definitions found in the literature are shown in

Table 1. The order that the definitions appear is arranged from narrow to broad

view.

1

 Source Definition Comments
Kulak and
Guiney [17]

“A requirement is something that a computer
application must do for its users” (p.4).

Only covers software
development

Dorfman and
Thayer, quoted
by Leffingwell
and Widrig
[18],[22]

“A software capability needed by the user to
solve a problem to achieve an objective. A
software capability that must be met or
possessed by a system or system component
to satisfy a contract, standard, specification,
or other formally imposed documentation”
(p.15).

Only covers software
development

Robertson and
Robertson [27]

“A requirement is something that the product
must do or a quality that the product must
have” (p.5).

Only covers product
development

Hooks and
Farry [12]

“Good requirements – defining the job that
needs to be done or the characteristics of the
product we want to buy, develop, build,
modify, or have developed, built, or
modified – are essential to improved
productivity” (p.xxiii).

Requirements define
what needs to be
done or what is
desired in product
development

IEEE Std 1220-
1998 [31]

“A statement that identifies a product or
process operational, functional, or design
characteristic or constraint, which is
unambiguous, testable or measurable, and
necessary for product or process
acceptability (by consumers or internal
quality assurance guidelines)” (p.8).

Requirements are
necessary for
acceptance of a
product or process

Leffingwell and
Widrig [18]

“Requirements define capabilities that the
systems must deliver, and conformance or
lack of conformance to a set of requirements
often determines the success or failure of
projects” (p.16).

Project success
depends on how well
the requirements are
met or not met

Davis and
Zweig [5]

“…those externally observable
characteristics of a system that a user, buyer,
customer, or other stakeholder desires to
have present in the system” (p.61).

Only covers
externally viewable
characteristics in a

 system

Harwell et al.
[10]

“[i]f it mandates that something must be
accomplished, transformed, produced, or
provided, it is a requirement – period”
(para.4).

Indicates that
requirements are
needed for any
activity/process

2
Table 1

Definitions of requirements

3

Each definition points out something important about requirements. It is just too bad

that all these important elements do not appear in the same definition. Keywords

extracted from the definitions include ‘a thing’, capability, users, must do, must have,

define or identify, characteristic, customers, observable, and action (accomplished,

transformed, produced, provided).

Therefore, a requirement can be defined as an aspect of a system that defines

what it must have or must do in order to accomplish a desired outcome for someone

(users, customers, stakeholders, etc.). Davis and Zweig’s notion of “externally

observable characteristics” is not included because there are some features that are

not observable and yet important to the customers. For instance, everyone knows that

electricity is important but some people do not know how current flows.

Importance of Requirements

Why are requirements important? A common reason cited by the literature is

cost. For example, software companies could have saved themselves a lot of money

had they worked out all the bugs in their software packages before shipping them.

However, working out all the bugs in the software can potentially take a long time.

Hence, most software companies choose to ship an almost-perfect software and only

fix problems if they are detected. Besides creating a bad reputation for the software

companies, this also means additional cost for them.

 No. Reason
1 “[R]equirements are important because if you don’t know what you want, or don’t

communicate what you want, you reduce your chances of getting what you want”
 (p.1) [8].

2 “Bell Labs and IBM studies have determined that 80 percent of all product defects
are inserted in the requirement definition stage of product development, the stage
where you should define a product’s needs and uses” (p.3) [12].

3 From an information systems standpoint, requirements determination and structuring
occurs in the first phase (analysis phase) of the systems development life cycle
(SDLC). Errors in the final system are often caused by inadequate efforts in this
phase [11].

4 The Standish Group found that projects that were late and under expectations were
caused by the following: lack of user input, and incomplete and changing
requirements [18].

5 The more time and effort that NASA spent on the requirements definition stage, the
less they spent on budget overrun [12].

6 The European Software Process Improvement Training Initiative (ESPITI) reported
that major problems in software development fall into two main categories -
requirements specification and managing customer requirements [18].

7 “[W]e have grown to care about requirements because we have seen more projects
stumble or fail as a result of poor requirements than for any other reason” (p.2) [17].

8 “Bad requirements result in cost overruns, schedule slips, frustrated and overworked
employees, unhappy customers, lost profitability, and limited careers” (p.7) [12].

9 Requirements, known as demanded-quality items, are inputs to the House of Quality
in Quality Function Deployment [21].

10 Hooks and Farry cited Dean Leffingwell estimation that “requirements errors
accounts for 70 to 85 percent of software project rework costs” (p.8). In addition,
Barry Boehm found that half of the total budget was used for rework. This means
that there is a high probability that the high cost of rework is due to errors in
requirements [12].

4
Ten Reasons

A review of the literature indicates the importance of requirements. Ten

reasons (not in any particular order) why requirements are important are documented

in the Table 2.

Table 2
Ten reasons why requirements are important

5
This list proves that requirements are important in a variety of areas. This list also

indicates that the success or failure of software development, product development,

projects, processes, or systems depends heavily on the early stages or requirement

definition stages. The more time and effort that is spent upfront defining

requirements, the less the development team has to spend (in terms of money and

time) later to rectify the problems. Leffingwell and Widrig [18] found that costs of

fixing problems during maintenance stage of the software development is twenty

times the cost of fixing problems during requirements stage.

This list of reasons indirectly points out that something is done “to” the

requirements. In the beginning, requirements have to be defined. Once that is done,

requirements need to be tracked, indicating some sort of management is required.

These definition and management activities are a part of a process, indicating that

requirements are either engineered and/or managed.

Areas of Application for Requirements

Upon investigation, it is found that requirements are embedded in several

processes, namely systems engineering, software development, and concurrent

engineering. The roles of requirements are examined in the following section.

6
Systems Engineering

Engineering has traditionally focused on individual phases of a product’s life

cycle. Market competitiveness has since changed the focus to one of viewing the

entire cycle (from concept development to disposal) as a whole [3]. This is in fact the

essence of systems engineering. The International Council on Systems Engineering

(INCOSE) [15] defines systems engineering as:

“an interdisciplinary approach and means to enable the realization of successful

systems. It focuses on defining customer needs and required functionality early in

the development cycle, documenting requirements, then proceeding with design

synthesis and system validation while considering the complete problem:

operations, performance, test, manufacturing, cost and schedule, training and

support, and disposal. Systems Engineering integrates all the disciplines and

specialty groups into a team effort forming a structured development process that

proceeds from concept to production to operation. Systems Engineering considers

both the business and the technical needs of all customers with the goal of

providing a quality product that meets the user needs” (para.1).

This definition demonstrates the importance of customer input. These inputs are

transformed into customer requirements, which eventually flow through the entire

product development process, and even through the life cycle.

Figure 1: Systems engineering [3]

7
Blanchard and Fabrycky [3] provide another point of view on systems

engineering shown in Figure 1.

Systems engineering begins with identifying the need for the system. Once

customers’ needs are gathered, conceptual design begins. This is where the customer

needs are translated into functional requirements. These functional requirements are

then passed along to preliminary design where trade-off studies, initial prototyping,

etc. are carried out. Detail design and development includes activities such as

describing the system design and development, testing, and evaluating prototypes.

The system is then analyzed and built in the production and/or construction phase.

During the utilization and support phase, the system is assessed, analyzed, and

modified, if necessary. The systems engineering cycle ends with a phaseout and

disposal of the system. In the past, phaseout and disposal of a product were not

considered as the responsibility of the manufacturer.

One way of viewing this is that requirements drive all the other subsequent

activities. Blanchard and Fabrycky [3] write that the requirements have “to be well-

8
defined and specified” (p.24). Also, it is important for requirements to be visible

throughout the entire process – this is known as traceability.

Software Development

Leffingwell and Widrig [18] said that “[e]ffective requirements management

cannot occur without the context of a reasonably well-defined software process…”

(p.213). This shows that it is important to examine the activities contained within the

software development process. In the past, programmers would write code and only

fix “bugs” when they are found. This would repeat until the problems can no longer

be fixed. Then Boehm [18] created the stepwise process model, which is made up of

several stages: e.g. requirements, design, coding. However, this model has a

shortcoming: it is sequential and thus does not allow feedback between stages.

In 1970, Winston Royce [3] developed the “waterfall model,” which consists

of five to seven steps. The basic steps within this process are requirements, design,

coding and unit test, system integration, and operation and maintenance. The main

difference between the waterfall model and the stepwise model is that the waterfall

model allows feedback at every stage. Other researchers in the software development

field criticized this waterfall model, shown in Figure 2, for not addressing the

prototyping activity [3]. Even though the waterfall model is popular among software

developers, there is a discrepancy between different authors. Blanchard and

Fabrycky’s [3] representation of the waterfall model is shown in Figure 3.

9

Requirements

Design

Coding and Unit
Test

System
Integration

Operation and
Maintenance

Figure 2: The waterfall model documented in Leffingwell and Widrig’s [18] book

Requirements
Analysis

Specifications

Design

Implementation

Test

Feedback

Maintenance

Figure 3: The waterfall model documented in Blanchard and Fabrycky’s [3] book

Project
Identification and

Selection

Project Initiation
and Planning

Analysis

Logical Design

Physical Design

Implementation

Maintenance

Figure 4: Systems Development Life Cycle (SDLC) [11]

10
According to Blanchard and Fabrycky [3], the waterfall model is made up of

six steps – requirements analysis, specifications, design, implementation, test, and

maintenance. Even though the waterfall models presented by both authors are

different, one similarity stands out: - both of the models begin with requirements.

Again, this supports the notion that something is done onto requirements throughout

the entire process.

From the information systems standpoint, there is a similar model called the

Systems Development Life Cycle (SDLC) [11]. This model is shown in Figure 4.

This model is comprised of seven phases, namely project identification and selection,

project initiation and planning, analysis, logical design, physical design,

11
implementation, and maintenance. The first phase, project identification and

selection, involves identifying the need for the project. This is similar to the first step

within the systems engineering process. This is succeeded by the project initiation

and planning phase where further investigation is done on the need for the project. If

the project is approved, the development team draws up a detailed plan for the

project.

Next, the team examines the current system and proposes a new system. This

phase, known as the analysis phase, is where the activities related to requirements

take place. In order to design the system that the stakeholders desire, the team has to

gather the stakeholders’ requirements. Then, the team analyzes the current system

and decides what needs to be done in order to meet their stakeholders’ needs. The

team then works on a rough sketch of the proposed system.

The subsequent two stages of the SDLC involve design. The first part of

design is the logical design, where all of the functions of the proposed system are

specified without the restriction of computer hardware. The logical design is

converted into specifications in the physical design phase.

Once the specifications are set, the team turns the specifications into a

working system in the implementation phase. Activities included in this phase

include coding, testing, and installing the new system. Last but not least, the system

is modified periodically in the maintenance phase.

In 1986, Boehm [3] developed the “spiral model” shown in Figure 5. The

spiral model, which is read counter clockwise from the center, is based on risk-driven

Figure 5: Spiral process model [3]

12
approach. This approach allows each prototype’s risks to be evaluated and resolved

each cycle before progressing to the next step. The spiral process begins with a need.

This need is progressively transformed into the final product through an iterative

process. Since Boehm’s previous stepwise model was criticized for not including

feedback and prototyping, he has included them into this model.

The spiral model is another example where requirements play an important

role. For instance, once the need is identified, the system requirements are

determined. In addition, each cycle has an activity involving requirements, indicating

that requirements ‘evolve’ throughout the process.

The spiral model was later succeeded by the “Vee” process model. This

process, shown in Figure 6, is created by Forsberg and Mooz [3]. Shaped like the

Figure 6: “Vee” process model [3]

13
letter ‘v’, each step is mirrored on the other side by verification to ensure that the goal

of each step is achieved. It is no surprise that the “Vee” process begins with defining

systems requirements, suggesting the importance of requirements. The next step in

the process is to allocate the system functions to subfunctions, followed by designing

the components in detail. The next three steps are verifying components, verifying

subsystems, and operating and verifying the full system. These three steps fulfill two

goals – operation of the final system and ensuring that each step is verified, hence the

mirroring effect.

The latest model, based on Rational Unified Process (RUP), employ an

iterative approach within each phase, including inception, elaboration, construction,

and transition [18]. Activities that are carried out during the inception phase include:

project scoping, preliminary analysis, scheduling, budgeting, and risk factor

estimation. Activities related to requirements are carried out during the elaboration

14
phases. Coding and implementation are performed during the construction phase.

The transition phase allows for testing and implementation. Rational Unified Process

[24] is discussed further in the next chapter.

One similarity that exists across all models in the software development world

is the word ‘requirements’. Every model places some emphasis on defining

requirements at the beginning of the process. This indicates that requirements play an

important role in each of the alternative processes.

Concurrent Engineering

The Society of Concurrent Product Development (SCPD) [29], formerly

known as Society of Concurrent Engineering (SOCE), defines concurrent engineering

as a “systematic approach to the integrated, concurrent design of products and their

related processes, including manufacture and support. This approach is intended to

cause the developer, from the outset, to consider all elements of the product lifecycle

from concept through disposal, including quality control, cost, scheduling and user

requirements (Institute for Defense Analyses)” (para.6).

According to Ulrich and Eppinger [36], the generic product development

process is composed of planning, concept development, system-level design, detail

design, testing and refinement, and production ramp-up. Put simply, product

development is like a funnel – it begins with many alternatives and ends with a

narrowed alternative through a series of filtration.

15
The connection between requirements and concurrent engineering can be

found in the concept development stage. Activities carried out within this stage

include customer needs identification, target specifications, concept generation,

concept selection, concept testing, final specifications, project planning, economic

analysis, benchmarking, modeling, and prototyping.

Similar to systems engineering and software development, the voice of the

customer plays a vital role in concurrent engineering. Customer’s needs are collected

and translated into design specification, yielding a final product that will satisfy the

customers. However, this is much easier said than done. Translating customer needs

into design specifications can be quite complicated: one highly acclaimed technique

is called Quality Function Deployment (QFD).

Quality Function Deployment (QFD) was first introduced in Japan by Yoji

Akao and Katsuyoshi Ishihara [21]. It was successfully applied at a shipyard,

specifically Mitsubishi Heavy Industries’ Kobe Shipyard, to ensure the production of

a high quality ship at every stage of production. Prior to this, quality at every stage

has been considered an independent activity. Hence for the first time, quality

‘flowed’ from the customers needs all the way through the final product.

The most important element in QFD is the House of Quality. This house

shows the relationship between customer needs and the product characteristics [19].

Therefore, each engineering decision made (for instance, the size of a nut) can be

ultimately traced to one or more customer requirements. However, not much

information can be found on the activities that are carried out prior to the House of

16
Quality. Specifically, it is not clear as to the activity/activities involved in gathering

customers’ requirements.

The existence of activities related to requirements in all three fields - systems

engineering, software development, and concurrent engineering, proves that

requirements are widely used. In addition to that, those activities related to

requirements are found in the early stages of a process, regardless of the process type.

This indicates that requirements do play an important role in shaping the outcome of

the process. It also implies that requirements themselves go through a process.

Motivation

A review of the literature indicates the importance of requirements but does

not offer many methodologies or solutions for defining and managing requirements.

If the literature offers a method for defining requirements, then two main problems

surface. First, different requirements methodologies are proposed, suggesting a lack

of a standard methodology for requirements for definition and management. Second,

the steps within a methodology are usually not well defined. For instance, a step

might be to ‘develop the vision for the project’ but there is no documentation

indicating how this might be done or what is required for this to be carried out.

17

Problem Statement

Based upon a review of the literature, there is confusion between the terms

‘requirements engineering’ and ‘requirements management.’ One objective of this

research is to investigate the definition of those two terms. Are those two terms

interchangeable? If not, what are the differences between ‘requirements engineering’

and ‘requirements management’? In the meantime, this thesis will use both terms as

one, i.e. requirements engineering/management.

Secondly, the literature review also shows that different sources suggest

different methodologies for defining and managing requirements. This means that

there are multiple interpretations of the requirements engineering/management

process. Unfortunately, multiple representations only confuse users as to which

methodology to use. Therefore, there needs to be one flexible methodology or

framework. Users can then apply relevant aspects to meet their needs. The process

should to be flexible so that users from different organizations can use the same

process by adapting the steps within the process. Users can then add or eliminate

steps to fit their need. The importance of making the process customizable is to

ensure that the users have a chance to think about issues that may not surface within

the proposed process.

Last but not least, the literature review also indicates that there is a problem

with representation. Actually, it is not possible to represent the entire process with a

single representation method. Again, different sources use different representation

methods, as will be discussed later.

18
Research Objectives

As a result, the following are the objectives for this research.

1. Define requirements engineering and requirements management.

2. Develop a generic process for requirements engineering/management.

3. Develop a process representation scheme.

CHAPTER II

DEVELOPMENT OF A GENERIC REQUIREMENTS
ENGINEERING / MANAGEMENT PROCESS

Define requirements engineering and requirements management

In order to achieve the first research objective, a literature review on the terms

‘requirements engineering’ and ‘requirements management’ was conducted. This

review results in a comprehensive definition of ‘requirements engineering’ and

‘requirements management’ respectively.

Requirements engineering (RE) defined

A search on the World Wide Web on the term ‘requirements engineering’

resulted in more hits on United Kingdom websites. The Requirements Engineering

Specialist Group (RESG) of the British Computer Society [26] defines requirements

engineering as:

“[a] key activity in the development of software systems, and is concerned with

the identification of the stakeholder goals and their elaboration into precise

statements of desired services and behaviour” (para.1).

The definition provided here is oriented towards software development. The phrase

“key activity” hints that requirements are vital in software development effort.

19

20
The committee of the IEEE Joint International Requirements Engineering

Conference [13], to be held September 9 – 13, 2002 in Denmark, defines

requirements engineering as:

“[t]he heart of software development. It is the branch of systems engineering

concerned with the real-world goals for, functions of, and constraints on software-

intensive systems. It is concerned with how these factors are taken into account

during the implementation and maintenance of the system, from software

specifications and architectures up to final test cases. RE requires a variety and

richness of skills, processes, methods, techniques and tools. In addition, diversity

arises from different application domains ranging from business information

systems to real-time process control systems, from traditional to web-based

systems as well as from the perspective being system families or not” (para.1).

At a glance, this definition is similar to the previous one. However, this definition is

more detailed. It specifies that requirements control the entire software development

stages. The interesting part is that definition also hints how much work will be

required for the requirements engineering effort. A multi-functional team comprised

of team members with different skills, knowledge, and background will be required.

In addition to that, the team would have to use different tools and techniques.

The recent Symposium on Requirements Engineering [7], held in August

2001 in Toronto, Canada, define requirements engineering (RE) as:

21
“[t]he heart of software development. RE is concerned with identifying the

purpose of a software system, and the contexts in which it will be used. Hence,

RE acts as the bridge between the real world needs of users, customers, and other

constituencies affected by a software system, and the capabilities and

opportunities afforded by software-intensive technologies. RE is a multi-

disciplinary activity drawing on research and experience in software engineering,

computer science, business and information systems, human-computer

interaction, and social and cognitive sciences. In the 1990’s, significant advances

in RE research were made, such as the development of techniques for eliciting

and analysing stakeholders’ goals, modelling scenarios that characterise different

contexts of use, the use of ethnographic techniques for studying organisations and

work settings, and the use of formal methods for analysing safety and security

requirements. Despite these advances, RE remains one of the most challenging

aspects of software development” (para.1).

This definition points out that requirements is a bridge between people and possible

results from the requirements engineering effort. Specifications are also made as to

which disciplines are required to be a part of the requirements engineering team.

Note that this definition states that RE is still a challenging aspect of software

development.

In a paper published in the proceedings of the Second IEEE International

Symposium on Requirements Engineering, Bubenko [4] defined requirements

engineering as:

22

“[t]he area of knowledge concerned with communicating with organisational

actors with respect to their visions, intentions, and activities regarding their need

for computer support, and developing and maintaining a adequate requirements

specification of an information systems" (p.160).

Again, the word “communicating” shows up here too. This is similar to the word

“bridge” found in the definition earlier. However, this definition is concerned with

only information systems.

Glib [9] define requirements engineering as:

“[t]he systematic process of determining the complete relevant set of values held

by stakeholders, and processing them until a satisfactory level of 'delivery of the

required end states' has been made to them. This implies that it must include

design, testing, quality control, project management, specification languages and

all other relevant disciplines to enable it to succeed" (sec.7).

For the first time, requirements engineering is referred to as a process. It also

specifies that any disciplines can be involved – as long as the stakeholders are

satisfied.

Zowghi and Offen [38] define requirements engineering to be:

“…concerned with elucidating real-world goals for the function of, and the

constraints on software systems. The major objectives of requirements

23
engineering are defining the purpose of a system and capturing its external

behavior" (p.247).

Again, the main idea here is on making sure that the goals are achieved on the

software systems. This is similar to being a bridge or communicator. At last,

someone specified the objective of requirements engineering as defining the system’s

purpose and external behavior.

In a separate article by the same author, Zowghi [37] expanded on the

definition to include activities performed under requirements engineering. According

to Zowghi [37]:

“ [t]he major objective of RE is defining the purpose of a proposed system and

outlining its external behavior. … RE activities can be divided into five

categories:

• requirements elicitation which is the process of exploring, acquiring, and

reifying user requirements through discussion with the problem owners,

introspection, observation of the existing system, task analysis and so on.

• requirements modeling where alternative models for the a target composite

system are elaborated and a conceptual model of the enterprise as seen by the

system’s eventual users is produced. This model is meant to capture as much

of the semantics of the real world as possible and is used as the foundation for

an abstract description of the requirements.

24
• requirements specification where the various components of the models are

precisely described and possibly formalised to act as a basis for contractual

purposes between the problem owners and the developers.

• requirements validation where the specifications are evaluated and analysed

against correctness properties (such as completeness and consistency), and

feasibility properties (such as cost and resources needed).

• requirements management refers to the set of procedures that assists in

maintaining the evolution of requirements throughout the development

process. These include planning, traceability, impact assessment of changing

requirements and so on” (para.1 & 2).

Zowghi indicates that requirements management is indeed a part of requirements

engineering. A consultant specializing on requirements engineering, named Ian

Alexander [1], explains that requirements engineering include the following

activities, “elicitation, analysis of requirements and constraints, modeling of

behaviour with scenarios and other techniques, traceability, metrication, review and

baselining ... " (para.17). All the activities mentioned by Alexander seem to fit into

one of the activities defined by Zowghi. For instance, requirements and constraints

analysis probably fall into the requirements validation.

In another article written by Alexander [2], he said that requirements

engineering is different from other engineering disciplines. Instead, he asserts that

25
requirements engineering is one “that efficiently and rigorously elicits, organizes,

checks, measures, prioritizes and documents what a set of diverse stakeholders want -

and helps them to agree on the specification of a solution” (para.7).

Keywords from this definition list of requirements engineering include:

• key activity or heart of software development

• branch of systems engineering

• variety (skills, processes, methods, techniques, tools)

• application diversity

• bridge between people and system

• multi-disciplinary

• communication tool

• systematic process

• define purpose of a system and capture its external behavior, and

• elicit, model, specify, validate, manage

Hence, requirements engineering stems from systems engineering as a bridge

between people and system. It is a multi-disciplinary systematic process that elicits,

models, specifies, validates, and manages requirements, drawing upon a variety of

skills, processes, methods, techniques, and tools.

26
Requirements management (RM) defined

As for the term ‘requirements management,’ searches on the World Wide

Web indicated there are more hits on US-based websites. This suggests that perhaps

the term the European countries commonly use is ‘requirements engineering’, while

the term Americans commonly use is ‘requirements management’.

Requirements engineering authors Dorfman and Thayer, as quoted in

Leffingwell and Widrig [18] and Rational Software’s whitepaper [22], define

requirements management as:

“a systematic approach to eliciting, organizing, and documenting the requirements

of the system, and a process that establishes and maintains agreement between the

customer and the project team on the changing requirements of the system”

(p.16).

This definition implies that requirements management is a method for keeping track

of requirements changes to ensure that customers and team members are in

agreement.

In an article published in a proceeding by the International Council on

Systems Engineering (INCOSE), Jones et al. [16] quotes from a 1995 article by

Stevens and Martin that requirements management is:

“the identification, derivation, allocation, and control in a consistent, traceable,

correlatable, verifiable manner of all the system functions, attributes, interfaces,

27
and verification methods that a system must meet including customer, derived

(internal), and specialty engineering needs" (sec.2.2).

This definition includes activities that go on within requirements management.

Similar to the first definition, Jones et al. [16] suggest that requirements management

is a systematic method for ensuring that the final result meets the stakeholders’ needs.

In another article found on the INCOSE’s website, requirements management

is said to be made up of capturing, storing, managing, and distributing information

[33]. Once again, this indicates that requirements management as management-type

activity.

Davis and Zweig [5] defines that requirements management as:

“the set of activities encompassing the collection, control, analysis, filtering, and

documentation of a system’s requirements.” Requirements management consists

of three activities: requirements elicitation (gathering and storing stakeholder

needs in a repository), requirements triage (deciding which features to include in

the product), and requirements specification (specifying the external behavior of a

system to support the features)” (p.61).

Again, this definition specifies the gathering and specifying activities. The new item

here is the requirements triage activity.

Lastly, Stevens and Martin [35] from Telelogic, a systems and software

developer, said that:

28
“Requirements management starts with the definition of requirements and

continues through the project, culminating in the acceptance of the product

against requirements. … Requirements management could be defined as ensuring:

 we know that the customer wants (quality);

 the solution efficiently meets these requirements (conformance)” (para.1).

According to Stevens and Martin, requirements management is quite simple – just

collect requirements and conform to them.

Several keywords that are associated with requirements management are

identify, derive, elicit, collect, store, control, allocate, organize, and document.

Therefore, requirements management is a systematic approach for identifying,

eliciting, deriving, collecting, organizing, allocating, controlling, and documenting

requirements.

Requirements Engineering versus Requirements Management

When the two terms are placed side by side, shown in Table 3, the following

key words are observed, suggesting actions performed on requirements. This drives

the need for a process view on requirements. Note that similarities are placed at the

top of the list.

The International Council on Systems Engineering’s (INCOSE) journal,

Insight, points out the confusion in terms. The editor states that the Requirements

Management Working Group members could not agree on the definition of

requirements management and requirements engineering. They also could not agree

Requirements engineering

• systematic
• identify
• elicit
• specify
• analyze
• translate
• model
• manage
• validate
• multi-disciplinary
• variety (skills, processes, methods,

techniques and tools)
• communicate/ bridge
• define
• develop
• maintain
• design
• test
• capture

Requirements management

• systematic
• identify
• elicit
• specify
• analyze
• derive
• collect
• allocate
• organize
• control
• document
• identify
• gather
• filter
• correlate
• verify
• information (capture, store, manage,

and distribute)
• triage

Table 3
Comparison of the term ‘requirements engineering’ and ‘requirements management’

29
on which one is a subset of the other. The Working Group has since removed the

word ‘management’ from their working group’s name [14].

This list indicates two things – first, there is some crossover of activities. This could

be due to misuse or misunderstanding of terms. Second, the two terms, requirements

engineering and requirements management, are indeed different. It is proposed that

requirements engineering and requirements management are separate but related

terms. The activities carried out within requirements engineering could be an initial

30
startup for the requirements process. Once that is in place, then the activities within

requirements management are carried out. This does not imply that requirements are

passed along from requirements engineering to requirements management, but are

taken into consideration during the requirements engineering phase. Also, over the

course of the product development life cycle, activities would iterate between

requirements management and requirements engineering due to the needs for

clarification, changing needs, etc. The investigation also implies that the activities

performed within requirements engineering are broader than the activities within

requirements management. This is indicated by the notion that requirements

engineering is a systematic process requiring multi-disciplinary people utilizing a

variety of skills, methods, techniques, and tools.

Therefore, it is proposed that requirements engineering is made up of

requirements elicitation, requirements modeling, requirements specification, and

requirements validation. On the other hand, it is proposed that requirements

management is made up of requirements organization, requirements control, and

requirements documentation. This provides the basis for further definition. These

definitions also serve as a foundation for the next research objective.

In summary, definitions of requirements engineering and requirements

management were extracted from the literature. Based on the definitions, a composite

definition of requirements engineering and requirements management was developed.

However, these definitions illustrate the need for better clarification. A first step to

this is to propose components or activities of each term.

31

Review of Requirements Engineering/Management Activities

The second research objective is to capture all of the activities within the

requirements engineering/management process. In this process, the focus is on what

the activities are within the process. However, there is a need to also capture other

important information on activities and relationships among activities. This need is

discussed in the following chapter.

Rational Unified Process’s approach

Before the process is defined, a literature review was conducted in order to

identify existing requirements engineering/management processes. The review began

with the requirements process workflow from the Rational Unified Process (RUP)

[24], which is a product of Rational Software Corporation. RUP is well known for its

ability to capture the best practices in the software development industry.

Preliminary investigation shows that the requirements process by RUP seemed quite

complete.

RUP, which utilizes Unified Modeling Language (UML)1 [25], is a

customizable framework for the software engineering process. One of the main

features of RUP is that it is web-enabled. This allows users flexibility in accessing

RUP through the Internet. RUP divides the software development lifecycle into four

1 “The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and
documenting the artifacts of software systems, as well as for business modeling and other non-software
systems. The UML represents a collection of best engineering practices that have proven successful in
the modeling of large and complex systems” [27]. UML is now considered a standard for modeling.

32
phases – inception (defining the scope), elaboration (planning the tasks), construction

(producing the product), and transition (moving the product into end users). There

are many activities within each phase, of which each group of activities is categorized

as a process workflow. There are six process workflows and three supporting

workflows. Each workflow produces models, which then is used by the subsequent

workflow. The process workflows include business modeling, requirements, analysis

and design, implementation, test, and deployment. The supporting workflows are

made up of configuration and change management, project management, and

environment. The level of activity for each workflow depends on the phase of the

lifecycle. For instance, the requirements process workflow is more active during the

inception and elaboration phases. As for construction and transition phases,

requirements process workflows do not play a large role.

For the purpose of this research, only the requirements portion of the RUP

was examined. The requirements process workflow is divided into six minor

workflows – analyze the problem, understand the stakeholder needs, define the

system, manage the scope of the system, refine the system definition, and manage

changing requirements. Each minor workflow is a combination of the 14 applicable

use cases2. The use cases are identified in the next section. Each use case then lists

what tasks need to be accomplished, documentation required, and the roles involved.

All this information is captured as a list of activities. The activities from RUP are

used as a baseline for the process and are compiled in a document entitled ‘Master

33
Activity List.’ The list is discussed at the end of this section and included as

Appendix A. Activities and supporting information from each subsequent source that

are examined add to the Master Activity List.

Leffingwell and Widrig’s approach

A supplementary source to RUP’s requirements process, Managing Software

Requirements A Unified Approach [18], was identified through a RUP workshop.

The authors approach requirements management by requiring teams to learn and

master five basic skills. The five basic skills are: analyze the problem, understand

user needs, define the system, manage scope, refine the system definition, and build

the right system. Each skill is further divided into more specific steps. The authors

provide a handy summary at the end of the book of each skill and what it

encompasses. However, a lot of important information was lost in the summary. The

most crucial discovery was that this book, which was supposed to support RUP’s

material was actually quite different from RUP. The authors acknowledge a

difference in terminology used but it seems more appropriate to use a standardized

terms since this is referring to the same process! (This terminology problem becomes

more prominent when other sources are introduced.) Table 4 shows the comparison

between the use cases define in RUP and the skills by Leffingwell and Widrig [18].

2 “A use case defines a set of use-case instances, where each instance is a sequence of actions a system
performs that yields an observable result of value to a particular actor” [24].

34
Table 4

Comparison between RUP [24] and Leffingwell and Widrig’s [18] book

No Use cases from RUP [24] Skills from Leffingwell and Widrig [18]
1 Capture a common vocabulary
2 Develop requirements management plan
3 Find actors and use cases
4 Develop vision Analyze problem
5 Elicit stakeholder request Acquire user needs
6 Manage dependencies
7 Review change request Manage changes to requirements
8 Prioritize use case
9 Detail a use case
10 Detail the software requirements
11 Model the user-interface
12 Prototype the user-interface
13 Structure use-case model
14 Review requirements

The activities described under “Analyze problem” by Leffingwell and Widrig

is not the same as RUP’s “Analyze the problem.” In fact, it is only similar to the

develop vision use case, which is a portion of RUP’s “Analyze the problem”

workflow. According to RUP, “Analyze the problem” workflow includes “Capturing

a common vocabulary”, “Develop requirements management plan”, “Find actors and

use cases”, and “Develop vision use cases.” A complete listing of the use cases

within each RUP workflow is defined in Table 5.

35
Table 5

Composition of RUP’s process workflows and their corresponding use cases

Rational Unified Process Use cases
A Analyze the problem 1 2 3 4
B Understand stakeholder needs 1 3 4 5 6 7
C Define the system 1 3 4 6
D Manage the scope of the system 4 6 7 8
E Refine the system definition 9 10 11 12
F Manage changing requirements 6 7 13 14

Gause and Weinberg’s approach

A third source, the book entitled Exploring Requirements Quality Before

Design, by Donald C. Gause and Gerald M. Weinberg [8] was investigated. The

authors claim that there are many books written on requirements management’s tools

and techniques; however, they lack coverage of dealing with people within the

requirements management environment. Gause and Weinberg [8] believe that more

time has to be spent on people issues if they are provided with the better tool.

To help manage teams, the authors provide advice for selecting team

members, conducting meetings, dealing with conflicts, making decisions, and

knowing when to end the requirements exploration.

The authors also supply ideas for uncovering requirements. Topics covered

under this section include brainstorming, sketching techniques, and naming projects.

One of the most important contributions from Gause and Weinberg [8] deals

with ambiguity. The authors warn that ambiguity has a large impact on cost. They

state that “[b]illions of dollars are squandered each year building products that don’t

36
meet requirements, mostly because the requirements were never clearly understood”

(p.17). Therefore, the authors advocate attacking ambiguities at the beginning of the

project. In order to get rid of ambiguity, the authors identify sources of ambiguity

and discuss techniques for attacking ambiguity.

The later part of the book deals with fine-tuning product functions, attributes,

and constraints. The last section covers the quality of requirements including

measuring ambiguity, conducting technical reviews, measuring satisfaction, case

testing, and studying existing products. Overall, this book is a good source for

handling ambiguity but does not make a significant contribution towards defining the

activities within requirements engineering/management process.

Hooks and Farry’s approach

A fourth source, Hooks and Farry’s [12] Customer-Centered Products

Creating Successful Products through Smart Requirements Management, is written

from a management perspective. The authors provide some insight into the American

culture that defines how Americans work and think. They [12] attribute this to three

out of the “seven cultural forces that define Americans” from Hammond and

Morisson’s book entitled The Stuff Americans Are Made Of [12], i.e. “impatience

with time, acceptance of mistakes, and the urge to improvise” as the main causes of

product development problems (p.17). Since the usual tendency for people is to want

something done immediately, developers often want to jump into the design

immediately, thinking that requirements type activities is a waste of time. In addition,

37
people’s willingness to accept mistakes makes it acceptable for the developers to

make mistakes. Mistakes, sometimes costly, can be prevented had some time been

spent up front defining requirements. The third issue is that people expect problems

to arise in the middle of projects. So they improvise when necessary, suggesting that

improvisation is acceptable. This again can be prevented had developers spent time

in the beginning towards defining requirements.

In addition, Americans’ work environment may not be conducive for

requirements. Hooks and Farry [12] blames this on the five “management myths” in

the American workplace.

1. “Everyone knows what this project is about.”

2. “Everyone knows how to write requirements.”

3. “We already have a requirement management process in place.”

4. “Everyone understands our requirements management process.”

5. “Nothing can be done about bad requirements.” (p.21)

Unfortunately, culture and work environments are not the only culprits for most

companies that lack a good requirement definition process. The other contributor is

the individual; Hooks and Farry [12] claims that the person in charge of requirements

oftentimes “doesn’t know what to do, doesn’t understand why, would rather be doing

something else, or sees no reward” (p.25).

Hence, Hooks and Farry offer what is called the Requirement Management

Process Sanity Check. It outlines steps for creating and managing requirements.

Like other authors in the requirement engineering/management field, Hooks and

38
Farry advocate an organization adopt a requirements management process if they

have not already done so. Their process is made up of nine iterative steps.

1. Scope product

2. Develop operational concepts

3. Identify interfaces

4. Write requirements

5. Capture rationale

6. Level requirements

7. Assess verification

8. Format requirements

9. Baseline requirements

Each step is further defined in their book. Each chapter includes a sanity checklist to

ensure that all the issues are at least addressed and each chapter concludes with a

short section on the manager’s roles for each step. In addition to the creation of

requirements, the authors also dedicate several chapters to the management of

requirements. While they seem more like activities, Hooks and Farry define the

following “techniques and tools”:

1. Set priorities for requirements implementation and use these priorities

to phase development

2. Automate requirement management

3. Control change to requirements and assess potential change impact

before integrating changes

39
4. Measure quality of requirements and your progress toward good

requirement management

A good requirements management process by itself is simply not enough to ensure

success. The key is effective communication throughout the entire nine steps. In

addition, someone has to take charge and deal with the culture, management, and

individuals themselves. Hooks and Farry close the book by providing advice on how

to do so.

Robertson and Robertson’s approach

A fifth source is a book entitled Mastering the Requirements Process by

Suzanne Robertson and James Robertson [27]. The authors found that system

analysis is well documented but there is lack of resources for requirements process.

This led the authors to come up with a process to help the requirements gathering

process. Their process is named “Volere Requirements Process.” The main activities

of the process include project blastoff, trawl for knowledge, write the specification,

quality gateway, analyze, design, build and take stock of the specification.

A major part of project blastoff is preparing for it. Interestingly, Robertson

and Robertson paid attention to meeting preparations, such as facility and

accommodation planning for participants. Other authors probably assumed that this

was usually carried out automatically prior to meetings. However, information such

as this is good for first-timers.

40
For the initial stages of requirements gathering, the authors suggest the use of

the requirements shell. This ‘shell’ is a 5” by 8” card on which information is filled

progressively. Information recorded include requirement number, requirement type,

event/use case, description, rationale, source, fit criteria, customer satisfaction,

customer dissatisfaction, dependencies, conflicts, supporting materials, and history.

Eventually, all the requirements recorded in the cards will be transferred to an

automated tool.

They introduce the notion of a “quality gateway” acts as a requirements filter

to see if the particular requirement should be sent to the next stage (analyzing,

designing, and building specifications) or be discarded. Basically, the requirements

are tested for several qualities namely completeness, traceability, consistency,

correctness, ambiguity, and viability. In addition to that, requirements are also

checked to ensure that they are indeed requirements and not solutions. Requirements

that are there just because it is nice-to-have are not necessary and these are also

checked for. This is called ‘gold plating’. One last quality test is to find the

requirements that creep or leak into the process after the requirements process is

complete.

Another contribution by the authors is the guide for requirements

documentation called ‘Volere Requirements Specification Template’. This document

is also available online at http://www.systemsguild.com. Presently, the most current

version is the 8th edition.

http://www.systemsguild.com

41
However, there are times when the authors appear to apply new words to

existing concepts. For instance, trawling for knowledge is simply gathering

requirements. In a book review article by Ivy Hooks [14], she thinks that new terms

will only confuse readers. She does not recommend using the Volere process because

she finds the process too similar to project management rather than requirements

definition process. Nevertheless, Hooks [14] like the idea of the ‘gateway quality’ as

to “sweeping up every requirement, or cutting and pasting from other specifications

to create a specification and then trying to undo the bad requirements” (p.24).

IEEE standards on requirements

Three Institute of Electrical and Electronics Engineering (IEEE) standards on

requirements were reviewed. The first document, IEEE Std 830-1998 -- IEEE

Recommended Practice for Software Requirements Specification [IEEE830],

provides guidelines for preparing a Software Requirements Specification (SRS)

document. The content of the document is discussed and organization options are

also provided.

According to the guidelines, a good SRS document includes three main

sections – introduction, overall description, and specific requirements. The

introduction portion should include the purpose, scope, definitions, acronyms, and

abbreviations, references, and overview. Information included in the overall

description is the product perspective, product functions, user characteristics,

constraints, and assumptions and dependencies. The third section deals specifically

42
with requirements. The standard recommends that this section include external

interfaces, functions, performance requirements, logical database requirements,

design constraints, standards compliance, software system attributes, and

requirements organization. As with any document, a table of contents, appendixes

and index should be provided.

Organization options for the requirements portion can vary from one to

another. Annex A of the IEEE standard exemplify organizational options for the third

section of the SRS document. Requirements can be organized based on system mode,

user class, object, feature, stimulus or functional hierarchy. However, there are times

when a combination of a few organizations is required.

The second document reviewed, IEEE Std 1233, 1998 edition -- IEEE Guide

for Developing System Requirements Specifications (SyRS) [IEEE1233], discusses

the System Requirements Specification document and the development process.

A subtle difference between this document and the previous one discussed is

that this standard focuses on system requirements while the previous one concentrates

on software requirements. Hence, the SRS is mostly used in-house for software

development and SyRS is used as a communication tool between the customer and

developers.

The development of the SyRS document involves several steps:

1) Identify requirements,

2) Write (define) requirements,

3) Organize the requirements into the SyRS document,

43
4) Present the requirements in a textual or model form for the audience.

Information obtained from this standard reinforced activities already found from other

sources. As an aside, it is interesting to note that the authors for this standard

reference Blanchard and Fabrycky’s [3]1990 book entitled Systems Engineering &

Analysis and also Gause and Weinberg’s [8] 1989 book entitled Exploring

Requirements: Quality Before Design. The authors for this standard provide a

sample of the layout for the SyRS document yet stress that that was not the only way

to organize the System Requirements Specification.

The third standard, IEEE Std 1220-1998 -- IEEE Standard for Application and

Management of the Systems Engineering Process [31], is a revision of IEEE Std

1220-1994. Since this document examines the entire process, the relevant sections

from this document include requirements analysis (section 6.1) and requirements

validation (section 6.2). The main activity under requirements analysis is definition.

Items defined include customer expectations, project and enterprise constraints,

external constraints, operational scenarios, measures of effectiveness, system

boundaries, interfaces, utilization environments, life cycle process concepts,

functional requirements, performance requirements, modes of operations, technical

performance measures, design characteristics, and human factors. All these

definitions feed into a requirements baseline.

The next section involves checking to ensure that every aspect is covered in

the definition stage. The requirements validation process consists of comparison to

customer expectations, enterprise and project constraints, and external constraints.

44
Once this is completed, variances and conflicts can be identified. If necessary, the

requirements analysis stage is revisited. Once all the variances and conflicts are

resolved, a validated requirements baseline can be established.

Comparison of requirements engineering/management activities

Both similarities and differences exist between the activities by different

sources. Table 6 shows the primary use case in the literature. Even though the

headings differ from one source to the other, it is clear that no author(s) suggest

diving straight into writing requirements. Instead, they recommend some sort of

planning and analyzing activities before plunging into requirements. Since all the

sources included talking to customers about their needs, it is also clear that the

customers’ input play an important role in the requirements process. However, note

that each source uses different terminology and can potentially create confusion.

Hence, a dictionary of commonly used terms should be created. A good starting point

is IEEE Std 61.012-1990, IEEE Standard Glossary of Software Engineering

Terminology [34].

Table 6
Comparison of primary use cases from the literature

Rational Unified Process,
RUP [24]

Leffingwell and Widrig
[18]

Gause and Weinberg
[8] Hooks and Farry [12] Robertson and

Robertson [27]

IEEE Std
1220-1998

[31]

Capture a common
vocabulary

Develop requirements
management plan

Find actors and use cases

Develop vision

Elicit stakeholder request

Manage dependencies

Review change request

Prioritize use case
Detail a use case
Detail software requirements

Model the user interface

Prototype the user interface

Structure use case model

Review requirements

Understand the problem
being solved

Understand user needs

Define the system

Continuously manage
scope and manage change
Refine the system
definition

Build the right system

Manage the requirements
process

Negotiating a
common
understanding

Ways to get started

Exploring the
possibilities
Clarifying
expectations
Greatly improving
the odds of success

Scope product

Develop operational
concepts

Identify interfaces

Write requirements

Capture rationale

Level requirements

Assess verification

Format requirements
Baseline requirements

Project blastoff

Trawling for
knowledge
Write the
requirements

Quality gateway

Prototype the
requirements

Do requirements post
mortem

Taking stock of the
specification

Requirements
analysis

Requirements
validation

46

Assimilation of a Master Activity List

Each literature advocates using their method for requirements

engineering/management yet the methods that they (the authors) propose is

inconsistent. Some provide lots of information while some provide little (if any)

information. Overall, the cited literature provides vast information that needed to be

captured in a standardized form. Hence, there was a need to pull the information

together into one document. Valuable information from each source was assimilated

and converted into use cases.

The result of this investigation is a high-level list of tasks list and sources. A

portion of this Master Activity List is shown in Table 7. The entire Master Activity

List is provided found in Appendix A. However, this list is not adequate because it

does not provide information as to the necessary inputs, outputs, supporting

documentation, etc. This issue is discussed in the following section.

The main use cases in the Master Activity List are further defined by

classifying them either as requirements engineering or requirements management

based on the description of the particular use case. They are further divided into key

activity categories. Requirements engineering use cases are categorized as elicitation,

modeling, specification or validation. Requirements management use cases are

categorized as organization, control or documentation. The result of the groupings

and categorization is provided in Table 8.

47
Table 7

A portion of the high level Master Activity List and sources

Use case no. Name Source

1 Capture a common vocabulary RUP [24]

2 Develop requirements management plan RUP [24]

3 Find actors and use cases RUP [24]

3.1 Establish scope of work R & R [27]

3.2 Establish adjacent systems that surround the
work R & R [27]

3.3 Identify connections between the work and the
adjacent systems R & R [27]

3.4 Identify business events that added the work
from the connections R & R [27]

3.5 Study the response to the event R & R [27]

3.6 Determine best response that the organization
can make for the event R & R [27]

3.7 Determine product's role in the response R & R [27]

3.8 Determine the use case or cases R & R [27]

3.9 Derive the requirements for each use case R & R [27]

… … … …

48
Table 8

Grouping and Categorization of the Main Use Cases

Use case # Use case Requirements Engineering /
Requirements Management Categories

1 Capture a common
vocabulary Requirements engineering specification

2 Develop requirements
management plan Requirements Management organization

3 Find actors and use cases Requirements engineering specification
4a Develop vision Requirements engineering specification
4b Project blastoff Requirements engineering specification
5a Elicit stakeholder request Requirements engineering elicitation
5b Trawling for requirements Requirements engineering elicitation

6 Identify both external and
internal interfaces Requirements engineering specification

7 Writing good requirements Requirements Management documentation
8 Capture rationale Requirements Management control
9 Manage dependencies Requirements Management control

10 Verify requirements Requirements engineering validation
11 Format requirements Requirements Management documentation
12a Baseline requirements Requirements Management control

12b Check requirements (quality
gateway) Requirements engineering validation

12c Check requirements for
certain properties Requirements engineering validation

13 Prioritize requirements Requirements engineering specification
14 Review change requests Requirements engineering validation
15 Prioritize use case Requirements engineering validation
16 Detail a use case Requirements engineering modeling
17 Detail software requirements Requirements engineering modeling
18 Model the user interface Requirements engineering modeling
19 Prototype the user interface Requirements engineering modeling
20 Structure the use case model Requirements engineering modeling

21 Do requirements post
mortem Requirements Management control

22a Review requirements Requirements Management organization
22b Taking stock of specification Requirements Management control

49

Development a Process Representation Scheme

Review of Representation Methods by Cited Sources

Most of the sources used some form of graphical representation to define their

process. Each representation method has its own strengths and weaknesses; they are

summarized in Table 9.

Table 9
Representation methods used by the cited sources

Source Representation
method Strength(s) Weakness(es)

RUP [24]
Use case
diagrams3grouped
into workflows

Interaction between
activities and actors
is clear

Sequence is not
clear, interactions
between use cases
are not clear

Leffingwell and
Widrig [18] Use case diagrams3

Interaction between
activities and actors
is clear

Sequence is not
clear, interactions
between use cases
are not clear

Hooks and Farry
[12] N/A4 N/A N/A

Robertson and
Robertson [27]

Stylized data flow
diagram5

Interactions between
main activities is
clear

Sequence is not that
clear

IEEE Std 1220-
1998 [31] Unknown6 Sequence is clear

Accountability is
not clear, inputs and
outputs are not clear

3 Use case diagrams shows “the relationship among actors (someone or something outside the system
that interacts with the system) and use cases within the system” [24].
4 The authors show their overall process in a waterfall model but did not elaborate much on it in later
chapters.
5 Stylized data flow diagram, composed of bubbles (activities) and arrows (deliverables), presents an
iterative and evolutionary process.
6 There is no indication of the type of chart that was used. It looks similar to a flowchart. This chart
uses top down approach, showing the flow and sequence of tasks.

50
Several issues were identified when attempts were made to represent a generic

requirements engineering/management process. Since the activities within the use

cases of RUP are not represented in any graphical form, activity diagrams7 were

applied. Activity diagrams worked as long as there was only one main source of

information. As more information from different sources were added, it became

difficult to track where the information came from because activity diagrams do not

allow for source tracking. Efforts to add information to activity diagrams seemed

impossible without losing its source.

Therefore, a more systematic representation method is required to keep track

of all the information provided by different sources. This method must allow for

addition or deletion of information. In general, there are many ways to represent

activities and processes. Examples of these are summarized in Table 10.

7 Activity diagrams graphically describe the ordering of tasks or activities to accomplish business goals
[24].

51
Table 10

General process representation methods in general

Representation method Strength(s) Weakness(es)

Flowchart Easy to use and understand,
flow is clear Accountability is not clear

Integration Definition for
Function Modeling (IDEF0)
[6], [23]

Activities within functions are
clear, processes can be
documented at different levels,
inputs and outputs are clear,
hierarchical breakdown of
function is possible, sequence
is clear, easy to use

Accountability is not clear,
static – not suitable for
frequently changing models,
time and cost for carrying out
process not taken into account,
data stores is not clear, data
and material flow is not clear

Integration Definition for
Function Modeling (IDEF3)
(process-centered view) [20]

Processes flow are clear,
precedence relationships or
constraints are clear, effects of
the constraints on the process
are clear

Accountability is not clear

Integration Definition for
Function Modeling (object-
centered view) (IDEF3) [20]

Changes that occur on objects
throughout a process are clear Accountability is not clear

Relationship maps [28]

Relationships between
departments/functions are
clear, inputs to and outputs
from each department/function
is clear

Applicable for organizational
level only

Process maps [28]

Accountability is clear, actions
taken by
departments/functions are
clear, goals are clear

Applicable for process level
only

Role/responsibility matrix [28]
Responsibilities and goals for
each personnel based on
function is clear

Applicable for job/performer
level only, tabular view

Use case
Standard, written in user
language, interaction between
actors and use case are clear

Sequence is not clear

Data flow diagram (DFD) [23]
Focuses on the flow of data,
inputs and outputs are clear,
easy to understand and modify

Logic within processes is not
clear, structure of data is not
clear, hard to create

Activity diagrams Sequencing of activities are
clear Hard to keep track of updates

Entity-relationship diagram
(ERD)

Relationships and conditions
for the relationship are clear

Inexperienced users may find
it hard to understand

Control

Input Activities Output

Mechanism

Figure 7: Basic structure of IDEF0

52
Integration Definition for Function Modeling (IDEF)

This investigation led to Integration Definition for Function Modeling (IDEF)

as the main technique and incorporates other elements from other diagramming

techniques. There are many types of IDEF; however IDEF0 and IDEF3 are the most

applicable. IDEF0 [6] is used for function modeling and IDEF3 [20] is used for

process flow and object transitions.

The basic IDEF0 representation is shown in Figure 7. Activities are named

with verb-noun phrases. The method of reading this diagram is <input> are <verb>

into <output> according to <control>, using <mechanism>. Inputs and outputs are

self-explanatory. Controls are items that restrict the activity; examples include

constraints, limitations or conditions on the activity. Mechanisms are methods by

which particular activities are achieved.

1
A B

2

C
3

D
5

O

E
4

& F
6

Figure 8: Example of a process-centered view of IDEF3

53
The process-centered view for IDEF3 is shown in Figure 8. Each of the

rectangular boxes represents an activity, indicated by the letters. An advantage of

IDEF3 is that the arrows indicate precedence or constraints. For instance, in Figure 8,

activity A has to be done before activity B begins. This is different from the

precedence between activity C and activity E because the single headed arrow

indicates that activity E can start with or without the completion of activity D. The

junction box after activity B and before activity C and activity D is an OR condition,

indicating that one can choose activity C or activity D or both. The junction box

before activity F is a synchronous AND. This means that activity E and D must end

at the same time and precede activity F. The numbers within each box is for

identification purposes.

The state-centered view for IDEF3 is shown in Figure 9. The circles indicate

the state an object. For instance, the object changed from p state to q state. The

rectangle between state p and state q shows the activity that causes the stage to

change from state p to state q. The exclusive OR in the figure indicates that either

p q

r

s

X

A
1

B
2

Figure 9: Example of object-centered view of IDEF3

54
state r or state s result from activity B, e.g. am object may be considered normal or

defective as a result of activity B.

Tabular View

The next step in the research is to represent all of the information that was

gathered for the activities from the Master Activity List. However, diagramming was

not possible at this point because all that was collected so far was just a list of activity

along with sources. Hence, there is a need for a method to capture all the information

provided such as a description of what the activity does, who is involved, when is it

carried out, and using what means. A table, containing attributes of the tasks and

processes as columns, is created in order to incorporate the strengths of the various

representation methods. The activity list is expanded to include a description of the

activity and also the result/output. Information about the task performer is also

desired. Therefore, a column separating primary performer and support performer is

created. In order to capture when the activity is to be carried out, two columns are

55
used – input and control (constraints, policies, etc). Each activity uses methodologies

and this is captured as guidelines, tools, and/or templates. The last column – notes, is

added to include any information that did not directly fit in the other columns. Table

11 shows the main structure of the tabular view, along with an example use case. The

description of the example is discussed in the next section.

Information from the six main sources is used to populate the tabular view

progressively. Typically the sources do not explicitly specify the information as

inputs, outputs, controls, and mechanisms; therefore they have to be gleaned from a

textual representation, interpreted, and translated into the table format. However, the

approach proposed in this research provides a convenient means to organize the

information. The result is a database of activities and associative characteristics for

requirements engineering/management.

The lack of information from the sources creates “holes” in the database that

indicate a need for more information about a particular activity. For instance, for use

case 3.1, “Establish scope of work” (Appendix B), no information is provided on who

will do the work or what guidelines and tools are to be used. In other words, the

source lists that the scope of the work has to be established but does not provide much

guidance on doing so. Additions to the tabular can be made as more

sources/information become available. This implies that the database needs to be a

living document. The complete database of activities and associative attributes

developed in this research is provided in Appendix B.

56

Table 11
Tabular view of process

What Role (Who) When How (mechanism)
Use
case
no.

Name Description Results
(output) Primary Support Input Control Guidelines Tools Templates Source Notes

9.1 A Activity A 4
Project

manager
(John)

- 1 - - - - - -

9.2 B Activity B 5
Project

manager
(John)

- 4 - - - - - -

9.3 C Activity C 6
System
analyst
(Judy)

- 2 - - - - - -

9.4 D Activity D 12
System
analyst
(Judy)

John and
Jessie 6 & 7, 8 5 10 9 11 - -

9.5 E Activity E 7 Customer
(Jessie) - 3 - - - - - -

57
Hybrid Graphical View

The tabular method is very good for helping users structure the problem. In

addition, any missing information on a particular activity is more apparent via the

tabular method. However, information from the tabular view can be transferred into a

hybrid graphical view; hybrid in that it captures the best features of IDEF0, IDEF3

and process maps. Recall that IDEF0 is able to represent functions and their

relationships among them hierarchically [6] and IDEF3 is for useful for charting the

flow of a process. It also allows representation of semantics (AND, OR, XOR,

synchronous AND, and synchronous OR). Process maps are good for indicating

activities that span across different organizational units.

Figure 10 is an example of the proposed hybrid graphical view. Swim lanes

are included to indicate who or what role is performing the activity. In this example,

there are three task performers – John, Judy, and Jessie. John will be in charge of

activity A and B, Judy activity C, and Jessie activity E. All John, Judy and Jessie will

be required to carry out activity D (the shaded area indicates Judy has primary

responsibility). However, activities C and E must be completed prior to the start of

activity D. Activity B results in a control for activity D. Activity D uses a set of

mechanisms (tool, guideline, template). Activity E has additional information. This

is captured in the notes box.

58

Pr
oj

ec
t

M
an

ag
er

(J
oh

n)

Sy
st

em
An

al
ys

t
(J

ud
y)

C
us

to
m

er
(J

es
si

e)

B
9.2

1

9.1

6 & 7 D
E

9.5

X

A 4

2 6C

5

9.3

7 8
3

12

9.4

9 10 11

Figure 10: Example of the proposed hybrid graphical view

The next step is to represent the tabular view in the hybrid graphical view.

However, this is a major challenge task because the tabular view lacks information in

many areas (denoted by the “holes”); these “holes” are represented by a question

mark. Therefore, an attempt was made to create a hybrid graphical view based on

one use case. Use case 5, which appears complicated in the tabular view, was

selected for the example. (Due to space limitation, the entire representation is not

included in this thesis.) In doing so, several issues became apparent.

Section 6.1.1 Work context, system
through 6.1.8 of constraints, stakeholder Life cycle process Use case IEEE Std 1220-1998 wants and needs Define life cycle requirements Determine product

process concepts scope

5.3 IEEE 5.4 R & R

Figure 11: Use cases 5.3 and 5.4

W
ork know

ledge

?

?????

Section 6.1.9 of
IEEE Std 1220-

1998

59
First, information between use cases does not match. Take for instance, use case

5.3 and 5.4 shown in Figure 11.

Theoretically, one should be able to trace the flow from the beginning to the end.

However, this is not the case in use case 5.3 and 5.4. The output from use case 5.3,

life cycle process requirements, should be an input to use case 5.4 but the input for

use case 5.4 is work context, system constraints, stakeholder wants, and needs. This

is due to the fact that these two use cases originated from different sources. Use case

5.3 originates from IEEE [31] while use case 5.4 is from Robertson and Robertson

[27].

Work context, system

Business events, work
description &

demonstration, reusable
constraints, stakeholder requirements, domain

Use case Use casewants and needs Determine product models, work context Do event
scope reconnaissance

5.4 R & R 5.5 R & R

Figure 12: Use case 5.4 and 5.5

R
euse library, w

ork
know

ledge

W
ork know

ledge

??????

60
Second, information between use cases from the same source also does not

match. Take for instance, use case 5.4 and 5.5, as shown in Figure 12.

This example clearly illustrates that the output from use case 5.4 does not match the

input for use case 5.5. Swim lanes were not included in the example because there is

only one main person in charge – requirements analyst or systems analyst. It is

assumed that the responsibilities played by each role are the same due to the fact that

different sources mention different roles.

Hence, this example hybrid graphical view indicate that more work is required

in order to create a complete hybrid graphical view similar to the proposed one.

Research should be conducted to investigate if certain terms can be combined or if

better terminology can be used. Another research issue is to reorganize the order or

flow of the use cases. All use cases should be further examined to see if they can be

combined or redefined to enhance their integration.

61
Tabular View versus Hybrid Graphical View

Each view has its own advantages and disadvantages. In addition to helping

structure a user’s thoughts, the tabular view also allows users to perform such

operations as query, filter, and sort, e.g. filter the sources to see the activities that

were derived from each source. This advantage for the tabular view automatically

becomes a disadvantage for the hybrid graphical view. Compared to the tabular view,

information from different sources can become quite complicated in the hybrid

graphical view. For instance, there are two guidelines for use case number 5a, elicit

stakeholder request, one from Rational Unified Process (RUP) and the other from

IEEE standard. In order to keep track of where each guideline came from, the

‘guidelines’ arrow on the hybrid graphical view would have to include the sources.

The situation could get more complicated since each arrow on the hybrid graphical

view could have multiple sources. Another advantage of the tabular view is that it

allows users to identify areas where further research is required, i.e. the “holes.” This

may not be as obvious in the hybrid view.

The hybrid graphical view’s strength is that it allows users to see the entire

flow of the activities within the requirements engineering/management process;

whereas the flow is not clear in the tabular view.

62

CHAPTER III

CONCLUSION

Future Research

The two views developed in this research (tabular and hybrid graphical) can

be extended by linking them together. The main reason for doing so is to prevent

anomalies due to update, insertion, and deletion. This linkage between the two views

would also make maintenance easier; once one of the views is updated, the

corresponding changes are reflected in the other view.

Ideally, there should be a direct link between each entity in both views. In

other words, each element in the tabular view should be represented in the hybrid

graphical view, and vice versa. The information in the tabular view can be

represented in and supported by a database where the table columns are the database

fields and each use case is a record.

Once this link between the tabular view and hybrid graphical view is set up,

other links can also be incorporated. The following table is a list of potential

extension links that can be made from both views.

63
Table 12

Extension links from the tabular and hybrid graphical view

Columns or Entities Extended links

Notes Text document

Mechanism (tools) Specific tool or software (located locally or
on the web)

Mechanism (guidelines)
Standards, checklists, references, tutorials,
rules, regulations (located locally or on the
web)

Mechanism (templates) Text document, graphical tool (located
locally or on the web)

Role (entity) - primary and support Personnel information, contact information,
organizational unit

The requirements engineering/management process should then be tested in

industry. The steps within the requirements engineering/management process would

be customized to fit their needs. Feedbacks from the industry application would

provide further improvements to the generic process, as they would refine and/or

extend the use cases.

Another important future activity is to combine and/or eliminate activities

within the process since the process is now in its “purest” form (i.e. documented

exactly based on each source). This process refinement, along with industries’

feedback, would result in a generic process for requirements

engineering/management.

64
A further enhancement would be to develop an implementation tool, most

likely in a hypermedia environment, i.e. a web page site with links to tools,

guidelines, etc.

Conclusion

Requirements are important and can often determine the success of the end

product. However, the current literature does not provide sufficient information to

adequately define requirements as a process. Inconsistent and vague information was

the motivation for this research which attempted to assimilate the information into

one common framework. As a step to meet that need, this research accomplished

three objectives: defining requirements engineering and requirements management,

developing a generic process for requirements engineering/management, and

developing a process representation scheme.

During the extensive research on the terms ‘requirements engineering’ and

‘requirements management’, various definitions were found. All these definitions

were compiled into a common yet comprehensive definition of requirements

engineering and requirements management. It is proposed that both terms are

separate but related terms. It also proposed that requirements engineering is

composed of requirements elicitation, requirements modeling, requirements

specification, and requirements validation, while requirements management is

composed of requirements organization, requirements control, and requirements

documentation.

65
The investigation on requirements engineering/management process

concludes that no generic methodology currently exists. Therefore, the vast

information provided by the six main sources was assimilated and converted into a

Master Activity List. However, this list has its limitations because this list only

specifies the activities. There is a need to include information about who carries out

the activity, when the activity is carried out or what is required to carry out the

activity, etc. in the Master Activity List. This need was later fulfilled in the next

research objective.

In addition, a means to represent the requirements engineering/management

process does not currently exist. This shortcoming, along with the need for a

structured approach to capture the supporting information about a particular activity,

prompted the creation of a tabular view and a hybrid graphical view. These two

views complement one another. The tabular view is a good method for structuring

user’s thoughts. However, it does not show the flow of the activities. This

inadequacy is fulfilled by the hybrid graphical view.

Then again, these two views – tabular view and hybrid graphical view, yielded

in several issues that became apparent after the views were created. First, there are

disconnects between use cases due to the fact that the use cases originated from

different sources. Second, disconnects are still visible even within use cases from the

same sources. These two issues indicate a need to further examine the use cases in

the tabular view to see if the use cases can be combined, eliminated or refined to yield

a generic process for requirements engineering/management.

REFERENCES CITED

[1] Alexander, I., "Systems Engineering - a Requirements Engineer's Viewpoint."
Retrieved October 2001, from
http://easyweb.easynet.co.uk/~iany/consultancy/systems_engineering/systems
_engineering.htm

[2] Alexander, I., "What is RE Anyway?." Retrieved October 2001, from
http://easyweb.easynet.co.uk/~iany/consultancy/what_is_re.htm

[3] Blanchard, B.S., Fabrycky, W. J., Systems Engineering and Analysis, 3rd

Edition, New Jersey: Prentice Hall, 1998, p.17-43.

[4] Bubenko, J.A., Jr, "Challenges in requirements engineering," Proceedings of
the Second IEEE International Symposium on Requirements Engineering,
1995, p160-162. Retrieved October 2001, from IEEE Xplore database.

[5] Davis, A. M., Zweig, A. S., "Requirements management made easy," PM
Network, December 2000, p61-63.

[6] Draft Federal Information Processing Standards Publication 183, “Integration
Definition for Function Modeling (IDEF0),” December 1993. Retrieved
November 2001, from http://www.idef.com/idef0.html

[7] Fifth IEEE International Symposium on Requirements Engineering held
August 27-31, 2001 in Toronto, Canada. Retrieved October 2001, from
http://www.re01.org/

[8] Gause, D. C., Weinberg, G. M., Exploring Requirements Quality Before Time,
New York: Dorset House Publishing Co., 1989.

[9] Gilb, T, "Viewpoints: Towards the Engineering of Requirements,"
Requirements Engineering, 1997 (2), p165-169. Retrieved October 2001,
from http://rej.co.umist.ac.uk/Volume-2/Issue-3/Viewpoints.html

66

http://rej.co.umist.ac.uk/Volume-2/Issue-3/Viewpoints.html
http://www.re01.org
http://www.idef.com/idef0.html
http://easyweb.easynet.co.uk/~iany/consultancy/what_is_re.htm
http://easyweb.easynet.co.uk/~iany/consultancy/systems_engineering/systems

67
[10] Harwell, R., Aslaksen, E., Hooks, I., Mengot, R., Ptack, K., "What is a

Requirement?," in Proceedings of the Third International Symposium of the
NCOSE, 1993. Retrieved September 2001, from
http://www.incose.org/rwg/what_is.html

[11] Hoffer, J.A, George, J. F., Valacich J.S., Modern Systems & Analysis Design,
2nd edition, Reading: Addison Wesley Longman, Inc., 1999, p.24-31.

[12] Hooks, I. F., Farry, K., Customer-Centered Products Creating Successful
Products Through Smart Requirements Management, New York: Amacom,
2001.

[13] IEEE Joint International Requirements Engineering Conference to be held
Sept 9-13, 2002 at University of Essen, Denmark. Retrieved October 2001,
from http://www.re02.org/

[14] International Council on Systems Engineering, “Special Issue on
Requirements - Sharing the Vision, Insight, Winter 1999-2000, Vol. 2 (4).

[15] International Council on Systems Engineering, “What is Systems
Engineering?” Retrieved February 2002, from
http://www.incose.org/whatis.html

[16] Jones, D. A., Kar, P.C., Gaasbeek, J. R. V., Hollenbach, F., Bell, M., Ellinger,
R.S., "Interfacing requirements management tools in the requirements
management process - a first look," Proceedings of the Seventh International
Symposium of the INCOSE, Vol. 2, August 1997. Retrieved September 2001,
from http://www.incose.org/rwg/97_paper_inter/inter_rmt.html

[17] Kulak, D., Guiney, E, Use Cases Requirements in Context, New York:
Addison-Wesley, 2000.

[18] Leffingwell, D., Widrig, D., Managing Software Requirements A Unified
Approach, Boston: Addison-Wesley, 2000.

[19] Magrab, E. B., Integrated Product and Process Design and Development The
Product Realization Process, Boca Raton: CRC Press, 1997.

[20] Mayer, R..J., et al., Information Integration for Concurrent Engineering
(IICE) IDEF3 Process Description Capture Method Report, College Station,
TX: Knowledge Based Systems, Inc., September 1995. Retrieved November
2001, from http://www.idef.com/idef3.html

http://www.idef.com/idef3.html
http://www.incose.org/rwg/97_paper_inter/inter_rmt.html
http://www.incose.org/whatis.html
http://www.re02.org
http://www.incose.org/rwg/what_is.html

68
[21] Mizuno, S., Akao, Y., QFD The Customer-Driven Approach to Quality

Planning and Deployment, Hong Kong: Nordica International, Ltd., 1994.

[22] Oberg, R, Probasco, L., Ericsson, M., "Applying Requirements Management
with Use Cases.” Retrieved October 2001, from
http://www.rational.com/products/whitepapers/100622.jsp

[23] Pandya, K. V., Karlsson, A., Sega, S., Carrie, A., “Towards the Manufacturing
Enterprises of the Future,” International Journal of Operations & Production
Management, Vol.17 (5), p. 502-521.

[24] Rational Software Corporation, “Rational Unified Process,” Version
2001.03.00.

[25] Rational Software Corporation, “UML Resource Center.” Retrieved
November 2001, from http://www.rational.com/uml/index.jsp

[26] Requirements Engineering Specialist Group (RESG) of the British Computer
Society. Retrieved October 2001, from http://www.resg.org.uk/

[27] Robertson, S, Robertson, J., Mastering the Requirements Process, Great
Britain: Biddles Ltd., 1999.

[28] Rummler, G.A., Brache, A.P., Improving Performance How to Manage the
White Space on the Organization Chart, 2nd edition, San Francisco: Jossey-
Bass Inc., 1995.

[29] Society of Concurrent Product Development. Retrieved February 2002 from
http://www.soce.org/index.htm

[30] Software Engineering Standards Committee of the IEEE Computer Society,
IEEE Guide for Developing System Requirements Specifications, December
1998. Retrieved October 2001, from IEEE Xplore database.

[31] Software Engineering Standards Committee of the IEEE Computer Society,
IEEE Std 1220-1998, IEEE Standard for Application and Management of the
Systems Engineering Process, January 1999, p34-42. Retrieved October
2001, from IEEE Xplore database.

[32] Software Engineering Standards Committee of the IEEE Computer Society,
IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements
Specifications, October 1998. Retrieved October 2001, from IEEE Xplore
database.

http://www.soce.org/index.htm
http://www.resg.org.uk
http://www.rational.com/uml/index.jsp
https://2001.03.00
http://www.rational.com/products/whitepapers/100622.jsp

69
[33] Software Productivity Solutions, Inc., “Analysis of Automated Requirements

Management Capabilities - Requirements Management Technology
Overview,” June 1994. Retrieved January 2001, from
http://www.incose.org/tools/reqsmgmt.html

[34] Standards Coordinating Committee of the IEEE Computer Society, IEEE Std
61.012-1990, IEEE Standard Glossary of Software Engineering Terminology,
Institute of the Electrical and Electronics Engineers, Inc., December 1990,
p.7-82. Retrieved October 2001, from IEEE Xplore database.

[35] Stevens, R., Martin, J., "What is Requirements Management?" Retrieved
October 2001, from
http://www.telelogic.com/download/paper/what_is_req_mgmt.pdf

[36] Ulrich, K. T., Eppinger, S. D., Product Design and Development, 2nd edition,
Boston: McGraw Hill Companies, Inc, 2000, p.14-18.

[37] Zowghi, D., "Requirements Engineering Scope." Retrieved October 2001,
from Joint Research Centre for Advanced Systems Engineering Web site:
http://www.jrcase.mq.edu.au/~didar/seweb/scope.html

[38] Zowghi, D., Offen, Ray, "A Logical Framework for Modeling and Reasoning
about the Evolution of Requirements," in Proceedings of the Third IEEE
International Symposium on Requirements Engineering, 1997, 247-257.
Retrieved October 2001, from IEEE Xplore database.

http://www.jrcase.mq.edu.au/~didar/seweb/scope.html
http://www.telelogic.com/download/paper/what_is_req_mgmt.pdf
http://www.incose.org/tools/reqsmgmt.html

APPENDIX A

MASTER ACTIVITY LIST

70

71
Use case no. Name Source

1 Capture a common vocabulary RUP
1.1 Find common terms RUP
1.2 Evaluate results RUP

2 Develop requirements management plan RUP
2.1 Establish traceability RUP
2.2 Choose requirements attributes RUP
2.3 Map to tools RUP
2.4 Write the plan RUP

3 Find actors and use cases RUP
3.1 Establish scope of work R & R

3.2 Establish adjacent systems that surround the
work by looking outside the organization R & R

3.3 Identify connections between the work and
the adjacent systems R & R

3.4 Identify business events that added the work
from the connections R & R

3.5 Study the response to the event R & R

3.6 Determine best response that the
organization can make for the event R & R

3.7 Determine product's role in the response R & R
3.8 Determine the use case or cases R & R

3.8.1 Find actors RUP
3.8.2 Find use cases RUP

3.8.3 Describe how actors and use cases interact RUP

3.8.4 Package use cases and actors RUP

3.8.5 Present the use-case model in the use-case
diagrams RUP

3.9 Derive the requirements for each use case R & R

3.10 Develop a survey of the use-case model RUP
3.11 Evaluate results RUP

4a Develop vision RUP

4.1 Gain agreement on the problem being
solved

L & W and
RUP

4.2 Identify primary need H & F
4.3 Understand root causes L & W
4.4 Circulate problem statement L & W
4.5 Revise where necessary L & W
4.5 Review and obtain agreement H & F

4.6 Identify stakeholders and users RUP and
HHP

4.7 Obtain stakeholders' needs HHP
4.8 Identify goals and objectives H & F

72
Use case no. Name Source

4.9 Distribute and discuss goals and objectives
with stakeholders H & F

4.10 Determine mission statement or business
case (if any) H & F

4.11 Distribute it and gain consensus H & F
4.12 Identify budgets H & F
4.13 Identify schedule H & F

4.14 Define solution system boundaries L & W and
RUP

4.15 Identify constraints to be imposed on the
system

L & W and
RUP

4.16 Determine if work can be realistically done
within budget and schedule constraints H & F

4.17 Identify major assumptions H & F
4.18 Validate assumptions H & F
4.19 Assign responsibilities H & F
4.2 Formulate problem statement RUP
4.21 Define features of the system RUP
4.22 Evaluate results RUP

4b Project blastoff R & R
4.1 Prepare for blastoff meeting R & R

4.1.1 Define blastoff objectives R & R
4.1.2 Plan physical arrangements R & R

4.1.2.1 Determine participants R & R

4.1.2.2 Plan facilities and accommodation for
participants R & R

4.1.3 Communicate with participants R & R

4.1.3.1 Send each participant an agenda and list of
participants R & R

4.2 Run blastoff meeting R & R
4.2.1 Determine product purpose R & R
4.2.2 Determine the work context R & R

4.2.2.1 Ask if there is a physical entity that
represents domain R & R

4.2.2.2 Ask if domain provides data, policy or both
to the work R & R

4.2.2.3 Identify sources of information for this
domain R & R

4.2.3 Do first-cut risk analysis R & R

4.2.3.1 Identify risks that are most likely to happen R & R

4.2.3.2 Identify risks that would have the greatest
impact of becoming a problem R & R

4.2.3.3 Assess probability of risk becoming a
problem R & R

73
Use case no. Name Source

4.2.3.4 Assess its cost and schedule impact R & R
4.2.3.5 Identify actions to take if risks come true R & R

4.2.4 Identify the stakeholders R & R

4.2.4.1
Inform stakeholders that they are
stakeholders and that they will be consulted
about requirements

R & R

4.2.4.2 Inform stakeholders of time required and
type of participation R & R

4.2.5 Partition the work R & R
4.2.6 Consider non-events R & R
4.2.7 Determine system terminology R & R
4.2.8 Define project constraints R & R
4.2.9 Identify domains of interest R & R

4.3 Finalize blastoff R & R
4.3.1 Write blastoff report R & R
4.3.2 Review blastoff results R & R
4.3.3 Hold follow-up blastoff R & R
4.3.4 Make initial estimate R & R

5a Elicit stakeholder request RUP
5b Trawling for requirements R & R

5.1 Determine sources for requirements RUP
5.2a Gather information RUP
5.2b Learn the work R & R

5.2.1 Review current situation R & R
5.2.2 Apprentice with the user R & R
5.2.3 Determine essential requirements R & R
5.2.4 Brainstorm the requirements R & R
5.2.5 Create structured interviews L & W
5.2.6 Conduct 5 to 15 interviews L & W
5.2.7 Summarize interviews L & W
5.2.8 Do document archeology R & R
5.2.9 Make requirements video R & R

5.2.10 Run use case workshop R & R
5.2.11 Build event models R & R
5.2.12 Build scenario models R & R

5.2.12.1 Define technical performance measures
(TPMs) IEEE

5.2.12.2 Define design characteristics IEEE
5.2.12.3 Define human factors IEEE

5.2.13 Run requirements workshop L & W and
RUP

5.2.14 Brainstorming L & W
5.2.15 Mind map requirements R & R

5.2.16 Collect requirements via Volere Snow
Cards R & R

5.2.17 Reduce ideas L & W

74
Use case no. Name Source

5.2.17.1 Pruning L & W
5.2.17.2 Grouping ideas L & W
5.2.17.3 Feature definition L & W
5.2.17.4 Prioritization L & W

5.2.18 Create storyboards for innovative concepts L & W

5.2.19 Create operational concepts H & F

5.2.19.1 Develop concept for each phase of the
lifecycle H & F

5.2.19.1.1 Outline normal operation and environment H & F

5.2.19.1.2 Outline abnormal operation and
environment H & F

5.2.19.2 Consider viewpoints of all stakeholders H & F
5.2.19.3 Assess human interface standard H & F
5.2.19.4 Create use cases L & W

5.2.20 Role play L & W
5.2.21 Create prototypes L & W

5.3 Define life cycle process concepts IEEE
5.4 Determine product scope R & R

5.4.1 Set priorities for each feature L & W
5.4.2 Assess effort for each feature L & W
5.4.3 Estimate risk for each feature L & W

5.4.4 Reduce scope based on priorities, effort, and
risk L & W

5.4.5 Determine baseline for each release of
Vision Document L & W

5.4.6 Get customer agreement on scope L & W

5.4.7 Advocate and practice iterative development L & W

5.4.8 Study the adjacent systems R & R

5.4.8.1
Look for business opportunities for how
product can help to achieve the product
purpose within the product constraints

R & R

5.4.8.2 Analyze dataflow between adjacent system
and a process R & R

5.4.9 Define use case boundary for each business
event R & R

5.4.9.1 Consider business opportunities R & R
5.4.9.2 Review the work knowledge R & R

5.4.9.2.1 Define the actor names R & R
5.4.9.2.2 Define the use case name R & R
5.4.9.2.3 Define the use case boundary data R & R

5.4.9.2.4 Record the product context by adding the
use case to a use case diagram R & R

75
Use case no. Name Source

5.4.9.2.5 Keep track of business event name(s) that
is/are related to this use case R & R

5.5 Do event reconnaissance R & R
5.5.1 Gather business event knowledge R & R

5.5.1.1
Look for business documents that might
contain knowledge about work related to the
event

R & R

5.5.1.2 Look for any documents that might contain
requirements buried in depth R & R

5.5.1.3 List the names of sources of the work
context R & R

5.5.1.4 Determine if there is any domain models
that contain knowledge about this event R & R

5.5.1.5
Determine if there is any reusable
requirements that contain knowledge about
this event

R & R

5.5.2 Choose appropriate trawling techniques R & R
5.6 Ask clarification questions R & R
5.7 Evaluate results RUP

6 Identify both external and internal interfaces H & F

6.1 Identify product interface H & F

6.2
Search for industry standard, application
programmer's interface (API) or interface
control document (ICD)

H & F

6.2.1 Create ICD substitute if existing interface
document is not found H & F

6.3 Monitor interface change outside control H & F

6.4 Obtain agreement from people from other
side of external interface H & F

6.5 Simplify interfaces as much as possible H & F
6.6 Document product interfaces H & F

6.7 Distribute product interface documentation H & F

6.8 Track interface through development to
ensure reality match documentation H & F

7 Writing good requirements H & F
7.1 Identify potential requirements R & R
7.2 Identify functional requirements R & R
7.3 Identify composite requirements R & R
7.4 Formalize requirements R & R

7.4.1 Organize requirements into parent-child
requirements L & W

7.5 Formalize system constraints R & R
7.6 Identify non-functional requirements R & R

7.6.1 Define usability L & W

76
Use case no. Name Source

7.6.1.1 Specify required training time for users to
be marginally productive L & W

7.6.1.2
Specify measurable task times for typical
tasks or transactions that end users will
carry out

L & W

7.6.1.3
Compare usability of the new system to
other state-of-the-art systems that the user
community knows and likes

L & W

7.6.1.4

Specify existence and required features of
online help systems, wizards, tool tips, user
manuals, and other forms of documentation
and assistance

L & W

7.6.1.5
Follow conventions and standards that have
been developed for the human-to-machine
interface

L & W

7.6.2 Define reliability L & W
7.6.3 Define performance L & W
7.6.4 Define supportability L & W

7.7 Write functional fit criteria R & R
7.8 Write non-functional fit criteria R & R
7.9 Define customer value R & R
7.10 Identify dependencies and conflicts R & R

8 Capture rationale H & F
9 Manage dependencies RUP

9.1 Assign attributes RUP
9.2 Establish levels H & F

9.2.1 Verify that requirement relate to level above H & F

9.2.2
Check if requirement allow more than one
architecture or design option for the next
level

H & F

9.2.3 Check if requirement leads to solution -
delete requirement if so H & F

9.2.4 Check if requirement is to be verified at this
level H & F

9.3 Establish allocation (top down) H & F

9.3.1 Make sure that every requirement is
allocated H & F

9.3.2 Check for duplicate requirements H & F

9.3.3 Check if requirements need to be allocated
to more than one area H & F

9.3.4 Check if an interface is implied, simple and
controllable H & F

9.4 Establish and verify traceability RUP

9.4.1 Make sure requirement tracing system is in
place H & F

77
Use case no. Name Source

9.4.2 Make sure that every requirement can be
traced back to a higher-level requirement H & F

9.4.3 Resolve duplication between levels H & F
9.4.4 Eliminate orphan requirements H & F

9.5a Create a document tree H & F

9.5.1 Identify approval levels and segregate
requirements accordingly H & F

9.5.2
Identify external contracts and segregate
requirements that will be contractually
binding to each outside party

H & F

9.5.3 Segregate requirements for frequent revision H & F

9.5.4 Segregate requirements into manageable
document sizes H & F

9.5b Enter requirements in Modern Software
Requirements Specifications (SRS) package L & W

9.6 Manage changing requirements L & W
9.7 Evaluate SRS L & W

9.7.1 Inspect quality of each individual
specification L & W

9.7.2 Inspect quality for use-case model (use-case
specifications, and use-case actors) L & W

9.7.3 Inspect quality for the entire Modern SRS L & W

9.8 Manage changing requirements RUP
10 Verify requirements H & F

10.1 Screen requirements for subjective words H & F

10.2 Identify verficational stakeholders H & F
10.3 Decide what to verify and validate L & W

10.3.1a Verify and validate everything L & W

10.3.1b Use a hazard analysis to determine verify
and validate necessities L & W

10.4 Decide how each requirement will be
verified

L & W and
H & F

10.4.1 Compare to customer expectations IEEE

10.4.2 Compare to enterprise and project
constraints IEEE

10.4.3 Compare to external constraints IEEE

10.5 Decide when each requirement will be
verified H & F

10.6
Write requirements to cut time, cost, and
special equipment required to verify
products

H & F

78
Use case no. Name Source

10.7 Decide how each requirement will be
validated L & W

10.7.1 Perform acceptance testing L & W
10.7.2 Perform validation testing L & W
10.7.3 Perform validation traceability L & W
10.7.4 Perform requirements-based testing L & W

10.8 Establish validated requirements baseline IEEE
10.9 Build verification matrix H & F

11 Format requirements H & F

11.1a Organize requirements of complex hardware
and software system L & W

11.1.1 Refine a system into subsystems L & W

11.1.2 Create requirements specification for each
subsystem L & W

11.1.3 Refine subsystems into its subsystems
(optional) L & W

11.1b Organize requirements for product families L & W

11.1.1 Develop a product-family Vision Document L & W

11.1.2 Develop a set of use cases to show
interactions among various applications L & W

11.1.3 Develop a common software requirements
specification L & W

11.1.4

Develop a separate Vision Document,
Software Requirements Specification, and a
use case model for each product in the
family

L & W

11.2 Create Vision Document L & W
11.3 Create product position statement L & W
11.4 Circulate and gain agreement L & W

11.5 Create use cases in Vision Document
(appendix) L & W

11.6 Publish Vision Document L & W

11.7 Assign owner to Vision Document (product
champion) L & W

11.8 Utilize delta Vision Document L & W
12a Baseline requirements H & F

12.1 Find format, grammar, spelling , and
typographical errors H & F

12.2

Look for ambiguities, unverified
assumptions, unverified assumptions,
TBDs, implementation, lack of rationale or
unintelligible rationale, and lack of
traceability

H & F

12.3 Look for content errors, conflicts or missing
requirements H & F

79
Use case no. Name Source

12.4 Assess product development risk L & W and
H & F

12.5 Measure requirement quality H & F
12b Check requirements (quality gateway) R & R

12.1 Review requirements fit criteria R & R
12.2 Review requirements relevance R & R
12.3 Review requirement viability R & R
12.4 Identify gold-plated requirements R & R
12.5 Review requirements completeness R & R
12.6 Test requirements traceability R & R

12.7 Review requirements for consistent
terminology R & R

12.8 Place customer rating on requirements R & R

12c Check requirements for certain properties IEEE

13 Prioritize requirements H & F
13.1 Define priority classes H & F
13.2 Classify the requirements H & F

13.2.1 Assign 1's and 3's first - everything else
default to 2 H & F

13.3 Resolve the differences H & F

13.4 Create priority-based development
schedules H & F

13.5 Maintain the priorities H & F
14 Detail software requirements RUP

14.1 Collect software requirements artifacts RUP
14.2 Detail the software requirements RUP
14.3 Generate supporting reports RUP

14.4 Assemble the software requirements
specification RUP

15 Prioritize use case RUP

15.1 Prioritize use cases and scenarios L & W and
RUP

15.2 Document the use-case view L & W and
RUP

15.3 Evaluate results L & W and
RUP

16 Detail a use case RUP
16.1 Detail flow of events of the use case RUP

16.2 Structure the flow of events of the use case RUP

16.3 Illustrate relationships with actors and other
use cases RUP

16.4 Describe special requirements of the use
case RUP

16.5 Describe communication protocols RUP

80
Use case no. Name Source

16.6 Describe pre-conditions of the use case
<optional> RUP

16.7 Describe post-conditions of the use case
<optional> RUP

16.8 Describe extension points <optional> RUP
16.9 Evaluate results RUP

17 Review change request RUP
17.1 Plan for changes to happen L & W
17.2 Baseline requirements L & W
17.3 Maintain responsibility for Vision Doc L & W
17.4 Schedule CCB review meeting RUP

17.5 Setup default reports and queries to assist in
this effort L & W

17.6 Monitor SRS process L & W
17.7 Lead Change Control Review Board L & W
17.8 Retrieve change requests for review RUP

17.8.1 Submission of a new change request RUP
17.8.2 Update of an existing change request RUP

17.8.3 Consider postponing change request for a
new release cycle RUP

17.9 Review submitted change requests RUP

17.10 Perform a thorough change impact
assessment H & F

17.11 Use change control system to capture
changes L & W

17.12 Make changes hierarchically L & W
17.13 Audit trail of history L & W

18 Model the user interface RUP

18.1 Describe characteristics of related actors RUP

18.2 Create a use-case storyboard RUP
18.3 Describe flow of events - storyboard RUP

18.4 Capture usability requirements on the use-
case storyboard RUP

18.5 Find boundary classes needed by the use-
case storyboard RUP

18.5.1 Describe responsibility of boundary classes RUP

18.5.2 Describe attributes of boundary classes RUP

18.5.3 Describe relationships between boundary
classes RUP

18.5.4 Present usability requirements on boundary
classes RUP

18.5.5 Present the boundary classes in global class
diagrams RUP

18.5.6 Evaluate results RUP

81
Use case no. Name Source

18.6 Describe interactions between boundary
objects and actors RUP

18.7 Complement the diagrams of the use-case
storyboard RUP

18.8 Refer to the user-interface prototype from
the use-case storyboard RUP

19 Prototype the user interface RUP
19.1 Plan the prototype R & R
19.2 Design the user-interface prototype RUP
19.3 Build prototype R & R

19.3.1 Build low fidelity prototype R & R
19.3.2 Build high fidelity prototype R & R

19.4 Evaluate the prototype R & R
19.4.1 Test high fidelity prototype with users R & R
19.4.2 Test low fidelity prototype with users R & R

19.4.3 Get feedback on user-interface prototype RUP

19.4.4 Identify new and changed requirements R & R
19.4.5 Evaluate prototyping effort R & R

19.5 Implement user-interface prototype RUP
20 Structure use case model RUP

20.1 Establish include-relationships between use
cases RUP

20.2 Establish extend-relationships between use
cases RUP

20.3 Establish generalizations between use cases RUP

20.4 Establish generalizations between actors RUP
20.5 Evaluate results RUP

21 Do requirements post mortem R & R
21.1 Gather input for review R & R

21.1.1 Conduct private individual reviews R & R
21.1.2 Conduct separate meetings with groups R & R
21.1.3 Facilitator reviews facts R & R

21.2 Do post mortem R & R
21.2.1 Hold post mortem review meeting R & R
21.2.2 Produce post mortem report R & R

21.3 Build a requirements filter R & R
21.3.1 Identify filtration criteria R & R
21.3.2 Select relevant requirement types R & R
21.3.3 Add new filtration criteria R & R

22a Review requirements RUP
22b Taking stock of the specification R & R

22.1 Review specification content R & R
22.1.1 Identify missing requirements R & R
22.1.2 Identify customer value ratings R & R

82
Use case no. Name Source
22.1.3 Identify requirement interaction R & R
22.1.4 Identify prototyping opportunity R & R
22.1.5 Find missing custodial requirements R & R

22.2 Evaluate requirements risk R & R
22.2.1 Look for likely risks R & R
22.2.2 Quantify each risk R & R

22.3 Estimate effort R & R
22.3.1 Identify estimation input R & R
22.3.2 Identify efforts for events R & R
22.3.3 Estimate requirements effort R & R

22.4 Publish reviewed specification R & R
22.4.1 Design form of specification R & R
22.4.2 Assemble the specification R & R

APPENDIX B

TABULAR VIEW

83

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

1 Capture a common vocabulary Common terms are identified and documented Glossary System analyst Customer, end user,
and stakeholder

Vision, business case, business rules,
business use-case model, business
object model, stakeholder requests,
use-case model, use case

RequisitePro RUP

1
IEEE Std 610.12-1990 (IEEE Standard
Glossary of Software Engineering
Terminology)

IEEE

1
IEEE Std 830-1998 (IEEE Recommended
Practice for Software Requirements
Specifications)

IEEE

1
IEEE Std 1233, 1998 edition (IEEE Guide
for Developing System Requirements
Specifications

IEEE

1.1 Find common terms Terms describing business objects and real-world
objects are identified System analyst Customer, end user,

and stakeholder RUP

1.2 Evaluate results System analyst Customer, end user,
and stakeholder RUP

2 Develop requirements management plan Attributes are identified and linked to tools Requirements management plan System analyst Customer, end user,
and stakeholder - Requirements management plan, important

decisions in requirements RequisitePro RUP

2.1 Establish traceability System analyst Customer, end user,
and stakeholder RUP

2.2 Choose requirements attributes Essential attributes (such as risk, benefit, effort,
stability, and architectural impact) are identified System analyst Customer, end user,

and stakeholder RUP

2.3 Map to tools System analyst Customer, end user,
and stakeholder

RationalRose,
RequisitePro,
Rational
ClearQuest

RUP

2.4 Write the plan System analyst Customer, end user,
and stakeholder Requirements management plan RUP

3 Find actors and use cases Actors and use cases are identified and
documented

Use case models, actors, use cases,
supplementary specifications System analyst Customer, end user,

and stakeholder

Glossary, vision, stakeholder requests,
use-case modeling guidelines,
business use-case model, business
object model

Use-case workshop, storyboarding Rational Rose RUP

3.1 Establish scope of work Business activity including actor, work, and
adjacent systems are determined Context diagram R & R

3.2 Establish adjacent systems that surround the
work by looking outside the organization R & R

3.3 Identify connections between the work and
the adjacent systems R & R

3.4 Identify business events that added the work
from the connections R & R

3.5 Study the response to the event R & R

3.6 Determine best response that the
organization can make for the event R & R

3.7 Determine product's role in the response R & R

3.8 Determine the use case or cases
Jacobson, Ivar et al's book "Object-Oriented
Software Engineering - A Use Case Driven
Approach" [Addison-Wesley, 1992]

R & R

3.8.1 Find actors System analyst Customer, end user,
and stakeholder RUP

3.8.2 Find use cases System analyst Customer, end user,
and stakeholder RUP

3.8.3 Describe how actors and use cases interact System analyst Customer, end user,
and stakeholder RUP

3.8.4 Package use cases and actors System analyst Customer, end user,
and stakeholder RUP

3.8.5 Present the use-case model in the use-case
diagrams System analyst Customer, end user,

and stakeholder RUP

3.9 Derive the requirements for each use case R & R

3.10 Develop a survey of the use-case model System analyst Customer, end user,
and stakeholder RUP

3.11 Evaluate results System analyst Customer, end user,
and stakeholder RUP

4a Develop vision Problem statement is formulated Vision, initial requirements attributes,
initial supplementary specifications System analyst Customer, end user,

and stakeholder

Stakeholder requests, business rules,
business use-case model, business
object model

Brainstorming, fishbone diagrams, Pareto
diagrams RequisitePro RUP

4.1 Gain agreement on the problem being solved Definition of the problem is written and agreed
upon System analyst Customer, end user,

and stakeholder Problem statement L & W and
RUP

4.2 Identify primary need A short statement indicating motivation for the
project Table 4-4: Project scope sanity check H & F

4.3 Understand root causes Real problem and real cause are identified Fishbone
diagram L & W

84

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

4.4 Circulate problem statement L & W
4.5 Revise where necessary L & W

4.5 Review and obtain agreement

Customer, marketing,
development,
downstream
organization

Table 4-4: Project scope sanity check H & F

4.6 Identify stakeholders and users System analyst Customer, end user,
and stakeholder

RUP and
HHP

4.7 Obtain stakeholders' needs Part of requirements gathering activity HHP
4.8 Identify goals and objectives Table 4-4: Project scope sanity check H & F

4.9 Distribute and discuss goals and objectives
with stakeholders

An aim and method for achieving target is
discussed Table 4-4: Project scope sanity check H & F

4.10 Determine mission statement or business
case (if any) Table 4-4: Project scope sanity check H & F

Business case is
usually for
commercial products

4.11 Distribute it and gain consensus Table 4-4: Project scope sanity check H & F
4.12 Identify budgets Table 4-4: Project scope sanity check H & F
4.13 Identify schedule Table 4-4: Project scope sanity check H & F

4.14 Define solution system boundaries Area containing solution system is identified Actors, system System analyst Customer, end user,
and stakeholder Block diagram L & W and

RUP

4.14
Section 6.1.6 of IEEE Std 120-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

4.15 Identify constraints to be imposed on the
system Restrictions on the system are identified Constraints System analyst Customer, end user,

and stakeholder Table 4-4: Potential system constraints L & W and
RUP

4.16 Determine if work can be realistically done
within budget and schedule constraints Table 4-4: Project scope sanity check H & F

4.17 Identify major assumptions Table 4-4: Project scope sanity check H & F
4.18 Validate assumptions Table 4-4: Project scope sanity check H & F
4.19 Assign responsibilities Table 4-4: Project scope sanity check H & F

4.2 Formulate problem statement System analyst Customer, end user,
and stakeholder RUP

4.21 Define features of the system System analyst Customer, end user,
and stakeholder RUP

4.22 Evaluate results System analyst Customer, end user,
and stakeholder RUP

4b Project blastoff Necessary pieces required to begin the project and
to ensure project is viable and well-founded

Purpose of the project, client,
customer, stakeholders, users,
constraints, names, relevant facts and
assumptions, and scope of the work,
estimated cost, risk, and go/no go
decision

Facilitator Blastoff team R & R

4.1 Prepare for blastoff meeting Blastoff meeting plan, required
facilities

Project
intention,
potential
stakeholders

R & R

4.1
Chapter 8: Making meetings work for
everybody, chapter 13: Facilitating in the face
of conflict

G & W

4.1.1 Define blastoff objectives Deliverables are determined

Blastoff objectives, work context
model, stakeholders identified,
anticipated developers, system events
event/use case models, system
terminology, scenario models

Facilitator Blastoff team Project
intention R & R

4.1.2 Plan physical arrangements Necessary physical arrangements are planned to
produce blastoff objectives

Meeting location, meeting schedule,
direction to meeting location, name
and contact details of the facilitator,
dates and times, estimated time
required for blastoff, list of
participants

Blastoff
objectives R & R

4.1.2.1 Determine participants Potential stakeholders are determined R & R

4.1.2.1 Chapter 7: Getting the right people involved G & W

4.1.2.2 Plan facilities and accommodation for
participants

Meeting places and accommodations are
determined R & R

85

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

4.1.3 Communicate with participants Blastoff meeting plan

Blastoff
objectives,
meeting
schedule,
meeting
location,
blastoff
participants

R & R

4.1.3.1 Send each participant an agenda and list of
participants

Participants must be aware of what they are going
to do and that their participation is valuable R & R

4.2 Run blastoff meeting

Major risks, blastoff meeting plan,
project constraints, product purpose,
business events, work context, system
terminology, identified stakeholders

Potential
stakeholders,
project
intention,
stakeholder
wants and
needs, intended
operating
environment,
blastoff meeting
plan

Requirements skeleton R & R

4.2.1 Determine product purpose Statement of what product is at the end of the
project

Product purpose, advantage, measure
of success, reasonable, feasibility,
achievable

Blastoff team

Stakeholder
wants and
needs, project
intention,
blastoff meeting
plan

R & R

4.2.1 Chapter 14: Functions G & W

4.2.2 Determine the work context Intended work for study and surrounding systems
are defined Work context, context interfaces

Domains of
interest, product
purpose,
stakeholder
wants and
needs

Requirements skeleton
James and Suzanne Robertson's book
"Complete Systems Analysis - the Workbook,
the Textbook, the Answers"

R & R

4.2.2.1 Ask if there is a physical entity that
represents domain R & R

4.2.2.2 Ask if domain provides data, policy or both
to the work R & R

4.2.2.3 Identify sources of information for this
domain R & R

4.2.3 Do first-cut risk analysis Major risks Requirements skeleton Capers Jones' book "Assessment and Control
of Software Risks" R & R

4.2.3.1 Identify risks that are most likely to happen R & R

4.2.3.2 Identify risks that would have the greatest
impact of becoming a problem R & R

4.2.3.3 Assess probability of risk becoming a
problem R & R

4.2.3.4 Assess its cost and schedule impact R & R

4.2.3.5 Identify actions to take if risks come true R & R

4.2.4 Identify the stakeholders People who have an interest in the product is
identified

Stakeholder name, specialization,
estimated amount of involvement
time

Potential
stakeholders R & R

Principal stakeholders
include users, client
and customers. Other
stakeholders include
the list on pages 36 -
38

4.2.4.1
Inform stakeholders that they are
stakeholders and that they will be consulted
about requirements

R & R

4.2.4.2 Inform stakeholders of time required and
type of participation R & R

4.2.5 Partition the work Work context is divided into business events Business events

Stakeholder
wants and
needs, work
context

Requirements skeleton R & R

4.2.6 Consider non-events "What-if" events are explored
New data flows are added to the
work context diagram [work context,
business events]

Work context
and business
events

Requirements skeleton R & R

4.2.7 Determine system terminology Common terms are identified and documented System terminology Context
interfaces Requirements skeleton R & R Similar to capture a

common vocabulary

86

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

4.2.8 Define project constraints Limitations on the way product is produced are
identified

List of solution constraints,
implementation environment
constraints, partner application
constraints, commercial off-the-shelf
software constraints, anticipated
workplace environment constraints,
time constraints, and financial
constraints

Stakeholder
wants and
needs, project
intention,
intended
operating
environment

R & R

4.2.8

Section 6.1.2 and 6.1.3 of IEEE Std 1220-
1998 (IEEE Standard for Application and
Management of the Systems Engineering
Process)

IEEE

4.2.8 Chapter 16: Constraint G & W

4.2.9 Identify domains of interest Areas of interest are identified Domains of interest Product
purpose Requirements skeleton R & R

4.3 Finalize blastoff
System constraints, work context,
business events, initial estimates,
go/no go decision, blastoff report

Blastoff
meeting plan,
stakeholder
wants and
needs

Requirements skeleton, requirements
template R & R

4.3.1 Write blastoff report Report of activities from the blastoff is written Blastoff report, work context,
business events, system constraints Initial estimates

Requirements skeleton which consists
of work context diagram, stakeholder
list, manpower list, preliminary event
or use case list, system terminology,
major risks, initial estimates of effort,
recommendation to proceed or not

R & R

4.3.2 Review blastoff results Requirements skeleton is compared with
requirements template

Go/no go decision, requirement
questions

Blastoff
meeting plan

Requirements skeleton, requirements
template

Jim Hughsmith and Lynne Nix in "Feasibility
Analysis - Mission Impossible"Software
Development , July 1996

R & R

4.3.3 Hold follow-up blastoff Outstanding requirements questions are answered Requirements skeleton

Requirement
questions,
stakeholder
wants and
needs

Requirements skeleton R & R

4.3.4 Make initial estimate First estimate of effort is made R & R Allow generous area
for learning curve

5a Elicit stakeholder request Stakeholder requests and use-case
model System analyst Customer, end user,

and stakeholder Vision and change request

Requirements workshop, interviewing,
brainstorming and idea reduction,
storyboarding, role playing, review existing
requirements

RequisitePro RUP

5a
Section 6.1.1 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

5b Trawling for requirements Requirements are found List of requirements, some of which
maybe not inappropriate Requirements analyst Users, customers, and

clients R & R
Inappropriate
requirements will be
weed out later

5.1 Determine sources for requirements System analyst Customer, end user,
and stakeholder RUP

5.1

Customers,
users,
managers,
industry
standards,
development
process, and
others

HHP Sources of
requirements

5.2a Gather information System analyst Customer, end user,
and stakeholder RUP

5.2a
Section 7.1.1 of IEEE Std 1233, 1998 edition
(IEEE Guide for Developing System
Requirements Specifications

IEEE

5.2b Learn the work Work is studied from user's point of view Event for prototyping Requirements analyst

Stakeholder
wants and
needs, work
description and
demonstration

Work knowledge R & R

87

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

5.2.1 Review current situation The current situation where users face are
examined Current situation model Requirements analyst

Work
description and
demonstration,
stakeholder
wants and
needs

Work knowledge R & R

5.2.2 Apprentice with the user
Analyst becomes an apprentice to the user - sits
with user to learn the job by observing and asking
questions

Model of the observed work [work
knowledge] Requirements analyst Users

Stakeholder
wants and
needs

Work knowledge R & R

5.2.3 Determine essential requirements An abstract structure or pattern to the work is
determined Event for prototyping Requirements analyst Users

Current
situation model,
stakeholder
wants and
needs

Work knowledge
Observation and interpretation of users (skills
and how they see themselves when they
work) over a period of time

R & R

5.2.4 Brainstorm the requirements Ideas for requirements are brainstormed List of requirements (unedited) Requirements analyst
Stakeholder
wants and
needs

Work knowledge R & R

5.2.5 Create structured interviews Context-free questions are created based on a
template

Figure 9-1: The Generic, Almost Context-
Free interview L & W

Use context-free
questions (i.e. ask
about nature of
problem and not
solution).
Questionnaires does
not substitute
interviews!

5.2.5 Chapter 6: Context-free questions G & W
5.2.6 Conduct 5 to 15 interviews L & W

5.2.7 Summarize interviews L & W
R & R recommends
using interviews with
other techniques

5.2.8 Do document archeology Documents and files that the organization currently
uses are inspected System terminology + data models Requirements analyst Business

documents Work knowledge Questions on page 100 of R & R R & R
R & R recommends
using this technique
with other techniques

5.2.9 Make requirements video

Video recording of brainstorm, workshops,
interviews, observations, etc. can be effectively
used as a recording tool (information and body
languages)

Event for prototyping Requirements analyst
Stakeholder
wants and
needs

Work knowledge R & R

5.2.10 Run use case workshop Event for prototyping Requirements analyst Appropriate
customer/user

Essential steps
that take place
in an event

Work knowledge R & R

5.2.11 Build event models The whole system is broken up into events Models of events [work knowledge] Requirements analyst
Stakeholder
wants and
needs

Work knowledge Data flows between adjacent systems and
work context as a result of temporal event R & R

5.2.12 Build scenario models Models of the way users operate an intended
system is recorded Scenario models Requirements analyst Users

Stakeholder
wants and
needs

Work knowledge

Any format and
medium that the
user is
comfortable with

R & R

5.2.12
Section 6.1.12 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

5.2.12.1 Define technical performance measures
(TPMs)

Key indicators of system performance are
identified

Section 6.1.13 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

5.2.12.2 Define design characteristics
Design characteristics (such as color, texture, size,
anthropomorphic limitations, weight, and
buoyancy) are identified and defined

Section 6.1.14 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

5.2.12.3 Define human factors

Human factor considerations (such as design space
limits, climatic limits, eye movement, reach,
ergonomics, cognitive limits, and usability)
affecting operation of products are identified and
examined

Section 6.1.15 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

5.2.13 Run requirements workshop Chapter 10: Requirements workshop L & W and
RUP

5.2.14 Brainstorming Chapter 11: Brainstorming and idea reduction L & W

5.2.14 Chapter 10: Idea generation meetings G & W

5.2.15 Mind map requirements Representation of requirements in drawing and text R & R

88

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

5.2.16 Collect requirements via Volere Snow Cards Pre-printed cards filled out as information becomes
available R & R Sample of Snow Card

is on page 102

5.2.17 Reduce ideas Chapter 11: Brainstorming and idea reduction L & W

5.2.17.1 Pruning Chapter 11: Brainstorming and idea reduction L & W

5.2.17.2 Grouping ideas Chapter 11: Brainstorming and idea reduction L & W

5.2.17.3 Feature definition Chapter 11: Brainstorming and idea reduction L & W

5.2.17.4 Prioritization Chapter 11: Brainstorming and idea reduction L & W

5.2.18 Create storyboards for innovative concepts Chapter 12: Storyboarding L & W

5.2.19 Create operational concepts Operation of the product is imagined and
documented in user language

Table 5-1: Operational concepts completeness
sanity check H & F

Approach depends on
whether you are
product developer or
product procurer.
Software developers
call them 'use cases';
space-craft developers
- 'operation plans' or
'design reference
mission'; people
simply know them as
'scenarios'.

5.2.19

Section 6.1.4 and 6.1.8 of IEEE Std 1220-
1998 (IEEE Standard for Application and
Management of the Systems Engineering
Process)

IEEE

5.2.19.1 Develop concept for each phase of the
lifecycle

Table 5-1: Operational concepts completeness
sanity check H & F

5.2.19.1.1 Outline normal operation and environment Table 5-1: Operational concepts completeness
sanity check H & F

5.2.19.1.2 Outline abnormal operation and environment Table 5-1: Operational concepts completeness
sanity check H & F

5.2.19.2 Consider viewpoints of all stakeholders Table 5-1: Operational concepts completeness
sanity check H & F

5.2.19.3 Assess human interface standard Table 5-1: Operational concepts completeness
sanity check H & F

5.2.19.4 Create use cases Chapter 13: Applying use cases L & W

5.2.20 Role play Chapter 14: Role playing L & W

Similar techniques
include scripted
walkthroughs and
Class-Responsibility-
Collaboration (CRC)
cards

5.2.21 Create prototypes Chapter 15: Prototyping L & W

5.3 Define life cycle process concepts
Life cycle process requirements are determined to
develop, produce, test, distribute, operate, support,
train, and dispose of products under development

Life cycle process requirements

Section 6.1.1
through 6.1.8
of IEEE Std
1220-1998

Section 6.1.9 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

5.4 Determine product scope Use case (to be used in product
scope) Requirements analyst

Work context,
system
constraints,
stakeholder
wants and
needs

Work knowledge R & R

5.4.1 Set priorities for each feature L & W
5.4.2 Assess effort for each feature L & W
5.4.3 Estimate risk for each feature L & W

5.4.4 Reduce scope based on priorities, effort, and
risk L & W

5.4.5 Determine baseline for each release of
Vision Document Version number L & W

5.4.6 Get customer agreement on scope Guiding principle for scope management:
"Underpromise and overdeliver" (page 209) L & W

5.4.7 Advocate and practice iterative development L & W

5.4.8 Study the adjacent systems Event-response model is used as learning tool Business event boundary + business
opportunities

Business event
boundary,
system
constraints,
work context

Work knowledge R & R

89

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

5.4.8.1
Look for business opportunities for how
product can help to achieve the product
purpose within the product constraints

R & R

5.4.8.2 Analyze dataflow between adjacent system
and a process Questions on page 302 in R & R R & R

5.4.9 Define use case boundary for each business
event

{Actor name} + use case name + use
case boundary data + {business event
name} {this leads to product scope]

Stakeholder
wants and
needs, business
event boundary
+ business
opportunities

R & R

R & R recommends
using a leveled use
case diagram if there
are more than 15-20
use cases

5.4.9.1 Consider business opportunities R & R
5.4.9.2 Review the work knowledge R & R

5.4.9.2.1 Define the actor names R & R
5.4.9.2.2 Define the use case name R & R
5.4.9.2.3 Define the use case boundary data R & R

5.4.9.2.4 Record the product context by adding the
use case to a use case diagram R & R

5.4.9.2.5 Keep track of business event name(s) that
is/are related to this use case R & R

5.5 Do event reconnaissance
Business documents, business event
boundary + knowledge sources +
trawling techniques

Requirements analyst

Business
events, work
description and
demonstration,
reusable
requirements,
domain models,
work context

Reuse library, work knowledge R & R

5.5.1 Gather business event knowledge Business documents, business event
boundary + knowledge sources

Work
description and
demonstration,
business events,
work context,
domain models,
reusable
requirement,
business
documents

Reuse library, work knowledge R & R

5.5.1.1
Look for business documents that might
contain knowledge about work related to the
event

R & R

5.5.1.2 Look for any documents that might contain
requirements buried in depth R & R

5.5.1.3 List the names of sources of the work
context R & R

5.5.1.4 Determine if there is any domain models that
contain knowledge about this event R & R

5.5.1.5
Determine if there is any reusable
requirements that contain knowledge about
this event

R & R

5.5.2 Choose appropriate trawling techniques Considerations are made on the appropriate
trawling techniques

Business event boundary +
knowledge + trawling techniques

Business event
boundary +
knowledge
sources

Work knowledge Considerations and guidelines are found on
page 304 and 305 in R & R R & R

5.6 Ask clarification questions Requirement questions and system constraint
questions are reviewed Work knowledge Requirements analyst

Stakeholder
wants and
needs, system
constraint
questions,
requirement
questions

Work knowledge Requirements template R & R

90

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

5.7 Evaluate results System analyst Customer, end user,
and stakeholder RUP

6 Identify both external and internal interfaces

Animate or live user and inanimate external users
are identified to clarify scope, aid risk assessment,
reduce development costs, and improve customer
satisfaction.

Table 6-4: Product interface identification
sanity check H & F

When developing new
product, the matrix
may be noted for
future investigation
until the product is in
design.

6
Section 6.1.7 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

6.1 Identify product interface Table 6-1: Checklist for individual interface
exploration H & F

6.2
Search for industry standard, application
programmer's interface (API) or interface
control document (ICD)

Interface requirements that product must meet are
found

Table 6-4: Product interface identification
sanity check H & F

6.2.1 Create ICD substitute if existing interface
document is not found

Table 6-4: Product interface identification
sanity check H & F

6.3 Monitor interface change outside control Changes from outside sources are monitored for
risk assessment purposes

Table 6-4: Product interface identification
sanity check H & F

6.4 Obtain agreement from people from other
side of external interface

Interface documentation are agreed upon and
documented accordingly

Interface requirement specification
(IRS) or interface requirement
document (IRD)

Table 6-4: Product interface identification
sanity check H & F

6.5 Simplify interfaces as much as possible Table 6-4: Product interface identification
sanity check H & F

6.6 Document product interfaces Product interfaces (both internal and external) are
documented

Table 6-4: Product interface identification
sanity check H & F

6.7 Distribute product interface documentation Table 6-4: Product interface identification
sanity check H & F

6.8 Track interface through development to
ensure reality match documentation

Table 6-4: Product interface identification
sanity check H & F

7 Writing good requirements Requirements are put into simple and specific
statements

Clear, verifiable, and attainable needs
expressed in requirements

Chapter 6 by Hooks and Farry, table 7-4:
Individual requirement sanity check, "Getting
it right the first time - writing better
requirements" by Quality Systems and
Software, "Writing Good Requirements" by
Ivy Hooks, "Characteristics of Good
Requirements" by Pradip Kar and Michelle
Bailey.

H & F

Attempting to write
requirements before
defining scope,
operational concepts,
and interface can lead
to inconsistent and
incomplete
requirements.

7
Section 6 of IEEE Std 1233, 1998 edition
(IEEE Guide for Developing System
Requirements Specifications

IEEE

7.1 Identify potential requirements Potential requirements are recorded

Requirements in the form of "The
product shall…" along with sources,
rationale and associated use case (I.e.
requirements)

Requirements analyst

Potential
requirements
from trawling
process

Product scope, work knowledge R & R

7.2 Identify functional requirements Real work (independent of how work will be
carried out) are identified.

Functional requirements in the form
of "The product shall…" along with
sources, rationale and associated use
case

Requirements analyst Actor's task in
use cases

Requirements template, work
knowledge

Functional requirements are characterized by
verbs Use cases Appendix B R & R

Sources of
requirements include
any artifact that
describes products'
actions

7.2
Section 6.1.10 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

7.2 Also known as required capabilities HHP

7.3 Identify composite requirements Requirements that does not have its own testable fit
criteria are identified

Composite requirements for each use
case, summarizing several testable
individual requirements, along with
rationale (a.k.a. high level
requirements)

Requirements analyst
Requirements,
functional
requirements

Work knowledge, product scope R & R

7.4 Formalize requirements Requirements are recorded into a formal
requirements template

Collection of filled-out Volere shell
cards and Volere Requirements
Specification Template (sections:
functional requirements and non-
functional requirements) [formalized
requirements]

Requirements analyst

Requirements,
functional
requirements,
composite
requirements

Work knowledge, requirements
template

Requirements
shell Appendix B R & R

7.4.1 Organize requirements into parent-child
requirements

Requirements are organized hierarchically for
increased specificity L & W

91

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

7.5 Formalize system constraints System constraints are recorded into the Volere
Requirements Specification Template Formalized system constraint Requirements analyst

System
constraints,
business events

Requirements template, work
knowledge Appendix B R & R

7.5 Also known as required constraints or design
constraints

HHP and L
& W

7.6 Identify non-functional requirements Characteristics or qualities that product must have
to perform what it must do are identified

Properties that product must have to
support functional requirements [non-
functional requirements]

Requirements analyst
Functional
requirements +
use case

Requirements template, work
knowledge

Non-functional requirements are
characterized by adjectives, non-functional
requirement types checklist, chapter 7 of R &
R

Prototypes Appendix B R & R

Non functional
requirement types
include: look and feel,
usability,
performance,
operational,
maintainability,
security, cultural and
political, and legal

7.6.1 Define usability To-be users' knowledge about the new system has
to be considered "User's Bill of Rights" (page 239) L & W

7.6.1.1 Specify required training time for users to be
marginally productive L & W

7.6.1.2
Specify measurable task times for typical
tasks or transactions that end users will carry
out

L & W

7.6.1.3
Compare usability of the new system to
other state-of-the-art systems that the user
community knows and likes

L & W

7.6.1.4

Specify existence and required features of
online help systems, wizards, tool tips, user
manuals, and other forms of documentation
and assistance

L & W

7.6.1.5
Follow conventions and standards that have
been developed for the human-to-machine
interface

L & W

7.6.2 Define reliability

Issues such as availability, mean time between
failures (MTBF), mean time to repair (MTTR),
accuracy, defect rate, and bugs per type are
considered

L & W

7.6.3 Define performance Response time, throughput, capacity, and
degradation modes are considered L & W

7.6.4 Define supportability Issues such as enhancements and repairs are
considered L & W

7.7 Write functional fit criteria Criteria for knowing whether solution meets
functional requirements are set

A functional criteria for each
functional requirement (recorded in
the Volere Requirements
Specification Template

Requirements analyst Client, testers

Functional
requirements,
scale of
measurement,
requirements

Work knowledge Appendix B R & R

7.7
Section 6.1.11 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

7.7 Also known as performance requirement HHP

Performance
requirement must be
coupled with each
required constraints
and required
capabilities

7.8 Write non-functional fit criteria Criteria for knowing whether solution meets non-
functional requirements are set

A non-functional criteria for each non
functional requirement (recorded in
the Volere Requirements
Specification Template

Requirements analyst Client, testers

Non-functional
requirements
and scale of
measurement,
requirements

Work knowledge Appendix B R & R

7.9 Define customer value Customer satisfaction and dissatisfaction values are
discovered

Understanding between team and
client on clients' priorities and basis
for making choices about
which/when/whether to implement
requirements

Requirements analyst Client

Clients
satisfaction and
dissatisfaction
values,
requirements

Work knowledge Appendix B R & R

7.9
Section 6.1.5 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

7.9 Chapter 21: Measuring satisfaction G & W

92

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

7.10 Identify dependencies and conflicts Conflicting requirements are recorded Conflicting requirements Requirements analyst Requirements Work knowledge Appendix B R & R

8 Capture rationale
Explanations why requirements exist, assumptions
made, relevant findings of design studies, and other
useful information are recorded.

Reasons, assumptions, operational
relationships, and design decisions
supporting each requirement

Requirements Table 8-1: Requirement rational satiny check H & F

9 Manage dependencies Attributes are assigned, traceability established and
verified

Updated requirements attributes,
updated requirements management
plan, updated vision

System analyst Customer, end user,
and stakeholder

Requirement management plan,
requirements attributes, vision, change
requests, use-case model,
supplementary specifications, design
model, test model, risk list,
stakeholder requests

RequisitePro RUP

9.1 Assign attributes System analyst Customer, end user,
and stakeholder RUP

9.2 Establish levels
Requirement levels are identified to keep the big
picture in mind, decrease development problems,
and prevent administrative gridlock

Updated requirements with different
levels, each level defining what the
each level must do

Table 9-1: Requirement levels sanity check H & F

9.2.1 Verify that requirement relate to level above Table 9-1: Requirement levels sanity check H & F

9.2.2
Check if requirement allow more than one
architecture or design option for the next
level

Table 9-1: Requirement levels sanity check H & F

9.2.3 Check if requirement leads to solution -
delete requirement if so Table 9-1: Requirement levels sanity check H & F

9.2.4 Check if requirement is to be verified at this
level Table 9-1: Requirement levels sanity check H & F

9.3 Establish allocation (top down) Systems-level requirements are matched to part(s)
that must accomplish the requirement

Requirements are matched with part
requirements

Systems-level
requirements

Table 9-2: Requirement allocation sanity
check H & F

9.3.1 Make sure that every requirement is
allocated

Table 9-2: Requirement allocation sanity
check H & F

9.3.2 Check for duplicate requirements Table 9-2: Requirement allocation sanity
check H & F

9.3.3 Check if requirements need to be allocated to
more than one area

Table 9-2: Requirement allocation sanity
check H & F

9.3.4 Check if an interface is implied, simple and
controllable

Table 9-2: Requirement allocation sanity
check H & F

9.4 Establish and verify traceability Each requirement is checked to ensure that it came
from a parent requirement at system level System analyst Customer, end user,

and stakeholder Table 9-3: Requirement tracing sanity check RUP

9.4.1 Make sure requirement tracing system is in
place Table 9-3: Requirement tracing sanity check H & F

9.4.2 Make sure that every requirement can be
traced back to a higher-level requirement Table 9-3: Requirement tracing sanity check H & F

9.4.3 Resolve duplication between levels Table 9-3: Requirement tracing sanity check H & F

9.4.4 Eliminate orphan requirements Table 9-3: Requirement tracing sanity check H & F

Orphan requirements
may signal from top-
level requirements are
missing

9.5a Create a document tree Requirements are recorded in a document tree
structure requirements specification

Document tree structure requirements
specification Table 9-4: Document tree sanity check H & F Document tree helps

structure requirements

9.5.1 Identify approval levels and segregate
requirements accordingly Table 9-4: Document tree sanity check H & F

9.5.2
Identify external contracts and segregate
requirements that will be contractually
binding to each outside party

Table 9-4: Document tree sanity check H & F

9.5.3 Segregate requirements for frequent revision Table 9-4: Document tree sanity check H & F

9.5.4 Segregate requirements into manageable
document sizes Table 9-4: Document tree sanity check H & F

93

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

9.5b Enter requirements in Modern Software
Requirements Specifications (SRS) package

A collection of artifacts describing the complete
external behavior of the system is documented Development team Vision

Document Appendix C: Modern SRS Package Template

Technical
approach
methods include:
pseudocode,
finite state
machines,
decision trees,
activity
diagrams, entity
relationship
models, object-
oriented
analysis, and
structured
analysis

L & W

9.6 Manage changing requirements L & W

9.7 Evaluate SRS Chapter 27: Quality measures of software
requirements L & W

9.7.1 Inspect quality of each individual
specification

The following qualities are checked: correct,
unambiguous, complete, consistent, ranked for
importance and stability, verifiable, modifiable,
traceable, and understandable.

Chapter 27: Quality measures of software
requirements L & W

9.7.2 Inspect quality for use-case model (use-case
specifications, and use-case actors)

Books by Booch (1999) and Jacobson,
Booch, and Rumbaugh (1999) and chapter
27: Quality measures of software
requirements

L & W

9.7.3 Inspect quality for the entire Modern SRS Modern SRS package that has a good Table of
Contents, index, revision history, and glossary

Chapter 27: Quality measures of software
requirements L & W

9.8 Manage changing requirements System analyst Customer, end user,
and stakeholder

Reassess requirements attributes and
traceability, manage change hierarchically RUP

10 Verify requirements Requirements are checked to make sure that they
support verification

Updated requirements which are
verifiable

Table 10-3: Verification assessment sanity
check H & F

10
Section 6.2 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

10 Traceability RequisitePro L & W
Verification = make
sure that you are
doing the right thing

10.1 Screen requirements for subjective words Table 10-1: Certain words flag unverifiable
requirements, H & F

10.2 Identify verificational stakeholders Table 10-3: Verification assessment sanity
check H & F

10.3 Decide what to verify and validate L & W
10.3.1a Verify and validate everything L & W

10.3.1b Use a hazard analysis to determine verify
and validate necessities L & W

10.4 Decide how each requirement will be
verified

Requirements can be verified via inspection, test,
demonstration, and analysis

Table 10-3: Verification assessment sanity
check from H & F

L & W and
H & F

10.4.1 Compare to customer expectations
Requirements are checked against customer
expectation to ensure they represent customers'
needs, requirements, and constraints

End-user, marketing,
etc.

Requirements
provided by
customers

Section 6.2.1 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

10.4.2 Compare to enterprise and project
constraints

Requirements are checked against enterprise and
project constraints. This is to ensure correct
representation and that requirements stay within
enterprise and project policies and procedures,
acceptable risk levels, plans, resources, technology
limitations, objectives, decisions, standards, and
other constraints.

Section 6.2.2 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

10.4.3 Compare to external constraints

Requirements are checked against external
constraints. This would include national and
international laws; external interface requirements
with existing or evolving requirements, platforms,
or products; applicable general specification and
standard provisions; and competitive product
capabilities and characteristics

Section 6.2.3 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

10.5 Decide when each requirement will be
verified

Table 10-3: Verification assessment sanity
check H & F

10.6 Write requirements to cut time, cost, and
special equipment required to verify products

Table 10-3: Verification assessment sanity
check H & F

94

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

10.7 Decide how each requirement will be
validated L & W

Validation = make
sure that the system is
doing what's supposed
to do

10.7.1 Perform acceptance testing L & W
10.7.2 Perform validation testing L & W
10.7.3 Perform validation traceability L & W
10.7.4 Perform requirements-based testing L & W

10.8 Establish validated requirements baseline
Section 6.2.5 of IEEE Std 1220 - 1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

10.9 Build verification matrix Table 10-3: Verification assessment sanity
check H & F

11 Format requirements Requirements are organized into a standard format Well-organized requirements List of
requirements

Table 11-1: Items your specification may
need to cover, table 11-2: specification
standards and sources, table 11-3:
Requirement document format sanity check

H & F

Requirements can be
organized based on
operational concepts,
major functions, etc..

11
Section 7.3 of IEEE Std 1233, 1998 edition
(IEEE Guide for Developing System
Requirements Specifications

IEEE

11.1a Organize requirements of complex hardware
and software system

Requirements are organized and documented in a
requirements specification Hierarchy of specifications L & W

11.1.1 Refine a system into subsystems Partitions and allocations between
subsystems

Systems
engineering L & W

11.1.2 Create requirements specification for each
subsystem External behavior of the system is described L & W

11.1.3 Refine subsystems into its subsystems
(optional) L & W

11.1b Organize requirements for product families Requirements organization for a
software product family L & W

11.1.1 Develop a product-family Vision Document L & W

11.1.2 Develop a set of use cases to show
interactions among various applications L & W

11.1.3 Develop a common software requirements
specification

Specific requirements for shared functionality are
defined L & W

11.1.4

Develop a separate Vision Document,
Software Requirements Specification, and a
use case model for each product in the
family

L & W

11.2 Create Vision Document A high level abstraction of problem and solution is
documented in a Vision Document

Figure 7-1: Template for software product
Vision Document L & W

11.3 Create product position statement L & W
11.4 Circulate and gain agreement L & W

11.5 Create use cases in Vision Document
(appendix) L & W

11.6 Publish Vision Document L & W

11.7 Assign owner to Vision Document (product
champion)

A person or a small team is assigned to maintain
the project vision Chapter 18: The champion L & W

11.8 Utilize delta Vision Document Changes and updates are recorded in the delta
Vision Document L & W

12a Baseline requirements Requirements are considered completed at this
point and are ready for design "Cleaned" set of requirements Requirements H & F

12a
Section 6.1.16 of IEEE Std 1220-1998 (IEEE
Standard for Application and Management of
the Systems Engineering Process)

IEEE

12.1 Find format, grammar, spelling , and
typographical errors Requirements are checked for typos "Redlined" requirements Elected editor Requirements Table 12-1: Editorial sanity check H & F

12.2

Look for ambiguities, unverified
assumptions, unverified assumptions, TBD,
implementation, lack of rationale or
unintelligible rationale, and lack of
traceability

Requirements are examined for obvious problems Requirement engineers or
elected requirement writer Requirements Table 12-2: Requirement "goodness" sanity

check H & F Assumed TBD = to
be determined

12.2
Chapter 2: Ambiguity in stating requirements,
chapter 3: Sources of ambiguity, chapter 9:
Reducing ambiguity from start to finish

G & W

12.3 Look for content errors, conflicts or missing
requirements Requirements are examined for content Recommendations (and reasons) for

each requirement
Selected reviewers from
stakeholders Requirements Operational concepts Table 12-3: Requirement content sanity check H & F

12.4 Assess product development risk Table 12-4: Risk assessment sanity check L & W and
H & F

Risks may surface
from requirement
volatility, technical
feasibility, budget, and
schedule

12.5 Measure requirement quality Quality of the requirements are examined for
rooms for improvements Analyzed data on requirements Data on

requirements

Requirement count, baseline review
redlines, discrepancy analysis, change
analysis

Table 16-1: Measuring requirement quality
sanity check H & F

95

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

12b Check requirements (quality gateway)

Requirements are checked for completeness,
traceability, consistency, relevancy, correctness,
ambiguity, being solution-bound, gold-plating, and
creep to avoid requirements creep and
requirements leakage

Accepted requirements, excluded
requirements to be sent back for
revision or omitted completely

Requirements analyst Formalized
requirements Appendix B R & R

Who does Quality
Gateway is
determined by the
organization's culture

12.1 Review requirements fit criteria Communicable limits are set so that they can be
tested

Rejected requirement, requirement
questions, fit reviewed requirement Requirements analyst Testers

Formalized
requirements,
formalized
system
constraint

Requirements template, product
scope, work knowledge Appendix B R & R

12.2 Review requirements relevance
Requirements are checked to make sure that they
are within product context and also that they are
not solutions

Rejected requirement, system
constraint questions, requirement
questions, accepted system constraint,
relevance reviewed requirement

Requirements analyst
Completeness
reviewed
requirement

Requirements template, product
scope, work knowledge, requirements
specification

Appendix B R & R
Abstract requirements
are usually not
solutions

12.3 Review requirement viability Requirements are checked to make sure that they
are workable within the project

Rejected requirements, requirement
questions, viability reviewed
requirement

Requirements analyst Formalized
requirements

Requirements template, product
scope, work knowledge, requirements
specification

Appendix B R & R

12.4 Identify gold-plated requirements Requirements are checked to make sure that they
are absolutely necessary for the project

Gold-plated requirements are omitted
(if not, gold-plated ones are flagged),
requirement questions, accepted
requirement

Requirements analyst

Strategic plan
for product,
viability
reviewed
requirement

Requirements specification Appendix B R & R

Gold-plated
requirements maybe
kept for political or
personality reasons

12.5 Review requirements completeness Requirements are checked to make sure that they
are complete

Requirements with all required
components filled out Requirements analyst Stakeholders Formalized

requirements Volere shell Appendix B R & R

12.6 Test requirements traceability Requirements are checked to make sure that there
is a connection with deliverables

Traceable requirements (complete
with unique identifier, indicator of
type of requirement or constraint,
references to all business events and
use cases, references to dependent
requirements, references to other
requirements, and consistent use of
terminology)

Requirements analyst Formalized
requirements R & R

12.7 Review requirements for consistent
terminology

Requirements are checked to make sure that each is
understood by all in the same way Clear and unmistakable requirements Requirements analyst Formalized

requirements Appendix A R & R

12.8 Place customer rating on requirements Requirements are checked to make sure that they
are of some importance Weighted requirements Requirements analyst Client, customers,

stakeholders
Formalized
requirements R & R

QED can be
substituted for this
step

12c Check requirements for certain properties
Requirements are checked to ensure that they are
unique, normalized, linked, complete, consistent,
bounded, modifiable, configurable, and granular.

Complete requirements
Section 4.2 and 6..2 of IEEE Std 1233, 1998
edition (IEEE Guide for Developing System
Requirements Specifications

IEEE

13 Prioritize requirements Requirements are grouped based on relative
importance

Table 13-1: Prioritizing requirements sanity
check H & F

13.1 Define priority classes Priority numbering is decided

Essential, nonnegotiable, and urgent
requirements : 1; useful, slightly
deferrable requirements: 2; merely
desirable, flexible, or "someday"
requirements: 3

Table 13-1: Prioritizing requirements sanity
check H & F

13.2 Classify the requirements Requirements are classified by priorities Table 13-1: Prioritizing requirements sanity
check H & F

Easier to classify most
important ones and
least important
ones…all the rest are
in between

13.2.1 Assign 1's and 3's first - everything else
default to 2

Table 13-1: Prioritizing requirements sanity
check H & F

13.3 Resolve the differences Agreement on priority is granted Table 13-1: Prioritizing requirements sanity
check H & F

13.4 Create priority-based development schedulesTimelines for each requirement is created Table 13-1: Prioritizing requirements sanity
check H & F

13.5 Maintain the priorities Priorities are checked often to assure that they are
being followed

Table 13-1: Prioritizing requirements sanity
check H & F

14 Detail software requirements
Updated requirement attributes,
detailed supplementary specifications,
software requirements specification

Requirements specifier

Vision, glossary, use case model, use
case supplementary specifications,
requirements attributes, requirement
management plan, user-interface
prototype

SoDa RUP

96

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

14.1 Collect software requirements artifacts Requirements specifier RUP

14.2 Detail the software requirements Requirements specifier RUP
14.3 Generate supporting reports Requirements specifier RUP

14.4 Assemble the software requirements
specification Requirements specifier RUP

15 Prioritize use case Use cases are prioritized and documented
Updated requirements attributes,
software architecture document,
refined glossary

Software architect - Vision, use case model, requirements,
attributes, iteration plan, glossary RUP

15.1 Prioritize use cases and scenarios Software architect L & W and
RUP

15.2 Document the use-case view Software architect L & W and
RUP

15.3 Evaluate results Software architect L & W and
RUP

16 Detail a use case
Use cases are detailed by describing special
requirements, communication protocols, pre-
conditions, post-conditions, and extension points

Use case, updated supplementary
specifications, requirements attributesRequirements specifier

Vision, stakeholder requests, glossary,
use case, use case model,
supplementary specifications, use-case
modeling guidelines, requirements
management plan

RequisitePro,
RationalRose RUP

16.1 Detail flow of events of the use case Requirements specifier RUP

16.2 Structure the flow of events of the use case Requirements specifier RUP

16.3 Illustrate relationships with actors and other
use cases Requirements specifier RUP

16.4 Describe special requirements of the use
case Requirements specifier RUP

16.5 Describe communication protocols Requirements specifier RUP

16.6 Describe pre-conditions of the use case
<optional> Requirements specifier RUP

16.7 Describe post-conditions of the use case
<optional> Requirements specifier RUP

16.8 Describe extension points <optional> Requirements specifier RUP
16.9 Evaluate results Requirements specifier RUP

17 Review change request Requests for change are evaluated Updated change request Change control manager Change control board Change request ClearQuest RUP

17.1 Plan for changes to happen Allowance for inevitable and necessary changes are
considered Plan for managing changes L & W

17.2 Baseline requirements A version number is assigned to requirements
Old and new requirements are
distinguished, making new
requirements more manageable

L & W

17.3 Maintain responsibility for Vision Doc L & W

Small project: product
champion; large
project: change
control board

17.4 Schedule CCB review meeting Change control manager Change control board RUP

17.5 Setup default reports and queries to assist in
this effort L & W

17.6 Monitor SRS process L & W
17.7 Lead Change Control Review Board L & W
17.8 Retrieve change requests for review Change control manager Change control board RUP

17.8.1 Submission of a new change request RUP
17.8.2 Update of an existing change request RUP

17.8.3 Consider postponing change request for a
new release cycle RUP

17.9 Review submitted change requests Change control manager Change control board RUP

17.10 Perform a thorough change impact
assessment H & F

17.11 Use change control system to capture
changes L & W

17.12 Make changes hierarchically L & W
17.13 Audit trail of history L & W

18 Model the user interface Refined use case storyboards, refined
actors, boundary class User-interface designer

Use case, actors, supplementary
specifications, vision, stakeholder
requests, user-interface guidelines

RUP

18.1 Describe characteristics of related actors User-interface designer RUP

97

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

18.2 Create a use-case storyboard User-interface designer RUP

Steps can be
alternated or

performed in parallel.

18.3 Describe flow of events - storyboard User-interface designer RUP

18.4 Capture usability requirements on the use-
case storyboard User-interface designer RUP

18.5 Find boundary classes needed by the use-
case storyboard User-interface designer RUP

18.5.1 Describe responsibility of boundary classes User-interface designer RUP

18.5.2 Describe attributes of boundary classes User-interface designer RUP

18.5.3 Describe relationships between boundary
classes User-interface designer RUP

18.5.4 Present usability requirements on boundary
classes User-interface designer RUP

18.5.5 Present the boundary classes in global class
diagrams User-interface designer RUP

18.5.6 Evaluate results User-interface designer RUP

18.6 Describe interactions between boundary
objects and actors User-interface designer RUP

18.7 Complement the diagrams of the use-case
storyboard User-interface designer RUP

18.8 Refer to the user-interface prototype from
the use-case storyboard User-interface designer RUP

19 Prototype the user interface User interface prototype User-interface designer
Use case storyboard, boundary class,
actor, supplementary specifications,
user-interface guidelines

RUP
Steps can be
alternated or

performed in parallel.

19.1 Plan the prototype Prototyping plan Requirements analyst

Event for
prototyping,
prototyping
opportunity

Prototypes Appendix A R & R

19.2 Design the user-interface prototype User-interface designer RUP

19.3 Build prototype

Prototypes, context of prototype,
objective of prototype, low fidelity
prototype, high fidelity prototype,
prototype building effort

Requirements analyst
Prototyping
plan, prototype
modification

Requirements specification Appendix A R & R

19.3.1 Build low fidelity prototype Prototypes (paper and pencil) are drawn to
illustrate objectives of the system

Prototypes, prototype building effort,
context of prototype, low fidelity
prototype, objective of prototype

Requirements analyst Users
Prototyping
plan, prototype
modification

Requirements specification
Detailed event/use case model, scenario
model event/use case, entity/state diagram,
context diagram, sketch of screen layout

Appendix A R & R

19.3.2 Build high fidelity prototype Prototypes (software tools) are drawn to give a
taste of how end product feels like

Prototypes, prototype building effort,
context of prototype, low fidelity
prototype, objective of prototype

Requirements analyst Users, designers
Prototyping
plan, prototype
modification

Requirements specification

Simulation of user interface, simulation of the
system's behavior for a given event/use case,
simulation of the system's behavior for a
combination of events/use cases

Appendix A R & R

19.4 Evaluate the prototype Potential requirements, prototyping
metrics Requirements analyst

Prototype
modification,
context of
prototype,
objective of
prototype, low
fidelity
prototype, high
fidelity
prototype,
prototype
building effort

Prototypes, requirements
specification, product scope Appendix A R & R

19.4.1 Test high fidelity prototype with users Prototypes are experimented by users on their own
to see if it meets the Objective of the Prototype

Prototype modifications (used until
objective is satisfied), usage feedback
new requirements, requirements
changes due to prototypes

Requirements analyst Users

High fidelity
prototype,
objective of
prototype,
context of
prototype

Prototype is modified until it satisfies
the Objective of the Prototype Appendix A R & R

19.4.2 Test low fidelity prototype with users Prototypes are experimented casually and
interactively

Prototype modifications (used until
objective is satisfied), usage feedback
new requirements, requirements
changes due to prototypes

Requirements analyst Users

Low fidelity
prototype,
context of
prototype,
objective of
prototype

Prototype is modified until it satisfies
the Objective of the Prototype Appendix A R & R

19.4.3 Get feedback on user-interface prototype User-interface designer RUP

98

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

19.4.4 Identify new and changed requirements Usage feedback is reviewed to discover new
requirements

Potential requirements that needs to
be passed through Quality Gateway Requirements analyst Usage feedback Product scope, requirements

specification Appendix A R & R

19.4.5 Evaluate prototyping effort Evaluation is done on the prototyping effort. This
can be used to define Prototyping Metrics Prototyping metrics Requirements analyst Prototype

building effort
Requirements specification,
prototypes Appendix A R & R

19.5 Implement user-interface prototype User-interface designer RUP

20 Structure use case model
Refined use case, new use case,
refined use case model, refined use
case package (optional)

System analyst

Use case modeling guidelines,
glossary, use case model, use cases,
supplementary specifications, use-case
packages (optional)

RationalRose RUP

20.1 Establish include-relationships between use
cases RUP

20.2 Establish extend-relationships between use
cases RUP

20.3 Establish generalizations between use cases RUP

20.4 Establish generalizations between actors RUP

20.5 Evaluate results RUP
21 Do requirements post mortem Appendix A R & R

21.1 Gather input for review Quantified findings Facilitator(s)

Individual
comments,
group
comments,
project history

Appendix A R & R

21.1.1 Conduct private individual reviews
Individual reviews are conducted based on
questionnaires or taped interviews to provide issues
of the project

Points for clarification, input from
individuals Facilitator Each project member Individual

comments Sample questions on page 322 of R & R Appendix A R & R

21.1.2 Conduct separate meetings with groups Group's experience are collected Input from groups Facilitator(s) Working groups

Points for
clarification,
group
comments

Appendix A R & R

21.1.3 Facilitator reviews facts
The findings from individual reviews and group
meetings are grouped and quantified and compared
with actual history of the project

Quantified findings Facilitator(s)

Input from
individuals,
project history,
input from
groups

Appendix A R & R

21.2 Do post mortem Post mortem report Facilitator(s)

Quantified
findings, project
participants
comments

Appendix A R & R

21.2.1 Hold post mortem review meeting Summary of findings are delivered to all involved
in the project Post mortem findings

Quantified
findings, project
participants
comments

Appendix A R & R

21.2.2 Produce post mortem report The post mortem report is circulated among project
members Post mortem report Post mortem

findings
Sample of contents can be found on page 327
of R & R Appendix A R & R

21.3 Build a requirements filter Post mortem report, requirements
filter Requirements analyst System

experience
Requirements filter, requirements
specification, requirements template Appendix A R & R

21.3.1 Identify filtration criteria

The industry type for which the requirements filter
is identified along with definition of the
organizational environment and applicable
technology

Industry type, organizational
environment, technological
environment

Requirements analyst System
experience Appendix A R & R

21.3.2 Select relevant requirement types

Each requirement is evaluated if it apply to the
industry type or organizational environment or
technological environment for which the project is
built

Selected requirement types Requirements analyst

Industry type,
organizational
environment,
technological
environment

Requirements template Appendix A R & R

21.3.3 Add new filtration criteria Additions are evaluated frequently for future
purposes Requirements filter Requirements analyst

Selected
requirement
types, post
mortem report

Requirements filter, requirements
specification Appendix A R & R

99

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

22a Review requirements Review meetings are conducted Review record Requirements reviewer Customer, end user,
and stakeholder

Vision, glossary, use case model, use
case supplementary specifications, use
case package (optional), software
requirements specifications, use case
modeling guidelines, iteration plan,
change requests, user-interface
prototype

Checkpoints: vision, stakeholder requests, use
case model, actors, use case, supplementary
specifications, software requirements
specifications, glossary, requirements
attributes

RequisitePro RUP

22b Taking stock of the specification Appendix A R & R

22.1 Review specification content
Requirement interaction summary,
missing requirements, contradictory
requirements, prototyping opportunity

Requirements analyst Strategic plan
for product

Requirements specification,
requirements filter, requirements
template

Appendix A R & R

22.1.1 Identify missing requirements Requirements are cross-checked for requirements
that might have been missed Missing requirements Requirements analyst Strategic plan

for product
Requirements filter or requirements
template, requirements specification Appendix A R & R

22.1.2 Identify customer value ratings Requirements are rated for customer satisfaction
and customer dissatisfaction

Rated requirements (satisfied or
dissatisfied) Requirements analyst Stakeholders

Strategic plan
for product,
requirement
interaction
summary

Requirements specification Appendix A R & R

22.1.3 Identify requirement interaction
Requirements that interact with one another (one
design solution makes it easier or harder for the
other) are identified

Contradictory requirements,
requirement interaction summary Requirements analyst Requirements Requirements specification

Interaction exist when there is a common
policy, data, contradictory measurements, or
when one has an effect on the solution to the
other

Appendix A R & R

22.1.4 Identify prototyping opportunity Requirements which will benefit most from
prototyping are identified Prototyping opportunity Requirements analyst Strategic plan

for product Requirements specification Questions on page 333 of R & R Appendix A R & R

22.1.5 Find missing custodial requirements
Requirements that change from time to time are
checked to make sure that they are indeed
changeable

Potential requirements Requirements analyst
System
terminology +
requirement

Maintenance requirements for each item of
stored data are checked. Context model for
data flow are examined. External entities for
system are checked. Storage of data items are
inspected. Maintenance requirement is
determined to be separate requirement or
included as fundamental requirements

Appendix A R & R

22.2 Evaluate requirements risk Risk analysis, missing requirements Requirements analyst

Requirement
interaction
summary,
missing
requirements,
risk checklist

Requirements specification Appendix A R & R
Risks are okay so long
as it is defined and
monitored

22.2.1 Look for likely risks Requirements specification is reviewed for likely
risks Likely risks Requirements analyst

Risk checklist
and
requirement
interaction
summary

Requirements specification

Unspecified requirement measurement is an
indication of likely risk. Possible errors due
to analyzing, designing and/or designing
solution to the requirements indicate a likely
risk.

Appendix A R & R

22.2.2 Quantify each risk Detailed assessment is performed on each risks Risk analysis Requirements analyst
Likely risks,
missing
requirements

Risk elements defined by Tim Lister and Tom
DeMarco Appendix A R & R

22.3 Estimate effort Event effort estimates, requirement
effort estimates Requirements analyst

Prototyping
metrics, system
experience,
requirement
interaction
summary

Requirements specification Appendix A R & R

22.3.1 Identify estimation input Events or use cases are used as inputs to the effort
estimation

Event/use case models, functional
requirements + non-functional
requirements

Requirements analyst Requirements
specification Appendix A R & R

22.3.2 Identify efforts for events Effort for events are estimated using Albrecht
function points Event effort estimates Requirements analyst

Event/use case
models, system
experience,
prototyping
metrics

Event effort estimates = [event name +
estimated function points] + total estimated
function points for all events + estimate of
what effort a function point means in this
environment

Appendix A R & R

100

What Who When How (mechanism) Source Notes
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates

22.3.3 Estimate requirements effort
Effort is estimated using Albrecht function points
(this is only suitable if event-related clusters are not
identified)

Requirement effort estimates Requirements analyst

Functional
requirements +
non-functional
requirements,
prototyping
metrics, system
experience,
requirement
interaction
summary

Requirement effort estimates = {requirement
ID + estimated points}+total estimated
function points for all requirements + estimate
of what effort a function point means in this
environment

Appendix A R & R

22.4 Publish reviewed specification Reviewed specification Requirements analyst

Event effort
estimates,
requirement
effort estimates,
risk analysis

Requirements specification,
requirements template Appendix A R & R

22.4
Section 7.4 of IEEE Std 1233, 1998 edition
(IEEE Guide for Developing System
Requirements Specifications

IEEE

22.4.1 Design form of specification Considerations are made on the design form of the
specification Form of specification Requirements analyst Requirements specification Appendix A R & R

22.4.1
IEEE Std 830-1998 (IEEE Recommended
Practice for Software Requirements
Specifications)

Annex A IEEE

22.4.2 Assemble the specification Specification is arranged for easy navigation Reviewed specification Requirements analyst

Event effort
estimates, form
of specification,
risk analysis,
requirement
effort estimates

Requirements specification,
requirements template Appendix A R & R

101

	Definition and Representation of Requirement Engineering/Management : A Process-Oriented Approach
	Recommended Citation

	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	INTRODUCTION
	Definition of Requirements
	Importance of Requirements
	Ten Reasons

	Areas of Application for Requirements
	Systems Engineering
	Software Development
	Concurrent Engineering

	Motivation
	Problem Statement
	Research Objectives

	CHAPTER II
	DEVELOPMENT OF A GENERIC REQUIREMENTS ENGINEERING / MANAGEMENT PROCESS
	Define requirements engineering and requirements management
	Requirements engineering (RE) defined
	Requirements management (RM) defined
	Requirements Engineering versus Requirements Management

	Review of Requirements Engineering/Management Activities
	Rational Unified Process’s approach
	Leffingwell and Widrig’s approach
	Skills from Leffingwell and Widrig [18]
	Rational Unified Process

	Gause and Weinberg’s approach
	Hooks and Farry’s approach
	Robertson and Robertson’s approach
	IEEE standards on requirements
	Comparison of requirements engineering/management activities

	Assimilation of a Master Activity List
	
	
	
	
	
	
	Name

	Development a Process Representation Scheme
	Review of Representation Methods by Cited Sources
	Integration Definition for Function Modeling (IDEF)
	Tabular View
	Hybrid Graphical View
	Tabular View versus Hybrid Graphical View

	CHAPTER III
	CONCLUSION
	Future Research
	Conclusion

	REFERENCES CITED
	APPENDIX A
	MASTER ACTIVITY LIST
	APPENDIX B
	TABULAR VIEW

