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Requirements are important in software development, product development, projects, 

processes, and systems.  However, a review of the requirements literature indicates 

several problems.  First, there is confusion between the terms ‘requirements 

engineering’ and ‘requirements management.’ Similarities and/or differences between 

the two terms are resolved through a literature review; resulting in comprehensive 

definitions of each term.  Second, current literature recognizes the importance of 

requirements but offers few methodologies or solutions for defining and managing 

requirements.  Hence, a flexible methodology or framework is provided for defining 

and managing requirements.  Third, requirements methodologies are represented in 

various ways, each with their respective strengths and weaknesses. A tabular view 

and hybrid graphical view for representing the requirements process are provided.      
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CHAPTER I 

INTRODUCTION 

The word ‘requirement’ is used commonly in everyday life.  When I chose 

a university to apply to, one of the requirements was that the tuition must be less 

than $15,000 annually. Another requirement that I had was that the university 

must have a good engineering school, at least ABET accredited.  On the other 

hand, Mississippi State University has a list of requirements that the applicants 

must meet before being accepted into MSU.  For instance, international students 

must achieve at least a specific TOEFL score.  However, requirements are much 

more than just a checklist to be checked off.  (Prior to this research, I was 

unaware of the vast application and importance of requirements.)   

Definition of Requirements 

A review of the literature indicates that there are many definitions for the 

term ‘requirement.’ All of the definitions found in the literature are shown in 

Table 1. The order that the definitions appear is arranged from narrow to broad 

view. 
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 Source  Definition  Comments 
Kulak and 
Guiney [17] 

“A requirement is something that a computer 
application must do for its users” (p.4). 

Only covers software 
development 

Dorfman and 
Thayer, quoted 
by Leffingwell 
and Widrig 
[18],[22] 

“A software capability needed by the user to 
solve a problem to achieve an objective.  A 
software capability that must be met or 
possessed by a system or system component 
to satisfy a contract, standard, specification, 
or other formally imposed documentation” 
(p.15). 

Only covers software 
development 

Robertson and 
Robertson [27] 

“A requirement is something that the product 
must do or a quality that the product must 
have” (p.5). 

Only covers product 
development 

Hooks and 
Farry [12] 

“Good requirements – defining the job that 
needs to be done or the characteristics of the 
product we want to buy, develop, build, 
modify, or have developed, built, or 
modified – are essential to improved 
productivity” (p.xxiii). 

Requirements define 
what needs to be 
done or what is 
desired in product 
development 

IEEE Std 1220-
1998 [31] 

“A statement that identifies a product or 
process operational, functional, or design 
characteristic or constraint, which is 
unambiguous, testable or measurable, and 
necessary for product or process 
acceptability (by consumers or internal 
quality assurance guidelines)” (p.8). 

Requirements are 
necessary for 
acceptance of a 
product or process 

Leffingwell and 
Widrig [18] 

“Requirements define capabilities that the 
systems must deliver, and conformance or 
lack of conformance to a set of requirements 
often determines the success or failure of 
projects” (p.16). 

Project success 
depends on how well 
the requirements are 
met or not met  

Davis and 
Zweig [5] 

“…those externally observable 
characteristics of a system that a user, buyer, 
customer, or other stakeholder desires to 
have present in the system” (p.61). 

Only covers 
externally viewable 
characteristics in a 

 system 

Harwell et al. 
[10] 

“[i]f it mandates that something must be 
accomplished, transformed, produced, or 
provided, it is a requirement – period” 
(para.4). 

Indicates that 
requirements are 
needed for any 
activity/process 
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Table 1 

Definitions of requirements 
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Each definition points out something important about requirements.  It is just too bad 

that all these important elements do not appear in the same definition.  Keywords 

extracted from the definitions include ‘a thing’, capability, users, must do, must have, 

define or identify, characteristic, customers, observable, and action (accomplished, 

transformed, produced, provided).  

Therefore, a requirement can be defined as an aspect of a system that defines 

what it must have or must do in order to accomplish a desired outcome for someone 

(users, customers, stakeholders, etc.).  Davis and Zweig’s notion of “externally 

observable characteristics” is not included because there are some features that are 

not observable and yet important to the customers.  For instance, everyone knows that 

electricity is important but some people do not know how current flows.   

Importance of Requirements 

Why are requirements important? A common reason cited by the literature is 

cost. For example, software companies could have saved themselves a lot of money 

had they worked out all the bugs in their software packages before shipping them.  

However, working out all the bugs in the software can potentially take a long time.  

Hence, most software companies choose to ship an almost-perfect software and only 

fix problems if they are detected.  Besides creating a bad reputation for the software 

companies, this also means additional cost for them.    



 

 

 
 

 No.  Reason 
1 “[R]equirements are important because if you don’t know what you want, or don’t 

communicate what you want, you reduce your chances of getting what you want” 
 (p.1) [8]. 

2 “Bell Labs and IBM studies have determined that 80 percent of all product defects 
are inserted in the requirement definition stage of product development, the stage 
where you should define a product’s needs and uses” (p.3) [12]. 

3 From an information systems standpoint, requirements determination and structuring 
occurs in the first phase (analysis phase) of the systems development life cycle 
(SDLC). Errors in the final system are often caused by inadequate efforts in this 
phase [11]. 

4 The Standish Group found that projects that were late and under expectations were 
caused by the following: lack of user input, and incomplete and changing 
requirements [18]. 

5 The more time and effort that NASA spent on the requirements definition stage, the 
less they spent on budget overrun [12]. 

6 The European Software Process Improvement Training Initiative (ESPITI) reported 
that major problems in software development fall into two main categories - 
requirements specification and managing customer requirements [18]. 

7 “[W]e have grown to care about requirements because we have seen more projects 
stumble or fail as a result of poor requirements than for any other reason” (p.2) [17]. 

8 “Bad requirements result in cost overruns, schedule slips, frustrated and overworked 
employees, unhappy customers, lost profitability, and limited careers” (p.7) [12]. 

9 Requirements, known as demanded-quality items, are inputs to the House of Quality  
in Quality Function Deployment [21].  

10 Hooks and Farry cited Dean Leffingwell estimation that “requirements errors 
accounts for 70 to 85 percent of software project rework costs” (p.8). In addition, 
Barry Boehm found that half of the total budget was used for rework.  This means 
that there is a high probability that the high cost of rework is due to errors in 
requirements [12]. 

 
 
 

4 
Ten Reasons 

A review of the literature indicates the importance of requirements.  Ten 

reasons (not in any particular order) why requirements are important are documented 

in the Table 2. 

Table 2 
Ten reasons why requirements are important 



 

 

 

 

5 
This list proves that requirements are important in a variety of areas.  This list also 

indicates that the success or failure of software development, product development, 

projects, processes, or systems depends heavily on the early stages or requirement 

definition stages. The more time and effort that is spent upfront defining 

requirements, the less the development team has to spend (in terms of money and 

time) later to rectify the problems.  Leffingwell and Widrig [18] found that costs of 

fixing problems during maintenance stage of the software development is twenty 

times the cost of fixing problems during requirements stage.   

This list of reasons indirectly points out that something is done “to” the 

requirements.  In the beginning, requirements have to be defined.  Once that is done, 

requirements need to be tracked, indicating some sort of management is required.  

These definition and management activities are a part of a process, indicating that 

requirements are either engineered and/or managed.       

Areas of Application for Requirements 

Upon investigation, it is found that requirements are embedded in several 

processes, namely systems engineering, software development, and concurrent 

engineering. The roles of requirements are examined in the following section.  



 

 

 

 

 

6 
Systems Engineering 

Engineering has traditionally focused on individual phases of a product’s life 

cycle. Market competitiveness has since changed the focus to one of viewing the 

entire cycle (from concept development to disposal) as a whole [3].  This is in fact the 

essence of systems engineering.  The International Council on Systems Engineering 

(INCOSE) [15] defines systems engineering as: 

“an interdisciplinary approach and means to enable the realization of successful 

systems. It focuses on defining customer needs and required functionality early in 

the development cycle, documenting requirements, then proceeding with design 

synthesis and system validation while considering the complete problem: 

operations, performance, test, manufacturing, cost and schedule, training and 

support, and disposal. Systems Engineering integrates all the disciplines and 

specialty groups into a team effort forming a structured development process that 

proceeds from concept to production to operation. Systems Engineering considers 

both the business and the technical needs of all customers with the goal of 

providing a quality product that meets the user needs” (para.1).  

This definition demonstrates the importance of customer input.  These inputs are 

transformed into customer requirements, which eventually flow through the entire 

product development process, and even through the life cycle.     



 
 

 

Figure 1: Systems engineering [3] 
 
 

 

7 
Blanchard and Fabrycky [3] provide another point of view on systems 

engineering shown in Figure 1. 

Systems engineering begins with identifying the need for the system.  Once 

customers’ needs are gathered, conceptual design begins.  This is where the customer 

needs are translated into functional requirements.  These functional requirements are 

then passed along to preliminary design where trade-off studies, initial prototyping, 

etc. are carried out. Detail design and development includes activities such as 

describing the system design and development, testing, and evaluating prototypes.  

The system is then analyzed and built in the production and/or construction phase.  

During the utilization and support phase, the system is assessed, analyzed, and 

modified, if necessary.  The systems engineering cycle ends with a phaseout and 

disposal of the system.  In the past, phaseout and disposal of a product were not 

considered as the responsibility of the manufacturer.      

One way of viewing this is that requirements drive all the other subsequent 

activities. Blanchard and Fabrycky [3] write that the requirements have “to be well-



 

 

 

 

8 
defined and specified” (p.24). Also, it is important for requirements to be visible 

throughout the entire process – this is known as traceability. 

Software Development 

Leffingwell and Widrig [18] said that “[e]ffective requirements management 

cannot occur without the context of a reasonably well-defined software process…” 

(p.213). This shows that it is important to examine the activities contained within the 

software development process.  In the past, programmers would write code and only 

fix “bugs” when they are found. This would repeat until the problems can no longer 

be fixed. Then Boehm [18] created the stepwise process model, which is made up of 

several stages: e.g. requirements, design, coding.  However, this model has a 

shortcoming: it is sequential and thus does not allow feedback between stages. 

In 1970, Winston Royce [3] developed the “waterfall model,” which consists 

of five to seven steps. The basic steps within this process are requirements, design, 

coding and unit test, system integration, and operation and maintenance.  The main 

difference between the waterfall model and the stepwise model is that the waterfall 

model allows feedback at every stage.  Other researchers in the software development 

field criticized this waterfall model, shown in Figure 2, for not addressing the 

prototyping activity [3]. Even though the waterfall model is popular among software 

developers, there is a discrepancy between different authors. Blanchard and 

Fabrycky’s [3] representation of the waterfall model is shown in Figure 3.   
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Requirements 

Design 

Coding and Unit 
Test 

System 
Integration 

Operation and 
Maintenance 

Figure 2: The waterfall model documented in Leffingwell and Widrig’s [18] book 

 

 
   

Requirements 
Analysis 

Specifications 

Design 

Implementation 

Test 

Feedback 

 

 
 

Maintenance 

Figure 3: The waterfall model documented in Blanchard and Fabrycky’s [3] book  
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Project Initiation 
and Planning 
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Logical Design 

Physical Design 

Implementation 

Maintenance 

Figure 4: Systems Development Life Cycle (SDLC) [11] 

 

 

 

 

10 
According to Blanchard and Fabrycky [3], the waterfall model is made up of 

six steps – requirements analysis, specifications, design, implementation, test, and 

maintenance.  Even though the waterfall models presented by both authors are 

different, one similarity stands out: - both of the models begin with requirements.  

Again, this supports the notion that something is done onto requirements throughout 

the entire process. 

From the information systems standpoint, there is a similar model called the 

Systems Development Life Cycle (SDLC) [11].  This model is shown in Figure 4. 

This model is comprised of seven phases, namely project identification and selection, 

project initiation and planning, analysis, logical design, physical design, 



 

 

 

 

11 
implementation, and maintenance.  The first phase, project identification and 

selection, involves identifying the need for the project. This is similar to the first step 

within the systems engineering process.  This is succeeded by the project initiation 

and planning phase where further investigation is done on the need for the project. If 

the project is approved, the development team draws up a detailed plan for the 

project. 

Next, the team examines the current system and proposes a new system.  This 

phase, known as the analysis phase, is where the activities related to requirements 

take place. In order to design the system that the stakeholders desire, the team has to 

gather the stakeholders’ requirements.  Then, the team analyzes the current system 

and decides what needs to be done in order to meet their stakeholders’ needs.  The 

team then works on a rough sketch of the proposed system.   

The subsequent two stages of the SDLC involve design. The first part of 

design is the logical design, where all of the functions of the proposed system are 

specified without the restriction of computer hardware.  The logical design is 

converted into specifications in the physical design phase. 

Once the specifications are set, the team turns the specifications into a 

working system in the implementation phase.  Activities included in this phase 

include coding, testing, and installing the new system.  Last but not least, the system 

is modified periodically in the maintenance phase.         

In 1986, Boehm [3] developed the “spiral model” shown in Figure 5.  The 

spiral model, which is read counter clockwise from the center, is based on risk-driven 



 

 

 

 
Figure 5: Spiral process model [3] 

 

 

12 
approach. This approach allows each prototype’s risks to be evaluated and resolved 

each cycle before progressing to the next step. The spiral process begins with a need. 

This need is progressively transformed into the final product through an iterative 

process. Since Boehm’s previous stepwise model was criticized for not including 

feedback and prototyping, he has included them into this model.  

The spiral model is another example where requirements play an important 

role. For instance, once the need is identified, the system requirements are 

determined.  In addition, each cycle has an activity involving requirements, indicating 

that requirements ‘evolve’ throughout the process.      

The spiral model was later succeeded by the “Vee” process model.  This 

process, shown in Figure 6, is created by Forsberg and Mooz [3]. Shaped like the 



 

 

Figure 6: “Vee” process model [3] 
 
 

 

13 
letter ‘v’, each step is mirrored on the other side by verification to ensure that the goal 

of each step is achieved. It is no surprise that the “Vee” process begins with defining 

systems requirements, suggesting the importance of requirements.  The next step in 

the process is to allocate the system functions to subfunctions, followed by designing 

the components in detail.  The next three steps are verifying components, verifying 

subsystems, and operating and verifying the full system.  These three steps fulfill two 

goals – operation of the final system and ensuring that each step is verified, hence the 

mirroring effect.    

The latest model, based on Rational Unified Process (RUP), employ an 

iterative approach within each phase, including inception, elaboration, construction, 

and transition [18].  Activities that are carried out during the inception phase include: 

project scoping, preliminary analysis, scheduling, budgeting, and risk factor 

estimation.  Activities related to requirements are carried out during the elaboration 
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phases. Coding and implementation are performed during the construction phase.  

The transition phase allows for testing and implementation.  Rational Unified Process 

[24] is discussed further in the next chapter. 

One similarity that exists across all models in the software development world 

is the word ‘requirements’.  Every model places some emphasis on defining 

requirements at the beginning of the process.  This indicates that requirements play an 

important role in each of the alternative processes.   

Concurrent Engineering 

The Society of Concurrent Product Development (SCPD) [29], formerly 

known as Society of Concurrent Engineering (SOCE), defines concurrent engineering 

as a “systematic approach to the integrated, concurrent design of products and their 

related processes, including manufacture and support. This approach is intended to 

cause the developer, from the outset, to consider all elements of the product lifecycle 

from concept through disposal, including quality control, cost, scheduling and user 

requirements (Institute for Defense Analyses)” (para.6). 

According to Ulrich and Eppinger [36], the generic product development 

process is composed of planning, concept development, system-level design, detail 

design, testing and refinement, and production ramp-up.  Put simply, product 

development is like a funnel – it begins with many alternatives and ends with a 

narrowed alternative through a series of filtration. 



 

 

 

 

 

15 
The connection between requirements and concurrent engineering can be 

found in the concept development stage.  Activities carried out within this stage 

include customer needs identification, target specifications, concept generation, 

concept selection, concept testing, final specifications, project planning, economic 

analysis, benchmarking, modeling, and prototyping.   

Similar to systems engineering and software development, the voice of the 

customer plays a vital role in concurrent engineering.  Customer’s needs are collected 

and translated into design specification, yielding a final product that will satisfy the 

customers.  However, this is much easier said than done.  Translating customer needs 

into design specifications can be quite complicated: one highly acclaimed technique 

is called Quality Function Deployment (QFD).   

Quality Function Deployment (QFD) was first introduced in Japan by Yoji 

Akao and Katsuyoshi Ishihara [21]. It was successfully applied at a shipyard, 

specifically Mitsubishi Heavy Industries’ Kobe Shipyard, to ensure the production of 

a high quality ship at every stage of production. Prior to this, quality at every stage 

has been considered an independent activity. Hence for the first time, quality 

‘flowed’ from the customers needs all the way through the final product.   

The most important element in QFD is the House of Quality.  This house 

shows the relationship between customer needs and the product characteristics [19].  

Therefore, each engineering decision made (for instance, the size of a nut) can be 

ultimately traced to one or more customer requirements.  However, not much 

information can be found on the activities that are carried out prior to the House of 



 

 

 

 

16 
Quality. Specifically, it is not clear as to the activity/activities involved in gathering 

customers’ requirements.  

The existence of activities related to requirements in all three fields - systems 

engineering, software development, and concurrent engineering, proves that 

requirements are widely used.  In addition to that, those activities related to 

requirements are found in the early stages of a process, regardless of the process type.  

This indicates that requirements do play an important role in shaping the outcome of 

the process. It also implies that requirements themselves go through a process.     

Motivation 

A review of the literature indicates the importance of requirements but does 

not offer many methodologies or solutions for defining and managing requirements.  

If the literature offers a method for defining requirements, then two main problems 

surface. First, different requirements methodologies are proposed, suggesting a lack 

of a standard methodology for requirements for definition and management.  Second, 

the steps within a methodology are usually not well defined.  For instance, a step 

might be to ‘develop the vision for the project’ but there is no documentation 

indicating how this might be done or what is required for this to be carried out.   
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Problem Statement 

Based upon a review of the literature, there is confusion between the terms 

‘requirements engineering’ and ‘requirements management.’  One objective of this 

research is to investigate the definition of those two terms.  Are those two terms 

interchangeable? If not, what are the differences between ‘requirements engineering’ 

and ‘requirements management’?  In the meantime, this thesis will use both terms as 

one, i.e. requirements engineering/management. 

Secondly, the literature review also shows that different sources suggest 

different methodologies for defining and managing requirements.  This means that 

there are multiple interpretations of the requirements engineering/management 

process. Unfortunately, multiple representations only confuse users as to which 

methodology to use.  Therefore, there needs to be one flexible methodology or 

framework.  Users can then apply relevant aspects to meet their needs.  The process 

should to be flexible so that users from different organizations can use the same 

process by adapting the steps within the process. Users can then add or eliminate 

steps to fit their need. The importance of making the process customizable is to 

ensure that the users have a chance to think about issues that may not surface within 

the proposed process. 

Last but not least, the literature review also indicates that there is a problem 

with representation. Actually, it is not possible to represent the entire process with a 

single representation method.  Again, different sources use different representation 

methods, as will be discussed later.   
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Research Objectives 

As a result, the following are the objectives for this research. 

1. Define requirements engineering and requirements management. 

2. Develop a generic process for requirements engineering/management. 

3. Develop a process representation scheme. 



 

 

 

 

 

 

 

CHAPTER II 

DEVELOPMENT OF A GENERIC REQUIREMENTS 
ENGINEERING / MANAGEMENT PROCESS 

Define requirements engineering and requirements management 

In order to achieve the first research objective, a literature review on the terms  

‘requirements engineering’ and ‘requirements management’ was conducted.  This 

review results in a comprehensive definition of ‘requirements engineering’ and 

‘requirements management’ respectively.     

Requirements engineering (RE) defined 

A search on the World Wide Web on the term ‘requirements engineering’ 

resulted in more hits on United Kingdom websites.  The Requirements Engineering 

Specialist Group (RESG) of the British Computer Society [26] defines requirements 

engineering as: 

“[a] key activity in the development of software systems, and is concerned with 

the identification of the stakeholder goals and their elaboration into precise 

statements of desired services and behaviour” (para.1). 

The definition provided here is oriented towards software development.  The phrase 

“key activity” hints that requirements are vital in software development effort.   
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The committee of the IEEE Joint International Requirements Engineering 

Conference [13], to be held September 9 – 13, 2002 in Denmark, defines 

requirements engineering as: 

“[t]he heart of software development. It is the branch of systems engineering 

concerned with the real-world goals for, functions of, and constraints on software-

intensive systems. It is concerned with how these factors are taken into account 

during the implementation and maintenance of the system, from software 

specifications and architectures up to final test cases. RE requires a variety and 

richness of skills, processes, methods, techniques and tools. In addition, diversity 

arises from different application domains ranging from business information 

systems to real-time process control systems, from traditional to web-based 

systems as well as from the perspective being system families or not” (para.1). 

At a glance, this definition is similar to the previous one.  However, this definition is 

more detailed.  It specifies that requirements control the entire software development 

stages. The interesting part is that definition also hints how much work will be 

required for the requirements engineering effort.  A multi-functional team comprised 

of team members with different skills, knowledge, and background will be required.  

In addition to that, the team would have to use different tools and techniques.   

The recent Symposium on Requirements Engineering [7], held in August 

2001 in Toronto, Canada, define requirements engineering (RE) as: 
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“[t]he heart of software development. RE is concerned with identifying the 

purpose of a software system, and the contexts in which it will be used. Hence, 

RE acts as the bridge between the real world needs of users, customers, and other 

constituencies affected by a software system, and the capabilities and 

opportunities afforded by software-intensive technologies. RE is a multi-

disciplinary activity drawing on research and experience in software engineering, 

computer science, business and information systems, human-computer 

interaction, and social and cognitive sciences. In the 1990’s, significant advances 

in RE research were made, such as the development of techniques for eliciting 

and analysing stakeholders’ goals, modelling scenarios that characterise different 

contexts of use, the use of ethnographic techniques for studying organisations and 

work settings, and the use of formal methods for analysing safety and security 

requirements. Despite these advances, RE remains one of the most challenging 

aspects of software development” (para.1).  

This definition points out that requirements is a bridge between people and possible 

results from the requirements engineering effort.  Specifications are also made as to 

which disciplines are required to be a part of the requirements engineering team.  

Note that this definition states that RE is still a challenging aspect of software 

development.   

In a paper published in the proceedings of the Second IEEE International 

Symposium on Requirements Engineering, Bubenko [4] defined requirements 

engineering as: 
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“[t]he area of knowledge concerned with communicating with organisational 

actors with respect to their visions, intentions, and activities regarding their need 

for computer support, and developing and maintaining a adequate requirements 

specification of an information systems" (p.160). 

Again, the word “communicating” shows up here too.  This is similar to the word 

“bridge” found in the definition earlier. However, this definition is concerned with 

only information systems.   

Glib [9] define requirements engineering as: 

“[t]he systematic process of determining the complete relevant set of values held 

by stakeholders, and processing them until a satisfactory level of 'delivery of the 

required end states' has been made to them.  This implies that it must include 

design, testing, quality control, project management, specification languages and 

all other relevant disciplines to enable it to succeed" (sec.7). 

For the first time, requirements engineering is referred to as a process.  It also 

specifies that any disciplines can be involved – as long as the stakeholders are 

satisfied. 

Zowghi and Offen [38] define requirements engineering to be: 

“…concerned with elucidating real-world goals for the function of, and the 

constraints on software systems.  The major objectives of requirements 
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engineering are defining the purpose of a system and capturing its external 

behavior" (p.247). 

Again, the main idea here is on making sure that the goals are achieved on the 

software systems.  This is similar to being a bridge or communicator.  At last, 

someone specified the objective of requirements engineering as defining the system’s 

purpose and external behavior. 

In a separate article by the same author, Zowghi [37] expanded on the 

definition to include activities performed under requirements engineering.  According 

to Zowghi [37]: 

“ [t]he major objective of RE is defining the purpose of a proposed system and 

outlining its external behavior. … RE activities can be divided into five 

categories: 

• requirements elicitation which is the process of exploring, acquiring, and 

reifying user requirements through discussion with the problem owners, 

introspection, observation of the existing system, task analysis and so on.  

• requirements modeling where alternative models for the a target composite 

system are elaborated and a conceptual model of the enterprise as seen by the 

system’s eventual users is produced. This model is meant to capture as much 

of the semantics of the real world as possible and is used as the foundation for 

an abstract description of the requirements. 
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• requirements specification where the various components of the models are 

precisely described and possibly formalised to act as a basis for contractual 

purposes between the problem owners and the developers.  

• requirements validation where the specifications are evaluated and analysed 

against correctness properties (such as completeness and consistency), and 

feasibility properties (such as cost and resources needed).  

• requirements management refers to the set of procedures that assists in 

maintaining the evolution of requirements throughout the development 

process. These include planning, traceability, impact assessment of changing 

requirements and so on” (para.1 & 2). 

Zowghi indicates that requirements management is indeed a part of requirements 

engineering. A consultant specializing on requirements engineering, named Ian 

Alexander [1], explains that requirements engineering include the following 

activities, “elicitation, analysis of requirements and constraints, modeling of 

behaviour with scenarios and other techniques, traceability, metrication, review and 

baselining ... " (para.17). All the activities mentioned by Alexander seem to fit into 

one of the activities defined by Zowghi.  For instance, requirements and constraints 

analysis probably fall into the requirements validation.   

In another article written by Alexander [2], he said that requirements 

engineering is different from other engineering disciplines.  Instead, he asserts that 
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requirements engineering is one “that efficiently and rigorously elicits, organizes, 

checks, measures, prioritizes and documents what a set of diverse stakeholders want - 

and helps them to agree on the specification of a solution” (para.7). 

Keywords from this definition list of requirements engineering include: 

• key activity or heart of software development 

• branch of systems engineering 

• variety (skills, processes, methods, techniques, tools) 

• application diversity 

• bridge between people and system 

• multi-disciplinary 

• communication tool 

• systematic process 

• define purpose of a system and capture its external behavior, and  

• elicit, model, specify, validate, manage 

Hence, requirements engineering stems from systems engineering as a bridge 

between people and system.  It is a multi-disciplinary systematic process that elicits, 

models, specifies, validates, and manages requirements, drawing upon a variety of 

skills, processes, methods, techniques, and tools.   
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Requirements management (RM) defined 

As for the term ‘requirements management,’ searches on the World Wide 

Web indicated there are more hits on US-based websites.  This suggests that perhaps 

the term the European countries commonly use is ‘requirements engineering’, while 

the term Americans commonly use is ‘requirements management’.   

Requirements engineering authors Dorfman and Thayer, as quoted in 

Leffingwell and Widrig [18] and Rational Software’s whitepaper [22], define 

requirements management as: 

“a systematic approach to eliciting, organizing, and documenting the requirements 

of the system, and a process that establishes and maintains agreement between the 

customer and the project team on the changing requirements of the system” 

(p.16). 

This definition implies that requirements management is a method for keeping track 

of requirements changes to ensure that customers and team members are in 

agreement. 

In an article published in a proceeding by the International Council on 

Systems Engineering (INCOSE), Jones et al. [16] quotes from a 1995 article by 

Stevens and Martin that requirements management is:  

“the identification, derivation, allocation, and control in a consistent, traceable, 

correlatable, verifiable manner of all the system functions, attributes, interfaces, 
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and verification methods that a system must meet including customer, derived 

(internal), and specialty engineering needs" (sec.2.2). 

This definition includes activities that go on within requirements management.  

Similar to the first definition, Jones et al. [16] suggest that requirements management 

is a systematic method for ensuring that the final result meets the stakeholders’ needs.  

In another article found on the INCOSE’s website, requirements management 

is said to be made up of capturing, storing, managing, and distributing information 

[33]. Once again, this indicates that requirements management as management-type 

activity. 

Davis and Zweig [5] defines that requirements management as: 

“the set of activities encompassing the collection, control, analysis, filtering, and 

documentation of a system’s requirements.”  Requirements management consists 

of three activities: requirements elicitation (gathering and storing stakeholder 

needs in a repository), requirements triage (deciding which features to include in 

the product), and requirements specification (specifying the external behavior of a 

system to support the features)” (p.61).  

Again, this definition specifies the gathering and specifying activities.  The new item 

here is the requirements triage activity.   

Lastly, Stevens and Martin [35] from Telelogic, a systems and software 

developer, said that: 
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“Requirements management starts with the definition of requirements and 

continues through the project, culminating in the acceptance of the product 

against requirements. … Requirements management could be defined as ensuring: 

 we know that the customer wants (quality); 

 the solution efficiently meets these requirements (conformance)” (para.1). 

According to Stevens and Martin, requirements management is quite simple – just 

collect requirements and conform to them.   

Several keywords that are associated with requirements management are 

identify, derive, elicit, collect, store, control, allocate, organize, and document.  

Therefore, requirements management is a systematic approach for identifying, 

eliciting, deriving, collecting, organizing, allocating, controlling, and documenting 

requirements.   

Requirements Engineering versus Requirements Management 

When the two terms are placed side by side, shown in Table 3, the following 

key words are observed, suggesting actions performed on requirements.  This drives 

the need for a process view on requirements.  Note that similarities are placed at the 

top of the list. 

The International Council on Systems Engineering’s (INCOSE) journal, 

Insight, points out the confusion in terms.  The editor states that the Requirements 

Management Working Group members could not agree on the definition of 

requirements management and requirements engineering.  They also could not agree 



 

 
   

Requirements engineering 

• systematic 
• identify 
• elicit 
• specify 
• analyze 
• translate 
• model 
• manage 
• validate 
• multi-disciplinary 
• variety (skills, processes, methods, 

techniques and tools) 
• communicate/ bridge 
• define 
• develop 
• maintain 
• design 
• test 
• capture 

Requirements management 

• systematic 
• identify 
• elicit 
• specify 
• analyze 
• derive 
• collect 
• allocate 
• organize 
• control 
• document 
• identify 
• gather 
• filter 
• correlate 
• verify 
• information (capture, store, manage, 

and distribute) 
• triage 

Table 3 
Comparison of the term ‘requirements engineering’ and ‘requirements management’ 
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on which one is a subset of the other. The Working Group has since removed the 

word ‘management’ from their working group’s name [14]. 

This list indicates two things – first, there is some crossover of activities.  This could 

be due to misuse or misunderstanding of terms.  Second, the two terms, requirements 

engineering and requirements management, are indeed different.  It is proposed that 

requirements engineering and requirements management are separate but related 

terms.  The activities carried out within requirements engineering could be an initial 
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startup for the requirements process.  Once that is in place, then the activities within 

requirements management are carried out.  This does not imply that requirements are 

passed along from requirements engineering to requirements management, but are 

taken into consideration during the requirements engineering phase.  Also, over the 

course of the product development life cycle, activities would iterate between 

requirements management and requirements engineering due to the needs for 

clarification, changing needs, etc. The investigation also implies that the activities 

performed within requirements engineering are broader than the activities within 

requirements management.  This is indicated by the notion that requirements 

engineering is a systematic process requiring multi-disciplinary people utilizing a 

variety of skills, methods, techniques, and tools. 

Therefore, it is proposed that requirements engineering is made up of 

requirements elicitation, requirements modeling, requirements specification, and 

requirements validation.  On the other hand, it is proposed that requirements 

management is made up of requirements organization, requirements control, and 

requirements documentation. This provides the basis for further definition.  These 

definitions also serve as a foundation for the next research objective. 

In summary, definitions of requirements engineering and requirements 

management were extracted from the literature.  Based on the definitions, a composite 

definition of requirements engineering and requirements management was developed.  

However, these definitions illustrate the need for better clarification. A first step to 

this is to propose components or activities of each term.  
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Review of Requirements Engineering/Management Activities 

The second research objective is to capture all of the activities within the 

requirements engineering/management process.  In this process, the focus is on what 

the activities are within the process. However, there is a need to also capture other 

important information on activities and relationships among activities.  This need is 

discussed in the following chapter. 

Rational Unified Process’s approach 

Before the process is defined, a literature review was conducted in order to 

identify existing requirements engineering/management processes.  The review began 

with the requirements process workflow from the Rational Unified Process (RUP) 

[24], which is a product of Rational Software Corporation. RUP is well known for its 

ability to capture the best practices in the software development industry.  

Preliminary investigation shows that the requirements process by RUP seemed quite 

complete.     

RUP, which utilizes Unified Modeling Language (UML)1 [25], is a 

customizable framework for the software engineering process.  One of the main 

features of RUP is that it is web-enabled. This allows users flexibility in accessing 

RUP through the Internet. RUP divides the software development lifecycle into four 

1 “The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and 
documenting the artifacts of software systems, as well as for business modeling and other non-software 
systems. The UML represents a collection of best engineering practices that have proven successful in 
the modeling of large and complex systems” [27]. UML is now considered a standard for modeling.   
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phases – inception (defining the scope), elaboration (planning the tasks), construction 

(producing the product), and transition (moving the product into end users).  There 

are many activities within each phase, of which each group of activities is categorized 

as a process workflow. There are six process workflows and three supporting 

workflows. Each workflow produces models, which then is used by the subsequent 

workflow. The process workflows include business modeling, requirements, analysis 

and design, implementation, test, and deployment.  The supporting workflows are 

made up of configuration and change management, project management, and 

environment.  The level of activity for each workflow depends on the phase of the 

lifecycle. For instance, the requirements process workflow is more active during the 

inception and elaboration phases. As for construction and transition phases, 

requirements process workflows do not play a large role. 

For the purpose of this research, only the requirements portion of the RUP 

was examined.  The requirements process workflow is divided into six minor 

workflows – analyze the problem, understand the stakeholder needs, define the 

system, manage the scope of the system, refine the system definition, and manage 

changing requirements.  Each minor workflow is a combination of the 14 applicable 

use cases2. The use cases are identified in the next section. Each use case then lists 

what tasks need to be accomplished, documentation required, and the roles involved.  

All this information is captured as a list of activities.  The activities from RUP are 

used as a baseline for the process and are compiled in a document entitled ‘Master 
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Activity List.’ The list is discussed at the end of this section and included as 

Appendix A. Activities and supporting information from each subsequent source that 

are examined add to the Master Activity List.       

Leffingwell and Widrig’s approach 

A supplementary source to RUP’s requirements process, Managing Software 

Requirements A Unified Approach [18], was identified through a RUP workshop. 

The authors approach requirements management by requiring teams to learn and 

master five basic skills.  The five basic skills are: analyze the problem, understand 

user needs, define the system, manage scope, refine the system definition, and build 

the right system.  Each skill is further divided into more specific steps.  The authors 

provide a handy summary at the end of the book of each skill and what it 

encompasses.  However, a lot of important information was lost in the summary.  The 

most crucial discovery was that this book, which was supposed to support RUP’s 

material was actually quite different from RUP.  The authors acknowledge a 

difference in terminology used but it seems more appropriate to use a standardized 

terms since this is referring to the same process! (This terminology problem becomes 

more prominent when other sources are introduced.) Table 4 shows the comparison 

between the use cases define in RUP and the skills by Leffingwell and Widrig [18].  

2 “A use case defines a set of use-case instances, where each instance is a sequence of actions a system 
performs that yields an observable result of value to a particular actor” [24]. 
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Table 4 

Comparison between RUP [24] and Leffingwell and Widrig’s [18] book 

No Use cases from RUP [24] Skills from Leffingwell and Widrig [18] 
1 Capture a common vocabulary 
2 Develop requirements management plan 
3 Find actors and use cases 
4 Develop vision Analyze problem 
5 Elicit stakeholder request Acquire user needs 
6 Manage dependencies 
7 Review change request Manage changes to requirements 
8 Prioritize use case 
9 Detail a use case 
10 Detail the software requirements 
11 Model the user-interface 
12 Prototype the user-interface 
13 Structure use-case model 
14 Review requirements 

The activities described under “Analyze problem” by Leffingwell and Widrig 

is not the same as RUP’s “Analyze the problem.”  In fact, it is only similar to the 

develop vision use case, which is a portion of RUP’s “Analyze the problem” 

workflow. According to RUP, “Analyze the problem” workflow includes “Capturing 

a common vocabulary”, “Develop requirements management plan”, “Find actors and 

use cases”, and “Develop vision use cases.” A complete listing of the use cases 

within each RUP workflow is defined in Table 5. 
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Table 5 

Composition of RUP’s process workflows and their corresponding use cases 

Rational Unified Process Use cases 
A  Analyze the problem  1  2  3  4  
B  Understand stakeholder needs  1  3  4  5  6  7  
C Define the system 1 3 4 6 
D Manage the scope of the system 4 6 7 8 
E Refine the system definition 9 10 11 12 
F Manage changing requirements 6 7 13 14 

Gause and Weinberg’s approach 

A third source, the book entitled Exploring Requirements Quality Before 

Design, by Donald C. Gause and Gerald M. Weinberg [8] was investigated.  The 

authors claim that there are many books written on requirements management’s tools 

and techniques; however, they lack coverage of dealing with people within the 

requirements management environment.  Gause and Weinberg [8] believe that more 

time has to be spent on people issues if they are provided with the better tool.   

To help manage teams, the authors provide advice for selecting team 

members, conducting meetings, dealing with conflicts, making decisions, and 

knowing when to end the requirements exploration.   

The authors also supply ideas for uncovering requirements.  Topics covered 

under this section include brainstorming, sketching techniques, and naming projects.   

One of the most important contributions from Gause and Weinberg [8] deals 

with ambiguity.  The authors warn that ambiguity has a large impact on cost.  They 

state that “[b]illions of dollars are squandered each year building products that don’t 
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meet requirements, mostly because the requirements were never clearly understood” 

(p.17). Therefore, the authors advocate attacking ambiguities at the beginning of the 

project. In order to get rid of ambiguity, the authors identify sources of ambiguity 

and discuss techniques for attacking ambiguity.   

The later part of the book deals with fine-tuning product functions, attributes, 

and constraints. The last section covers the quality of requirements including 

measuring ambiguity, conducting technical reviews, measuring satisfaction, case 

testing, and studying existing products. Overall, this book is a good source for 

handling ambiguity but does not make a significant contribution towards defining the 

activities within requirements engineering/management process. 

Hooks and Farry’s approach 

A fourth source, Hooks and Farry’s [12] Customer-Centered Products 

Creating Successful Products through Smart Requirements Management, is written 

from a management perspective.  The authors provide some insight into the American 

culture that defines how Americans work and think.  They [12] attribute this to three 

out of the “seven cultural forces that define Americans” from Hammond and 

Morisson’s book entitled The Stuff Americans Are Made Of [12], i.e. “impatience 

with time, acceptance of mistakes, and the urge to improvise” as the main causes of 

product development problems (p.17).  Since the usual tendency for people is to want 

something done immediately, developers often want to jump into the design 

immediately, thinking that requirements type activities is a waste of time. In addition, 
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people’s willingness to accept mistakes makes it acceptable for the developers to 

make mistakes.  Mistakes, sometimes costly, can be prevented had some time been 

spent up front defining requirements.  The third issue is that people expect problems 

to arise in the middle of projects.  So they improvise when necessary, suggesting that 

improvisation is acceptable.  This again can be prevented had developers spent time 

in the beginning towards defining requirements.                   

In addition, Americans’ work environment may not be conducive for 

requirements.  Hooks and Farry [12] blames this on the five “management myths” in 

the American workplace. 

1. “Everyone knows what this project is about.” 

2. “Everyone knows how to write requirements.” 

3. “We already have a requirement management process in place.” 

4. “Everyone understands our requirements management process.” 

5. “Nothing can be done about bad requirements.” (p.21) 

Unfortunately, culture and work environments are not the only culprits for most 

companies that lack a good requirement definition process.  The other contributor is 

the individual; Hooks and Farry [12] claims that the person in charge of requirements 

oftentimes “doesn’t know what to do, doesn’t understand why, would rather be doing 

something else, or sees no reward” (p.25).  

Hence, Hooks and Farry offer what is called the Requirement Management 

Process Sanity Check. It outlines steps for creating and managing requirements.  

Like other authors in the requirement engineering/management field, Hooks and 
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Farry advocate an organization adopt a requirements management process if they 

have not already done so. Their process is made up of nine iterative steps. 

1. Scope product 

2. Develop operational concepts 

3. Identify interfaces 

4. Write requirements 

5. Capture rationale 

6. Level requirements 

7. Assess verification 

8. Format requirements 

9. Baseline requirements 

Each step is further defined in their book. Each chapter includes a sanity checklist to 

ensure that all the issues are at least addressed and each chapter concludes with a 

short section on the manager’s roles for each step.  In addition to the creation of 

requirements, the authors also dedicate several chapters to the management of 

requirements.  While they seem more like activities, Hooks and Farry define the 

following “techniques and tools”: 

1. Set priorities for requirements implementation and use these priorities 

to phase development 

2. Automate requirement management 

3. Control change to requirements and assess potential change impact 

before integrating changes 
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4. Measure quality of requirements and your progress toward good 

requirement management 

A good requirements management process by itself is simply not enough to ensure 

success. The key is effective communication throughout the entire nine steps.  In 

addition, someone has to take charge and deal with the culture, management, and 

individuals themselves.  Hooks and Farry close the book by providing advice on how 

to do so. 

Robertson and Robertson’s approach 

A fifth source is a book entitled Mastering the Requirements Process by 

Suzanne Robertson and James Robertson [27].  The authors found that system 

analysis is well documented but there is lack of resources for requirements process.  

This led the authors to come up with a process to help the requirements gathering 

process. Their process is named “Volere Requirements Process.”  The main activities 

of the process include project blastoff, trawl for knowledge, write the specification, 

quality gateway, analyze, design, build and take stock of the specification. 

A major part of project blastoff is preparing for it.  Interestingly, Robertson 

and Robertson paid attention to meeting preparations, such as facility and 

accommodation planning for participants.  Other authors probably assumed that this 

was usually carried out automatically prior to meetings.  However, information such 

as this is good for first-timers.       
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For the initial stages of requirements gathering, the authors suggest the use of 

the requirements shell.  This ‘shell’ is a 5” by 8” card on which information is filled 

progressively. Information recorded include requirement number, requirement type, 

event/use case, description, rationale, source, fit criteria, customer satisfaction, 

customer dissatisfaction, dependencies, conflicts, supporting materials, and history.  

Eventually, all the requirements recorded in the cards will be transferred to an 

automated tool.   

They introduce the notion of a “quality gateway” acts as a requirements filter 

to see if the particular requirement should be sent to the next stage (analyzing, 

designing, and building specifications) or be discarded.  Basically, the requirements 

are tested for several qualities namely completeness, traceability, consistency, 

correctness, ambiguity, and viability.  In addition to that, requirements are also 

checked to ensure that they are indeed requirements and not solutions.  Requirements 

that are there just because it is nice-to-have are not necessary and these are also 

checked for.  This is called ‘gold plating’. One last quality test is to find the 

requirements that creep or leak into the process after the requirements process is 

complete.   

Another contribution by the authors is the guide for requirements 

documentation called ‘Volere Requirements Specification Template’.  This document 

is also available online at http://www.systemsguild.com. Presently, the most current 

version is the 8th edition. 

http://www.systemsguild.com
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However, there are times when the authors appear to apply new words to 

existing concepts. For instance, trawling for knowledge is simply gathering 

requirements.  In a book review article by Ivy Hooks [14], she thinks that new terms 

will only confuse readers. She does not recommend using the Volere process because 

she finds the process too similar to project management rather than requirements 

definition process. Nevertheless, Hooks [14] like the idea of the ‘gateway quality’ as 

to “sweeping up every requirement, or cutting and pasting from other specifications 

to create a specification and then trying to undo the bad requirements” (p.24). 

IEEE standards on requirements 

Three Institute of Electrical and Electronics Engineering (IEEE) standards on 

requirements were reviewed.  The first document, IEEE Std 830-1998 -- IEEE 

Recommended Practice for Software Requirements Specification [IEEE830], 

provides guidelines for preparing a Software Requirements Specification (SRS) 

document.  The content of the document is discussed and organization options are 

also provided. 

According to the guidelines, a good SRS document includes three main 

sections – introduction, overall description, and specific requirements.  The 

introduction portion should include the purpose, scope, definitions, acronyms, and 

abbreviations, references, and overview. Information included in the overall 

description is the product perspective, product functions, user characteristics, 

constraints, and assumptions and dependencies.  The third section deals specifically 
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with requirements.  The standard recommends that this section include external 

interfaces, functions, performance requirements, logical database requirements, 

design constraints, standards compliance, software system attributes, and 

requirements organization.  As with any document, a table of contents, appendixes 

and index should be provided. 

Organization options for the requirements portion can vary from one to 

another. Annex A of the IEEE standard exemplify organizational options for the third 

section of the SRS document.  Requirements can be organized based on system mode, 

user class, object, feature, stimulus or functional hierarchy.  However, there are times 

when a combination of a few organizations is required.           

The second document reviewed, IEEE Std 1233, 1998 edition -- IEEE Guide 

for Developing System Requirements Specifications (SyRS) [IEEE1233], discusses 

the System Requirements Specification document and the development process. 

A subtle difference between this document and the previous one discussed is 

that this standard focuses on system requirements while the previous one concentrates 

on software requirements.  Hence, the SRS is mostly used in-house for software 

development and SyRS is used as a communication tool between the customer and 

developers. 

The development of the SyRS document involves several steps:  

1) Identify requirements,  

2) Write (define) requirements, 

3) Organize the requirements into the SyRS document, 
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4) Present the requirements in a textual or model form for the audience.   

Information obtained from this standard reinforced activities already found from other 

sources. As an aside, it is interesting to note that the authors for this standard 

reference Blanchard and Fabrycky’s [3]1990 book entitled Systems Engineering & 

Analysis and also Gause and Weinberg’s [8] 1989 book entitled Exploring 

Requirements: Quality Before Design. The authors for this standard provide a 

sample of the layout for the SyRS document yet stress that that was not the only way 

to organize the System Requirements Specification.   

The third standard, IEEE Std 1220-1998 -- IEEE Standard for Application and 

Management of the Systems Engineering Process [31], is a revision of IEEE Std 

1220-1994. Since this document examines the entire process, the relevant sections 

from this document include requirements analysis (section 6.1) and requirements 

validation (section 6.2). The main activity under requirements analysis is definition.  

Items defined include customer expectations, project and enterprise constraints, 

external constraints, operational scenarios, measures of effectiveness, system 

boundaries, interfaces, utilization environments, life cycle process concepts, 

functional requirements, performance requirements, modes of operations, technical 

performance measures, design characteristics, and human factors.  All these 

definitions feed into a requirements baseline.  

The next section involves checking to ensure that every aspect is covered in 

the definition stage. The requirements validation process consists of comparison to 

customer expectations, enterprise and project constraints, and external constraints.  
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Once this is completed, variances and conflicts can be identified.  If necessary, the 

requirements analysis stage is revisited.  Once all the variances and conflicts are 

resolved, a validated requirements baseline can be established. 

Comparison of requirements engineering/management activities 

Both similarities and differences exist between the activities by different 

sources. Table 6 shows the primary use case in the literature.  Even though the 

headings differ from one source to the other, it is clear that no author(s) suggest 

diving straight into writing requirements.  Instead, they recommend some sort of 

planning and analyzing activities before plunging into requirements.  Since all the 

sources included talking to customers about their needs, it is also clear that the 

customers’ input play an important role in the requirements process.  However, note 

that each source uses different terminology and can potentially create confusion.  

Hence, a dictionary of commonly used terms should be created. A good starting point 

is IEEE Std 61.012-1990, IEEE Standard Glossary of Software Engineering 

Terminology [34].   



 

 
 

 
 

     

 
  

 
 

  

 

    

   
  

     

    
    
     

     

     

     

       

 

 

Table 6 
Comparison of primary use cases from the literature 

Rational Unified Process, 
RUP [24] 

Leffingwell and Widrig 
[18] 

Gause and Weinberg 
[8] Hooks and Farry [12] Robertson and 

Robertson [27] 

IEEE Std 
1220-1998 

[31] 

Capture a common 
vocabulary 

Develop requirements 
management plan 

Find actors and use cases 

Develop vision 

Elicit stakeholder request 

Manage dependencies 

Review change request 

Prioritize use case 
Detail a use case 
Detail software requirements 

Model the user interface 

Prototype the user interface 

Structure use case model 

Review requirements 

Understand the problem 
being solved 

Understand user needs 

Define the system 

Continuously manage 
scope and manage change 
Refine the system 
definition 

Build the right system 

Manage the requirements 
process 

Negotiating a 
common 
understanding 

Ways to get started 

Exploring the 
possibilities 
Clarifying 
expectations 
Greatly improving 
the odds of success 

Scope product 

Develop operational 
concepts 

Identify interfaces 

Write requirements 

Capture rationale 

Level requirements 

Assess verification 

Format requirements 
Baseline requirements 

Project blastoff 

Trawling for 
knowledge 
Write the 
requirements 

Quality gateway 

Prototype the 
requirements 

Do requirements post 
mortem 

Taking stock of the 
specification 

Requirements 
analysis 

Requirements 
validation 
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Assimilation of a Master Activity List 

Each literature advocates using their method for requirements 

engineering/management yet the methods that they (the authors) propose is 

inconsistent. Some provide lots of information while some provide little (if any) 

information.  Overall, the cited literature provides vast information that needed to be 

captured in a standardized form.  Hence, there was a need to pull the information 

together into one document.  Valuable information from each source was assimilated 

and converted into use cases. 

The result of this investigation is a high-level list of tasks list and sources.  A 

portion of this Master Activity List is shown in Table 7. The entire Master Activity 

List is provided found in Appendix A. However, this list is not adequate because it 

does not provide information as to the necessary inputs, outputs, supporting 

documentation, etc.  This issue is discussed in the following section. 

The main use cases in the Master Activity List are further defined by 

classifying them either as requirements engineering or requirements management 

based on the description of the particular use case. They are further divided into key 

activity categories. Requirements engineering use cases are categorized as elicitation, 

modeling, specification or validation.  Requirements management use cases are 

categorized as organization, control or documentation.  The result of the groupings 

and categorization is provided in Table 8. 
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Table 7 

A portion of the high level Master Activity List and sources 

Use case no. Name Source 

1 Capture a common vocabulary RUP [24] 

2 Develop requirements management plan RUP [24] 

3 Find actors and use cases RUP [24] 

3.1 Establish scope of work R & R [27] 

3.2 Establish adjacent systems that surround the 
work R & R [27] 

3.3 Identify connections between the work and the 
adjacent systems R & R [27] 

3.4 Identify business events that added the work 
from the connections R & R [27] 

3.5 Study the response to the event R & R [27] 

3.6 Determine best response that the organization 
can make for the event R & R [27] 

3.7 Determine product's role in the response R & R [27] 

3.8 Determine the use case or cases R & R [27] 

3.9 Derive the requirements for each use case R & R [27] 

… … … … 
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Table 8 

Grouping and Categorization of the Main Use Cases 

Use case # Use case Requirements Engineering / 
Requirements Management Categories 

1 Capture a common 
vocabulary Requirements engineering specification 

2 Develop requirements 
management plan Requirements Management organization 

3 Find actors and use cases Requirements engineering specification 
4a Develop vision Requirements engineering specification 
4b Project blastoff Requirements engineering specification 
5a Elicit stakeholder request Requirements engineering elicitation 
5b Trawling for requirements Requirements engineering elicitation 

6 Identify both external and 
internal interfaces Requirements engineering specification 

7 Writing good requirements Requirements Management documentation 
8 Capture rationale Requirements Management control 
9 Manage dependencies Requirements Management control 

10 Verify requirements Requirements engineering validation 
11 Format requirements Requirements Management documentation 
12a Baseline requirements Requirements Management control 

12b Check requirements (quality 
gateway) Requirements engineering validation 

12c Check requirements for 
certain properties Requirements engineering validation 

13 Prioritize requirements Requirements engineering specification 
14 Review change requests Requirements engineering validation 
15 Prioritize use case Requirements engineering validation 
16 Detail a use case Requirements engineering modeling 
17 Detail software requirements Requirements engineering modeling 
18 Model the user interface Requirements engineering modeling 
19 Prototype the user interface Requirements engineering modeling 
20 Structure the use case model Requirements engineering modeling 

21 Do requirements post 
mortem Requirements Management  control 

22a Review requirements Requirements Management organization 
22b Taking stock of specification Requirements Management control 
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Development a Process Representation Scheme 

Review of Representation Methods by Cited Sources 

Most of the sources used some form of graphical representation to define their 

process. Each representation method has its own strengths and weaknesses; they are 

summarized in Table 9. 

Table 9 
Representation methods used by the cited sources 

Source Representation 
method Strength(s) Weakness(es) 

RUP [24] 
Use case 
diagrams3grouped 
into workflows 

Interaction between 
activities and actors 
is clear 

Sequence is not 
clear, interactions 
between use cases 
are not clear 

Leffingwell and 
Widrig [18] Use case diagrams3 

Interaction between 
activities and actors 
is clear 

Sequence is not 
clear, interactions 
between use cases 
are not clear 

Hooks and Farry 
[12] N/A4 N/A N/A 

Robertson and 
Robertson [27] 

Stylized data flow 
diagram5 

Interactions between 
main activities is 
clear 

Sequence is not that 
clear 

IEEE Std 1220-
1998 [31] Unknown6 Sequence is clear 

Accountability is 
not clear, inputs and 
outputs are not clear 

3 Use case diagrams shows “the relationship among actors (someone or something outside the system 
that interacts with the system) and use cases within the system”  [24].
4  The authors show their overall process in a waterfall model but did not elaborate much on it in later 
chapters.
5 Stylized data flow diagram, composed of bubbles (activities) and arrows (deliverables), presents an 
iterative and evolutionary process.   
6 There is no indication of the type of chart that was used.  It looks similar to a flowchart.  This chart 
uses top down approach, showing the flow and sequence of tasks.   
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Several issues were identified when attempts were made to represent a generic 

requirements engineering/management process.  Since the activities within the use 

cases of RUP are not represented in any graphical form, activity diagrams7 were 

applied. Activity diagrams worked as long as there was only one main source of 

information.  As more information from different sources were added, it became 

difficult to track where the information came from because activity diagrams do not 

allow for source tracking. Efforts to add information to activity diagrams seemed 

impossible without losing its source.   

Therefore, a more systematic representation method is required to keep track 

of all the information provided by different sources.  This method must allow for 

addition or deletion of information.  In general, there are many ways to represent 

activities and processes. Examples of these are summarized in Table 10.   

7 Activity diagrams graphically describe the ordering of tasks or activities to accomplish business goals 
[24]. 
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Table 10 

General process representation methods in general 

Representation method Strength(s) Weakness(es) 

Flowchart Easy to use and understand, 
flow is clear Accountability is not clear 

Integration Definition for 
Function Modeling (IDEF0) 
[6], [23] 

Activities within functions are 
clear, processes can be 
documented at different levels, 
inputs and outputs are clear, 
hierarchical breakdown of 
function is possible, sequence 
is clear, easy to use 

Accountability is not clear, 
static – not suitable for 
frequently changing models, 
time and cost for carrying out 
process not taken into account, 
data stores is not clear, data 
and material flow is not clear 

Integration Definition for 
Function Modeling (IDEF3) 
(process-centered view) [20] 

Processes flow are clear, 
precedence relationships or 
constraints are clear, effects of 
the constraints on the process 
are clear 

Accountability is not clear 

Integration Definition for 
Function Modeling (object-
centered view) (IDEF3) [20] 

Changes that occur on objects 
throughout a process are clear Accountability is not clear 

Relationship maps [28] 

Relationships between 
departments/functions are 
clear, inputs to and outputs 
from each department/function 
is clear 

Applicable for organizational 
level only 

Process maps [28] 

Accountability is clear, actions 
taken by 
departments/functions are 
clear, goals are clear 

Applicable for process level 
only 

Role/responsibility matrix [28] 
Responsibilities and goals for 
each personnel based on 
function is clear 

Applicable for job/performer 
level only, tabular view 

Use case 
Standard, written in user 
language, interaction between 
actors and use case are clear 

Sequence is not clear 

Data flow diagram (DFD) [23] 
Focuses on the flow of data, 
inputs and outputs are clear, 
easy to understand and modify 

Logic within processes is not 
clear, structure of data is not 
clear, hard to create 

Activity diagrams Sequencing of activities are 
clear Hard to keep track of updates 

Entity-relationship diagram 
(ERD) 

Relationships and conditions 
for the relationship are clear 

Inexperienced users may find 
it hard to understand 
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Figure 7: Basic structure of IDEF0 
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Integration Definition for Function Modeling (IDEF) 

This investigation led to Integration Definition for Function Modeling (IDEF) 

as the main technique and incorporates other elements from other diagramming 

techniques. There are many types of IDEF; however IDEF0 and IDEF3 are the most 

applicable. IDEF0 [6] is used for function modeling and IDEF3 [20] is used for 

process flow and object transitions. 

The basic IDEF0 representation is shown in Figure 7. Activities are named 

with verb-noun phrases. The method of reading this diagram is <input> are <verb> 

into <output> according to <control>, using <mechanism>.  Inputs and outputs are 

self-explanatory. Controls are items that restrict the activity; examples include 

constraints, limitations or conditions on the activity.  Mechanisms are methods by 

which particular activities are achieved. 
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The process-centered view for IDEF3 is shown in Figure 8. Each of the 

rectangular boxes represents an activity, indicated by the letters. An advantage of 

IDEF3 is that the arrows indicate precedence or constraints.  For instance, in Figure 8, 

activity A has to be done before activity B begins. This is different from the 

precedence between activity C and activity E because the single headed arrow 

indicates that activity E can start with or without the completion of activity D.  The 

junction box after activity B and before activity C and activity D is an OR condition, 

indicating that one can choose activity C or activity D or both. The junction box 

before activity F is a synchronous AND. This means that activity E and D must end 

at the same time and precede activity F.  The numbers within each box is for 

identification purposes. 

 

The state-centered view for IDEF3 is shown in Figure 9. The circles indicate 

the state an object. For instance, the object changed from p state to q state.  The 

rectangle between state p and state q shows the activity that causes the stage to 

change from state p to state q.  The exclusive OR in the figure indicates that either 
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Figure 9: Example of object-centered view of IDEF3 
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state r or state s result from activity B, e.g. am object may be considered normal or 

defective as a result of activity B. 

Tabular View 

The next step in the research is to represent all of the information that was 

gathered for the activities from the Master Activity List.  However, diagramming was 

not possible at this point because all that was collected so far was just a list of activity 

along with sources. Hence, there is a need for a method to capture all the information 

provided such as a description of what the activity does, who is involved, when is it 

carried out, and using what means.  A table, containing attributes of the tasks and 

processes as columns, is created in order to incorporate the strengths of the various 

representation methods.  The activity list is expanded to include a description of the 

activity and also the result/output. Information about the task performer is also 

desired. Therefore, a column separating primary performer and support performer is 

created. In order to capture when the activity is to be carried out, two columns are 
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used – input and control (constraints, policies, etc). Each activity uses methodologies 

and this is captured as guidelines, tools, and/or templates.  The last column – notes, is 

added to include any information that did not directly fit in the other columns.  Table 

11 shows the main structure of the tabular view, along with an example use case.  The 

description of the example is discussed in the next section.     

Information from the six main sources is used to populate the tabular view 

progressively. Typically the sources do not explicitly specify the information as 

inputs, outputs, controls, and mechanisms; therefore they have to be gleaned from a 

textual representation, interpreted, and translated into the table format.  However, the 

approach proposed in this research provides a convenient means to organize the 

information.  The result is a database of activities and associative characteristics for 

requirements engineering/management.   

The lack of information from the sources creates “holes” in the database that 

indicate a need for more information about a particular activity.  For instance, for use 

case 3.1, “Establish scope of work” (Appendix B), no information is provided on who 

will do the work or what guidelines and tools are to be used. In other words, the 

source lists that the scope of the work has to be established but does not provide much 

guidance on doing so. Additions to the tabular can be made as more 

sources/information become available.  This implies that the database needs to be a 

living document.  The complete database of activities and associative attributes 

developed in this research is provided in Appendix B. 



 

 

 
 

       

    

             

             

             
 

     
 

             

 

56 

Table 11 
Tabular view of process 

What Role (Who) When How (mechanism) 
Use 
case 
no. 

Name Description Results 
(output) Primary Support Input Control Guidelines Tools Templates Source Notes 

9.1 A Activity A 4 
Project 

manager 
(John) 

- 1 - - - - - -

9.2 B Activity B 5 
Project 

manager 
(John) 

- 4 - - - - - -

9.3 C Activity C 6 
System 
analyst 
(Judy) 

- 2 - - - - - -

9.4 D Activity D 12 
System 
analyst 
(Judy) 

John and 
Jessie 6 & 7, 8 5 10 9 11 - -

9.5 E Activity E 7 Customer 
(Jessie) - 3 - - - - - -
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Hybrid Graphical View 

The tabular method is very good for helping users structure the problem.  In 

addition, any missing information on a particular activity is more apparent via the 

tabular method.  However, information from the tabular view can be transferred into a 

hybrid graphical view; hybrid in that it captures the best features of IDEF0, IDEF3 

and process maps.  Recall that IDEF0 is able to represent functions and their 

relationships among them hierarchically [6] and IDEF3 is for useful for charting the 

flow of a process. It also allows representation of semantics (AND, OR, XOR, 

synchronous AND, and synchronous OR). Process maps are good for indicating 

activities that span across different organizational units.   

Figure 10 is an example of the proposed hybrid graphical view.  Swim lanes 

are included to indicate who or what role is performing the activity.  In this example, 

there are three task performers – John, Judy, and Jessie.  John will be in charge of 

activity A and B, Judy activity C, and Jessie activity E. All John, Judy and Jessie will 

be required to carry out activity D (the shaded area indicates Judy has primary 

responsibility). However, activities C and E must be completed prior to the start of 

activity D. Activity B results in a control for activity D.  Activity D uses a set of 

mechanisms (tool, guideline, template).  Activity E has additional information.  This 

is captured in the notes box. 
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Figure 10: Example of the proposed hybrid graphical view 

 

The next step is to represent the tabular view in the hybrid graphical view. 

However, this is a major challenge task because the tabular view lacks information in 

many areas (denoted by the “holes”); these “holes” are represented by a question 

mark.  Therefore, an attempt was made to create a hybrid graphical view based on 

one use case. Use case 5, which appears complicated in the tabular view, was 

selected for the example.  (Due to space limitation, the entire representation is not 

included in this thesis.) In doing so, several issues became apparent. 
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First, information between use cases does not match.  Take for instance, use case 

5.3 and 5.4 shown in Figure 11. 

Theoretically, one should be able to trace the flow from the beginning to the end.  

However, this is not the case in use case 5.3 and 5.4. The output from use case 5.3, 

life cycle process requirements, should be an input to use case 5.4 but the input for 

use case 5.4 is work context, system constraints, stakeholder wants, and needs.  This 

is due to the fact that these two use cases originated from different sources.  Use case 

5.3 originates from IEEE [31] while use case 5.4 is from Robertson and Robertson 

[27]. 
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Second, information between use cases from the same source also does not 

match.  Take for instance, use case 5.4 and 5.5, as shown in Figure 12. 

This example clearly illustrates that the output from use case 5.4 does not match the 

input for use case 5.5. Swim lanes were not included in the example because there is 

only one main person in charge – requirements analyst or systems analyst.  It is 

assumed that the responsibilities played by each role are the same due to the fact that 

different sources mention different roles.    

Hence, this example hybrid graphical view indicate that more work is required 

in order to create a complete hybrid graphical view similar to the proposed one.  

Research should be conducted to investigate if certain terms can be combined or if 

better terminology can be used.  Another research issue is to reorganize the order or 

flow of the use cases. All use cases should be further examined to see if they can be 

combined or redefined to enhance their integration.   
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Tabular View versus Hybrid Graphical View 

Each view has its own advantages and disadvantages. In addition to helping 

structure a user’s thoughts, the tabular view also allows users to perform such 

operations as query, filter, and sort, e.g. filter the sources to see the activities that 

were derived from each source.  This advantage for the tabular view automatically 

becomes a disadvantage for the hybrid graphical view.  Compared to the tabular view, 

information from different sources can become quite complicated in the hybrid 

graphical view. For instance, there are two guidelines for use case number 5a, elicit 

stakeholder request, one from Rational Unified Process (RUP) and the other from 

IEEE standard. In order to keep track of where each guideline came from, the 

‘guidelines’ arrow on the hybrid graphical view would have to include the sources. 

The situation could get more complicated since each arrow on the hybrid graphical 

view could have multiple sources.  Another advantage of the tabular view is that it 

allows users to identify areas where further research is required, i.e. the “holes.” This 

may not be as obvious in the hybrid view.     

The hybrid graphical view’s strength is that it allows users to see the entire 

flow of the activities within the requirements engineering/management process; 

whereas the flow is not clear in the tabular view. 
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CHAPTER III 

CONCLUSION 

Future Research 

The two views developed in this research (tabular and hybrid graphical) can 

be extended by linking them together.  The main reason for doing so is to prevent 

anomalies due to update, insertion, and deletion.  This linkage between the two views 

would also make maintenance easier; once one of the views is updated, the 

corresponding changes are reflected in the other view. 

Ideally, there should be a direct link between each entity in both views. In 

other words, each element in the tabular view should be represented in the hybrid 

graphical view, and vice versa. The information in the tabular view can be 

represented in and supported by a database where the table columns are the database 

fields and each use case is a record. 

Once this link between the tabular view and hybrid graphical view is set up, 

other links can also be incorporated. The following table is a list of potential 

extension links that can be made from both views. 
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Table 12 

Extension links from the tabular and hybrid graphical view 

Columns or Entities Extended links 

Notes Text document 

Mechanism (tools) Specific tool or software (located locally or 
on the web) 

Mechanism (guidelines) 
Standards, checklists, references, tutorials, 
rules, regulations (located locally or on the 
web) 

Mechanism (templates) Text document, graphical tool (located 
locally or on the web) 

Role (entity) - primary and support Personnel information, contact information, 
organizational unit 

The requirements engineering/management process should then be tested in 

industry. The steps within the requirements engineering/management process would 

be customized to fit their needs.  Feedbacks from the industry application would 

provide further improvements to the generic process, as they would refine and/or 

extend the use cases. 

Another important future activity is to combine and/or eliminate activities 

within the process since the process is now in its “purest” form (i.e. documented 

exactly based on each source). This process refinement, along with industries’ 

feedback, would result in a generic process for requirements 

engineering/management.   
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A further enhancement would be to develop an implementation tool, most 

likely in a hypermedia environment, i.e. a web page site with links to tools, 

guidelines, etc. 

Conclusion 

Requirements are important and can often determine the success of the end 

product. However, the current literature does not provide sufficient information to 

adequately define requirements as a process.  Inconsistent and vague information was 

the motivation for this research which attempted to assimilate the information into 

one common framework.  As a step to meet that need, this research accomplished 

three objectives: defining requirements engineering and requirements management, 

developing a generic process for requirements engineering/management, and 

developing a process representation scheme.   

During the extensive research on the terms ‘requirements engineering’ and 

‘requirements management’, various definitions were found.  All these definitions 

were compiled into a common yet comprehensive definition of requirements 

engineering and requirements management.  It is proposed that both terms are 

separate but related terms.  It also proposed that requirements engineering is 

composed of requirements elicitation, requirements modeling, requirements 

specification, and requirements validation, while requirements management is 

composed of requirements organization, requirements control, and requirements 

documentation.       
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The investigation on requirements engineering/management process 

concludes that no generic methodology currently exists.  Therefore, the vast 

information provided by the six main sources was assimilated and converted into a 

Master Activity List. However, this list has its limitations because this list only 

specifies the activities. There is a need to include information about who carries out 

the activity, when the activity is carried out or what is required to carry out the 

activity, etc. in the Master Activity List. This need was later fulfilled in the next 

research objective. 

In addition, a means to represent the requirements engineering/management 

process does not currently exist. This shortcoming, along with the need for a 

structured approach to capture the supporting information about a particular activity, 

prompted the creation of a tabular view and a hybrid graphical view.  These two 

views complement one another.  The tabular view is a good method for structuring 

user’s thoughts. However, it does not show the flow of the activities. This 

inadequacy is fulfilled by the hybrid graphical view. 

Then again, these two views – tabular view and hybrid graphical view, yielded 

in several issues that became apparent after the views were created.  First, there are 

disconnects between use cases due to the fact that the use cases originated from 

different sources. Second, disconnects are still visible even within use cases from the 

same sources.  These two issues indicate a need to further examine the use cases in 

the tabular view to see if the use cases can be combined, eliminated or refined to yield 

a generic process for requirements engineering/management.         
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Use case no. Name Source 

1 Capture a common vocabulary RUP 
1.1 Find common terms RUP 
1.2 Evaluate results RUP 

2 Develop requirements management plan RUP 
2.1 Establish traceability RUP 
2.2 Choose requirements attributes RUP 
2.3 Map to tools RUP 
2.4 Write the plan RUP 

3 Find actors and use cases RUP 
3.1 Establish scope of work R & R 

3.2 Establish adjacent systems that surround the 
work by looking outside the organization R & R 

3.3 Identify connections between the work and 
the adjacent systems R & R 

3.4 Identify business events that added the work 
from the connections R & R 

3.5 Study the response to the event R & R 

3.6 Determine best response that the 
organization can make for the event R & R 

3.7 Determine product's role in the response R & R 
3.8 Determine the use case or cases R & R 

3.8.1 Find actors RUP 
3.8.2 Find use cases RUP 

3.8.3 Describe how actors and use cases interact RUP 

3.8.4 Package use cases and actors RUP 

3.8.5 Present the use-case model in the use-case 
diagrams RUP 

3.9 Derive the requirements for each use case R & R 

3.10 Develop a survey of the use-case model RUP 
3.11 Evaluate results RUP 

4a Develop vision RUP 

4.1 Gain agreement on the problem being 
solved 

L & W and 
RUP 

4.2 Identify primary need H & F 
4.3 Understand root causes L & W 
4.4 Circulate problem statement L & W 
4.5 Revise where necessary L & W 
4.5 Review and obtain agreement H & F 

4.6 Identify stakeholders and users RUP and 
HHP 

4.7 Obtain stakeholders' needs HHP 
4.8 Identify goals and objectives H & F 
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4.9 Distribute and discuss goals and objectives 
with stakeholders H & F 

4.10 Determine mission statement or business 
case (if any) H & F 

4.11 Distribute it and gain consensus H & F 
4.12 Identify budgets H & F 
4.13 Identify schedule H & F 

4.14 Define solution system boundaries L & W and 
RUP 

4.15 Identify constraints to be imposed on the 
system 

L & W and 
RUP 

4.16 Determine if work can be realistically done 
within budget and schedule constraints H & F 

4.17 Identify major assumptions H & F 
4.18 Validate assumptions H & F 
4.19 Assign responsibilities H & F 
4.2 Formulate problem statement RUP 
4.21 Define features of the system RUP 
4.22 Evaluate results RUP 

4b Project blastoff R & R 
4.1 Prepare for blastoff meeting R & R 

4.1.1 Define blastoff objectives R & R 
4.1.2 Plan physical arrangements R & R 

4.1.2.1 Determine participants R & R 

4.1.2.2 Plan facilities and accommodation for 
participants R & R 

4.1.3 Communicate with participants R & R 

4.1.3.1 Send each participant an agenda and list of 
participants R & R 

4.2 Run blastoff meeting R & R 
4.2.1 Determine product purpose R & R 
4.2.2 Determine the work context R & R 

4.2.2.1 Ask if there is a physical entity that 
represents domain R & R 

4.2.2.2 Ask if domain provides data, policy or both 
to the work R & R 

4.2.2.3 Identify sources of information for this 
domain R & R 

4.2.3 Do first-cut risk analysis R & R 

4.2.3.1 Identify risks that are most likely to happen R & R 

4.2.3.2 Identify risks that would have the greatest 
impact of becoming a problem R & R 

4.2.3.3 Assess probability of risk becoming a 
problem R & R 
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4.2.3.4 Assess its cost and schedule impact R & R 
4.2.3.5 Identify actions to take if risks come true R & R 

4.2.4 Identify the stakeholders R & R 

4.2.4.1 
Inform stakeholders that they are 
stakeholders and that they will be consulted 
about requirements 

R & R 

4.2.4.2 Inform stakeholders of time required and 
type of participation R & R 

4.2.5 Partition the work R & R 
4.2.6 Consider non-events R & R 
4.2.7 Determine system terminology R & R 
4.2.8 Define project constraints R & R 
4.2.9 Identify domains of interest R & R 

4.3 Finalize blastoff R & R 
4.3.1 Write blastoff report R & R 
4.3.2 Review blastoff results R & R 
4.3.3 Hold follow-up blastoff R & R 
4.3.4 Make initial estimate R & R 

5a Elicit stakeholder request RUP 
5b Trawling for requirements R & R 

5.1 Determine sources for requirements RUP 
5.2a Gather information RUP 
5.2b Learn the work R & R 

5.2.1 Review current situation R & R 
5.2.2 Apprentice with the user R & R 
5.2.3 Determine essential requirements R & R 
5.2.4 Brainstorm the requirements R & R 
5.2.5 Create structured interviews L & W 
5.2.6 Conduct 5 to 15 interviews L & W 
5.2.7 Summarize interviews L & W 
5.2.8 Do document archeology R & R 
5.2.9 Make requirements video R & R 

5.2.10 Run use case workshop R & R 
5.2.11 Build event models R & R 
5.2.12 Build scenario models R & R 

5.2.12.1 Define technical performance measures 
(TPMs) IEEE 

5.2.12.2 Define design characteristics IEEE 
5.2.12.3 Define human factors IEEE 

5.2.13 Run requirements workshop L & W and 
RUP 

5.2.14 Brainstorming L & W 
5.2.15 Mind map requirements R & R 

5.2.16 Collect requirements via Volere Snow 
Cards R & R 

5.2.17 Reduce ideas L & W 
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5.2.17.1 Pruning L & W 
5.2.17.2 Grouping ideas L & W 
5.2.17.3 Feature definition L & W 
5.2.17.4 Prioritization L & W 

5.2.18 Create storyboards for innovative concepts L & W 

5.2.19 Create operational concepts H & F 

5.2.19.1 Develop concept for each phase of the 
lifecycle H & F 

5.2.19.1.1 Outline normal operation and environment H & F 

5.2.19.1.2 Outline abnormal operation and 
environment H & F 

5.2.19.2 Consider viewpoints of all stakeholders H & F 
5.2.19.3 Assess human interface standard H & F 
5.2.19.4 Create use cases L & W 

5.2.20 Role play L & W 
5.2.21 Create prototypes L & W 

5.3 Define life cycle process concepts IEEE 
5.4 Determine product scope R & R 

5.4.1 Set priorities for each feature L & W 
5.4.2 Assess effort for each feature L & W 
5.4.3 Estimate risk for each feature L & W 

5.4.4 Reduce scope based on priorities, effort, and 
risk L & W 

5.4.5 Determine baseline for each release of 
Vision Document L & W 

5.4.6 Get customer agreement on scope L & W 

5.4.7 Advocate and practice iterative development L & W 

5.4.8 Study the adjacent systems R & R 

5.4.8.1 
Look for business opportunities for how 
product can help to achieve the product 
purpose within the product constraints 

R & R 

5.4.8.2 Analyze dataflow between adjacent system 
and a process R & R 

5.4.9 Define use case boundary for each business 
event R & R 

5.4.9.1 Consider business opportunities R & R 
5.4.9.2 Review the work knowledge R & R 

5.4.9.2.1 Define the actor names R & R 
5.4.9.2.2 Define the use case name R & R 
5.4.9.2.3 Define the use case boundary data R & R 

5.4.9.2.4 Record the product context by adding the 
use case to a use case diagram R & R 
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5.4.9.2.5 Keep track of business event name(s) that 
is/are related to this use case R & R 

5.5 Do event reconnaissance R & R 
5.5.1 Gather business event knowledge R & R 

5.5.1.1 
Look for business documents that might 
contain knowledge about work related to the 
event 

R & R 

5.5.1.2 Look for any documents that might contain 
requirements buried in depth R & R 

5.5.1.3 List the names of sources of the work 
context R & R 

5.5.1.4 Determine if there is any domain models 
that contain knowledge about this event R & R 

5.5.1.5 
Determine if there is any reusable 
requirements that contain knowledge about 
this event 

R & R 

5.5.2 Choose appropriate trawling techniques R & R 
5.6 Ask clarification questions R & R 
5.7 Evaluate results RUP 

6 Identify both external and internal interfaces H & F 

6.1 Identify product interface H & F 

6.2 
Search for industry standard, application 
programmer's interface (API) or interface 
control document (ICD) 

H & F 

6.2.1 Create ICD substitute if existing interface 
document is not found H & F 

6.3 Monitor interface change outside control H & F 

6.4 Obtain agreement from people from other 
side of external interface H & F 

6.5 Simplify interfaces as much as possible H & F 
6.6 Document product interfaces H & F 

6.7 Distribute product interface documentation H & F 

6.8 Track interface through development to 
ensure reality match documentation H & F 

7 Writing good requirements H & F 
7.1 Identify potential requirements R & R 
7.2 Identify functional requirements R & R 
7.3 Identify composite requirements R & R 
7.4 Formalize requirements R & R 

7.4.1 Organize requirements into parent-child 
requirements L & W 

7.5 Formalize system constraints R & R 
7.6 Identify non-functional requirements R & R 

7.6.1 Define usability L & W 
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7.6.1.1 Specify required training time for users to 
be marginally productive L & W 

7.6.1.2 
Specify measurable task times for typical 
tasks or transactions that end users will 
carry out 

L & W 

7.6.1.3 
Compare usability of the new system to 
other state-of-the-art systems that the user 
community knows and likes 

L & W 

7.6.1.4 

Specify existence and required features of 
online help systems, wizards, tool tips, user 
manuals, and other forms of documentation 
and assistance 

L & W 

7.6.1.5 
Follow conventions and standards that have 
been developed for the human-to-machine 
interface 

L & W 

7.6.2 Define reliability L & W 
7.6.3 Define performance L & W 
7.6.4 Define supportability L & W 

7.7 Write functional fit criteria R & R 
7.8 Write non-functional fit criteria R & R 
7.9 Define customer value R & R 
7.10 Identify dependencies and conflicts R & R 

8 Capture rationale H & F 
9 Manage dependencies RUP 

9.1 Assign attributes RUP 
9.2 Establish levels H & F 

9.2.1 Verify that requirement relate to level above H & F 

9.2.2 
Check if requirement allow more than one 
architecture or design option for the next 
level 

H & F 

9.2.3 Check if requirement leads to solution -
delete requirement if so H & F 

9.2.4 Check if requirement is to be verified at this 
level H & F 

9.3 Establish allocation (top down) H & F 

9.3.1 Make sure that every requirement is 
allocated H & F 

9.3.2 Check for duplicate requirements H & F 

9.3.3 Check if requirements need to be allocated 
to more than one area H & F 

9.3.4 Check if an interface is implied, simple and 
controllable H & F 

9.4 Establish and verify traceability RUP 

9.4.1 Make sure requirement tracing system is in 
place H & F 
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9.4.2 Make sure that every requirement can be 
traced back to a higher-level requirement H & F 

9.4.3 Resolve duplication between levels H & F 
9.4.4 Eliminate orphan requirements H & F 

9.5a Create a document tree H & F 

9.5.1 Identify approval levels and segregate 
requirements accordingly H & F 

9.5.2 
Identify external contracts and segregate 
requirements that will be contractually 
binding to each outside party 

H & F 

9.5.3 Segregate requirements for frequent revision H & F 

9.5.4 Segregate requirements into manageable 
document sizes H & F 

9.5b Enter requirements in Modern Software 
Requirements Specifications (SRS) package L & W 

9.6 Manage changing requirements L & W 
9.7 Evaluate SRS L & W 

9.7.1 Inspect quality of each individual 
specification L & W 

9.7.2 Inspect quality for use-case model (use-case 
specifications, and use-case actors) L & W 

9.7.3 Inspect quality for the entire Modern SRS L & W 

9.8 Manage changing requirements RUP 
10 Verify requirements H & F 

10.1 Screen requirements for subjective words H & F 

10.2 Identify verficational stakeholders H & F 
10.3 Decide what to verify and validate L & W 

10.3.1a Verify and validate everything L & W 

10.3.1b Use a hazard analysis to determine verify 
and validate necessities L & W 

10.4 Decide how each requirement will be 
verified 

L & W and 
H & F 

10.4.1 Compare to customer expectations IEEE 

10.4.2 Compare to enterprise and project 
constraints IEEE 

10.4.3 Compare to external constraints IEEE 

10.5 Decide when each requirement will be 
verified H & F 

10.6 
Write requirements to cut time, cost, and 
special equipment required to verify 
products 

H & F 
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10.7 Decide how each requirement will be 
validated L & W 

10.7.1 Perform acceptance testing L & W 
10.7.2 Perform validation testing L & W 
10.7.3 Perform validation traceability L & W 
10.7.4 Perform requirements-based testing L & W 

10.8 Establish validated requirements baseline IEEE 
10.9 Build verification matrix H & F 

11 Format requirements H & F 

11.1a Organize requirements of complex hardware 
and software system L & W 

11.1.1 Refine a system into subsystems L & W 

11.1.2 Create requirements specification for each 
subsystem L & W 

11.1.3 Refine subsystems into its subsystems 
(optional) L & W 

11.1b Organize requirements for product families L & W 

11.1.1 Develop a product-family Vision Document L & W 

11.1.2 Develop a set of use cases to show 
interactions among various applications L & W 

11.1.3 Develop a common software requirements 
specification L & W 

11.1.4 

Develop a separate Vision Document, 
Software Requirements Specification, and a 
use case model for each product in the 
family 

L & W 

11.2 Create Vision Document L & W 
11.3 Create product position statement L & W 
11.4 Circulate and gain agreement L & W 

11.5 Create use cases in Vision Document 
(appendix) L & W 

11.6 Publish Vision Document L & W 

11.7 Assign owner to Vision Document (product 
champion) L & W 

11.8 Utilize delta Vision Document L & W 
12a Baseline requirements H & F 

12.1 Find format, grammar, spelling , and 
typographical errors H & F 

12.2 

Look for ambiguities, unverified 
assumptions, unverified assumptions, 
TBDs, implementation, lack of rationale or 
unintelligible rationale, and lack of 
traceability 

H & F 

12.3 Look for content errors, conflicts or missing 
requirements H & F 
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12.4 Assess product development risk L & W and 
H & F 

12.5 Measure requirement quality H & F 
12b Check requirements (quality gateway) R & R 

12.1 Review requirements fit criteria R & R 
12.2 Review requirements relevance R & R 
12.3 Review requirement viability R & R 
12.4 Identify gold-plated requirements R & R 
12.5 Review requirements completeness R & R 
12.6 Test requirements traceability R & R 

12.7 Review requirements for consistent 
terminology R & R 

12.8 Place customer rating on requirements R & R 

12c Check requirements for certain properties IEEE 

13 Prioritize requirements H & F 
13.1 Define priority classes H & F 
13.2 Classify the requirements H & F 

13.2.1 Assign 1's and 3's first - everything else 
default to 2 H & F 

13.3 Resolve the differences H & F 

13.4 Create priority-based development 
schedules H & F 

13.5 Maintain the priorities H & F 
14 Detail software requirements RUP 

14.1 Collect software requirements artifacts RUP 
14.2 Detail the software requirements RUP 
14.3 Generate supporting reports RUP 

14.4 Assemble the software requirements 
specification RUP 

15 Prioritize use case RUP 

15.1 Prioritize use cases and scenarios L & W and 
RUP 

15.2 Document the use-case view L & W and 
RUP 

15.3 Evaluate results L & W and 
RUP 

16 Detail a use case RUP 
16.1 Detail flow of events of the use case RUP 

16.2 Structure the flow of events of the use case RUP 

16.3 Illustrate relationships with actors and other 
use cases RUP 

16.4 Describe special requirements of the use 
case RUP 

16.5 Describe communication protocols RUP 
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16.6 Describe pre-conditions of the use case 
<optional> RUP 

16.7 Describe post-conditions of the use case 
<optional> RUP 

16.8 Describe extension points <optional> RUP 
16.9 Evaluate results RUP 

17 Review change request RUP 
17.1 Plan for changes to happen L & W 
17.2 Baseline requirements L & W 
17.3 Maintain responsibility for Vision Doc L & W 
17.4 Schedule CCB review meeting RUP 

17.5 Setup default reports and queries to assist in 
this effort L & W 

17.6 Monitor SRS process L & W 
17.7 Lead Change Control Review Board L & W 
17.8 Retrieve change requests for review RUP 

17.8.1 Submission of a new change request RUP 
17.8.2 Update of an existing change request RUP 

17.8.3 Consider postponing change request for a 
new release cycle RUP 

17.9 Review submitted change requests RUP 

17.10 Perform a thorough change impact 
assessment H & F 

17.11 Use change control system to capture 
changes L & W 

17.12 Make changes hierarchically L & W 
17.13 Audit trail of history L & W 

18 Model the user interface RUP 

18.1 Describe characteristics of related actors RUP 

18.2 Create a use-case storyboard RUP 
18.3 Describe flow of events - storyboard RUP 

18.4 Capture usability requirements on the use-
case storyboard RUP 

18.5 Find boundary classes needed by the use-
case storyboard RUP 

18.5.1 Describe responsibility of boundary classes RUP 

18.5.2 Describe attributes of boundary classes RUP 

18.5.3 Describe relationships between boundary 
classes RUP 

18.5.4 Present usability requirements on boundary 
classes RUP 

18.5.5 Present the boundary classes in global class 
diagrams RUP 

18.5.6 Evaluate results RUP 
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18.6 Describe interactions between boundary 
objects and actors RUP 

18.7 Complement the diagrams of the use-case 
storyboard RUP 

18.8 Refer to the user-interface prototype from 
the use-case storyboard RUP 

19 Prototype the user interface RUP 
19.1 Plan the prototype R & R 
19.2 Design the user-interface prototype RUP 
19.3 Build prototype R & R 

19.3.1 Build low fidelity prototype R & R 
19.3.2 Build high fidelity prototype R & R 

19.4 Evaluate the prototype R & R 
19.4.1 Test high fidelity prototype with users R & R 
19.4.2 Test low fidelity prototype with users R & R 

19.4.3 Get feedback on user-interface prototype RUP 

19.4.4 Identify new and changed requirements R & R 
19.4.5 Evaluate prototyping effort R & R 

19.5 Implement user-interface prototype RUP 
20 Structure use case model RUP 

20.1 Establish include-relationships between use 
cases RUP 

20.2 Establish extend-relationships between use 
cases RUP 

20.3 Establish generalizations between use cases RUP 

20.4 Establish generalizations between actors RUP 
20.5 Evaluate results RUP 

21 Do requirements post mortem R & R 
21.1 Gather input for review R & R 

21.1.1 Conduct private individual reviews R & R 
21.1.2 Conduct separate meetings with groups R & R 
21.1.3 Facilitator reviews facts R & R 

21.2 Do post mortem R & R 
21.2.1 Hold post mortem review meeting R & R 
21.2.2 Produce post mortem report R & R 

21.3 Build a requirements filter R & R 
21.3.1 Identify filtration criteria R & R 
21.3.2 Select relevant requirement types R & R 
21.3.3 Add new filtration criteria R & R 

22a Review requirements RUP 
22b Taking stock of the specification R & R 

22.1 Review specification content R & R 
22.1.1 Identify missing requirements R & R 
22.1.2 Identify customer value ratings R & R 
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22.1.3 Identify requirement interaction R & R 
22.1.4 Identify prototyping opportunity R & R 
22.1.5 Find missing custodial requirements R & R 

22.2 Evaluate requirements risk R & R 
22.2.1 Look for likely risks R & R 
22.2.2 Quantify each risk R & R 

22.3 Estimate effort R & R 
22.3.1 Identify estimation input R & R 
22.3.2 Identify efforts for events R & R 
22.3.3 Estimate requirements effort R & R 

22.4 Publish reviewed specification R & R 
22.4.1 Design form of specification R & R 
22.4.2 Assemble the specification R & R 



 

 

 

APPENDIX B 

TABULAR VIEW 
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What Who When How (mechanism) Source Notes 
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates 

1 Capture a common vocabulary Common terms are identified and documented Glossary System analyst Customer, end user, 
and stakeholder 

Vision, business case, business rules, 
business use-case model, business 
object model, stakeholder requests, 
use-case model, use case 

RequisitePro RUP 

1 
IEEE Std 610.12-1990 (IEEE Standard 
Glossary of Software Engineering 
Terminology) 

IEEE 

1 
IEEE Std 830-1998 (IEEE Recommended 
Practice for Software Requirements 
Specifications) 

IEEE 

1 
IEEE Std 1233, 1998 edition (IEEE Guide 
for Developing System Requirements 
Specifications 

IEEE 

1.1 Find common terms Terms describing business objects and real-world 
objects are identified System analyst Customer, end user, 

and stakeholder RUP 

1.2 Evaluate results System analyst Customer, end user, 
and stakeholder RUP 

2 Develop requirements management plan Attributes are identified and linked to tools Requirements management plan System analyst Customer, end user, 
and stakeholder - Requirements management plan, important 

decisions in requirements RequisitePro RUP 

2.1 Establish traceability System analyst Customer, end user, 
and stakeholder RUP 

2.2 Choose requirements attributes Essential attributes (such as risk, benefit, effort, 
stability, and architectural impact) are identified System analyst Customer, end user, 

and stakeholder RUP 

2.3 Map to tools System analyst Customer, end user, 
and stakeholder 

RationalRose, 
RequisitePro, 
Rational 
ClearQuest 

RUP 

2.4 Write the plan System analyst Customer, end user, 
and stakeholder Requirements management plan RUP 

3 Find actors and use cases Actors and use cases are identified and 
documented 

Use case models, actors, use cases, 
supplementary specifications System analyst Customer, end user, 

and stakeholder 

Glossary, vision, stakeholder requests, 
use-case modeling guidelines, 
business use-case model, business 
object model 

Use-case workshop, storyboarding Rational Rose RUP 

3.1 Establish scope of work Business activity including actor, work, and 
adjacent systems are determined Context diagram R & R 

3.2 Establish adjacent systems that surround the 
work by looking outside the organization R & R 

3.3 Identify connections between the work and 
the adjacent systems R & R 

3.4 Identify business events that added the work 
from the connections R & R 

3.5 Study the response to the event R & R 

3.6 Determine best response that the 
organization can make for the event R & R 

3.7 Determine product's role in the response R & R 

3.8 Determine the use case or cases 
Jacobson, Ivar et al's book "Object-Oriented 
Software Engineering - A Use Case Driven 
Approach" [Addison-Wesley, 1992] 

R & R 

3.8.1 Find actors System analyst Customer, end user, 
and stakeholder RUP 

3.8.2 Find use cases System analyst Customer, end user, 
and stakeholder RUP 

3.8.3 Describe how actors and use cases interact System analyst Customer, end user, 
and stakeholder RUP 

3.8.4 Package use cases and actors System analyst Customer, end user, 
and stakeholder RUP 

3.8.5 Present the use-case model in the use-case 
diagrams System analyst Customer, end user, 

and stakeholder RUP 

3.9 Derive the requirements for each use case R & R 

3.10 Develop a survey of the use-case model System analyst Customer, end user, 
and stakeholder RUP 

3.11 Evaluate results System analyst Customer, end user, 
and stakeholder RUP 

4a Develop vision Problem statement is formulated Vision, initial requirements attributes, 
initial supplementary specifications System analyst Customer, end user, 

and stakeholder 

Stakeholder requests, business rules, 
business use-case model, business 
object model 

Brainstorming, fishbone diagrams, Pareto 
diagrams RequisitePro RUP 

4.1 Gain agreement on the problem being solved Definition of the problem is written and agreed 
upon System analyst Customer, end user, 

and stakeholder Problem statement L & W and 
RUP 

4.2 Identify primary need A short statement indicating motivation for the 
project Table 4-4: Project scope sanity check H & F 

4.3 Understand root causes Real problem and real cause are identified Fishbone 
diagram L & W 
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4.4 Circulate problem statement L & W 
4.5 Revise where necessary L & W 

4.5 Review and obtain agreement 

Customer, marketing, 
development, 
downstream 
organization 

Table 4-4: Project scope sanity check H & F 

4.6 Identify stakeholders and users System analyst Customer, end user, 
and stakeholder 

RUP and 
HHP 

4.7 Obtain stakeholders' needs Part of requirements gathering activity HHP 
4.8 Identify goals and objectives Table 4-4: Project scope sanity check H & F 

4.9 Distribute and discuss goals and objectives 
with stakeholders 

An aim and method for achieving target is 
discussed Table 4-4: Project scope sanity check H & F 

4.10 Determine mission statement or business 
case (if any) Table 4-4: Project scope sanity check H & F 

Business case is 
usually for 
commercial products 

4.11 Distribute it and gain consensus Table 4-4: Project scope sanity check H & F 
4.12 Identify budgets Table 4-4: Project scope sanity check H & F 
4.13 Identify schedule Table 4-4: Project scope sanity check H & F 

4.14 Define solution system boundaries Area containing solution system is identified Actors, system System analyst Customer, end user, 
and stakeholder Block diagram L & W and 

RUP 

4.14 
Section 6.1.6 of IEEE Std 120-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

4.15 Identify constraints to be imposed on the 
system Restrictions on the system are identified Constraints System analyst Customer, end user, 

and stakeholder Table 4-4: Potential system constraints L & W and 
RUP 

4.16 Determine if work can be realistically done 
within budget and schedule constraints Table 4-4: Project scope sanity check H & F 

4.17 Identify major assumptions Table 4-4: Project scope sanity check H & F 
4.18 Validate assumptions Table 4-4: Project scope sanity check H & F 
4.19 Assign responsibilities Table 4-4: Project scope sanity check H & F 

4.2 Formulate problem statement System analyst Customer, end user, 
and stakeholder RUP 

4.21 Define features of the system System analyst Customer, end user, 
and stakeholder RUP 

4.22 Evaluate results System analyst Customer, end user, 
and stakeholder RUP 

4b Project blastoff Necessary pieces required to begin the project and 
to ensure project is viable and well-founded 

Purpose of the project, client, 
customer, stakeholders, users, 
constraints, names, relevant facts and 
assumptions, and scope of the work, 
estimated cost, risk, and go/no go 
decision 

Facilitator Blastoff team R & R 

4.1 Prepare for blastoff meeting Blastoff meeting plan, required 
facilities 

Project 
intention, 
potential 
stakeholders 

R & R 

4.1 
Chapter 8: Making meetings work for 
everybody, chapter 13: Facilitating in the face 
of conflict 

G & W 

4.1.1 Define blastoff objectives Deliverables are determined 

Blastoff objectives, work context 
model, stakeholders identified, 
anticipated developers, system events 
event/use case models, system 
terminology, scenario models 

Facilitator Blastoff team Project 
intention R & R 

4.1.2 Plan physical arrangements Necessary physical arrangements are planned to 
produce blastoff objectives 

Meeting location, meeting schedule, 
direction to meeting location, name 
and contact details of the facilitator, 
dates and times, estimated time 
required for blastoff, list of 
participants 

Blastoff 
objectives R & R 

4.1.2.1 Determine participants Potential stakeholders are determined R & R 

4.1.2.1 Chapter 7: Getting the right people involved G & W 

4.1.2.2 Plan facilities and accommodation for 
participants 

Meeting places and accommodations are 
determined R & R 
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4.1.3 Communicate with participants Blastoff meeting plan 

Blastoff 
objectives, 
meeting 
schedule, 
meeting 
location, 
blastoff 
participants 

R & R 

4.1.3.1 Send each participant an agenda and list of 
participants 

Participants must be aware of what they are going 
to do and that their participation is valuable R & R 

4.2 Run blastoff meeting 

Major risks, blastoff meeting plan, 
project constraints, product purpose, 
business events, work context, system 
terminology, identified stakeholders 

Potential 
stakeholders, 
project 
intention, 
stakeholder 
wants and 
needs, intended 
operating 
environment, 
blastoff meeting 
plan 

Requirements skeleton R & R 

4.2.1 Determine product purpose Statement of what product is at the end of the 
project 

Product purpose, advantage, measure 
of success, reasonable, feasibility, 
achievable 

Blastoff team 

Stakeholder 
wants and 
needs, project 
intention, 
blastoff meeting 
plan 

R & R 

4.2.1 Chapter 14: Functions G & W 

4.2.2 Determine the work context Intended work for study and surrounding systems 
are defined Work context, context interfaces 

Domains of 
interest, product 
purpose, 
stakeholder 
wants and 
needs 

Requirements skeleton 
James and Suzanne Robertson's book 
"Complete Systems Analysis - the Workbook, 
the Textbook, the Answers" 

R & R 

4.2.2.1 Ask if there is a physical entity that 
represents domain R & R 

4.2.2.2 Ask if domain provides data, policy or both 
to the work R & R 

4.2.2.3 Identify sources of information for this 
domain R & R 

4.2.3 Do first-cut risk analysis Major risks Requirements skeleton Capers Jones' book "Assessment and Control 
of Software Risks" R & R 

4.2.3.1 Identify risks that are most likely to happen R & R 

4.2.3.2 Identify risks that would have the greatest 
impact of becoming a problem R & R 

4.2.3.3 Assess probability of risk becoming a 
problem R & R 

4.2.3.4 Assess its cost and schedule impact R & R 

4.2.3.5 Identify actions to take if risks come true R & R 

4.2.4 Identify the stakeholders People who have an interest in the product is 
identified 

Stakeholder name, specialization, 
estimated amount of involvement 
time 

Potential 
stakeholders R & R 

Principal stakeholders 
include users, client 
and customers. Other 
stakeholders include 
the list on pages 36 -
38 

4.2.4.1 
Inform stakeholders that they are 
stakeholders and that they will be consulted 
about requirements 

R & R 

4.2.4.2 Inform stakeholders of time required and 
type of participation R & R 

4.2.5 Partition the work Work context is divided into business events Business events 

Stakeholder 
wants and 
needs, work 
context 

Requirements skeleton R & R 

4.2.6 Consider non-events "What-if" events are explored 
New data flows are added to the 
work context diagram [work context, 
business events] 

Work context 
and business 
events 

Requirements skeleton R & R 

4.2.7 Determine system terminology Common terms are identified and documented System terminology Context 
interfaces Requirements skeleton R & R Similar to capture a 

common vocabulary 
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4.2.8 Define project constraints Limitations on the way product is produced are 
identified 

List of solution constraints, 
implementation environment 
constraints, partner application 
constraints, commercial off-the-shelf 
software constraints, anticipated 
workplace environment constraints, 
time constraints, and financial 
constraints 

Stakeholder 
wants and 
needs, project 
intention, 
intended 
operating 
environment 

R & R 

4.2.8 

Section 6.1.2 and 6.1.3 of IEEE Std 1220-
1998 (IEEE Standard for Application and 
Management of the Systems Engineering 
Process) 

IEEE 

4.2.8 Chapter 16: Constraint G & W 

4.2.9 Identify domains of interest Areas of interest are identified Domains of interest Product 
purpose Requirements skeleton R & R 

4.3 Finalize blastoff 
System constraints, work context, 
business events, initial estimates, 
go/no go decision, blastoff report 

Blastoff 
meeting plan, 
stakeholder 
wants and 
needs 

Requirements skeleton, requirements 
template R & R 

4.3.1 Write blastoff report Report of activities from the blastoff is written Blastoff report, work context, 
business events, system constraints Initial estimates 

Requirements skeleton which consists 
of work context diagram, stakeholder 
list, manpower list, preliminary event 
or use case list, system terminology, 
major risks, initial estimates of effort, 
recommendation to proceed or not 

R & R 

4.3.2 Review blastoff results Requirements skeleton is compared with 
requirements template 

Go/no go decision, requirement 
questions 

Blastoff 
meeting plan 

Requirements skeleton, requirements 
template 

Jim Hughsmith and Lynne Nix in "Feasibility 
Analysis - Mission Impossible"Software 
Development , July 1996 

R & R 

4.3.3 Hold follow-up blastoff Outstanding requirements questions are answered Requirements skeleton 

Requirement 
questions, 
stakeholder 
wants and 
needs 

Requirements skeleton R & R 

4.3.4 Make initial estimate First estimate of effort is made R & R Allow generous area 
for learning curve 

5a Elicit stakeholder request Stakeholder requests and use-case 
model System analyst Customer, end user, 

and stakeholder Vision and change request 

Requirements workshop, interviewing, 
brainstorming and idea reduction, 
storyboarding, role playing, review existing 
requirements 

RequisitePro RUP 

5a 
Section 6.1.1 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

5b Trawling for requirements Requirements are found List of requirements, some of which 
maybe not inappropriate Requirements analyst Users, customers, and 

clients R & R 
Inappropriate 
requirements will be 
weed out later 

5.1 Determine sources for requirements System analyst Customer, end user, 
and stakeholder RUP 

5.1 

Customers, 
users, 
managers, 
industry 
standards, 
development 
process, and 
others 

HHP Sources of 
requirements 

5.2a Gather information System analyst Customer, end user, 
and stakeholder RUP 

5.2a 
Section 7.1.1 of IEEE Std 1233, 1998 edition 
(IEEE Guide for Developing System 
Requirements Specifications 

IEEE 

5.2b Learn the work Work is studied from user's point of view Event for prototyping Requirements analyst 

Stakeholder 
wants and 
needs, work 
description and 
demonstration 

Work knowledge R & R 
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5.2.1 Review current situation The current situation where users face are 
examined Current situation model Requirements analyst 

Work 
description and 
demonstration, 
stakeholder 
wants and 
needs 

Work knowledge R & R 

5.2.2 Apprentice with the user 
Analyst becomes an apprentice to the user - sits 
with user to learn the job by observing and asking 
questions 

Model of the observed work [work 
knowledge] Requirements analyst Users 

Stakeholder 
wants and 
needs 

Work knowledge R & R 

5.2.3 Determine essential requirements An abstract structure or pattern to the work is 
determined Event for prototyping Requirements analyst Users 

Current 
situation model, 
stakeholder 
wants and 
needs 

Work knowledge 
Observation and interpretation of users (skills 
and how they see themselves when they 
work) over a period of time 

R & R 

5.2.4 Brainstorm the requirements Ideas for requirements are brainstormed List of requirements (unedited) Requirements analyst 
Stakeholder 
wants and 
needs 

Work knowledge R & R 

5.2.5 Create structured interviews Context-free questions are created based on a 
template 

Figure 9-1: The Generic, Almost Context-
Free interview L & W 

Use context-free 
questions (i.e. ask 
about nature of 
problem and not 
solution). 
Questionnaires does 
not substitute 
interviews! 

5.2.5 Chapter 6: Context-free questions G & W 
5.2.6 Conduct 5 to 15 interviews L & W 

5.2.7 Summarize interviews L & W 
R & R recommends 
using interviews with 
other techniques 

5.2.8 Do document archeology Documents and files that the organization currently 
uses are inspected System terminology + data models Requirements analyst Business 

documents Work knowledge Questions on page 100 of R & R R & R 
R & R recommends 
using this technique 
with other techniques 

5.2.9 Make requirements video 

Video recording of brainstorm, workshops, 
interviews, observations, etc. can be effectively 
used as a recording tool (information and body 
languages) 

Event for prototyping Requirements analyst 
Stakeholder 
wants and 
needs 

Work knowledge R & R 

5.2.10 Run use case workshop Event for prototyping Requirements analyst Appropriate 
customer/user 

Essential steps 
that take place 
in an event 

Work knowledge R & R 

5.2.11 Build event models The whole system is broken up into events Models of events [work knowledge] Requirements analyst 
Stakeholder 
wants and 
needs 

Work knowledge Data flows between adjacent systems and 
work context as a result of temporal event R & R 

5.2.12 Build scenario models Models of the way users operate an intended 
system is recorded Scenario models Requirements analyst Users 

Stakeholder 
wants and 
needs 

Work knowledge 

Any format and 
medium that the 
user is 
comfortable with 

R & R 

5.2.12 
Section 6.1.12 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

5.2.12.1 Define technical performance measures 
(TPMs) 

Key indicators of system performance are 
identified 

Section 6.1.13 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

5.2.12.2 Define design characteristics 
Design characteristics (such as color, texture, size, 
anthropomorphic limitations, weight, and 
buoyancy) are identified and defined 

Section 6.1.14 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

5.2.12.3 Define human factors 

Human factor considerations (such as design space 
limits, climatic limits, eye movement, reach, 
ergonomics, cognitive limits, and usability) 
affecting operation of products are identified and 
examined 

Section 6.1.15 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

5.2.13 Run requirements workshop Chapter 10: Requirements workshop L & W and 
RUP 

5.2.14 Brainstorming Chapter 11: Brainstorming and idea reduction L & W 

5.2.14 Chapter 10: Idea generation meetings G & W 

5.2.15 Mind map requirements Representation of requirements in drawing and text R & R 
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5.2.16 Collect requirements via Volere Snow Cards Pre-printed cards filled out as information becomes 
available R & R Sample of Snow Card 

is on page 102 

5.2.17 Reduce ideas Chapter 11: Brainstorming and idea reduction L & W 

5.2.17.1 Pruning Chapter 11: Brainstorming and idea reduction L & W 

5.2.17.2 Grouping ideas Chapter 11: Brainstorming and idea reduction L & W 

5.2.17.3 Feature definition Chapter 11: Brainstorming and idea reduction L & W 

5.2.17.4 Prioritization Chapter 11: Brainstorming and idea reduction L & W 

5.2.18 Create storyboards for innovative concepts Chapter 12: Storyboarding L & W 

5.2.19 Create operational concepts Operation of the product is imagined and 
documented in user language 

Table 5-1: Operational concepts completeness 
sanity check H & F 

Approach depends on 
whether you are 
product developer or 
product procurer. 
Software developers 
call them 'use cases'; 
space-craft developers 
- 'operation plans' or 
'design reference 
mission'; people 
simply know them as 
'scenarios'. 

5.2.19 

Section 6.1.4 and 6.1.8 of IEEE Std 1220-
1998 (IEEE Standard for Application and 
Management of the Systems Engineering 
Process) 

IEEE 

5.2.19.1 Develop concept for each phase of the 
lifecycle 

Table 5-1: Operational concepts completeness 
sanity check H & F 

5.2.19.1.1 Outline normal operation and environment Table 5-1: Operational concepts completeness 
sanity check H & F 

5.2.19.1.2 Outline abnormal operation and environment Table 5-1: Operational concepts completeness 
sanity check H & F 

5.2.19.2 Consider viewpoints of all stakeholders Table 5-1: Operational concepts completeness 
sanity check H & F 

5.2.19.3 Assess human interface standard Table 5-1: Operational concepts completeness 
sanity check H & F 

5.2.19.4 Create use cases Chapter 13: Applying use cases L & W 

5.2.20 Role play Chapter 14: Role playing L & W 

Similar techniques 
include scripted 
walkthroughs and 
Class-Responsibility-
Collaboration (CRC) 
cards 

5.2.21 Create prototypes Chapter 15: Prototyping L & W 

5.3 Define life cycle process concepts 
Life cycle process requirements are determined to 
develop, produce, test, distribute, operate, support, 
train, and dispose of products under development 

Life cycle process requirements 

Section 6.1.1 
through 6.1.8 
of IEEE Std 
1220-1998 

Section 6.1.9 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

5.4 Determine product scope Use case (to be used in product 
scope) Requirements analyst 

Work context, 
system 
constraints, 
stakeholder 
wants and 
needs 

Work knowledge R & R 

5.4.1 Set priorities for each feature L & W 
5.4.2 Assess effort for each feature L & W 
5.4.3 Estimate risk for each feature L & W 

5.4.4 Reduce scope based on priorities, effort, and 
risk L & W 

5.4.5 Determine baseline for each release of 
Vision Document Version number L & W 

5.4.6 Get customer agreement on scope Guiding principle for scope management: 
"Underpromise and overdeliver" (page 209) L & W 

5.4.7 Advocate and practice iterative development L & W 

5.4.8 Study the adjacent systems Event-response model is used as learning tool Business event boundary + business 
opportunities 

Business event 
boundary, 
system 
constraints, 
work context 

Work knowledge R & R 
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5.4.8.1 
Look for business opportunities for how 
product can help to achieve the product 
purpose within the product constraints 

R & R 

5.4.8.2 Analyze dataflow between adjacent system 
and a process Questions on page 302 in R & R R & R 

5.4.9 Define use case boundary for each business 
event 

{Actor name} + use case name + use 
case boundary data + {business event 
name} {this leads to product scope] 

Stakeholder 
wants and 
needs, business 
event boundary 
+ business 
opportunities 

R & R 

R & R recommends 
using a leveled use 
case diagram if there 
are more than 15-20 
use cases 

5.4.9.1 Consider business opportunities R & R 
5.4.9.2 Review the work knowledge R & R 

5.4.9.2.1 Define the actor names R & R 
5.4.9.2.2 Define the use case name R & R 
5.4.9.2.3 Define the use case boundary data R & R 

5.4.9.2.4 Record the product context by adding the 
use case to a use case diagram R & R 

5.4.9.2.5 Keep track of business event name(s) that 
is/are related to this use case R & R 

5.5 Do event reconnaissance 
Business documents, business event 
boundary + knowledge sources + 
trawling techniques 

Requirements analyst 

Business 
events, work 
description and 
demonstration, 
reusable 
requirements, 
domain models, 
work context 

Reuse library, work knowledge R & R 

5.5.1 Gather business event knowledge Business documents, business event 
boundary + knowledge sources 

Work 
description and 
demonstration, 
business events, 
work context, 
domain models, 
reusable 
requirement, 
business 
documents 

Reuse library, work knowledge R & R 

5.5.1.1 
Look for business documents that might 
contain knowledge about work related to the 
event 

R & R 

5.5.1.2 Look for any documents that might contain 
requirements buried in depth R & R 

5.5.1.3 List the names of sources of the work 
context R & R 

5.5.1.4 Determine if there is any domain models that 
contain knowledge about this event R & R 

5.5.1.5 
Determine if there is any reusable 
requirements that contain knowledge about 
this event 

R & R 

5.5.2 Choose appropriate trawling techniques Considerations are made on the appropriate 
trawling techniques 

Business event boundary + 
knowledge + trawling techniques 

Business event 
boundary + 
knowledge 
sources 

Work knowledge Considerations and guidelines are found on 
page 304 and 305 in R & R R & R 

5.6 Ask clarification questions Requirement questions and system constraint 
questions are reviewed Work knowledge Requirements analyst 

Stakeholder 
wants and 
needs, system 
constraint 
questions, 
requirement 
questions 

Work knowledge Requirements template R & R 
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5.7 Evaluate results System analyst Customer, end user, 
and stakeholder RUP 

6 Identify both external and internal interfaces 

Animate or live user and inanimate external users 
are identified to clarify scope, aid risk assessment, 
reduce development costs, and improve customer 
satisfaction. 

Table 6-4: Product interface identification 
sanity check H & F 

When developing new 
product, the matrix 
may be noted for 
future investigation 
until the product is in 
design. 

6 
Section 6.1.7 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

6.1 Identify product interface Table 6-1: Checklist for individual interface 
exploration H & F 

6.2 
Search for industry standard, application 
programmer's interface (API) or interface 
control document (ICD) 

Interface requirements that product must meet are 
found 

Table 6-4: Product interface identification 
sanity check H & F 

6.2.1 Create ICD substitute if existing interface 
document is not found 

Table 6-4: Product interface identification 
sanity check H & F 

6.3 Monitor interface change outside control Changes from outside sources are monitored for 
risk assessment purposes 

Table 6-4: Product interface identification 
sanity check H & F 

6.4 Obtain agreement from people from other 
side of external interface 

Interface documentation are agreed upon and 
documented accordingly 

Interface requirement specification 
(IRS) or interface requirement 
document (IRD) 

Table 6-4: Product interface identification 
sanity check H & F 

6.5 Simplify interfaces as much as possible Table 6-4: Product interface identification 
sanity check H & F 

6.6 Document product interfaces Product interfaces (both internal and external) are 
documented 

Table 6-4: Product interface identification 
sanity check H & F 

6.7 Distribute product interface documentation Table 6-4: Product interface identification 
sanity check H & F 

6.8 Track interface through development to 
ensure reality match documentation 

Table 6-4: Product interface identification 
sanity check H & F 

7 Writing good requirements Requirements are put into simple and specific 
statements 

Clear, verifiable, and attainable needs 
expressed in requirements 

Chapter 6 by Hooks and Farry, table 7-4: 
Individual requirement sanity check, "Getting 
it right the first time - writing better 
requirements" by Quality Systems and 
Software, "Writing Good Requirements" by 
Ivy Hooks, "Characteristics of Good 
Requirements" by Pradip Kar and Michelle 
Bailey. 

H & F 

Attempting to write 
requirements before 
defining scope, 
operational concepts, 
and interface can lead 
to inconsistent and 
incomplete 
requirements. 

7 
Section 6 of IEEE Std 1233, 1998 edition 
(IEEE Guide for Developing System 
Requirements Specifications 

IEEE 

7.1 Identify potential requirements Potential requirements are recorded 

Requirements in the form of "The 
product shall…" along with sources, 
rationale and associated use case (I.e. 
requirements) 

Requirements analyst 

Potential 
requirements 
from trawling 
process 

Product scope, work knowledge R & R 

7.2 Identify functional requirements Real work (independent of how work will be 
carried out) are identified. 

Functional requirements in the form 
of "The product shall…" along with 
sources, rationale and associated use 
case 

Requirements analyst Actor's task in 
use cases 

Requirements template, work 
knowledge 

Functional requirements are characterized by 
verbs Use cases Appendix B R & R 

Sources of 
requirements include 
any artifact that 
describes products' 
actions 

7.2 
Section 6.1.10 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

7.2 Also known as required capabilities HHP 

7.3 Identify composite requirements Requirements that does not have its own testable fit 
criteria are identified 

Composite requirements for each use 
case, summarizing several testable 
individual requirements, along with 
rationale (a.k.a. high level 
requirements) 

Requirements analyst 
Requirements, 
functional 
requirements 

Work knowledge, product scope R & R 

7.4 Formalize requirements Requirements are recorded into a formal 
requirements template 

Collection of filled-out Volere shell 
cards and Volere Requirements 
Specification Template (sections: 
functional requirements and non-
functional requirements) [formalized 
requirements] 

Requirements analyst 

Requirements, 
functional 
requirements, 
composite 
requirements 

Work knowledge, requirements 
template 

Requirements 
shell Appendix B R & R 

7.4.1 Organize requirements into parent-child 
requirements 

Requirements are organized hierarchically for 
increased specificity L & W 
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7.5 Formalize system constraints System constraints are recorded into the Volere 
Requirements Specification Template Formalized system constraint Requirements analyst 

System 
constraints, 
business events 

Requirements template, work 
knowledge Appendix B R & R 

7.5 Also known as required constraints or design 
constraints 

HHP and L 
& W 

7.6 Identify non-functional requirements Characteristics or qualities that product must have 
to perform what it must do are identified 

Properties that product must have to 
support functional requirements [non-
functional requirements] 

Requirements analyst 
Functional 
requirements + 
use case 

Requirements template, work 
knowledge 

Non-functional requirements are 
characterized by adjectives, non-functional 
requirement types checklist, chapter 7 of R & 
R 

Prototypes Appendix B R & R 

Non functional 
requirement types 
include: look and feel, 
usability, 
performance, 
operational, 
maintainability, 
security, cultural and 
political, and legal 

7.6.1 Define usability To-be users' knowledge about the new system has 
to be considered "User's Bill of Rights" (page 239) L & W 

7.6.1.1 Specify required training time for users to be 
marginally productive L & W 

7.6.1.2 
Specify measurable task times for typical 
tasks or transactions that end users will carry 
out 

L & W 

7.6.1.3 
Compare usability of the new system to 
other state-of-the-art systems that the user 
community knows and likes 

L & W 

7.6.1.4 

Specify existence and required features of 
online help systems, wizards, tool tips, user 
manuals, and other forms of documentation 
and assistance 

L & W 

7.6.1.5 
Follow conventions and standards that have 
been developed for the human-to-machine 
interface 

L & W 

7.6.2 Define reliability 

Issues such as availability, mean time between 
failures (MTBF), mean time to repair (MTTR), 
accuracy, defect rate, and bugs per type are 
considered 

L & W 

7.6.3 Define performance Response time, throughput, capacity, and 
degradation modes are considered L & W 

7.6.4 Define supportability Issues such as enhancements and repairs are 
considered L & W 

7.7 Write functional fit criteria Criteria for knowing whether solution meets 
functional requirements are set 

A functional criteria for each 
functional requirement (recorded in 
the Volere Requirements 
Specification Template 

Requirements analyst Client, testers 

Functional 
requirements, 
scale of 
measurement, 
requirements 

Work knowledge Appendix B R & R 

7.7 
Section 6.1.11 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

7.7 Also known as performance requirement HHP 

Performance 
requirement must be 
coupled with each 
required constraints 
and required 
capabilities 

7.8 Write non-functional fit criteria Criteria for knowing whether solution meets non-
functional requirements are set 

A non-functional criteria for each non 
functional requirement (recorded in 
the Volere Requirements 
Specification Template 

Requirements analyst Client, testers 

Non-functional 
requirements 
and scale of 
measurement, 
requirements 

Work knowledge Appendix B R & R 

7.9 Define customer value Customer satisfaction and dissatisfaction values are 
discovered 

Understanding between team and 
client on clients' priorities and basis 
for making choices about 
which/when/whether to implement 
requirements 

Requirements analyst Client 

Clients 
satisfaction and 
dissatisfaction 
values, 
requirements 

Work knowledge Appendix B R & R 

7.9 
Section 6.1.5 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

7.9 Chapter 21: Measuring satisfaction G & W 
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7.10 Identify dependencies and conflicts Conflicting requirements are recorded Conflicting requirements Requirements analyst Requirements Work knowledge Appendix B R & R 

8 Capture rationale 
Explanations why requirements exist, assumptions 
made, relevant findings of design studies, and other 
useful information are recorded. 

Reasons, assumptions, operational 
relationships, and design decisions 
supporting each requirement 

Requirements Table 8-1: Requirement rational satiny check H & F 

9 Manage dependencies Attributes are assigned, traceability established and 
verified 

Updated requirements attributes, 
updated requirements management 
plan, updated vision 

System analyst Customer, end user, 
and stakeholder 

Requirement management plan, 
requirements attributes, vision, change 
requests, use-case model, 
supplementary specifications, design 
model, test model, risk list, 
stakeholder requests 

RequisitePro RUP 

9.1 Assign attributes System analyst Customer, end user, 
and stakeholder RUP 

9.2 Establish levels 
Requirement levels are identified to keep the big 
picture in mind, decrease development problems, 
and prevent administrative gridlock 

Updated requirements with different 
levels, each level defining what the 
each level must do 

Table 9-1: Requirement levels sanity check H & F 

9.2.1 Verify that requirement relate to level above Table 9-1: Requirement levels sanity check H & F 

9.2.2 
Check if requirement allow more than one 
architecture or design option for the next 
level 

Table 9-1: Requirement levels sanity check H & F 

9.2.3 Check if requirement leads to solution -
delete requirement if so Table 9-1: Requirement levels sanity check H & F 

9.2.4 Check if requirement is to be verified at this 
level Table 9-1: Requirement levels sanity check H & F 

9.3 Establish allocation (top down) Systems-level requirements are matched to part(s) 
that must accomplish the requirement 

Requirements are matched with part 
requirements 

Systems-level 
requirements 

Table 9-2: Requirement allocation sanity 
check H & F 

9.3.1 Make sure that every requirement is 
allocated 

Table 9-2: Requirement allocation sanity 
check H & F 

9.3.2 Check for duplicate requirements Table 9-2: Requirement allocation sanity 
check H & F 

9.3.3 Check if requirements need to be allocated to 
more than one area 

Table 9-2: Requirement allocation sanity 
check H & F 

9.3.4 Check if an interface is implied, simple and 
controllable 

Table 9-2: Requirement allocation sanity 
check H & F 

9.4 Establish and verify traceability Each requirement is checked to ensure that it came 
from a parent requirement at system level System analyst Customer, end user, 

and stakeholder Table 9-3: Requirement tracing sanity check RUP 

9.4.1 Make sure requirement tracing system is in 
place Table 9-3: Requirement tracing sanity check H & F 

9.4.2 Make sure that every requirement can be 
traced back to a higher-level requirement Table 9-3: Requirement tracing sanity check H & F 

9.4.3 Resolve duplication between levels Table 9-3: Requirement tracing sanity check H & F 

9.4.4 Eliminate orphan requirements Table 9-3: Requirement tracing sanity check H & F 

Orphan requirements 
may signal from top-
level requirements are 
missing 

9.5a Create a document tree Requirements are recorded in a document tree 
structure requirements specification 

Document tree structure requirements 
specification Table 9-4: Document tree sanity check H & F Document tree helps 

structure requirements 

9.5.1 Identify approval levels and segregate 
requirements accordingly Table 9-4: Document tree sanity check H & F 

9.5.2 
Identify external contracts and segregate 
requirements that will be contractually 
binding to each outside party 

Table 9-4: Document tree sanity check H & F 

9.5.3 Segregate requirements for frequent revision Table 9-4: Document tree sanity check H & F 

9.5.4 Segregate requirements into manageable 
document sizes Table 9-4: Document tree sanity check H & F 
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9.5b Enter requirements in Modern Software 
Requirements Specifications (SRS) package 

A collection of artifacts describing the complete 
external behavior of the system is documented Development team Vision 

Document Appendix C: Modern SRS Package Template 

Technical 
approach 
methods include: 
pseudocode, 
finite state 
machines, 
decision trees, 
activity 
diagrams, entity 
relationship 
models, object-
oriented 
analysis, and 
structured 
analysis 

L & W 

9.6 Manage changing requirements L & W 

9.7 Evaluate SRS Chapter 27: Quality measures of software 
requirements L & W 

9.7.1 Inspect quality of each individual 
specification 

The following qualities are checked: correct, 
unambiguous, complete, consistent, ranked for 
importance and stability, verifiable, modifiable, 
traceable, and understandable. 

Chapter 27: Quality measures of software 
requirements L & W 

9.7.2 Inspect quality for use-case model (use-case 
specifications, and use-case actors) 

Books by Booch (1999) and Jacobson, 
Booch, and Rumbaugh (1999) and chapter 
27: Quality measures of software 
requirements 

L & W 

9.7.3 Inspect quality for the entire Modern SRS Modern SRS package that has a good Table of 
Contents, index, revision history, and glossary 

Chapter 27: Quality measures of software 
requirements L & W 

9.8 Manage changing requirements System analyst Customer, end user, 
and stakeholder 

Reassess requirements attributes and 
traceability, manage change hierarchically RUP 

10 Verify requirements Requirements are checked to make sure that they 
support verification 

Updated requirements which are 
verifiable 

Table 10-3: Verification assessment sanity 
check H & F 

10 
Section 6.2 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

10 Traceability RequisitePro L & W 
Verification = make 
sure that you are 
doing the right thing 

10.1 Screen requirements for subjective words Table 10-1: Certain words flag unverifiable 
requirements, H & F 

10.2 Identify verificational stakeholders Table 10-3: Verification assessment sanity 
check H & F 

10.3 Decide what to verify and validate L & W 
10.3.1a Verify and validate everything L & W 

10.3.1b Use a hazard analysis to determine verify 
and validate necessities L & W 

10.4 Decide how each requirement will be 
verified 

Requirements can be verified via inspection, test, 
demonstration, and analysis 

Table 10-3: Verification assessment sanity 
check from H & F 

L & W and 
H & F 

10.4.1 Compare to customer expectations 
Requirements are checked against customer 
expectation to ensure they represent customers' 
needs, requirements, and constraints 

End-user, marketing, 
etc. 

Requirements 
provided by 
customers 

Section 6.2.1 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

10.4.2 Compare to enterprise and project 
constraints 

Requirements are checked against enterprise and 
project constraints. This is to ensure correct 
representation and that requirements stay within 
enterprise and project policies and procedures, 
acceptable risk levels, plans, resources, technology 
limitations, objectives, decisions, standards, and 
other constraints. 

Section 6.2.2 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

10.4.3 Compare to external constraints 

Requirements are checked against external 
constraints. This would include national and 
international laws; external interface requirements 
with existing or evolving requirements, platforms, 
or products; applicable general specification and 
standard provisions; and competitive product 
capabilities and characteristics 

Section 6.2.3 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

10.5 Decide when each requirement will be 
verified 

Table 10-3: Verification assessment sanity 
check H & F 

10.6 Write requirements to cut time, cost, and 
special equipment required to verify products 

Table 10-3: Verification assessment sanity 
check H & F 
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10.7 Decide how each requirement will be 
validated L & W 

Validation = make 
sure that the system is 
doing what's supposed 
to do 

10.7.1 Perform acceptance testing L & W 
10.7.2 Perform validation testing L & W 
10.7.3 Perform validation traceability L & W 
10.7.4 Perform requirements-based testing L & W 

10.8 Establish validated requirements baseline 
Section 6.2.5 of IEEE Std 1220 - 1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

10.9 Build verification matrix Table 10-3: Verification assessment sanity 
check H & F 

11 Format requirements Requirements are organized into a standard format Well-organized requirements List of 
requirements 

Table 11-1: Items your specification may 
need to cover, table 11-2: specification 
standards and sources, table 11-3: 
Requirement document format sanity check 

H & F 

Requirements can be 
organized based on 
operational concepts, 
major functions, etc.. 

11 
Section 7.3 of IEEE Std 1233, 1998 edition 
(IEEE Guide for Developing System 
Requirements Specifications 

IEEE 

11.1a Organize requirements of complex hardware 
and software system 

Requirements are organized and documented in a 
requirements specification Hierarchy of specifications L & W 

11.1.1 Refine a system into subsystems Partitions and allocations between 
subsystems 

Systems 
engineering L & W 

11.1.2 Create requirements specification for each 
subsystem External behavior of the system is described L & W 

11.1.3 Refine subsystems into its subsystems 
(optional) L & W 

11.1b Organize requirements for product families Requirements organization for a 
software product family L & W 

11.1.1 Develop a product-family Vision Document L & W 

11.1.2 Develop a set of use cases to show 
interactions among various applications L & W 

11.1.3 Develop a common software requirements 
specification 

Specific requirements for shared functionality are 
defined L & W 

11.1.4 

Develop a separate Vision Document, 
Software Requirements Specification, and a 
use case model for each product in the 
family 

L & W 

11.2 Create Vision Document A high level abstraction of problem and solution is 
documented in a Vision Document 

Figure 7-1: Template for software product 
Vision Document L & W 

11.3 Create product position statement L & W 
11.4 Circulate and gain agreement L & W 

11.5 Create use cases in Vision Document 
(appendix) L & W 

11.6 Publish Vision Document L & W 

11.7 Assign owner to Vision Document (product 
champion) 

A person or a small team is assigned to maintain 
the project vision Chapter 18: The champion L & W 

11.8 Utilize delta Vision Document Changes and updates are recorded in the delta 
Vision Document L & W 

12a Baseline requirements Requirements are considered completed at this 
point and are ready for design "Cleaned" set of requirements Requirements H & F 

12a 
Section 6.1.16 of IEEE Std 1220-1998 (IEEE 
Standard for Application and Management of 
the Systems Engineering Process) 

IEEE 

12.1 Find format, grammar, spelling , and 
typographical errors Requirements are checked for typos "Redlined" requirements Elected editor Requirements Table 12-1: Editorial sanity check H & F 

12.2 

Look for ambiguities, unverified 
assumptions, unverified assumptions, TBD, 
implementation, lack of rationale or 
unintelligible rationale, and lack of 
traceability 

Requirements are examined for obvious problems Requirement engineers or 
elected requirement writer Requirements Table 12-2: Requirement "goodness" sanity 

check H & F Assumed TBD = to 
be determined 

12.2 
Chapter 2: Ambiguity in stating requirements, 
chapter 3: Sources of ambiguity, chapter 9: 
Reducing ambiguity from start to finish 

G & W 

12.3 Look for content errors, conflicts or missing 
requirements Requirements are examined for content Recommendations (and reasons) for 

each requirement 
Selected reviewers from 
stakeholders Requirements Operational concepts Table 12-3: Requirement content sanity check H & F 

12.4 Assess product development risk Table 12-4: Risk assessment sanity check L & W and 
H & F 

Risks may surface 
from requirement 
volatility, technical 
feasibility, budget, and 
schedule 

12.5 Measure requirement quality Quality of the requirements are examined for 
rooms for improvements Analyzed data on requirements Data on 

requirements 

Requirement count, baseline review 
redlines, discrepancy analysis, change 
analysis 

Table 16-1: Measuring requirement quality 
sanity check H & F 
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12b Check requirements (quality gateway) 

Requirements are checked for completeness, 
traceability, consistency, relevancy, correctness, 
ambiguity, being solution-bound, gold-plating, and 
creep to avoid requirements creep and 
requirements leakage 

Accepted requirements, excluded 
requirements to be sent back for 
revision or omitted completely 

Requirements analyst Formalized 
requirements Appendix B R & R 

Who does Quality 
Gateway is 
determined by the 
organization's culture 

12.1 Review requirements fit criteria Communicable limits are set so that they can be 
tested 

Rejected requirement, requirement 
questions, fit reviewed requirement Requirements analyst Testers 

Formalized 
requirements, 
formalized 
system 
constraint 

Requirements template, product 
scope, work knowledge Appendix B R & R 

12.2 Review requirements relevance 
Requirements are checked to make sure that they 
are within product context and also that they are 
not solutions 

Rejected requirement, system 
constraint questions, requirement 
questions, accepted system constraint, 
relevance reviewed requirement 

Requirements analyst 
Completeness 
reviewed 
requirement 

Requirements template, product 
scope, work knowledge, requirements 
specification 

Appendix B R & R 
Abstract requirements 
are usually not 
solutions 

12.3 Review requirement viability Requirements are checked to make sure that they 
are workable within the project 

Rejected requirements, requirement 
questions, viability reviewed 
requirement 

Requirements analyst Formalized 
requirements 

Requirements template, product 
scope, work knowledge, requirements 
specification 

Appendix B R & R 

12.4 Identify gold-plated requirements Requirements are checked to make sure that they 
are absolutely necessary for the project 

Gold-plated requirements are omitted 
(if not, gold-plated ones are flagged), 
requirement questions, accepted 
requirement 

Requirements analyst 

Strategic plan 
for product, 
viability 
reviewed 
requirement 

Requirements specification Appendix B R & R 

Gold-plated 
requirements maybe 
kept for political or 
personality reasons 

12.5 Review requirements completeness Requirements are checked to make sure that they 
are complete 

Requirements with all required 
components filled out Requirements analyst Stakeholders Formalized 

requirements Volere shell Appendix B R & R 

12.6 Test requirements traceability Requirements are checked to make sure that there 
is a connection with deliverables 

Traceable requirements (complete 
with unique identifier, indicator of 
type of requirement or constraint, 
references to all business events and 
use cases, references to dependent 
requirements, references to other 
requirements, and consistent use of 
terminology) 

Requirements analyst Formalized 
requirements R & R 

12.7 Review requirements for consistent 
terminology 

Requirements are checked to make sure that each is 
understood by all in the same way Clear and unmistakable requirements Requirements analyst Formalized 

requirements Appendix A R & R 

12.8 Place customer rating on requirements Requirements are checked to make sure that they 
are of some importance Weighted requirements Requirements analyst Client, customers, 

stakeholders 
Formalized 
requirements R & R 

QED can be 
substituted for this 
step 

12c Check requirements for certain properties 
Requirements are checked to ensure that they are 
unique, normalized, linked, complete, consistent, 
bounded, modifiable, configurable, and granular. 

Complete requirements 
Section 4.2 and 6..2 of IEEE Std 1233, 1998 
edition (IEEE Guide for Developing System 
Requirements Specifications 

IEEE 

13 Prioritize requirements Requirements are grouped based on relative 
importance 

Table 13-1: Prioritizing requirements sanity 
check H & F 

13.1 Define priority classes Priority numbering is decided 

Essential, nonnegotiable, and urgent 
requirements : 1; useful, slightly 
deferrable requirements: 2; merely 
desirable, flexible, or "someday" 
requirements: 3 

Table 13-1: Prioritizing requirements sanity 
check H & F 

13.2 Classify the requirements Requirements are classified by priorities Table 13-1: Prioritizing requirements sanity 
check H & F 

Easier to classify most 
important ones and 
least important 
ones…all the rest are 
in between 

13.2.1 Assign 1's and 3's first - everything else 
default to 2 

Table 13-1: Prioritizing requirements sanity 
check H & F 

13.3 Resolve the differences Agreement on priority is granted Table 13-1: Prioritizing requirements sanity 
check H & F 

13.4 Create priority-based development schedulesTimelines for each requirement is created Table 13-1: Prioritizing requirements sanity 
check H & F 

13.5 Maintain the priorities Priorities are checked often to assure that they are 
being followed 

Table 13-1: Prioritizing requirements sanity 
check H & F 

14 Detail software requirements 
Updated requirement attributes, 
detailed supplementary specifications, 
software requirements specification 

Requirements specifier 

Vision, glossary, use case model, use 
case supplementary specifications, 
requirements attributes, requirement 
management plan, user-interface 
prototype 

SoDa RUP 
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14.1 Collect software requirements artifacts Requirements specifier RUP 

14.2 Detail the software requirements Requirements specifier RUP 
14.3 Generate supporting reports Requirements specifier RUP 

14.4 Assemble the software requirements 
specification Requirements specifier RUP 

15 Prioritize use case Use cases are prioritized and documented 
Updated requirements attributes, 
software architecture document, 
refined glossary 

Software architect - Vision, use case model, requirements, 
attributes, iteration plan, glossary RUP 

15.1 Prioritize use cases and scenarios Software architect L & W and 
RUP 

15.2 Document the use-case view Software architect L & W and 
RUP 

15.3 Evaluate results Software architect L & W and 
RUP 

16 Detail a use case 
Use cases are detailed by describing special 
requirements, communication protocols, pre-
conditions, post-conditions, and extension points 

Use case, updated supplementary 
specifications, requirements attributesRequirements specifier 

Vision, stakeholder requests, glossary, 
use case, use case model, 
supplementary specifications, use-case 
modeling guidelines, requirements 
management plan 

RequisitePro, 
RationalRose RUP 

16.1 Detail flow of events of the use case Requirements specifier RUP 

16.2 Structure the flow of events of the use case Requirements specifier RUP 

16.3 Illustrate relationships with actors and other 
use cases Requirements specifier RUP 

16.4 Describe special requirements of the use 
case Requirements specifier RUP 

16.5 Describe communication protocols Requirements specifier RUP 

16.6 Describe pre-conditions of the use case 
<optional> Requirements specifier RUP 

16.7 Describe post-conditions of the use case 
<optional> Requirements specifier RUP 

16.8 Describe extension points <optional> Requirements specifier RUP 
16.9 Evaluate results Requirements specifier RUP 

17 Review change request Requests for change are evaluated Updated change request Change control manager Change control board Change request ClearQuest RUP 

17.1 Plan for changes to happen Allowance for inevitable and necessary changes are 
considered Plan for managing changes L & W 

17.2 Baseline requirements A version number is assigned to requirements 
Old and new requirements are 
distinguished, making new 
requirements more manageable 

L & W 

17.3 Maintain responsibility for Vision Doc L & W 

Small project: product 
champion; large 
project: change 
control board 

17.4 Schedule CCB review meeting Change control manager Change control board RUP 

17.5 Setup default reports and queries to assist in 
this effort L & W 

17.6 Monitor SRS process L & W 
17.7 Lead Change Control Review Board L & W 
17.8 Retrieve change requests for review Change control manager Change control board RUP 

17.8.1 Submission of a new change request RUP 
17.8.2 Update of an existing change request RUP 

17.8.3 Consider postponing change request for a 
new release cycle RUP 

17.9 Review submitted change requests Change control manager Change control board RUP 

17.10 Perform a thorough change impact 
assessment H & F 

17.11 Use change control system to capture 
changes L & W 

17.12 Make changes hierarchically L & W 
17.13 Audit trail of history L & W 

18 Model the user interface Refined use case storyboards, refined 
actors, boundary class User-interface designer 

Use case, actors, supplementary 
specifications, vision, stakeholder 
requests, user-interface guidelines 

RUP 

18.1 Describe characteristics of related actors User-interface designer RUP 
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18.2 Create a use-case storyboard User-interface designer RUP 

Steps can be 
alternated or 

performed in parallel. 

18.3 Describe flow of events - storyboard User-interface designer RUP 

18.4 Capture usability requirements on the use-
case storyboard User-interface designer RUP 

18.5 Find boundary classes needed by the use-
case storyboard User-interface designer RUP 

18.5.1 Describe responsibility of boundary classes User-interface designer RUP 

18.5.2 Describe attributes of boundary classes User-interface designer RUP 

18.5.3 Describe relationships between boundary 
classes User-interface designer RUP 

18.5.4 Present usability requirements on boundary 
classes User-interface designer RUP 

18.5.5 Present the boundary classes in global class 
diagrams User-interface designer RUP 

18.5.6 Evaluate results User-interface designer RUP 

18.6 Describe interactions between boundary 
objects and actors User-interface designer RUP 

18.7 Complement the diagrams of the use-case 
storyboard User-interface designer RUP 

18.8 Refer to the user-interface prototype from 
the use-case storyboard User-interface designer RUP 

19 Prototype the user interface User interface prototype User-interface designer 
Use case storyboard, boundary class, 
actor, supplementary specifications, 
user-interface guidelines 

RUP 
Steps can be 
alternated or 

performed in parallel. 

19.1 Plan the prototype Prototyping plan Requirements analyst 

Event for 
prototyping, 
prototyping 
opportunity 

Prototypes Appendix A R & R 

19.2 Design the user-interface prototype User-interface designer RUP 

19.3 Build prototype 

Prototypes, context of prototype, 
objective of prototype, low fidelity 
prototype, high fidelity prototype, 
prototype building effort 

Requirements analyst 
Prototyping 
plan, prototype 
modification 

Requirements specification Appendix A R & R 

19.3.1 Build low fidelity prototype Prototypes (paper and pencil) are drawn to 
illustrate objectives of the system 

Prototypes, prototype building effort, 
context of prototype, low fidelity 
prototype, objective of prototype 

Requirements analyst Users 
Prototyping 
plan, prototype 
modification 

Requirements specification 
Detailed event/use case model, scenario 
model event/use case, entity/state diagram, 
context diagram, sketch of screen layout 

Appendix A R & R 

19.3.2 Build high fidelity prototype Prototypes (software tools) are drawn to give a 
taste of how end product feels like 

Prototypes, prototype building effort, 
context of prototype, low fidelity 
prototype, objective of prototype 

Requirements analyst Users, designers 
Prototyping 
plan, prototype 
modification 

Requirements specification 

Simulation of user interface, simulation of the 
system's behavior for a given event/use case, 
simulation of the system's behavior for a 
combination of events/use cases 

Appendix A R & R 

19.4 Evaluate the prototype Potential requirements, prototyping 
metrics Requirements analyst 

Prototype 
modification, 
context of 
prototype, 
objective of 
prototype, low 
fidelity 
prototype, high 
fidelity 
prototype, 
prototype 
building effort 

Prototypes, requirements 
specification, product scope Appendix A R & R 

19.4.1 Test high fidelity prototype with users Prototypes are experimented by users on their own 
to see if it meets the Objective of the Prototype 

Prototype modifications (used until 
objective is satisfied), usage feedback 
new requirements, requirements 
changes due to prototypes 

Requirements analyst Users 

High fidelity 
prototype, 
objective of 
prototype, 
context of 
prototype 

Prototype is modified until it satisfies 
the Objective of the Prototype Appendix A R & R 

19.4.2 Test low fidelity prototype with users Prototypes are experimented casually and 
interactively 

Prototype modifications (used until 
objective is satisfied), usage feedback 
new requirements, requirements 
changes due to prototypes 

Requirements analyst Users 

Low fidelity 
prototype, 
context of 
prototype, 
objective of 
prototype 

Prototype is modified until it satisfies 
the Objective of the Prototype Appendix A R & R 

19.4.3 Get feedback on user-interface prototype User-interface designer RUP 
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What Who When How (mechanism) Source Notes 
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates 

19.4.4 Identify new and changed requirements Usage feedback is reviewed to discover new 
requirements 

Potential requirements that needs to 
be passed through Quality Gateway Requirements analyst Usage feedback Product scope, requirements 

specification Appendix A R & R 

19.4.5 Evaluate prototyping effort Evaluation is done on the prototyping effort. This 
can be used to define Prototyping Metrics Prototyping metrics Requirements analyst Prototype 

building effort 
Requirements specification, 
prototypes Appendix A R & R 

19.5 Implement user-interface prototype User-interface designer RUP 

20 Structure use case model 
Refined use case, new use case, 
refined use case model, refined use 
case package (optional) 

System analyst 

Use case modeling guidelines, 
glossary, use case model, use cases, 
supplementary specifications, use-case 
packages (optional) 

RationalRose RUP 

20.1 Establish include-relationships between use 
cases RUP 

20.2 Establish extend-relationships between use 
cases RUP 

20.3 Establish generalizations between use cases RUP 

20.4 Establish generalizations between actors RUP 

20.5 Evaluate results RUP 
21 Do requirements post mortem Appendix A R & R 

21.1 Gather input for review Quantified findings Facilitator(s) 

Individual 
comments, 
group 
comments, 
project history 

Appendix A R & R 

21.1.1 Conduct private individual reviews 
Individual reviews are conducted based on 
questionnaires or taped interviews to provide issues 
of the project 

Points for clarification, input from 
individuals Facilitator Each project member Individual 

comments Sample questions on page 322 of R & R Appendix A R & R 

21.1.2 Conduct separate meetings with groups Group's experience are collected Input from groups Facilitator(s) Working groups 

Points for 
clarification, 
group 
comments 

Appendix A R & R 

21.1.3 Facilitator reviews facts 
The findings from individual reviews and group 
meetings are grouped and quantified and compared 
with actual history of the project 

Quantified findings Facilitator(s) 

Input from 
individuals, 
project history, 
input from 
groups 

Appendix A R & R 

21.2 Do post mortem Post mortem report Facilitator(s) 

Quantified 
findings, project 
participants 
comments 

Appendix A R & R 

21.2.1 Hold post mortem review meeting Summary of findings are delivered to all involved 
in the project Post mortem findings 

Quantified 
findings, project 
participants 
comments 

Appendix A R & R 

21.2.2 Produce post mortem report The post mortem report is circulated among project 
members Post mortem report Post mortem 

findings 
Sample of contents can be found on page 327 
of R & R Appendix A R & R 

21.3 Build a requirements filter Post mortem report, requirements 
filter Requirements analyst System 

experience 
Requirements filter, requirements 
specification, requirements template Appendix A R & R 

21.3.1 Identify filtration criteria 

The industry type for which the requirements filter 
is identified along with definition of the 
organizational environment and applicable 
technology 

Industry type, organizational 
environment, technological 
environment 

Requirements analyst System 
experience Appendix A R & R 

21.3.2 Select relevant requirement types 

Each requirement is evaluated if it apply to the 
industry type or organizational environment or 
technological environment for which the project is 
built 

Selected requirement types Requirements analyst 

Industry type, 
organizational 
environment, 
technological 
environment 

Requirements template Appendix A R & R 

21.3.3 Add new filtration criteria Additions are evaluated frequently for future 
purposes Requirements filter Requirements analyst 

Selected 
requirement 
types, post 
mortem report 

Requirements filter, requirements 
specification Appendix A R & R 
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What Who When How (mechanism) Source Notes 
Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates 

22a Review requirements Review meetings are conducted Review record Requirements reviewer Customer, end user, 
and stakeholder 

Vision, glossary, use case model, use 
case supplementary specifications, use 
case package (optional), software 
requirements specifications, use case 
modeling guidelines, iteration plan, 
change requests, user-interface 
prototype 

Checkpoints: vision, stakeholder requests, use 
case model, actors, use case, supplementary 
specifications, software requirements 
specifications, glossary, requirements 
attributes 

RequisitePro RUP 

22b Taking stock of the specification Appendix A R & R 

22.1 Review specification content 
Requirement interaction summary, 
missing requirements, contradictory 
requirements, prototyping opportunity 

Requirements analyst Strategic plan 
for product 

Requirements specification, 
requirements filter, requirements 
template 

Appendix A R & R 

22.1.1 Identify missing requirements Requirements are cross-checked for requirements 
that might have been missed Missing requirements Requirements analyst Strategic plan 

for product 
Requirements filter or requirements 
template, requirements specification Appendix A R & R 

22.1.2 Identify customer value ratings Requirements are rated for customer satisfaction 
and customer dissatisfaction 

Rated requirements (satisfied or 
dissatisfied) Requirements analyst Stakeholders 

Strategic plan 
for product, 
requirement 
interaction 
summary 

Requirements specification Appendix A R & R 

22.1.3 Identify requirement interaction 
Requirements that interact with one another (one 
design solution makes it easier or harder for the 
other) are identified 

Contradictory requirements, 
requirement interaction summary Requirements analyst Requirements Requirements specification 

Interaction exist when there is a common 
policy, data, contradictory measurements, or 
when one has an effect on the solution to the 
other 

Appendix A R & R 

22.1.4 Identify prototyping opportunity Requirements which will benefit most from 
prototyping are identified Prototyping opportunity Requirements analyst Strategic plan 

for product Requirements specification Questions on page 333 of R & R Appendix A R & R 

22.1.5 Find missing custodial requirements 
Requirements that change from time to time are 
checked to make sure that they are indeed 
changeable 

Potential requirements Requirements analyst 
System 
terminology + 
requirement 

Maintenance requirements for each item of 
stored data are checked. Context model for 
data flow are examined. External entities for 
system are checked. Storage of data items are 
inspected. Maintenance requirement is 
determined to be separate requirement or 
included as fundamental requirements 

Appendix A R & R 

22.2 Evaluate requirements risk Risk analysis, missing requirements Requirements analyst 

Requirement 
interaction 
summary, 
missing 
requirements, 
risk checklist 

Requirements specification Appendix A R & R 
Risks are okay so long 
as it is defined and 
monitored 

22.2.1 Look for likely risks Requirements specification is reviewed for likely 
risks Likely risks Requirements analyst 

Risk checklist 
and 
requirement 
interaction 
summary 

Requirements specification 

Unspecified requirement measurement is an 
indication of likely risk. Possible errors due 
to analyzing, designing and/or designing 
solution to the requirements indicate a likely 
risk. 

Appendix A R & R 

22.2.2 Quantify each risk Detailed assessment is performed on each risks Risk analysis Requirements analyst 
Likely risks, 
missing 
requirements 

Risk elements defined by Tim Lister and Tom 
DeMarco Appendix A R & R 

22.3 Estimate effort Event effort estimates, requirement 
effort estimates Requirements analyst 

Prototyping 
metrics, system 
experience, 
requirement 
interaction 
summary 

Requirements specification Appendix A R & R 

22.3.1 Identify estimation input Events or use cases are used as inputs to the effort 
estimation 

Event/use case models, functional 
requirements + non-functional 
requirements 

Requirements analyst Requirements 
specification Appendix A R & R 

22.3.2 Identify efforts for events Effort for events are estimated using Albrecht 
function points Event effort estimates Requirements analyst 

Event/use case 
models, system 
experience, 
prototyping 
metrics 

Event effort estimates = [event name + 
estimated function points] + total estimated 
function points for all events + estimate of 
what effort a function point means in this 
environment 

Appendix A R & R 
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Use case no. Name Description Results (output) Primary Support Input Control Guidelines Tools Templates 

22.3.3 Estimate requirements effort 
Effort is estimated using Albrecht function points 
(this is only suitable if event-related clusters are not 
identified) 

Requirement effort estimates Requirements analyst 

Functional 
requirements + 
non-functional 
requirements, 
prototyping 
metrics, system 
experience, 
requirement 
interaction 
summary 

Requirement effort estimates = {requirement 
ID + estimated points}+total estimated 
function points for all requirements + estimate 
of what effort a function point means in this 
environment 

Appendix A R & R 

22.4 Publish reviewed specification Reviewed specification Requirements analyst 

Event effort 
estimates, 
requirement 
effort estimates, 
risk analysis 

Requirements specification, 
requirements template Appendix A R & R 

22.4 
Section 7.4 of IEEE Std 1233, 1998 edition 
(IEEE Guide for Developing System 
Requirements Specifications 

IEEE 

22.4.1 Design form of specification Considerations are made on the design form of the 
specification Form of specification Requirements analyst Requirements specification Appendix A R & R 

22.4.1 
IEEE Std 830-1998 (IEEE Recommended 
Practice for Software Requirements 
Specifications) 

Annex A IEEE 

22.4.2 Assemble the specification Specification is arranged for easy navigation Reviewed specification Requirements analyst 

Event effort 
estimates, form 
of specification, 
risk analysis, 
requirement 
effort estimates 

Requirements specification, 
requirements template Appendix A R & R 
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