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Laser-induced breakdown spectroscopy (LIBS) is an advanced data analysis technique 

for spectral analysis based on the direct measurement of the spectrum of optical emission 

from a laser-induced plasma. Assignment of different atomic and ionic lines, which are 

signatures of a particular element, is the basis of a qualitative identifcation of the species 

present in plasma. The relative intensities of these atomic and ionic lines can be used 

for the quantitative determination of the corresponding elements present in different sam-

ples. Calibration curve based on absolute intensity is the statistical method of determining 

concentrations of elements in different samples. Since we need an exact knowledge of the 

sample composition to build the proper calibration curve, this method has some limitations 

in the case of samples of unknown composition. The current research is to investigate the 

usefulness of ANN for the determination of the element concentrations from spectral data. 



From the study it is shown that neural networks predict elemental concentrations that are 

at least as good as the results obtained from traditional analysis. Also by automating the 

analysis process, we have achieved a vast saving in the time required for the data analysis. 
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CHAPTER I 

INTRODUCTION 

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State 

University develops advanced data analysis techniques for spectral analysis for environ-

mental concern. Laser-induced breakdown spectroscopy (LIBS) is one method of analysis 

by direct measurement of the spectrum of optical emission from a laser-induced plasma. 

Laser-induced breakdown spectroscopy (LIBS) analysis has been the subject of research 

over many years [35, 33]. This technique is attractive as a remote, real time, and non-

destructive method of monitoring material composition. In this technique a high power 

laser radiation is focused on sample surface, which instantaneously evaporates a thin sur-

face layer and initiates an avalanche ionization of the sample elements, giving rise to the 

so-called breakdown effect. Assignment of different atomic and ionic lines, which are 

signatures of a particular element, is the basis of a qualitative identifcation of the species 

present in plasma. 

The relative intensities of these atomic and ionic lines can be used for the quantitative 

determination of the corresponding elements present in different samples. Use of calibra-

tion curve based on absolute intensity is a statistical method for determining concentrations 

of elements in different samples. Since we need an exact knowledge of the sample com-
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position to build the proper calibration curve, this method has some limitations in the case 

of samples of unknown composition. 

The current research is to investigate the usefulness of artifcial neural networks (ANN) 

for the determination of the element concentrations from spectral data. Recently ANN 

have been fnding use in many applications. Its classifcation and prediction capabilities 

are especially useful in spectral analysis. It has been used to identify modifed starches 

from infrared spectra [22], polymer from LIBS spectra [38], and to obtain quantitative 

composition of chlorinated hydrocarbons from Raman spectra [11]. By training neural 

network, it is possible to analyze LIBS data for species that constitute a sample, without 

calibration curve. 

1.1 Hypotheses 

The research hypotheses are 

1. Elemental concentrations determined from spectral data using artifcial neural net-
works are at least as good as those obtained using traditional statistical calibration 
methods. 

2. Operator assistance needed to acquire and analyze spectral data may be minimized 
through automation. 

The hypotheses are supported through the development of artifcial neural network 

models for each element and analyzing the spectral data for each element. Data analysis 

process was automated to compare operator assistance for manual and automated analyses. 

The research results will provide spectroscopists with an alternate method of analyzing 

spectral data and enable them to determine concentrations of the elements of interest. 
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1.2 Organization 

The organization of this thesis is as follows: Chapter 2 discusses related work in the 

application of artifcial neural networks for the analysis of spectral data. Chapter 3 presents 

the architecture, working and design of an artifcial neural network. Chapter 4 gives the 

experimental details while the results and analysis are given in Chapter 5. Chapter 6 

concludes the thesis and suggests some directions for future research. 



CHAPTER II 

RELATED WORK 

This chapter provides a brief discussion of the application of LIBS technique in differ-

ent felds, a brief introduction to artifcial neural networks, its application in diverse areas 

and their advantages, and concludes with the details of neural network applications for 

analysing LIBS spectral data. 

2.1 Laser Induced Breakdown Spectroscopy 

The area of spectral analysis has grown considerably in the past decades. A multi-

tude of methods are available like the Fourier Transform, AutoRegressive and Inductively 

Couped Plasma (ICP). These methods of spectral analysis provide poor resolution and ex-

hibit spurious peaks when high-resolution is requried [23, 4]. Laser induced breakdown 

spectroscopy (LIBS) is an advanced diagnostic technique for spectral analysis. It is a 

novel, rapid and feld-deplo yable method of elemental analysis. Ever since its inception it 

has been the subject of research over many years. LIBS has been a promising tool to in-

vestigate the constituents of solids, liquids and gases [41, 40, 32]. This method of analysis 

is ideal for differentiation of metals based on their relative concentrations, and is appli-

cable to both conducting and non-conducting samples. In the LIBS method, laser pulses 
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are focused on a material to form plasmas or sparks which are emitted from the excited 

atoms. This light is detected for the presence of elements on the basis of their unique 

spectral signatures. It is important in this analysis to determine the spectral region where 

the isolated emission lines corresponding to the species of interest lie [1]. LIBS can pro-

vide on-line elemental analysis during processing, quality assurance and quality control 

decisions. This enables real-time analyses of molten metals, as well as analyses of metals 

in otherwise inaccessible locations [34]. 

Advantages of LIBS over conventional elemental analysis methods are [8]: little to 

no sample preparation, rapid analysis (one measurement per laser pulse), simultaneous 

multi-element detection and simple with stand-off analysis capability. 

LIBS technique is useful for a variety of applications ranging from environmental mon-

itoring, material analysis (metals, plastics), forensics and biomedical studies, military and 

safety needs (such as explosive particles, chemical and biological warfare agents) and art 

restoration [1]. Several research groups were engaged to explore the possibility of using 

LIBS by comparing the LIBS signal obtained for a given element to a suitable calibration 

curve [35]. Calibration based on absolute intensity and line ratios were used by many 

researchers and have certain degree of success. For quantitative measurements, the cali-

bration data should be collected with experimental condition as close to the measurements 

as possible. Galbacs et al. [12] has proposed a new calibration approach based on linear 

correction for binary alloy. This method can be considered as a reliable semi quantitative 

method for samples containing 2-4 components. Ciucci et al. [7], have recently developed 
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an algorithm for calibration-free LIBS analysis. However, it requries the existence of local 

thermal equilibrium in laser-induced plasma. 

2.2 Artifcial Neural Networks 

An artifcial neural network (ANN) is an information processing paradigm. ANN tries 

to solve problems by imitating the structure and function of human brain [10]. Ever since 

the establishment of this feld before the advent of computers, neural networks with their 

remarkable ability to derive meaning from complicated or imprecise data, were used to 

extract patterns and detect trends that are too complex to be noticed by either humans 

or computer techniques [24]. It is confgured for a specifc application through learning 

process. With their superior classifcation and prediction capabilities, ANN’s have broad 

applicability to real world business problems. Some of the areas where neural networks 

are helpful are sales forecasting, industiral process control, customer research, data vali-

dation, risk management, target tracking and marketing [43]. Schoones [39] in his work 

has given an overview of the practical applications of artifcial neural networks and their 

potential application in signal processing. Neural networks were used to predict the testa-

bility and faults in software systems [20, 21]. ANNs have found their ways in the defense 

applications also. Pirate et al. [30] developed a neural network based system for the iden-

tifcation, localization and tracking of a moving target in a visual scene . The potential of 

artifcial neural networks (ANNs) for satellite image classifcation of land cover/land use, 

according to the hierarchical statistical nomenclature (CLUSTERS), were demonstrated 
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and tested [18]. The work also involves: analysis of the potential for automating image 

classifcation tasks using ANNs in terms of their level of details, the possible use of ANNs 

in quality control procedures during classifcation/interpretation, and the quality control 

on the results. 

Artifcial neural networks have found their impact in spectral analysis. Keller et al. 

[19] discusses their application in analyzing nuclear spectral data. Benzing, Hopkins, and 

Whitaker [5] have shown how ANN has been used to analyze exhaust fame from space 

shuttle engine to identify trace elements. Puranik [31] reports how parameter monitoring 

with the help of embedded ANN may be used to control a thermal process. Jones, Irwin 

and Hippel [17] have been investigating the use of artifcial neural networks (ANNs) with 

principal components analysis (PCA) front-end compression as a means of quantifying 

stellar spectral classifcation. Ponz and Vieira [44] explored two automated classifcation 

methods to classify the stellar spectral data using neural networks. Neural Networks were 

also used to identify modifed starches from infrared spectra [22] and to obtain quantitative 

composition of chlorinated hydrocarbons from Raman spectra [11]. 

There has been little work towards the application of artifcial neural networks for the 

analysis of LIBS spectra. Samek, Telle, and Beddows [37] has shown that the combi-

nation of LIBS and pattern recognition algorithms provide a potentially useful tool for 

dentists for fast material identifcation problems, for example the precise control of the 

laser drilling/cleaning process. They are used in the polymer identifcation of the LIBS 

spectra [38]. Philip et al. [28] used artifcial neural networks to identify elements present 
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in exhaust gases from LIBS spectra. Philip et al. [29] discuss the use of neural networks 

in spectral analysis to verify the concentration of elements present in gaseous media. In-

akollu et al. [16] has shown that application of neural networks for elemental concentration 

determination in molten alloys gives results at least the same as those from conventional 

calculations but many times the results are better than those from the conventional calcu-

lations. 

Not much work has been done towards the automation of LIBS spectral analysis for el-

emental concentrations. Panda [27] has developed an intelligent system, ”Spectral Support 

System (SSS)”, to make the LIBS a real time measurement technique. This system uses 

different artifcial neural networks and predicts the concentrations of different elements in 

the exhaust gas and the glass produced by a plasma torch. This thesis is towards devel-

oping an automated software for the elemental analysis of LIBS spectral data for molten 

alloys. 



CHAPTER III 

ARTIFICIAL NEURAL NETWORKS 

Neural Networks can simulate some intelligence activities of the human brain, such as 

sense and inspiration, as well as thinking of images. [3] 

Researchers in many distinct disciplines like biology, mathematics, electronics, medicine, 

computing, psychology and physics work with artifcial neural networks (ANN). The ba-

sic idea is to use the knowledge of the nervous system and the human brain to design 

intelligent systems. They represent a computational paradigm, in which the solution to a 

problem is learned from a set of examples. It is thought to be an information-processing 

archetype similar to the densely interconnected, parallel architecture of the mammalian 

brain-processing unit [24]. They have the capability for comprehension, reasoning, per-

ception, communication and learning [10]. This can make fast, intuitive and optimum 

answers after training. They evolve mathematical models by learning from input exam-

ples, and handle non-linear, noisy and imprecise data quite well. 

Neural network models give ideal solutions to classifcation and prediction problems 

with high degree of precision and accuracy [13]. Their robust and highly parallel process-

ing nature makes them capable of non-linear modelling. This chapter begins with various 

defnitions used to describe neural network in literature. In section 3.2, we will see the 
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different architectures and their working principle. The third section deals with the design 

of the neural network, the fourth section gives insights into the training and learning pro-

cesses. This chapter ends with a listing of neural networks applications, their advantages 

and disadvantages. 

3.1 Defnitions 

In literature a wide variety of defnitions and explanations for the terms Artifcial Neu-

ral Networks can be found. There is no universally accepted defnition for an ANN. In this 

section, a few of the defnitions from different authors are provided. 

According to [2] ”.... a neural network is a system composed of many simple pro-

cessing elements operating in parallel whose function is determined by network structure, 

connection strengths, and the processing performed at computing elements or nodes.” 

According to Zurada [45] ”Artifcial neural systems or neural networks, are physical 

cellular systems which can acquire, store, and utilize experiential knowledge.” 

According to Nigrin [26] ”A neural network is a circuit composed of a very large 

number of simple processing elements that are neurally based. Each element operates 

only on local information. Furthermore each element operates asynchronously; thus there 

is no overall system clock.” 

According to Haykin [15] ”A neural network is a masively parallel distributed pro-

cessor that has a natural propensity for storing experiential knowledge and making it 

available for use. It resembles the brain in two respects: 
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1. Knowledge is acquired by the network through a learning process. 

2. Interneuron connection strengths known as synaptic weights are used to store the 
knowledge”. 

Harvey defnes it as [14] ”A neural network is a dynamical system with one-way inter-

connections. It carries out processing by its response to inputs. The processing elements 

are nodes;the interconnects are directed links. Each processing element has a single out-

put signal from which copies fan out.” 

3.2 Architecture and Working of the Network 

Artifcial neural network consists of a large number of simple processing elements 

(PEs) densely interconnected, analogous to neurons of human brain. The neural network 

is made up of several layers of processing elements connected together via unidirectional 

signal channels associated with weights, analogous to synapses. These processing ele-

ments work in unision to slove a problem. The knowledge of the network is represented 

by its weights [36]. Every useful artifcial neural net has a minimum of three layers: an 

input layer through which data is given to the network, an output layer that holds the re-

sponse relative to the input and optional layer between the input and output layers called 

the hidden layer where learning takes place. The number of neurons in the input and out-

put layers can be determined by the number of input and output variables in the physical 

system [42]. The number of hidden layers and the nunber of neurons in the hidden layers 

are arbitrary and can vary from zero to any fnite number. 



 
 

 
 

 
 

Hidden 
layer 

Output 
layer Input 

layer 

Figure 3.1 A simple neural network architecture 
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Figure 3.1 shows a simple network architecture with four inputs and one output. The 

circles in the fgure denote the PEs arranged in layers. A processing element (PE) can 

have many input paths and combines, usually by a simple summation, the values of these 

input paths. The network learns by adapting the weights of its connections according to 

surrounding environment. The behavior of the output unit depends on the activity of the 

hidden and input units. They are data driven devices. Neural networks are exceptionally 

effective for predicting events when the networks have large training data sets to pull on. 

With the given inputs and the related outputs, the network learns how the inputs of each 

data set are associated to the output. The network then continuously refnes and organizes 

itself by adjusting the synaptic weights to ft the data, so that it produces relatively accurate 

response for a given input. Information processing of a single processing element is shown 
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Figure 3.2 Information processing of a single processing element 

in Figure 3.2 . Multiplying the input ��� by weight � � can approximate the effect of a 

particular input unit. These weighted signals are added up to produce overall internal 

activation for the processing element. This activation level is passed through a transfer 

function, which produces an effective signal ’a’. If the activation is beyond a certain 

threshold, then the system gives the output response ’y’. 

�������
	��������������� and corresponding weights In Figure 3.2 there are n inputs with signals 

��� ������������ �� � � . The signals shown are Boolean valued with values ’1’ or ’0’ only. The 

system activation a is given by [10], 

��� �����˘� ˇ�
	ˆ�˙�������˝� �˛���� � � (3.1) 

With this system activation, the output ° is given by, 

� ˜° if a !#" 
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�%$ if a &#" (3.2) 

Generally there are two types of neural network architectures, Feed-forward networks 

and the Feedback networks [43, 10]. 

3.3 Learning Process 

Every neural network possesses knowledge which is contained in the values of the 

connection weights. The knowledge stored in the network can be modifed by changing 

the values of the weights and applying specifc learning rule. The process of determining 

the weights by which the best match between the desired output and the ANN output is 

called training process [6]. In this training process all the weights are changed to minimize 

the error between desired output and the ANN output. This kind of networks which are 

able to change their weights are known as ”adaptive networks” [10]. Neural networks 

are trained to learn the real non-linear relationships between the inputs and outputs of the 

system under study. The only information needed to train the ANN is ample input/output 

data. No prior knowledge of the system is needed. Figure 3.3 gives the algorithm involved 

in the learning process. 

A suitable means of data representation to the neural network is the most important 

characteristic which affects the performance of the network. Input data needs to be scaled 

in conjunction with the outputs. To get the desired outputs, the connection weight vec-

tors must be small values ( ' 1) [9]. Hence the inputs must be with in the same range. 

Thus, the input data are normalized such that they lie between 0 and 1. The output of the 
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Figure 3.3 Flow chart of the learning process 
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neural nets is dependent on their weights. The learning paradigm of neural networks in-

volves developing mathematical models to learn from the input data and extract important 

features, training the network with input/output data sets, in accordance with a training 

algorithm, iteratively adjusts the connection weights, which contributes to the knowledge 

necessary to solve related problems. Training will be most effective if the training data 

is spread throughout the input space. Learning algorithms are classifed into two types 

namely supervised and unsupervised [24]. 

3.3.1 Supervised learning 

In supervised training, the network gets a set of labeled training data. By labeled, it means 

that the training data consists of many pairs of input/output patterns. The inputs are pro-

cessed and the resultant output is compared against the desired output. The error is then 

propagated back through the system, enabling the system to adjust its weights in order to 

reduce the error. This process is repeated until the connection weights are refned to allow 

for the minimum error. Thus the network learns from the training data, in accordance with 

the learning rule and infers a relationship between the inputs and the corresponding out-

puts. With this knowledge of the relationship between input and output, a neural network 

can make predictions for unknown input data. 
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3.3.2 Unsupervised learning 

A labeled data set is not provided for unsupervised learning. The training set consists of 

input training patterns only. The network learns to adapt based on the experiences collected 

through the previous training patterns. Unsupervised algorithms perform clustering of the 

data into similar groups based on the measured attributes or features serving as input [24]. 

The difference between the desired output and the network output is taken as the cri-

teria for stopping the network training. Root-mean Sqaure Error method can be used for 

this purpose. However, over-trained network would result in overftting. Overtraining is 

a phenomenon occured when a network instead of learning trends in the presented data, 

memorizes peculiarities of the training data [9]. 

3.4 Validating Process 

Validating Process is carried out to validate the network on new/unknown data sets, 

called the validation set. This is a process which is performed after training the network. 

A properly built and trained network will result in the output which is acceptable. The 

network which can yield the best performance on the validation samples would be the best 

accurate model. If the validation sample outputs are not acceptable then a new network 

is to be built undergoing the whole process of learning and testing. Figure 3.4 gives the 

algorithm involved in the validation process. 
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3.5 Design of Neural Networks 

The design issues are based on the application. The design decisions involve in the 

arrangement of processing elements in different layers, the number of hidden layers, the 

number of processing elements in the hidden layer, the learning algorithm, and the data 

set. Design of a neural network is an iterative process and goes on by trial and error 

method. In general, there are different kinds of neural network architectures available, 

such as Learning Vector Quantization (LVQ), Probabilistic Neural Network (PNN), Back 

Propagation (BP) and Self-Organizing Map (SOM) etc. Back Propagation is the most 

known architecture. 

The weights connected to the output units are adjusted in order to reduce these errors. 

Finally, errors are propagated back to the connections from the input units. This process 

of backpropagaiton continues until the error is within the threshold value. Depending on 

the complexity of the problem the number of hidden layers vary, but theoretically no more 

than three hidden layers should be used. The number of hidden neurons is determined by 

trial and error until the network performs its best. As the number of hidden layer neuron 

increases, the network becomes overft resulting in imprecise and over predictions. 

3.6 Applications of Neural Networks 

Given the explanation of neural networks and how they work, in this section various 

applications of neural networks are mentioned. They have broad applicability in indus-

try and to real world business problems. Some of the areas where neural networks are 
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very helpful are sales forecasting, industrial process control, customer research, data val-

idation, risk management, target tracking and marketing [43]. They have also been used 

for bankruptcy prediction for credit card institutions. The most successful applications of 

neural networks are in categorization and pattern recognition. They are used to classify the 

object under investigation e.g. an illness, a pattern, a picture, as one of numerous possible 

categories. Neural networks are good tools for Data Association and Data Mining. They 

are used for data fltering e.g. take the noise out of a telephone signal [15]. 



CHAPTER IV 

EXPERIMENTAL DESIGN 

This chapter presents the experimental setup and the methodologies to validate the 

proposed hypotheses. Experiments were conducted at LIBS lab at the Diagnostic Intru-

mentation and Analysis Laboratory, Mississippi State University. The organization of this 

chapter is as follows: frst section provides the experimental details and the methodology 

towards the validation of the frst hypothesis, details of the neural network models and 

the data processing techniques used. Second section gives details about the automation 

of data analysis and provides prototype for the automation for spectral data analysis using 

artifcial neural networks. This prototype is used for validating the second hypothesis. 

4.1 Comparison of the analysis techniques 

This section provides the details of experimental setup and the methodologies used 

to support the frst hypothesis of this thesis which proposes that analysis of LIBS spectral 

data using neural networks is at least as good as traditional calibration analysis. LIBS 

instrument is used to record the spectra of the element of interest in the given sample. 

LIBS spectra of seven different samples were recorded. 
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4.1.1 LIBS data acquisition and analysis 

Data Acquisition is the process of porting data in different formats from different instru-

ments or devices to computer memory or storage devices. Once the data is acquired it is 

analyzed for the results. The stages of data acquisition and analysis are shown in Figure 4.1 
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Figure 4.1 Stages of data analysis 

 

Data acquisition for this thesis was done by fber optic LIBS system. Figure 4.2 shows 

the LIBS setup and the details of the experimental setup are described in [33]. In brief, 

a frequency-doubled Nd:YAG laser beam is coupled to the optical fber by using dichroic 

mirror and 10 cm focal length lens. The laser beam transmitted through the optical fber 

is collimated with a 10cm focal length lens and then focused on the sample with another 

plano convex lens f = 10 cm. The emission from the laser produced plasma at the fo-

cal point is collected by the same lenses and optic fber . The optical emission travelling 

through the backward direction with respect to the laser beam in the optical fber is fnally 
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Figure 4.2 LIBS experimental set-up 

focused on to an optical fber bundle with a 20-cm focal length lens. The fber bundle 

is round to slit type, which consists of 78 fbers of 100 ( m diameter. The slit type end 

of the fber bundle delivers the emission to the entrance slit of a spectrometer equipped 

with a 2400 lines/mm grating blazed at 300 nm. An intensifed charge couple detector 

was used to detect the dispersed optical emission from the spectrograph. A computer with 

Win-Spec/32 software is used for data acquisition and analysis. Multiple laser shots (100 

pulses) spectrum was stored in ”accumulation” mode. 

Fifty spectra were stored in one fle for analysis to get average area/intensity value for 

the desired line. Figure 4.3 shows a sample spectrum, which is intensity vs wavelength. 

The region of interest is about the wavelength 404.154 nm for Manganeese. In calibration 
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curve analysis, the relative composition of various elements can be determined and the 

bulk elements in the sample can be identifed. The key to this type of analysis is to fnd 

a spectral region where there are isolated emission lines corresponding to the species of 

interest. Once the positions of these lines have been determined, regions of interest can be 

defned and the net peak area (equal to the difference between the total peak area and the 

background area) can be calculated. The quantitative spectral analysis involves relating 

the spectral line intensity of an element in the plasma to the concentration of that element 

in the target sample. All the Al alloy samples were also analyzed chemically to get the 

exact concentration of the elements in particular samples. 
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4.1.2 Neural network analysis 

For this thesis, an automated neural network tool Predict from Neural Ware was used. 

Scott Fahlman of Carnegie Mellon University developed this constructive model [25]. The 

number of input neurons of the neural net is determined by the number of inputs to the 

system. The details of the input data selection is given in the next chapter. The output of 

the net is the concentration of the element and hence we have one output neuron. 

4.1.2.1 Standardization 

To get the desired outputs, connection weights of the neural net should be small values, 

which makes the inputs also to be within the same range [9]. To get this effect, the experi-

mental results were normalized such that they lie between 0 and 1. This removes instability 

in the network output due to wide variations in the intensities of the peaks from different 

spectra. The formula used was 

�<� (4.1) 

where 
)*=,/. �0 is the standard intensity 

)65 �7� is the minimum intensity 

)65ˆ.>9 
is the maximum intensity 

) 
is any intensity on the spectrum 
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4.1.2.2 Extraction 

Each data fle consists of 200-350 spectra for any one concentration of an element. Each 

spectrum contains 27 kilobytes of data. Each value in the spectrum corresponds to the 

emission intensity at a specifc wavelength within the spectrum. The nature of raw data 

from Winspec and more details of the data fle are discussed in section 4.2.1. 

Stability of output from a neural network model depends on its input data sets. The 

most common approach in selecting the data sets was to input an entire spectrum. Philip 

et al. [29] has shown that giving a complete spectrum to the neural network as input 

would increase the model complexity under training, and the presence of noise in the data 

makes the model ineffcient. Another choice was to select the data at regular intervals to 

form the input data set. But some valuable information from the data set can be missing 

and can affect the result of analysis. Other alternatives are centered on the peaks in the 

spectra. One of them is to use the peak intensities of characteristic lines. This single point 

approach does not make use of special properties of a line such as its width or shape. The 

other approach is to use intensity values along a line of interest to capture its properties. 

Since our interest was to fnd concentration of a particular element we concentrated on 

those peaks of the elements. The analyte lines of Chromium (359.349 nm), Magnesium 

(383.829 nm), Manganese (404.16 nm) and Copper (327.45 nm) were used for analysis of 

the elements in Al alloy samples. We have used intensities from +/-10 channels from the 

peak of the analyte lines as input to the ANN. These 21 values along with the experimental 
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conditions such as laser power, neutral density flter , forms the input vector of the network 

model. 

Neural network model was trained with a learning set of 2000 - 2500 input vectors and 

tested with a data set of 1500- 2000 data points. Initially, a single network for all the con-

centrations of each element was developed. However, its outputs varied widely from the 

expected values. The reason for this could be that the network was over trained with par-

ticular sets of data and was not able to learn for general cases. Therefore, separate models 

were developed for each element based on their concentration values. Element concen-

trations more than 1 were labeled as high, and those less than 1 as low. This separation 

of the data sets produced results that agreed with actual values. The resultant elemental 

concentration is the average of all predicted values of the respective neural network model. 

Neural network model is validated using new data sets. Validation set consists of 50 data 

points. Results of the analysis are discussed in Chapter 5. 

4.2 Prototype for Automation 

This section provides the experimental setup and the methodology details used to test the 

second hypothesis, which states that operator assitance for the acquisition and analysis of 

spectral data can be minimized by automating the system. To test this hypothesis, interface 

software was developed to integrate all the steps from data acquisition to results. Currently 

data analysis using ANN is done off-line. Stages of the prototype for automation is shown 

in Figure 4.4. The prototype takes data from LIBS measurements and performs on-line 
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analysis. Each stage is discussed in detail in the following sections. 
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Figure 4.4 Prototype for automation 

 

4.2.1 Data conversion 

Spectral fles obtained from the LIBS experiment set-up are in binary format with .spe 

extension. All WinSpec fles (version 1.6) begin with 4100-byte header, followed by the 

raw signal data. Format of a spectral fle is shown in Figure 4.5. Each fle consists of 50 

frames (spectra), with each frame containing 1024 data values. Spectral data is extracted 

from each fle and is written into text fles. 
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Figure 4.5 Spectrum fle format 

 

During off-line analysis Winspec software was used to convert data from binary to 

ASCII manually. However, a software interface was developed for on-line conversion 

of raw data fles into ASCII fles. ASCII fle format is shown in Figure 4.6. This con-

verted data fle forms the primary input for the artifcial neural network in the automated 

prototype. The frst column contains the wavelength and the second column contains cor-

responding intensity. 

4.2.2 Data preprocessing 

The ASCII fle is further preprocessed to improve learning effcienc y of the ANN and 

to get better results. Procedures like standardization and data extractions that were per-

formed on the ASCII data fles are the same as discussed in 4.1.2.1 and 4.1.2.2. However, 

preprocessing was done right after data conversion automatically in the prototype. 
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304.99202 311 
305.1246 393 
305.202 411 
.... …. 
..... …. 
.... …. 
.... …. 

326.01652 -36 
326.05801 -83 

Figure 4.6 ASCII data fle format 

4.2.3 Selection of executable artifcial neural network models 

Neural networks developed for each specifc element and concentration, and a common 

network trained for all elements and concentrations, are included in the prototype. The 

prototype uses a two - step approach to select an appropriate neural network: 

1. Determine the region of concentration (high/low) for a given data set using the com-
mon network. 

2. Based on the region from step 1, select a specifc network for more accurate concen-
tration. 

To support different levels of user expertise, both manual and automatic modes of 

operation are provided in the prototype. According to the selection of the mode and the 

selection of element of interest, respective network selection is determined. In the auto 

mode steps 1 and 2 of the network selection process are performed automatically, without 
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user intervention. However, in the manual mode, after step 1 of the selection process, the 

system waits for the user to select a specifc network. 

4.2.4 User Interface 

User interaction with the system is described in this section. The main page of this GUI 

is shown in Figure 4.7. On selecting either Auto/Manual modes, the system displays one 

of the windows shown in Figure 4.8 and Figure 4.9. The user may select the element of 

interest and corresponding spectrum fle from this window. 

Figure 4.7 Main user interface 
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Figure 4.8 Auto mode 

Figure 4.9 Manual mode 
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4.2.5 Experiments on Effort Analysis 

Data fles for each element were analyzed manually. We have considered the elements 

Magnesium for 1.450 and 0.518 wt(%), Cr for 0.044 wt(%), Mn for 0.079 wt(%) and Cu 

for 1.222 wt(%). The manual mode of analysis consists of, converting the raw spectrum 

fle which is in binary format into ASCII format using the Winspec software. This conver-

sion gives us 50 different fles. The next step is to put all the 50 fles into one excel sheet, 

extract the data sets in the given region of interest. These data sets forms the inputs to the 

neural network. Time taken for this manual analysis is measured using a stop watch. Fac-

tors that effect the manual analysis are discussed in Chapter 5. Files which are considered 

for manual analysis are analyzed automatically by the prototype. In the auto mode, after 

the selection of the element for analysis and the corresponding spectrum fle, all the above 

mentioned steps in manual process is carried out automatically. The experimental results 

are discussed in Chapter 5. 



CHAPTER V 

RESULTS AND ANALYSIS 

This chapter analyses in detail the experimental results obtained from the steps dis-

cussed in Chapter 4. Section 5.1 provides details of the factors that are used for the analy-

sis of the calibration results and the neural network predictions, in order to prove the frst 

hypothesis. Section 5.2 analyses the times taken for the manual operation and the auto 

operation for neural network predictions, to prove the second hypothesis. 

5.1 Comparison of Data Analysis Techniques 

LIBS spectra of different alloy elements were recorded. Analyte lines of Cr(359.349 

nm), Mg (383.829 nm), Mn (404.16 nm) and Cu (327.45 nm) were used for the analysis of 

these elements in Al alloy samples. Data was analyzed using traditional calibration curve 

method and also using neural networks. We have used relative accuracy and precision as 

the criteria to compare the results obtained from the two. Relative accuracy and relative 

precision are defned in equations 5.1 and 5.2. 

�NM LO@�P E I C @�PRQTS˝U�I�@�U C L �VC>E S˛UW2XHYI C K � B=Q3S˝U�I�@�U C L �DC>E S˝U?A@�B �DC>EGF @�HJI�I�K
L � I ° HJI C K � B=QTS˛UZI+@�U C L �DC>E S˝U (5.1) 
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The results of data analysis using the neural networks and the calibration method for 

Cr (359.349 nm) line are shown in Table 5.1. 

Table 5.1 Comparison of neural predictions with the calibration curve analysis for Cr 

Chemical Neural Network Calibration 
Analysis Prediction Rel. Rel. Prediction Rel. Rel. 

(%) (%) Accry.(%) Prec.(%) (%) Accry.(%) Prec.(%) 
0.0 0.009 — 24.784 0.094 — 26.878 

0.040 0.037 7.500 16.153 0.062 54.075 16.583 
0.042 0.043 2.381 4.651 0.042 0.043 16.4573 
0.044 0.043 2.273 18.047 0.029 34.100 18.9606 
0.060 0.059 1.667 3.559 0.029 50.813 22.251 
0.173 0.175 1.156 12.881 0.236 36.636 17.445 
0.275 0.280 1.818 8.065 0.268 2.473 14.172 
0.473 0.466 1.479 0.566 0.316 33.102 19.705 

Column 1 of the table contains concentrations from chemical analysis (actual concen-

trations) of the samples. Results from neural networks are given in columns 2 to 4 and the 

traditional calibration results are given in columns 5 to 7. The concentrations shown in 

the table are wt(%) concentrations. The table shows the average of neural networks output 

values, relative accuracy and relative precision of the predicted values along with the val-

ues from calculations using calibration curve. The performances of the two methods are 

more evident in the graph shown in Figure 5.1. 
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The straight line represents the actual concentrations as determined by the chemical 

analysis. Overall, the values from the neural network are closer to the actual concentra-

tions. Similar plots for Mg, Mn, and Cu are given in Figure 5.2 - Figure 5.4. 

It is clear from the fgures that the results obtained from ANN are closer to the results 

obtained from the elemental analysis as compared with the calibration analysis. This ob-

servation shows that prediction of elemental concentration in unknown material by ANN 

is suitable even for a material having a range of elemental concentrations from 0-5%. It is 

evident from the tables and plots that overall neural network predictions of element con-

centrations are as good as or better than the values obtained through analytical methods. 

Neural networks predicted concentration values are closer to those determined through 
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chemical analysis than calibration method in 75% of the cases. This trend is consistent 

with the values for other elements also. From the absolute concentration plots in Fig-

ure 5.1 through Figure 5.4, one may notice that only two neural network predicted points 

deviates more than those estimated otherwise. All these indicate superior performance of 

artifcial neural networks in predicting elemental concentrations. 

Since Neural Networks learn from examples, we need to create networks that can deal 

with general situations such as fuctuations in experimental conditions. Such a neural net-

work model makes good predictions for different elements without the need to make a new 

network each time. A limiting factor in this case is the need to expose the network with 
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data distributed across the range of fuctuation of interest. However, this would eliminate 

the need to use separate calibration curves depending on the experimental conditions. 

5.2 Effort Analysis 

Spectral data analysis using ANN can be done off-line. The system is automated 

to perform on-line analysis of the spectral data. In this section we analyze the results 

obtained from both the versions. We compare both the process and prove that automation 

minimizes the time required for the data analysis using ANN. 

The manual mode of analysis consists of converting the raw spectral fle which is in 

binary format into ASCII format using the Winspec software. This conversion produces 50 

different fles. The next step is to put these 50 fles into one excel sheet to extract the data 

sets in the given region of interest. These data sets form the inputs to the neural network. 

When the above outlined process is done manually, this accounts for much of the time 

for the elemental analysis. To optimize this time in computation, we have automated the 

process. Once the user selects the fle, all the above steps of the manual process are carried 

out automatically. Table 5.2 gives the comparitive times in both the modes of operation. 

It can be seen from the table that by automating the system, the system performance 

has been improved exceptionally. There are few factors which effect the manual mode of 

operation. 

1. Human Work Time 

Much of the manual time can be attributed to the person incharge of the work. 
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Table 5.2 Comparison of automated and manual modes of operation 

Element Manual Automated Time 
Concentration wt(%) Time(sec) Time(sec) Saving(%) 

Mg - 1.450 1887.60 12.00 99.34 
Mg - 0.518 1401.60 15.00 98.93 
Cr - 0.044 1200.00 6.00 99.50 
Mn - 0.079 1956.51 18.00 99.10 
Cu - 1.222 2106.00 21.00 99.00 

e Usage of the Excel Software 
If a chemist trying to analyze the spectral data using neural networks is fairly 
new to the Excel software, then there is high possibility that he takes hours 
and hours trying to formatting the data using Excel sheets. The user should be 
profcient with few of the tricks in Excel which makes the software more time 
effcient. 
e Mood of the User 

If the User, is in a really bad mood, then he fnds it hard to concentrate on data 
formatting and keeping track of the fles converted and included in the Excel 
sheet. This may reduce the data sets available for the neural network, thereby 
resulting in a prediction of the concentration which is not accurate and precise. 

2. Urgency 

If the analyst does not feel the urgency to analyze the spectral data, then he/she 
may take their own time for the manual process of data conversion and formatting. 

3. Noise Level in the fle 

If the noise level is high in a fle, then the ASCII conversion takes more time. 

None of the user- involved factors will effect the system time with the automated ver-

sion. The only factor which effects the time is the noise level in the fle. The program 

written to convert the binary fle into ASCII, takes few seconds to account for the noise. 

Rather than this there is no other factor which hampers the automated system. From the 
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Table 5.2, the maximum time the manual mode of operation takes is 2106.00 seconds and 

the minimum time is 1200.00 seconds. The maximum time accounts for the noise level in 

the fle and the leisure at which the user worked on the formatting and data conversion. By 

automating, the maximum time taken is 21.00 seconds and minimum being 6.00 seconds. 

The maximum % time saving was calculated using the formula: 

fhgjiGkml˝npoVqViGr_s�tvu oVrZw
oaxygjiGkmlYzX{;w
|:}˝kWoD|:l�~Dg;i[kmloar_w
oRxygjiGkml �Y•�†‡† (5.3)u 
Table 5.2 shows that the % time saving ranges from 98.93 to 99.50. This vast difference 

in the system time can be seen in the bar chart given in Figure 5.5. X- axis has four sets 

of elements for different concentration values, and the Y-axis the time in seconds. One 

can see the vast variation in the time taken for both the automated and manual mode of 

operations. Hence the following analysis leads to the fact that the system time has been 

optimized due to the automation of the system; thereby validating the second hypothesis. 
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CHAPTER VI 

CONCLUSIONS AND FUTUREWORK 

This concluding chapter synthesizes all the chapters in the body of this thesis. The 

stated hypotheses for this work are: 

1. Elemental concentrations determined from spectral data using artifcial neural net-
works are atleast as good as those obtained using traditional statistical calibration 
methods. 

2. Operator assisstance needed to acquire and analyze spectral data may be minimized 
through automation. 

To prove the above stated hypotheses, experiments were conducted at the LIBS lab-

oratory at the Diagnostic Intrumentation and Analysis Laboratory, Mississippi State Uni-

versity. LIBS instrument is used to record the spectra of the element of interest in the 

given sample. LIBS spectra of seven different samples were recorded. The analyte lines 

of Cr(359.349 nm), Mg (383.829 nm), Mn (404.16 nm) and Cu (327.45 nm) were used 

for the analysis of these elements in the Al alloy samples. Two data analysis techniques, 

traditional calibration method and neural network analysis were performed on the spectral 

data to determine the elemental concentration. 

The results of data analysis using the neural networks and the calibration method for Cr 

(359.349 nm) line are shown in Table 5.1. Results of the analysis using ANN were com-

pared against traditional analysis for relative accuracy and precision. The performances 
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of the two methods are more evident in the graphs shown in Figure 5.1 - Figure 5.4. It is 

evident from the table and plots that overall neural network predictions of element con-

centrations are as good as or better than the values obtained through analytical methods. 

Neural networks predicted concentration values are closer to those determined through 

chemical analysis than calibration method in 75% of the cases. From these results, we 

conclude that artifcial neural networks are capable of predicting values at least as good as 

the traditional method, validating the hypothesis. 

Further, a prototype for automated analysis of LIBS data using artifcial neural net-

works was developed. The manual mode of analysis consists of, converting the raw spec-

trum fle which is in binary format into ASCII format using the Winspec software. This 

conversion produces 50 different fles. The next step is to put all the 50 fles into one Ex-

cel sheet, extract the data sets in the given region of interest and then input to the neural 

network. Time taken for the manual process steps accounts for much of the time for the 

elemental analysis. To optimize this time in computation, we have automated the process. 

Once the user selects the fle, the above mentioned manual process is carried out automati-

cally. Table 5.2 gives the comparitive times in both the modes of operation. The maximum 

time the manual mode of operation takes is 2106.00 seconds and the minimum time is 

1200.00 seconds. It is seen that the % time saving ranges from 98.93 to 99.50. It can be 

seen from the table that by automating the system, the system performance has been im-

proved exceptionally. The prototype behaved as expected and optimized the system time 

compared to manual operation. Thus the proposed hypotheses that operator assisstance 
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needed to acquire and analyze spectral data may be minimized through automation, was 

validated. 

6.1 Contribution 

The research results will provide the spectroscopy community, a unique time-effcient 

method for analyzing the LIBS spectral data and if adapted by them, to determine the 

concentrations of the elements of interest. 

6.2 For Further Research 

In the current work, for each element in the given region different neural networks 

were developed based on the range of the element concentration. Element concentrations 

more than ’1’ were labeled as high, and those less than ’1’ as low. This is an arbitrary 

criteria selected. If the concentrations fall in the boundaries, then the average of the high 

concentration network prediction and the low concentration network prediction is taken 

as the fnal element concentration. But, in future we would like to come up with a more 

reasonable and analytical way of sorting the boundary values. Also, we would like to work 

with one neural networks for all ranges of elemental concentrations rather than having two 

different nets based on concentration ranges. 

The current automated software uses simulation of real-time LIBS data acquisition. 

A future extension for this can be developing a client-server environment for online data 
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acquisition and analysis. This would allow a user at any location to access the experimental 

data measured at DIAL and do the analysis using neural network models. 
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