
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-10-2003

Rzsweep: A New Volume-Rendering Technique for Uniform Rzsweep: A New Volume-Rendering Technique for Uniform

Rectilinear Datasets Rectilinear Datasets

Gautam Chaudhary

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Chaudhary, Gautam, "Rzsweep: A New Volume-Rendering Technique for Uniform Rectilinear Datasets"
(2003). Theses and Dissertations. 3845.
https://scholarsjunction.msstate.edu/td/3845

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3845?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3845&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

RZSWEEP: A NEW VOLUME-RENDERING TECHNIQUE FOR

UNIFORM RECTILINEAR DATASETS

By

Gautam Chaudhary

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2003

RZSWEEP: A NEW VOLUME-RENDERING TECHNIQUE FOR

UNIFORM RECTILINEAR DATASETS

By

Gautam Chaudhary

Approved:

Hasan Jamil Ricardo Farias
Assistant Professor of Computer Science Adjunct Assistant Professor of Computer
and Engineering Science and Engineering
(Major Professor) (Thesis Director)

Edward B. Allen David A. Dampier
Assistant Professor of Computer Science Assistant Professor of Computer Science
and Engineering and Engineering
(Committee Member) (Committee Member)

Susan M. Bridges A. Wayne Bennett
Professor of Computer Science and Engi- Dean of the College of Engineering
neering
Graduate Coordinator
Department of Computer Science and En-
gineering

Name: Gautam Chaudhary

Date of Degree: May 10, 2003

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Hasan Jamil

Director of Thesis: Dr. Ricardo Farias

Title of Study: RZSWEEP: A NEW VOLUME-RENDERING TECHNIQUE FOR
UNIFORM RECTILINEAR DATASETS

Pages in Study: 84

Candidate for Degree of Master of Science

A great challenge in the volume-rendering field is to achieve high-quality images in an

acceptable amount of time. In the area of volume rendering, there is always a trade-off be-

tween speed and quality. Applications where only high-quality images are acceptable often

use the ray-casting algorithm, but this method is computationally expensive and typically

achieves low frame rates. The work presented here is RZSweep, a new volume-rendering

algorithm for uniform rectilinear datasets, that gives high-quality images in a reasonable

amount of time. In this algorithm a plane sweeps the vertices of the implicit grid of regular

datasets in depth order, projecting all the implicit faces incident on each vertex. This al-

gorithm uses the inherent properties of a rectilinear datasets. RZSweep is an object-order,

back-to-front, direct volume rendering, face projection algorithm for rectilinear datasets

using the cell approach. It is a single processor serial algorithm. The simplicity of the

algorithm allows the use of the graphics pipeline for hardware-assisted projection, and

also, with minimum modification, a version of the algorithm that is graphics-hardware

independent. Lighting, color and various opacity transfer functions are implemented for

giving realism to the final resulting images. Finally, an image comparison is done between

RZSweep and a 3D texture-based method for volume rendering using standard image met-

rics like Euclidian and geometric differences.

DEDICATION

To my grandfather, grandmother, parents, my younger brother and all others in my

family.

ii

ACKNOWLEDGMENTS

The findings and opinions in this thesis belong solely to the author and do not neces-

sarily represent those of Mississippi State University.

I would like to take this opportunity to first extend my sincere gratitude to Dr. Ricardo

Farias for directing this research. The implementation of the plane-sweep paradigm for

volume rendering of uniform rectilinear datasets, implementation of lighting, color and

opacity to the algorithm was carried out under his guidance. I would like to thank Lakshmy

Ramaswamy for her help in this research. I thank Dr. Robert Moorhead for his valuable

suggestions and opinions from time to time, Dr. Joerg Meyer and my committee members

for their comments and corrections on this thesis. I am also thankful to Sagar Saladi and

Pujita Pinnamaneni for providing some of the results of their work and the entire graphics

and visualization group of the Department of Computer Science and Engineering Research

Center (ERC) of Mississippi State University. Finally, I thank the research community for

providing the datasets that have been used in this work.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

I. INTRODUCTION . 1

1.1 Volume Rendering . 1
1.1.1 What is it ? . 1
1.1.2 Uses of volume rendering . 2
1.1.3 Main steps in volume rendering 3
1.1.4 Methods of data acquisition 4
1.1.5 Classification of volume rendering methods 4
1.1.6 Bottlenecks faced in volume rendering 8

1.2 Techniques Used for Making Results More Realistic 9
1.3 Classification of Datasets . 11
1.4 Sweep Paradigm . 12
1.5 Research Proposal . 12

II. LITERATURE REVIEW . 14

2.1 Volume Rendering Algorithms for Regular Datasets 14
2.1.1 Ray-casting algorithms . 15
2.1.2 Splatting algorithms . 16
2.1.3 Shear-warp factorization algorithms 17
2.1.4 Texture mapping algorithms 18

2.2 Sweep Based Volume Rendering Algorithms 18
2.3 Review on Transfer Functions . 19

iv

CHAPTER Page

III. RZSWEEP . 21

3.1 Significance of RZSweep . 22
3.2 The Basic RZSweep Algorithm . 22
3.3 Research Issues . 26
3.4 Implementation Details . 27

3.4.1 Preprocessing and basic structures 27
3.4.2 Sweep . 28
3.4.3 Projection . 29

3.4.3.1 Hardware . 29
3.4.3.2 Software . 30

3.4.4 Optimizations . 30
3.4.4.1 Projecting faces within threshold 31
3.4.4.2 Volume reduction . 31
3.4.4.3 Faces reduction . 31
3.4.4.4 Connected datasets 32

3.5 Slice Viewer . 33
3.6 Lighting, Color and Opacity Transfer Functions 33

3.6.1 Lighting . 35
3.6.2 Color . 37
3.6.3 Opacity . 37

IV. RESULTS . 44

4.1 RZSweep Timings . 45
4.2 RZSweep Images . 47
4.3 RZSweep Image Comparison . 60
4.4 SGI Machine’s System Hardware 75

V. CONCLUSIONS . 77

5.1 Contributions . 77
5.2 Further Research . 79

REFERENCES . 80

v

LIST OF TABLES

TABLE Page

4.1 Dataset details . 45

4.2 Hardware and software rendering times of RZSweep 47

4.3 Hardware rendering times of RZSweep . 47

4.4 Rendering times of RZSweep for different image sizes of Engine dataset . . . 48

4.5 Preprocessing times of RZSweep for different datasets 49

4.6 RZSweep timing without any optimizations 49

4.7 RZSweep timing with volume reduction . 49

4.8 RZSweep with eight and four projected faces 50

4.9 RZSweep with connected data optimization 50

4.10 RZSweep after implementation of light, color and opacity 50

4.11 Difference image list . 64

4.12 Euclidian difference between RZSweep and 3D texture-based rendering . . . 64

4.13 Geometric difference between RZSweep and 3D texture-based rendering . . . 64

vi

LIST OF FIGURES

FIGURE Page

1.1 Classification of volume-rendering algorithms 5

1.2 Cell representation of volume data . 5

1.3 Voxel representation of volume data . 6

1.4 Classification of grid types . 11

3.1 Twelve incident faces on an internal vertex 23

3.2 Faces that lie ahead of the sweep plane . 24

3.3 The schematic representation of RZSweep algorithm 25

3.4 Best cases for face projection . 32

3.5 MRI-Head dataset slice with RZSweep slice viewer 34

3.6 Slice of CT-Brain dataset using RZSweep slice viewer 34

3.7 Engine dataset slice with RZSweep slice viewer 35

�������� 	����
���
3.8 A vertex with its immediate neighbors 36

3.9 Linear transfer function for opacity . 39

3.10 Exponential transfer function for opacity . 39

3.11 Logarithmic transfer function for opacity . 40

3.12 Box transfer function for opacity . 40

3.13 Triangle transfer function for opacity . 41

vii

	

FIGURE Page

3.14 Opacity transfer function for bone . 42

3.15 Opacity transfer function for soft tissues . 42

3.16 Opacity transfer function for bone and soft tissue 43

4.1 Graph showing rendering time for increasing number of data elements 48

4.2 Graph showing the rendering times for different image sizes of Engine dataset 48

4.3 CT-Brain dataset . 52

4.4 CT-Skull dataset with �������� rotation about the axis 52

4.5 Engine dataset with ������� rotation about the � axis 53

4.6 Foot dataset with �������� rotation about the � axis 53

4.7 Fuel dataset . 54

4.8 Lobster dataset . 54

4.9 MRI-Head dataset . 55

4.10 Statue-Leg dataset with ��������� rotation about the � axis 55

4.11 CT-Brain dataset with threshold range of ������������� 56

4.12 CT-Brain dataset with uniform opacity of �������˘� 56

4.13 CT-Brain dataset with lighting . 57

4.14 Engine dataset after implementation of a lighting model 57

4.15 CT-Brain dataset with threshold range of ������������� 58

4.16 CT-Brain dataset after implementing light, color and opacity 58

4.17 Engine dataset with lighting, color and opacity 59

viii

FIGURE Page

4.18 Weight matrix of �� and ��� � pixels . 60

4.19 Image(�): Image generated by RZSweep . 65

4.20 Image(�): Image generated by 3D texture-based rendering method 65

4.21 Absolute difference image between Image(�) and Image(�) 66

4.22 Signed difference image between Image(�) and Image(�) 66

4.23 Image(�) � Image(�) . 67

4.24 Image(�) � Image(�) . 67

4.25 Image(�) ����� : Image after averaging � pixels of RZSweep 68

4.26 Image(�) ����� : Image after averaging � pixels of 3D texture-based rendering 68

4.27 Absolute difference image between Image(�) ����� and Image(�) ����� 69

4.28 Signed difference image between Image(�) ����� and Image(�) ����� 69

4.29 Image(�) ����� � Image(�) ����� . 70

4.30 Image(�) ����� � Image(�) ����� . 70

4.31 Image(�) ����� : Image after averaging � � pixels of RZSweep�� 71

4.32 Image(�) ����� : Image after averaging � � pixels of 3D texture-based rendering 71��

4.33 Absolute difference image between Image(�) ����� and Image(�) ����� 72

4.34 Signed difference image between Image(�) ����� and Image(�) ����� 73

4.35 Image(�) ����� � Image(�) ����� . 73

4.36 Image(�) ����� � Image(�) ����� . 74

4.37 Clean image generated by RZSweep with a threshold range of ������������� . . . 74

ix

CHAPTER I

INTRODUCTION

“... in 10 years, all rendering will be volume rendering.”

- Jim Kajiya at SIGGRAPH ’91

At the time when Kajiya made the above statement [8], volume rendering used to take

several minutes to give some desired resulting images. But today computer capabilities

make it possible to produce images of comparable quality within a few seconds.

1.1 Volume Rendering

In order to understand the task of volume rendering, an insight into certain basic con-

cepts and aspects relevant to the field are given here. Most of the explaination, classifica-

tion and ideas presented in this chapter are drawn from the literature review in Chapter II.

The two main survey publications referred here to explain various terms and classifications

related to volume rendering are [8, 31].

1.1.1 What is it ?

Volume rendering is a sub-area of scientific visualization that has received a lot of

attention of the research society due to its importance in the analysis of medical and scien-

1

2

tific 3D data. Volume rendering has been defined from many perspectives. The idea that

is reflected by most of the definitions is that volume rendering is a method for displaying

a sampled 3D scalar field directly, without first fitting intermediate geometric primitives

to the samples [21, 22]. Algorithms of this category treat volumetric data as semitranspar-

ent material and create compresensive images, which show information about its interior,

giving scientists better insight of the phenomenon represented by the data. It can be stated

that given a 3D object, the goal of volume rendering algorithms is to produce an image

that provides a compresensive, 3D representation of the object. Researchers have been try-

ing to optimize currently known algorithms as well as look for new rendering algorithms

that would bring down the rendering times without compromising the quality of the final

images.

1.1.2 Uses of volume rendering

In volume rendering the interior information is not thrown away, thus enabling one to

look at the 3D dataset as a whole. Weak or fuzzy surfaces can be displayed using volume

rendering techniques. By this method there is no need to make a decision whether a surface

is present or not [7, 24].

Volume rendering in scientific visualization has found extensive usage in a plethora

of applications. Some of the common scientific and engineering areas are paleontol-

ogy, archeology, computational fluid dynamics, geosciences, astrophysics, meteorology,

chemistry, oil and gas exploration, aerospace enginering, mechanical enginering, non-

3

destructive testing, industrial and security applications, microscopy, biomedicine, medical

imaging, surgical planning and simulations, and of course entertainment. Volume visu-

alization is sometimes used to compare (numerical) results derived from real empirical

experiments with results from simulations of the same experiments.

1.1.3 Main steps in volume rendering

Many steps are common to all the algorithms. Most of the algorithms have a subset of

the steps mentioned below, usually in the given order. Sometimes it might be difficult to

order steps 3 and 4 below. The steps are as follows:

1. Data acquisition: The first step in every volume rendering method is data acquisi-
tion. This is done by different methods that are discussed in the next section either
by empirical measurement or by computer simulation.

2. Data conversion: Convert the data into a format that can be easily manipulated and
worked with. The data may need to be scaled or process each slice so that it covers
a good distribution of values and has high contrast in the values. Out-of-range data
should be removed. It is often tried to filter out the noise but care must be taken so
that valuable information is not excluded in the process. Of course, the same set of
operations must be applied to all the data slices.

3. Data classification or applying a threshold: It means choosing a threshold value for
a surface-fitting (SF) algorithm or color and opacity values for each possible range
of data values for a direct volume rendering (DVR) algorithm (Section 1.1.5). This
is a difficult task to perform as it requires some previous information and knowledge
about the dataset. The threshold values also depend on the dataset and its type of
modality.

4. Store, manipulate and display primitives: In this step the elements are mapped onto
geometric or display primitives using some mapping operation. Here, the primitives
are stored, manipulated, and if required, mixed with other primitives that have been
defined externally. Shading and transformation to screen space is also done here
and the primitives are displayed. This step has the maximum variation for different
algorithms.

4

1.1.4 Methods of data acquisition

The 3D datasets can be either acquired by some scanning process or by simulations

in super computers. Among the various acquisition methods in the medical field we men-

tion magnetic resonance imaging (MRI), computed tomography (CT), positron emission

tomography (PET) and ultrasound sonography of the area-of-interest. High-resolution mi-

croscopes like confocal laser-scanning microscopes and others are also used to acquire

data [8, 17, 40]. The simulation of vector and scalar fields in industrial applications, time-

varying ocean and weather models and computational fluid dynamics are a few other non-

medical datasets.

Finite element analysis or computational fluid dynamics programs are often
used to simulate events from nature. If an event is too big, too small, too fast,
or too slow to record in nature, then only the simulated event data volumes
can be studied [8].

All the above types of datasets are considered similar in structure although they are gener-

ated by diverse methods.

1.1.5 Classification of volume rendering methods

Volume Rendering Algorithms can be classified into several categories based on var-

ious criteria as can be seen in Figure 1.1. The classification mentioned here is based on

the literature survey done in [8]. They are as follows:

 Data Elements: The volume data is given as a scalar array of sampled points. There
are basically two ways in which a volume rendering algorithm can treat this data: an
array of volume elements (voxels) or an array of cells.

VOLUME RENDERING ALGORITHMS

DATA ELEMENTS RENDERING APPROACHES GRID TYPE TRAVERSAL APPROACHES

CELLS VOXELS STRUCTURED UNSTRUCTURED

DIRECT VOLUME RENDERING INDIRECT VOLUME RENDERING

OBJECT-ORDER IMAGE-ORDER

FRONT-TO-BACK BACK-TO-FRONT

5

Figure 1.1 Classification of volume-rendering algorithms

(i, j+1, k)

(i, j, k) (i+1, j, k)

(i, j, k+1)

Figure 1.2 Cell representation of volume data

6

(i+1, j, k)(i, j, k)

(i, j+1, k) (i+1, j+1, k)

Figure 1.3 Voxel representation of volume data

1. Cell - Some algorithms consider the data points as the corners of a hexahedral
cell as shown in Figure 1.2. This data is most often visualized as a lattice where
each vertex of the grid is associated with a scalar value. Trilinear and tricubic
interpolation between the values at the corners of the cell are commonly used to
estimate the values inside the cell. It has been observed that the cell approach
gives smoother images than the voxel approach.

2. Voxel - Here the data points are considered as the centers of regions of influ-
ence, for instance, the center of a regular hexahedral as in Figure 1.3. It may be
visualized as if the small volume around a data point has the same value as the
point. In some approaches this value is inversely proportional to the distance
from the center of the hexahedral. Another small variation is the implemention
of a filter function with each data point to represent the contribution of it in the
region of influence. The voxel approach has the advantage that no assumptions
are made about the behavior of data between grid points, i.e., only known data
values are used for generating an image.

Grids and Lattices: Another classification is based on the type of grid format in

which the processed data (scalar or vector field) is represented. Details of this clas-

sification are mentioned in Section 1.3.

7

1. Structured/Regular grids algorithms - They handle data that are distributed reg-
ularly on the vertices of a rectilinear grid. The grid is implicit and no structure
is necessary to allow adjacency information to be retrieved.

2. Unstructured/Irregular grids algorithms - They handle data unevenly distributed
in space with no implicit connectivity. These algorithms require auxiliary
structures to compute adjacency information of the cells to be able to render
the data correctly and efficiently.

Rendering Approaches: Volume visualization algorithms can also be divided into

two categories, Direct Volume-Rendering (DVR) algorithms and Indirect Volume-

Rendering (IVR) or Surface-fitting (SF) algorithms.

1. Direct Volume Rendering (DVR): In the DVR methods data elements are di-
rectly mapped onto the screen space without using any intermediate geometric
primitive. The scalar values are directly rendered without any intermediate
conversion step [6, 7, 31, 38, 42, 43]. The DVR approach gives very high-
quality images. One disadvantage of using DVR methods is that the entire
dataset must be traversed each time an image is rendered. Sometimes a low res-
olution pass or random sampling of the data is used. This creates low-quality
images fast and can be used for parameter checking. The process of succes-
sively increasing the resolution and quality of a DVR image over time is called
progressive refinement. It can be either an Image-order or an Object-order
traversal method. Examples of DVR algorithms are ray-casting and splatting.

2. Indirect Volume Rendering (IVR) or Surface-Fitting (SF): IVR/SF algorithms
are sometimes called feature-extraction or iso-surfacing. In this approach an
intermediate representation of the data is created, which is rendered afterwards
[31]. Intermediate representations are typically planar surface primitives that
have constant-value contour surfaces in volumetric datasets. IVR/SF methods
are typically faster than DVR methods since IVR/SF methods only traverse the
volume once to extract surfaces. After extracting the surfaces, rendering hard-
ware and other existing fast rendering methods can be used to quickly render
the surface primitives each time the user changes a viewing or lighting param-
eter. There are a few disadvantages associated with this method. Typically, a
huge number of surface primitives are generated for volumetric datasets. Also,
changing the IVR/SF threshold value takes a lot of time because it needs to
revisit every cell again to extract a new set of surface primitives. Contour-
connecting, marching cubes, marching tetrahedra and dividing cubes are some
examples of the IVR/SF approach.

8

Traversal Approaches: The final image is created in either of the following two

ways: image-order traversal or object-order traversal

1. Object-order traversal: In this type of image generation all the elements of the
volumetric dataset are traversed in an orderly fashion. For every element the
projection and contribution to the pixels in the image plane is calculated. Two
further sub-classifications are front-to-back and back-to-front order of traver-
sal.
(a) Front-to-back: This method is usually the faster among the two. The rea-

son is that the elements in front may have already created a completely
opaque image and the ones in the back do not need to be rendered any-
more since they will not effect the final image anyhow. This reduces the
number of elements that need to be traversed and rendered. This advan-
tage does not hold good if the data is highly transparent, and in such cases
both methods should take the same amount of time.

(b) Back-to-front: An advantage of this method is that the user can see all the
internal structures of the volume as the final image progressively builds
up. Most structures might eventually get hidden but in some applications
this method of image generation is preferred.

2. Image-order traversal: In this type of image generation, as the name suggests,
the pixels in the image plane are usually traversed in scanline order. Sometimes
pixels are also traversed in a random order.

Usually, any algorithm uses only one of the above mentioned traversal approaches,

but there are some algorithms that use a combination of both types of traversal [8].

1.1.6 Bottlenecks faced in volume rendering

A great challenge in the field of volume rendering is to have a balanced trade-off be-

tween rendering speed and quality of the resulting images. A typical dataset can contain

� � � � (about 16.7 million) data elements or more. Treating such large datasets makes vol-

ume rendering computationally expensive and gives low frame rates. High quality im-

ages are a necessity for some applications like biomedicine and surgery. There is a lot

9

of ongoing research on optimizations on existing algorithms as well as for new rendering

algorithms that would bring down the rendering times for accurate images.

Data classification is another difficult task that has to be carried out in volume visual-

ization. Since getting images that clearly visualize the features of interest is only possible

with a good transfer function, the transfer function specification is very important for the

resulting images. It has been mentioned in earlier literature that transfer function specifi-

cation is a difficult task and is application and dataset dependent.

There are datasets that have multiple values (scalar or vector) for every data point. Vi-

sualizing such a volume of data is more difficult for the above stated reasons as it requires

a multi-dimensional transfer function.

1.2 Techniques Used for Making Results More Realistic

Computer-assisted biomedical imaging, pre-surgery planning, surgery and post-surgery

diagnosis essentially needs volume rendering with correct transfer functions to convey ac-

curate information of anatomic structures and pathology [2, 16, 18]. The data elements

in the volume array needs to be mapped to visual parameters, like color and opacity, for

the final image. Transfer functions are used for this purpose in volume rendering. With-

out transfer functions a volume rendered image would simply look like an opaque flat

image. The power of volume rendering is the ability to specify a transparency for each

voxel within the volume [19, 20, 34]. This results in images where you can look inside

the objects, or patients, and see their internal structure [17]. Opacity transfer functions are

10

also used to pre-select the volume of interest. For instance, applying a transfer function

that blends off everything except high-density materials in a given CT dataset would result

in a final image in which only bone structures are visible. Other tissues are simply clipped

off. Another issue in bio-medical volume visualization is that the density function often

depends on the type of tissue. Hence, color transfer functions are used to color different

types of tissues differently along with opacity [3, 40].

Every element in a volume potentially contributes to the color and opacity of the final

image. Also important is the use of lighting for the final image as it adds an additional

depth cue, features look sharper, and the human visual system responds better in the pres-

ence of light [49]. Care must be taken that over-use of light may introduce errors due to

change in final colors, or some information may get occluded or misinterpreted by shad-

ows. To get a good image, the transfer functions should be implemented carefully as slight

changes in color and opacity values may have drastic impact on the final image. Since

getting images that clearly visualize the features of interest is only possible with a good

transfer function, transfer function specification is very important for understandibility of

the final images. The fact that this understandibility is subjective to the field of application,

and to the datasets being rendered, and that it is, to some extent, also subjective to the user,

makes this task difficult.

GRID TYPES

STRUCTURED UNSTRUCTURED HYBRID

RECTILINEAR BLOCK

UNIFORM ANISOTROPIC

11

1.3 Classification of Datasets

There are many types of grids, and many of the grid structures depend on the appli-

cation. Many new types of grids have come into existance over the years. Here only the

basic and most commonly used ones have been mentioned (Figure 1.4). Definitions and

some nomenclatures are from [8].

Figure 1.4 Classification of grid types

Structured: These are non-axis-aligned hexahedra (warped bricks) in general. Spher-
ical and curvi-linear lattices are also examples of structured grids. Specific types are
Rectilinear and Block.

1. Rectilinear: All the elements are identical axis-aligned rectangular prisms, but
the elements are not cubes. Elements on a rectilinear grid are not necessar-
ily identical but they are still hexahedra and axis-aligned. Two further sub-
classification are Uniform Rectilinear and Anisotropic Rectilinear (Regular).

12

(a) Uniform (Cartesian grid/isotropic/cubic): All of the cells are identical
axis-aligned cubes.

(b) Anisotropic (Regular): All of the cells are identical axis-aligned rectangu-
lar bricks (not cubes).

2. Block: It is a collection of various structured grids sewn together to fill a space.

Unstructured: Here cells can be tetrahedra, hexahedra, prisms, pyramids, etc. There
is no implicit connectivity. It is not necessary that the cells have planar faces. Tetra-
hedra is a popular type of cell because a tetrahedron has planar faces and any volume
can be decomposed into tetrahedra.

Hybrid: A combination of any of the grids mentioned above to fill a volume space.

1.4 Sweep Paradigm

Processing geometric entities in an order determined by passing a sweep-line across a

plane or a sweep-plane across 3D space is the Sweep paradigm. It is used in computational

geometry as a standard algorithmic paradigm [36].

Till now the sweep paradigm has been used in some volume rendering algorithms

applied to irregular grid datasets only. Girsten [14] was the first to use the concept in

volume rendering. Yagel [53] and Silva [39] furthered the work on sweeping algorithms.

The most recent work based on the sweep paradigm for volume rendering was the ZSweep

algorithm [10].

1.5 Research Proposal

RZSWEEP is a new volume-rendering technique for uniform rectilinear datasets. The

research work that is proposed here is that the RZSweep algorithm can be developed fol-

lowing the basic idea of the ZSweep presented by Farias et al. in [10]. The ZSweep

13

algorithm was designed for irregular grids. The new method, RZSweep, is designed for

uniform, rectilinear grids. It would be based on the sweep paradigm (section 1.4), where a

plane sweeps the vertices of the grid (implicit for regular datasets) in depth order, project-

ing all the implicit faces incident on each vertex. This algorithm would use the inherent

properties of a rectilinear datasets. RZSweep would be an object-order, back-to-front,

direct volume rendering, face projection algorithm for rectilinear datasets using the cell

approach. It would be a single processor serial algorithm.

Only a volume rendering algorithm in itself does not produce comprehensible results.

Various transfer functions need to be implemented in order to obtain images that clearly

visualize the features of interest. Hence, it is also proposed that implementation of the

following in RZSweep would make the results more realistic:

Lighting model

Color transfer functions

Opacity transfer functions

Finally, an image comparison would be done between RZSweep and a 3D texture-

based method for volume rendering using standard image metrics like Euclidian and geo-

metric differences.

The goal is to generate realistic volume-rendered results of uniform rectilinear datasets

used in scientific, engineering, and medical fields.

CHAPTER II

LITERATURE REVIEW

This chapter outlines the most popular approaches of various volume rendering tech-

niques for rectilinear datasets, the sweep-plane method and its implementation for volume

rendering of irregular datasets and finally a review on implementations of transfer func-

tions to improve understanding of the final image.

2.1 Volume Rendering Algorithms for Regular Datasets

Classification of volume rendering algorithms have been widely discussed in the lit-

erature in the past. Present day volume rendering algorithms for regular datasets can be

divided into four main classes:

1. Ray-casting algorithms

2. Splatting algorithms

3. Shear-warp factorization algorithms

4. Texture mapping algorithms

A few distinguishing features of these algorithms are the traversal order of the en-

tire data volume and projection methods of the data elements for the final image [21].

Pre-Direct and Post-Direct Volume Rendering Integral are also used to categorize volume

14

15

rendering approaches. Pre-Direct Rendering Integral is first changing the color and opac-

ity of the data [24, 25]. In Post-Direct Rendering Integral, for every point the density and

gradient attributes are computed [1, 17, 40, 41]. Another nomenclature introduced in [21]

is based on “loop ordering”. The ordering of the loops are based on the rendering ap-

proach and thus, distinguish one algorithm from the other. Space Leaping [52, 54] is the

method of avoiding unrequired computations for empty space in datasets and is commonly

used by most of the algorithms mentioned above to improve overall rendering process [6].

Every type of algorithm has its own share of performance advantages and disadvantages

with respect to final result quality and speed. There is always a trade-off between quality

and speed in the field of volume rendering and sometimes this trade-off may depend on

the application requirement. It would be very difficult to review the volume rendering lit-

erature on classification in great detail here. Hence, this chapter would focus on outlining

a general algorithm of every class mentioned above.

2.1.1 Ray-casting algorithms

There are many ray-casting implementations available today. The basic algorithm [24,

25, 38, 42, 43] is:

Shoot a ray into the data volume for each image pixel

Compute the color and opacity at regular intervals along the ray. This is usually
done by trilinear interpolation with the values at eight closest neighbors.

The final color for every pixel is computed by compositing using a back-to-front
linear interpolation method.

16

Trilinear interpolation of floating point numbers makes ray casting computationally

intensive and time consuming. Many computer graphics techniques like adaptive early ray

termination [21, 25, 49], space leaping by using octree decomposition [12, 29, 52, 54] and

adaptive sampling [24, 25, 26] have been implemented to the basic algorithm to achieve

speed without compromising on image quality. Adaptive early ray termination is to stop

computation along a ray if the final color or opacity has reached a particular threshold for

that pixel. It is useful in front-to-back ray traversals and simply means that all objects

behind a pixel get occluded once the pixel becomes opaque. Empty space is skipped

using octree decomposition. Adaptive sampling is used for reducing the computations

by exploiting the homogeneous parts of the volume. The reader is advised to refer to

[6, 21, 25, 52] for a discussion on optimizations on ray casting in great detail. Ray casting

is a computationally expensive image-order backward projection algorithm but it produces

high-quality images.

2.1.2 Splatting algorithms

Splatting typically achieved higher speed in volume rendering at the cost of reduced

image quality. It is an approximate algorithm in which every data element contributes to

the final image, and this contribution is called “footprint”. Several methods have been

developed on this concept [7, 46, 47, 48, 50]. Splatting differs from ray casting in way

the final image is generated. In this method the data elements are projected onto the im-

age plane. This type of projection is sometimes called “splatting” [46]. This technique

17

was developed by Lee Westover at the University of North Carolina at Chapel Hill [48].

The efficiency of this algorithm depends on the chosen complexity of the footprint. Ini-

tial implementations projected all data elements but later on out-of-range values were not

considered. The concept of early ray termination was adapted as early splat termination

in which splatting was not carried out in regions of the image that had already become

opaque [33]. Later, animation was possible after image-aligned splatting was developed

by Mueller et al. [32]. Splatting is an object-order algorithm that can be implemented in

either back-to-front or front-to-back order. Theoretically, splatting can produce results of

the same quality as ray casting, but it is very difficult to compute the perfectly balanced

filter weights for splatting. Westover [46, 47] mentions that splatting can be implemented

to achieve either speed or quality but not both at the same time.

2.1.3 Shear-warp factorization algorithms

Lacroute and Levoy [21, 22] presented the Shear-warp factorization algorithm for vol-

ume rendering. The major disadvantage of this image-order method is that every ray has to

travel through the entire dataset. This results in huge computation overheads. On the other

hand, object-order methods cannot exploit the effective optimization technique of early ray

termination. Shear-warp exploits both these advantages and is “based on a factorization of

the viewing matrix into a 3D shear parallel to the slices of the volume data, a projection to

form distorted intermediate image, and a 2D warp to produce the final image” [22]. It is

a very fast method giving good quality images but the quality may reduce due to multiple

18

resampling [22]. “The second potential problem is that the shear-warp algorithm uses a

2D rather than a 3D reconstruction filter to resample the volume data” [22].

2.1.4 Texture mapping algorithms

Texture mapping is a hardware-dependent approach for volume rendering. Significant

initial research and development was done by Cabral [4] and a lot of work of implementing

lighting and shading has been done on this technique since then [5, 13, 30, 45]. There are

two main methods of using texture mapping for volume rendering. The first method is to

have 2D textures of the given slices and then blending these slices from back-to-front using

transparency [7]. In this method, appropriate interpolation needs to be done to compensate

for the material between the slices. The second method is more recent and uses a 3D

texture mapping [15]. It has been possible only after achieving improved capabilities

of implementing 3D textures in the hardware [35]. This method has the advantage that

the entire 3D texture needs to be loaded into the texture memory only once and all the

interpolations are done in the hardware. Rendering is fast but this method entirely depends

on, and is limited to, available texture memory and swap memory for swapping textures.

2.2 Sweep Based Volume Rendering Algorithms

As mentioned before, the sweep paradigm has been implemented in computational ge-

ometry [36]. It is the technique of processing geometric entities in an order determined by

passing a sweep-line across a plane or a sweep-plane across 3D space. When applied to

19

volume rendering [14], the sweep method has the advantage that it becomes a 2D sorting

problem, and this reduces computational overheads [14, 39]. Spatial coherence is main-

tained, and connectivity between cells/elements does not need to be maintained [14, 39].

Although till now this approach has been implemented in volume rendering algorithms for

irregular datasets only, it is relevant to briefly discuss this method, as the work presented

here is an implementation of the sweep paradigm for volume rendering of regular datasets.

Giertsen [14] was the first to use this method for volume rendering in which the viewing

direction was the -direction and the sweeping plane was parallel to this viewing direction,

�
that is parallel to the -plane [9, 39]. It was the same approach in the Lazy Sweep Ray

Casting Algorithm [39]. A modification in the sweep direction was put forth by Yagel et

al. in [51, 53], where the sweep-plane was perpendicular to the -direction. ZSweep was

the most recent work that was done using the plane sweep paradigm [9, 10, 11]. It is a fast

and memory-efficient algorithm for volume rendering of irregular datasets. In the ZSweep

algorithm also the sweep-plane was perpendicular to the -direction and parallel to the

viewing plane. The sweep-plane passes over the entire dataset in the increasing order of ,

and all the faces of cells that the plane touches are projected onto the image plane [9, 10].

2.3 Review on Transfer Functions

The importance of transfer functions in scientific visualization has been well docu-

mented in scientific literature. Transfer functions are most commonly used for opacity,

color, and emittance [27]. Various strategies have been developed for the creation of color

20

maps on the basis of data types, application dependencies, and user studies in [3, 37, 44].

Opacity transfer functions play an important role as they allow the data to be either seen or

not seen in the final image. The Design Gallery [28] has a very comprehensible interface

for transfer functions. Contour Spectrum [2] uses isosurfaces, and He et al. [16] use a

genetic algorithm in their approach for generating transfer functions. All these works have

been primarily in 1D transfer functions. Recent focus has been on implementing 2D and

multi-dimensional transfer functions [19, 20]. Laidlaw [23] and Levoy [24] have been the

pioneers in the use of 2D transfer functions. Semi-automatic generation of 1D and 2D

transfer functions have been presented in [18, 34].

CHAPTER III

RZSWEEP

RZSWEEP is a new volume-rendering technique for uniform rectilinear datasets that

is presented in this work.

There are two main parts of the research that is described here. The first part is im-

plementing the sweeping plane paradigm in the direction [10] for volume rendering of

uniform rectilinear datasets. It is a single processor serial algorithm that uses the inherent

properties of a rectilinear datasets. Other aspects are that it is an object-order, back-to-

front, direct volume rendering, face projection algorithm for rectilinear datasets using the

cell approach.

Only a volume rendering algorithm in itself does not produce comprehensible results.

Various transfer functions need to be implemented in order to obtain images that clearly

visualize the features of interest. Hence, implementation of a lighting model, color and

opacity transfer functions in RZSweep make the results more realistic.

Finally, an image comparison is done between RZSweep and a 3D texture-based method

for volume rendering using standard image metrics like Euclidian and geometric differ-

ences. The volume-rendered image using 3D texture mapping method has been provided

by [35].

21

22

The goal is to generate realistic volume-rendered results of uniform rectilinear datasets

that are useful in scientific, engineering and medical fields.

3.1 Significance of RZSweep

As mentioned earlier, the sweeping-plane concept has also been applied to accomplish

volume-rendering tasks. The basic intention is to localize the task. Thus, computations

are performed on the element only when the sweep plane passes over it. There are several

advantages of this approach:

1. The task at hand is reduced from a 3D to a 2D sorting problem.

2. The task is localized, thereby becoming computationally less complex and less ex-
pensive.

3. Spatial coherence of the data is maintained as this approach ensures orderly sweep-
ing of the space.

4. There is no requirement to maintain information about the connectivity between
cells/elements.

As mentioned in the introduction earlier, the sweep paradigm has been very successful

for volume rendering algorithms applied to irregular grid datasets only. It is a novel idea

to implement this approach for regular datasets also.

3.2 The Basic RZSweep Algorithm

RZSweep algorithm sweeps rectilinear data in depth order using an imaginary plane

perpendicular to the viewing direction called the sweep plane, touching one vertex at a

time. Points already touched by the plane sweep and projected are flagged as swept. When

23

the sweep plane touches a vertex, the algorithm projects all faces incident on the vertex,

which are defined only by non-swept vertices, on to the screen. Now follows a detailed

explanation of the algorithm.

The first concern is how to create a real representation for the implicit grid in which the

rectilinear datasets are represented. A world coordinate system is built that is represented

initially by its three unit vectors u0, u1 and u2 correponding to the x, y and z directions.

Then, an affine transformation matrix containing all requested rotations and translations

is created and applied to the world coordinate system’s basis vectors. From this point on,

any vertex (i, j, k) of the implicit grid can be represented in the world space by projecting

(using a dot product) the vertex’s implicit coordinates with each of the unit vectors of the

world.

(i, j, k)

(i, j+1, k)

(i+1, j, k)

(i+1, j+1, k)

Figure 3.1 Twelve incident faces on an internal vertex

24

Plane

(i, j, k)

Sweep Direction

Sweep

Figure 3.2 Faces that lie ahead of the sweep plane

In this preprocessing phase, the algorithm also determines the projectable faces out of

all incident faces on a vertex. Every internal vertex has twelve faces incident on it, see

Figure 3.1. Among those faces only the ones lying ahead of the sweep plane with respect

to the sweeping direction must be projected, and are called new faces throughout the text.

Compare Figure 3.1 with Figure 3.2.

The sweeping is performed by ordering the vertices by their -coordinate using a heap

sort (from now on referred to simply as heap) and retrieving one by one in order. The

sweeping process continues until the heap is empty. The algorithm starts by inserting only

the nearest of the eight vertices of the bounding box of the data into the heap. The other

vertices are inserted on-the-fly, minimizing the necessary size of the heap. Figure 3.3

shows sweep plane touching a vertex (current vertex). The two non-swept vertices would

be sent to the heap and marked accordingly. This allows the sweep to continue. The two

Sweep
Plane

Swept Vertex

Not Swept Vertex

Currently Sweeping Vertex

To be Swept Next Vertex

Currently Rendered Faces
(New faces)

Sweep Direction

25

Figure 3.3 The schematic representation of RZSweep algorithm

new faces are incident on the current vertex and are lying ahead of the sweep plane. The

algorithm goes into the main loop, which is explained below in pseudo code of RZSweep.

In order to avoid multiple insertions into the heap, the algorithm sends only those

neighboring vertices to the heap that have not been sent before. Also, to avoid multiple

projection of a face, it is checked if any other vertex that defines the face (except the current

vertex) has already been projected, i.e. swept.

The on-the-fly classification is performed by sending only those vertices that are inside

the required range of scalar values, to the heap. By flagging the vertices in the preprocess-

ing step, the classification could be done efficiently.

26

Pseudo code of RZSweep

The outline of the basic RZSweep algorithm is shown here in the form of a pseudo

code.

1. Read data from slices

2. Convert data into single binary file, in which each scalar value is of one byte

3. Compute the faces that are visible in the given orientation

4. Start rendering by inserting the closest (minimum value) corner data element of
the new bounding volume, into the heap

5. While heap not empty �
Retrieve next vertex from the heap current vetex
Set it as swept
Determine the neighboring vertices which define the new faces incident on the
current vertex
If and only if the sent flag is not set

– Send the neighboring vertices to the heap
– and set them as sent

Project the new faces only if the swept flag of all the vertices of the faces are
not set.

�

3.3 Research Issues

Some of the research issues that were identified to require particular attention are:

Representation of the implicit grid of uniform rectilinear datasets in the real-world � � �� ��

coordinate system. This was achieved by representing the of the real-world �� �� ��
coordinate system as three unit vectors

�
�
�
�
�
�

in our coordinate system.

Application of transformations to the data points. For this we applied one affine
transformation matrix to the implicit data point and then projecting onto the world
coordinate system.

27

Redundant and unnecessary multiple projection of faces should be avoided. For this,
all the faces that need to be projected for a particular projection are pre-computed in
the pre-processing.

The correct depth order must be ensured. Heap is used to sort the data points ac-
cording to their depths, i.e. -values in the real world coordinate system. Heap sort ������ ���
is used since it has the best performance of �

for the worst case.

3.4 Implementation Details

The RZSweep was implemented completely in C++. Two versions of projection, one

using the graphics hardware and a second one using software compositing, have been

developed.

3.4.1 Preprocessing and basic structures

Besides the data itself, the algorithm requires memory space to keep the heap and

flags to control the sweeping process. Since the size of the heap can be predicted a priori

and is of the order of the largest diagonal plane of the data volume, it can be considered

as one more slice of data, which is not significant. That comes from the fact that at any

time only the points from a thin slab of the data ahead of the sweep plane will be in the

heap. The worst case can occur for certain orientations of the dataset in which the sweep

plane is parallel to the largest diagonal plane of the data volume. Care has been taken to

use only bits for the flags so that memory is not wasted by unnecessary allocation.

Before starting the rendering process three steps are performed. First, the transforma-

tion matrix containing the desired orientation is computed and applied to the unit vectors

28

that will be used to transform the implicit data grid to the world coordinate system. Second,

the data array is scanned, and vertices which lie within the desired threshold are flagged

to speed up on-the-fly classification. The third step determines which faces incident on

a vertex are projectable. A detailed description for this step is provided in the following

paragraph.

Internal vertices have twelve faces incident on them, as can be observed in Figure 3.1.

Consider that the data has dimensions ������� , ��� �	� and �
� ��� and the the internal vertex

� ��� ��� has indices � . By adding or subtracting � to or from the indices of , we are able to

determine all its twenty six neighboring vertices, which along with will define the twelve

� ��� ��� � ��� ��� � ��� ���
implicit faces incident on it (for instance, the face � , ��� � , ��� � � �

� ��� ���
and � � � in Figure 3.1). Projectable faces are the ones that lie ahead of the sweep

plane with respect to the sweeping direction (see Figure 3.2). As shown in this figure, in

the worst case, there will be eight faces to project. In the best case there will be only three.

We consider the value of the coordinate of vertex as reference. Then the projectable

faces will be the ones whose all four vertices have coordinate values greater than or

equal to this reference. A list of such faces is built, and this allows fast checking during

the sweeping process.

3.4.2 Sweep

A heap sorting data structure was chosen to order the vertices in the sweeping process

����� ��� � � �
because of its worst case complexity. Initially, only the nearest of the eight

29

corner vertices of the data volume are inserted into the heap. The algorithm obtains the

next vertex from the heap, labels it as swept, and proceeds by computing the projectable

faces using the list mentioned in Section 3.4.1. Among the vertices that define the pro-

jectable faces, the vertices that have not been marked as sent will be inserted into the heap

and labeled as sent. The new faces are then projected based on the following criteria:

1. Out of the four vertices that define a face, the current vertex is the only swept vertex.

2. The scalar value of at least one of the four vertices must lie within the given threshold
range.

3.4.3 Projection

Two types of projection have been implemented. In the hardware-dependent imple-

mentation, each face is sent to the graphics hardware which takes care of the rasterization

and compositing. The software-dependent version is slower, as expected, but enables the

parallelization of the code for shared and distributed-shared memory architectures.

The simplicity of the algorithm in projecting the faces enabled us to write the code

such that creating a hardware-dependent or independent executable is only a matter of

changing the type of final projection (hardware or software) of the faces.

3.4.3.1 Hardware

OpenGL is a standard application interface for graphics hardware. The hardware-

dependent implementation sends each face that is supposed to be projected to the graphics

pipeline using the OpenGL library. When a valid face with at least one vertex within the

30

user-defined threshold is computed, it is sent to OpenGL using the quad primitive. After

this, the graphics hardware is responsible for rendering and rasterizing of the face. The

code was tested on SGI’s Irix and PC Linux. Gouraud shading is implemented as it gives

a smooth shading and generates more photo-realistic images.

3.4.3.2 Software

The hardware independent implementation inherited the same lighting model as the

one used on the original ZSweep algorithm [9, 10]. Instead of sending the faces to the

graphics hardware, each face is scan converted. This creates intersections for all pixels be-

longing to the area of the screen on which the face is projected. Notice the scan conversion

of all faces of a cubical cell will project two intersections on a given region of the screen.

For pixels in this region, the lighting integral is applied adding the contribution from this

cell to the final color of such pixels. After compositing between two intersections for a

pixel, the algorithm will keep the intersection with greater value (if the sweep is per-

formed toward the positive direction), which will be used when the next intersection is

projected on the pixel, and so on.

3.4.4 Optimizations

Several optimizations were introduced and implemented in the algorithm that reduced

memory requirement and the number of faces to be considered in the projection phase of

the algorithm.

31

3.4.4.1 Projecting faces within threshold

This is the basic optimization done before the projection stage. A face consists of

four vertices that define it. Only those faces are projected that have at least one out of

four vertices within the threshold range. This optimization helps to avoid unnecessary

projections of faces that are outside the given threshold range.

3.4.4.2 Volume reduction

In the preprocessing, we reduce the volume of the data. This is done by shrinking

the bounding box towards the center of the dataset, until at least one vertex with a scalar

value that lies within the threshold range is found. Defining the range of threshold for

which relevant information is preserved varies for each dataset. Using their respective

threshold range, all datasets had their original volume reduced. This optimization results

in speeding up of the algorithm as the sweep process does not need to be performed over

empty space and parts of the datasets that are outside the threshold range. Section 4.1

gives some numerical results of the speed-up. A lot of unwanted noise can be eliminated

from the final result by choosing the threshold range appropriately as shown in the images

of Figure 4.19 and Figure 4.20 in Section 4.2.

3.4.4.3 Faces reduction

As mentioned in Section 3.2, interior points have twelve faces incident on them, out

of which only eight must be considered for projection. Out of these eight faces, certain

32

faces will not contribute significantly to the final image as they lie parallel to the viewing

direction. Those faces are identified in the preprocessing step and eliminated from the list

of projectable faces.

Sweep Direction

Sweep
Plane

(i, j, k)

Figure 3.4 Best cases for face projection

It has been observed that in all orientations, a minimum of three and a maximum of

four faces out of eight would contribute significantly. As shown in Figure 3.2, in the worst

case there will be only four faces (faces shown in solid lines in Figure 3.2), and in the best

case there will be three faces to be projected (see Figure 3.4). Viewing from any data

corner, only three faces will be projected by each vertex.

3.4.4.4 Connected datasets

During the sweep process, once a data element is found within the given threshold

range, on-the-fly classification is performed. Only those vertices out of the projectable

faces that are inside the required range of scalar values are considered and sent into to the

33

heap. This further reduces the number of faces projected. By flagging the vertices in the

preprocessing step, the classification could be done efficiently. As mentioned earlier, this

optimization holds valid for connected datasets only. The efficiency brought about by this

optimization can be seen in Section 4.1. A lot of disconnected objects outside the chosen

threshold range (typically artifacts) in the dataset are also avoided by this optimization.

3.5 Slice Viewer

Most of the datasets come in the form of 2D slices where each data element is usually

represented in 2 bytes (16 bits). First a converter has been developed that takes 2D slices

as the input and converts them to a single binary dataset of unsigned bytes.

A slice viewer has been developed. This helps to see the contents of inner slices that

make up the inner material of the dataset. Also this facilitates to compare the result of

the new algorithm with a standard image editor. Figure 3.5 shows a slice of a MRI-Head

dataset with the slice viewer. Figure 3.6 and Figure 3.7 show a slice of a CT-Skull and an

Engine (an industrial, non-medical) dataset respectively using the RZSweep slice viewer.

3.6 Lighting, Color and Opacity Transfer Functions

Lighting, color and different opacity values bring realism to the final result. This

section describes the approaches taken to implement lighting, color and opacity transfer

functions. The results of these can be found in Sections 4.1 and 4.2.

34

Figure 3.5 MRI-Head dataset slice with RZSweep slice viewer

Figure 3.6 Slice of CT-Brain dataset using RZSweep slice viewer

35

Figure 3.7 Engine dataset slice with RZSweep slice viewer

3.6.1 Lighting

In order to implement lighting, it is necessary to have information about the normals

of every vertex. There is no such information provided in a uniform rectilinear dataset.

For this reason virtual normals are computed for every vertex by using first-order differ-

entiation.

I�� � I � I � I � � � (3.1)

where

I � ��� � � � � � � 	� � � ���� �� � � � (3.2)

I � � ����� � � � 	� 	� � � � � (3.3)

I � � ������ �� �
�� 	� �� � � � � (3.4)

36

i+1

i+1

,
y

,
x z

x x

y

y

z

z

yx i i

i+1

(

N

i-1

i-1

i-1

z, ,)

(

i

)N N

�������� 	����
���
Figure 3.8 A vertex with its immediate neighbors

 I ��� I��� � I��� � I��� (3.5)

and then
II � � I (3.6)

I � I � I � I
From Figure 3.8, let be the normal of a vertex whose components are � � �

�
as shown in Equation (3.1). These components in the , and directions are computed

using Equations (3.2), (3.3) and (3.4). Then Equation (3.5) is calculated in order to

I
normalize the normal using Equation (3.6).

All these computations are carried out for every vertex, as a preprocessing step and

are passed to the graphics pipeline in the last stages of projection of faces. This helps to

save rendering time, otherwise, computing normals at every vertex would make the algo-

37

rithm computionally very expensive. This normal information is provided to the graphics

hardware for implementing OpenGL’s Phong lighting model (Figure 4.13).

3.6.2 Color

The data elements in the datasets are just single scalar values. They have no color

information. Color has to be put in explicitly, based on the scalar values. This is imple-

mented using OpenGL’s Gouraud shading and a lookup color table. The minimum and

maximum of colors is decided with respect to the minimum and maximum threshold val-

ues that the user defined. This range of colors in the given ����� color model is linearly

interpolated over � to � ��� discrete intervals.

The colors are generated as a preprocessing step and stored as color lookup tables.

Doing all the computations and creating the color lookup tables in the preprocessing step

saves a significant amount of rendering time during the creation of the final image.

3.6.3 Opacity

Computation of opacity of every data element is part of the preprocessing step. It

is computed by using different transfer functions. The results are within the range of

� ��� ��� and are stored as a opacity lookup table with ��� �
discrete values corresponding to

each scalar value. Some of the most common opacity transfer functions that have been

implemented are:

1. Linear - opacity of every data element is linear and is directly proportional to the
scalar value. Figure 3.9 is an example.

38

2. Exponential - opacity of every data element has some exponential relation with the
scalar value. This exponential function is given by the user. One of the common
exponential functions may look like Figure 3.10.

3. Logarithmic - opacity of every data element has some logarithmic relation with
the scalar value. The user provides this logarithmic function. A usual logarithmic
function may look like Figure 3.11.

4. Box - opacity of every data element is either transparent or a positive opacity value.
This positive opacity value and the scalar range are given by the user. In Figure 3.12,
two out of many types of box functions are shown that have been implemented.

5. Triangle - opacity of increases linearly till a certain value and then falls linearly,
thus forming a triangle function. The peak value and the slope can be controlled by
the user. Figure 3.13 shows two such cases.

6. Bone - If the data value is within the bone threshold range, then it has a positive
opacity value otherwise it is transparent. The positive opacity value is a function
of the scalar value that can be defined by the user. Also, the bone threshold range
is also defined by the user. This type of transfer function is particulary useful only
for bio-medical CT datasets. The opacity can be uniform for all bone data or can
depend on the scalar values. Figure 3.14 shows a linearly increasing as well as
constant opacity value function for the bone scalar values.

7. Soft tissue - If the data value is within the soft tissue threshold range, then it has
a positive opacity value otherwise it is transparent. The positive opacity value is a
function of the scalar value that can be defined by the user. The soft tissue threshold
range is also defined by the user. This type of transfer function is particulary useful
only for bio-medical CT datasets. Figure 3.15 shows a linearly increasing and a
constant opacity for the range of scalar data values for soft tissues.

8. Bone and Soft tissue - If the data value is within the soft tissue threshold range,
then it has a positive opacity value that is a function of the scalar value. If the data
value is within the bone threshold range, then it has a positive opacity value that
is a different function of the scalar value. Both these functions and the ranges can
be defined by the user. This type of transfer function is particulary useful for bio-
medical CT datasets. There are many functions possible. Figure 3.16 shows two of
such cases, and combinations of the two functions is also possible. See Figure 4.15
for the final image.

39

2550 Scalar values

Opacity

Y

X

1

Figure 3.9 Linear transfer function for opacity

Opacity

Y

X

1

0 Scalar values 255

Figure 3.10 Exponential transfer function for opacity

40

2550 Scalar values

Opacity

Y

X

1

Figure 3.11 Logarithmic transfer function for opacity

Y

1

Opacity

X

0 Scalar values 255

Figure 3.12 Box transfer function for opacity

41

Opacity

Y

X

1

0 Scalar values 255

Figure 3.13 Triangle transfer function for opacity

42

2550 Scalar values

Y

X

1

Opacity

Figure 3.14 Opacity transfer function for bone

Y

X

1

Opacity

0 Scalar values 255

Figure 3.15 Opacity transfer function for soft tissues

43

Y

X

1

Opacity

0 Scalar values 255

Figure 3.16 Opacity transfer function for bone and soft tissue

CHAPTER IV

RESULTS

There are many uniform rectilinear datsets available in the research community. Out

of these, eight have been used to report all the readings and results for the RZSweep

algorithm, and two have been considered for lighting, color and opacity transfer functions.

These datasets were chosen because they were diverse and cover a wide range of different

sizes.

Timings and readings of RZSweep, before and after all the optimizations. Also,
some readings after implementation of lighting, color and opacity transfer functions.

Images of different datasets that are produced by RZSweep and also images after
implementation of lighting, color and opacity transfer functions.

Results of image comparison with 3D texture method for volume rendering devel-
oped by [35].

All readings presented in this chapter have been taken at least five times and the average

time has been reported. Care has been taken such that the readings are disk I/O insensi-

tive by having a local copy all the reported datasets, thus avoiding network delays. The

computational time cannot be seperated from the rendering time due to the nature of the

algorithm, because one face is rendered as its neighboring faces are being computed. The

readings reported in this chapter depend on the threshold values mentioned in Table 4.1

and have zero degree rotation of the volume, unless specified otherwise. All timings are

44

45
� �

for final images of a size of ��� unless specified otherwise. They have been taken on an

SGI, the configuration details of which can be found in the Section 4.4. Table 4.1 gives all

the details of different datasets that remain constant throughout this chapter.

Table 4.1 Dataset details

Datasets Sizes
�

Threshold Range
�

Opacity No. of points rendered � �
CT-Brain � � ��� ��� � � ���

� � �
� � � � ��� � � ��� � � � � ������ �

CT-Skull ��� � ��� � ���
� �

��� � � ���
�

� � � � ��� � ������ �
Engine ��� � ��� � � �

� � �
� � � ��� � � ��� � ����� �˘� �� �

Foot � � � ��� � ���
� � �

��� � ��� � � � �� � � � �� � �
Fuel � � � � �

�
� � ��� �

�
� � ��� ��� ��

Lobster ���� � ˘����� �
� �

� � � ��� � � ��� ���� � ��
� � �
MRI-Head ��� � ��� � � ��� �� � ����� � ����
 � �� � ��
�
Statue-Leg ���� � ���� � � � � � ����� � ����� ���̆ � ��

4.1 RZSweep Timings

The hardware and software rendering timings are shown in Table 4.2 for four datasets.

Table 4.3 gives the hardware rendering timings of the other four datasets. Both, Table 4.2

and Table 4.3 show the final, optimized timing of RZSweep.

Table 4.4 gives the hardware and software rendering times of RZSweep for different

image sizes. These timings were taken only for the Engine dataset. Note that the hardware

rendering time does not change significantly with the increase in image size but the soft-

ware rendering times increase with increase in image sizes. This shows that the hardware

assisted RZSweep has little or no rendering time degradation, while the software algorithm

46

slows down significantly for larger images. This almost constant scalability is one of the

great advantages of our approach.

Table 4.5 gives the preprocessing times for different datasets as mentioned in Sec-

tion 3.4.1.

Table 4.6 gives the basic RZSweep times of different datasets without any optimiza-

tions. It is interesting to note the difference with the optimized times as given in Table 4.2

and Table 4.3.

Compared to Table 4.6, the rendering times have been reduced significantly after im-

plementing the volume reduction. This is shown in Table 4.7 along with the number of

data points that are reduced by this optimization. The speed up is due to the fact that

there is a much smaller number of points to render after this optimization as explained in

Section 3.4.4.2.

Table 4.8 shows the difference in the times and the number of faces projected after

implementing the face reduction from eight to four projectable faces mentioned in Section

3.4.4.3.

Table 4.9 shows further reduction of the number of faces that are projected after the

optimization of connected datasets. Refer to Section 3.4.4.4.

The results of implementing color, opacity and lighting model seperately as well as

all together, to the optimized RZSweep algorithm is given in Table 4.10. The readings

show that there is very little increase in the rendering time when compared with those in

47

Table 4.2 and Table 4.3. The implementation is explained in Section 3.6 and the results

are shown in Figure 4.16 and Figure 4.17.

Table 4.2 Hardware and software rendering times of RZSweep

Datasets Hardware (sec.)
�

Software (sec.)
�

CT-Brain ����� � ��� ��
Fuel � � ��� � � ˘�

�
Lobster ��� �� ��� �

�
MRI-Head � � ��� � �

Table 4.3 Hardware rendering times of RZSweep

Datasets Time (sec.)
CT-Skull � ���
Engine � � ��
Foot �����
Statue-Leg � � � �

4.2 RZSweep Images

Resulting images from the optimized RZSweep algorithm using the graphics hardware

for rendering are shown in the images in Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6,

Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10. All these have a uniform opacity

function for all scalar values. The image in Figure 4.6 has a threshold range of
� � � �����

48

Figure 4.1 Graph showing rendering time for increasing number of data elements

Figure 4.2 Graph showing the rendering times for different image sizes of Engine dataset

Table 4.4 Rendering times of RZSweep for different image sizes of Engine dataset

Image Sizes
� � Hardware (sec.) Software (sec.)
� � � ��
�� �� �
���

� � � ��
�� ������
�� � � � ��
�� ��� �
�� � � � � ��
�� ������

����˘��� � ��
�� ��� � �

49

Table 4.5 Preprocessing times of RZSweep for different datasets

Datasets Time (sec.)
CT-Brain ���
CT-Skull ��
Engine ��� ˘�
Foot
Fuel ��

Lobster ��� ���
MRI-Head ���
Statue-Leg ����

� � �
� � �
�
� � �
� �

� �

�

Table 4.6 RZSweep timing without any optimizations

Datasets Unoptimized Time (sec.)
CT-Brain ��� ˘

CT-Skull ˘

Engine
Foot ˘� ��

Fuel �����
Lobster
�

MRI-Head ��
Statue-Leg ˘�

� � �
 � � �
� � � �

�

�
� � �

� � � �
� � � �

Table 4.7 RZSweep timing with volume reduction

Datasets Reduced size No. of points reduced % reduced Time (sec.)
CT-Brain
���� ����� � ��� �� ���� ��
�� ���
CT-Skull ��� ��� ������� ˘

Engine ������� ���� ��� ���
Foot �
��� �� �� ���
Fuel ��
˘���
˘� �����
�� �� ��� ��
Lobster ���� ���� ����� ���
MRI-Head �˘� ������ ����� ����
 ����� ���
Statue-Leg

� � � �
�
� � �

� � � � �
�
�

�
� � � � � � � �

� � �
� �

�
�
� � � � � � � � � � � �

� � � � � � �
� � �

�
� � � � � � � � �

� � � � � � �
� � � � � � � �

�
�

�
� � � � � � �

� �
� �

� � � � � � � �
���� � � � � � ��

�
��
˘�

�
��� � � ��
 �
�� � �˘�

50

Table 4.8 RZSweep with eight and four projected faces

Datasets 8 faces 4 faces
No. of faces Time (sec.) No. of faces Time (sec.)

CT-Brain � ��
�� ��� �� ��� ��
CT-Skull
˘� �˘� ˘
 �˘� �� �˘�
Engine ��� ����
 ���̆ � ��� ��

˘�
Foot ��̆ ��˘� �� �����
Fuel ��� ˘
 ��� �� ��� ��

Lobster ���� ��˘� ���
����
˘� ��
MRI-Head ���
˘� ���
Statue-Leg �� ˘�
˘� ���̆
 ����
��

�
� �

� � � �
� � �

�
� � � � � �

�
�

�
�

 � � � �
�
� � � � � �

�
�
�

�
� � � � � �

� � � �
�
�
� � � �

 � � � � �
�
� � � �

�
� � � � �

�
� � �

�
� �

� � � �
� � � � �

�
�
� � �

� � � � � �
� � � �

�
� � � �

�
� � � � � � �

�
� �

Table 4.9 RZSweep with connected data optimization

Datasets No. of faces projected
CT-Brain ��� ����
CT-Skull �� �����
Engine ���̆ � �˘�
Foot ��� ���
Fuel
Lobster
�� ��

MRI-Head
�� ��

Statue-Leg ����� ��
�

�
�
�

�
�

�
�
� �

�
�
� �

�
� �
�

� �
�
� � �

�
�
�

�
� � �

��

Table 4.10 RZSweep after implementation of light, color and opacity

Datasets Color Opacity Light All
CT-Brain ��� ��� �� ��

Engine ���
 ���˘�

� � � � � � � � � � � �
� � � � � � � � �

51

and image in Figure 4.9 has a threshold range of ����� ����� . The image shown in Figure 4.10

has a threshold range of �� � ��� � and a uniform opacity of ��� � . All other datasets have the

same threshold range and uniform opacity as mentioned in Table 4.1.

Figure 4.3 and Figure 4.11 have the same opacity but different threshold range. The

image in Figure 4.3 shows the bone and the other shows soft tissues like flesh and skin

with uniform opacity. Figure 4.11 has a threshold range of ����� � ����� . This shows the

effect of different threshold ranges.

The image in Figure 4.12 has the same threshold range as the one in Figure 4.3 but

has a different opacity value of �������˘� . The image in Figure 4.12 is more transparent due

to a smaller opacity value. Here the opacity is uniform for all scalar values.

Figure 4.13 and Figure 4.14 show the effect of the implementation of a lighting model

as mentioned in Section 3.6.1. Lighting adds realism to the final image, and this is evident

when compared with Figure 4.3 and Figure 4.5.

Figure 4.15, Figure 4.16, and Figure 4.17 show the final images after implemen-

tation of a lighting model, color tables and opacity transfer functions, as mentioned in

Section 3.6. Figure 4.15 uses the Bone and Soft tissue opacity transfer function. Fig-

ure 4.17 uses a Triangle opacity transfer function. Both these types of transfer functions

are mentioned in Section 3.6.3.

	

52

Figure 4.3 CT-Brain dataset

Figure 4.4 CT-Skull dataset with � � ��� rotation about the axis

53

Figure 4.5 Engine dataset with ������� rotation about the � axis

Figure 4.6 Foot dataset with �������� rotation about the � axis

54

Figure 4.7 Fuel dataset

Figure 4.8 Lobster dataset

55

Figure 4.9 MRI-Head dataset

Figure 4.10 Statue-Leg dataset with ��������� rotation about the � axis

56

Figure 4.11 CT-Brain dataset with threshold range of ��� � � � ���

Figure 4.12 CT-Brain dataset with uniform opacity of ��� � �˘�

57

Figure 4.13 CT-Brain dataset with lighting

Figure 4.14 Engine dataset after implementation of a lighting model

58

Figure 4.15 CT-Brain dataset with threshold range of ��� � � � ���

Figure 4.16 CT-Brain dataset after implementing light, color and opacity

59

Figure 4.17 Engine dataset with lighting, color and opacity

60

4.3 RZSweep Image Comparison

In this section, images generated by RZSweep are compared to images rendered with a

3D texture-based method for volume rendering developed by [35]. The CT-Brain dataset is

used for this purpose. It has been tried to generate the two images under similar projection,

opacity transfer function, rotation and threshold range of � � � ��� . Since the dataset is a

single scalar value for every data element and no color transfer function has been used, all

images are in gray scale. If different lighting models were used, this would result in a lot

of image differences. Hence, lighting has not been incorporated to generate the results.

The 3D texture method uses ��� �
slices of data and � � � texture planes (Nyquist Theorem)

[35].

1 2 1

2 4 2

1 2 1

1 1 2 1 1

1 2 3 2 1

2 3 4 3 2

1 2 3 2 1

1 1 2 1 1

Figure 4.18 Weight matrix of �� and ��� � pixels

Every pixel can be compared individually between two images. But sometimes if every

pixel is slightly different and the images do not line up perfectly, it would make sense

to compare larger areas instead of individual pixels. Therefore, two types of weighted

averaging have also been done to reduce the image details and to compare primarily low-

61

frequency components in the image. � and � � � pixel areas have been considered and

weights have been assigned to the neighboring pixels. These weights of the neighboring

pixels are shown in Figure 4.18 for averaging � pixels and � � � pixels. The following

is the nomenclature of the two images that are frequently used during discussion of image

comparison.

1. Image(�) is generated by RZSweep as shown in Figure 4.19. Image(�) ����� is after
averaging � pixels of Image(�) (see Figure 4.25), and Image(�) ����� is after
averaging � � pixels of Image(���) (see Figure 4.31).

2. Image(�) is generated by 3D texture mapping method as shown in Figure 4.20.
Image(�) ����� is after averaging � pixels of Image(�) (see Figure 4.26), and
Image(�) ����� is after averaging ��� � pixels of Image(�) (see Figure 4.32).

The following are the four types of differences reported here for each pixel and average

of � and � � � pixels. The list of images for these differences can be found in Table 4.11.

 � � �� � � � � � ����� � � � ��� (4.1)

 � � �� � � � � � ����� � � � ��� (4.2)

��� � ��
� � � � � �� � � � � � ��� �� � � � �

� ��� �� (4.3)� ��0 �
��� � ��

� � � � � �� � � � � � ��� �� � � � �
� ��� �� (4.4)� ��0 �

Absolute difference (Equation 4.1): All numerical differences are positive values.

62

Signed difference (Equation 4.2): Differences are either positive or negative in na-
ture. The maximum negative difference is rendered black, and the maximum posi-
tive difference is white. When there is no difference, the pixel is gray.

Image(�) - Image(�) (Equation 4.3): If the difference is less than zero, i.e. the
difference is negative, then it is treated as zero (black). This image shows those
pixel values of Image(�) that are greater than the corresponding pixels of Image(�).

Image(�) - Image(�) (Equation 4.4): This image shows those pixel values of Image(�)
that are greater than the corresponding pixels of Image(�).

In order to obtain a quantitative measure for the overall difference between the two

images, we define two metrics: Euclidian and geometric difference.

� 	������ � � � �� � ���� �
I (4.5)

Euclidian difference is the sum of all pixel differences between two images divided by

the total number of pixels. It is given by Equation (4.5) where
 �

is a pixel of Image(�),

and the corresponding pixel of Image(�) is given by
� �

. Euclidian difference is applied

to all the four types of differences mentioned above for per-pixel, � and � � � pixels.

All these are reported in Table 4.12. Euclidian difference considers regular and linear

distances and hence, does not provide emphasis of any kind.

���� � ����� 	� �� � �� �� �
I (4.6)

Geometric difference is the square root of the sum of all squares of the differences

between corresponding pixels of two images divided by the total number of pixels. It

is given by Equation (4.6) where
 �

is pixel of Image(�), and the corresponding pixel of

63

Image(�) is given by
� �

. Geometric difference is applied to all the four types of differences

mentioned above for per-pixel, � and � � � pixels. All these are reported in Table 4.13.

The absolute and signed geometric difference values are the same since the square of the

difference always gives a positive value, irrespective of the sign. Geometric difference

emphasizes on outliers.

Higher order metrics like cubic etc. lack any kind of geometric intuition, and hence

have not been implemented.

Comparing these images, it is seen that both methods generate very similar images.

From images that show either Image(�) � Image(�) or Image(�) � Image(�), it can be seen

that pixels of Image(�) (image generated by 3D texture method) only have a little higher

gray-scale values. For quantitative values, see Table 4.12 and Table 4.13. For this reason

images in Figure 4.23, Figure 4.29 and Figure 4.35 are almost black. Also, figures that

show the absolute difference and Image(�) � Image(�) are almost similar because of the

above reason.

Image in Figure 4.37 is generated using the RZSweep algorithm with a threshold range

of ������� ����� . All other aspects such as orthographic projection, opacity transfer functions,

gray-scale data values and rotation angles, have been kept the same as in Figure 4.19

and Figure 4.20. It can be seen that the image in Figure 4.37 has a lot of unnecessary

noise eliminated without compromising the image quality. This shows that quality of

the final image improves after implementation of the various optimization and accleration

techniques mentioned in Section 3.4.4 to the basic RZSweep algorithm.

64

Table 4.11 Difference image list

Comparison types � � � Pixels �� Pixels � � � Pixels
Absolute Difference Figure 4.21 Figure 4.27 Figure 4.33
Signed Difference Figure 4.22 Figure 4.28 Figure 4.34
Image1 - Image2 Figure 4.23 Figure 4.29 Figure 4.35
Image2 - Image1 Figure 4.24 Figure 4.30 Figure 4.36

Table 4.12 Euclidian difference between RZSweep and 3D texture-based rendering

Euclidian � � � Pixels � Pixels ��� � Pixels
Absolute Difference ��� �˘
 ��� ���

� �
����˘�

Signed Difference � �� ��� � �� � �� � �
Image1 - Image2 ����
�� ��� ��� ��� ��
Image2 - Image1 ������ ���� �� �

Table 4.13 Geometric difference between RZSweep and 3D texture-based rendering

Geometric � � � Pixels � Pixels ��� � Pixels
Absolute Difference ��� ��� � � ��� � � ���
Signed Difference � � �˘�

�
� � ��� � � ���

Image1 - Image2 � � ��� � � ��� � �����
Image2 - Image1 � � �˘� � � ��� � � ���

65

Figure 4.19 Image(�): Image generated by RZSweep

Figure 4.20 Image(�): Image generated by 3D texture-based rendering method

66

Figure 4.21 Absolute difference image between Image(�) and Image(�)

Figure 4.22 Signed difference image between Image(�) and Image(�)

67

Figure 4.23 Image(�) � Image(�)

Figure 4.24 Image(�) � Image(�)

68

Figure 4.25 Image(�) ����� : Image after averaging � pixels of RZSweep

Figure 4.26 Image(�) ����� : Image after averaging � pixels of 3D texture-based rendering

69

Figure 4.27 Absolute difference image between Image(�) ����� and Image(�) �����

Figure 4.28 Signed difference image between Image(�) ����� and Image(�) �����

70

Figure 4.29 Image(�) ����� � Image(�) �����

Figure 4.30 Image(�) ����� � Image(�) �����

71

Figure 4.31 Image(� � � pixels of RZSweep) ����� : Image after averaging ��

Figure 4.32 Image(�) ����� : Image after averaging � � � pixels of 3D texture-based rendering

72

Figure 4.33 Absolute difference image between Image(�) ����� and Image(�) �����

73

Figure 4.34 Signed difference image between Image(�) ����� and Image(�) �����

Figure 4.35 Image(�) ����� � Image(�) �����

74

Figure 4.36 Image(�) ����� � Image(�) �����

Figure 4.37 Clean image generated by RZSweep with a threshold range of ����� � �����

75

4.4 SGI Machine’s System Hardware

Mentioned here are the system details of the SGI machine on which all the timings

reported in this document were taken. The hinv command was used. This command

displays the contents of the system hardware inventory table. This table is created each

time the system is booted and contains entries describing various pieces of hardware in the

system. The items in the table include main memory size, cache sizes, floating point unit,

and disk drives. Without arguments, the hinv command displays a one line description of

each entry in the table, as shown below.

4 400 MHZ IP27 Processors
CPU: MIPS R12000 Processor Chip Revision: 3.5
FPU: MIPS R12010 Floating Point Chip Revision: 3.5
Main memory size: 4096 Mbytes
Instruction cache size: 32 Kbytes
Data cache size: 32 Kbytes
Secondary unified instruction/data cache size: 8 Mbytes
Integral SCSI controller 2: Version QL1040B (rev. 2), single ended
Integral SCSI controller 3: Version QL1040B (rev. 2), differential
Integral SCSI controller 4: Version QL1040B (rev. 2), differential
Integral SCSI controller 5: Version QL1040B (rev. 2), differential
Integral SCSI controller 1: Version QL1040B (rev. 2), single ended
Integral SCSI controller 0: Version QL1040B (rev. 2), single ended
Disk drive: unit 1 on SCSI controller 0
CDROM: unit 6 on SCSI controller 0
IOC3 serial port: tty1
IOC3 serial port: tty2
IOC3 serial port: tty3
IOC3 serial port: tty4
IOC3 parallel port: plp1
Graphics board: InfiniteReality3
Integral Fast Ethernet: ef0, version 1, module 1, slot io1, pci 2
ATM PCA-200E OC-3: module 1, xio slot 2, pci slot 0, unit 0
Iris Audio Processor: version RAD revision 7.0, number 1
Origin MSCSI board, module 1 slot 7: Revision 4

76

Origin BASEIO board, module 1 slot 1: Revision 4
Origin PCI XIO board, module 1 slot 2: Revision 4
IOC3 external interrupts: 1

CHAPTER V

CONCLUSIONS

5.1 Contributions

The work presented here is a new volume-rendering technique for uniform rectilinear

datasets called RZSweep. RZSweep is the first attempt to incorporate the capabilities of

the sweep paradigm to render volumetric rectilinear data. The algorithm is based on a

virtual plane sweeping through an entire dataset in the -direction, creating the volume-

rendered image in the process. The uniqueness of the algorithm is that it exploits the inher-

ent properties of a rectilinear dataset to obtain the information of the neighboring vertices.

This saves precious memory space and decreases the space complexity of the algorithm.

RZSweep employs several optimization techniques to increase the rendering speed, de-

crease the memory requirement and get high quality results in a reasonable amount of

time. RZSweep utilizes the graphics pipeline for achieving high rendering speed. In most

volume- rendering algorithms it is seen that the rendering time increases with an increase

in the image size. But the hardware assisted RZSweep algorithm has little or no rendering

time degradation for different image sizes, and this would be very significant for rendering

larger images. Results of the RZSweep algorithm with and without the different optimiza-

tions are presented in Section 4.1 and Section 4.2.

77

78

RZSweep is memory efficient because besides the data itself, the only other data struc-

ture that requires memory is the heap. As discussed in Section 3.4.1, the heap takes neg-

ligible memory compared to the entire dataset. RZSweep is a face projection algorithm.

After identifying the faces incident on a vertex, there is only a small range of neighbor-

ing vertices that needs to be considered. This gives the algorithm the ability to perform

on-the-fly segmentation and also eliminate non-relevant data from the process at the same

time.

The explicit colors associated with the scalar values are implemented using different

color lookup tables. Various standard and specific opacity transfer functions have also been

implemented. The Phong lighting model and OpenGL’s smooth Gouraud shading has been

used to bring realism to the final images. Section 4.1 reports the timings of all these, and

it is seen that the rendering time does not increase significantly after implementation of

color, opacity functions and lighting. Results of these can be found in Section 4.2.

In Section 4.3 an image comparison is done between the results of RZSweep and a

3D texture-based rendering algorithm. The two methods generate very similar images.

Euclidian and geometric differences image metrics give quantitative differences. Compar-

ative images are also given for per-pixel and weighted average of � and � � � pixel

areas.

79

5.2 Further Research

A graphical user interface (GUI) needs to be developed for RZSweep. This algorithm,

in its current stage, takes in all the user-defined inputs in various commandline arguments.

One-dimensional color and opacity transfer functions have been used here. There has

been recent research in the area of implementing two dimensional and multidimensional

transfer functions for direct volume rendering (DVR) algorithms, as mentioned in Sec-

tion 2.3. Since RZSweep is also a DVR algorithm, such multidimensional transfer func-

tions also can be implemented on it.

The comparison of RZSweep’s performance on the SGI with that of PC, under different

conditions, would be performed in the immediate future. Based on these performance

comparisons, certain architecture-dependent optimizations might be possible. This would

also open up the area of exploiting the capabilities of todays dedicated high performance

graphics cards for RZSweep.

Parallelization of a serial algorithm to improve its performance has been a common

practice in the research community. RZSweep can be parallelized in the software version

as well as in the hardware version.

REFERENCES

[1] R. Avila, T. He, L. Hong, A. Kaufman, H. Pfister, C. Silva, L. Sobierajski, and
S. Wang, “Volvis: A Diversified Volume Visualization System,” Proceedings of
IEEE Visualization 1994, Washington, DC, October 17-21 1994, pp. 31–38.

[2] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “The Contour Spectrum,” Proceedings
of IEEE Visualization 1997, Phoenix, Arizona, October 19-24 1997, pp. 167–173.

[3] L. D. Bergman, B. E. Rogowitz, and L. A. Treinish, “A Rule-based Tool for Assisting
Colormap Selection,” Proceedings of IEEE Visualization 1995, Atlanta, Georgia,
October 29 - November 03 1995, pp. 118–125.

[4] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering and Tomographic
Reconstruction Using Texture Mapping Hardware,” Proceedings of the 1994 Sympo-
sium on Volume Visualization, Tysons Corner, Virginia, United States, October 17-18
1994, pp. 91–98.

[5] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman, “High-quality Volume
Rendering Using Texture Mapping Hardware,” Proceedings of the 1998 EURO-
GRAPHICS/SIGGRAPH workshop on Graphics hardware, Lisbon, Portugal, August
31-September 01 1998, pp. 69–76.

[6] J. Danskin and P. Hanrahan, “Fast Algorithms for Volume Ray Tracing,” Proceedings
of 1992 Workshop on Volume Visualization, Boston, Massachusetts, October 19-20
1992, pp. 91–98.

[7] R. Drebin, L. Carpenter, and P. Hanrahan, “Volume Rendering,” Computer Graphics
(Proceedings SIGGRAPH ’88), vol. 22, no. 4, August 1988, pp. 65–74.

[8] T. T. Elvins, “A Survey of Algorithms for Volume Visualization,” Computer Graph-
ics, vol. 26, no. 3, October 2000, pp. 194–201.

[9] R. Farias, Efficient Rendering of Volumetric Irregular Grids Data, doctoral disserta-
tion, State University of New York at Stony Brook, Department of Applied Mathe-
matics and Statistics, June 2001.

[10] R. Farias, J. S. B. Mitchell, and C. T. Silva, “ZSweep: An Efficient and Exact Pro-
jection Algorithm for Unstructured Volume Rendering,” Proceedings of ACM/IEEE
Symposium on Volume Visualization 2000, Salt Lake City, Utah, October 9-10 2000,
pp. 91–99.

80

81

[11] R. Farias and C. Silva, “Parallelizing the ZSweep algorithm for Distributed-Shared
Memory Architectures,” Proceedings of IEEE/EG International Workshop on Vol-
ume Graphics 2001, Stony Brook, New York, June 21-22 2001.

[12] I. Gargantini, T. R. S. Walsh, and O. L. Wu, “Displaying a Voxel-based Object via
Linear Octtrees,” Proceedings of SPIE 626, 1986, pp. 460–466.

[13] A. V. Gelder and K. Kim, “Direct Volume Rendering With Shading via Three-
dimensional Textures,” Proceedings of the 1996 Symposium on Volume Visualization,
San Francisco, California, United States, October 28-29 1996, pp. 23–30.

[14] C. Giersten, “Volume Visualization of Sparse Irregular Meshes,” IEEE Computer
Graphics and Applications, vol. 12, no. 2, March 1992, pp. 40–48.

[15] P. Haeberli and M. Segal, “Texture Mapping as a Fundamental Drawing Primitive,”
Proceedings of the Fourth Eurographics Workshop on Rendering, Paris, France, June
1993, pp. 259–266.

[16] T. He, L. Hong, A. Kaufman, and H. Pfister, “Generation of Transfer Functions
with Stochastic Search Techniques,” Proceedings of IEEE Visualization 1996, San
Francisco, CA, October 27 - November 1 1996, pp. 227–234.

[17] K. H. Hoehne, B. Pflesser, A. Pommert, M. Riemer, T. Schiemann, R. Schubert, and
U. Tiede, “A ‘Virtual Body’ Model for Surgical Education and Rehearsal,” Com-
puter, vol. 29, no. 1, January 1996, pp. 25–31.

[18] G. Kindlmann and J. W. Durkin, “Semi-Automatic Generation of Transfer Functions
for Direct Volume Rendering,” Proceedings of IEEE Symposium On Volume Visu-
alization 1998, Research Triangle Park, North Carolina, October 19-20 1998, pp.
79–86.

[19] J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume Rendering Using Multi-
Dimensional Transfer Functions and Direct Manipulation Widgets,” Proceedings of
IEEE Visualization 2001, San Diego, California, October 21-26 2001, pp. 255–262.

[20] J. Kniss, G. Kindlmann, and C. Hansen, “Multidimensional Transfer Functions for
Interactive Volume Rendering,” IEEE Transactions on Visualization and Computer
Graphics, vol. 8, no. 3, July-September 2002, pp. 270–285.

[21] P. G. Lacroute, Fast Volume Rendering Using a Shear-Warp Factorization of the
Viewing Transformation, doctoral dissertation, Stanford University, Computer Sys-
tems Laboratory, Departments of Electrical Engineering and Computer Science,
Stanford University, Stanford, CA 94305-4055, September 1995.

82

[22] P. G. Lacroute and M. Levoy, “Fast Volume Rendering Using a Shear-Warp Factor-
ization of the Viewing Transformation,” Proceedings of SIGGRAPH ’94, Orlando,
Florida, July 1994, pp. 451–458.

[23] D. H. Laidlaw, Geometric Model Extraction from Magnetic Resonance Volume Data,
doctoral dissertation, California Institute of Technology, May 1995.

[24] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and
Applications, vol. 8, no. 3, May 1988, pp. 29–37.

[25] M. Levoy, “Efficient Ray Tracing of Volume Data,” ACM Transactions on Graphics,
vol. 9, no. 3, July 1990, pp. 245–261.

[26] M. Levoy, “Volume Rendering by Adaptive Refinement,” The Visual Computer, vol.
6, no. 1, February 1990, pp. 2–7.

[27] B. Lichtenbelt, R. Crane, and S. Naqvi, Introduction to Volume Rendering, chapter 4,
Prentice Hall, Upper Saddle River, New Jersey, 1998, pp. 87–102.

[28] J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang,
B. Mirtich, H. Pfister, W. Ruml, and K. Ryall, “Design Galleries: A General Ap-
proach to Setting Parameters for Computer Graphics and Animation,” ACM Com-
puter Graphics (Proceedings of SIGGRAPH ’97), August 1997, pp. 389–400.

[29] D. Meagher, “Geometric Modeling Using Octree Encoding,” Computer Graphics
and Image Processing, vol. 19, no. 2, June 1982, pp. 129–147.

[30] M. Meissner, U. Hoffmann, and W. Strasser, “Enabling Classification and Shading
for 3D Texture Mapping based Volume Rendering using OpenGL and Extensions,”
Proceedings of the IEEE Visualization ’99, San Francisco, California, October 24-29
1999, pp. 207–214.

[31] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis, “A Practical Evalu-
ation of Popular Volume Rendering Algorithms,” Proceedings IEEE Symposium on
Volume Visualization 2000, Salt Lake City, Utah, October 9-10 2000, pp. 81–90.

[32] K. Mueller and R. Crawfis, “Eliminating Popping Artifacts in Sheet Buffer-based
Splatting,” Proceedings of IEEE Visualization ’98, Research Triangle Park, North
Carolina, October 18-23 1998, pp. 239–245.

[33] K. Mueller, N. Shareef, J. Huang, and R. Crawfis, “High-Quality Splatting on Rec-
tilinear Grids With Efficient Culling of Occluded Voxels,” IEEE Transactions on
Visualization and Computer Graphics, vol. 5, no. 2, April-June 1999, pp. 116–134.

83

[34] H. Pfister, C. Bajaj, W. Schroeder, and G. Kindlann, “The Transfer Function Bake-
Off,” Proceedings of IEEE Visualization 2000, Salt Lake City, Utah, October 18-23
2000, pp. 523–526.

[35] P. Pinnamaneni, Wavelet Based Volume Rendering System, master’s thesis, Missis-
sippi State University, Department of Electrical and Computer Engineering, Missis-
sippi State University, Mississippi State, MS 39762, September 2002.

[36] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

[37] P. Rheingans, “Task-Based Color Scale Design,” Proceedings of Applied Image and
Pattern Recognition ’99, SPIE, October 1999, pp. 35–43.

[38] P. Sabella, “A Rendering Algorithm for Visualizing 3D Scalar Fields,” Proceedings
SIGGRAPH ’88, 1988, pp. 51–58.

[39] C. Silva and J. Mitchell, “The Lazy Sweep Ray Casting Algorithm for Rendering
Irregular Grids,” IEEE Transactions on Visualization and Computer Graphics, vol.
3, no. 2, April-June 1997, pp. 142–157.

[40] U. Tiede, K. H. Hoehne, M. Bomans, A. Pommert, M. Riemer, and G. Wiebecke,
“Investigation of Medical 3D Rendering Algorithms,” IEEE Computer Graphics
and Applications, vol. 10, no. 2, March 1990, pp. 41–53.

[41] U. Tiede, T. Schiemann, and K. H. Hoehne, “High Quality Rendering of Attributed
Volume Data,” Proceedings of IEEE Visualization 1998, Research Triangle Park,
North Carolina, October 18-23 1998, pp. 255–262.

[42] H. Tuy and L. Tuy, “Direct 2D Display of 3D Objects,” IEEE Computer Graphics
and Applications, vol. 4, no. 10, November 1984, pp. 29–33.

[43] C. Upson and M. Keeler, “V Buffer: Visible Volume Rendering,” Proceedings
SIGGRAPH ’88, 1988, pp. 59–64.

[44] C. Ware, “Color Sequences for Univariate maps: Theory, Experiments, and Princi-
ples,” IEEE Computer Graphics and Applications, vol. 8, no. 5, September 1988, pp.
41–49.

[45] R. Westerman and T. Ertl, “Efficiently Using Graphics Hardware in Volume Ren-
dering Applications,” Proceedings of SIGGRAPH ’98, Orlando, Florida, July 24-29
1998, pp. 169–177.

[46] L. Westover, “Interactive Volume Rendering,” Proceedings of the Chapel Hill Work-
shop on Volume Visualization, C. Upson, ed., Department of Computer Science, Uni-
versity of North Carolina, Chapel Hill, NC, May 1989, pp. 9–16.

84

[47] L. Westover, “Footprint Evaluation for Volume Rendering,” Computer Graphics
(Proceedings of SIGGRAPH ’90), vol. 24, no. 4, August 1990, pp. 367–376.

[48] L. Westover, SPLATTING: A Parallel, Feed-Forward Volume Rendering Algorithm,
doctoral dissertation, University of North Carolina, Chapel Hill, Department of Com-
puter Science, July 1991.

[49] T. Whitted, “An Improved Illumination Model for Shaded Display,” Communications
of the ACM, vol. 23, no. 6, June 1980, pp. 343–349.

[50] J. Wilhelms and A. V. Gelder, “A coherent projection approach for direct volume
rendering,” ACM SIGGRAPH Computer Graphics, vol. 25, no. 4, July 1991, pp.
275–284.

[51] R. Yagel, Volume Rendering Polyhedral Grids by Incremental Slicing, Tech. Rep.
OSU-CISRC-10/93-TR35, Department of Computer and Information Science, Ohio
State University, 2036 Neil Avenue, Columbus, OH 43210-1277, 1993.

[52] R. Yagel, “Towards Real Time Volume Rendering,” Proceedings of GRAPHICON
’96, Russia, July 1996, pp. 230–241.

[53] R. Yagel, D. Reed, A. Law, P. W. Shih, and N. Shareef, “Hardware Assisted Volume
Rendering of Unstructured Grids by Incremental Slicing,” Proceedings of IEEE-
ACM 1996 Volume Visualization Symposium, San Francisco, California, October 28-
29 1996, pp. 55–62.

[54] R. Yagel and Z. Shi, “Accelerating Volume Animation by Space-Leaping,” Proceed-
ings of Visualization ’93, San Jose, California, October 1993, pp. 62–69.

	Rzsweep: A New Volume-Rendering Technique for Uniform Rectilinear Datasets
	Recommended Citation

	Defense.dvi

