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Spoken language processing is one of the oldest and most natural modes of

information exchange between humans beings. For centuries, people have tried to develop

machines that can understand and produce speech the way humans do so naturally. The

biggest problem in our inability to model speech with computer programs and

mathematics results from the fact that language is instinctive, whereas, the vocabulary and

dialect used in communication are learned. Human beings are genetically equipped with

the ability to learn languages, and culture imprints the vocabulary and dialect on each

member of society. This thesis examines the role of pattern classification in the

recognition of human speech, i.e., machine learning techniques that are currently being

applied to the spoken language processing problem.

The primary objective of this thesis is to create a network training paradigm that

allows for direct training of multi-path models and alleviates the need for complicated

systems and training recipes. A traditional trainer uses an expectation maximization (EM)



based supervised training framework to estimate the parameters of a spoken language

processing system. EM-based parameter estimation for speech recognition is performed

using several complicated stages of iterative reestimation. These stages typically are prone

to human error. The network training paradigm reduces the complexity of the training

process while retaining the robustness of the EM-based supervised training framework.

The hypothesis of this thesis is that the network training paradigm can achieve comparable

recognition performance to a traditional trainer while alleviating the need for complicated

systems and training recipes for spoken language processing systems.
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CHAPTER I

INTRODUCTION

Speech is one of the oldest and most natural means of information exchange

between humans beings. For centuries people have tried to develop machines that can

understand and produce speech as humans do so naturally [1,2]. The biggest problem in

our inability to model speech with computer programs and mathematics results from the

fact that language is instinctive, whereas, the vocabulary and dialect used in

communication are learned [1,2,3]. Human beings are genetically equipped with the

ability to learn languages, and culture imprints the vocabulary and dialect on each member

of society [1,4]. The problems mentioned above are some of the open research areas in

speech: encoding prior knowledge in the system to mirror the language instinct in humans,

dynamically learning to deal with words that are not present in the system’s vocabulary,

and adapting to the variability in speaker accents and dialects across different gender and

age groups. These problems are further compounded by the fact that humans rarely if ever

use proper articulation and grammar during conversational speech [2,3,4,5].

There have been numerous approaches aimed at understanding the underlying

process involved in the perception and production of speech. These approaches involve

disciplines as diverse as pattern classification and signal processing to physiology and

linguistics. The interdisciplinary nature of the problem is one thing that makes speech
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recognition such a complex and fascinating problem. This thesis examines the role of

pattern classification in the recognition of human speech, i.e., machine learning techniques

that are currently being applied to the speech recognition problem.

1.1. Statistical Methods

The predominant approach in speech recognition is a statistically-based

approach [6,7] in which we choose the most probable word sequence from all word

sequences that could have possibly been generated. For example, given a sequence of

words , if is the acoustic evidence that is provided to the system

to identify this sequence, then the recognition system must choose a word string that

maximizes the probability that the word string was spoken. Specifically,

(1)

where is known as thea posterioriprobability since it represents the probability

of occurrence of a sequence of words after observing the acoustic signal .

The fundamenta l concepts invo lved in the human communicat ion

process — perception and production — are still not clearly understood. The lack of

understanding of the fundamental concepts adds a degree of uncertainty to the problem.

The inherent uncertainty, coupled with a wide variation in the characteristics of speech,

makes it difficult to model using an expert based system. The difficulty in using an expert

based system is due to the prohibitive costs associated with representing the uncertainty

W w1 w2 … wN, , ,= A

Ŵ

Ŵ argmax
W

p W A( )=

p W A( )

A
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and variations in speech [2,3,4]. A statistical approach circumvents the need for manually

encoding information in favor of a self-organized approach [6,7,9].

1.2. The Maximum Likelihood Approach

The statistically-based approach, described in the previous section, attempts to

infer the posterior probability of a word sequence given the acoustic signal

. Hence, speech recognition is a simple matter of finding the most probable word

sequence that maximizes . This is called the Maximum A Posteriori or MAP

criterion. However, finding the most probable word sequence is not an easy task because

for any given language there are an infinite number of such word sequences. We can work

around this problem by using a slightly weaker criterion known as Maximum Likelihood

Estimation (MLE) and applying Bayes rule to find  such that [8,10,11],

. (2)

The posterior term is the probability that the acoustic signal was

observed if a word sequence was spoken. The posterior probability is typically

determined by an acoustic model in a speech recognition system. Thea priori term

, is the probability associated with the word sequence . Thea priori probability

is typically given by a language model in a speech recognition system. Hence, a speech

p W A( ) Ŵ

A

Ŵ p W A( )

Ŵ

Ŵ argmax
W

p A W( )p W( )=

p A W( ) A

W

p W( ) W
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recognition system combines the acoustic and language model probabilities in order to

determine the most probable word sequence .

A speech recognition system maps the acoustic signal to a hidden state

sequence , i.e., the state sequence is not directly observable but can

be observed through another stochastic process [6,7]. Equation 2 can be reformulated as,

(3)

where the last expression makes the assumption that the acoustic signal is conditionally

independent of the word sequence given the hidden state sequence . Equation 3 can

be approximated as,

(4)

Ŵ

A

Q q1 q2 … qT, , ,=

Ŵ argmax
W

p
Q
∑ A W Q,( )p W Q,( )=

Ŵ argmax
W

p
Q
∑ A Q( )p W Q,( )=

A

Ŵ Q

Ŵ argmax
W

max
Q

p A Q( )p W Q,( )≈

Ŵ argmax
W

max
Q

p A Q( )p W( ) p Q W( )≈

Ŵ argmax
W

max
Q

p A Q( )p W( ) p Q( )≈
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where the last expression again makes the assumption that the hidden state sequence is

conditionally independent of the word sequence . The hidden state sequence is

modelled as a discrete, first-order Markov chain and is given by,

.

The terms and in Equation 4 correspond to the acoustic and language

modeling part of speech recognition respectively.

1.3. Acoustic Front End

The acoustic front end of a speech recognition system converts the digital

representation of an acoustic signal to a sequence of feature vectors. The main goal of

the acoustic front end is to generate a sequence of feature vectors that represents the

temporal, spectral and perceptual characteristics of the signal [12,13]. An in-depth review

of the role of an acoustic front end in a speech recognition system can be found in [12].

Most front ends today model signal characteristics using mel frequency-scaled

cepstrum coefficients [14]. The cepstrum coefficients are derived by transforming the

spectrum of the signal into the quefrency domain [14,15]. This is done by taking the

discrete cosine transform of the log magnitude of the spectrum. The log magnitude of the

spectrum is preprocessed by passing it through a sequence of filter banks before the

application of the discrete cosine transform [14,16]. The discrete cosine transform is an

orthogonal transformation that decorrelates the spectrum. The orthogonal transformation

Q

Ŵ p Q( )

p Q( ) p q1( ) p qt qt 1–( )
t 2=

T

∏=

p A Q( ) p W( )

A



6

is attractive because it validates, to some extent, the assumption made in acoustic

modeling that the features are conditionally independent of each other.

The feature generation process typically divides the acoustic signal into 10 msec

intervals, commonly referred to as a frame, using an overlapping window approach in

which each window accounts for 25 msec of the signal [12,13]. The most popular acoustic

front end in use today employs 39 parameters per frame of speech data, and consists of the

signal log-energy and 12 mel-spaced cepstral coefficients, plus their first and second-order

temporal derivatives. The frame and window lengths are used to track the dynamics of the

articulators and control the amount of new data seen per frame.

1.4. Acoustic Modeling

The function of the acoustic model is to compute a posterior probability

of the acoustic signal given the word sequence . The goal is to find the best word

sequence that matches the input signal via pattern classification. However, applying

pattern classification to the problem is not as simple as one would think, since there are an

infinite number of word sequences for any given language. Hence, the word sequences are

decomposed into phonemes, the base units of any language. There are typically forty two

phonemes used in American English [17]. The number of phonemes, compared to the

number of words, makes it possible to construct a reasonable sized corpora that contains

enough examples of each phoneme to train the speech recognizer.

p A W( )

A Ŵ

Ŵ A
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The best word sequence that matches the input signal is determined in two

steps. The first step is to map the phonemes, corresponding to each word in , to a

sequence of HMM states . The mapping gives us the posterior

probability (recall that is independent of given ). The second step is to

evaluate the posterior probability  as shown below

(5)

where the term is the feature vector at time generated by the acoustic front end

corresponding to the acoustic signal . Note that the last expression makes the

assumption that the feature vectors are conditionally independent of each other. The

likelihood of the data at a given state is typically evaluated using a Gaussian

mixture model (GMM) within the HMM framework.

1.5. Language Modeling

The goal of a language model is to determine thea priori probability associated

with the word sequence . More specifically, a language model provides an estimate of

the probability of any word in the word sequence , in the context of the words

around it [6,18,19,20]. The probability of an arbitrary word in the word sequence

depends on the previously spoken words and is given by,

Ŵ A

Ŵ

Q q1 q2 … qT, , ,=

p A Q( ) A Ŵ Q

p A Q( )

p A Q( ) p Xt qt( )
t 1=

T

∏=

Xt t

A

p Xt qt( )

Ŵ

wi W

wi W
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. (6)

Naturally, it is unreasonable to assume that the word depends on all previously spoken

words in the sequence [6]. Hence, an effective way of modeling a sequence of words is

to use an th order Markov chain,

. (7)

The probability of a word based on the previous words is referred to as an -gram

probability. -gram language models are generated by computing the frequency of all

-word classes in large text corpora [18]. The disadvantage of primarily using the

approach just described is that it does not account for unseen word classes. -gram

smoothing [6,17] and back-off language modeling [17] techniques typically account for the

occurrence of unseen words. These techniques approximate the probability of higher-order

language models using lower-order language models when an unseen word sequence is

encountered. An in-depth review of -gram language models in speech recognition can be

found at [6,17].

1.6. Pronunciation Modeling

It is well known that conversational speech tends to have more variability than read

speech and words spoken in isolation. This variability can take the form of human and

non-human noises, unseen words and alternative pronunciations [21]. When people read a

paragraph their pronunciations of the words are more likely to conform to their dictionary

p W( ) p wi w1 w2 … wi 1–, , ,( )
i 1=

n

∏=

wi

N

n

p W( ) p W1
M

( ) p wi wi 1– wi 2– … wi n–, , ,( )
i 1=

M

∏= =

N N

N

N

N

N
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citations. However, in conversational speech people generally use pronunciations that

deviate from their dictionary citations. These deviations are due to speaker accent

variations and other characteristics of causal speech such as coarticulation and reduction

of words [22]. The inability of speech systems to model such alternative pronunciations is

part of the reason for the low recognition performance on conversational speech [22,23].

Speech recognition systems in the past have primarily used pronunciations given

by the dictionary to model words. The lack of alternative pronunciations results in a set of

models that inaccurately represent the underlying observations. The alternative would be

to model the words using multiple pronunciations that are commonly used and not

otherwise found in the dictionary. However, it has been shown through experiments that

any benefit gained by using alternative pronunciations is negated by the additional

complexity that is added to the system [23]. The main reason for this is that there is often

insufficient data available to train a system, especially when we use context dependent

models such as word-internal or cross-word triphones.

There have been several attempts to address the problem of using alternative

pronunciations. Initial attempts used phonological rules to model phone substitution and

deletion using hand crafted rules by linguists [21]. These rules describe the actions that

take place when two specific phones at word boundaries are encountered. Pronunciation

dictionaries, which followed, add probabilities to the alternative realizations of each word

in the dictionary [22]. The probabilities for the alternative realizations are generated

directly by hand or inferred from the data. Decision trees attempted to generate a

pronunciation graph with associated probabilities using a bayesian approach [23]. The



10

decision trees for each phone in the sequence are searched, using linguistically motivated

questions, until we reach a leaf node; which, gives us a distribution over the

pronunciations. These attempts try to use the pronunciations that reflect the acoustic

models and at the same time attempt to generalize to unseen words.

1.7. Thesis Contributions and Organization

The primary objective of this thesis is to create a network training paradigm that

allows for direct training of multi-path models and alleviates the need for complicated

systems and training recipes. A traditional trainer uses an expectation maximization (EM)

based supervised training framework to estimate the parameters of a speech recognition

system. EM-based parameter estimation for speech recognition is performed using several

complicated stages of iterative reestimation. These stages are prone to human error. The

network training paradigm reduces the complexity of the training process while retaining

the robustness of the EM-based supervised training framework. The hypothesis of this

thesis is that the network training paradigm can achieve comparable recognition

performance to a traditional trainer while alleviating the need for complicated systems and

training recipes.

This thesis is organized as follows. Chapter 2 describes the theory behind HMM’s

and the supervised learning process used to estimate the parameters of a speech

recognition system. Chapter 3 provides an in-depth look at the network training

framework. A comparative analysis of the network training recipe to that of a traditional

trainer is also presented. Chapter 4 describes the various experiments that were performed
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and how these experiments fit into the framework of this thesis. Preliminary results on

various speech corpora are also presented. Chapter 5 summarizes the findings of this thesis

and discusses some promising avenues for future work.
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CHAPTER II

THEORETICAL FOUNDATIONS

In the previous chapter, we decomposed the speech recognition problem into one

of designing a classifier based on the prior probability and the class-conditional

density . If we are able to estimate the models using statistical techniques, we

could design an optimal classifier to recognize speech. However, in speech recognition

applications we rarely if ever have such knowledge regarding the probabilistic structure of

the problem. Hence, when faced with such uncertainty, our goal is to reason the best we

can using whatever incomplete knowledge we have of the problem.

In speech, the function is computed by averaging over large text corpora

and the class-conditional density is estimated using a hidden Markov model. A

hidden Markov model is ideal for problems such as speech recognition due to its ability to

simultaneously model temporal and spectral behavior. The speech signal is produced by a

p W( )

p A W( )

p W( )

p A W( )

s1 s2 s3

a11 a22 a33

a12 a23

Figure 1. An example of a three-state Markov chain used in speech recognition.
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physiological system that is constrained by the normal laws of physics [12,13], and hence

states at time  are influenced by states at time .

2.1. Markov Processes

A random process is called a first-order Markov process [24] if the future

observations of the process given the present is independent of the past,

. (8)

If the Markov process is discrete-valued, then the probability of an observation is

given by a probability mass function,

. (9)

If the Markov process is continuous-valued, then the probability of an observation is given

by a probability density function,

. (10)

A discrete-time integer-valued Markov process is called a Markov chain [24].

Markov chains are completely specified by the probability of the initial states,

(11)

and their corresponding state transition probabilities,

. (12)

t t 1–

X t( )

P X tk 1+( ) xk 1+ X tk( ) xk … X t1( ) x1=,,==[ ]
P X tk 1+( ) xk 1+ X tk( ) xk==[ ]

=

X t( )

P a X tk 1+( )< b≤ xk 1+ X tk( ) xk … X t1( ) x1=,,==[ ]
P a X tk 1+( )< b≤ xk 1+ X tk( ) xk==[ ]

=

f X tk 1+( ) xk 1+ X tk( ) xk … X t1( ) x1=,,=[ ]
f X tk 1+( ) xk 1+ X tk( ) xk=[ ]

=

pj 0( ) P X0 j=[ ]=

P Xn 1+ j= Xn i=[ ] pij=
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An example of a three-state Markov chain can be seen in Figure 1. At any instant of time

each state in the Markov chain can transition to either the next state or stay in the same state.

2.2. Hidden Markov Models

A hidden Markov model is a random process that consists of a set of states and

their corresponding transition probabilities. Like the Markov chain, a hidden Markov

model (HMM) is specified by the initial state probabilities ,

(13)

and the state transition probabilities ,

. (14)

Also, since an HMM is a random process each state in the model can be treated as a random

variable, with a corresponding probability distribution . The probability distribution

or state emission probability is the likelihood of state with respect to the time indexed

observation ,

π j

π j P x 0( ) j=[ ]=

ai j

aij P x t 1+( ) j= x t( )[ ] i= =

b o( ) j

j

ot

s1 s2 s3

a11 a22 a33

b1(ot) b2(ot) b3(ot)

Figure 2. An example of a three-state hidden Markov model.

a12 a23
S T
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. (15)

An HMM is assumed to have homogenous transition probabilities, i.e., the state transition

probabilities are assumed to be constant over time [6,17]. Hence, for all states in the

model the following property holds,

. (16)

The state emission probabilities are typically represented as continuous density

distributions [7,25], i.e., the likelihood of each state  has the following property,

. (17)

The parameters of an HMM can be compactly represented as . Where

is the set of state transition probabilities for the model and is the set of symbol

observation probabilities for each state. An example of an HMM is shown in

Figure 2. There are some basic assumptions involved in the design of HMM’s which are

specific to speech processing which include: the model topology, the output probability

distribution, the minimum state duration and the nature of dependency within the model.

2.3. HMM Assumptions

The HMM topology typically used in a speech recognition system is a left-to-right

topology [7,17] as shown in Figure 2. Most languages can be decomposed into a small set

of basic sounds, known as phonemes [6]. Phones are typically what is used to model

sounds in an HMM-based speech recognizer. Typically a three-state hidden Markov model

bj ot( ) P ot x t( ) j=[ ]=

i

aij 1.0=
j 2=

N

∑

j

bj o( )
o
∫ 1.0=

λ A B π, ,( )= A

aij{ } B

bj{ }
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with a dummy start and end node is used to represent individual phones. The dummy start

and end nodes are non-emitting states and do not have a probability distribution associated

with them.

During model parameter training, speech audio files containing examples of each

phone are presented to the HMM. Special care is taken in selecting the training examples

so that the audio data is representative of the behavior of the overall population. If this is

not the case, then the trained models will not generalize well to unseen data.

The output probability distribution of each state in an HMM is typically modeled

by a mixture of multivariate Gaussian probability density functions [25,26]. The

motivation for using a Gaussian comes from information theory which tells us that the

Gaussian distribution has the highest entropy among all distributions of equal variance

[17,27]. If we let represent the weights of the mixture components of the output

distribution, and represent the multivariate Gaussian distribution of dimension

then, for any arbitrary state , the probability of the feature vector given the state is

given by the following equation,

. (18)

The duration of time spent in any state of an HMM is determined by an

exponential distribution [2,17,25]. This is not very desirable since the probability of

visiting a state decreases exponentially as time progresses [17,25]. Alternative

implementations of hidden Markov models exist where the state duration probability is

wi m

ℵ µ
i

Σi,( ) d

s x s

p x s( ) wi
1

2π( )d 2⁄ Σi
1 2⁄

---------------------------------------- exp 1
2
---– x µ

i
–( )

T
Σi

1–
x µ

i
–( )

i 1=

m
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determined by other statistical probability distributions. While these alternate

implementations increase the computational overhead of the training process, they do not

increase the accuracy of the recognition process by a significant amount [17,26].

HMM’s used in speech recognition are typically a first-order approximation of a

Markov process. The first-order assumption means that the states at time are only

dependent on states visited at time . A first-order approximation is important

because it makes computation feasible without any significant loss in recognition

accuracy. Higher-order Markov models have been shown to give only marginal

improvements in performance while the computational overhead increases by an order of

magnitude [7,17].

The class-conditional density is estimated by a supervised learning

process. Estimating the class-conditional directly is by no means an easy task. A

multivariate Gaussian mixture is typically used to represent the underlying

probabilistic structure of the class-conditional density. The parameterization of the

class-conditional density allows us to simplify the problem from one of estimating the

function to one of estimating the parameters of the mixture [7,17]. The

parameter estimation problem in speech is typically addressed using a maximum

likelihood estimation procedure [8,28].

t

t 1–

p A W( )

ℵ µ
i

Σi,( )

p A W( )
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2.4. Maximum Likelihood Estimation

The maximum likelihood approach [8] treats the parameters of the model as

fixed quantities whose values need to be estimated. The parameters are estimated by

maximizing the probability of observing the training data, which in our case is the

acoustic signal, given the current estimate of the model parameters. The maximum

likelihood approach has good convergence properties [7,8,11]. Also, estimation of

parameters is more computationally tractable than Bayesian techniques due to the

availability of efficient algorithms [7,17].

The goal in the maximum likelihood approach is to maximize the probability

, i.e., the probability of observing the input signal given the model . If the

input signal is given by the observation sequence , then, the likelihood of

the model (assuming observations are conditionally independent) can be represented as,

. (19)

The maximization of the likelihood is normally achieved by maximizing the

logarithm of the likelihood [27,28]. Maximizing the log-likelihood is equivalent to

maximizing the likelihood since the logarithm is a monotonically increasing function,

. (20)

The estimates for are obtained by taking the partial derivative with respect to

each parameter and setting them to zero. It should be noted that the accuracy of the

λ

p A λ( ) A λ

A o1 o2 … oT, , ,

λ

p A N( ) p oi λ( )
i 1=

T

∏=

p A ℵ( )[ ]ln p oi λ( )[ ]ln
i 1=

T

∑=

λ
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estimates computed increases with the number of training samples. Also, the estimates are

not guaranteed to represent a global maximum and could, in fact, represent a local

maximum [8,28]. In speech processing, the models are perturbed from time to time to help

the parameter estimation process avoid getting stuck in a local optimum in the search

space.

2.5. Expectation Maximization

The expectation maximization (EM) algorithm represents a general framework

that can be used to determine the maximum likelihood estimates of model parameters. EM

can also be applied in cases where we have missing features [28,29]. The algorithm

iteratively estimates the likelihood of the model parameters given the training data. The

EM algorithm uses the estimates to refine the models, following each iteration, until there

is no noticeable difference between successive iterations. The algorithm is guaranteed to

converge to the maximum-likelihood estimate.

The EM algorithm is based on Jensen’s inequality, which can be stated as,

. (21)

If is a random variable that represents the observation sequence, and represents the

parameters of the current model, then the EM algorithm determines the estimates of the

model  such that the following inequality holds [6],

. (22)

The inequality above can be written in the following form, where is a random variable

that depends on  and is generated by the same process that generates  [6],

p x( ) p x( )( )log
x

∑ p x( ) q x( )( )log
x

∑≥

y λ

λ'

plog y λ'( ) plog y λ( )– 0≥

q

y y
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. (23)

The random variable in this case could represent the state sequence or transition

probabilities that were used to generate the observation sequence. The right hand side of

equation 23 above can be expanded in the following manner [6],

(24)

(25)

p
q
∑ q y( ) plog y λ'( ) p

q
∑ q y( ) plog y λ( )– 0≥

q

p
q
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p q y λ',( )
------------------------log p

q
∑ q y( ) p y λ( )

p q y λ,( )
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-----------------------log– 0≥

p
q
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Figure 3. An example of a time evolution of the process that generates the observation
sequence for a three state HMM (N=3).
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. (26)

Hence, if we drop the last two terms in the equation above and if the difference of the first

two terms is positive, then from Jensen’s inequality we have the following result [6,27],

. (27)

The inequality above proves that the EM algorithm finds a maximum likelihood estimate

for the model that is either better than or similar to the original model . The

Baum-Welch algorithm is a computationally efficient implementation of the EM algorithm

specific to HMM parameter reestimation in speech recognition [7,8,17].

2.6. The Forward Procedure

The motivation for the forward procedure comes from the need to have a

computationally efficient way of computing the function , i.e., the probability of

the observation sequence given the model . The probability is

computed by summing over all possible state sequence and is given by

the following equation [7,17],

. (28)

The forward procedure uses a trellis to compute in an efficient manner. An

example of a trellis can seen in Figure 3. The forward probability is defined as the

p
q
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probability of being in state at time given that you have observed the partial observation

sequence . The forward probability can be arrived at inductively by the

following equation [7,17],

. (29)

Hence, the probability of the observation sequence  is given by,

. (30)

The forward procedure has a computational complexity of as compared to a

complexity of for a direct computation [7,17] by enumerating all state sequences.

Hence, the forward procedure saves many orders of computations as compared to the direct

approach.

2.7. The Backward Procedure

The backward procedure is analogous to the forward procedure in that it is defined as the

probability of being in state at time given that you will observe the partial observation

sequence . The backward probability can be arrived at

inductively by the following equation [7,17],

. (31)

The forward and backward probabilities can be used to find the state occupancy probability

, i.e., the probability of being in state  at time ,

i t
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. (32)

2.8. Parameter Estimation

The parameter reestimation process requires two intermediate terms to be

calculated: (1) the state occupancy probability described in equation 32, and

(2) which is defined as the probability of being in state at time and moving to

state  at time ,

γ t i( )
αt i( )βt i( )

αt i( )βt i( )
i 1=

N

∑
-------------------------------=

γ t i( )

ξt i j,( ) i t

j t 1+

t=a t=a+1

γk i( ) 1=

γk j( ) 1=

Figure 4. An example of a Viterbi training pass in which at each time instance the HMM
can be in only one state.
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t=a t=a+1

γk i( ) 0.5=

γk j( ) 0.6=

Figure 5. An example of a Baum-Welch training pass in which at each time instance the
HMM can be in any of the  state.N

γk j( ) 0.1=

γk k( ) 0.2=

γk h( ) 0.2=
γk h( ) 0.05=

γk i( ) 0.1=

γk k( ) 0.05=

γk l( ) 0.2=

. (33)

Using these two terms, we can compute the reestimated state transition probabilities and

state observation probabilities [7],

(34)
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âij

ξt i j,( )
t 1=

T 1–

∑

γ t i( )
t 1=

T 1–

∑
-------------------------=



25

(35)

where represents the summation over all state occupancies in the model that relate

to a specific symbol or phoneme whose parameters we are trying to estimate.

2.9. Viterbi Training

The Viterbi approach is referred to as a hard decision criteria, i.e., at each time

instance in the trellis the HMM can be in one and only one state. The Viterbi procedure

tries to find the single best path through the trellis [7,17,30]. The algorithm is similar to

the forward procedure with the summation in Equation 28 replaced with a maximization,

. (36)

At any time instance the state with the best score is selected, i.e., the state occupancy

of the state with the maximum probability is set to one and the others are set to zero. This

is why the Viterbi procedure is regarded as a hard decision criteria because we typically use

an integer counter to track the number of times a state is visited. The terms are then

used to iteratively reestimate the HMM parameters via the EM algorithm. An example of

a Viterbi training pass is shown in Figure 4.

b̂ j k( )

γ t j( )'
t 1=

T 1–

∑

γ t j( )
t 1=

T 1–

∑
----------------------=

γ t i( )' λ

αt 1+ j( ) max
1 i N≤ ≤

αt i( )aij[ ]bj ot 1+( )=

γ t i( )

γ t i( )



26

2.10. Baum-Welch Training

The Baum-Welch approach is referred to as a soft decision criteria, i.e., at each

time instance in the trellis the HMM has some probability of being in any of the

states [7,17]. The Baum-Welch equations guarantee that the sum of the state occupancies

across all  states in the trellis for any time instance is one,

. (37)

At any time instance the state with the best score is assigned the highest probability, i.e.,

the for that state is assigned the highest probability. However, unlike the Viterbi

procedure, the remaining states do have some chance (however small) of being visited. The

terms are then used to iteratively reestimate the HMM parameters via the EM

algorithm. An example of a Baum-Welch training pass is shown in Figure 5.

The soft decision criteria, which is used in Baum-Welch, can be used to reestimate

the parameters of a hierarchical network of HMM’s — an approach that is popular in state

of the art speech recognition systems [7]. The network parameter reestimation capability

can be leveraged for tasks such as language modeling, acoustic unit duration modeling,

and pronunciation modeling. Also, the parameter reestimation forms the basis of the

network training framework, which is discussed next in Chapter 3.

N

N

γ t i( ) 1.0=
i 1=

N

∑
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CHAPTER III

NETWORK TRAINING

In the traditional acoustic model training recipe, a single, most likely,

pronunciation is selected for each word. This approach requires the trainer to make a hard

decision about which pronunciation is used. It is well known that systems involving soft

decisions can provide better performance though these systems may take longer to

converge [8,17] during training. In this chapter, we introduce a network training approach

that directly trains multi-path models at any level of the speech recognition model

hierarchy without the need for complicated systems and training recipes.

The first section of this chapter introduces the network training framework and

algorithm. The second section describes the training recipe used in the traditional training

framework and compares it to the network training framework. The third section focuses

on the differences in duration modeling techniques used by the two systems, i.e., the

traditional and network trainer. Finally, the fourth section shifts focus from duration to

pronunciation modeling and describes the differences between the two systems.

3.1. Framework

The network training framework employs maximum likelihood estimation (MLE)

within the expectation maximization (EM) framework to reestimate the parameters of the
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acoustic models. More specifically, the network training framework uses the Baum-Welch

algorithm to reestimate the parameters of the Gaussian mixture models (GMM’s). The

above description on the surface appears identical to the training paradigm used in a

traditional trainer; however, it must be noted that the key difference here lies in the fact

that the Baum-Welch reestimation procedure is applied to a hierarchical network, as

shown in Figure 6. The ability to train a hierarchical network is what differentiates the

network trainer from a more traditional left-to-right HMM trainer.

The reestimation equation for the transition probabilities of the hierarchical

network is given by the ratio of and in Equation 38. The reestimation

equations of the GMM’s are given by the following set of equations [7,17]

(38)
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(41)

where represents the reestimated mixture weights, represents the reestimated

Gaussian mean vector, represents the reestimated Gaussian covariance matrix and

represents the probability of being in state , mixture at the time instance

γ t j k,( )
αt j( )βt j( )

αt j( )βt j( )
j 1=

N

∑
------------------------------------

cjkN Ot µ jk U jk, ,( )
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m 1=

M

∑
------------------------------------------------------------=

ĉ jk µ̂ jk

Û jk

γ t j k,( ) j k t

Figure 8. A block diagram representation of the individual steps in a typical training
recipe for a traditional speech recognition system.
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during the reestimation process. Also, the term represents the mixture weight

component of the GMM. The reestimated probability is nothing more than the expected

number of transitions from symbol to symbol , over the expected number of transitions

from symbol . The expectation in this case is computed over time and is computed via a

time-expanded search space, i.e., a trellis. Hence, the Baum-Welch algorithm can be

generalized to any level of the network hierarchy.

3.2. Training Recipe

During the training process, we provide the system with examples and have it learn

the relationships between the labels and their corresponding observations. The labels in

this case are the word-level transcriptions, while the observations are the acoustic features

generated from the speech signal. The training process is split into two phases: the

context-independent phase and the context-dependent phase. In the first phase of training,

the phones (the base speech sounds) are assumed to be independent of each other [31]. In

the second phase of training, each phone is assumed to be dependent on its neighboring

phones [31, 32]. The second phase can take the form of word-internal or cross-word

training [32, 33] depending on the desired context as shown in Figure 7. In the traditional

training framework, a training recipe is decomposed into eight stages: flat-start, short

pause training, forced alignment, transcription creation, context-dependent training,

state-tying, clustered-states training and mixture training. A block diagram representation

of the eight stages in the training recipe is shown in Figure 8. Flat start, short pause

ĉ jk

j k

j
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Figure 9. The topology of a three-state left-to-right HMM with self-loops used to model

both speech and non-speech sounds.
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Figure 10. The topology of a single state HMM with self-loops and a skip transition used
to model short pauses.
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Figure 11. The topology of a silence model used during the flat-start training stage consists
of a three-state left-to-right HMM with self-loops.

s1 s2 s3

a11 a22 a33

Figure 12. The topology of a silence model used during the short-pause stage of training.
This silence model uses a three state left-to-right HMM with self-loops and new
transitions are added from the first state to the third state and vice versa.
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training, and forced alignment are part of the context-independent phase of training, while

the remaining stages make up the context-dependent phase of training.

In the flat-start stage, a silence is appended to the start and end of each

transcription. This stage takes advantage of the fact that speech utterances typically are

processed in segments separated by silence. During this stage, speech and non-speech

models (silence) are estimated using four iterations of Baum-Welch training. The main

goal in flat start is to get a good estimate of the segment boundaries, because poor segment

boundary estimates can deteriorate performance in the later stages of training. Poor

segment estimates can cause an overlap between speech and non-speech model parameters

in the early stages of training, which is hard to recover from in later stages of training.

The speech and non-speech sounds are modeled by a three-state left-to-right

HMM [25,32] with self-loops, as shown in Figure 9 and Figure 10. In the network training

framework, a three-state silence model is forced at the start and end of each transcription,

similar to the traditional trainer. However, unlike the traditional trainer, the network trainer

does not require a new set of transcriptions for this stage. The main reason for this is that

the network training process is automated, i.e., the silence model is automatically inserted

at the transcription boundaries. This automation saves resources as we are not required to

set up a new set of transcriptions specifically for this stage.

The short-pause stage is an extension of the flat-start stage in which we insert a

short-pause symbol between each word in the transcription. In the short-pause stage, the

topology of the silence model is modified by adding transitions from the first state to the

third state and vice versa, as shown in Figure 11 and Figure 12. The transitions are added
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s1 s2 s3

a11 a22 a33

b1(ot) b2(ot) b3(ot)

Figure 13. The topology of a multi-path silence model. The model has a path consisting of
three states (s1, s2, and s3) that models long durations of silence, and a path
consisting of one state (s4) that is used to model short pauses.

a12 a23
S T

s4
a1T

a11

a3TaS1

aS4

Figure 14. An example of how the transcription “how did you” is aligned to the speech
signal. The forced-alignment stage selects the most likely pronunciation for
each word in the transcription and aligns the pronunciation to the speech signal.

hh aw d ih d y uw
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to take into account impulsive noise in the speech signal. An impulse or a noise spike can

cause the system to leave the center state in the silence model prematurely [25,32,34]. The

transitions give the system a chance to recover or return to the center state. The

short-pause model consists of a single state HMM with a self-loop and a skip transition, as

shown previously in Figure 10. The single state is tied to the center state of the silence

model.

The main goal in the short-pause stage is to model silence between words. During

this stage of training, the models are reestimated using four iterations of Baum-Welch. In

the network training framework, a multi-path silence model, shown in Figure 13, is

inserted between each word of the transcription. The network trainer does not require a

new set of transcriptions for this stage because the entire process is automated, similar to

flat start. The ability to use a multi-path silence model also saves resources since we are

again not required to use a new set of transcriptions for this stage of training.

During the forced-alignment stage, the phone sequence corresponding to each

transcription is determined by aligning the transcription to the speech data, as shown in

Figure 14. In the forced-alignment stage, each word is defined by the set of pronunciations

available to it in the lexicon. Each pronunciation in the lexicon has two variants — one has

a silence appended to it, the other has short pause appended to it. By aligning the

transcriptions we achieve two goals: we determine the most likely pronunciation (phone

sequence) for each word and we determine the duration of the silence model (silence or

short-pause) used between words [25,32,35,36]. The network trainer does not require the

forced-alignment stage since it employs word networks [37]. The word networks



36

inherently allow multiple pronunciations for each word in the lexicon. The ability to use

word networks saves resources since we are not required to set up a new set of

transcriptions for this stage of training.

The transcription creation stage is an extension of the forced-alignment stage.

Using the phonetic alignments of the word transcriptions we create new phonetic

transcriptions [25,32,36]. The new phonetic transcriptions take the form of either

word-internal or cross-word transcriptions depending on the desired context, as previously

shown in Figure 9. This stage marks the beginning of the context-dependent phase, and

the context-dependent phone transcriptions generated here are used in the following

training stages. Note that the traditional trainer always uses phone transcriptions during

training. The network trainer on the other hand uses word transcriptions, which is why the

transcription creation stage is unnecessary.

In the context-dependent training stage, each phone in the transcription is modeled

using the context of the surrounding phones. In the case of triphones, each phone is

modeled using a context of the phone to its left and the phone to its right, as previously

shown in Figure 9. Each triphone is associated with the HMM corresponding to its center

phone. The context-dependent transcriptions, which are used during training, are the

outcome of the previous stage. The models in this stage are updated using four iterations

of Baum-Welch reestimation. The network trainer, which uses word transcriptions,

generates the context-dependent phones dynamically during the training process.

Dynamically generating the context-dependent phones adds additional overhead to the
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real-time rate of the trainer. However, this overhead is acceptable given that it simplifies

the training recipe.

The state-tying stage draws on domain knowledge to cluster similar

context-dependent phones together [38,39]. The clustering process ties the probability

distributions of the context-dependent models together using linguistic rules. This is a

very important step because the training data does not contain sufficient examples of all

context-dependent phones to yield robust models [36,40]. Note that the state-tying stage

only ties the observation probability distributions and not the state transition probabilities.

The state-tying stage is similar for both the traditional trainer and the network trainer.

In the clustered-states training stage, the clustered models are reestimated using

four iterations of Baum-Welch. The main reason behind this is that after the state-tying

stage the probability distributions of the tied models tend to be very peaky, and four

iterations of Baum-Welch are intended to smooth them [36,40]. The clustered-states

training stage is similar for both the traditional trainer and the network trainer.

The mixture training stage splits the probability distributions of the models, i.e.,

the mean is shifted one standard deviation in either direction and the variance is kept the

same [36,41]. The theory behind using mixtures is to enable the system to better model the

underlying characteristics of the speech signal such as speaker and channel variations. The

mixture splitting process takes place in multiples of two, i.e., two, four, eight, sixteen, etc.

After each split the models are reestimated using four iterations of Baum-Welch. The

mixture training stage is similar for both the traditional trainer and the network trainer.
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3.3. Duration Modeling

In the traditional training paradigm, a forced-alignment stage is used to determine

the duration of the silence model used between words. The reason this is done is because a

GMM, which is used to represent the underlying probability distribution, has an

exponentially decreasing likelihood of staying in the same state over time [7,17]. Hence, a

short-pause model — a single state silence model with a self-loop and a skip

transition — cannot be used to model longer silence durations between words.

In the network training paradigm, a forced alignment is not necessary. This is

because the multi-path model — which is inserted between each word in the

transcription — provides the option of either a long path (three-state path) or a short path

(one-state path) through the silence model. The system is given the opportunity to select

the most likely path through the silence model. This is similar to the forced-alignment

stage in the traditional training framework.

Using a multi-path silence model, however, has its disadvantages. The advantage

of using a multi-path silence model is that we don’t need to generate new transcriptions. In

the traditional training paradigm, new transcriptions are generated three times in the

context-independent stage alone. Alleviating the need to generate new transcriptions for

each stage reduces the complexity of the training process, which in turn simplifies the user

interface for this process1. The drawback of using a multi-path silence model is the added

confusion introduced in training, since the system must learn to discriminate between the

1. These intermediate transcriptions are stored in separate files. These files often are corrupted or
incorrectly matched with their corresponding audio files. This results in failed experiments and cre-
ates a great deal of confusion for the novice user.
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Start Stop

hv ae v

hh ae v

hv ae f

Start Stop

hv

hh ae v

f

Figure 16. A multi-path pronunciation model for the word “have.”

Figure 15. The word “have” has three different pronunciations that share phone models.

two path options (e.g., short vs. long). In the next chapter, we will see that this ambiguity

must be carefully moderated during training to avoid divergence of the model.

3.4. Pronunciation Modeling

In the traditional training paradigm, a single pronunciation is used for all words in

the vocabulary during training. The lack of sufficient training data, which is needed to

cover all possible variants in the pronunciations, negates any advantage gained by using

multiple pronunciations due to the increased complexity added to the system [23]. Basic
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training works by using a single canonical pronunciation for each word during the

flat-start and short-pause stages. The most likely pronunciation (phone sequence) for each

word is selected during the forced-alignment stage.

In the network training paradigm, we employ word networks for modeling the

pronunciation variants [37]. A word network consists of a series of unique paths

representing variants of the canonical pronunciation. Examples of such networks are given

in Figures 15 and 16. While the canonical pronunciation is obtained from the dictionary,

variants of the canonical pronunciation are obtained from various sources which include

text-to-phone systems and pronunciation dictionaries. In Figure 15, the word “have” has

three different canonical pronunciations and the common phones in each pronunciation

share emission probabilities. In Figure 16, the word “have” is realized using a multi-path

pronunciation model. Such networks allow us to generalize to pronunciations not

encountered in the training corpus. Word networks allow us to skip the forced-alignment

stage and simplify the training recipe.

The network trainer can be used to directly infer the pronunciation probabilities of

the word network from the data. The pronunciation probabilities are estimated by applying

the Baum-Welch algorithm to the hierarchical network, as previously described in

Figure 6. The transition probabilities for each word network, corresponding to each word

in the lexicon, are estimated in a manner similar to how the HMM transition probabilities

are estimated. Hence, reestimation of the pronunciation probabilities fits nicely within the

Baum-Welch framework.
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Despite its advantages, word networks experience the same problem of sparse

training data, i.e., despite the large volume of training data, many cross-word triphones

have insufficient examples to yield robust models during reestimation. The problem

occurs when reestimating the output probability distributions and the pronunciation

probabilities of the word networks. The sparsity of training data leads to poorly estimated

models [23, 42], which in turn leads to poor recognition performance.

3.5. Recipe Comparison

Previously, we gave a brief description of the different stages of the traditional

training recipe, and we provided details on how the network training recipe differs from

the traditional training recipe. In Table 1, we show a side-by-side comparison of the two

training recipes. The table shows the different stages of training and the number of passes

of Baum-Welch reestimation for each stage.

Table 1. A detailed comparison of the different stages in the training recipe for both the
network trainer and the traditional trainer.

Context Training Stage
Traditional

Trainer
Network Trainer

CI Training Initialize Yes Yes

Flat-start 4 passes 4 passes (using a fixed
silence model at tran-
scription boundaries)

Short-pause 4 passes 9 passes (using an
optional multi-path

silence model between
words and a fixed

silence model at tran-
scription ends)

Forced-alignment 5 passes
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The major di fferences in the two training recipes occur before the

context-dependent training phase (CD training). In the context-independent phase (CI

training) both training recipes require the models to be initialized and flat-started. During

the flat-start stage both training recipes use a fixed three-state silence model at the

transcription ends. The network training recipe does not require the short-pause,

forced-alignment and transcription creation stages. However, the network trainer does

include nine passes of reestimation using an optional multi-path silence model between

words and a fixed silence model at transcription ends.

In the next chapter, we will validate the claims made in this chapter by showing

experimental evidence on both clean and noisy data sets. These experiments will compare

the network training and the traditional training frameworks on the same tasks.

CD Training Create phone transcriptions Yes No

CD training 4 passes 4 passes

State-tying Yes Yes

Clustered states training 4 passes 4 passes

2-mixture training 4 passes 4 passes

4-mixture training 4 passes 4 passes

8-mixture training 4 passes 4 passes

16-mixture training 4 passes 4 passes

Table 1. A detailed comparison of the different stages in the training recipe for both the
network trainer and the traditional trainer.

Context Training Stage
Traditional

Trainer
Network Trainer
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CHAPTER IV

EXPERIMENTS AND ANALYSIS

The primary objective of this thesis is to create a network training paradigm that

allows for direct training of multi-path models and alleviates the need for complicated

systems and training recipes. To prove the above hypothesis, experiments were conducted

on three corpora representing industry-standard tasks: (1) speaker independent continuous

digit recognition on data collected in studio-quality recording conditions, (2) spoken letter

and number recognition on data collected over long distance telephone lines, and (3) read

sentences from a command and control application collected in studio-quality recording

conditions. The experiments described in this chapter compare the performance of speech

recognition systems that have been trained using both the network training recipe and the

traditional training recipe.

The first section of this chapter describes the corpora used to prove the above

hypothesis. The second section discusses the network topology used in network training

with special emphasis given to optional silence training. The third section presents

experimental results on a digit recognition task. The fourth section presents experimental

results on a spoken letter and number recognition task. Finally, the fifth section presents

experimental results on a read sentence corpus.
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4.1. An Overview of the Corpora

The performance of a speech recognition system can vary depending on the

vocabulary size and the quality of the speech recordings. Hence, the corpora used to run

experiments and verify a hypothesis are extremely important. This thesis makes use of

three corpora: TIDigits [43], OGI Alphadigits [44] and Resource Management [47].

The TIDigits corpus was collected by Texas Instruments (TI) in 1983 to establish a

common baseline for performance on connected word recognition tasks. The corpora has a

vocabulary of eleven words. This includes numbers from ‘zero’ through ‘nine’ and ‘oh’

(an alternate pronunciation for ‘zero’). The recording conditions consisted of speech

collected in a studio quality recording environment. The corpora consists 326 speakers

(111 men, 114 women and 101 children).

The TIDigits corpus was initially selected because of its small vocabulary size and

studio-quality recording environment. The corpus is a good base condition to test our

hypothesis because we can initially ignore issues such as channel noise and sparse training

data and focus on the network training framework.

The OGI Alphadigi ts corpus was col lected by the Oregon Graduate

Institute (OGI). The data was collected using the CSLU T1 digital data collection

system — a digital interface into the public telephone network. The sampling rate was

8 kHz and the files were stored in an 8-bit mu-law format. The vocabulary includes all

letters in the English alphabet (e.g., ‘a’) and digits (‘zero’ to ‘nine’ including ‘oh’). The

recording conditions included a variety of telephone handsets and long-distance telephone



45

limes, and hence represents a moderately noisy recording environment. The corpus

consists of 2,983 speakers (1,419 men, 1,533 women and 30 children).

The OGI Alphadigits corpus was selected because it is a much harder acoustic

modeling problem than TIDigits. In addition to the noisy recording conditions, the corpus

contains what are known as minimal pairs [44], i.e., words such as “p” and “b” which

differ only in one linguistic feature. Since any of the 37 words in the lexicon can follow

any other word, a language model cannot be used to help disambiguate hypotheses. Good

performance on this task requires good acoustic modeling, which is the focus of HMM

training. Finally, state of the art performance on this task is a word error rate of about

10% [45,46], which is sufficiently high to observe differences in acoustic modeling

technology and to measure statistically significant differences in performance.

The Resource Management corpus [47] was collected by the Defense Advanced

Research Projects Agency (DARPA). The corpus is a collection of recordings of spoken

sentences pertaining to a naval resource management task. The recording conditions

consisted of speech collected in a low background noise environment using a Sennheiser

HMD 414 headset microphone. The corpus consists of 80 speakers, each reading two

“dialect” sentences plus 40 sentences from the Resource Management text corpus.

The Resource Management corpus was selected because of its medium-sized

vocabulary (1000 words) and clean recording conditions. The corpus was specifically

designed for the purpose of evaluating new algorithms and training concepts on a

continuous speaker independent recognition tasks. The corpus uses a language model and

covers all phonemes in the English language, unlike the previous corpora. Resource
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Figure 17. An example of a language model employed by the network trainer.

Figure 18. A example of a language model employed the traditional trainer.

silence silence

silence

word 1

word N

silence silence

word 1

word 2

word N

4.2. Silence Model Training

A good silence model is very important in speech recognition since non-speech

segments of the signal are mapped to this model. A good silence model prevents overlap

between speech and non-speech segment boundaries. If these boundaries are not properly

estimated during training, poor performance will be observed. The network trainer uses an

optional silence between words in the transcription during the training process, as shown
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in Figure 17. The optional silence used by the network trainer is different from that used

by a traditional trainer, as shown in Figure 18. The main difference lies in the fact that the

network trainer allows the silence to be optional, at the transcription level, whereas, the

traditional trainer forces a silence between words, at the phonetic level.

In the previous chapter, some disadvantages of using an optional multi-path silence

model during network training were briefly described. One disadvantage of using an

optional silence model is that speech signals typically have a definitive segment of silence

at signal boundaries. Hence, using an optional silence at transcription boundaries only

adds confusion during the training process. One way to avoid this ambiguity is to use a

fixed silence at transcriptions boundaries. Hence, we fix the silence at the transcription

bounds and make it optional between words. The experimental results in Table 2 show

Management is also small enough that we don’t have to get involved in all the

computational issues involved with large vocabulary tasks.

The results presented in this chapter primarily use context-independent models for

training as well as recognition. Although the context-dependent stage is a direct extension

of the context-independent stage, and requires no changes in the training recipe, an

efficient tree-based decoder is needed to decode cross-word models. An efficient

tree-based decoder is currently under development in a related project but was not

available at the time this research was performed.



48

Figure 19. A comparison of time alignments using optional and fixed silence models.

Reference:

Optional:

Fixed:

ONE SEVEN ZERO

SEVEN SEVENZERO

ONE SEVEN ZERO

how the recognition performance varies for a fixed versus an optional silence at

transcription boundaries. The experiments were conducted on the TIDigits Corpus using

word models.

The first row of Table 2 represents a condition in which silence is optional between

words and at the beginning and end of an utterance. The second row represents an
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experimental condition in which silence is still optional between words, but is required at

the beginning and end of an utterance. The high substitution rate in the first row of Table 2

shows that there is a high degree of confusion in the models, which indicates that the

models are not learning how to represent segment boundaries. An analysis of the time

alignments generated by the two systems reveals that the system with an optional silence

at transcription boundaries does not properly learn the segment boundaries.

For example, in Figure 19, the word “one” follows the initial silence in the fixed

model hypothesis (where silence is required at utterance ends). However, the word

“seven” follows the initial silence in the optional model hypothesis (where silence is

optional at utterance ends), which is the second word in the fixed silence hypothesis. It

should be noted that the fixed silence hypothesis matches the reference transcription.

When we discussed the network training topology, previously shown in Figure 17,

we did not justify why we use two silence models. We use a three-state silence model at

transcription boundaries and a multi-path silence model between words. In order to

understand the reason for the two silence models we need to look at the experimental

results in Table 3, which compare the traditional trainer, shown in the first row, to the

Table 2. Variations in recognition performance for a fixed versus an optional silence at
transcription boundaries.

System
Training
Iterations

WER
Insertion

Rate
Deletion

Rate
Substitution

Rate

Optional 4 45.3% 1.6% 31.1% 12.5%

Fixed 4 2.6% 0.4% 0.7% 1.5%
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Figure 20. A comparison of time alignments using linear and multi-path silence models.

Reference:

Linear:

Multi-Path:

FIVE NINE EIGHT

FIVE EIGHTNINE

FIVE EIGHTNINE OH

Hypothesis State Alignments:

start frame = 212 stop frame = 213 state = S_1
start frame = 213 stop frame = 237 state = S_2
start frame = 237 stop frame = 241 state = S_3

Reference State Alignments:

start frame = 212 stop frame = 248 state = S_1
start frame = 248 stop frame = 270 state = S_2
start frame = 270 stop frame = 271 state = S_3

Figure 21. The state-alignments for the utterance shown in Figure 20. The alignments
focus on the tail end of the signal, i.e., the part following the word “eight”.
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network trainer, shown in the second row. The experiments were conducted on the

TIDigits corpus using phone models.

The results show that the network trainer gives 0.6% degradation in WER

compared to the traditional trainer. In order to analyze the 0.6% performance degradation

in the network trainer, an utterance was selected which the traditional trainer recognized

correctly but the network trainer recognized incorrectly. This utterance contained the word

“oh”. The word “oh” was chosen because it had the highest number of word insertion

errors in both systems. An analysis of the time alignments generated by the two systems,

shown in Figure 20, does not reveal anything interesting except for the fact that the

network trainer using the multi-path silence model inserts the word “oh” towards the end

of the utterance. This seems to suggest that the multi-path silence model parameters have

not been robustly estimated by the network trainer.

Also, an analysis of the state alignments produced by the network trainer reveals

the observations shown in Figure 21. The state-level alignments in Figure 21 focus on the

silence immediately following the word “eight”, as shown in Figure 20. The first two

Table 3. A comparison of recognition performance for systems trained using a traditional
trainer and the proposed network trainer.

System
Training
Iterations

WER
Insertion

Rate
Deletion

Rate
Substitution

Rate

Traditional 8 9.9% 4.2% 0.5% 5.2%

Network 8 10.5% 4.6% 0.4% 5.5%
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columns list the start and stop frames respectively, i.e., the time interval spent in the state

specified in the third column. A frame in this case represents 10 msec. Notice that when

aligned using the reference transcription, the system spends as much time in state S_1 as it

does in the entire silence model when aligned with the hypothesis. This suggest that the

network trainer is having problems learning when to take the 3-state path versus when to

take the 1-state path in the multi-path silence model. Hence, additional supervision is

required for the silence model at the transcription bounds since speech signals have longer

silence segments at the signal boundaries. This is an artifact of the way we excise the

signal during data collection, and the way in which we run experiments.

4.3. Experiments on Digit Recognition

This section presents experimental results on the TIDigits corpora using

context-independent phone models. The experimental results in Table 4 represent models

that were reestimated using the traditional and network trainer respectively. The

recognition experiments use a word insertion penalty of -90 (which was found to be

optimal via a development test set). The recognition experiment also uses open beams,

i.e., there is no pruning, and the experiments use a loop-grammar language model (any

word can follow any other word).

Table 4. A comparison of the recognition results for the different stages of the traditional
training recipe (first three rows) and the network training recipe (last two rows)
respectively using context-independent phone models.

Stage WER
Insertion

Rate
Deletion

Rate
Substitution

Rate

Flat-start 8.7% 0.3% 2.7% 5.7%
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Figure 22. A comparison of the average log likelihood per iteration of training for both the
network trainer and the traditional trainer on the TIDigits corpus.

Short-pause 8.2% 0.1% 2.7% 5.4%

Forced Alignment 7.7% 0.1% 2.5% 5.0%

Flat-start 8.7% 0.3% 2.6% 5.7%

Table 4. A comparison of the recognition results for the different stages of the traditional
training recipe (first three rows) and the network training recipe (last two rows)
respectively using context-independent phone models.

Stage WER
Insertion

Rate
Deletion

Rate
Substitution

Rate
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The experimental results in Table 4 show that the network trainer gives comparable

performance to the traditional trainer on the TIDigits corpus using context-independent

phone models. The experimental results show that the network trainer converges in word

error rate to the traditional trainer. The substitution rate, which is a measure of the inherent

confusion in the models, also indicates that the models reestimated by the network trainer

are similar to the models reestimated by the traditional trainer.

Figure 22 shows the average log likelihood per iteration for both the network

trainer and the traditional trainer. The plot in Figure 22 shows us that although the models

reestimated by the network trainer start out a little worse, they eventually converge, in

likelihood, to the models reestimated by the traditional trainer. Hence, the network trainer

converges in both word error rate and likelihood to the traditional trainer on the TIDigits

corpus using a simpler training recipe.

4.4. Experiments on Spoken Letter and Number Recognition

This section presents experimental results on the OGI Alphadigits corpora using

context-independent phone models. The experimental results in Table 5 represent models

that were reestimated using the traditional trainer and network trainer. The recognition

experiments use a word insertion penalty of -90 (which was found to be optimal via a

CI 7.6% 0.1% 2.4% 5.0%

Table 4. A comparison of the recognition results for the different stages of the traditional
training recipe (first three rows) and the network training recipe (last two rows)
respectively using context-independent phone models.

Stage WER
Insertion

Rate
Deletion

Rate
Substitution

Rate
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development test set). The recognition experiment also use open beams, i.e., there is no

pruning, and the experiments use a loop-grammar language model.

Table 5. These experiments show results, using monophone models, for models that were
trained on the OGI Alphadigit corpus using the traditional trainer (first three
rows) and the network trainer (last two rows) respectively.

Stage WER
Insertion

Rate
Deletion

Rate
Substitution

Rate

Flat-start 45.7% 2.1% 9.0% 34.6%

Figure 23. A comparison of the average log likelihood per iteration of training for both the
network trainer and the traditional trainer on the OGI Alphadigits corpus.
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The experimental results in Table 5 show that the network trainer gives a slight

improvement in performance over the traditional trainer on the OGI Alphadigits corpus

using context-independent phone models. The experimental results show that the network

trainer converges in word error rate (with a 2.7% improvement) to the traditional trainer.

The substitution rate also indicates that the models reestimated by the network trainer are

similar to the models reestimated by the traditional trainer.

Figure 23 shows the average log likelihood per iteration for both the network

trainer and the traditional trainer. The plot in Figure 23 shows us that the models

reestimated by the network trainer converges, in likelihood, to the models reestimated by

the traditional trainer. Hence, the network trainer converges in both word error rate and

likelihood to the traditional trainer on the OGI Alphadigits corpus using a simpler training

recipe.

4.5. Experiments on Read Sentence Recognition

This section presents experimental results on the Resource Management corpus

using context-independent phone models. The experimental results in Table 6 represent

Short-pause 41.0% 1.2% 4.9% 35.0%

Forced Alignment 38.0% 0.8% 3.0% 34.2%

Flat-start 46.7% 2.5% 7.1% 37.2%

CI 35.3% 0.8% 2.2% 32.4%

Table 5. These experiments show results, using monophone models, for models that were
trained on the OGI Alphadigit corpus using the traditional trainer (first three
rows) and the network trainer (last two rows) respectively.

Stage WER
Insertion

Rate
Deletion

Rate
Substitution

Rate
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Figure 24. A comparison of the average log likelihood per iteration of training for both the
network trainer and the traditional trainer on the Resource Management corpus.
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models that were reestimated using the traditional trainer. The recognition experiments

use a word insertion penalty of -90 (which was found to be optimal via a development test

set). The recognition experiments also use a MAPMI pruning threshold of 10,000, a

maximum word-end pruning threshold of 150 and word, phone and state level beam

pruning thresholds of 250, 250, and 300 respectively. Furthermore, the recognition

experiments use a standard bigram language model with a perplexity less than 60. A

language model scale factor of 7.0 was used.

The experimental results in Table 6 show that the network trainer gives comparable

performance to the traditional trainer on the Resource Management corpus using

context-independent phone models. It should be noted that the 1.8% degradation in

performance is not significant, and the experimental results in Table 6 were obtained using

a much simpler training recipe than the traditional trainer. We use the matched pairs

sentence-segment word error (MAPSSWE) test with a 0.1% confidence in order to

Table 6. A comparison of the recognition results for the different stages of the traditional
training recipe (first three rows) and the network training recipe (last two rows)
using context-independent phone models.

Stage WER
Insertion

Rate
Deletion

Rate
Substitution

Rate

Flat-start 28.6% 2.3% 7.1% 19.2%

Short-pause 26.5% 2.1% 7.0% 17.5%

Forced Alignment 25.7% 1.9% 6.7% 17.1%

Flat-start 29.5% 2.7% 7.1% 19.7%

CI 27.5% 2.6% 7.1% 17.9%
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determine statistical significance [48]. The MAPSSWE test is the most powerful of the

statistical tests used by the National Institute for Standards and Technology (NIST) for

evaluating continuous speech processing tasks. The experimental results show that the

network trainer converges in word error rate to the traditional trainer. The substitution rate

indicates that the models reestimated by the network trainer are similar to the models

reestimated by the traditional trainer.

Figure 24 shows the average log likelihood per iteration for both the network

trainer and the traditional trainer. The plot in Figure 24 shows us that the models

reestimated by the network trainer converges, in likelihood, to the models reestimated by

the traditional trainer. Hence, the network trainer converges in both word error rate and

likelihood to the traditional trainer on the Resource Management corpus using a simpler

training recipe.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

The previous chapter of this thesis analyzed the effects of the network training

recipe on the reestimation process. The network training recipe was discussed in detail in

Chapters 3 and 4, and a step-by-step comparison with the traditional training recipe was

provided in Chapter 3. Experiments performed on different corpora suggest that the

network trainer gives better or comparable performance to the traditional trainer. This is

primarily due to the fact that the network trainer uses a soft decision criteria, i.e., it does

not force the trainer to learn a fixed solution during the reestimation process. The network

trainer let’s the data decide which solution is most likely during reestimation, while,

giving the other solutions a chance as well (be it a very small chance).

5.1. Thesis Contribution

This thesis has explored the effectiveness of a novel training recipe in the

reestimation process for speech processing. The effectiveness of the training recipe was

demonstrated by analyzing the performance of the speech recognizer on three different

corpora: TIDigits, OGI Alphadigits and Resource Management. For TIDigits, at a 7.6%

WER, the performance of the network trainer was better by 0.1%. Also, for OGI

Alphadigits, at a 35.3% WER, the performance of the network trainer was better by
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approximately 2.7%. Finally, for Resource Management, at a 27.5% WER, the

performance of the network trainer degraded slightly by about 1.8%. However, the

degradation was shown to be insignificant using the NIST standard MAPSSWE test.

The work presented in this thesis also shows that the network trainer allows for

multi-path model reestimation while simultaneously reducing the need for complicated

systems and training recipes. This was done by using an optional multi-path silence model

which is automatically inserted between words in the transcription. The network trainer

alleviates the need for a forced-alignment stage in training by using a soft decision criteria

during reestimation.

5.2. Future Work

The results presented in the previous chapter were obtained using single mixture

monophone models. The context-dependent stage is a direct extension of the

context-independent stage, which requires no changes in the training recipe. However, an

efficient tree-based decoder is needed to decode the cross-word models. An efficient

tree-based decoded is currently under development and recognition results using the

cross-word models are planned.

In the previous chapter none of the corpora mentioned used multiple

pronunciations. In order to fully test the power of the network training framework we will

need to run it on larger corpora like Switchboard [49]. The ability of the network trainer to

model multiple pronunciations, without modifying the training recipe, gives it a big edge

over the traditional trainer. Again due to time constraints and issues related to the
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efficiency of the system experiments using the Switchboard corpora could not be

performed. The Switchboard are planned once these issues mentioned above are resolved.
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